WorldWideScience

Sample records for increased calcium influx

  1. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.; Norenberg, M.D.

    1988-01-01

    The effect of ATP and other purines on 45 Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45 Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45 Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45 Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45 Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  2. Maitotoxin-induced liver cell death involving loss of cell ATP following influx of calcium

    International Nuclear Information System (INIS)

    Kutty, R.K.; Singh, Y.; Santostasi, G.; Krishna, G.

    1989-01-01

    Maitotoxin, one of the most potent marine toxins known, produced cell death in cultures of rat hepatocytes with a TD50 of 80 pM at 24 hr. The cell death, as indicated by a dose- and time-dependent leakage of lactate dehydrogenase (LDH), was also associated with the leakage of [14C]adenine nucleotides from hepatocytes prelabeled with [14C]-adenine. The toxic effect of maitotoxin was completely abolished by the omission of calcium from the culture medium. The cell death induced by maitotoxin increased with increasing concentrations of calcium in the medium. Treatment of hepatocytes with low concentrations of the toxin (less than 0.5 ng/ml) resulted in increases in 45Ca influx into the cells. At higher concentrations of maitotoxin (greater than 1ng/ml), the initial increase in 45Ca influx was followed by the release of the 45Ca from the cells into the medium. Since the 45Ca release paralleled the LDH leakage, the release of calcium was due to cell death. The 45Ca influx, [14C]adenine nucleotide leakage, and LDH leakage were effectively inhibited by verapamil, a calcium channel blocker. Maitotoxin also induced a time- and dose-dependent loss of ATP from hepatocytes, which preceded the [14C]adenine nucleotide and LDH leakage. Thus, it appears that the cell death resulting from maitotoxin treatment is caused by the elevated intracellular calcium, which in turn inhibits mitochondrial oxidative phosphorylation causing depletion of cell ATP. Loss of cell ATP may be the causative event in the maitotoxin-induced cell death

  3. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  4. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  5. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  6. Measurement of calcium influx in tethered rings of rabbit aorta under tension

    International Nuclear Information System (INIS)

    Gleason, M.M.; Ratz, P.H.; Flaim, S.F.

    1985-01-01

    Calcium (Ca) influx in vascular smooth muscle is routinely measured in untethered preparations not under passive stretch, and Ca influx data are correlated with data for steady-state isometric tension obtained under parallel conditions from tethered preparations under passive stretch. The validity of this method was tested by simultaneous measurement of Ca influx and tension in tethered rings of rabbit thoracic aorta. Ca influx ( 45 Ca 3-min pulse) and tension were measured at 3 and 30 min after norepinephrine (NE) or KCl and under control (no agonist) conditions. Active tension was significantly altered by variations in passive tension. Ca influx was unaffected by passive tension under control, NE, or KCl conditions, and results were similar at 3 and 30 min. The results confirm the validity of correlating Ca influx data from untethered rings with steady-state contractile response data obtained from tethered rings under similar experimental conditions

  7. Pharmacologic study of calcium influx pathways in rabbit aortic smooth muscle

    International Nuclear Information System (INIS)

    Lukeman, D.S.

    1987-01-01

    Functional characteristics and pharmacologic domains of receptor-operated and potential-sensitive calcium (Ca 2+ ) channels (ROCs and PSCs, respectively) were derived via measurements of 45 Ca 2+ influx (M/sup Ca/) during activation by the neurotransmitters norepinephrine (NE), histamine (HS), and serotonin (5-HT) and by elevated extracellular potassium (K + ) in the individual or combined presence of organic Ca 2+ channel antagonists (CAts), calmodulin antagonists (Calm-ants), lanthanum (La 3+ ), and agents that increase intracellular levels of cyclic AMP

  8. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco

    International Nuclear Information System (INIS)

    Atkinson, M.M.; Keppler, L.D.; Orlandi, E.W.; Baker, C.J.; Mischke, C.F.

    1990-01-01

    An early event in the hypersensitive response of tobacco to Pseudomonas syringae pv syringae is the initiation of a K + /H + response characterized by specific plasma membrane K + efflux, extracellular alkalinization, and intracellular acidification. We investigated the role of calcium in induction of these host responses. Suspension-cultured tobacco cells exhibited a baseline Ca 2+ influx of 0.02 to 0.06 micromole per gram per hour as determined from 45 Ca 2+ uptake. Following bacterial inoculation, uptake rates began to increase coincidently with onset of the K + /H + response. Rates increased steadily for 2 to 3 hours, reaching 0.5 to 1 micromole per gram per hour. This increased Ca 2+ influx was prevented by EGTA and calcium channel blockers such as La 3+ , Co 2+ , and Cd 2+ but not by verapamil and nifedipine. Lanthanum, cobalt, cadmium, and EGTA inhibited the K + /H + response in both suspension-cultured cells and leaf discs and prevented hypersensitive cell death in leaf discs. We conclude that increase plasmalemma Ca 2+ influx is required for the K + /H + and hypersensitive responses in tobacco

  9. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    Science.gov (United States)

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  10. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    Science.gov (United States)

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  11. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...

  12. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  13. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  14. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-01-01

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  15. Inotropic effect, binding properties, and calcium flux effects of the calcium channel agonist CGP 28392 in intact cultured embryonic chick ventricular cells

    International Nuclear Information System (INIS)

    Laurent, S.; Kim, D.; Smith, T.W.; Marsh, J.D.

    1985-01-01

    CGP 28392 is a recently described dihydropyridine derivative with positive inotropic properties. To study the mechanism of action of this putative calcium channel agonist, we have related the effects of CGP 28392 on contraction (measured with an optical video system) and radioactive calcium uptake to ligand-binding studies in cultured, spontaneously beating chick embryo ventricular cells. CGP 28392 produced a concentration-dependent increase in amplitude and velocity of contraction (EC 50 = 2 x 10(-7) M; maximum contractile effect = 85% of the calcium 3.6 mM response). Nifedipine produced a shift to the right of the concentration-effect curve for CGP 28392 without decreasing the maximum contractile response, suggesting competitive antagonism (pA2 = 8.3). Computer analysis of displacement of [ 3 H]nitrendipine binding to intact heart cells by unlabeled CGP 28392 indicated a K /sub D/ = 2.2 +/- 0.95 x 10(-7) M, in good agreement with the EC 50 for the inotropic effect. CGP 28392 increased the rate of radioactive calcium influx (+39% at 10 seconds) without altering beating rate, while nifedipine decreased radioactive calcium influx and antagonized the CGP 28392-induced increase in calcium influx. Our results indicate that, in intact cultured myocytes, CGP 28392 acts as a calcium channel agonist and competes for the dihydropyridine-binding site of the slow calcium channel. In contrast to calcium channel blockers, CGP 28392 increases calcium influx and enhances the contractile state

  16. Calcium influx determines the muscular response to electrotransfer

    DEFF Research Database (Denmark)

    Møller, Pernille Højman; Brolin, Camilla; Gissel, Hanne

    2012-01-01

    expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA...... low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene...

  17. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  18. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.

    1996-01-01

    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  19. Does calcium influx regulate melatonin production through the circadian pacemaker in chick pineal cells? Effects of nitrendipine, Bay K 8644, Co2+, Mn2+, and low external Ca2+.

    Science.gov (United States)

    Zatz, M; Mullen, D A

    1988-11-01

    We have recently described a system, using dispersed chick pineal cells in static culture, which displays a persistent, photosensitive, circadian rhythm of melatonin production and release. Here, we describe the effects of nitrendipine (NTR) (a dihydropyridine 'antagonist' of L-type calcium channels), Bay K 8644 (BK) (a dihydropyridine calcium channel 'agonist'), cobalt and manganese ions (both inorganic calcium channel blockers), and low external calcium concentrations, on the melatonin rhythm. NTR inhibited and BK stimulated melatonin output; they were potent and effective. Co2+, Mn2+, and low external Ca2+ markedly inhibited melatonin output. These results support a role for calcium influx through voltage-dependent calcium channels (L-type) in the regulation of melatonin production. Four or 8 h pulses of white light or darkness, in otherwise constant red light, cause, in addition to acute effects, phase-dependent phase shifts of the melatonin rhythm in subsequent cycles. Such phase shifts indicate an effect on (proximal to) the pacemaker generating the rhythm. Four or 8 h pulses of NTR, BK, Co2+, or low Ca2+, however, did not appreciably alter the phase of subsequent melatonin cycles. Neither did BK interfere with phase shifts induced by light pulses. Mn2+ pulses did induce phase-dependent phase shifts, but, unlike those evoked by light or dark pulses, these were all delays. Such effects of Mn2+ in other systems have been attributed to, and are characteristic of, 'metabolic inhibitors'. On balance, the results fail to support a prominent role for calcium influx in regulating the pacemaker underlying the circadian rhythm in chick pineal cells. Rather, calcium influx appears to regulate melatonin production primarily by acting on the melatonin-synthesizing apparatus, distal to the pacemaker.

  20. Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Hisatsune, Marie; Murakami, Taku; Nakada, Hiroyuki; Fujii, Hiroaki

    2018-02-01

    The idea that maintained LTP and memory are lost by either increase in intracellular Zn 2+ in dentate granule cells or increase in intracellular Ca 2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K + into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K + -induced increase in intracellular Zn 2+ but not high K + -induced increase in intracellular Ca 2+ . High K + -induced disturbances of LTP and intracellular Zn 2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn 2+ , but not increase in intracellular Ca 2+ . NMDA and glucocorticoid, which induced Zn 2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn 2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn 2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca 2+ influx.

  1. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    International Nuclear Information System (INIS)

    Yashima, N.; Wada, A.; Izumi, F.

    1986-01-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of 45 Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of 45 Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of 45 Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the 45 Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the 45 Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of 45 Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of 45 Ca. Based on these findings, the authors suggest that inhibition of the 45 Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels

  2. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids.

    Science.gov (United States)

    Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A

    2016-02-25

    Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.

  3. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  4. Effects of dihydropyridines on tension and calcium-45 influx in isolated mesenteric resistance vessels from spontaneously hypertensive and normotensive rats

    International Nuclear Information System (INIS)

    Cauvin, C.; Hwang, O.; Yamamoto, M.; van Breemen, C.

    1987-01-01

    Contractile tension responses to norepinephrine and depolarizing potassium (80 mM K+), as well as calcium-45 influx stimulated by these agents, were studied in isolated mesenteric resistance vessels (each 100 microM internal diameter) from spontaneously hypertensive rats (SHRs) and from normotensive Wistar Kyoto rats (WKYs). Inhibitory effects of 2 dihydropyridine Ca++ antagonists, PN 200-110 (isradipine) and nisoldipine, on these parameters were also determined. Contractile responses to 80 mM K+ were inhibited by both Ca++ antagonists with the same potency and efficacy in SHR compared with WKY vessels (PN 200-110 IC50 = 2.8 +/- 1.3 X 10(-8) M in SHRs and 2.5 +/- 1.5 X 10(-8) M in WKYs; nisoldipine IC50 = 1.1 +/- 0.4 X 10(-8) M in SHRs and 1.2 +/- 0.9 X 10(-8) M in WKYs). However, contractile responses to norepinephrine (10(-4) M) were inhibited less potently by nisoldipine in SHR vessels (IC50 = 2.2 +/- 0.3 X 10(-9) M) compared with WKY vessels (IC50 = 1.6 +/- 0.6 X 10(-10) M). Similarly, PN 200-110 tended to be less (but not significantly less) potent in SHR vessels (IC50 = 3.3 +/- 1.8 X 10(-8) M) than in WKY vessels (IC50 = 3.4 +/- 0.9 X 10(-9) M); its efficacy was significantly depressed in the SHR vessels (by approximately 20%). When norepinephrine-stimulated calcium-45 influx was determined in the presence of these Ca++ antagonists, a similar profile emerged with respect to a comparison of SHR and WKY vessels. These results support a previously hypothesized alteration in receptor-activated Ca++ influx pathways in SHR mesenteric resistance vessels

  5. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  6. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  8. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  9. Cucurbita ficifolia Bouché increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum.

    Science.gov (United States)

    Miranda-Perez, Maria Elizabeth; Ortega-Camarillo, Clara; Del Carmen Escobar-Villanueva, Maria; Blancas-Flores, Gerardo; Alarcon-Aguilar, Francisco Javier

    2016-07-21

    Cucurbita ficifolia Bouché(C. ficifolia) is a plant used in Mexican traditional medicine to control type 2 diabetes (T2D). The hypoglycemic effect of the fruit of C. ficifolia has been demonstrated in different experimental models and in T2D patients. It has been proposed that D-chiro-inositol (DCI) is the active compound of the fruit. Additionally, it has been reported that C. ficifolia increases the mRNA expression of insulin and Kir 6.2 (a component of the ATP-sensitive potassium (K(+)ATP) channel, which is activated by sulphonylurea) in RINm5F cells. However, it remains unclear whether C. ficifolia and DCI causes the secretion of insulin by increasing the concentration of intracellular calcium ([Ca(2+)]i) through K(+)ATP channel blockage or from the reservoir in the endoplasmic reticulum (ER). The aqueous extract of C. ficifolia was obtained and standardized with regard to its DCI content. RINm5F pancreatic β-cells were incubated with different concentrations (50, 100, 200 and 400μM) of DCI alone or C. ficifolia (9, 18, 36 and 72µg of extract/mL), and the [Ca(2+)]i of the cells was quantified. The cells were preloaded with the Ca(2+) fluorescent dye fluo4-acetoxymethyl ester (AM) and visualized by confocal microscopy. Insulin secretion was measured by an ELISA method. Subsequently, the effect of C. ficifolia on the K(+)ATP channel was evaluated. In this case, the blocker activator diazoxide was used to inhibit the C. ficifolia-induced calcium influx. In addition, the inositol 1,4,5-trisphosphate (IP3)-receptor-selective inhibitor 2-amino-thoxydiphenylborate (2-APB) was used to inhibit the influx of calcium from the ER that was induced by C. ficifolia. It was found that DCI alone did not increase [Ca(2+)]i or insulin secretion. In contrast, treatment with C. ficifolia increased [Ca(2+)]i 10-fold compared with the control group. Insulin secretion increased by 46.9%. In the presence of diazoxide, C. ficifolia decreased [Ca(2+)]i by 50%, while insulin secretion

  10. Increased 22Na+-influx in lymphocytes from offspring of essential hypertensive patients

    DEFF Research Database (Denmark)

    Nielsen, J R; Pedersen, K E; Klitgaard, N A

    1989-01-01

    Lymphocytes were used as a cellular model for the in vitro measurements of 22Na+-influx during sodium pump inhibition by ouabain. The measurements were made using lymphocytes from young men at increased risk of developing essential hypertension in order to assess any changes and to analyse whether...

  11. Enhanced Store-Operated Calcium Entry in Platelets is Associated with Peripheral Artery Disease in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Weijie Xia

    2015-11-01

    Full Text Available Background/Aims: Platelet dysfunction plays an important role in thrombosis in diabetes with peripheral artery disease (PAD. Store-operated calcium entry (SOCE and stromal interaction molecule 1 (STIM1 regulate platelet activity by modulating calcium influx. We hypothesized that enhanced SOCE in platelets is associated with diabetes with PAD. Methods: We studied the activity of platelets from healthy participants and from type 2 diabetic patients. Platelet calcium influx and protein expression of STIM1 and sarcoendoplasmic reticulum Ca2+-ATPase 3 (SERCA3 were investigated. Results: Compared with platelets from diabetic patients without PAD, platelets from diabetic patients with PAD exhibited significantly increased SOCE . Menthol administration completely inhibited calcium influx in platelets from diabetic patients without PAD, but this effect was blunted in those from diabetic patients with PAD. Furthermore, the increase in SOCE was correlated with the ankle brachial index (ABI in diabetic patients. High glucose significantly up-regulated STIM1 and SERCA3 protein expression and induced the phosphorylation of phospholipase C (PLC in platelets from healthy participants. This effect was attenuated in the presence of menthol or U73122, an inhibitor of PLC. Similarly, significant increases in STIM1 and SERCA3 protein expression were found in platelets from diabetic patients compared to those from healthy participants. Conclusion: Platelets from diabetic patients with PAD exhibited enhanced Store-operated calcium influx, which was associated with elevated STIM1/SERCA3 expression via a PLC-dependent pathway and was inhibited by menthol.

  12. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells

    International Nuclear Information System (INIS)

    Borle, A.B.

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total call calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca 2+ compartmentalization, but the methods suffer from the possibility of Ca 2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45 Ca uptake or desaturation curves have been used to study the distribution of Ca 2+ among various kinetic pools in living cells and their rate of Ca 2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45 Ca uptake can detect instantaneous changes in calcium influx, while 45 Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. The best strategy to study cell calcium metabolism is to use several different methods that focus on a specific problem from widely different angles

  13. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  14. Ketamine inhibits 45Ca influx and catecholamine secretion by inhibiting 22Na influx in cultured bovine adrenal medullary cells

    International Nuclear Information System (INIS)

    Takara, Hiroshi; Wada, Akihiko; Arita, Masahide; Izumi, Futoshi; Sumikawa, Koji

    1986-01-01

    The effects of ketamine, an intravenous anesthetic, on 22 Na influx, 45 Ca influx and catecholamine secretion were investigated in cultured bovine adrenal medullary cells. Ketamine inhibited carbachol-induced 45 Ca influx and catecholamine secretion in a concentration-dependent manner with a similar potency. Ketamine also reduced veratridine-induced 45 Ca influx and catecholamine secretion. The influx of 22 Na caused by carbachol or by veratridine was suppressed by ketamine with a concentration-inhibition curve similar to that of 45 Ca influx and catecholamine secretion. Inhibition by ketamine of the carbachol-induced influx of 22 Na, 45 Ca and secretion of catecholamines was not reversed by the increased concentrations of carbachol. These observations indicate that ketamine, at clinical concentrations, can inhibit nicotinic receptor-associated ionic channels and that the inhibition of Na influx via the receptor-associated ionic channels is responsible for the inhibition of carbachol-induced Ca influx and catecholamine secretion. (Auth.)

  15. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the ...

  16. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  17. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  18. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  19. Glucagon effects on the membrane potential and calcium uptake rate of rat liver mitochondria

    International Nuclear Information System (INIS)

    Wingrove, D.E.; Amatruda, J.M.; Gunter, T.E.

    1984-01-01

    It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca 2+ /mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45 Ca 2+ to follow uptake in the presence of 0.5 to 1.5 μM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake

  20. Activation of TRPV1-dependent calcium oscillation exacerbates seawater inhalation-induced acute lung injury.

    Science.gov (United States)

    Li, Congcong; Bo, Liyan; Liu, Qingqing; Liu, Wei; Chen, Xiangjun; Xu, Dunquan; Jin, Faguang

    2016-03-01

    Calcium is an important second messenger and it is widely recognized that acute lung injury (ALI) is often caused by oscillations of cytosolic free Ca2+. Previous studies have indicated that the activation of transient receptor potential‑vanilloid (TRPV) channels and subsequent Ca2+ entry initiates an acute calcium‑dependent permeability increase during ALI. However, whether seawater exposure induces such an effect through the activation of TRPV channels remains unknown. In the current study, the effect of calcium, a component of seawater, on the inflammatory reactions that occur during seawater drowning‑induced ALI, was examined. The results demonstrated that a high concentration of calcium ions in seawater increased lung tissue myeloperoxidase activity and the secretion of inflammatory mediators, such as tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β and IL‑6. Further study demonstrated that the seawater challenge elevated cytosolic Ca2+ concentration, indicated by [Ca2+]c, by inducing calcium influx from the extracellular medium via TRPV1 channels. The elevated [Ca2+c] may have resulted in the increased release of TNF‑α and IL‑1β via increased phosphorylation of nuclear factor‑κB (NF‑κB). It was concluded that a high concentration of calcium in seawater exacerbated lung injury, and TRPV1 channels were notable mediators of the calcium increase initiated by the seawater challenge. Calcium influx through TRPV1 may have led to greater phosphorylation of NF‑κB and increased release of TNF‑α and IL‑1β.

  1. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  2. A Ca2+ influx associated with exocytosis is specifically abolished in a Paramecium exocytotic mutant

    International Nuclear Information System (INIS)

    Kerboeuf, D.; Cohen, J.

    1990-01-01

    A Paramecium possesses secretory organelles called trichocysts which are docked beneath the plasma membrane awaiting an external stimulus that triggers their exocytosis. Membrane fusion is the sole event provoked by the stimulation and can therefore be studied per se. Using 3 microM aminoethyl dextran as a vital secretagogue, we analyzed the movements of calcium (Ca 2+ ) during the discharge of trichocysts. We showed that (a) external Ca 2+ , at least at 3 X 10(-7) M, is necessary for AED to induce exocytosis; (b) a dramatic and transient influx of Ca 2+ as measured from 45 Ca uptake is induced by AED; (c) this influx is independent of the well-characterized voltage-operated Ca 2+ channels of the ciliary membranes since it persists in a mutant devoid of these channels; and (d) this influx is specifically abolished in one of the mutants unable to undergo exocytosis, nd12. We propose that the Ca 2+ influx induced by AED reflects an increase in membrane permeability through the opening of novel Ca 2+ channel or the activation of other Ca 2+ transport mechanism in the plasma membrane. The resulting rise in cytosolic Ca 2+ concentration would in turn induce membrane fusion. The mutation nd12 would affect a gene product involved in the control of plasma membrane permeability to Ca 2+ , specifically related to membrane fusion

  3. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  4. Angiotensin effects on calcium and steroidogenesis in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Elliott, M.E.; Siegel, F.L.; Hadjokas, N.E.; Goodfriend, T.L.

    1985-01-01

    We investigated the role of cellular calcium pools in angiotensin II-stimulated aldosterone synthesis in bovine adrenal glomerulosa cells. Angiotensin II decreased the size of the exchangeable cell calcium pool by 34%, consistent with previous observations that angiotensin II causes decreased uptake of 45 Ca+2 into cells and increased efflux of 45 Ca+2 from preloaded cells. Atomic absorption spectroscopy showed that angiotension II caused a decrease of 21% in total cellular calcium. Angiotensin II caused efflux of 45 Ca+2 in the presence of EGTA and retarded uptake of 45 Ca+2 when choline was substituted for sodium, suggesting that hormone effects on calcium pools do not involve influx of trigger calcium or sodium. Cells incubated in calcium-free buffer and 0.1 mM or 0.5 mM EGTA synthesized reduced (but still significant) amounts of the steroid in response to hormone. Cells incubated in increasing concentrations of extracellular calcium contained increasing amounts of intracellular calcium and synthesized increasing amounts of aldosterone in response to angiotensin II. These results point to the participation of intracellular calcium pools in angiotensin II-stimulated steroidogenesis and the importance of extracellular calcium in maintaining these pools

  5. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores.

    Science.gov (United States)

    Kim, Hee Jung; Yum, Keun Sang; Sung, Jong-Ho; Rhie, Duck-Joo; Kim, Myung-Jun; Min, Do Sik; Hahn, Sang June; Kim, Myung-Suk; Jo, Yang-Hyeok; Yoon, Shin Hee

    2004-02-01

    Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 micro M) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 micro M) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 micro M) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 micro M) and flufenamic acid (100 micro M), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 micro M) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.

  6. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    Science.gov (United States)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  7. Regulation of the sodium/potassium/chloride cotransporter by calcium and cyclic AMP in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Higgins, B.L.; Smith, L.; Smith, J.B.

    1987-01-01

    The activity of the Na/K/Cl cotransporter in smooth muscle cells cultured from rat aorta was assayed by measuring the initial rate of furosemide-inhibitable 86 Rb influx or efflux. Five uM furosemide or 0.2 uM bumetanide inhibited influx by 50%. Furosemide-inhibitable 86 Rb influx depended on the presence of all 3 ions in the external medium. The dependence on Na and K was hyperbolic with apparent Km values of 45 and 5 mM, respectively. The dependence on Cl was sigmoidal. Assuming a stoichiometry of 1:1:2 for Na:K:Cl, a Km for Cl of 60 mM was obtained from a Hofstee plot of the data. Rapidly growing cells had 3 fold higher cotransport activity than quiescent cells. Angiotensin II (ANG) stimulated furosemide-inhibitable 86 Rb efflux by 2 fold. An ANG receptor antagonist prevented ANG from increasing cotransport activity. Two calcium ionophores, A23187 and ionomycin, increased cotransport activity by 2 fold. Phorbol myristate acetate had no effect on cotransport activity. Isoproterenol, dibutyryl cyclic AMP, cholera toxin, or methylisobutylxanthine inhibited furosemide-sensitive 86 Rb influx by 35 to 50%. From these findings they conclude that increasing cytoplasmic free calcium stimulates cotransport activity, whereas increasing cellular cyclic AMP inhibits the cotransporter

  8. Transgenic plants with increased calcium stores

    Science.gov (United States)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  9. In vivo and in vitro cadmium accumulation during the moult cycle of the male shore crab Carcinus maenas-interaction with calcium metabolism

    International Nuclear Information System (INIS)

    Norum, Ulrik; Bondgaard, Morten; Pedersen, Thomas V.; Bjerregaard, Poul

    2005-01-01

    The effect of moult stage on cadmium accumulation and distribution was investigated in vivo in male shore crabs Carcinus maenas exposed to 1 mg Cd l -1 for 7 days. The accumulation of cadmium in all tissues examined was markedly higher in postmoult (A 1-2 and B 1-2 ) compared to intermoult (C 1 , C 3 and C 4 ) and premoult (D 0-3 ). In addition, elevated levels of cadmium were found in gills of late premoult (D 2-3 ) animals. The total amount of cadmium accumulated in the tissues (haemolymph, gills, midgut gland and muscle) increased from 43 μg Cd in early premoult (D 0-1 ) to 391 μg Cd in late postmoult (B 1-2 ). Gills and midgut gland were the primary cadmium accumulating tissues in C 4 -intermoult and premoult (D 0-3 ); in early postmoult (A 1-2 ) haemolymph and midgut gland were the main cadmium containing tissues, while midgut gland dominated in late postmoult (B 1-2 ) and early intermoult (C 1 and C 3 ). A detailed account of calcium distribution in haemolymph, gills, midgut gland, muscle and exoskeleton during the moult cycle is presented. Mechanistic links between cadmium and calcium uptake in posterior gills of C 4 -intermoult and early postmoult (A 1-2 ) crabs were explored using an in vitro gill perfusion technique. Calcium and cadmium influxes were markedly higher in postmoult compared to intermoult. No differences between intermoult and postmoult effluxes were found for either calcium or cadmium. From intermoult to postmoult net influx increased from 2.4 to 29 μmol Ca 2+ g -1 ww gill h -1 and from 0.24 to 25 nmol Cd 2+ g -1 ww gill h -1 . The results indicate that the postmoult increase in cadmium influx is due to increased active transport of cadmium, at least partly, by accidental uptake via calcium transporting proteins. The in vitro net influx rates corresponded accurately to the observed in vivo accumulation of both cadmium and calcium. Although cadmium accumulation and distribution are clearly linked to changes in calcium requirements, cadmium

  10. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels

    DEFF Research Database (Denmark)

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao

    2010-01-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor pot...

  11. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    Science.gov (United States)

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  13. GADS is required for TCR-mediated calcium influx and cytokine release, but not cellular adhesion, in human T cells.

    Science.gov (United States)

    Bilal, Mahmood Y; Zhang, Elizabeth Y; Dinkel, Brittney; Hardy, Daimon; Yankee, Thomas M; Houtman, Jon C D

    2015-04-01

    GRB2 related adaptor protein downstream of Shc (GADS) is a member of the GRB2 family of adaptors and is critical for TCR-induced signaling. The current model is that GADS recruits SLP-76 to the LAT complex, which facilitates the phosphorylation of SLP-76, the activation of PLC-γ1, T cell adhesion and cytokine production. However, this model is largely based on studies of disruption of the GADS/SLP-76 interaction and murine T cell differentiation in GADS deficient mice. The role of GADS in mediating TCR-induced signals in human CD4+ T cells has not been thoroughly investigated. In this study, we have suppressed the expression of GADS in human CD4+ HuT78 T cells. GADS deficient HuT78 T cells displayed similar levels of TCR-induced SLP-76 and PLC-γ1 phosphorylation but exhibited substantial decrease in TCR-induced IL-2 and IFN-γ release. The defect in cytokine production occurred because of impaired calcium mobilization due to reduced recruitment of SLP-76 and PLC-γ1 to the LAT complex. Surprisingly, both GADS deficient HuT78 and GADS deficient primary murine CD8+ T cells had similar TCR-induced adhesion when compared to control T cells. Overall, our results show that GADS is required for calcium influx and cytokine production, but not cellular adhesion, in human CD4+ T cells, suggesting that the current model for T cell regulation by GADS is incomplete. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    International Nuclear Information System (INIS)

    Wendling, W.W.; Harakal, C.

    1987-01-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium ( 45 Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased 45 Ca uptake into cerebral artery strips during 5 minutes of 45 Ca loading; for potassium 45 Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal 45 Ca uptake but significantly blocked the increase in 45 Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of 45 Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated 45 Ca efflux. The results demonstrate that verapamil and nifedipine block 45 Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries

  15. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    Science.gov (United States)

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  16. In vivo and in vitro cadmium accumulation during the moult cycle of the male shore crab Carcinus maenas-interaction with calcium metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Ulrik [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)]. E-mail: ulrik@biology.sdu.dk; Bondgaard, Morten [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Pedersen, Thomas V. [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Bjerregaard, Poul [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

    2005-03-25

    The effect of moult stage on cadmium accumulation and distribution was investigated in vivo in male shore crabs Carcinus maenas exposed to 1 mg Cd l{sup -1} for 7 days. The accumulation of cadmium in all tissues examined was markedly higher in postmoult (A{sub 1-2} and B{sub 1-2}) compared to intermoult (C{sub 1}, C{sub 3} and C{sub 4}) and premoult (D{sub 0-3}). In addition, elevated levels of cadmium were found in gills of late premoult (D{sub 2-3}) animals. The total amount of cadmium accumulated in the tissues (haemolymph, gills, midgut gland and muscle) increased from 43 {mu}g Cd in early premoult (D{sub 0-1}) to 391 {mu}g Cd in late postmoult (B{sub 1-2}). Gills and midgut gland were the primary cadmium accumulating tissues in C{sub 4}-intermoult and premoult (D{sub 0-3}); in early postmoult (A{sub 1-2}) haemolymph and midgut gland were the main cadmium containing tissues, while midgut gland dominated in late postmoult (B{sub 1-2}) and early intermoult (C{sub 1} and C{sub 3}). A detailed account of calcium distribution in haemolymph, gills, midgut gland, muscle and exoskeleton during the moult cycle is presented. Mechanistic links between cadmium and calcium uptake in posterior gills of C{sub 4}-intermoult and early postmoult (A{sub 1-2}) crabs were explored using an in vitro gill perfusion technique. Calcium and cadmium influxes were markedly higher in postmoult compared to intermoult. No differences between intermoult and postmoult effluxes were found for either calcium or cadmium. From intermoult to postmoult net influx increased from 2.4 to 29 {mu}mol Ca{sup 2+} g{sup -1} ww{sub gill} h{sup -1} and from 0.24 to 25 nmol Cd{sup 2+} g{sup -1} ww{sub gill} h{sup -1}. The results indicate that the postmoult increase in cadmium influx is due to increased active transport of cadmium, at least partly, by accidental uptake via calcium transporting proteins. The in vitro net influx rates corresponded accurately to the observed in vivo accumulation of both cadmium

  17. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  18. Calcium antagonistic effects of Chinese crude drugs: Preliminary investigation and evaluation by 45Ca

    International Nuclear Information System (INIS)

    Liu Ning; Yang Yuanyou; Mo Shangwu; Liao Jiali; Jin Jiannan

    2005-01-01

    Coronary and other diseases in cardiac or brain blood vessels are considered to be due to the excessive influx of Ca 2+ into cytoplasm. If Ca 2+ channels in cell membrane are blocked by medicines or other substances with considerable calcium antagonistic effects, these diseases might be cured or controlled. The influence of some Chinese crude drugs, including Crocus sativus, Carthamus tinctorius, Ginkgo biloba and Bulbus allii macrostemi on Ca 2+ influx in isolated rat aortas was investigated by using 45 Ca as a radioactive tracer, and their calcium antagonistic effects were evaluated. It can be noted that Ca 2+ uptake in isolated rat aorta rings in normal physiological status was not markedly altered by these drugs, whereas the Ca 2+ influxes induced by norepinephrine of 1.2 μmol/L and KCl of 100 mmol/L were significantly inhibited by Crocus, Carthamus and Bulbus in a concentration-dependent manner, but not by Ginkgo. The results show that extracellular Ca 2+ influx through receptor-operated Ca 2+ channels and potential-dependent Ca 2+ channels can be blocked by Crocus, Carthamus and Bulbus. This implies that these Chinese crude drugs have obvious calcium antagonistic effects

  19. Calcium controls the formation of vacuoles from mitochondria to regulate microspore development in wheat.

    Science.gov (United States)

    Li, Dong Xiao; Hu, Hai Yan; Li, Gan; Ru, Zhen Gang; Tian, Hui Qiao

    2017-09-01

    Potassium antimonite was used to investigate the localisation of calcium in developing wheat anthers to examine the relationship between Ca 2+ and pollen development. During anther development, calcium precipitate formation increased in anther wall cells prior to microspore mother cell meiosis and appeared in microspores, suggesting the presence of a calcium influx from anther wall cells into the locule. Initially, the precipitates in microspore cytoplasm primarily accumulated in the mitochondria and destroyed their inner membranes (cisterns) to become small vacuoles, which expanded and fused, ultimately becoming a large vacuole during microspore vacuolisation. After microspore division and large vacuole decomposition, many calcium precipitates again accumulated in the small vacuoles, indicating that calcium from the large vacuole moved back into the cytoplasm of bicellular pollen.

  20. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K D [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  1. Effect of ethionine on hepatic mitochondrial and microsomal calcium uptake

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Zinermon, W.D.; Latoni, L.

    1988-01-01

    Ethionine, an ethyl analog of methionine, produces a variety of physiological and pathological effects in animals. These range from acute effects in the liver, kidney, pancreas, and other organs to liver carcinogenesis. Female rats when injected with ethionine exhibit a rapid decrease in hepatic adenosine triphosphate levels followed by a marked inhibition of RNA and protein synthesis and accumulation of triglycerides. Since calcium transport in mitochondria and microsomes is ATP dependent, it becomes interesting to find out if ethionine administration has any effect on subcellular calcium transport. Calcium has recently gained an increased controversy regarding its role in chemical induced lethal cell damage. Certain groups believe that influx of extracellular calcium across the damaged plasma membrane might actually mediate the irreversible damage to the cell, whereas according to other, entry of calcium into the cell is secondary to the damage. The present study was carried out to investigate the calcium [ 45 Ca] transport in mitochondria and microsomes following ethionine administration. The effect of carbon tetrachloride on calcium uptake in ethionine treated rats was also studied

  2. Influence of a chinese crude drug on Ca2+ influx and efflux in rat visceral organs:Investigation and evaluation by 45Ca

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Zhengji; Xie Jianping; Liao Jiali; Mo Shangwu

    2006-01-01

    The influences of a Chinese crude drug, Herba Epimedii (HE), on Ca 2+ influx and efflux in the isolated rat aorta and some visceral organs were evaluated by using 45 Ca as a radioactive tracer. Additionally, its protective effect on myocardial ischemia was investigated in live animals. The results indicated that HE has significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in that it can markedly block 45 Ca entering into cell and can facilitate efflux of intracellular Ca 2+ . However, among the three kinds of extracts from HE, the alkali extracts have the most obvious effect on calcium channels in visceral organs. Even if the alkali extracts are diluted by water for 10 times, the material still has a rather strong inhibition effect on calcium channels. Fortunately, the three kinds of extracts have favorable protective effect on myocardial ischemia induced by drugs or by the ligation of the coronary artery. This is consistent with the results about the Ca 2+ influx and efflux obtained by isotope tracer technique, and implies that the Chinese crude drug has attractive potential for the treatment of heart, cerebrovascular and other diseases

  3. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming

    2010-05-01

    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  4. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  5. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    Science.gov (United States)

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  6. Crambescidin 816 induces calcium influx though glutamate receptors in primary cultures of cortical neurons

    Directory of Open Access Journals (Sweden)

    Víctor Martín Vázquez

    2014-06-01

    In summary, our data suggest that the cytotoxic effect of 10 μM Cramb816 in cortical neurons may be related to an increase in the cytosolic calcium concentration elicited by the toxin, which is shown to be mediated by glutamate receptor activation. Further studies analyzing the effect of glutamate receptor blockers on the cytotoxic effect of Cramb816 are needed to confirm this hypothesis.

  7. Association between cadmium and calcium uptake and distribution during the moult cycle of female shore crabs, Carcinus maenas: an in vivo study

    International Nuclear Information System (INIS)

    Bondgaard, Morten; Bjerregaard, Poul

    2005-01-01

    Net influxes into the haemolymph and tissue distribution of 45 Ca and 109 Cd were studied in vivo in female Carcinus maenas at different moult stages. Net influxes of 45 Ca and 109 Cd from water were higher in postmoult (A and B) C. maenas than in C 3 - and C 4 -intermoult crabs and the net influx of calcium was higher in C 3 -intermoult crabs than in C 4 -intermoult crabs. The net influxes of 45 Ca and 109 Cd increased in postmoult C. maenas with decreasing external calcium concentrations at constant salinity. At all external calcium concentrations a significant correlation existed between 45 Ca and 109 Cd accumulated in the haemolymph of individual animals. In vivo exposure of postmoult C. maenas to external lanthanum decreased the 45 Ca and 109 Cd uptake rates to 30 and 10%, respectively, of the control values. About 30% of injected 109 Cd were found in the midgut gland, 10-20% in the gills and only a few (1-2) percent was lost to the seawater 24 h after injection. No major variations in tissue distribution of 109 Cd were observed between moult stages in these tissues. Premoult crabs retained more cadmium in the haemolymph 24 h after injection than other moult stages, and postmoult crabs retained more in muscle. Between 20 and 40% of the injected 45 Ca were excreted to the water, while only a few percent of the injected 45 Ca were found in the soft tissues 24 h after injection. Large moult stage variations, however, were observed in the tissue distribution of internalised 45 Ca. This study demonstrates that cadmium and calcium uptakes are elevated in postmoult C. maenas. The results indicate that cadmium and calcium in this stage are taken up via Ca 2+ -channels located in the apical membrane of gill epithelium cells. When internalised, however, cadmium and calcium are metabolised in fundamentally different ways, determined by the chemical properties and biological significance of the two metals

  8. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    Science.gov (United States)

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  9. Alterations in calcium metabolism during human monocyte activation

    International Nuclear Information System (INIS)

    Scully, S.P.

    1984-01-01

    Human peripheral blood monocytes have been prepared from plateletpheresis residues by counterflow centrifugal elutriation in sufficient quantities to enable quantitative studies of cell calcium. Kinetic analysis of 45 Ca exchange data in resting monocytes was compatible with a model of cellular calcium containing three exchangeable calcium pools. These pools are thought to represent a putative ectocellular pool, a putative cytoplasmic chelated pool, and a putative organelle sequestered pool. Exposure of monocytes to the plant lectin Con A at a concentration that maximally simulated superoxide production caused an increase in the size and a doubling in the exchange rate of the putative cytoplasmic pool without a change in the other cellular pools. The cytoplasmic ionized calcium, [Ca]/sub i/, measured with the fluorescent probe, Quin 2 rose from a resting level of 83 nM to 165 mN within 30 sec of exposure to Con A. This increase in cytoplasmic calcium preceded the release of superoxide radicals. Calcium transport and calcium ATPase activities were identified and characterized in plasma membrane vesicles prepared from monocytes. Both activities were strictly dependent on ATP and Mg, had a Km/sub Ca/ in the submicromolar range and were stimulated by calmodulin. Thus, it seems that monocyte calcium is in a dynamic steady state that is a balance between efflux and influx rates, and that the activation of these cells results in the transition to a new steady state. The alteration in [Ca]/sub i/ that accompany the new steady state are essential for superoxide production by human monocytes

  10. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  11. Effect of cadmium on myocardial contractility and calcium fluxes

    International Nuclear Information System (INIS)

    Pilati, C.F.

    1979-01-01

    The effect of cadmium on myocardial mechanical performance and calcium fluxes was studied in kitten isometric papillary muscles and in isovolumic Langendorff-perfused rabbit hearts. Therefore, it is concluded that cadmium-induced decreases in contractility are not primarily the result of cadmium interference with ATP metabolic processes. Furthermore, these results imply that cadmium causes no structural alterations of the contractile proteins. These data suggest that cadmium may be competing with the calcium needed for excitation-contraction coupling. During experiments using radioisotopic calcium, a statistically significant cellular influx of calcium was observed following the onset of 100 μM Cd ++ perfusion of isolated, Langendorff-prepared rabbit hearts

  12. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning.

    Science.gov (United States)

    Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C

    2018-02-08

    Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. TFTR L mode energy confinement related to deuterium influx

    International Nuclear Information System (INIS)

    Strachan, J.D.

    1999-01-01

    Tokamak energy confinement scaling in TFTR L mode and supershot regimes is discussed. The main result is that TFTR L mode plasmas fit the supershot scaling law for energy confinement. In both regimes, plasma transport coefficients increased with increased edge deuterium influx. The common L mode confinement scaling law on TFTR is also inversely proportional to the volume of wall material that is heated to a high temperature, possibly the temperature at which the deuterium sorbed in the material becomes detrapped and highly mobile. The deuterium influx is increased by: (a) increased beam power due to a deeper heated depth in the edge components and (b) decreased plasma current due to an increased wetted area as governed by the empirically observed dependence of the SOL width upon plasma current. (author). Letter-to-the-editor

  14. Ca2+ influx and efflux in animal cells in the presence of panax notoginseng extracts: investigated by using 45Ca as a radioactive tracer

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Shangwu; Liao Jiali; Xu Falun

    2010-01-01

    In this paper, the influence of extracts of Panax notoginseng on Ca 2+ influx and efflux in isolated rat visceral organs was investigated by using 45 Ca as a radioactive tracer. The results indicated that both extracts, the total flavonoids and total saponins of Panax notoginseng had significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in those organs it could markedly block 45 Ca entering into cell and could facilitate efflux of intracellular Ca 2+ . Compared with the total flavonoids, total saponins had stronger role in the regulation of Ca 2+ influx and efflux. Also, regulation effects of Ca 2+ influx and efflux of the total saponins were compared with positive drug Verapamil, or even better. This implies that the total flavonoids and total saponins of Panax notoginseng have calcium antagonistic effect, and both may be the active ingredients in Panax notoginseng for coronary heart disease treatment. (authors)

  15. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism.

    Science.gov (United States)

    Spyridopoulos, I; Wischhusen, J; Rabenstein, B; Mayer, P; Axel, D I; Fröhlich, K U; Karsch, K R

    2001-03-01

    Controversy exists about the net effect of alcohol on atherogenesis. A protective effect is assumed, especially from the tannins and phenolic compounds in red wine, owing to their inhibition of low density lipoprotein (LDL) oxidation. However, increased atherogenesis occurs in subjects with moderate to heavy drinking habits. The purpose of this study was to investigate the influence of alcohol in combination with oxysterols on the endothelium. Cultured human arterial endothelial cells (HAECs) served as an in vitro model to test the cellular effects of various oxysterols. Oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and cholesterol-5,6-epoxides), which are assumed to be the most toxic constituents of oxidized LDL, induced apoptosis in HAECs through calcium mobilization followed by activation of caspase-3. Ethanol, methanol, isopropanol, tert-butanol, and red wine all potentiated oxysterol-induced cell death up to 5-fold, paralleled by further induction of caspase-3. The alcohol effect occurred in a dose-dependent manner and reached a plateau at 0.05% concentration. Alcohol itself did not affect endothelial cell viability, nor did other solvents such as dimethyl sulfoxide mimic the alcohol effect. So far as the physiologically occurring oxysterols are concerned, this effect was apparent only for oxysterols oxidized at the steran ring. The possibility of alcohol facilitating the uptake of oxysterols into the cell was not supported by the data from an uptake study with radiolabeled compounds. Finally, alcohol in combination with oxysterols did cause a dramatic increase in cytosolic calcium influx. Blockage of calcium influx by the calcium channel blocker aurintricarboxylic acid or the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid abrogated the alcohol-mediated enhancement of oxysterol toxicity. We describe for the first time a mechanistic concept explaining possible adverse effects of alcohol in conjunction with

  16. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  17. Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons

    International Nuclear Information System (INIS)

    Ticku, M.K.; Lowrimore, P.; Lehoullier, P.

    1986-01-01

    Ethanol has a pharmacological profile similar to other centrally acting drugs, which facilitate GABAergic transmission. GABA is known to produce its effects by increasing the conductance to Cl- ions. In this study, we have examined the effect of ethanol on GABA-induced 36Cl-influx in primary spinal cord cultured neurons. GABA produces a concentration-dependent, and saturable effect on 36Cl-influx in these neurons. Ethanol potentiates the effect of GABA on 36Cl-influx in these neurons. GABA (20 microM) increased the 36Cl-influx by 75% over the basal value, and in the presence of 50 mM ethanol, the observed increase was 142%. Eadie-Hoffstee analysis of the saturation curves indicated that ethanol decreases the Km value of GABA (10.6 microM to 4.2 microM), and also increases the Vmax. Besides potentiating the effect of GABA, ethanol also appears to have a direct effect in the absence of added GABA. These results suggest that ethanol enhances GABA-induced 36Cl-influx and indicate a role of GABAergic system in the actions of ethanol. These results also support the behavioral and electrophysiological studies, which have implicated GABA systems in the actions of ethanol. The potential mechanism(s) and the role of direct effect of ethanol is not clear at this time, but is currently being investigated

  18. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR

    Directory of Open Access Journals (Sweden)

    Mercè eIzquierdo-Serra

    2013-03-01

    Full Text Available A wide range of light-activated molecules (photoswitches and phototriggers have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR, which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.

  19. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  20. The influx of amino acids into the heart of the rat

    International Nuclear Information System (INIS)

    Banos, G.; Moorhouse, S.R.; Pratt, O.E.; Wilson, P.A.; Daniel, P.M.

    1978-01-01

    The influx of nineteen amino acids into the heart of the living rat was studied by a method specially devised for experiments under controlled conditions in vivo. When, in separate experiments, the concentration of each amino acid in turn was artificially raised in the circulation, the influx of that amino acid into the heart increased. The data indicate that at least ten of these amino acids enter the heart in vivo by means of saturable carrier-mediated transport systems. The transport rates conform, at least approximately, to Michaelis kinetics and the transport systems are clearly, in the case of many amino acids, active, i.e. energy-dependent. The amino acids which were studied had rates of influx into the heart which differed from each other over a range of more than 10 to 1, even when allowances were made for the differences in their concentration in the circulating blood. These differences in influx were not related to such factors as the molecular size of the individual amino acids. The amino acids which have a high influx into the heart are mainly those which are needed either to re-synthesize contractile protein or as oxidizable substrates. (author)

  1. Calcium mobilization in HeLa cells induced by nitric oxide.

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  2. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  3. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  4. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  5. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  6. Indomethacin Inhibits Cancer Cell Migration via Attenuation of Cellular Calcium Mobilization

    Directory of Open Access Journals (Sweden)

    Ke-Li Tsai

    2013-06-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.

  7. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling

    Directory of Open Access Journals (Sweden)

    Bendik C. Brinchmann

    2018-05-01

    Full Text Available Exposure to diesel exhaust particles (DEPs affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM, dichloromethane (DCM-EOM, methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1 using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE. By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE. Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction

  8. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    Science.gov (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  9. Visualizing presynaptic calcium dynamics and vesicle fusion with a single genetically encoded reporter at individual synapses

    Directory of Open Access Journals (Sweden)

    Rachel E Jackson

    2016-07-01

    Full Text Available Synaptic transmission depends on the influx of calcium into the presynaptic compartment, which drives neurotransmitter release. Genetically encoded reporters are widely used tools to understand these processes, particularly pHluorin-based reporters that report vesicle exocytosis and endocytosis through pH dependent changes in fluorescence, and genetically encoded calcium indicators (GECIs that exhibit changes in fluorescence upon binding to calcium. The recent expansion of the color palette of available indicators has made it possible to image multiple probes simultaneously within a cell. We have constructed a single molecule reporter capable of concurrent imaging of both presynaptic calcium influx and exocytosis, by fusion of sypHy, the vesicle associated protein synaptophysin containing a GFP-based pHluorin sensor, with the red-shifted GECI R-GECO1. Due to the fixed stoichiometry of the two probes, the ratio of the two responses can also be measured, providing an all optical correlate of the calcium dependence of release. Here, we have characterized stimulus-evoked sypHy-RGECO responses of hippocampal synapses in vitro, exploring the effects of different stimulus strengths and frequencies as well as variations in external calcium concentrations. By combining live sypHy-RGECO imaging with post-hoc fixation and immunofluorescence, we have also investigated correlations between structural and functional properties of synapses.

  10. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  11. Role of calcium in the dopaminergic effect on the proximal convoluted tubule of rat kidney

    International Nuclear Information System (INIS)

    Chan, Y.L.; Chatsudthipong, V.; Su-Tsai, S.M.; von Riotte, A.

    1986-01-01

    Microperfusion studies have shown that dopamine inhibits fluid and bicarbonate absorption in the rate proximal tubule. These studies are designed to examine the cellular mechanism underlying the proximal cellular response to dopamine action. In the isolated proximal cells, dopamine, in the concentration of 10 -6 M or less, had no effect on cAMP production. However, dopamine could increase cytosolic calcium concentration (from 90 nM to 210 nM) as measured by fluorospectrometry with fura-2 as a calcium indicator. Ca-45 flux studies have shown that dopamine could increase initial influx but not the steady state uptake of Ca. Dopamine could also increase efflux of Ca. In situ microperfusion of proximal tubule and peritubular capillaries has demonstrated that Ca ionophore, A23187 (10 -6 M), could simulate the inhibitory effects of dopamine on fluid and biocarbonate absorption. There was no additive effect observed when both agents were added together in the capillary perfusate. Removal of calcium from the perfusate could partially blunt the effect of dopamine. These results suggest that intracellular calcium plays a crucial role in the dopaminergic regulation of proximal tubular transport

  12. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  13. Derived (mutated)-types of TRPV6 channels elicit greater Ca²+ influx into the cells than ancestral-types of TRPV6: evidence from Xenopus oocytes and mammalian cell expression system.

    Science.gov (United States)

    Sudo, Yuka; Matsuo, Kiyotaka; Tetsuo, Tomoyuki; Tsutsumi, Satoshi; Ohkura, Masamichi; Nakai, Junichi; Uezono, Yasuhito

    2010-01-01

    The frequency of the allele containing three derived nonsynonymous SNPs (157C, 378M, 681M) of the gene encoding calcium permeable TRPV6 channels expressed in the intestine has been increased by positive selection in non-African populations. To understand the nature of these SNPs, we compared the properties of Ca²+ influx of ancestral (in African populations) and derived-TRPV6 (in non-African populations) channels with electrophysiological, Ca²+-imaging, and morphological methods using both the Xenopus oocyte and mammalian cell expression systems. Functional electrophysiological and Ca²+-imaging analyses indicated that the derived-TRPV6 elicited more Ca²+ influx than the ancestral one in TRPV6-expressing cells where both channels were equally expressed in the cells. Ca²+-inactivation properties in the ancestral- and derived-TRPV6 were almost the same. Furthermore, fluorescence resonance energy transfer (FRET) analysis showed that both channels have similar multimeric formation properties, suggesting that derived-TRPV6 itself could cause higher Ca²+ influx. These findings suggest that populations having derived-TRPV6 in non-African areas may absorb higher Ca²+ from the intestine than ancestral-TRPV6 in the African area.

  14. Calcium and Egg Activation in Drosophila

    Science.gov (United States)

    Sartain, Caroline V.; Wolfner, Mariana F.

    2012-01-01

    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  15. Store-operated calcium entry is required for sustained contraction and Ca2+ oscillations of airway smooth muscle.

    Science.gov (United States)

    Chen, Jun; Sanderson, Michael J

    2017-05-15

    Airway hyper-responsiveness in asthma is driven by excessive contraction of airway smooth muscle cells (ASMCs). Agonist-induced Ca 2+ oscillations underlie this contraction of ASMCs and the magnitude of this contraction is proportional to the Ca 2+ oscillation frequency. Sustained contraction and Ca 2+ oscillations require an influx of extracellular Ca 2+ , although the mechanisms and pathways mediating this Ca 2+ influx during agonist-induced ASMC contraction are not well defined. By inhibiting store-operated calcium entry (SOCE) or voltage-gated Ca 2+ channels (VGCCs), we show that SOCE, rather than Ca 2+ influx via VGCCs, provides the major Ca 2+ entry pathway into ASMCs to sustain ASMCs contraction and Ca 2+ oscillations. SOCE may therefore serve as a potential target for new bronchodilators to reduce airway hyper-responsiveness in asthma. Asthma is characterized by airway hyper-responsiveness: the excessive contraction of airway smooth muscle. The extent of this airway contraction is proportional to the frequency of Ca 2+ oscillations within airway smooth muscle cells (ASMCs). Sustained Ca 2+ oscillations require a Ca 2+ influx to replenish Ca 2+ losses across the plasma membrane. Our previous studies implied store-operated calcium entry (SOCE) as the major pathway for this Ca 2+ influx. In the present study, we explore this hypothesis, by examining the effects of SOCE inhibitors (GSK7975A and GSK5498A) as well as L-type voltage-gated Ca 2+ channel inhibitors (nifedipine and nimodipine) on airway contraction and Ca 2+ oscillations and SOCE-mediated Ca 2+ influx in ASMCs within mouse precision-cut lung slices. We found that both GSK7975A and GSK5498A were able to fully relax methacholine-induced airway contraction by abolishing the Ca 2+ oscillations, in a manner similar to that observed in zero extracellular Ca 2+ ([Ca 2+ ] e ). In addition, GSK7975A and GSK5498A inhibited increases in intracellular Ca 2+ ([Ca 2+ ] i ) in ASMCs with depleted Ca 2+ -stores in

  16. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  17. Ascorbic acid deficiency increases endotoxin influx to portal blood and liver inflammatory gene expressions in ODS rats.

    Science.gov (United States)

    Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko

    2015-02-01

    The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae strengthen classification in lizard evolution

    Directory of Open Access Journals (Sweden)

    Garcia Célia RS

    2007-08-01

    Full Text Available Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs, for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  19. Increased performance of continuous stirred tank reactor with calcium supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zhuliang; Yang, Haijun; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), New Materials Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-04-15

    Continuous biohydrogen production with calcium supplementation at low hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR) was studied to maximize the hydrogen productivity of anaerobic mixed cultures. After stable operations at HRT of 8-4 h, the bioreactor became unstable when the HRT was lowered to 2 h. Supplementation of 100 mg/L calcium at HRT 2 h improved the operation stability through enhancement of cell retention with almost two-fold increase in cell density than that without calcium addition. Hydrogen production rate and hydrogen yield reached 24.5 L/d/L and 3.74 mol H{sub 2}/mol sucrose, respectively, both of which were the highest values our group have ever achieved. The results showed that calcium supplementation can be an effective way to improve the performance of CSTR at low HRT. (author)

  20. Calcium intake is not associated with increased coronary artery calcification: the Framingham Study.

    Science.gov (United States)

    Samelson, Elizabeth J; Booth, Sarah L; Fox, Caroline S; Tucker, Katherine L; Wang, Thomas J; Hoffmann, Udo; Cupples, L Adrienne; O'Donnell, Christopher J; Kiel, Douglas P

    2012-12-01

    Adequate calcium intake is known to protect the skeleton. However, studies that have reported adverse effects of calcium supplementation on vascular events have raised widespread concern. We assessed the association between calcium intake (from diet and supplements) and coronary artery calcification, which is a measure of atherosclerosis that predicts risk of ischemic heart disease independent of other risk factors. This was an observational, prospective cohort study. Participants included 690 women and 588 men in the Framingham Offspring Study (mean age: 60 y; range: 36-83 y) who attended clinic visits and completed food-frequency questionnaires in 1998-2001 and underwent computed tomography scans 4 y later in 2002-2005. The mean age-adjusted coronary artery-calcification Agatston score decreased with increasing total calcium intake, and the trend was not significant after adjustment for age, BMI, smoking, alcohol consumption, vitamin D-supplement use, energy intake, and, for women, menopause status and estrogen use. Multivariable-adjusted mean Agatston scores were 2.36, 2.52, 2.16, and 2.39 (P-trend = 0.74) with an increasing quartile of total calcium intake in women and 4.32, 4.39, 4.19, and 4.37 (P-trend = 0.94) in men, respectively. Results were similar for dietary calcium and calcium supplement use. Our study does not support the hypothesis that high calcium intake increases coronary artery calcification, which is an important measure of atherosclerosis burden. The evidence is not sufficient to modify current recommendations for calcium intake to protect skeletal health with respect to vascular calcification risk.

  1. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  2. Mechanism and evolution of calcium transport across the plant plasma membrane

    Science.gov (United States)

    Calcium is an essential plant nutrient, thus the influx of Ca(2+) into plant cells is a critical process. In addition, the efflux of Ca(2+) out of a cell is important to prevent toxicity resulting from Ca(2+) excess, and to modulate levels of cytosolic Ca(2+) required for signaling functions. Bioc...

  3. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  4. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins.

    NARCIS (Netherlands)

    Hsu, Y.J.; Dimke, H.; Schoeber, J.P.H.; Hsu, S.C.; Lin, S.H.; Chu, P.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had

  5. Estrogen enhances expression of the complement C5a receptor and the C5a-agonist evoked calcium influx in hormone secreting neurons of the hypothalamus.

    Science.gov (United States)

    Farkas, Imre; Varju, Patricia; Szabo, Emese; Hrabovszky, Erik; Okada, Noriko; Okada, Hidechika; Liposits, Zsolt

    2008-01-01

    In the present study we examined presence of the complement C5a receptor (C5aR) in hypothalamic neurosecretory neurons of the rodent brain and effect of estrogen on C5aR expression. Whole cell patch clamp measurements revealed that magnocellular neurons in the supraoptic and paraventricular nuclei of hypothalamic slices of the rats responded to the C5aR-agonist PL37-MAP peptide with calcium ion current pulses. Gonadotropin-releasing hormone (GnRH) producing neurons in slices of the preoptic area of the mice also reacted to the peptide treatment with inward calcium current. PL37-MAP was able to evoke the inward ion current of GnRH neurons in slices from ovariectomized animals. The amplitude of the inward pulses became higher in slices obtained from 17beta-estradiol (E2) substituted mice. Calcium imaging experiments demonstrated that PL37-MAP increased the intracellular calcium content in the culture of the GnRH-producing GT1-7 cell line in a concentration-dependent manner. Calcium imaging also showed that E2 pretreatment elevated the PL37-MAP evoked increase of the intracellular calcium content in the GT1-7 cells. The estrogen receptor blocker Faslodex in the medium prevented the E2-evoked increase of the PL37-MAP-triggered elevation of the intracellular calcium content in the GT1-7 cells demonstrating that the effect of E2 might be related to the presence of estrogen receptor. Real-time PCR experiments revealed that E2 increased the expression of C5aR mRNA in GT1-7 neurons, suggesting that an increased C5aR synthesis could be involved in the estrogenic modulation of calcium response. These data indicate that hypothalamic neuroendocrine neurons can integrate immune and neuroendocrine functions. Our results may serve a better understanding of the inflammatory and neurodegeneratory diseases of the hypothalamus and the related neuroendocrine and autonomic compensatory responses.

  6. Characteristic of Extracellular Zn2+ Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP.

    Science.gov (United States)

    Takeda, Atsushi; Koike, Yuta; Osaw, Misa; Tamano, Haruna

    2018-03-01

    An increased influx of extracellular Zn 2+ into neurons is a cause of cognitive decline. The influx of extracellular Zn 2+ into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn 2+ into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K + into the dentate gyrus, but not in young rats. Simultaneously, high K + -induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator. Intracellular Zn 2+ in dentate granule cells was also increased in middle-aged slices with high K + , in which the increase in extracellular Zn 2+ was the same as young slices with high K + , suggesting that ability of extracellular Zn 2+ influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn 2+ into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.

  7. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho

    2018-01-01

    The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up...... to 8 in calcium citrate tetrahydrate. A critical hydrogencitrate concentration for formation of homogeneous solutions was found to depend linearly on dissolved calcium hydrogenphosphate: [HCitr2-] = 14[CaHPO4] - 0.05 at 25 °C. The lag phase for precipitation of calcium citrate tetrahydrate......, as identified from FT-IR spectra, from these spontaneously formed supersaturated solutions was several hours, and the time to reach solubility equilibrium was several days. Initial calcium ion activity was found to be almost independent of the degree of supersaturation as determined electrochemically...

  8. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  9. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    Science.gov (United States)

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  10. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  11. Localized accumulation of cytosolic calcium near the fused sperm is associated with the calcium- and voltage-dependent block of sperm entry in the sea urchin egg.

    Science.gov (United States)

    Ivonnet, Pedro I; Mohri, Tatsuma; McCulloh, David H

    2017-10-01

    Interaction of the sperm and egg depolarizes the egg membrane, allowing the sperm to enter; however, if the egg membrane is not allowed to depolarize from its resting potential (e.g., by voltage-clamp), the sperm will not enter. Previous studies demonstrated that sperm entry into sea urchin eggs that are voltage-clamped at negative membrane potentials is regulated both by the egg's membrane potential and a voltage-dependent influx of calcium into the egg. In these cases, electrical or cytoplasmic continuity (sperm-egg membrane fusion) occurs at negative membrane potentials, but subsequent loss of cytoplasmic continuity results in failure of sperm entry (unfusion). The work presented herein examined where, in relation to the sperm, and when, in relation to the sperm-induced electrophysiological events, the egg's calcium influx occurs, and how these events relate to successful or failed sperm entry. When sperm entered the egg, elevation of intracellular calcium concentration ([Ca 2+ ] i ) began near the fused sperm on average 5.9 s after sperm-egg membrane fusion. Conversely, when sperm failed to enter the egg, [Ca 2+ ] i elevated near the site of sperm-egg fusion on average 0.7 s after sperm-egg membrane fusion, which is significantly earlier than in eggs for which sperm entered. Therefore, the accumulation of calcium near the site of sperm-egg fusion is spatially and temporally consistent with the mechanism that may be responsible for loss of cytoplasmic continuity and failure of sperm entry. © 2017 Wiley Periodicals, Inc.

  12. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  13. Rare variants in calcium homeostasis modulator 1 (CALHM1 found in early onset Alzheimer's disease patients alter calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Fanny Rubio-Moscardo

    Full Text Available Calcium signaling in the brain is fundamental to the learning and memory process and there is evidence to suggest that its dysfunction is involved in the pathological pathways underlying Alzheimer's disease (AD. Recently, the calcium hypothesis of AD has received support with the identification of the non-selective Ca(2+-permeable channel CALHM1. A genetic polymorphism (p. P86L in CALHM1 reduces plasma membrane Ca(2+ permeability and is associated with an earlier age-at-onset of AD. To investigate the role of CALHM1 variants in early-onset AD (EOAD, we sequenced all CALHM1 coding regions in three independent series comprising 284 EOAD patients and 326 controls. Two missense mutations in patients (p.G330D and p.R154H and one (p.A213T in a control individual were identified. Calcium imaging analyses revealed that while the mutation found in a control (p.A213T behaved as wild-type CALHM1 (CALHM1-WT, a complete abolishment of the Ca(2+ influx was associated with the mutations found in EOAD patients (p.G330D and p.R154H. Notably, the previously reported p. P86L mutation was associated with an intermediate Ca(2+ influx between the CALHM1-WT and the p.G330D and p.R154H mutations. Since neither expression of wild-type nor mutant CALHM1 affected amyloid ß-peptide (Aß production or Aß-mediated cellular toxicity, we conclude that rare genetic variants in CALHM1 lead to Ca(2+ dysregulation and may contribute to the risk of EOAD through a mechanism independent from the classical Aß cascade.

  14. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    Science.gov (United States)

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  15. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    Science.gov (United States)

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  16. The alpha hemolisina of Escherichia Coli induces increases in the calcium citoplasmico of neutrofilos and monocytes human beings

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) and the calcium ionophores ionomycin and 4 Br A23187 caused increases in cell fluorescence, indicative of elevations in cytoplasmic calcium, in fura 2-loaded human polymorphonuclear leukocytes(PMN) and monocytes (MN). The increase in fluorescence caused by AH was dose dependent. Quelation of extracellular calcium with EGTA prevented fluorescence increases in PMN exposed to 2 HU50/ml AH, but did not prevent a small increase in 4 μM, ionomycin-treated PMN, indicating that ionomycin treatment under conditions of calcium quelation can mobilize calcium from internal stores, and that entry of external calcium accounts for most of the increases in cell fluorescence in cells treated with both AH and calcium ionophores. AH, as well as calcium ionophores and the chemotactic peptide FMLP caused rease of myeloperoxidase (MPO) from PMM suggesting that increments in intracellular calcium cause degramulation with release of granule contents (Author) [es

  17. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  18. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons.

    Science.gov (United States)

    Qu, Liang; Wang, Yuan; Zhang, Hai-Tao; Li, Nan; Wang, Qiang; Yang, Qian; Gao, Guo-Dong; Wang, Xue-Lian

    2014-07-11

    Voltage gated calcium channels (VGCC) are sensitive to oxidative stress, and their activation or inactivation can impact cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remain controversial. In this study, we assessed 6-hydroxydopamine (6-OHDA) induced transformation of firing pattern and functional changes of calcium channels in SNc dopaminergic neurons. Application of 6-OHDA (0.5-2mM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)]i) rise. In voltage clamp, ω-conotoxin-sensitive Ca(2+) current modulation mediated by 6-OHDA reflected an altered sensitivity. Furthermore, we found that 6-OHDA modulated Ca(2+) currents through PKA pathway. These results provided evidence for the potential role of VGCCs and PKA involved in oxidative stress in degeneration of SNc neurons in Parkinson's disease (PD). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Ductility increase in difficult to work nickel alloys due to calcium microalloying

    International Nuclear Information System (INIS)

    Shevtsov, V.A.; Grigoryan, R.A.; Aleev, V.P.; Stepanov, V.P.; Bytskij, E.V.

    1995-01-01

    Impact of calcium microadditions on mechanical properties of heat-resisting alloys Kh66VMTYu and KhN33KV is studied. It is established that the calcium additions up to 0.01% essentially increase the alloy plastic characteristics of the alloy without changing its strength characteristics.5 refs., 3 figs

  20. Induction of nitrate transport in maize roots, and kinetics of influx, measured with nitrogen-13

    International Nuclear Information System (INIS)

    Hole, D.J.; Drew, M.C.; Emran, A.M.; Fares, Y.

    1990-01-01

    Unlike phosphate or potassium transport, uptake of nitrate by roots is induced, in part, by contact with the substrate ion. Plasmalemma influx of 13 N-labeled nitrate in maize roots was studied in relation to induction of the uptake system, and the influence of short-term N starvation. Maize (Zea mays) roots not previously exposed to nitrate had a constitutive transport system (state 1), but influx increased 250% during six hours of contact with 100 micromolar nitrate, by which time the transport mechanism appeared to be fully synthesized (state 2). A three-day period of N starvation prior to induction and measurement of nitrate influx resulted in a greater capacity to transport nitrate than in unstarved controls, but this was fully expressed only if roots were kept in contact with nitrate for the six hours needed for full induction (state 2E). A kinetic analysis indicated a 160% increase in maximum influx in N-starved, induced roots with a small decrease in K m . The inducible component to nitrate influx was induced only by contact with nitrate. Full expression of the nitrate inducible transport system was dependent upon mRNA synthesis. An inhibitor of cytoplasmic protein synthesis (cycloheximide) eliminated the formation of the transport system while inhibition by chloramphenicol of mitochondrial- or plastid-coded protein synthesis had no effect. Poisoning of membrane-bound proteins effectively disabled both the constitutive and induced transport systems

  1. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  2. Calcium and vitamin D supplementation increases spinal BMD in healthy, postmenopausal women

    DEFF Research Database (Denmark)

    Baeksgaard, L; Andersen, K P; Hyldstrup, Lars

    1998-01-01

    of treatment was 2 years. Bone mineral density (BMD) was measured at the lumbar spine, hip and forearm. A dietary questionnaire was administered twice during the study and revealed a fairly good calcium and vitamin D intake (919 mg calcium/day; 3.8 micrograms vitamin D/day). An increase in lumbar spine BMD...

  3. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Bjerrum, Poul J; Jessen, Torben E

    2011-01-01

    BACKGROUND The vitamin D receptor (VDR) is expressed in human spermatozoa, and VDR-knockout mice and vitamin D (VD) deficiency in rodents results in impaired fertility, low sperm counts and a low number of motile spermatozoa. We investigated the role of activated VD (1,25(OH)(2)D(3)) in human...... spermatozoa and whether VD serum levels are associated with semen quality. METHODS Cross-sectional association study of semen quality and VD serum level in 300 men from the general population, and in vitro studies on spermatozoa from 40 men to investigate the effects of VD on intracellular calcium, sperm......M). 1,25(OH)(2)D(3) increased intracellular calcium concentration in human spermatozoa through VDR-mediated calcium release from an intracellular calcium storage, increased sperm motility and induced the acrosome reaction in vitro. CONCLUSIONS 1,25(OH)(2)D(3) increased intracellular calcium...

  4. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  5. Thiazide increases serum calcium in anuric patients: the role of parathyroid hormone.

    Science.gov (United States)

    Vasco, Raquel F V; Reis, Eduardo T; Moyses, Rosa M A; Elias, Rosilene M

    2017-12-01

    We evaluated the effect of hydrochlorothiazide in a sample of anuric patients on hemodialysis and found an increase in serum calcium, which occurred only in those with parathyroid hormone >300 pg/ml. This finding highlights the extra-renal effect of this diuretic and a possible role of parathyroid hormone in the mechanism. Thiazide diuretics are commonly used in patients with chronic kidney disease to treat hypertension. Their effects on calcium and bone metabolism are not well established, once calciuria may not fully explain levels of calcium and parathyroid hormone (PTH) in this population. A previous study has suggested that thiazides require the presence of PTH as a permissive condition for its renal action. In anuric patients, however, the role of PTH, if any, in the thiazide effect is unknown. To assess thiazide extra renal effect on serum calcium and whether such an effect is reliant on PTH, hydrochlorothiazide (HCTZ) 100 mg was given orally once a day to a sample of 19 anuric patients on hemodialysis for 2 weeks. Laboratories' analyses were obtained in three phases: baseline, after diuretic use, and after a 2-week washout phase. We demonstrated that serum calcium (Ca) increased in ten patients (52.6%) after HCTZ use, returning to previous levels after the washout period. Out of the 19 patients, ten presented PTH ≥ 300 pg/ml, and Ca has increased in eight of them, whereas in the other nine patients with PTH < 300 pg/ml, serum Ca has increased only in two individuals (RR risk of increase Ca 3.9; p = 0.012). HCTZ was capable of increasing serum Ca in a sample of anuric patients on hemodialysis and seems this effect is highly dependent on PTH levels. Caution is required while interpreting this result, as the small sample size might implicate in a finding caused by chance.

  6. Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension

    Czech Academy of Sciences Publication Activity Database

    Behuliak, Michal; Bencze, Michal; Vaněčková, Ivana; Kuneš, Jaroslav; Zicha, Josef

    2017-01-01

    Roč. 2017, January (2017), č. článku 8029728. ISSN 2314-6133 R&D Projects: GA ČR(CZ) GP14-16225P; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : calcium sensitization * RhoA/Rho kinase * fasudil * calcium influx * nifedipine * BAY K8644 Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 2.476, year: 2016

  7. Transmitter modulation of spike-evoked calcium transients in arousal related neurons

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Leonard, Christopher S

    2006-01-01

    Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential-evoked intracel......Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential......-evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal-related neurotransmitters and the role of specific calcium channels in these LDT Ca(2+)-transients by simultaneous whole-cell recording and calcium...... of cholinergic LDT neurons and that inhibition of spike-evoked Ca(2+)-transients is a common action of neurotransmitters that also activate GIRK channels in these neurons. Because spike-evoked calcium influx dampens excitability, our findings suggest that these 'inhibitory' transmitters could boost firing rate...

  8. Studies on the production of endogenous pyrogen by rabbit monocytes: the role of calcium and cyclic nucleotides.

    Science.gov (United States)

    Sigal, S L; Duff, G W; Atkins, E

    1985-01-01

    Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel blocker, prevented the restoration of pyrogen production, indicating that entry of the added calcium into the monocyte was required. Incorporation of a calcium ionophore into the cell membrane did not stimulate pyrogen production, and no measurable influx or efflux of calcium occurred during stimulation with endotoxin. These observations suggest that a slowly exchangeable calcium pool is necessary for the production of endogenous pyrogen, but that a rise in intracellular calcium is not by itself a necessary or sufficient stimulus. This stands in contrast to other biological systems in which Ca2+ directly couples stimulus and hormone secretion. Incubation of cells with agents shown to increase cyclic 3',5' AMP or cyclic 3',5' GMP levels in monocytes similarly did not stimulate pyrogen production or modulate its production by endotoxin stimulation. Thus, cyclic nucleotides also did not play a detectable role as intracellular messengers in this system. Future work is required to define more clearly the mechanism for the production of endogenous pyrogen, given its marked effects on the immune system through lymphocyte activation and temperature regulation.

  9. Effects of low-dose ionising radiation on pituitary adenoma: is there a role for L-type calcium channel?

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail: santosr@cdtn.br

    2005-10-15

    Pituitary adenomas constitute about 6-18% of brain tumours in adults. Activation of voltage gated calcium currents can account for growth hormone over secretion in some GH-secreting pituitary adenomas that produce an acromegaly appearance and increase mortality. Ca{sup 2+} ions, as mediators of intracellular signalling, are crucial for the development of apoptosis. However, the role of [Ca{sup 2+}] in the development of apoptosis is ambiguous. In this study, the effects of low-dose ionising gamma radiation ({sup 60} Co) on rat pituitary adenoma cells survival and proliferation and the role of calcium channels on the apoptosis radio-induced were evaluated. Doses as low as 3 Gy were found to inhibit GH3 cell proliferation. Even though there was a significant number of live cells,168 hours following irradiation, they were not able to proliferate. The results indicate that the blockade of extracellular calcium influx through these channels does not interfere in the radiation-induced apoptosis in GH3 cells. (author)

  10. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    Science.gov (United States)

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  11. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases

    Science.gov (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S.

    2013-01-01

    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease. PMID:23340319

  12. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    OpenAIRE

    Widyasri Prananingrum; Puguh Bayu Prabowo

    2012-01-01

    Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP) is a paste material containing milk protein (casein), that actually contains minerals, such as calcium an...

  13. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L......-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...... vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore...

  14. Cytoplasmic Calcium Increases in Response to Changes in the Gravity Vector in Hypocotyls and Petioles of Arabidopsis Seedlings1

    Science.gov (United States)

    Toyota, Masatsugu; Furuichi, Takuya; Tatsumi, Hitoshi; Sokabe, Masahiro

    2008-01-01

    Plants respond to a large variety of environmental signals, including changes in the gravity vector (gravistimulation). In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation is known to increase the cytoplasmic free calcium concentration ([Ca2+]c). However, organs responsible for the [Ca2+]c increase and the underlying cellular/molecular mechanisms remain to be solved. In this study, using Arabidopsis seedlings expressing apoaequorin, a Ca2+-sensitive luminescent protein in combination with an ultrasensitive photon counting camera, we clarified the organs where [Ca2+]c increases in response to gravistimulation and characterized the physiological and pharmacological properties of the [Ca2+]c increase. When the seedlings were gravistimulated by turning 180°, they showed a transient biphasic [Ca2+]c increase in their hypocotyls and petioles. The second peak of the [Ca2+]c increase depended on the angle but not the speed of rotation, whereas the initial peak showed diametrically opposite characters. This suggests that the second [Ca2+]c increase is specific for changes in the gravity vector. The potential mechanosensitive Ca2+-permeable channel (MSCC) inhibitors Gd3+ and La3+, the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), and the endomembrane Ca2+-permeable channel inhibitor ruthenium red suppressed the second [Ca2+]c increase, suggesting that it arises from Ca2+ influx via putative MSCCs in the plasma membrane and Ca2+ release from intracellular Ca2+ stores. Moreover, the second [Ca2+]c increase was attenuated by actin-disrupting drugs cytochalasin B and latrunculin B but not by microtubule-disrupting drugs oryzalin and nocodazole, implying that actin filaments are partially involved in the hypothetical activation of Ca2+-permeable channels. These results suggest that the second [Ca2+]c increase via MSCCs is a gravity response in the hypocotyl and petiole of Arabidopsis seedlings. PMID:18055589

  15. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  17. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-beta-(1-15) and hFSH-beta-(51-65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr. (Department of Biochemistry, Albany Medical College, New York, NY (USA))

    1991-06-01

    We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) induced uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.

  19. Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats.

    Science.gov (United States)

    Hara, H; Suzuki, T; Kasai, T; Aoyama, Y; Ohta, A

    1999-01-01

    Gastrectomy induces osteopenia. We examined the effects of feeding a diet containing soluble dietary fiber, guar gum hydrolysate (GGH, 50 g/kg diet), on intestinal calcium absorption and bone mineralization in totally gastrectomized (Roux-en-Y esophagojejunostomy) rats by comparing them with those in two control groups (laparotomized and bypassed rats). In the bypassed rats, chyme bypassed the duodenum and upper jejunum without gastrectomy. In a second separate experiment, we compared calcium absorption and bone mineralization in the gastrectomized rats fed diets containing soluble and insoluble calcium salts and in bypassed rats fed insoluble calcium. In Experiment 1, apparent absorption of calcium supplied as a water-insoluble salt was more than 50% lower in gastrectomized rats than in the intact (laparotomized) or bypassed rats 3 wk after the start of feeding the test diets (P Calcium absorption was higher (P Experiment 2, absorption of soluble calcium in the gastrectomized rats did not differ from the absorption of calcium from calcium carbonate by bypassed rats. The soluble calcium pool in the cecal contents was significantly lower in gastrectomized rats (Experiment 1) than in intact or bypassed control rats, and was higher (P calcium absorption correlated most closely (r = 0.787, P calcium content was significantly lower in gastrectomized rats fed insoluble calcium than in bypassed rats fed the same diet, but was partially restored in the rats fed soluble calcium (Experiment 2). Bone calcium was not increased by feeding GGH in gastrectomized rats (Experiment 1). We conclude that the severely diminished calcium absorption following total gastrectomy is totally due to a decrease in calcium solubilization, and feeding GGH partially restores calcium absorption. The decrease in bone calcium that occurs as a result of gastrectomy is mainly due to diminished intestinal calcium absorption.

  20. Radiation entropy influx as a measure of planetary dissipative processes

    International Nuclear Information System (INIS)

    Izakov, M.N.

    1989-01-01

    Dissipative processes including high flows of matter and energy occur at the planets. Radiation negentropy influx, resulting from difference of entropy fluxes of incoming solar and outgoing thermal radiation of the planet, is a measure of all these processes. Large share of radiation negentropy influx is spent in the vertical thermal fluxes which keep the planet temperature conditions. Next share of radiation negentropy consumption at the Earth is water evaporation. It's rest part is used for the dynamics, which is explained by the efficiency insignificant amount of heat engine, which generates movements in the atmosphere and ocean. Essentially higher share of radiation negentropy influx, than at the Earth, is spent at the Venus, where there are practically no water

  1. Apo calmodulin binding to the L-type voltage-gated calcium channel Cav1.2 IQ peptide

    International Nuclear Information System (INIS)

    Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf

    2007-01-01

    The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca v 1.2 subunit has been shown to bind both calcium-loaded (Ca 2+ CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca 2+ CaM can bind to the intact channel

  2. Observation of impurity accumulation and concurrent impurity influx in PBX

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Couture, P.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Powell, E.T.; Reusch, M.; Takahashi, H.; Gammel, G.; Morris, W.

    1987-01-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Z eff peaks in the center to values of about 5. The central metallic densities can be high, n met /n e ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft X-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6x10 10 and 10x10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3x10 12 and 1x10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained. (orig.)

  3. Effect of Cu2+ and pH on intracellular calcium content and lipid peroxidation in winter wheat roots

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-06-01

    Full Text Available The study investigates the effect of copper ions and pH of external solution on intracellular calcium homeostasis and lipid peroxidation in winter wheat roots. Experiment was carried out with winter wheat. Sterile seeds were germinated in Petri dishes on the filter paper soaked with acetic buffer (pH 4.7 and 6.2 at 20 °Cin the dark for 48 hours. Copper was added as CuSO4. It’s concentrations varied from 0 to 50 µM. The Ca2+-fluorescent dye Fluo-3/AM ester was loaded on 60 hour. Root fluorescence with Fluo-3 loading was detected using X-Cite Series 120 Q unit attached to microscope Olympus BX53 with camera Olympus DP72. Imaging of root cells was achieved after exciting with 488 nm laser and collection of emission signals above 512 nm. Preliminary analysis of the images was performed using software LabSens; brightness (fluorescence intensity analysis was carried out by means of ImageJ. Peroxidation of lipids was determined according to Kumar and Knowles method. It was found that pH of solution had effect on release of calcium from intracellular stores. Low pH provokes an increase of [Ca2+]cyt which may be reaction of roots to acidic medium. Copper induces increase in non-selective permeability of plasma membrane and leads to its faster depolarization. This probably initiates Ca-dependent depolarization channels which are responsible for the influx of calcium from apoplast into the cell. Changing of the membrane permeability may occur due to interaction between Cu2+ ions and Ca-binding sites on plasma membrane or may be due to binding of copper with sulfhydryl groups and increasing of POL. Copper may also damage lipid bilayer and change the activity of some non-selective channels and transporters. Reactive oxygen species which are formed under some types of stress factors, especially the effect of heavy metals, can be activators of Ca-channels. Cu2+ ions rise MDA content and promote the oxidative stress. Low medium pH also induces its

  4. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  5. Lead perturbs epidermal growth factor (EGF) modulation of intracellular calcium metabolism in clonal rat osteoblastic (ROS 17/2.8) cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.

    1991-01-01

    EGF, a single chain polypeptide growth factor important for many cellular functions including glycolysis and protein phophorylation, is known to modulate calcium metabolism in several cell systems. It has been shown that EGF causes an increase in Ca 2+ influx and accumulation of inositol triphosphate, and probably exhibits many, if not all, of its effects via the calcium messenger system. Lead is known to interact with and perturb normal calcium signaling pathways; hence, the purpose of this work was to determine if lead perturbs EGF modulation of calcium metabolism in ROS 17/2.8 cells and if cell functions controlled by EGF were impaired. Cells were labelled with 45 Ca (1.87 mM Ca) for 20 hr in the presence of 5 μM Pb, 50 ng/ml EGF or μM Pb and 50 ng/ml EGF. Following an EGTA rinse, kinetic parameters were determined from 45 Ca efflux curves. Three kinetic compartments described the intracellular metabolism of 45 Ca. 5 μM Pb significantly altered the effect of EGF on intracellular calcium metabolism. Calcium distribution was shifted from the fast exchanging, quantitatively small calcium pools, S 1 and S 2 to the slow exchanging, quantitatively large S 2 . There was also a 50% increase in total cell calcium in cells treated with 5 μM Pb and 50 ng/ml EGF over cells treated with 50 ng/ml EGF alone. There was also a 25% decrease in the half-time for calcium exchange from S 3 to S 1 was also decreased. These data show that Pb impairs the normal modulation of intracellular calcium homeostasis by EGF and may therefore perturb functions that are modulated by EGF via the calcium messenger system

  6. Vasodilatory effect of asafoetida essential oil on rat aorta rings: The role of nitric oxide, prostacyclin, and calcium channels.

    Science.gov (United States)

    Esmaeili, Hassan; Sharifi, Mozhdeh; Esmailidehaj, Mansour; Rezvani, Mohammad Ebrahim; Hafizibarjin, Zeynab

    2017-12-01

    Asafoetida is an oleo-gum resin mainly obtained from Ferula assa-foetida L. species in the apiaceae family. Previous studies have shown that it has antispasmodic effects on rat's and pig's ileums. The main goals of this study were to assess the vasodilatory effect of asafoetida essential oil (AEO) on the contractile response of rat's aorta rings and to find the role of nitric oxide, cyclooxygenase, and calcium channels. Thoracic aorta rings were stretched under a steady-state tension of 1 g in an organ bath apparatus for 1 h and then precontracted by KCl (80 mM) in the presence and absence of AEO. L-NAME (blocker of nitric oxide synthase) and indomethacin (blocker of cyclooxygenase) were used to assess the role of nitric oxide (NO) and prostacyclin in the vasodilatory effect of AEO. Also, the effect of AEO on the influx of calcium through the cell membrane calcium channels was determined. Data showed that AEO had vasodilatory effects on aorta rings with both intact (IC 50  = 1.6 µl/l) or denuded endothelium (IC 50  = 19.2 µl/l) with a significantly higher potency in intact endothelium rings. The vasodilatory effects of AEO were reduced, but not completely inhibited, in the presence of L-NAME or indomethacin. Adding AEO to the free-calcium medium also significantly reduced the CaCl 2 -induced contractions. The results indicated that AEO has a potent vasodilatory effect that is endothelium-dependent and endothelium-independent. Also, it reduced the influx of calcium into the cell through plasma membrane calcium channels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2012-12-01

    Full Text Available Background Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. Methods This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. Results This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (DG > 0 and DH > 0. ConclusionS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (DG > 0 and DH > 0.

  8. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2015-12-01

    Full Text Available BACKGROUND Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. METHODS This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/ kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. RESULTS This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0. CONCLUSIONS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0.

  9. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to lactose and increase in calcium absorption leading to an increase in calcium retention (ID 668) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to lactose and increase in calcium absorption leading to an increase in calcium retention. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member...... States or directly from stakeholders. The food constituent that is the subject of the health claim is lactose. The Panel considers that lactose is sufficiently characterised. The claimed effect is “calcium absorption”. The target population is assumed to be the general population. The Panel notes...... between the consumption of lactose and an increase in calcium absorption leading to an increase in calcium retention....

  10. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  11. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine.

    Science.gov (United States)

    Zhang, Cui; Lin, Jun; Wei, Fang; Song, Jian; Chen, Wenyue; Shan, Lidong; Xue, Rong; Wang, Guoqing; Tao, Jin; Zhang, Guoxing; Xu, Guang-Yin; Wang, Linhui

    2018-05-15

    Accumulating evidence supports that cerebrospinal fluid (CSF) in the subarachnoid space (SAS) could reenter the brain parenchyma via the glymphatic influx. The present study was designed to characterize the detailed pathway of subarachnoid CSF influx by using a novel CSF tracer. Fluorescently conjugated cadaverine (A488-ca), for the first time, was employed to investigate CSF movement in the brain. Following intracisternal infusion of CSF tracers, mice brain was sliced and prepared for fluorescence imaging. Some brain sections were immunostained in order to observe tracer distribution and cellular uptake. A488-ca moved into the brain parenchyma rapidly, and the influx was time and region dependent. A488-ca entered the mice brain more readily and spread more widely than another commonly used CSF tracer-fluorescently conjugated ovalbumin (OA-45). Furthermore, A488-ca could enter the brain parenchyma either along the paravascular space or across the pial surface. Suppression of glymphatic transport by administration with acetazolamide strikingly reduced the influx of A488-ca. More importantly, relative to OA-45 largely remained in the extracellular space, A488-ca exhibited obvious cellular uptake by astrocytes surrounding the blood vessels and neurons in the cerebral cortex. Subarachnoid CSF could flow into the brain parenchyma via the glymphatic influx, in which the transcellular pathway was faithfully traced by intracisternal infusion with fluorescently conjugated cadaverine. These observations extend our comprehension on the glymphatic influx pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Chronic exposure of NG108-15 cells to amyloid beta peptide (A beta(1-42)) abolishes calcium influx via N-type calcium channels

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Lisá, Věra; Tuček, Stanislav; Doležal, Vladimír

    2001-01-01

    Roč. 26, 8-9 (2001), s. 1079-1084 ISSN 0364-3190 R&D Projects: GA MZd NF5183 Institutional research plan: CEZ:AV0Z5011922 Keywords : amyloid beta peptide * Alzheimer's disease * calcium Subject RIV: FH - Neurology Impact factor: 1.638, year: 2001

  13. 3-Methylcholanthrene inhibits lymphocyte proliferation and increases intracellular calcium levels in common carp (Cyprinus carpio L)

    International Nuclear Information System (INIS)

    Reynaud, S.; Duchiron, C.; Deschaux, P.

    2003-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. Many authors have focused on macrophage activities in fish exposed to PAHs. However, fewer studies have reported decrease in specific immunity in such fish. We investigated the intracellular mechanisms by which the 3-methylcholanthrene (3-MC) decreased lymphocyte proliferation in carp. T- and B-lymphocyte proliferation induced by Concanavalin A (Con A) and lipopolysaccharide (LPS) were inhibited by 3-MC (0.5-50 μM). 3-MC also produced a rapid and a sustained increase in intracellular calcium concentration ([Ca 2+ ] i ) (2 h minimum). However, the cytochrome P450 1A and Ah receptor inhibitor, α-naphtoflavone (a-NF), also inhibited lymphocyte proliferation and did not reverse the effects of 3-MC. Moreover, since a-NF and 3-MC increased [Ca 2+ ] i and inhibited lymphocyte proliferation it was possible that calcium release played a role in 3-MC-inhibited lymphocyte proliferation. The rise in [Ca 2+ ] i induced by 3-MC was potentiated by the inhibitor of the endoplasmic reticulum calcium ATPases, thapsigargin. Treating cells with 3-MC decreased calcium mobilization caused by thapsigargin. These results suggest that 3-MC acts on the endoplasmic reticulum, perhaps directly on calcium ATPases, to increase intracellular calcium levels in carp leucocytes

  14. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  15. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  16. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    Science.gov (United States)

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. Copyright © 2016 the American Physiological Society.

  17. Effect of lowering dietary calcium intake on fractional whole body calcium retention

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Stern, D.T.; Shipp, C.C.; Rasmussen, H.M.

    1988-01-01

    Although fractional calcium absorption is known to vary inversely with calcium intake, the extent and timing of individual hormonal and calcium absorption responses to altered calcium intake have not been defined. We measured fractional whole body retention of orally ingested 47 Ca, an index of calcium absorption, in nine normal women after they had eaten a 2000-mg calcium diet for 8 weeks and a 300-mg calcium diet for 1, 2, 4, and 8 weeks. After the diet change, serum intact PTH (32.2% increase; P = 0.005), serum 1,25-dihydroxyvitamin D [1,25-(OH)2D; 43.8% increase; P = 0.003], and fractional whole body calcium retention (42.8% increase; P = 0.004) increased within 1 week. Although the PTH and calcium retention responses remained fairly constant throughout the low calcium intake period, serum 1,25-(OH)2D concentrations declined toward baseline after week 1. Thus, the late increase in calcium retention may have resulted from calcium absorption that was independent of 1,25-(OH)2D stimulation

  18. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    Science.gov (United States)

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia.

    Science.gov (United States)

    Wiley, J S; Jones, S P; Sawyer, W H; Paterson, A R

    1982-02-01

    Although cytosine arabinoside (araC) can induce a remission in a majority of patients presenting with acute myeloblastic leukemia (AML), a minority fail to respond and moreover the drug has less effect in acute lymphoblastic leukemia (ALL). The carrier-mediated influx of araC into purified blasts from patients with AML, ALL, and acute undifferentiated leukemia (AUL) has been compared to that of normal lymphocytes and polymorphs. Blasts showed a larger mediated influx of araC than mature cells, since mean influxes for myeloblasts and lymphoblasts were 6- and 2.3-fold greater than polymorphs and lymphocytes, respectively. Also, the mean influx for myeloblasts was fourfold greater than the mean for lymphoblasts. The number of nucleoside transport sites was estimated for each cell type by measuring the equilibrium binding of [(3)H]nitrobenzylthioinosine (NBMPR), which inhibits nucleoside fluxes by binding with high affinity to specific sites on the transport mechanism. The mean binding site numbers for myeloblasts and lymphoblasts were 5- and 2.8-fold greater, respectively, than for the mature cells of the same maturation series. The mean number of NBMPR binding sites for myeloblasts was fourfold greater than for lymphoblasts. Patients with AUL were heterogeneous since blasts from some gave values within the myeloblastic range and others within the lymphoblastic range. The araC influx correlated closely with the number of NBMPR binding sites measured in the same cells on the same day. Transport parameters were measured on blasts from 15 patients with AML or AUL who were then treated with standard induction therapy containing araC. Eight patients entered complete remission, while seven failed therapy, among whom were the three patients with the lowest araC influx (myeloblasts have both higher araC transport rates and more nucleoside transport sites than lymphoblasts and this factor may contribute to the greater sensitivity of AML to this drug. AraC transport varied >10

  20. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  1. Cytosine Arabinoside Influx and Nucleoside Transport Sites in Acute Leukemia

    OpenAIRE

    Wiley, J. S.; Jones, S. P.; Sawyer, W. H.; Paterson, A. R. P.

    1982-01-01

    Although cytosine arabinoside (araC) can induce a remission in a majority of patients presenting with acute myeloblastic leukemia (AML), a minority fail to respond and moreover the drug has less effect in acute lymphoblastic leukemia (ALL). The carrier-mediated influx of araC into purified blasts from patients with AML, ALL, and acute undifferentiated leukemia (AUL) has been compared to that of normal lymphocytes and polymorphs. Blasts showed a larger mediated influx of araC than mature cells...

  2. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.

    Science.gov (United States)

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an

    2013-12-01

    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.

  3. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    Science.gov (United States)

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Essential Roles of Raf/Extracellular Signal-regulated Kinase/Mitogen-activated Protein Kinase Pathway, YY1, and Ca2+ Influx in Growth Arrest of Human Vascular Smooth Muscle Cells by Bilirubin*

    Science.gov (United States)

    Stoeckius, Marlon; Erat, Anna; Fujikawa, Tatsuya; Hiromura, Makoto; Koulova, Anna; Otterbein, Leo; Bianchi, Cesario; Tobiasch, Edda; Dagon, Yossi; Sellke, Frank W.; Usheva, Anny

    2012-01-01

    The biological effects of bilirubin, still poorly understood, are concentration-dependent ranging from cell protection to toxicity. Here we present data that at high nontoxic physiological concentrations, bilirubin inhibits growth of proliferating human coronary artery smooth muscle cells by three events. It impairs the activation of Raf/ERK/MAPK pathway and the cellular Raf and cyclin D1 content that results in retinoblastoma protein hypophosphorylation on amino acids S608 and S780. These events impede the release of YY1 to the nuclei and its availability to regulate the expression of genes and to support cellular proliferation. Moreover, altered calcium influx and calpain II protease activation leads to proteolytical degradation of transcription factor YY1. We conclude that in the serum-stimulated human vascular smooth muscle primary cell cultures, bilirubin favors growth arrest, and we propose that this activity is regulated by its interaction with the Raf/ERK/MAPK pathway, effect on cyclin D1 and Raf content, altered retinoblastoma protein profile of hypophosphorylation, calcium influx, and YY1 proteolysis. We propose that these activities together culminate in diminished 5 S and 45 S ribosomal RNA synthesis and cell growth arrest. The observations provide important mechanistic insight into the molecular mechanisms underlying the transition of human vascular smooth muscle cells from proliferative to contractile phenotype and the role of bilirubin in this transition. PMID:22262839

  5. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  6. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  7. Salvia miltiorrhiza Induces Tonic Contraction of the Lower Esophageal Sphincter in Rats via Activation of Extracellular Ca2+ Influx

    Directory of Open Access Journals (Sweden)

    Ching-Chung Tsai

    2015-08-01

    Full Text Available Up to 40% of patients with gastroesophageal reflux disease (GERD suffer from proton pump inhibitor refractory GERD but clinically the medications to strengthen the lower esophageal sphincter (LES to avoid irritating reflux are few in number. This study aimed to examine whether Salvia miltiorrhiza (SM extracts induce tonic contraction of rat LES ex vivo and elucidate the underlying mechanisms. To investigate the mechanism underlying the SM extract-induced contractile effects, rats were pretreated with atropine (a muscarinic receptor antagonist, tetrodotoxin (a sodium channel blocker, nifedipine (a calcium channel blocker, and Ca2+-free Krebs-Henseleit solution with ethylene glycol tetraacetic acid (EGTA, followed by administration of cumulative dosages of SM extracts. SM extracts induced dose-related tonic contraction of the LES, which was unaffected by tetrodotoxin, atropine, or nifedipine. However, the SM extract-induced LES contraction was significantly inhibited by Ca2+-free Krebs-Henseleit solution with EGTA. Next, SM extracts significantly induce extracellular Ca2+ entry into primary LES cells in addition to intracellular Ca2+ release and in a dose-response manner. Confocal fluorescence microscopy showed that the SM extracts consistently induced significant extracellular Ca2+ influx into primary LES cells in a time-dependent manner. In conclusion, SM extracts could induce tonic contraction of LES mainly through the extracellular Ca2+ influx pathway.

  8. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  9. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    Science.gov (United States)

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  10. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  11. INMS measures an influx of molecules from Saturn's rings

    Science.gov (United States)

    Perry, M. E.

    2017-12-01

    In 1984, Connerney and Waite proposed water influx from Saturn's rings to explain the low electron densities measured during Pioneer and Voyager radio occultation experiments. Charge exchange with this minor species depleted the H+ ions and provided a faster path to electron recombination. With ice the primary constituent of the rings, water was the most likely in-falling molecule. During the Grand Finale orbits, Cassini's Ion and Neutral Mass Spectrometer (INMS) detected and quantified an influx from the rings. Unexpectedly, the primary influx molecules are CH4 and a heavier carbon-bearing species. Water was detected, but quantities were factors of ten lower than these other species. Distribution in both altitude and latitude are consistent with a ring influx. The concentration of the minor species in Saturn's atmosphere shows that they enter Saturn's atmosphere from the top. Both molecules have their highest concentrations at the highest altitudes, with concentrations >0.4% at 3,500 km altitude and only 0.02% at 2,700 km. Molecules from the rings deorbit to Saturn's atmosphere at altitudes near 4,000 km, consistent with the INMS measurements. The latitudinal dependence of the minor species indicates that their source is near the equatorial plane. At high altitudes, the minor species were observed primarily at zero latitude, where the 28u species was six times more concentrated than at 5° latitude. At lower altitudes, the peaking ratio was 1, indicating that the species had diffused and was fully mixed into Saturn's H2 atmosphere. The lighter molecule, CH4, diffuses more rapidly than the 28u species. INMS also detected both of these species during the earlier F-ring passes, finding that the neutrals were centered at the ring plane and extended 3,000 km (half width, half max) north and south.

  12. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  13. Cryptococcal capsular glucuronoxylomannan reduces ischaemia-related neutrophil influx

    NARCIS (Netherlands)

    Ellerbroek, PM; Schoemaker, RG; van Veghel, R; Hoepelman, AIM; Coenjaerts, FEJ

    Background The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans interferes with the chemotaxis and transendothelial migration of neutrophils. Intravenous administration of purified GXM has been shown to reduce the influx of inflammatory cells in an animal model of

  14. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    Science.gov (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  15. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    Science.gov (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  16. High Ca2+ Influx During Traumatic Brain Injury Leads to Caspase-1-Dependent Neuroinflammation and Cell Death.

    Science.gov (United States)

    Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J

    2017-08-01

    We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.

  17. Pharmacological analysis of calcium transients in response to gravity vector change in Arabidopsis hypocotyls and petioles.

    Science.gov (United States)

    Toyota, M.; Furuichi, T.; Tatsumi, H.; Sokabe, M.

    Plants regulate their growth and morphology in response to gravity field known as gravitropism in general In the process of gravitropism gravity sensing will form the critical earliest event which is supposed to take place in specialized cells statocytes such as columella cells and shoot endodermal cells Although gravistimulation is assumed to be converted into certain intracellular signals the underlying transduction mechanisms have hardly been explored One of the potential candidates for the intracellular signals is an increase in the cytoplasmic free calcium concentration Ca 2 c Here we measured Ca 2 c changes induced by gravistimulation in seedlings of Arabidopsis thaliana expressing aequorin as a calcium reporter When a plate of seedlings was turned through 180 r Ca 2 c transiently increased within 50 s and decayed exponentially with a time constant of ca 60 s The amplitude of the Ca 2 c increase was independent of the angular velocity of the rotation The Ca 2 c increase was reversibly blocked by extracellularly applied potential mechanosensitive channel blockers La 3 Gd 3 or a Ca 2 chelator BAPTA indicating that it arose from Ca 2 -influx via Ca 2 -permeable channel s on the plasma membrane Furthermore the Ca 2 c increase was attenuated by actin-disrupting drugs latrunculin B cytochalasin B but not by microtuble-disrupting drugs oryzalin nocodazole indicating that the activation of

  18. [Interaction between TRPC1 and STIM1 in calcium sensing receptor mediated calcium influx and nitric oxide production in human umbilical vein endothelial cells].

    Science.gov (United States)

    Wang, L M; Zhong, H; Tang, N; Pang, L J; Zhang, C J; He, F

    2017-11-24

    Objective: To investigate the interaction of Ca(2+) protein TRPC1 and STIM1 in extracellular Ca(2+) -sensing receptor (CaR)-induced extracellular Ca(2+) influx and the production of nitric oxide (NO). Methods: Human umbilical vein endothelial cells (HUVECs) were cultured and incubated with CaR agonist spermine (activating store-operates cation channels (SOC) and receptor-operated channels (ROC)), CaR negative allosteric modulator Calhex231 (blocking SOC, activating ROC) and ROC analogue TPA (activating ROC, blocking SOC), protein kinase C (PKC) inhibitor Ro31-8220, PKCs and PKCμ inhibitor Go6967(activate SOC, blocking ROC), respectively. The interaction of TRPC1 and STIM1 was determined using the immunofluorescence methods. The interaction between TRPC1 and STIM1 were examined by Co-immuno precipitation. The HUVECs were divided into: TRPC1 and STIM1 short hairpin RNA group (shTRPC1+ shSTIM1 group), vehicle-TRPC1+ vehicle-STIM1 group and control group. The cells were incubated with four different treatments under the action of above mentioned interventions, intracellular Ca(2+) concentration ([Ca(2+) ](i)) was detected using the fluorescence Ca(2+) indicator Fura-2/AM, the production of NO was determined by DAF-FM. Results: (1) The expression of TRPC1 and STIM1 proteins levels in HUVECs: Under the confocal microscope, TRPC1 and STIM1 protein expression showed masculine gender, both located in cytoplasm in the normal control group. Post incubation with Calhex231+ TPA, Ro31-8220 and Go6967, TRPC1 and STIM1 positioned in cytoplasm was significantly reduced, and the combined TRPC1 and STIM1 was also significantly reduced. (2) The interaction of TRPC1 and STIM1 in HUVECs: The relative ratios of Calhex231+ TPA+ Spermine+ Ca(2+) group, Ro31-8220+ Spermine+ Ca(2+) group and Go6976+ Spermine+ Ca(2+) group STIM1/TRPC1 and TRPC1/STIM1 were as follows: (25.98±2.17)% and (44.10±4.01)%, (20.85±1.01)% and (46.31±3.47)%, (23.88±2.05)% and (39.65±2.91)%, which were

  19. Effects of diphosphonate on kidney calcium content and duodenal absorption of 45calcium

    International Nuclear Information System (INIS)

    Goulding, A.; Cameron, V.

    1978-01-01

    In rats the relationships between EHDP-induced changes in serum calcium concentration, kidney calcium content and duodenal transport of 45 calcium were studied. Body weights and kidney weights were similar in all groups. EHDP administration was associated with an increase in serum calcium concentration and kidney calcium content, and a decrease in duodenal 45 calcium transport. In the EHDP-treated rats, there was a significant negative correlation between kidney calcium concentration and duodenal 45 calcium transport but no correlation between either kidney calcium content and serum calcium concentration (r = 0.116) or between serum calcium concentration and duodenal 45 calcium transport (r = 0.02). Further experiments will be needed to determine whether the demonstrated increase in kidney calcium content induced by EHDP administration was the cause of, or was secondary to, inhibition of 1, 25(OH) 2 D 3 synthesis. (orig./AJ) [de

  20. Enhancement of rat bladder contraction by artificial sweeteners via increased extracellular Ca2+ influx

    International Nuclear Information System (INIS)

    Dasgupta, Jaydip; Elliott, Ruth A.; Doshani, Angie; Tincello, Douglas G.

    2006-01-01

    Introduction: Consumption of carbonated soft drinks has been shown to be independently associated with the development of overactive bladder symptoms (OR 1.62, 95% CI 1.18, 2.22) [Dallosso, H.M., McGrother, C.W., Matthews, R.J., Donaldson, M.M.K., 2003. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: a longitudinal study in women. BJU Int. 92, 69-77]. We evaluated the effects of three artificial sweeteners, acesulfame K, aspartame and sodium saccharin, on the contractile response of isolated rat detrusor muscle strips. Methods: Strips of detrusor muscle were placed in an organ bath and stimulated with electrical field stimulation (EFS) in the absence and presence of atropine, and with α,β methylene ATP, potassium, calcium and carbachol. Results: Sweeteners 10 -7 M to 10 -2 M enhanced the contractile response to 10 Hz EFS compared to control (p -6 M, aspartame 10 -7 M and sodium saccharin 10 -7 M. Acesulfame K 10 -6 M increased the maximum contractile response to α,β methylene ATP by 35% (± 9.6%) (p -6 M increased the log EC 5 from -2.79 (± 0.037) to -3.03 (± 0.048, p -7 M from -2.74 (± 0.03) to 2.86 (± 0.031, p +2 channels

  1. Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight.

    Science.gov (United States)

    Smith, Steven R; Lovejoy, Jennifer C; Bray, George A; Rood, Jennifer; Most, Marlene M; Ryan, Donna H

    2008-12-01

    Bed rest has been used as a model to simulate the effects of space flight on bone metabolism. Thyroid hormones accelerate bone metabolism. Thus, supraphysiologic doses of this hormone might be used as a model to accelerate bone metabolism during bed rest and potentially simulate space flight. The objective of the study was to quantitate the changes in bone turnover after low doses of triiodothyronine (T(3)) added to short-term bed rest. Nine men and 5 women were restricted to bed rest for 28 days with their heads positioned 6 degrees below their feet. Subjects were randomly assigned to receive either placebo or oral T(3) at doses of 50 to 75 microg/d in a single-blind fashion. Calcium balance was measured over 5-day periods; and T(3), thyroxine, thyroid-stimulating hormone, immunoreactive parathyroid hormone, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were measured weekly. Triiodothyronine increased 2-fold in the men and 5-fold in the women during treatment, suppressing both thyroxine and thyroid-stimulating hormone. Calcium balance was negative by 300 to 400 mg/d in the T(3)-treated volunteers, primarily because of the increased fecal loss that was not present in the placebo group. Urinary deoxypyridinoline to creatinine ratio, a marker of bone resorption, increased 60% in the placebo group during bed rest, but more than doubled in the T(3)-treated subjects (P < .01), suggesting that bone resorption was enhanced by treatment with T(3). Changes in serum osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, were similar in T(3)- and placebo-treated subjects. Triiodothyronine increases bone resorption and fecal calcium loss in subjects at bed rest.

  2. The effect of mitochondrial inhibitors on calcium homeostasis in tumor mast cells

    International Nuclear Information System (INIS)

    Mohr, F.C.; Fewtrell, C.

    1990-01-01

    The depletion of intracellular ATP by mitochondrial inhibitors in a glucose-free saline solution inhibited antigen-stimulated 45Ca uptake, the rise in cytoplasmic calcium, measured by fura-2, and secretion in rat basophilic leukemia cells. Lowering the intracellular ATP concentration also released calcium from an intracellular store and made further 45Ca efflux from the cells unresponsive to subsequent antigen stimulation. Antigen-stimulated 45Ca efflux could be restored by the addition of glucose. The ATP-sensitive calcium store appeared to be the same store that releases calcium in response to antigen. In contrast, intracellular ATP was not lowered, and antigen-stimulated secretion was unaffected by mitochondrial inhibitors, provided that glucose was present in the bathing solution. Similarly, antigen-stimulated 45Ca uptake, 45Ca efflux, and the rise in free ionized calcium were unaffected by individual mitochondrial inhibitors in the presence of glucose. However, when the respiratory chain inhibitor antimycin A was used in combination with the ATP synthetase inhibitor oligomycin in the presence of glucose, antigen-stimulated 45Ca uptake was inhibited, whereas the rise in free ionized calcium and secretion were unaffected. Also, antigen-induced depolarization (an indirect measurement of Ca2+ influx across the plasma membrane) was not affected. The inhibition of antigen-stimulated 45Ca uptake could, however, be overcome if a high concentration of the Ca2+ buffer quin2 was present in the cells to buffer the incoming 45Ca. These results suggest that in fully functional rat basophilic leukemia cells the majority of the calcium entering in response to antigen stimulation is initially buffered by a calcium store sensitive to antimycin A and oligomycin, presumably the mitochondria

  3. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    Science.gov (United States)

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  4. Lipopolysaccharide (LPS)-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity

    International Nuclear Information System (INIS)

    Drysdale, B.E.; Shin, H.S.

    1986-01-01

    As the authors reported, calcium ionophore, A23187, activates macrophages (M theta) for tumor cell killing and the activated M theta produce a soluble cytotoxic factor (M theta-CF) that is similar if not identical to tumor necrosis factor. Based on these observations they have investigated whether calcium is involved in the activation mediated by another potent M theta activator, LPS. The authors have shown that A23187 caused uptake of extracellular 45 Ca ++ but LPS did not. They have examined the effect of depleting extracellular calcium by using medium containing no added calcium containing 1.0 mM EGTA. In no case did depletion result in decreased M theta-CF production by the M theta activated with LPS. Measurements using the fluorescent, intracellular calcium indicator, Quin 2 have also been performed. While ionomycin, caused a rapid change in the Quin-2 signal, LPS at a concentration even in excess of that required to activate the M theta caused no change in the signal. When high doses of Quin 2 or another intracellular chelator, 8-(diethylaminol-octyl-3,4,5-trimethoxybenzoate, were used to treat M theta, M theta-CF production decreased and cytotoxic activity was impaired. These data indicate that one or more of the processes involved in M theta-CF production does require calcium, but that activation mediated by LPS occurs without the influx of extracellular calcium or redistribution of intracellular calcium

  5. Building better bones in childhood: a randomized controlled study to test the efficacy of a dietary intervention program to increase calcium intake.

    Science.gov (United States)

    Weber, D R; Stark, L J; Ittenbach, R F; Stallings, V A; Zemel, B S

    2017-06-01

    Many children do not consume the recommended daily allowance of calcium. Inadequate calcium intake in childhood may limit bone accrual. The objective of this study was to determine if a behavioral modification and nutritional education (BM-NE) intervention improved dietary calcium intake and bone accrual in children. 139 (86 female) healthy children, 7-10 years of age, were enrolled in this randomized controlled trial conducted over 36 months. Participants randomized to the BM-NE intervention attended five sessions over a 6-week period designed to increase calcium intake to 1500 mg/day. Participants randomized to the usual care (UC) group received a single nutritional counseling session. The Calcium Counts Food Frequency Questionnaire was used to assess calcium intake; dual energy X-ray absorptiometry was used to assess areal bone mineral density (aBMD) and bone mineral content (BMC). Longitudinal mixed effects models were used to assess for an effect of the intervention on calcium intake, BMC and aBMD. BM-NE participants had greater increases in calcium intake that persisted for 12 months following the intervention compared with UC. The intervention had no effect on BMC or aBMD accrual. Secondary analyses found a negative association between calcium intake and adiposity such that greater calcium intake was associated with lesser gains in body mass index and fat mass index. A family-centered BM-NE intervention program in healthy children was successful in increasing calcium intake for up to 12 months but had no effect on bone accrual. A beneficial relationship between calcium intake and adiposity was observed and warrants future study.

  6. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  7. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  8. Enhanced carbon influx into TFTR supershots

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Bush, C.E.; Dylla, H.F.; Owens, D.K.; Pitcher, C.S.; Ulrickson, M.A.

    1991-01-01

    Under some conditions, a very large influx of carbon into TFTR occurs during neutral beam injection into low recycling plasmas (the supershot regime). These carbon ''blooms'' result in serious degradation of plasma parameters. The sources of this carbon have been identified as hot spots on the TFTR bumper limiter at or near the last closed flux surface. Two separate temperature thresholds have been identified. One threshold, at about 1650 deg. C, is consistent with radiation enhanced sublimation (RES). The other, at about 2300 deg. C, appears to be thermal sublimation of carbon from the limiter. The carbon influx can be quantitatively accounted for by taking laboratory values for RES rates, making reasonable assumptions about the extent of the blooming area and assuming unity carbon recycling at the limiter. Such high carbon recycling is expected, and it is shown that, in target plasmas at least, it is observed on TFTR. The sources of the carbon blooms are sites which have either loosely attached fragments of limiter material (caused by damage) or surfaces that are nearly perpendicular to the magnetic field lines. Such surfaces may have local power depositions two orders of magnitude higher than usual. The TFTR team modified the limiter during the opening of winter 1989-1990. The modifications greatly reduced the number and magnitude of the blooms, so that they are no longer a problem. (author). 27 refs, 9 figs

  9. Effect of inhibition of microsomal Ca(2+)-ATPase on cytoplasmic calcium and enzyme secretion in pancreatic acini.

    Science.gov (United States)

    Metz, D C; Pradhan, T K; Mrozinski, J E; Jensen, R T; Turner, R J; Patto, R J; Gardner, J D

    1994-01-13

    We used thapsigargin (TG), 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ) and cyclopiazonic acid (CPA), each of which inhibits microsomal Ca(2+)-ATPase, to evaluate the effects of this inhibition on cytoplasmic free calcium ([Ca2+]i) and secretagogue-stimulated enzyme secretion in rat pancreatic acini. Using single-cell microspectrofluorimetry of fura-2-loaded acini we found that all three agents caused a sustained increase in [Ca2+]i by mobilizing calcium from inositol-(1,4,5)-trisphosphate-sensitive intracellular calcium stores and by promoting influx of extracellular calcium. Concentrations of all three agents that increased [Ca2+]i potentiated the stimulation of enzyme secretion caused by secretagogues that activate adenylate cyclase but inhibited the stimulation of enzyme secretion caused by secretagogues that activate phospholipase C. With BHQ, potentiation of adenylate cyclase-mediated enzyme secretion occurred immediately whereas inhibition of phospholipase C-mediated enzyme secretion occurred only after several min of incubation. In addition, the effects of BHQ and CPA on both [Ca2+]i and secretagogue-stimulated enzyme secretion were reversed completely by washing whereas the actions of TG could not be reversed by washing. Concentrations of BHQ in excess of those that caused maximal changes in [Ca2+]i inhibited all modes of stimulated enzyme secretion by a mechanism that was apparently unrelated to changes in [Ca2+]i. Finally, in contrast to the findings with TG and BHQ, CPA inhibited bombesin-stimulated enzyme secretion over a range of concentrations that was at least 10-fold lower than the range of concentrations over which CPA potentiated VIP-stimulated enzyme secretion.

  10. Extracellular Zn2+ Influx into Nigral Dopaminergic Neurons Plays a Key Role for Pathogenesis of 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Morioka, Hiroki; Takeda, Atsushi

    2018-04-29

    Parkinson's disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic neurodegeneration, in which extracellular Zn 2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-OHDA) in rats. 6-OHDA rapidly increased intracellular Zn 2+ only in the substantia nigra pars compacta (SNpc) of brain slices and this increase was blocked in the presence of CaEDTA, an extracellular Zn 2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA rapidly increases extracellular Zn 2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn 2+ concentration was decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusion with CNQX, supporting 6-OHDA-induced Zn 2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn 2+ chelators, i.e., ZnAF-2DA and N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-OHDA-induced increase in intracellular Zn 2+ but not in intracellular Ca 2+ . These results suggest that the rapid influx of extracellular Zn 2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neurodegeneration, resulting in 6-OHDA-induced PD in rats.

  11. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA

    Science.gov (United States)

    Neupane, Ram P.; Mehan, Sushant; Kumar, Sandeep

    2017-09-01

    Understanding the spatial distribution and variability of geochemical tracers is crucial for estimating groundwater influxes into a river and can contribute to better future water management strategies. Because of the much higher radon (222Rn) activities in groundwater compared to river water, 222Rn was used as the main tracer to estimate groundwater influxes to river discharge over a 323-km distance of the Big Sioux River, eastern South Dakota, USA; these influx estimates were compared to the estimates using Cl- concentrations. In the reaches overall, groundwater influxes using the 222Rn activity approach ranged between 0.3 and 6.4 m3/m/day (mean 1.8 m3/m/day) and the cumulative groundwater influx estimated during the study period was 3,982-146,594 m3/day (mean 40,568 m3/day), accounting for 0.2-41.9% (mean 12.5%) of the total river flow rate. The mean groundwater influx derived using the 222Rn activity approach was lower than that calculated based on Cl- concentration (35.6 m3/m/day) for most of the reaches. Based on the Cl- approach, groundwater accounted for 37.3% of the total river flow rate. The difference between the method estimates may be associated with minimal differences between groundwater and river Cl- concentrations. These assessments will provide a better understanding of estimates used for the allocation of water resources to sustain agricultural productivity in the basin. However, a more detailed sampling program is necessary for accurate influx estimation, and also to understand the influence of seasonal variation on groundwater influxes into the basin.

  12. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx

    Science.gov (United States)

    Baston, Daniel P.; Kueper, Bernard H.

    2009-02-01

    A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.

  13. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  14. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    Science.gov (United States)

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  15. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Xianjie Wen

    Full Text Available There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca(2+ ([Ca2+]i, cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation.

  16. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  17. The Lebanese–Syrian crisis: impact of influx of Syrian refugees to an already weak state

    Science.gov (United States)

    Cherri, Zeinab; Arcos González, Pedro; Castro Delgado, Rafael

    2016-01-01

    Background Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR)-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese–Syrian borders since 2011 as “displaced”, emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Methods Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. Results The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Conclusion Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives. The two major recommendations for future interventions are to ensure continuous and effective monitoring and sustainability in order to alleviate current and future suffering in Lebanon. PMID:27471417

  18. The Lebanese-Syrian crisis: impact of influx of Syrian refugees to an already weak state.

    Science.gov (United States)

    Cherri, Zeinab; Arcos González, Pedro; Castro Delgado, Rafael

    2016-01-01

    Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR)-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese-Syrian borders since 2011 as "displaced", emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives. The two major recommendations for future interventions are to ensure continuous and effective monitoring and sustainability in order to alleviate current and future suffering in Lebanon.

  19. Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand-Based Virtual Screening Method.

    OpenAIRE

    Simonin Céline; Awale Mahendra; Brand Michael; van Deursen Ruud; Schwartz Julian; Fine Michael; Kovacs Gergely; Häfliger Pascal; Gyimesi Gergely; Sithampari Abilashan; Charles Roch-Philippe; Hediger Matthias A; Reymond Jean-Louis

    2015-01-01

    Herein we report the discovery of the first potent and selective inhibitor of TRPV6 a calcium channel overexpressed in breast and prostate cancer and its use to test the effect of blocking TRPV6 mediated Ca(2+) influx on cell growth. The inhibitor was discovered through a computational method xLOS a 3D shape and pharmacophore similarity algorithm a type of ligand based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule two successive rou...

  20. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  1. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    International Nuclear Information System (INIS)

    Ishikawa, S.; Okada, K.; Saito, T.

    1988-01-01

    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ([Ca2+]i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased [Ca2+] significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of [Ca2+]i depended on the intracellular Ca pool, since an AVP-induced rise in [Ca2+]i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased 45 Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells

  2. Influx: A Tool and Framework for Reasoning under Uncertainty

    Science.gov (United States)

    2015-09-01

    document provides a high-level description of Influx1 from the reasoning perspective. The organisation of the document is given below. Section 2 presents a...exhibits behaviour similar to that of the proposed alternatives while maintaining mathematical simplicity and possessing highly-desirable

  3. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    International Nuclear Information System (INIS)

    Wang Qiujun; Liang Ge; Yang Hui; Wang Shouping; Eckenhoff, Maryellen F.; Wei Huafeng

    2011-01-01

    Isoflurane is known to increase β-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh Q111/Q111 ) and wild type (STHdh Q7/Q7 ) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP 3 ) receptor antagonist. Aggregation of huntingtin protein, cell viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh Q111/Q111 cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh Q111/Q111 huntingtin cells than in the wild type STHdh Q7/Q7 striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh Q111/Q111 cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP 3 receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh Q111/Q111 striatal cells.

  4. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium

    Directory of Open Access Journals (Sweden)

    Adela Banciu

    2018-05-01

    Full Text Available Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1, estrogen receptors (ESR1, ESR2, GPR30, and nuclear receptor coactivator 3 (NCOA3. Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM antagonized the effect of BAY K8644 (2.5 or 5 µM in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant

  5. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    Science.gov (United States)

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine

  6. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain.

    Science.gov (United States)

    Findeisen, Felix; Rumpf, Christine H; Minor, Daniel L

    2013-09-09

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Influence of dietary calcium on bone calcium utilization

    International Nuclear Information System (INIS)

    Farmer, M.; Roland, D.A. Sr.; Clark, A.J.

    1986-01-01

    In Experiment 1, 10 microCi 45 Ca/day were administered to 125 hens for 10 days. Hens were then allocated to five treatments with calcium levels ranging from .08 to 3.75% of the diet. In Experiment 2, hens with morning oviposition times were randomly allocated to 11 treatments that were periods of time postoviposition ranging from 6 hr to 24 hr, in 2-hr increments (Experiment 2). At the end of each 2-hr period, eggs from 25 hens were removed from the uterus. The 18-, 20-, and 22-hr treatments were replicated three times. In Experiment 3, hens were fed either ad libitum or feed was withheld the last 5 or 6 hr before oviposition. In Experiment 4, hens were fed 10 microCi of 45 Ca for 15 days to label skeletal calcium. Hens were divided into two groups and fed a .08 or 3.75% calcium diet for 2 days. On the second day, 25 hens fed the 3.75% calcium diet were intubated with 7 g of the same diet containing .5 g calcium at 1700, 2100, 0100, 0500, and 0700 hr. The measurements used were egg weight, shell weight, and 45 Ca content of the egg shell. Results indicated a significant linear or quadratic regression of dietary calcium levels on 45 Ca accumulation in eggshells and eggshell weight (Experiment 1). As the calcium level of the diet increased, eggshell weight increased and 45 Ca recovery decreased. Utilization of skeletal calcium for shell formation ranged from 28 to 96%. In Experiment 2, the rate of shell calcification was not constant throughout the calcification process but varied significantly

  8. Inhibiting the Ca2+ Influx Induced by Human CSF

    Directory of Open Access Journals (Sweden)

    Anna Drews

    2017-12-01

    Full Text Available One potential therapeutic strategy for Alzheimer’s disease (AD is to use antibodies that bind to small soluble protein aggregates to reduce their toxic effects. However, these therapies are rarely tested in human CSF before clinical trials because of the lack of sensitive methods that enable the measurement of aggregate-induced toxicity at low concentrations. We have developed highly sensitive single vesicle and single-cell-based assays that detect the Ca2+ influx caused by the CSF of individuals affected with AD and healthy controls, and we have found comparable effects for both types of samples. We also show that an extracellular chaperone clusterin; a nanobody specific to the amyloid-β peptide (Aβ; and bapineuzumab, a humanized monoclonal antibody raised against Aβ, could all reduce the Ca2+ influx caused by synthetic Aβ oligomers but are less effective in CSF. These assays could be used to characterize potential therapeutic agents in CSF before clinical trials.

  9. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.

    Science.gov (United States)

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-03-01

    Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.

  10. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.; Kimmich, G.A.

    1982-01-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 μg/ml cholera toxin (CT) at 37 0 C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na + influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na + entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na + influx suggest that the reactivation of the Na + transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP

  11. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  12. Apo-states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain

    Science.gov (United States)

    Findeisen, Felix; Rumpf, Christine; Minor, Daniel L.

    2013-01-01

    In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation (CDI) and limits calcium entry, whereas CaBP1 blocks CDI and allows sustained calcium influx. Here, we combine isothermal titration calorimetry (ITC) with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca2+/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium binding properties. The observation that the apo-forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity. PMID:23811053

  13. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels.

    Science.gov (United States)

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan

    2017-12-01

    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  14. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  15. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  16. [Kinetic properties of the fructose influx across the brush border of the rat jejunum. Effects of a diet rich in fructose].

    Science.gov (United States)

    Crouzoulon, G

    1978-10-01

    The unidirectional influx (i.e. initial rate of uptake) of D-fructose across the brush border of rat jejunum is a saturable function of concentration, with a Kt of 125 mM, which implicates a carrier mechanism. This mechanism appears to be very specific for fructose in view of the lack of influx inhibition observed in the presence of large concentrations of the sugars or polyols, D-glucose, D-galactose, D-mannose, D-xylose, L-sorbose, D-tagatose, sorbitol or mannitol. D-Fructose uptake is inhibited by incubation, preceded by a 30-min preincubation in the same inhibitory conditions, in the absence of Na, or in the presence of metabolic poisons, NaF, 2,4-dinitrophenol, monoiodoacetate. Phloridzin (10-3 M), with or without preincubation, has no effect on uptake. D-Fructose influx is stimulated by fructose feeding, mainly because the augmentation of the number of active sites of transfer: Jmax is increased two-fold, Kt is more weakly affected.

  17. The Lebanese–Syrian crisis: impact of influx of Syrian refugees to an already weak state

    Directory of Open Access Journals (Sweden)

    Cherri Z

    2016-07-01

    Full Text Available Zeinab Cherri, Pedro Arcos González, Rafael Castro Delgado Unit for Research in Emergency and Disaster, Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain Background: Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese–Syrian borders since 2011 as “displaced”, emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Methods: Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. Results: The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Conclusion: Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives

  18. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  19. Increase of a Calcium Independent Transglutaminase Activity in the Erythrocyte during the Infection with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Wasserman Moisés

    1999-01-01

    Full Text Available We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13 during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km of the enzyme for the substrates N'N'dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.

  20. Impaired leukocyte influx in cervix of postterm women not responding to prostaglandin priming

    Directory of Open Access Journals (Sweden)

    Masironi Britt

    2008-09-01

    Full Text Available Abstract Background Prolonged pregnancies are associated with increased rate of maternal and fetal complications. Post term women could be divided into at least two subgroups, one where parturition is possible to induce by prostaglandins and one where it is not. Our aim was to study parameters in cervical biopsies in women with spontaneous delivery at term (controls and compare to those that are successfully induced post term (responders, and those that are not induced (non-responders, by local prostaglandin treatment. Methods Stromal parameters examined in this study were the accumulation of leukocytes (CD45, CD68, mRNAs and/or proteins for the extracellular matrix degrading enzymes (matrix metalloproteinase (MMP-2, MMP-8 and MMP-9, their inhibitors (tissue inhibitor of MMP (TIMP-1 and TIMP-2, interleukin-8 (IL-8, the platelet activating factor-receptor (PAF-R, syndecan-1 and estrogen binding receptors (estrogen receptor (ERα, ERβ and G-coupled protein receptor (GPR 30 as well as the proliferation marker Ki-67. Results The influx of leukocytes as assessed by CD45 was strongest in the responders, thereafter in the controls and significantly lower in the non-responders. IL-8, PAF-R and MMP-9, all predominantly expressed in leukocytes, showed significantly reduced immunostaining in the group of non-responders, while ERα and GPR30 were more abundant in the non-responders, as compared to the controls. Conclusion The impaired leukocyte influx, as reflected by the reduced number of CD45 positive cells as well as decreased immunostaining of IL-8, PAF-R and MMP-9 in the non-responders, could be one explanation of the failed ripening of the cervix in post term women. If the decreased leukocyte influx is a primary explanation to absent ripening or secondary, as a result of other factors, is yet to be established.

  1. Effect of exhausting exercise and calcium supplementation on potassium, magnesium, copper, zinc and calcium levels in athletes

    International Nuclear Information System (INIS)

    Cinar, V.; Baltaci, A.K.; Mogulkoc, R.

    2009-01-01

    Present study was performed to determine four week calcium supplementation and athleticism exercise on plasma potassium, calcium, magnesium, cupper and zinc levels in resting and exhaustion. Research was carried out on 30 healthy male people. Group 1; Exercise, Group 2; Exercise + Calcium supplementation, Group 3; Sedentary + Calcium supplemented. All elements levels increased by exhausting exercise (P<0.05). Plasma K and Ca levels increased in exercise group after supplementation (P<0.05). Ca levels increased in exercise + supplemented group (P<0.05). This increase was much more in group three (P<0.05). Plasma Cu levels increased by Ca supplementation in sedentary (P<0.05). Exhausting exercise increased Zn levels in sedentary after supplementation (P<0.05). The results of present study show that calcium supplementation for 4 week does not have clear affect on potassium and Mg. However, calcium levels were increased by supplementation and Cu after the supplementation. It was also exhausting exercise that caused increase in all parameters. (author)

  2. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of CaV1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension.

    Science.gov (United States)

    Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin

    2017-12-01

    Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.

  3. Evaluation of the calcium-antagonist, antidiarrhoeic and central nervous system activities of Baccharis serraefolia.

    Science.gov (United States)

    Tortoriello, J; Aguilar-Santamaría, L

    1996-09-01

    Baccharis serraefolia is a widely used plant to treat diarrhoea in Mexican traditional medicine. Although the methanolic extract of this plant has shown an important dose-dependent spasmolytic activity, its underlying mechanism has not been studied. In the present work, the methanolic extract of B. serraefolia significantly delayed the onset of tonic seizures induced by strychnine and pentylenetetrazol; besides, it diminished the death rate and number of animals that exhibited convulsions. It produced potentiation of the hypnotic effect of pentobarbital. Oral administration produced an inhibition of gastrointestinal transit in mice as effective as that produced by loperamide. As to the effect on smooth muscles, the active extract produced an inhibition of contraction induced electrically, which could not be reversed by naloxone. The calcium concentration-contraction curve showed a rightward displacement when the extract was added to isolated guinea pig ileum depolarized with high K+ and cumulative concentrations of Ca2+. The results suggest that the methanolic extract does not interact with classical opiate receptors and its effects, at least that produced on smooth muscle, may be due to a probable interference with calcium influx and/or calcium release from an intra-cellular store.

  4. Aberrations in preliminary design of ITER divertor impurity influx monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@jaea.go.jp [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Ogawa, Hiroaki [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Katsunuma, Atsushi; Kitazawa, Daisuke [Core Technology Center, Nikon Corporation, Yokohama 244-8533 (Japan); Ohmori, Keisuke [Customized Products Business Unit, Nikon Corporation, Mito 310-0843 (Japan)

    2015-12-15

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  5. Aberrations in preliminary design of ITER divertor impurity influx monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki; Katsunuma, Atsushi; Kitazawa, Daisuke; Ohmori, Keisuke

    2015-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  6. Effects of antibiotics on uptake of calcium into isolated nerve terminals

    International Nuclear Information System (INIS)

    Atchison, W.D.; Adgate, L.; Beaman, C.M.

    1988-01-01

    The goal of the present study was to determine whether several antibiotics which are known to block neuromuscular transmission would impair depolarization-dependent and/or -independent uptake of calcium into isolated nerve terminals prepared from forebrain synaptosomes of rats by conventional methods. Antibiotics tested for potential block of Ca++ uptake included the aminoglycosides neomycin and streptomycin, the lincosamide clindamycin, oxytetracycline and polymyxin B. Drugs were applied in concentrations ranging from 1 to 1000 microM. Uptake of 45Ca was determined during depolarization induced by an elevated K+ concentration (77.5 mM). Influxes of 45Ca during 1 and 10 sec of depolarization were used to assess Ca++ uptake via a fast, inactivating path and total uptake, respectively. Uptake of 45Ca during 10 sec of depolarization into synaptosomes which were previously depolarized for 10 sec in the presence of 77.5 mM K+ but in the absence of external Ca++ was used to measure uptake during a slow, noninactivating path. Total depolarization-dependent uptake of 45Ca was depressed significantly by all antibiotics tested except oxytetracycline; however, the various agents differed with respect to their efficacy and potency as blockers of Ca influx. The fast component of uptake, which is thought to be associated with neurotransmitter release, was decreased significantly by all antibiotics. Neomycin and polymyxin were the most potent and most effective at lowering fast phase 45Ca influx; streptomycin, was intermediate in effectiveness whereas clindamycin and oxytetracycline were only effective at concentrations greater than or equal to 100 microM. Only clindamycin, streptomycin and polymyxin B caused significant reductions in the slow phase of 45Ca uptake

  7. Coral resistance to ocean acidification linked to increased calcium at the site of calcification.

    Science.gov (United States)

    DeCarlo, T M; Comeau, S; Cornwall, C E; McCulloch, M T

    2018-05-16

    Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO 3 ) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs. We use two novel geochemical techniques based on boron systematics and Raman spectroscopy, which together provide the first constraints on the sensitivity of coral calcifying fluid calcium concentrations ([Formula: see text]) to changing seawater pH. In response to simulated end-of-century pH conditions, Pocillopora damicornis increased [Formula: see text] to as much as 25% above that of seawater and maintained constant calcification rates. Conversely, Acropora youngei displayed less control over [Formula: see text], and its calcification rates strongly declined at lower seawater pH. Although the role of [Formula: see text] in driving calcification has often been neglected, increasing [Formula: see text] may be a key mechanism enabling more resistant corals to cope with ocean acidification and continue to build CaCO 3 skeletons in a high-CO 2 world. © 2018 The Author(s).

  8. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  9. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  10. [The fasting calcium/creatinine ratio in patients with calcium stones and the relation with hypercalciuria and phosphocalcium metabolism].

    Science.gov (United States)

    Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel

    2016-04-01

    To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatininecreatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.

  11. Calcium Balance in Chronic Kidney Disease.

    Science.gov (United States)

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  12. Deregulation of calcium fluxes in HTLV-I infected CD4-positive T-cells plays a major role in malignant transformation.

    Science.gov (United States)

    Akl, Haidar; Badran, Bassam; El Zein, Nabil; Dobirta, Gratiela; Burny, Arsene; Martiat, Philippe

    2009-01-01

    The CD4+ T-cell malignancy induced by human T-cell leukemia virus type 1 (HTLV-I) infection and termed; Adult T-cell Leukemia lymphoma (ATLL), is caused by defects in the mechanisms underlying cell proliferation and cell death. In the CD4+ T-cells, calcium ions are central for both phenomena. ATLL is associated with a marked hypercalcemia in many patients. The consequence of a defect in the Ca2+ signaling pathway for lymphocyte activation is characterized by an impaired NFAT activation and transcription of cytokines, chemokines and many other NFAT target genes whose transcription is essential for productive immune defense. Fresh ATLL cells lack the TCR/CD3 and CD7 molecules on their surface. Whereas CD7 is a calcium transporter, reduction in calcium influx in response to T-cell activation was reported as a functional consequence of TCR/CD3 expression deficiency. Understanding these changes and identifying the molecular players involved might provide further insights on how to improve ATLL treatment.

  13. Increases in cellular calcium concentration stimulate pepsinogen secretion from dispersed chief cells

    International Nuclear Information System (INIS)

    Raufman, J.P.; Berger, S.; Cosowsky, L.; Straus, E.

    1986-01-01

    Intracellular calcium concentration ([Ca]i) and pepsinogen secretion from dispersed chief cells from guinea pig stomach were determined before and after stimulation with calcium ionophores. [Ca]i was measured using the fluorescent probe quin2. Basal [Ca]i was 105 +/- 4 nM. Pepsinogen secretion was measured with a new assay using 125 I-albumin substrate. This assay is 1000-fold more sensitive than the widely-used spectrophotometric assay, technically easy to perform, rapid, and relatively inexpensive. The kinetics and stoichiometry of ionophore-induced changes in [Ca]i and pepsinogen secretion were similar. These data support a role for calcium as a cellular mediator of pepsinogen secretion

  14. Influxed insects as Vectors for Campylobacter jejuni and Campylobacter coll in Danish Broiler Houses

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Pedersen, Karl

    2008-01-01

    ,816 flies captured from farm surroundings. Each individual fly was macerated, preenriched in Bolton broth for 24 h at 42 degrees C, streaked onto modified Campylobater blood-free selective agar and incubated under microaerobic conditions for 48 h at 42 degrees C. Second, the influx of insects to broiler...... houses was estimated by trapping of insects (n = 5,936) in ventilation vents. In total, 31 flies (28 of which were of the Muscidae family) caught in farm surroundings were Campylobacter spp.-positive (C. jejuni, n = 7; C. coli, n = 23; other Campylobacter spp., n = 1). Musca domestica (L) (house fly...... without other livestock, the prevalence was constantly below 1.0%. The average influx of insects per broiler rotation was estimated to be 30,728 +/- 2,443 SE (range 2,233 to 180,300), of which 21.4% were flies. The influx of insects correlated with the flow (m(3)/h) of ventilation air (P

  15. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.; Gandia, Luis; Escubedo, Elena; Pubill, David

    2010-01-01

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca 2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC 50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca 2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca 2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca 2+ -dependent enzymes such as

  16. The Kinetics of Ouabain Inhibition and the Partition of Rubidium Influx in Human Red Blood Cells

    Science.gov (United States)

    Beauge, L. A.; Adragna, Norma

    1971-01-01

    In the development of ouabain inhibition of rubidium influx in human red blood cells a time lag can be detected which is a function of at least three variables: the concentrations of external sodium, rubidium, and ouabain. The inhibition is antagonized by rubidium and favored by sodium. Similar considerations could be applied to the binding of ouabain to membrane sites. The total influx of rubidium as a function of external rubidium concentration can be separated into two components: (a) a linear uptake not affected by external sodium or ouabain and not requiring an energy supply, and (b) a saturable component. The latter component, on the basis of the different effects of the aforementioned factors, can be divided into three fractions. The first is ouabain-sensitive, inhibited by external sodium at low rubidium, and requires an energy supply; this represents about 70–80% of the total uptake and is related to the active sodium extrusion mechanism. The second is ouabain-insensitive, activated by external sodium over the entire range of rubidium concentrations studied, and dependent on internal ATP; this represents about 15% of the total influx; it could be coupled to an active sodium extrusion or belong to a rubidium-potassium exchange. The third, which can be called residual influx, is ouabain-insensitive, unaffected by external sodium, and independent of internal ATP; this represents about 10–20% of the total influx. PMID:5553102

  17. Substituting milk for apple juice does not increase kidney stone risk in most normocalciuric adults who form calcium oxalate stones.

    Science.gov (United States)

    Massey, L K; Kynast-Gales, S A

    1998-03-01

    Increasing intake of dietary calcium from less than 400 mg to 800 mg daily may decrease the absorption of dietary oxalate, which in turn would decrease urinary oxalate excretion. The effect of substituting milk for apple juice on urine composition and risk of calcium oxalate precipitability was studied. Twenty-one normocalciuric adults with a history of at least 1 calcium oxalate stone and urinary oxalate excretion exceeding 275 micromol/day on their self-selected diet. Randomized crossover trial. Each participant consumed two moderate-oxalate (2,011 micromol/day) study diets, which were identical except that one contained 360 mL milk and the other contained 540 mL apple juice as the beverage with meals. Four days free-living then 2 days in the metabolic unit of a university nutrition department. Tiselius risk index for calcium oxalate precipitability calculated from urine composition. Paired t tests. Twenty-four hour urinary oxalate excretion was 18% lower (Pjuice diet: 423 vs 514 micromol, respectively. Calcium excretion was 17% higher (Pjuice diet: 4.7 vs 3.9 mmol, respectively. Urinary magnesium and citrate excretion, volume, and Tiselius risk index did not differ between diets. Substituting 360 mL milk daily for apple juice with meals in a diet containing moderate amounts of dietary oxalate from whole grains, legumes, fruits, and vegetables does not increase the risk index of calcium oxalate precipitability in most normocalciuric adults who form stones.

  18. Enhanced carbon influx into TFTR supershots

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Bush, C.E.; Dylla, H.F.; Owens, D.K.; Pitcher, C.S.; Ulrickson, M.

    1990-12-01

    Under some conditions, a very large influx of carbon into TFTR occurs during beam injection into low recycling plasmas (the Supershot regime). These carbon ''blooms'' result in serious degradation of plasma parameters. The sources of this carbon have been identified as hot spots on the TFTR bumper limiter at or near the last closed flux surface. Two separate temperature thresholds have been identified. One, at about 1650 degree C, is consistent with radiation enhanced sublimation. The other, at about 2300 degree C, appears to be thermal sublimation of carbon from the limiter. To account for the increased density caused by the blooms, near unity recycling of the carbon at the limiter by physical sputtering is required; this effect is expected from laboratory measurements, and we believe we are seeing it on TFTR. The sources of the carbon blooms are sites which have either loosely attached fragments of limiter material (caused by damage) or surfaces nearly perpendicular to the magnetic field lines. Such surfaces may have local power depositions two orders of magnitude higher than usual. The TFTR team modified the limiter during the opening of Winter 1989--90. The modifications greatly reduced the number and magnitude of the blooms, so that they are no longer a problem

  19. Increased leucocyte Na-K ATPase in obesity: reversal following weight loss

    International Nuclear Information System (INIS)

    Turaihi, K.; Baron, D.N.; Dandona, P.

    1987-01-01

    Ouabain-sensitive 86 Rb influx and [ 3 H] ouabain binding capacity were investigated in the leucocytes of 17 obese patients and 15 control subjects. Both were significantly increased in the obese when compared with controls. Following dietary restriction and a 4% to 5% weight reduction in the obese over 2 weeks, [ 3 H] ouabain binding and ouabain-sensitive 86 Rb influx (a model for K+ influx) decreased to levels similar to those in controls. This shows that the number of Na-K ATPase sites on leucocyte membranes of the obese are significantly increased and that this is associated with accelerated 86 Rb transport. Since both of these indices decreased following 4% to 5% reduction in body weight while the patients were still obese, increased Na-K ATPase is neither a marker of nor cardinal to the pathogenesis of obesity. We conclude that (1) increase in Na-K ATPase units and 86 Rb influx are not characteristic of obesity itself and (2) dietary restriction over the short-term with limited weight reduction restores Na-K ATPase units and 86 Rb influx to normal

  20. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    Science.gov (United States)

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.

  1. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    Science.gov (United States)

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  2. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  3. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates...... intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation...... induced Ca(2+) increases in 40-50% of SVZ astrocytes. GABA(A)-induced Ca(2+) increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC). The L-type Ca(2+) channel activator BayK 8644 increased the percentage of GABA(A)-responding astrocyte...

  4. When Isolated at Full Receptivity, in Vitro Fertilized Wheat (Triticum aestivum, L. Egg Cells Reveal [Ca2+]cyt Oscillation of Intracellular Origin

    Directory of Open Access Journals (Sweden)

    Zsolt Pónya

    2014-12-01

    Full Text Available During in vitro fertilization of wheat (Triticum aestivum, L. in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.

  5. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    Science.gov (United States)

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  6. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    International Nuclear Information System (INIS)

    Miller, A.J.; Vogg, G.; Sanders, D.

    1990-01-01

    Cytosolic free calcium ([Ca 2+ ] c ) has been measured in the mycelial fungus Neurospora crassa with Ca 2+ - selective microelectrodes. The mean value of [Ca 2+ ] c is 92 ± 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca 2+ across the plasma membrane to be estimated as about -60 kJmol -1 - a value that cannot be sustained either by a simple Ca 2+ - ATPase, or, in alkaline conditions, by straightforward H + /Ca 2+ exchange with a stoichiometric ratio of + /Ca 2+ . The authors propose that the most likely alternative mechanism of Ca 2+ efflux is ATP-driven H + /Ca 2+ exchange, with a stoichiometric ratio of at least 2 H + /Ca 2+ . The increase in [Ca 2+ ] c in the presence of CN - at pH 8.4 is compared with 45 Ca 2+ influx under the same conditions. The proportion of entering Ca 2+ remaining free in the cytosol is only 8 x 10 -5 , and since the concentration of available chelation sites on Ca 2+ binding proteins is unlikely to exceed 100 μM, a major role for the fungal vacuole in short-term Ca 2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca 2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca 2+ uptake into fungal vacuoles

  7. Polish Perceptions on the Immigration Influx: a Critical Analysis

    Directory of Open Access Journals (Sweden)

    Kinga Hódor

    2017-02-01

    Full Text Available The article addresses the issue of Poles’ attitude to the problem of the influx of migrants to Poland in the context of the migration crisis, which Europe has to face today. The issues discussed in the present paper are aimed to illustrate the characteristic features specific to Poles’ attitudes in favor of or against the process of influx of migrants to the E.U. Member States or Poland. The analysis covers both positive and negative aspects of migration to Poland, which have been most often indicated by Poles with respects to migrants. On the one hand, they include fears with regard to national security, potential conflicts of cultural and religious background, fear of the alleged loss of jobs to migrants and their preying on the country’s social security system. All of the above result in anti-migration demonstrations and the language of hatred. On the other hand, positive aspects of the migration influx are believed to consist in cultural enrichment, benefits for the labor market resulting from the inflow of both qualified professionals and laborers with lower pay expectations in comparison to Polish workers and believing that migrants might be the chance of minimize the negative effects of the demographic crisis. The supporters of helping migrants also point out the issue of solidarity and sympathy for the victims and the fact that in the past it was the Poles who received support from other countries in Poland’s difficult moments. Thus, extending such help to others may prove to be beneficial in the future. The present paper is based on academic articles, internet sources and statistical data, which all reveal a division into two camps: supporters and opponents of receiving migrants in Poland, which prevents determining Poland’s definitive stance on this issue. All the aspects of the problem discussed in the paper are undoubtedly a basis for further analysis.

  8. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  9. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    International Nuclear Information System (INIS)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G.J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca"2"+ transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I_C_a_,_L and action potential characteristics in hESC-CMs.

  10. Calcium soil amendment increases resistance of potato to blackleg ...

    African Journals Online (AJOL)

    This study shows that calcium soil amendments reduce blackleg and soft rot diseases under Zimbabwe's growing seasons in red fersiallitic soils. Compound S produces better results in potato production than compound D and farmers should be encouraged to use compound S when growing potatoes. Key words: potato ...

  11. Increased leucocyte Na-K ATPase in obesity: reversal following weight loss

    Energy Technology Data Exchange (ETDEWEB)

    Turaihi, K.; Baron, D.N.; Dandona, P.

    1987-09-01

    Ouabain-sensitive /sup 86/Rb influx and (/sup 3/H) ouabain binding capacity were investigated in the leucocytes of 17 obese patients and 15 control subjects. Both were significantly increased in the obese when compared with controls. Following dietary restriction and a 4% to 5% weight reduction in the obese over 2 weeks, (/sup 3/H) ouabain binding and ouabain-sensitive /sup 86/Rb influx (a model for K+ influx) decreased to levels similar to those in controls. This shows that the number of Na-K ATPase sites on leucocyte membranes of the obese are significantly increased and that this is associated with accelerated /sup 86/Rb transport. Since both of these indices decreased following 4% to 5% reduction in body weight while the patients were still obese, increased Na-K ATPase is neither a marker of nor cardinal to the pathogenesis of obesity. We conclude that (1) increase in Na-K ATPase units and /sup 86/Rb influx are not characteristic of obesity itself and (2) dietary restriction over the short-term with limited weight reduction restores Na-K ATPase units and /sup 86/Rb influx to normal.

  12. Altered Elementary Calcium Release Events and Enhanced Calcium Release by Thymol in Rat Skeletal Muscle

    OpenAIRE

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-01-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine bind...

  13. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P. J.; Marriott, D. B.; Boarder, M. R.

    1989-01-01

    1. It has been suggested that neuronal voltage-sensitive calcium channels (VSCC) may be divided into dihydropyridine (DHP)-sensitive (L) and DHP-insensitive (N and T), and that both the L and the N type channels are attenuated by the peptide blocker omega-conotoxin. Here the effects of omega-conotoxin on release of noradrenaline and uptake of calcium in bovine adrenal chromaffin cells were investigated. 2. Release of noradrenaline in response to 25 mM K+, 65 mM K+, 10 nM bradykinin or 10 microM prostaglandin E1 was not affected by omega-conotoxin in the range 10 nM-1 microM. 3. 45Ca2+ uptake stimulated by high K+ and prostaglandin was attenuated by 1 microM nitrendipine and enhanced by 1 microM Bay K 8644; these calcium fluxes were not modified by 20 nM omega-conotoxin. 4. With superfused rat brain striatal slices in the same medium as the above cell studies, release of dopamine in response to 25 mM K+ was attenuated by 20 nM omega-conotoxin. 5. These results show that in these neurone-like cells, release may be effected by calcium influx through DHP-sensitive but omega-conotoxin-insensitive VSCC, a result inconsistent with the suggestion that omega-conotoxin blocks both L-type and N-type neuronal calcium channels. PMID:2470457

  14. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones

    Directory of Open Access Journals (Sweden)

    Ji-Kuen Yu

    2013-01-01

    Conclusion: From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO3 from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate.

  15. β-endorphin modulation of mitogen-stimulated calcium uptake by rat thymocytes

    International Nuclear Information System (INIS)

    Hemmick, L.M.; Bidlack, J.M.

    1987-01-01

    Lymphocytes stimulated by mitogens or antigens exhibit an enhanced calcium uptake early in the proliferation or activation response. Modulation of this calcium uptake results in alterations of proliferation and immunocompetence. β-endorphin and other opioids affect several parameters of lymphocyte competence. Limited data are available concerning the mechanism(s) of these effects. This study examines whether a possible opioid mechanism is the modification of the early calcium influx into stimulated lymphocytes. The time course of both concanavalin A (Con A) and phytohemagglutinin (PHA)-stimulated 45 Ca 2+ uptake into thymocytes was characterized to determine the optimal time for testing the effects of opioids. Β-Endorphin 1-31 significantly enhanced Con A-stimulated 45 Ca 2+ uptake into rat thymocytes. This peptide had no significant effect on PHA-simulated 45 Ca 2+ uptake or on basal thymocyte 45 Ca 2+ flux. The β/sub h/-endorphin stimulatory effect was titratable in the range of 0.1 nM to 10 μM. Naloxone did not reverse the enhancement. Met-enkephalinamide and other opioid agonists did not duplicate the stimulatory effect. Thus, the β/sub h/-endorphin 1-31 enhancement of Con A-stimulated 45 Ca 2+ uptake by rat thymocytes does not operate via classical opioid receptor mechanisms. β/sub h/-endorphin 1-31 appears to be acting on a subset of T cells that are responsive to Con A but not to PHA. 30 references, 4 figures, 1 table

  16. Ca(2+) influx and neurotransmitter release at ribbon synapses.

    Science.gov (United States)

    Cho, Soyoun; von Gersdorff, Henrique

    2012-01-01

    Ca(2+) influx through voltage-gated Ca(2+) channels triggers the release of neurotransmitters at presynaptic terminals. Some sensory receptor cells in the peripheral auditory and visual systems have specialized synapses that express an electron-dense organelle called a synaptic ribbon. Like conventional synapses, ribbon synapses exhibit SNARE-mediated exocytosis, clathrin-mediated endocytosis, and short-term plasticity. However, unlike non-ribbon synapses, voltage-gated L-type Ca(2+) channel opening at ribbon synapses triggers a form of multiquantal release that can be highly synchronous. Furthermore, ribbon synapses appear to be specialized for fast and high throughput exocytosis controlled by graded membrane potential changes. Here we will discuss some of the basic aspects of synaptic transmission at different types of ribbon synapses, and we will emphasize recent evidence that auditory and retinal ribbon synapses have marked differences. This will lead us to suggest that ribbon synapses are specialized for particular operating ranges and frequencies of stimulation. We propose that different types of ribbon synapses transfer diverse rates of sensory information by expressing a particular repertoire of critical components, and by placing them at precise and strategic locations, so that a continuous supply of primed vesicles and Ca(2+) influx leads to fast, accurate, and ongoing exocytosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer.

    Science.gov (United States)

    Yamada, Takahiro; Ueda, Takashi; Shibata, Yasuhiro; Ikegami, Yosuke; Saito, Masaki; Ishida, Yusuke; Ugawa, Shinya; Kohri, Kenjiro; Shimada, Shoichi

    2010-08-01

    To investigate the functional expression of the transient receptor potential vanilloid 2 (TRPV2) channel protein in human urothelial carcinoma (UC) cells and to determine whether calcium influx into UC cells through TRPV2 is involved in apoptotic cell death. The expression of TRPV2 mRNA in bladder cancer cell lines (T24, a poorly differentiated UC cell line and RT4, a well-differentiated UC cell line) was analyzed using reverse transcriptase-polymerase chain reaction. The calcium permeability of TRPV2 channels in T24 cells was investigated using a calcium imaging assay that used cannabidiol (CBD), a relatively selective TRPV2 agonist, and ruthenium red (RuR), a nonselective TRPV channel antagonist. The death of T24 or RT4 cells in the presence of CBD was evaluated using a cellular viability assay. Apoptosis of T24 cells caused by CBD was confirmed using an annexin-V assay and small interfering RNA (siRNA) silencing of TRPV2. TRPV2 mRNA was abundantly expressed in T24 cells. The expression level in UC cells was correlated with high-grade disease. The administration of CBD increased intracellular calcium concentrations in T24 cells. In addition, the viability of T24 cells progressively decreased with increasing concentrations of CBD, whereas RT4 cells were mostly unaffected. Cell death occurred via apoptosis caused by continuous influx of calcium through TRPV2. TRPV2 channels in UC cells are calcium-permeable and the regulation of calcium influx through these channels leads directly to the death of UC cells. TRPV2 channels in UC cells may be a potential new therapeutic target, especially in higher-grade UC cells. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  19. TRPM2, calcium and neurodegenerative diseases

    Science.gov (United States)

    Xie, Yu-Feng; MacDonald, John F; Jackson, Michael F

    2010-01-01

    NMDA receptor overactivation triggers intracellular Ca2+ dysregulation, which has long been thought to be critical for initiating excitotoxic cell death cascades associated with stroke and neurodegenerative disease. The inability of NMDA receptor antagonists to afford neuroprotection in clinical stroke trials has led to a re-evaluation of excitotoxic models of cell death and has focused research efforts towards identifying additional Ca2+ influx pathways. Recent studies indicate that TRPM2, a member of the TRPM subfamily of Ca2+-permeant, non-selective cation channel, plays an important role in mediating cellular responses to a wide range of stimuli that, under certain situations, can induce cell death. These include reactive oxygen and nitrogen species, tumour necrosis factor as well as soluble oli-gomers of amyloid beta. However, the molecular basis of TRPM2 channel involvement in these processes is not fully understood. In this review, we summarize recent studies about the regulation of TRPM2, its interaction with calcium and the possible implications for neurodegenerative diseases. PMID:21383889

  20. Calcium regulation and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Deepthi Rapaka

    2014-09-01

    Full Text Available Activation of the neuron induces transient fluctuations in [Ca2+]i. This transient rise in [Ca2+]i is dependent on calcium entry via calcium channels and release of calcium from intracellular stores, finally resulting in increase in calcium levels, which activates calcium regulatory proteins to restore the resting calcium levels by binding to the calcium-binding proteins, sequestration into the endoplasmic reticulum and the mitochondria, and finally extrusion of calcium spike potential from the cell by adenosine triphosphate-driven Ca2+ pumps and the Na+/Ca2+ exchanger. Improper regulation of calcium signaling, sequentially, likely contributes to synaptic dysfunction and excitotoxic and/or apoptotic death of the vulnerable neuronal populations. The cognitive decline associated with normal aging is not only due to neuronal loss, but is fairly the result of synaptic connectivity. Many evidences support that Ca2+ dyshomeostasis is implicated in normal brain aging. Thus the chief factor associated with Alzheimer’s disease was found to be increase in the levels of free intracellular calcium, demonstrating that the excessive levels might lead to cell death, which provides a key target for the calcium channel blockers might be used as the neuroprotective agents in Alzheimer’s disease.

  1. Polyamines mediate abnormal Ca2+ transport and Ca2+-induced cardiac cell injury in the calcium paradox

    International Nuclear Information System (INIS)

    Trout, J.J.; Koenig, H.; Goldstone, A.D.; Lu, C.Y.; Fan, C.C.

    1986-01-01

    Ca 2+ -free perfusion renders heart cells Ca 2+ -sensitive so that readmission of Ca 2+ causes a sudden massive cellular injury attributed to abnormal entry of Ca 2+ into cells (Ca paradox). Hormonal stimulation of Ca 2+ fluxes was earlier shown to be mediated by polyamines (PA). 5 min perfusion of rat heart with Ca 2+ -free medium induce a prompt 40-50% decline in levels of the PA putrescine (PUT), spermidine and spermine and their rate-regulatory synthetic enzyme ornithine decarboxylase (ODC), and readmission of Ca 2+ -containing medium abruptly ( 2+ reperfusion-induced increases in ODC and PA and also prevented increased 45 Ca 2+ uptake and heart injury, manifested by loss of contractility, release of enzymes (CPK, LDH), myoglobin and protein, and E.M. lesions (contracture bands, mitochondrial changes). 1 mM PUT negated DFMO inhibition, repleted heart PA and restored Ca 2+ reperfusion-induced 45 Ca 2+ influx and cell injury. These data indicate that the Ca 2+ -directed depletion-repletion cycle of ODC and PA triggers excessive transsarcolemmal Ca 2+ transport leading to the calcium paradox

  2. Composition for limiting water influx into a well

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, A.Sh.; Budarina, L.A.; Kuznetsov, Ye.V.; Zhdanov, N.F.

    1982-01-01

    A composition is proposed for restricting water influx into a well. It contains acrylamide, ammonium persulfate, sodium hyposulfite, water and additive. It is distinguished by the fact that in order to improve water resistance of the copolymer formed in the bed and to preserve permeability of the bed for oil, it contains as an additive polymethacylic acid with the following ratio of components (% by weight): acrylamide 2.0-5.6; polymethacrylic acid 3.08.0; ammonium persulfate 0.020-0.072; sodium hyposulfite 0.018-0.068; water--the rest.

  3. Calcium levels and calcium: available phosphorus ratios in diets for white egg layers from 42 to 58 weeks of age

    Directory of Open Access Journals (Sweden)

    Silvana Marques Pastore

    2012-12-01

    Full Text Available The experiment was conducted to determine the nutritional requirement of calcium and the best calcium:available phosphorus ratio for commercial layers at the post-laying peak. A total of 324 Hy-Line W-36 laying hens were utilized in the period from 42 to 58 weeks of age, distributed in a completely randomized design in a 3 × 3 factorial arrangement, composed of three levels of calcium (39, 42 and 45 g/kg and three calcium:phosphorus ratios (12.12:1; 10.53:1; and 9.30:1, totaling nine treatments with six replications and six birds per experimental unit. There was no significant effect from the calcium levels × calcium:phosphorus ratio interaction for any of the variables studied. The calcium levels and the calcium:phosphorus ratios did not affect the variables performance or egg and bone quality. At the evaluation of the calcium:phosphorus balance, as the levels of calcium of the diet were raised, the intake of calcium and phosphorus and the contents of mineral matter and calcium in the excreta increased linearly, and the retention of calcium by birds decreased linearly. With the reduction of the calcium:phosphorus ratios of the diet, intake, retention and excretion of phosphorus by layers increased. Diets containing calcium at 39 g/kg and a calcium:phosphorus ratio of 12.12:1, corresponding to an increase in calcium of 3.51 g/bird/day and available phosphorus of 289 mg/bird/day, meet the requirements of calcium and available phosphorus of white egg layers in the period from 42 to 58 weeks of age.

  4. Unilateral vestibular deafferentation-induced changes in calcium signaling-related molecules in the rat vestibular nuclear complex.

    Science.gov (United States)

    Masumura, Chisako; Horii, Arata; Mitani, Kenji; Kitahara, Tadashi; Uno, Atsuhiko; Kubo, Takeshi

    2007-03-23

    Inquiries into the neurochemical mechanisms of vestibular compensation, a model of lesion-induced neuronal plasticity, reveal the involvement of both voltage-gated Ca(2+) channels (VGCC) and intracellular Ca(2+) signaling. Indeed, our previous microarray analysis showed an up-regulation of some calcium signaling-related genes such as the alpha2 subunit of L-type calcium channels, calcineurin, and plasma membrane Ca(2+) ATPase 1 (PMCA1) in the ipsilateral vestibular nuclear complex (VNC) following unilateral vestibular deafferentation (UVD). To further elucidate the role of calcium signaling-related molecules in vestibular compensation, we used a quantitative real-time polymerase chain reaction (PCR) method to confirm the microarray results and investigated changes in expression of these molecules at various stages of compensation (6 h to 2 weeks after UVD). We also investigated the changes in gene expression during Bechterew's phenomenon and the effects of a calcineurin inhibitor on vestibular compensation. Real-time PCR showed that genes for the alpha2 subunit of VGCC, PMCA2, and calcineurin were transiently up-regulated 6 h after UVD in ipsilateral VNC. A subsequent UVD, which induced Bechterew's phenomenon, reproduced a complete mirror image of the changes in gene expressions of PMCA2 and calcineurin seen in the initial UVD, while the alpha2 subunit of VGCC gene had a trend to increase in VNC ipsilateral to the second lesion. Pre-treatment by FK506, a calcineurin inhibitor, decelerated the vestibular compensation in a dose-dependent manner. Although it is still uncertain whether these changes in gene expression are causally related to the molecular mechanisms of vestibular compensation, this observation suggests that after increasing the Ca(2+) influx into the ipsilateral VNC neurons via up-regulated VGCC, calcineurin may be involved in their synaptic plasticity. Conversely, an up-regulation of PMCA2, a brain-specific Ca(2+) pump, would increase an efflux of Ca

  5. Examination of the calcium-erythrocyte membrane interactions

    International Nuclear Information System (INIS)

    Gardos, Gy.; Szasz, I.; Sarkadi, B.

    1979-01-01

    A review of the cation-transport mechanisms of human erythrocytes is given. The following experimental methods were applied: measurement of 45 Ca influx, 45 Ca efflux, 42 K influx, 42 K efflux, 22 Na efflux and determination of the activity of the Ca-ATP-ase enzyme. The increase of the intracellular Ca-level opens some specific K-channels, through which K is leaking out passively. The kinetics and the chemical nature of this K-transport are given in detail. On the other hand, Ca ions taken up are removed by active transport. Detailed data are given on the activity and specific inhibition of this Ca-pump. In human erythrocytes the pump is working with the stoichiometry of Ca:ATP=2. (L.E.)

  6. Ketamine alleviates bradykinin-induced disruption of the mouse cerebrovascular endothelial cell-constructed tight junction barrier via a calcium-mediated redistribution of occludin polymerization

    International Nuclear Information System (INIS)

    Chen, Jui-Tai; Lin, Yi-Ling; Chen, Ta-Liang; Tai, Yu-Ting; Chen, Cheng-Yu; Chen, Ruei-Ming

    2016-01-01

    Highlights: • Ketamine could suppress bradykinin-induced intracellular calcium mobilization. • Ketamine induced B1R protein and mRNA expressions but did not change B2R protein levels. • Ketamine attenuated bradykinin-induced redistribution of occludin tight junctions. • Ketamine prevented bradykinin-induced breakage of the MCEC-constructed tight junction barrier. - Abstract: Following brain injury, a sequence of mechanisms leads to disruption of the blood-brain barrier (BBB) and subsequent cerebral edema, which is thought to begin with activation of bradykinin. Our previous studies showed that ketamine, a widely used intravenous anesthetic agent, can suppress bradykinin-induced cell dysfunction. This study further aimed to evaluate the protective effects of ketamine against bradykinin-induced disruption of the mouse cerebrovascular endothelial cell (MCEC)-constructed tight junction barrier and the possible mechanisms. Exposure of MCECs to bradykinin increased intracellular calcium (Ca 2+ ) concentrations in a time-dependent manner. However, pretreatment of MCECs with ketamine time- and concentration-dependently lowered the bradykinin-induced calcium influx. As to the mechanisms, although exposure of MCECs to ketamine induced bradykinin R1 receptor protein and mRNA expression, this anesthetic did not change levels of the bradykinin R2 receptor, a major receptor that responds to bradykinin stimulation. Bradykinin increased amounts of soluble occludin in MCECs, but pretreatment with ketamine alleviated this disturbance in occludin polymerization. Consequently, exposure to bradykinin decreased the transendothelial electronic resistance in the MCEC-constructed tight junction barrier. However, pretreatment with ketamine attenuated the bradykinin-induced disruption of the tight junction barrier. Taken together, this study shows that ketamine at a therapeutic concentration can protect against bradykinin-induced breakage of the BBB via suppressing calcium

  7. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.

    Directory of Open Access Journals (Sweden)

    Nasser B Alsaleh

    Full Text Available Engineered nanomaterial (ENM-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1 in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line. Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.

  8. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells.

    Science.gov (United States)

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan

    2018-05-01

    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  9. 86Rb(K) influx and [3H]ouabain binding by human platelets: Evidence for beta-adrenergic stimulation of Na-K ATPase activity

    International Nuclear Information System (INIS)

    Turaihi, K.; Khokher, M.A.; Barradas, M.A.; Mikhailidis, D.P.; Dandona, P.

    1989-01-01

    Although active transport of potassium into human platelets has been demonstrated previously, there is hitherto no evidence that human platelets have an ouabain-inhibitable Na-K ATPase in their membrane. The present study demonstrates active rubidium (used as an index of potassium influx), 86 Rb(K), influx into platelets, inhibitable by ouabain, and also demonstrates the presence of specific [ 3 H]ouabain binding by the human platelet. This 86 Rb(K) influx was stimulated by adrenaline, isoprenaline, and salbutamol, but noradrenaline caused a mild inhibition. Active 86 Rb(K) influx by platelets was inhibited markedly by timolol, mildly by atenolol, but not by phentolamine. Therefore, active 86 Rb(K) influx in human platelets is enhanced by stimulation of beta adrenoceptors of the beta 2 subtype. The platelet may therefore replace the leukocyte in future studies of Na-K ATPase activity. This would be a considerable advantage in view of the ease and rapidity of preparation of platelets

  10. Comparison of side effects of pentagastrin test and calcium stimulation test in patients with increased basal calcitonin concentration: the gender-specific differences.

    Science.gov (United States)

    Ubl, Philipp; Gincu, Tatiana; Keilani, Mohammad; Ponhold, Lothar; Crevenna, Richard; Niederle, Bruno; Hacker, Marcus; Li, Shuren

    2014-08-01

    The aim of this study was to compare the side effects of the pentagastrin test and the calcium stimulation test in patients with increased basal calcitonin concentration, especially the gender-specific differences of side effects. A total of 256 patients (123 females and 133 males, mean age of 56 ± 27 years, range 21-83 years) had both pentagastrin and calcium stimulation tests. All patients filled in a questionnaire regarding the side effects within 30 min after completion of the stimulation tests. The differences of side effects between female and male patients as well as between the pentagastrin stimulation test and the calcium stimulation test were evaluated. Warmth feeling was the most frequent occurring side effect in all patients who had both pentagastrin and calcium stimulation tests, followed by nausea, altered gustatory sensation, and dizziness. The incidences of urgency to micturate (p stimulation test. Significant higher incidences of urgency to micturate (p stimulation test as compared with those by pentagastrin test in female patients. The incidences of nausea (p stimulation test than by calcium stimulation test. There is a significant gender-specific difference in side effects induced by calcium stimulation test. Female patients have fewer side effects by pentagastrin test than by calcium stimulation test. Male patients may tolerate the calcium stimulation test better than the pentagastrin test.

  11. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes

    Directory of Open Access Journals (Sweden)

    Mohammad M. Maneshi

    2018-03-01

    Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.

  12. The effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate bone cement

    Science.gov (United States)

    Razali, N. N.; Sukardi, M. A.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.

    2018-01-01

    The objective of this study is to determine the effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate cement (CPC) for bone filling applications. Hydroxyapatite powder was synthesized via hydrothermal method using calcium oxide, CaO and ammonium dihydrogen phosphate, NH4H2PO4 as the calcium and phosphorus precursors respectively. The effects of calcium excess were evaluated by varying the CaO content at 0, 5 and 15 mole %. The precursors were then refluxed in distilled water at 90-100°C and dried overnight until the calcium phosphate powder was formed. CPC was then produced by mixing the synthesized powder with distilled water at the powder-to-liquid (P/L) ratio of 1.5. The result from the morphological properties of CPC shows the increase in agglomeration and particles size with 5 mole % of calcium excess but decreased with 15 mole % of calcium excess in CPC. This result was in agreement with the compressive strength result where the CPC increased its strength with 5 mole % of calcium excess but reduced with 15 mole % of calcium excess. The excess in calcium precursor also significantly improved the setting time but reduced the injectability of CPC.

  13. Consumption of calcium-fortified cereal bars to improve dietary calcium intake of healthy women: randomized controlled feasibility study.

    Directory of Open Access Journals (Sweden)

    Jennifer T Lee

    Full Text Available Calcium is an important structural component of the skeletal system. Although an adequate intake of calcium helps to maintain bone health and reduce the risk of osteoporosis, many women do not meet recommended daily intakes of calcium. Previous interventions studies designed to increase dietary intake of women have utilized primarily dairy sources of calcium or supplements. However, lactose intolerance, milk protein allergies, or food preferences may lead many women to exclude important dairy sources of dietary calcium. Therefore, we undertook a 9 week randomized crossover design trial to examine the potential benefit of including a non-dairy source of calcium in the diet of women. Following a 3 week run-in baseline period, 35 healthy women > 18 years were randomized by crossover design into either Group I or Group II. Group I added 2 calcium-fortified cereal bars daily (total of 400 mg calcium/day (intervention to their usual diet and Group II continued their usual diet (control. At the end of 3 weeks, diets were switched for another 3 weeks. Intakes of calcium and energy were estimated from 3-day diet and supplemental diaries. Wilcoxon signed-rank tests were used for within group comparisons and Mann Whitney U tests were used for between group comparisons of calcium and energy intake. Dietary calcium was significantly higher during intervention (1071 mg/d when participants consumed 2 calcium-fortified cereal bars daily than during the baseline (720 mg/d, P <0.0001 or control diets (775 mg/d, P = 0.0001 periods. Furthermore, the addition of 2 calcium-fortified cereal bars daily for the 3 week intervention did not significantly increase total energy intake or result in weight gain. In conclusion, consumption of calcium-fortified cereal bars significantly increased calcium intake of women. Further research examining the potential ability of fortified cereal bars to help maintain and improve bone health of women is warranted.ClinicalTrials.gov NCT

  14. Diuretics and disorders of calcium homeostasis.

    Science.gov (United States)

    Grieff, Marvin; Bushinsky, David A

    2011-11-01

    Diuretics commonly are administered in disorders of sodium balance. Loop diuretics inhibit the Na-K-2Cl transporter and also increase calcium excretion. They are often used in the treatment of hypercalcemia. Thiazide diuretics block the thiazide-sensitive NaCl transporter in the distal convoluted tubule, and can decrease calcium excretion. They are often used in the treatment of nephrolithiasis. Carbonic anhydrase inhibitors decrease bicarbonate absorption and the resultant metabolic acidosis can increase calcium excretion. Their use can promote nephrocalcinosis and nephrolithiasis. This review will address the use of diuretics on disorders of calcium homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Photochemistry Saturn's Atmosphere. 2; Effects of an Influx of External Oxygen

    Science.gov (United States)

    Moses, Julianne I.; Lellouch, Emmanuel; Bezard, Bruno; Gladstone, G. Randall; Allen, Mark

    2000-01-01

    We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3 +/- 1) x 10(exp 14) and (1.4 +/- 0.4) x 10(exp 15)/ square cm, respectively; our models indicate that a globally averaged oxygen influx of (4+/-2) x 10(exp 6) O atoms /sq cm/s is required to explain these observations. Models with a locally enhanced influx of H20 operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3 +/- 2) x 10(exp -16) g/square cm/s of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon-oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen-oxygen bonded material is converted to carbon-oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-micron CO observations of Noll and Larson and determine that the CO

  16. Vitamin D plus calcium supplementation increased serum 25(OHD on reproductive age women workers

    Directory of Open Access Journals (Sweden)

    Betty Yosephin

    2015-11-01

    Full Text Available Objective: To analyze the efficacy of calcium supplementation plus vitamin D on the improved concentrations of serum 25(OHD and the blood pressure in working women of childbearing age. Methods: The design used in this research was an experimental study (randomized control trial, with 39 subjects of women at childbearing age who met the inclusion criteria for the study. Subjects were randomly allocated into two treatment groups, the VDC group (400 IU of vitamin D plus 500 mg of calcium and the VD group (400 IU of vitamin D. Supplements were consumed every day for 12 weeks. Results: Prior to supplementation, the average level of serum 25(OHD in the VDC group was (16.7 ± 4.5 ng/dL which was higher than the average level of serum 25(OHD in the VD group which was (14.9 ± 5.1 ng/dL. After supplementation, the subjects of VDC group showed an average increased 3.6 ng/dL of serum 25(OHD. The average increase of serum 25(OHD in VD group was 6.3 ng/dL. The increase of serum 25(OHD in VDC group was 21.6%, while in the VD group the increase was almost two times higher (42.3% than that of the VDC group. Statistical test results showed that the average levels of serum 25(OHD between the two treatment groups were significantly different. Conclusions: The average systolic blood pressure prior to supplementation of the VDC group was (128.5 ± 22.5 mmHg which was slightly lower than that of the VD group [(131.1 ± 18.0 mmHg].

  17. The retraction of the protoplast during PCD is an active, and interruptible, calcium-flux driven process.

    Science.gov (United States)

    Kacprzyk, Joanna; Brogan, Niall P; Daly, Cara T; Doyle, Siamsa M; Diamond, Mark; Molony, Elizabeth M; McCabe, Paul F

    2017-07-01

    The protoplast retracts during apoptosis-like programmed cell death (AL-PCD) and, if this retraction is an active component of AL-PCD, it should be used as a defining feature for this type of programmed cell death. We used an array of pharmacological and genetic tools to test if the rates of protoplast retraction in cells undergoing AL-PCD can be modulated. Disturbing calcium flux signalling, ATP synthesis and mitochondrial permeability transition all inhibited protoplast retraction and often also the execution of the death programme. Protoplast retraction can precede loss of plasma membrane integrity and cell death can be interrupted after the protoplast retraction had already occurred. Blocking calcium influx inhibited the protoplast retraction, reduced DNA fragmentation and delayed death induced by AL-PCD associated stresses. At higher levels of stress, where cell death occurs without protoplast retraction, blocking calcium flux had no effect on the death process. The results therefore strongly suggest that retraction of the protoplast is an active biological process dependent on an early Ca 2+ -mediated trigger rather than cellular disintegration due to plasma membrane damage. Therefore this morphologically distinct cell type is a quantifiable feature, and consequently, reporter of AL-PCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Short communication: Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis

    NARCIS (Netherlands)

    Dijcker, J.C.; Kummeling, A.; Hagen-Plantinga, E.A.; Hendriks, W.H.

    2012-01-01

    Introduction Urine concentrations of oxalate and calcium play an important role in calcium oxalate (CaOx) urolith formation in dogs and cats, with high excretions of both substances increasing the chance of CaOx urolithiasis. In 17 CaOx-forming dogs, urine calcium:creatinine ratio (Ca:Cr) was found

  19. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Le Geng

    2018-06-01

    Full Text Available Background/Aims: Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Methods: Rapid electrical stimulation (RES at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz were set as no electrical stimulation (NES control or low-frequency electrical stimulation (LES control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Results: Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. Conclusion: RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and

  20. Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Chartier, L.; Schiffrin, E.L.

    1987-01-01

    Atrial natriuretic peptide (ANP) inhibits the stimulation of aldosterone secretion by isolated adrenal glomerulosa cells produced by angiotensin II (ANG II), ACTH, and potassium. The effect of ANP on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium on isolated rat adrenal glomerulosa cells was studied. In the presence of ANP the maximal response of aldosterone output stimulated by ANG II or potassium decreased and the half-maximum (EC 50 ) of the response to ACTH was displaced to the right. Because these effects resemble those of calcium-channel blockers, the authors investigated the effect of different concentrations of nifedipine, a dihydropyridine calcium-channel blocker, on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium. Nifedipine produced effects similar to ANP. The maximal response of aldosterone stimulated by ANG II and potassium was decreased and the dose-response curve to ACTH was displaced to the right. ANP decreased the maximal response of aldosterone to the dihydropyridine derivative BAY K8644, a calcium-channel activator, without change in its EC 50 . In contrast, nifedipine displaced the dose-response curve to BAY K8644 to the right as expected of a competitive inhibitor. The effect of ANP and nifedipine on basal and stimulated 45 Ca influx into isolated rat adrenal glomerulosa cells was studied. ANP may act on the rat adrenal glomerulosa cells at least in part by interference with calcium entry

  1. Application of different qualities of X-rays by X-ray microradiography to increase the detection efficiency of calcium

    International Nuclear Information System (INIS)

    Fernsebner, M.

    1981-01-01

    It was the goal of this work to evaluate quantitatively the suitability of the radiation quality of tungsten, copper, titanium and scandium anodes for the generation of contrastful microradiographs and thus to increase the detection sensitivity of calcium. Halfwidth determinations were made with aluminium absorbers in air to characterize the different X-ray radiation qualities. Furthermore the dependence of the dose load of the absorber width and the type of the tube was determined in the radiation field for 20 kV anode voltage. Reference step-models were established in order to transfer these results to the calcium detection in microradiograph technology. (orig./HBR) [de

  2. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    Science.gov (United States)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  3. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  4. beta. -endorphin modulation of mitogen-stimulated calcium uptake by rat thymocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hemmick, L.M.; Bidlack, J.M.

    1987-10-19

    Lymphocytes stimulated by mitogens or antigens exhibit an enhanced calcium uptake early in the proliferation or activation response. Modulation of this calcium uptake results in alterations of proliferation and immunocompetence. ..beta..-endorphin and other opioids affect several parameters of lymphocyte competence. Limited data are available concerning the mechanism(s) of these effects. This study examines whether a possible opioid mechanism is the modification of the early calcium influx into stimulated lymphocytes. The time course of both concanavalin A (Con A) and phytohemagglutinin (PHA)-stimulated /sup 45/Ca/sup 2 +/ uptake into thymocytes was characterized to determine the optimal time for testing the effects of opioids. BETA-Endorphin 1-31 significantly enhanced Con A-stimulated /sup 45/Ca/sup 2 +/ uptake into rat thymocytes. This peptide had no significant effect on PHA-simulated /sup 45/Ca/sup 2 +/ uptake or on basal thymocyte /sup 45/Ca/sup 2 +/ flux. The ..beta../sub h/-endorphin stimulatory effect was titratable in the range of 0.1 nM to 10 ..mu..M. Naloxone did not reverse the enhancement. Met-enkephalinamide and other opioid agonists did not duplicate the stimulatory effect. Thus, the ..beta../sub h/-endorphin 1-31 enhancement of Con A-stimulated /sup 45/Ca/sup 2 +/ uptake by rat thymocytes does not operate via classical opioid receptor mechanisms. ..beta../sub h/-endorphin 1-31 appears to be acting on a subset of T cells that are responsive to Con A but not to PHA. 30 references, 4 figures, 1 table.

  5. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ concentration. A single injection of Aβ (25 pmol into the dentate gyrus affected dentate gyrus long-term potentiation (LTP 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  7. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Science.gov (United States)

    Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A; Bush, Ashley I; Tamano, Haruna

    2014-01-01

    We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  8. A sensor for calcium uptake

    Science.gov (United States)

    Collins, Sean; Meyer, Tobias

    2011-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified. PMID:20844529

  9. Effect of HeNe laser on calcium signals in sperm cells

    Science.gov (United States)

    Lubart, Rachel; Friedmann, Harry; Cohen, Natalie; Brietbart, Haim

    1998-12-01

    Irradiation of mouse spermatozoa by 630 nm HeNe laser was found to enhance calcium transport in these cells. The change in Ca transport was investigated through two approaches, the first employing the fluorescent Ca indicator, Fluo-3 AM and a fluorescence microscopic system, and the second the radiolabeled Ca uptake. In both approaches the effect of light on Ca transport was abrogated in the absence of Ca during the irradiation time, indicating that the effect of light is Ca-dependent. The stimulatory effect of light on Ca uptake was inhibited by treatment with catalase, suggesting H2O2 to be involved in light stimulated Ca2+ uptake. The stimulatory effect of light on Ca uptake was abolished in the presence of a voltage-dependent Ca-channel inhibitor, nifedipine, indicating the involvement of a plasma membrane, voltage- dependent Ca-channel. In contrast, addition of nifedipine prior to the HeNe laser irradiation did not affect the light-induced rise in intracellular Ca levels, as measured with Fluo-3 loaded sperm cells. Therefore, it can be concluded that this Ca influx occurs via a voltage- insensitive Ca-channel. The stimulatory effect of light on Ca uptake was almost completely abolished by the mitochondrial uncoupler FCCP. These data imply that light affects the mitochondrial Ca transport mechanisms. It is well known that Ca influx from an extracellular environment is an essential component of a signaling cascade leading to fertilization.

  10. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm

    2016-03-01

    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  11. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  12. Tyrosine content, influx and accumulation rate, and catecholamine biosynthesis measured in vivo, in the central nervous system and in peripheral organs of the young rat. Influence of neonatal hypo- and hyperthyroidism.

    Science.gov (United States)

    Diarra, A; Lefauconnier, J M; Valens, M; Georges, P; Gripois, D

    1989-10-01

    The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.

  13. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  14. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    Science.gov (United States)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  15. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    International Nuclear Information System (INIS)

    Liu, P.-S.; Chiung, Y.-M.; Kao, Y.-Y.

    2006-01-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca 2+ ] c ) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca 2+ mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca 2+ ] c by releasing Ca 2+ from the intracellular stores and extracellular Ca 2+ influx. 500 μM TDI induced a net [Ca 2+ ] c increase of 112 ± 8 and 78 ± 6 nM in the presence and absence of extracellular Ca 2+ , respectively. In Ca 2+ -free buffer, TDI induced Ca 2+ release from internal stores to reduce their Ca 2+ content and this reduction was evidenced by a suppression occurring on the [Ca 2+ ] c rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca 2+ , simultaneous exposure to TDI and methacholine led a higher level of [Ca 2+ ] c compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca 2+ ] c homeostasis including releasing Ca 2+ from internal stores and inducing extracellular Ca 2+ influx. The interaction of this novel character and bronchial hyperreactivity need further investigation

  16. A home-based nutrition intervention to increase consumption of fruits, vegetables, and calcium-rich foods in community dwelling elders.

    Science.gov (United States)

    Bernstein, A; Nelson, Miriam E; Tucker, Katherine L; Layne, Jennifer; Johnson, Elizabeth; Nuernberger, Andrea; Castaneda, Carmen; Judge, James O; Buchner, David; Singh, Maria Fiatarone

    2002-10-01

    To increase fruit, vegetable, and calcium-rich food consumption in community-dwelling, functionally impaired elderly. Six-month, home-based nutrition intervention study. Seventy men and women older than age 69 years were randomized to either a nutrition education intervention (n = 38) or a control group that received an exercise intervention (n = 32). Nutrition education was designed to increase fruit, vegetable, and calcium-rich food consumption. Food intake was assessed by a food frequency questionnaire. Fasting blood measures of nutrients and carotenoids were performed. Statistical Analysis Two-group randomized controlled trial with pre-test and post-test design and intention-to-treat analysis. Analysis of covariance to was used to assess differences between the two groups. Baseline and change partial correlation coefficients were performed between intake and blood nutrient levels. Paired t tests were conducted to test within-group changes. Compared with the exercise group, subjects in nutrition group increased their self-reported intake of fruits by 1.1 +/- 0.2 (mean +/- SEM) servings per day (2.8 to 3.9, P = .01), vegetables 1.1 +/- 0.2 servings per day (2.3 to 3.4, P = .001), and milk/dairy 0.9 +/- 0.2 servings per day (3.0 to 3.9, P = .001). There was an increase in the dietary intake of alpha-carotene and beta-carotene in the nutrition group and this correlated with the increase in blood concentrations of alpha-carotene and beta-carotene (P foods. Recommendations for increasing consumption of fruits, vegetables, and calcium-rich foods should be specific and individualized to meet the dietary pattern and lifestyle of the individual. Compliance should be encouraged with record keeping as well as through continuous monitoring and positive reinforcement.

  17. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve

  18. Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin.

    Science.gov (United States)

    Gonyar, Laura A; Gray, Mary C; Christianson, Gregory J; Mehrad, Borna; Hewlett, Erik L

    2017-06-01

    Pertussis (whooping cough), caused by Bordetella pertussis , is resurging in the United States and worldwide. Adenylate cyclase toxin (ACT) is a critical factor in establishing infection with B. pertussis and acts by specifically inhibiting the response of myeloid leukocytes to the pathogen. We report here that serum components, as discovered during growth in fetal bovine serum (FBS), elicit a robust increase in the amount of ACT, and ≥90% of this ACT is localized to the supernatant, unlike growth without FBS, in which ≥90% is associated with the bacterium. We have found that albumin, in the presence of physiological concentrations of calcium, acts specifically to enhance the amount of ACT and its localization to the supernatant. Respiratory secretions, which contain albumin, promote an increase in amount and localization of active ACT that is comparable to that elicited by serum and albumin. The response to albumin is not mediated through regulation of ACT at the transcriptional level or activation of the Bvg two-component system. As further illustration of the specificity of this phenomenon, serum collected from mice that lack albumin does not stimulate an increase in ACT. These data, demonstrating that albumin and calcium act synergistically in the host environment to increase production and release of ACT, strongly suggest that this phenomenon reflects a novel host-pathogen interaction that is central to infection with B. pertussis and other Bordetella species. Copyright © 2017 American Society for Microbiology.

  19. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  20. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis.

    Science.gov (United States)

    Waadt, Rainer; Krebs, Melanie; Kudla, Jörg; Schumacher, Karin

    2017-10-01

    Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. sup 86 Rb(K) influx and ( sup 3 H)ouabain binding by human platelets: Evidence for beta-adrenergic stimulation of Na-K ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Turaihi, K.; Khokher, M.A.; Barradas, M.A.; Mikhailidis, D.P.; Dandona, P. (Royal Free Hospital and School of Medicine, London (England))

    1989-08-01

    Although active transport of potassium into human platelets has been demonstrated previously, there is hitherto no evidence that human platelets have an ouabain-inhibitable Na-K ATPase in their membrane. The present study demonstrates active rubidium (used as an index of potassium influx), {sup 86}Rb(K), influx into platelets, inhibitable by ouabain, and also demonstrates the presence of specific ({sup 3}H)ouabain binding by the human platelet. This {sup 86}Rb(K) influx was stimulated by adrenaline, isoprenaline, and salbutamol, but noradrenaline caused a mild inhibition. Active {sup 86}Rb(K) influx by platelets was inhibited markedly by timolol, mildly by atenolol, but not by phentolamine. Therefore, active {sup 86}Rb(K) influx in human platelets is enhanced by stimulation of beta adrenoceptors of the beta 2 subtype. The platelet may therefore replace the leukocyte in future studies of Na-K ATPase activity. This would be a considerable advantage in view of the ease and rapidity of preparation of platelets.

  2. Studies on endogenous circulating calcium entry blocker and stimulator

    International Nuclear Information System (INIS)

    Pang, P.K.T.; Yang, M.C.M.

    1986-01-01

    Several synthetic compounds have been studied extensively for their calcium entry blockade and stimulation in smooth muscles. It is hypothesized that there should be endogenous substances which control calcium entry into cells. We recently investigated the effect of some vasoactive hormones on calcium entry. Our studies on rat tail artery helical strip showed that the in vitro vasoconstriction produced by arginine vasopressin (AVP) decreased stepwise with decreasing concentration of both calcium. After exposure of the tail artery to calcium-free Ringer's solution for 1 minute or longer, the tissue lost its ability to respond to AVP. Subsequent addition of calcium to the medium produced immediate contraction. Measurements of low affinity lanthanum resistant pool of calcium with 45 Ca showed that AVP increased calcium uptake by tail artery in a dose-dependent manner. In another study rat tail artery helical strip indicated that the vasorelaxing action of parathyroid hormone (PTH) was related to an inhibition of calcium uptake. AVP or 60 mM potassium chloride increased the low affinity lanthanum resistant pool of calcium in rate tail artery and PTH inhibited the increase. In conclusion, AVP and PTH may behave like endogenous calcium entry stimulator and inhibitor respectively in vascular tissues

  3. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Domingues

    2017-01-01

    Full Text Available Calcium phosphate cement (CPC that is based on α-tricalcium phosphate (α-TCP is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF have been used to improve the mechanical strength of biomaterials. However, the biological properties of WF remain poorly understood. Here, we tested the response of osteoblast-like cells to being cultured on CPC reinforced with 5% of WF (CPC-WF. We found that both types of cement studied achieved an ion balance for calcium and phosphate after 3 days of immersion in culture medium and this allowed subsequent long-term cell culture. CPC-WF increased cell viability and stimulated cell differentiation, compared to nonreinforced CPC. We hypothesize that late silicon release by CPC-WF induces increased cell proliferation and differentiation. Based on our findings, we propose that CPC-WF is a promising material for bone tissue engineering applications.

  4. Effect of calcium supplements on osteoporosis by using nuclear analytical techniques

    International Nuclear Information System (INIS)

    Sumin Hu; Xueying Mao; Hong Ouyang

    2004-01-01

    Neutron activation analysis (NAA) and dual energy X-ray absorptiometry (DEXA) have been used to study the effects of different calcium supplements on osteoporosis, including calcium carbonate, calcium threonate, calcium gluconate, calcium lactate, calcium acetate and a traditional Chinese medicine. Animal test results showed that calcium carbonate, calcium gluconate, calcium acetate and the Chinese medicine notably increased osteoporotic rat's femoral bone mineral density (BMD). Also, calcium carbonate, calcium acetate and the Chinese medicine significantly increased osteoporotic rat's vertebral BMD. But calcium L-threonate and calcium lactate had no such effects. Calcium gluconate, calcium acetate and the Chinese medicine improved the bone mechanical intensity of osteoporotic rats. The results of NAA showed that the loss of elements in spongy bones was more seriously than that in compact bone and was difficult to be improved. (author)

  5. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa.

    Science.gov (United States)

    Gonçalves, A Pedro; Cordeiro, J Miguel; Monteiro, João; Lucchi, Chiara; Correia-de-Sá, Paulo; Videira, Arnaldo

    2015-10-01

    Staurosporine-induced cell death in Neurospora crassa includes a well defined sequence of alterations in cytosolic calcium levels, comprising extracellular Ca(2+) influx and mobilization of Ca(2+) from internal stores. Here, we show that cells undergoing respiratory stress due to the lack of certain components of the mitochondrial complex I (like the 51kDa and 14kDa subunits) or the Ca(2+)-binding alternative NADPH dehydrogenase NDE-1 are hypersensitive to staurosporine and incapable of setting up a proper intracellular Ca(2+) response. Cells expressing mutant forms of NUO51 that mimic human metabolic diseases also presented Ca(2+) signaling deficiencies. Accumulation of reactive oxygen species is increased in cells lacking NDE-1 and seems to be required for Ca(2+) oscillations in response to staurosporine. Measurement of the mitochondrial levels of Ca(2+) further supported the involvement of these organelles in staurosporine-induced Ca(2+) signaling. In summary, our data indicate that staurosporine-induced fungal cell death involves a sophisticated response linking Ca(2+) dynamics and bioenergetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Calcium as a cardiovascular toxin in CKD-MBD.

    Science.gov (United States)

    Moe, Sharon M

    2017-07-01

    Disordered calcium balance and homeostasis are common in patients with chronic kidney disease. Such alterations are commonly associated with abnormal bone remodeling, directly and indirectly. Similarly, positive calcium balance may also be a factor in the pathogenesis of extra skeletal soft tissue and arterial calcification. Calcium may directly affect cardiac structure and function through direct effects to alter cell signaling due to abnormal intracellular calcium homeostasis 2) extra-skeletal deposition of calcium and phosphate in the myocardium and small cardiac arterioles, 3) inducing cardiomyocyte hypertrophy through calcium and hormone activation of NFAT signaling mechanisms, and 4) increased aorta calcification resulting in chronic increased afterload leading to hypertrophy. Similarly, calcium may alter vascular smooth muscle cell function and affect cell signaling which may predispose to a proliferative phenotype important in arteriosclerosis and arterial calcification. Thus, disorders of calcium balance and homeostasis due to CKD-MBD may play a role in the high cardiovascular burden observed in patients with CKD. Published by Elsevier Inc.

  7. Urban-Dome GHG Monitoring: Challenges and Perspectives from the INFLUX Project

    Science.gov (United States)

    Whetstone, J.; Shepson, P. B.; Davis, K. J.; Sweeney, C.; Gurney, K. R.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Razlivanov, I.; Zhou, Y.; Song, Y.; Turnbull, J. C.; Karion, A.; Cambaliza, M. L.; Callahan, W.; Novakovskaia, E.; Crosson, E.; Rella, C.; Possolo, A.

    2012-04-01

    Quantification of carbon dynamics in urban areas using advanced and diverse observing systems enables the development of measurable, reportable, and verifiable (MRV) mitigation strategies as suggested in the Bali Action Plan, agreed upon at the 13th Conference of the Parties of the UNFCCC (COP 13, 2007). The National Institute of Standards and Technology (NIST), supports the Indianapolis Flux Experiment (INFLUX). INFLUX is focused on demonstrating the utility of dense, surface-based observing networks coupled with aircraft-based measurements, advanced atmospheric boundary layer observation and modeling to determine GHG emission source location and strength in urban areas. The ability to correctly model transport and mixing in the atmospheric boundary layer (ABL), responsible for carrying GHGs from their source to the point of measurement, is essential. The observing system design, using multiple instruments and observing methods, is intended to provide multi-scale measurements as a basis for mimicking the complex and evolving dynamics of a city. To better understand such a dynamic system, and incorporate this into models, reliable representations of horizontal and vertical transport, as well as ABL height, GHG mixing ratio measurements are planned for 11 tower locations, 2 are currently in operation with the remaining 9 planned for operational status in early to mid-2012. These observations are complimented by aircraft flights that measure mixing ratio as well as ABL parameters. Although measurements of ABL mixing heights and dynamics are presently only available intermittently, limiting efforts to evaluate ABL model performance and the uncertainties of GHG flux estimates, expansion of them is planned for the near future. INFLUX will significantly benefit from continuous, high resolution measurements of mixing depth, wind speed and direction, turbulence profiles in the boundary layer, as well as measurements of surface energy balance, momentum flux, and short and

  8. [On the origin, course and influx-vessels of the V. basalis and the V. cerebri interna (author's transl)].

    Science.gov (United States)

    Lang, J; Köth, R; Reiss, G

    1981-01-01

    Origin, course and influx-vessels of the basal vein are investigated on 100 brains. An anterior formation of the basal vein (textbook) was found in 41%, a posterior formation in 34%. The different possibilities of drainage are examined procentually at the different types. Course and number of the different variations of the influx-vessels are taken into account: Vv. thalamostriata inferiores, gyri olfactorii, ventricularis inferior, peduncularis, cerebri interna, thalamostriata superioris, (terminalis), septi pellucidi anterior, septi pellucidi posterior, atrii medialis, atrii lateralis, nuclei caudati.

  9. Sorption of sulphur dioxide in calcium chloride and nitrate chloride liquids

    International Nuclear Information System (INIS)

    Trzepierczynska, I.; Gostomczyk, M.A.

    1989-01-01

    Flue gas desulphurization via application of suspensions has one inherent disadvantage: fixation of sulphur dioxide is very poor. This should be attributed to the low content of calcium ions which results from the solubility of the sorbing species. The solubility of sparingly soluble salts (CaO, CaCO 3 ) may be increased by decreasing the pH of the solution; yet, there is a serious limitation in this method: the corrosivity of the scrubber. The objective of this paper was to assess the sorbing capacity of two soluble calcium salts, calcium chloride and calcium nitrate, as a function of calcium ion concentration in the range of 20 to 82 kg/m 3 . It has been found that sorbing capacity increases with the increasing calcium ion concentration until the calcium concentration in the calcium chloride solution reaches the level of 60 kg/m 3 which is equivalent to the chloride ion content of ∼ 110 kg/m 3 . Addition of calcium hydroxide to the solutions brings about an increase in the sorbing capacity up to 1.6 kg/m 3 and 2.2 kg/m 3 for calcium chloride and calcium nitrate, respectively, as a result of the increased sorbent alkalinity. The sorption capacity of the solutions is considerably enhanced by supplementing them by acetate ions (2.8 to 13.9 kg/m 3 ). Increase in the sorption capacity of calcium nitrate solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions supplemented in the same way. (author). 12 refs, 7 refs, 4 tabs

  10. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.

    2017-01-01

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  11. Characteristics of 36C103- influx into nitrate reductase deficient mutant E1 pisum sativum seedlings: evidence for restricted ''induction'' by nitrate compared with wild type

    International Nuclear Information System (INIS)

    Deane-Drummond, C.E.; Jacobsen, E.

    1986-01-01

    The characteristics of nitrate uptake into seedlings of Pisum sativum L. cv. Rondo mutant E 1 defective for nitrate reductase (NR) and of its parent variety Rondo have been investigated using 36 C10 3 - as an analogue for nitrate. The apparent Michaelis Menten constants (K m ) for 36 ClO 3 - influx measured over 10 min were similar for mutant E 1 and the wild type (Wt). There was a 28% increase in 36 C10 3 - into Wt seedlings following nitrate pretreatment but this was not found when mutant seedlings were used. N starvation increased 36 C10 3 - influx into both mutant and Wt seedlings, and the rate of cycling E/I was also enhanced to a similar extent. The results are discussed in terms of current ideas on the regulation of nitrate uptake and assimilation. (author)

  12. A mathematical model of calcium dynamics in HSY cells.

    Directory of Open Access Journals (Sweden)

    Jung Min Han

    2017-02-01

    Full Text Available Saliva is an essential part of activities such as speaking, masticating and swallowing. Enzymes in salivary fluid protect teeth and gums from infectious diseases, and also initiate the digestion process. Intracellular calcium (Ca2+ plays a critical role in saliva secretion and regulation. Experimental measurements of Ca2+ and inositol trisphosphate (IP3 concentrations in HSY cells, a human salivary duct cell line, show that when the cells are stimulated with adenosine triphosphate (ATP or carbachol (CCh, they exhibit coupled oscillations with Ca2+ spike peaks preceding IP3 spike peaks. Based on these data, we construct a mathematical model of coupled Ca2+ and IP3 oscillations in HSY cells and perform model simulations of three different experimental settings to forecast Ca2+ responses. The model predicts that when Ca2+ influx from the extracellular space is removed, oscillations gradually slow down until they stop. The model simulation of applying a pulse of IP3 predicts that photolysis of caged IP3 causes a transient increase in the frequency of the Ca2+ oscillations. Lastly, when Ca2+-dependent activation of PLC is inhibited, we see an increase in the oscillation frequency and a decrease in the amplitude. These model predictions are confirmed by experimental data. We conclude that, although concentrations of Ca2+ and IP3 oscillate, Ca2+ oscillations in HSY cells are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations.

  13. Kinetics of the Carbonate Leaching for Calcium Metavanadate

    Directory of Open Access Journals (Sweden)

    Peiyang Shi

    2016-10-01

    Full Text Available The sodium salt roasting process was widely used for extracting vanadium due to its high yield rate of vanadium. However, the serious pollution was a problem. The calcium roasting process was environmentally friendly, but the yield rate of vanadium was relatively lower. Focusing on the calcium metavanadate produced in the calcium roasting process of vanadium minerals, the mechanism of the carbonate leaching for calcium metavanadate and its leaching kinetics of calcium metavanadate were studied. With the increase of the leaching agent content, the decrease of the particle size, the increase of the temperature and the increase of the reaction time, the leaching rate of vanadium increased, and the constant of reaction rate increased. In the carbonate leaching process, the calcium carbonate was globular and attached to the surface of calcium metavanadate. In the solution containing bicarbonate radical, lots of cracks formed in the dissolution process. However, the cracks were relatively fewer in the solution containing carbonate. In the present study, the carbonate leaching for calcium metavanadate was controlled by diffusion, the activation energy reached maximum and minimum in the sodium bicarbonate and the sodium carbonate solution, respectively. The activation energy value in the ammonium bicarbonate solution was between those two solutions. The kinetic equations of the carbonate leaching for calcium metavanadate were as follows: 1 − 2/3η − (1 − η2/3 = 4.39[Na2CO3]0.75/r0 × exp(−2527.06/Tt; 1 − 2/3η − (1 − η2/3 = 7.89[NaHCO3]0.53/r0 × exp(−2530.67/Tt; 1 − 2/3η − (1 − η2/3 = 6.78[NH4HCO3]0.69/r0 × exp(−2459.71/Tt.

  14. Young Adults' Perceptions of Calcium Intake and Health: A Qualitative Study.

    Science.gov (United States)

    Marcinow, Michelle L; Randall Simpson, Janis A; Whiting, Susan J; Jung, Mary E; Buchholz, Andrea C

    2017-12-01

    Many young Canadian adults are not meeting dietary calcium recommendations. This is concerning as adequate calcium is important throughout young adulthood to maximize peak bone mass for osteoporosis prevention. There are limited studies that have explored young adults' perceptions toward calcium and health. Our objectives were to determine young adults' (18-34 years) knowledge of calcium in relation to health, facilitators and barriers to adequate calcium intake, and to explore both their suggestions for individual strategies to increase calcium intake and ways to communicate calcium-related messaging to this population. Eight gender-specific focus groups (18 men; 35 women) were conducted using a semistructured interview guide, guided by social cognitive theory. Deductive thematic analysis was used to generate themes. Participants perceived adequate calcium intake to be important for children and older adults but were uncertain of the benefits for their own age group. Perceived positive outcomes (e.g., aesthetics such as strong nails) associated with adequate calcium intake were cited as a motivator to increase intake. Perceived barriers to achieving increased calcium intake included the high cost and inconvenience of milk products and negative practices of dairy farmers. Participants suggested planning healthy well-balanced meals and forming a habit of consuming calcium-rich foods as individual strategies to increase calcium intake. Strategies to convey calcium-related information to young adults included increasing awareness of the importance of calcium via credible sources of information and developing nutrition education curricula. Social media and advertising were perceived as ineffective. Our findings provide key information for nutrition education initiatives.

  15. Voluntary running enhances glymphatic influx in awake behaving, young mice.

    Science.gov (United States)

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Calcium oxalate stone and gout.

    Science.gov (United States)

    Marickar, Y M Fazil

    2009-12-01

    Gout is well known to be produced by increased uric acid level in blood. The objective of this paper is to assess the relationship between gout and calcium oxalate stone formation in the humans. 48 patients with combination of gout and calcium oxalate stone problem were included. The biochemical values of this group were compared with 38 randomly selected uric acid stone patients with gout, 43 stone patients with gout alone, 100 calcium oxalate stone patients without gout and 30 controls, making a total of 259 patients. Various biochemical parameters, namely serum calcium, phosphorus and uric acid and 24-h urine calcium, phosphorus, uric acid, oxalate, citrate and magnesium were analysed. ANOVA and Duncan's multiple-range tests were performed to assess statistical significance of the variations. The promoters of stone formation, namely serum calcium (P stone patients and gouty calcium oxalate stone patients compared to the non-gouty patients and controls. Urine oxalate (P stones patients. The inhibitor urine citrate (P stone gouty patients, followed by the gouty uric acid stone formers and gouty calcium oxalate stone patients. The high values of promoters, namely uric acid and calcium in the gouty stone patients indicate the tendency for urinary stone formation in the gouty stone patients. There is probably a correlation between gout and calcium oxalate urinary stone. We presume this mechanism is achieved through the uric acid metabolism. The findings point to the summation effect of metabolic changes in development of stone disease.

  17. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  18. EDRF [endothelium-derived relaxing factor]-release and Ca++-channel blockage by Magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta

    International Nuclear Information System (INIS)

    Teng, Cheming; Yu, Sheumeei; Chen, Chienchih; Huang, Yulin; Huang, Turfu

    1990-01-01

    Magnolol is an antiplatelet agent isolated from Chinese herb Magnolia officinalis. It inhibited norepinephrine-induced phasic and tonic contractions in rat thoracic aorta. At the plateau of the NE-induced tonic contraction, addition of magnolol caused two phases (fast and slow) of relaxation. These two relaxations were concentration-dependent, and were not inhibited by indomethacin. The fast relaxation was completely antagonized by hemoglobin and methylene blue, and disappeared in de-endothelialized aorta while the slow relaxation was not affected by the above treatments. Magnolol also inhibited high potassium-induced, calcium-dependent contraction of rat aorta in a concentration-dependent manner. 45 Ca ++ influx induced by high potassium or NE was markedly inhibited by magnolol. Cyclic GMP, but not PGI 2 , was increased by magnolol in intact, but not in de-endothelialized aorta. It is concluded that magnolol relaxed vascular smooth muscle by releasing endothelium-derived relaxing factor (EDRF) and by inhibiting calcium influx through voltage-gated calcium channels

  19. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    International Nuclear Information System (INIS)

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  20. Effect of GAPDH-derived antimicrobial peptides on sensitive yeasts cells: membrane permeability, intracellular pH and H+-influx/-efflux rates.

    Science.gov (United States)

    Branco, Patrícia; Albergaria, Helena; Arneborg, Nils; Prista, Catarina

    2018-05-01

    Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which induce the death of several non-Saccharomyces yeasts. Previously, we demonstrated that the naturally secreted GAPDH-derived AMPs (i.e. saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of Hanseniaspora guilliermondii cells. In this study, we show that chemically synthesised analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at pH 3.5. Since H+-efflux via H+-ATPase is energy dependent, reduced glucose consumption would decrease ATP production and consequently H+-ATPase activity. However, glucose uptake rates were not affected, suggesting that the AMPs rather than affecting glucose transporters may affect directly the plasma membrane H+-ATPase or increase ATP leakage due to cell membrane disturbance. Thus, our study revealed that both saccharomycin and its synthetic analogues induced cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.

  1. Calcium movements and the cellular basis of gravitropism

    Science.gov (United States)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  2. Dietary calcium intake and risk of cardiovascular disease, stroke, and fracture in a population with low calcium intake.

    Science.gov (United States)

    Kong, Sung Hye; Kim, Jung Hee; Hong, A Ram; Cho, Nam H; Shin, Chan Soo

    2017-07-01

    Background: The role of dietary calcium intake in cardiovascular disease (CVD), stroke, and fracture is controversial. Most previous reports have evaluated populations with high calcium intake. Objective: We aimed to evaluate whether high dietary calcium intake was associated with the risk of CVD, stroke, and fracture in a population with low calcium intake. Design: In a prospective cohort study beginning in 2001 in Ansung-Ansan, Korea, 2158 men and 2153 women aged >50 y were evaluated for all-cause mortality, CVD, stroke, and fractures over a median 9-y follow-up. Results: During follow-up, 242 and 100 deaths, 149 and 150 CVD events, 58 and 82 stroke events, and 211 and 292 incident fractures occurred in men and women, respectively. The first quartiles of energy-adjusted dietary calcium intake were 249 mg/d (IQR: 169 mg/d) in men and 209 mg/d (IQR: 161 mg/d) in women. Both men and women with higher dietary calcium intake tended to have higher fat, protein, sodium, phosphorus, fruit, and vegetable intakes. In men, outcomes were not significantly associated with dietary calcium intake with or without adjustments, and CVD risk tended to increase with increasing energy-adjusted dietary calcium intake, but this was not statistically significant ( P = 0.078 and P = 0.093 with and without adjustment, respectively). In women, CVD risk and dietary calcium intake showed a U-shaped association; the HRs (95% CIs) without adjustment relative to the first quartile were 0.71 (0.47, 1.07), 0.57 (0.36, 0.88), and 0.52 (0.33, 0.83) for quartiles 2, 3, and 4, respectively, and the values after adjustment were 0.70 (0.45, 1.07), 0.51 (0.31, 0.81), and 0.49 (0.29, 0.83) for quartiles 2, 3, and 4, respectively. Conclusion: In Korean women, increased dietary calcium intake was associated with a decreased CVD risk, but it did not influence the risk of stroke or fracture. © 2017 American Society for Nutrition.

  3. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Ries, W.L.; Seeds, M.C.; Key, L.L.

    1989-01-01

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  4. The effect of glucose stimulation on 45calcium uptake of rat pancreatic islets and their total calcium content as measured by a fluorometric micro-method

    International Nuclear Information System (INIS)

    Wolters, G.H.J.; Wiegman, J.B.; Konijnendijk, W.

    1982-01-01

    Glucose-stimulated 45 calcium uptake and total calcium content of rat pancreatic islets has been studied, using a new fluorometric micro-method to estimate total calcium. Extracellular calcium was separated from incubated tissue by a rapid micro-filtration procedure. Islets incubated up to 60 min with calcium chloride 2.5 mmol/l and glucose 2.5 mmol/l maintained the same calcium content (670 +- 7.5 pmol/μg DNA). When the glucose concentration was raised to 15 mmol/l no change in the total calcium content could be detected. On incubation with glucose 2.5 mmol/l in the absence of calcium, the calcium content decreased to 488 +- 27 pmol/μg DNA. On incubation with 45 calcium chloride 2.5 mmol/l for 5 or 30 min at 2.5 mmol/l glucose, islets exchanged 21 +- 2 and 28 +- 1% of their total calcium content and, at 15 mmol/l glucose, 30 +- 3 and 45 +- 2%, respectively. Thus, islet calcium has a high turn-over rate. Glucose stimulation results in an increase of the calcium uptake without enhancing the total calcium content and hence must increase the calcium-exchangeable pool. (orig.)

  5. Calcium Intake in Elderly Australian Women Is Inadequate

    Directory of Open Access Journals (Sweden)

    Colin W. Binns

    2010-09-01

    Full Text Available The role of calcium in the prevention of bone loss in later life has been well established but little data exist on the adequacy of calcium intakes in elderly Australian women. The aim of this study was to compare the dietary intake including calcium of elderly Australian women with the Australian dietary recommendation, and to investigate the prevalence of calcium supplement use in this population. Community-dwelling women aged 70–80 years were randomly recruited using the Electoral Roll for a 2-year protein intervention study in Western Australia. Dietary intake was assessed at baseline by a 3-day weighed food record and analysed for energy, calcium and other nutrients. A total of 218 women were included in the analysis. Mean energy intake was 7,140 ± 1,518 kJ/day and protein provided 19 ± 4% of energy. Mean dietary calcium intake was 852 ± 298 mg/day, which is below Australian recommendations. Less than one quarter of women reported taking calcium supplements and only 3% reported taking vitamin D supplements. Calcium supplements by average provided calcium 122 ± 427 mg/day and when this was taken into account, total calcium intake increased to 955 ± 504 mg/day, which remained 13% lower than the Estimated Average Requirement (EAR, 1,100 mg/day for women of this age group. The women taking calcium supplements had a higher calcium intake (1501 ± 573 mg compared with the women on diet alone (813 ± 347 mg. The results of this study indicate that the majority of elderly women were not meeting their calcium requirements from diet alone. In order to achieve the recommended dietary calcium intake, better strategies for promoting increased calcium, from both diet and calcium supplements appears to be needed.

  6. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  7. Calcium Supplements: A Risk Factor for Heart Attack?

    Science.gov (United States)

    ... factor for heart attack? I've read that calcium supplements may increase the risk of heart attack. ... D. Some doctors think it's possible that taking calcium supplements may increase your risk of a heart ...

  8. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    Science.gov (United States)

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  9. Dietary Calcium Intake and Calcium Supplementation in Hungarian Patients with Osteoporosis

    Directory of Open Access Journals (Sweden)

    Gábor Speer

    2013-01-01

    Full Text Available Purpose. Adequate calcium intake is the basis of osteoporosis therapy—when this proves insufficient, even specific antiosteoporotic agents cannot exert their actions properly. Methods. Our representative survey analyzed the dietary intake and supplementation of calcium in 8033 Hungarian female and male (mean age: 68 years (68.01 (CI95: 67.81–68.21 patients with osteoporosis. Results. Mean intake from dietary sources was 665±7.9 mg (68.01 (CI95: 67.81–68.21 daily. A significant positive relationship could be detected between total dietary calcium intake and lumbar spine BMD (P=0.045, whereas such correlation could not be demonstrated with femoral T-score. Milk consumption positively correlated with femur (P=0.041, but not with lumbar BMD. The ingestion of one liter of milk daily increased the T-score by 0.133. Average intake from supplementation was 558±6.2 mg (68.01 (CI95: 67.81–68.21 daily. The cumulative dose of calcium—from both dietary intake and supplementation—was significantly associated with lumbar (r=0.024, P=0.049, but not with femur BMD (r=0.021, P=0.107. The currently recommended 1000–1500 mg total daily calcium intake was achieved in 34.5% of patients only. It was lower than recommended in 47.8% of the cases and substantially higher in 17.7% of subjects. Conclusions. We conclude that calcium intake in Hungarian osteoporotic patients is much lower than the current recommendation, while routinely applied calcium supplementation will result in inappropriately high calcium intake in numerous patients.

  10. Aqueous leaf extract of Averrhoa carambola L. (Oxalidaceae reduces both the inotropic effect of BAY K 8644 on the guinea pig atrium and the calcium current on GH3cells

    Directory of Open Access Journals (Sweden)

    Carla M. L. Vasconcelos

    Full Text Available It was previously showed that aqueous leaf extract (AqEx of Averrhoa carambola depresses the guinea pig atrial inotropism. Therefore, experiments were carried out on guinea pig left atrium and on pituitary GH3 cells in order to evaluate the effect of AqEx on the cellular calcium influx. The atrium was mounted in an organ chamber (5 mL, Tyrode, 27 ± 0.1 ºC, 95 % O2, 5 % CO2, stretched to 10 mN, and paced at 2 Hz (0.5 ms, 400 V and GH3 cells were submitted to a whole cell voltage clamp configuration. In the atrium, the AqEx (1500 µg/mL shifted to the right the concentration-effect curve of the positive inotropic effect produced by (± BAY K 8644, an L-type calcium channel agonist. The AqEx increased EC50 (concentration required to promote 50% of the maximum effect of the inotropic effect of BAY K 8644 from 7.8 ± 0.38 to 115.1 ± 0.44 nM (N = 3; p < 0.05. In GH3 cells assayed with 500 µg/mL of AqEx, the L-type calcium inward current declined 30 % (from 282 to 190 pA. Nevertheless, the extract did not change the voltage correspondent to the peak current. These data suggest that, at least in part, the negative inotropic effect of AqEx on the guinea pig atrium is due to a reduction of the L-type calcium current.

  11. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  12. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  13. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx

    International Nuclear Information System (INIS)

    Stender, S.; Zilversmit, D.B.

    1981-01-01

    The arterial influx of esterified and free cholesterol from low density lipoproteins and very low density lipoproteins in 20 hypercholesterolemic rabbits was measured simultaneously by the use of lipoproteins labeled in vivo with [ 3 H]- and [ 14 C]-cholesterol. The simultaneous arterial influx of either [ 3 H]-leucine-labeled very low density lipoproteins, low density lipoproteins, high density lipoproteins, or plasma proteins was also measured in each rabbit. The arterial influx was calculated as intimal clearance, i.e., the influx of a given fraction divided by its plasma concentration. The intimal clearance of low density lipoprotein esterified cholesterol was equal to that for the apolipoproteins of that fraction, which is compatible with an arterial influx of intact low density lipoprotein molecules. The intimal clearance of very low density apolipoprotein or cholesteryl ester was less than that for low density lipoprotein, whereas high density lipoprotein and albumin clearances exceeded low density lipoprotein clearance by 1.5- to 3-fold. The intimal clearances of plasma proteins, high density, low density, and very low density lipoproteins decreased linearly with the logarithm of the macromolecular diameter. This indicates that the arterial influx of three plasma lipoprotein fractions and of plasma proteins proceeds by similar mechanisms. Apparently the relative intimal clearances of lipoproteins are more dependent on their size relative to pores or vesicular diameters at the plasma-artery interface than on specific interactions between lipoproteins and the arterial intimal surface

  14. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload.

    Science.gov (United States)

    Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F

    2014-09-17

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuro

  15. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  16. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage.

    Science.gov (United States)

    Madani, Babak; Mirshekari, Amin; Yahia, Elhadi

    2016-07-01

    There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  18. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  19. In vivo calcium metabolism by IRMS

    Science.gov (United States)

    Public policy initiatives related to enhancing the health of populations, increasingly seek to identify meaningful biological outcomes on which to determine age-related nutritional requirements. For calcium, the primary outcome of interest is the availability of calcium in the diet for bone formatio...

  20. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.

    Science.gov (United States)

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-03-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.

  1. Calcium status in premenopausal and post menopausal women

    International Nuclear Information System (INIS)

    Qureshi, H.J.; Hussain, G.; Bashir, M.U.; Latif, N.; Riaz, Z.

    2010-01-01

    Background: In postmenopausal women, the two major causes of bone loss are oestrogen deficiency after menopause and age related processes. Bone turnover increases to high levels and oestrogen deficiency may induce calcium loss by indirect effects on extra skeletal calcium homeostasis. Objective of this study was to evaluate calcium status in pre-menopausal and postmenopausal women. Methods: This cross sectional study was carried out in 34 premenopausal women and 33 postmenopausal women, in Department of Physiology, Services Institute of Medical Sciences, Lahore. Height and weight of each woman were taken to find out the body mass index (BMI). Serum calcium, parathyroid hormone and calcitonin levels of each subject were determined. Results: Premenopausal women were obese (BMI>30 Kg/m/sup 2/) while postmenopausal women were overweight (BMI>25 Kg/m/sup 2/). Serum calcium levels were significantly lower in postmenopausal women than in pre-menopausal women, while serum parathyroid hormone levels were significantly higher in postmenopausal woman. Serum calcitonin level was not significantly different in the two groups. Conclusion: Postmenopausal women are calcium deficient and have increased bone turnover as indicated by increased serum parathyroid hormone levels. (author)

  2. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Tobey, R.A.

    1985-01-01

    Potassium ion influx was measured by monitoring 42 KCl uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60-Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as loge of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4-7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and sham-exposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+

  3. Modulation of intestinal absorption of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, P; Dupuis, Y [Ecole Pratique des Hautes Etudes, 75 - Paris (France); Paris-11 Univ., 92 - Chatenay-Malabry (France))

    1975-01-01

    Absorption of ingested calcium (2ml of a 10mM CaCl/sub 2/ solution + /sup 45/Ca) by the adult rat was shown to be facilitated by the simultaneous ingestion of an active carbohydrate, L-arabinose. As the carbohydrate concentration is increased from 10 to 200mM, the absorption of calcium is maximised at a level corresponding to about twice the control absorption level. A similar doubling of calcium absorption is obtained when a 100mM concentration of any one of a number of other carbohydrates is ingested simultaneously with a 10mM CaCl/sub 2/ solution. Conversely, the simultaneous ingestion of increasing doses (10 to 100mM) of phosphate (NaH/sub 2/PO/sub 4/) with a 10mM CaCl/sub 2/ solution results in decreased /sup 45/Ca absorption and retention by the adult rat. The maximum inhibition of calcium absorption by phosphate is independent of the concentration of the ingested calcium solution (from 5 to 50mM CaCl/sub 2/). The simultaneous ingestion of CaCl/sub 2/ (10mM) with lactose and sodium phosphate (50 and 10mM respectively) shows that the activation effect of lactose upon /sup 45/Ca absorption may be partly dissimulated by the presence of phosphate. These various observations indicate that, within a large concentration range (2 to 50mM CaCl/sub 2/) calcium absorption appears to be a precisely modulated diffusion process. Calcium absorption varies (between minimum and maximum levels) as a function of the state of saturation by the activators (carbohydrates) and inhibitors (phosphate) of the calcium transport system.

  4. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  5. Sensory analysis of calcium-biofortified lettuce

    Science.gov (United States)

    Vegetables represent an attractive means of providing increased calcium nutrition to the public. In this study, it was demonstrated that lettuce expressing the deregulated Arabidopsis H(+)/Ca(2+) transporter sCAX1 (cation exchanger 1) contained 25-32% more calcium than controls. These biofortified l...

  6. Differential potassium influx influences growth of two cotton varieties in hydroponics

    International Nuclear Information System (INIS)

    Ali, L.; Maqsood, M.A.; Kanwal, S.; Aziz, T.

    2010-01-01

    Potassium uptake rate of two cotton (Gossypium hirsutum L.) varieties viz., NIBGE-2 and MNH-786 was investigated in nutrient solution culture having deficient K at the rate 0.3 mM and deficient K+ Na at the rate 0.3 +2.7 mM. Depletion of K from solution was monitored over a period of 24 h at regular time intervals after 0, 0.5, 1.0, 1.5, 2, 3, 4, 5, 6, 8, 10, 12 and 24 h to estimate K uptake kinetics of the roots i.e. maximum influx, I/sub max/ and the Michaelis-Menten constant, Km. NIBGE-2 had about 2-fold higher (2.0 mg g rdw-1 hr-1) I/sub max/ value for K uptake rate at deficient K+Na than that (1.207 mg g rdw-1 hr-1) for MNH-786. Higher, Michaelis-Menten constant, Km (12.82 ppm) for K uptake rate was observed in both cultivars NIBGE-2 and MNH-786 at deficient K+Na than that at deficient K. Main effects of treatments and varieties had significant (p< 0.05) effect on shoot dry matter, root dry matter, total dry matter and leaf area per plant. Maximum K influx in NIBGE-2 at deficient K and deficient K +Na was attributed to enhanced growth response as compared to that in MNH-786. (author)

  7. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  9. Calcium supplementation and inflammation increase mortality in rheumatoid arthritis: A 15-year cohort study in 609 patients from the Oslo Rheumatoid Arthritis Register.

    Science.gov (United States)

    Provan, Sella A; Olsen, Inge C; Austad, Cathrine; Haugeberg, Glenn; Kvien, Tore K; Uhlig, Till

    2017-02-01

    To investigate whether osteoporosis or use of calcium supplementations predict all-cause mortality, or death from CVD, in a longitudinal cohort of patients with rheumatoid arthritis (RA). Patients in the Oslo RA register (ORAR) were examined, and bone mineral density was measured in 1996. The cohort was linked to the Norwegian Cause of Death registry on December 31, 2010. Death from CVD was defined in 3 following different outcomes: (1) primary atherosclerotic death, (2) atherosclerotic death as one of the 5 listed causes of death, and (3) CVD according to World Health Organization (WHO) definition as primary cause of death. Baseline predictors of all-cause mortality and death from CVD were identified in separate Cox regression models, using backwards selection. Sensitivity analyses were performed including analyses of interactions and competing risk. A total of 609 patients were examined in 1996/1997. By December 31, 2010, 162 patients (27%) had died, resulting in 7439 observed patient-years. Of the deceased, 40 (24.7%) had primary atherosclerotic death. In the final model of all-cause mortality increased baseline ESR [hazard ratio (HR) 1.02 per mm/h, 95% CI: 1.01-1.03], calcium supplementation (1.74, 1.07-2.84), and osteoporosis, defined as a T score ≤2.5 SD at any location, (1.58, 1.07-2.32) predicted higher mortality rates, in models adjusted for age, gender, and a propensity score. In the final model of primary atherosclerotic death, increased ESR (1.03 per mm/h, 1.01-1.05) and calcium supplementation (3.39, 1.41-8.08), predicted higher mortality. Increased baseline ESR and use of calcium supplementation were predictors of increased all-cause mortality and risk of death from CVD in this longitudinal study of patients with RA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  11. The Role of Calcium in Osteoporosis

    Science.gov (United States)

    Arnaud, C. D.; Sanchez, S. D.

    1991-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  12. Interaction of environmental calcium and low pH on the physiology of the rainbow trout, Salmo gairdneri. I. Branchial and renal net ion and H/sup +/ fluxes

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.G.

    1983-01-01

    Exposure of adult rainbow trout to low pH (pH 4.3) in soft water (Ca/sup 2 +/ = 223 ..mu..equiv/1) caused a substantial ionic disturbance which arose primarily because of large net losses at the gills. In contrast, renal ion losses were low initially and declined even further because of a pronounced reduction in urine flow. A net influx of H/sup +/ occurred across the gills but this was not sufficient to cause a blood acid-base disturbance or a renal response. Although branchial ion and H/sup +/ fluxes declined with time, blood ion levels did not return to normal and many of the fish died. Further reduction in water calcium (Ca/sup 2 +/ = 69 ..mu..equiv/1) provoked a higher mortality and a more substantial ionic imbalance. These results contrast sharply with the effects on trout of acid exposure in hard water (Ca/sup 2 +/ greater than or equal to 1600 ..mu..equiv/1), where net ion losses and mortality are reduced and H/sup +/ uptake increased. A preliminary model for the interaction of low pH and calcium is proposed and evidence for adaptation to acid stress and for the origin of acid lethality is discussed. 46 references, 5 figures, 3 tables.

  13. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    connect ion conformationally rearranged, thus passing the signal through the chain of intermediaries. The most important function of calcium is its participation in many cell signaling pathways. Channels, pumps, gene expression, synthesis of alkaloids, protective molecules, NO etc. respond to changes in [Ca2+]cyt, while transductors are represented by a number of proteins. The universality of calcium is evident in the study in connection with other signaling systems, such as NO, which is involved in the immune response and is able to control the feedback activity of protein activators channels, producing nitric oxide. Simulation of calcium responses can determine the impact of key level and their regulation, and also depends on the type of stimulus and the effector protein that specifically causes certain changes. Using spatiotemporal modeling, scientists showed that the key components for the formation of Ca2+ bursts are the internal and external surfaces of the nucleus membrane. The research was aimed at understanding of the mechanisms of influence of Ca2+-binding components on Ca2+ oscillations. The simulation suggests the existence of a calcium depot EPR with conjugated lumen of the nucleus which releases its contents to nucleoplasm. With these assumptions, the mathematical model was created and confirmed experimentally. It describes the oscillation of nuclear calcium in root hairs of Medicago truncatula at symbiotic relationship of plants and fungi (rhizobia. Calcium oscillations are present in symbiotic relationships of the cortical layer of plant root cells. Before penetration of bacteria into the cells, slow oscillations of Ca2+ are observed, but with their penetration into the cells the oscillation frequency increases. These processes take place by changing buffer characteristics of the cytoplasm caused by signals from microbes, such as Nod-factor available after penetration of bacteria through the cell wall. Thus, the basic known molecular mechanisms for

  14. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  16. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Science.gov (United States)

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  17. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  18. Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Magarkar, Aniket; Jurkiewicz, Piotr; Allolio, Christoph; Hof, Martin; Jungwirth, Pavel

    2017-01-01

    Roč. 8, č. 2 (2017), s. 518-523 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GA16-01074S; GA ČR(CZ) GAP207/12/0919 Grant - others:AV ČR(CZ) AP1102 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61388963 ; RVO:61388955 Keywords : molecular dynamics * fluorescence spectroscopy * calcium * phospholipids Subject RIV: CF - Physical ; Theoretical Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Physical chemistry; Physical chemistry (UFCH-W) Impact factor: 9.353, year: 2016

  19. Plasma concentration of ionized calcium in healthy iguanas.

    Science.gov (United States)

    Dennis, P M; Bennett, R A; Harr, K E; Lock, B A

    2001-08-01

    To measure plasma concentration of ionized calcium in healthy green iguanas. Prospective study. 9 juvenile and 21 (10 male, 11 female) adult iguanas. Blood samples were obtained from each iguana, and plasma calcium, glucose, phosphorus, uric acid, total protein, albumin, globulin, potassium, and ionized calcium concentrations, aspartate transaminase (AST) activity, and pH were measured. Heparinized blood was used for measurement of ionized calcium concentration and blood pH. A CBC was also performed to assess the health of the iguanas. Significant differences were not detected among the 3 groups (juveniles, males, and females) with regard to ionized calcium concentration. Mean ionized calcium concentration measured in blood was 1.47 +/- 0.105 mmol/L. Significant differences were detected between juveniles and adults for values of phosphorus, glucose, total protein, albumin, globulin, and AST activity. Ionized calcium concentration provides a clinical measurement of the physiologically active calcium in circulation. Evaluation of physiologically active calcium in animals with suspected calcium imbalance that have total plasma calcium concentrations within reference range or in gravid animals with considerably increased total plasma calcium concentrations is vital for determining a therapeutic plan. Accurate evaluation of calcium status will provide assistance in the diagnosis of renal disease and seizures and allow for better evaluation of the health status of gravid female iguanas.

  20. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  1. Radioisotope 45Ca labeling four calcium chemical compounds and tracing calcium bioavailability

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Niu Huisheng; Li Huaifen

    2004-01-01

    Objective: To build up a new method of the radioisotope 45 Ca labeling four calcium chemical compounds, observe and tracing bioavailability change of calcium labeled with radioisotope 45 Ca. Methods: The calcium gluconate (Ca-Glu), calcium citrate (Ca-Cit), calcium carbonate (Ca-Car) and calcium L-threonate (Ca-Thr)were labeled by radioisotope 45 Ca. Four calcium chemical compounds of 45 Ca labeling were used of calcium content 200 mg/kg in the rats and measure the absorption content and bioavailability of calcium in tissue of heart, lever spleen, stomach, kidney, brain, intestine, whole blood, urine, faeces. Results: 1) Radioisotope 45 Ca labeling calcium chemical compound has high radio intensity, more steady standard curve and recover rate. 2) The absorption of organic calcium chemical compounds is higher than the inorganic calcium chemical compound in the study of calcium bioavailability. Conclusion: The method of tracing with radioisotope 45 Ca labeling calcium chemical compounds has the characteristic of the sensitive, objective, accurate and steady in the study of calcium bioavailability

  2. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  3. Relation of thoracic aortic and aortic valve calcium to coronary artery calcium and risk assessment.

    Science.gov (United States)

    Wong, Nathan D; Sciammarella, Maria; Arad, Yadon; Miranda-Peats, Romalisa; Polk, Donna; Hachamovich, Rory; Friedman, John; Hayes, Sean; Daniell, Anthony; Berman, Daniel S

    2003-10-15

    Aortic calcium, aortic valve calcium (AVC), and coronary artery calcium (CAC) have been associated with cardiovascular event risk. We examined the prevalence of thoracic aortic calcium (TAC) and AVC in relation to the presence and extent of CAC, cardiovascular risk factors, and estimated risk of coronary heart disease (CHD). In 2,740 persons without known CHD aged 20 to 79 years, CAC was assessed by electron beam- or multidetector-computed tomography. We determined the prevalence of TAC and AVC in relation to CAC, CHD risk factors, and predicted 10-year risk of CHD. A close correspondence of TAC and AVC was observed with CAC. TAC and AVC increased with age; by the eighth decade of life, the prevalence of TAC was similar to that of CAC (>80%), and 36% of men and 24% of women had AVC. Age, male gender, and low-density lipoprotein cholesterol were directly related to the likelihood of CAC, TAC, and AVC; higher diastolic blood pressure and cigarette smoking additionally predicted CAC. Body mass index and higher systolic and lower diastolic blood pressures were also related to TAC, and higher body mass index and lower diastolic blood pressure were related to AVC. Calculated risk of CHD increased with the presence of AVC and TAC across levels of CAC. TAC and AVC provided incremental value over CAC in association with the 10-year calculated risk of CHD. If longitudinal studies show an incremental value of aortic and aortic valve calcium over that of CAC for prediction of cardiovascular events, future guidelines for risk assessment incorporating CAC assessment may additionally incorporate the measurement of aortic and/or aortic valve calcium.

  4. The calcium and vitamin D controversy

    DEFF Research Database (Denmark)

    Abrahamsen, Bo

    2017-01-01

    Areas of the world where vitamin D levels are low for months of the year and intakes of calcium are high have a high prevalence of osteoporosis and cardiovascular disease. This suggests a public health message of avoiding calcium supplements and increasing vitamin D intake. No message could be more...... welcome as vitamin D can be given as a bolus while calcium must be taken daily and may be poorly tolerated. This approach is based on no evidence from intervention studies. Randomized controlled trials (RCTs) suggest that vitamin D given with calcium elicits a small reduction in fracture risk and deaths....... This has not been demonstrated for D given alone. The cardiovascular safety of calcium and vitamin D (CaD) supplements is difficult to ascertain due to weaknesses in RCT designs and adjudication that cannot be remedied by subanalysis. Moreover, no major new RCTs are in process to provide better evidence...

  5. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  6. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    Science.gov (United States)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  7. Limitation of the influx of formation water into oil wells. Ogranichenie pritoka plastovykh vod v neftyanye skvazhiny

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, R.T.; Gazizov, A.Sh.; Gabdullin, R.G.; Yusupov, I.G.

    1976-01-01

    The problems of limiting the influx of water into oil wells are examined. On the basis of studies, systemization, and generalization of the reasons for the premature flooding of wells, the improvement of strata by polymer-cement solutions with consolidating liquid phases is considered. A detailed description is given of the technology and results of cementing well using solutions based on plugging cement and water-soluble phenol-formaldehyde resins of the TSD-9 type. Results are reported on the study of the properties of selective water-insulating substances based on acrylamide monomers and hydrolyzed polyacrylonitriles. Industrial testing of these materials is generalized. An economic evaluation is made of the efficiency of measures undertaken to prevent water influx into oil wells.

  8. Calcium intake and risk of fracture: systematic review.

    Science.gov (United States)

    Bolland, Mark J; Leung, William; Tai, Vicky; Bastin, Sonja; Gamble, Greg D; Grey, Andrew; Reid, Ian R

    2015-09-29

    To examine the evidence underpinning recommendations to increase calcium intake through dietary sources or calcium supplements to prevent fractures. Systematic review of randomised controlled trials and observational studies of calcium intake with fracture as an endpoint. Results from trials were pooled with random effects meta-analyses. Ovid Medline, Embase, PubMed, and references from relevant systematic reviews. Initial searches undertaken in July 2013 and updated in September 2014. Randomised controlled trials or cohort studies of dietary calcium, milk or dairy intake, or calcium supplements (with or without vitamin D) with fracture as an outcome and participants aged >50. There were only two eligible randomised controlled trials of dietary sources of calcium (n=262), but 50 reports from 44 cohort studies of relations between dietary calcium (n=37), milk (n=14), or dairy intake (n=8) and fracture outcomes. For dietary calcium, most studies reported no association between calcium intake and fracture (14/22 for total, 17/21 for hip, 7/8 for vertebral, and 5/7 for forearm fracture). For milk (25/28) and dairy intake (11/13), most studies also reported no associations. In 26 randomised controlled trials, calcium supplements reduced the risk of total fracture (20 studies, n=58,573; relative risk 0.89, 95% confidence interval 0.81 to 0.96) and vertebral fracture (12 studies, n=48,967. 0.86, 0.74 to 1.00) but not hip (13 studies, n=56,648; 0.95, 0.76 to 1.18) or forearm fracture (eight studies, n=51,775; 0.96, 0.85 to 1.09). Funnel plot inspection and Egger's regression suggested bias toward calcium supplements in the published data. In randomised controlled trials at lowest risk of bias (four studies, n=44,505), there was no effect on risk of fracture at any site. Results were similar for trials of calcium monotherapy and co-administered calcium and vitamin D. Only one trial in frail elderly women in residential care with low dietary calcium intake and vitamin D

  9. Analysis of the plasma impurity influx from alkali-metal coatings for fusion-reactor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Davidson, J.N.; Krauss, A.R.; Gruen, D.M.

    1982-01-01

    Recently, it has been proposed that alkali-metal covered surfaces be applied to magnetic fusion devices as a means of controlling plasma impurity contamination and shielding the substrate from erosion. Monolayer films of alkali metals have been shown to sputter primarily as ions under particle bombardment. Thus, it is thought that a sheath potential and/or magnetic fields encountered by a sputtered ion will return the ion to the surface without entering the plasma. In this paper, we investigate the net wall impurity influx associated with coatings which exhibit substantial secondary ion emission as compared to those which sputter only as neutral atoms. Included in the analysis are sputtered substrate atoms. These are sometimes found to be a significant fraction of the total sputtering yield for low-Z alkali monolayers and affect the overall performance of such coatings. Estimates of the impurity influx made in the neighborhood of a sheath potential show that secondary-ion emitting coatings are effective as a means of inhibiting plasma impurity contamination and wall erosion

  10. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  11. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  12. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  13. Clinical characterization of a novel calcium sensing receptor genetic alteration in a Greek patient with autosomal dominant hypocalcemia type 1.

    Science.gov (United States)

    Papadopoulou, Anna; Gole, Evangelia; Melachroinou, Katerina; Trangas, Theoni; Bountouvi, Evaggelia; Papadimitriou, Anastasios

    2017-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare familial or sporadic syndrome associated with activating mutations in the calcium sensing receptor (CaSR) gene. The aim of this study was to assess the functional significance of a novel CaSR mutation and, moreover, to present the clinical characteristics and the bone mineral density (BMD) progression from early childhood to late puberty in a patient with ADH. Genetic analysis of the CaSR gene was performed in a patient who presented in the neonatal period with hypocalcemic seizures and biochemical features of ADH. The functional impact of the novel mutation identified was assessed in cultured HEK 293T cells, transfected with either the wild type (WT) or mutant CaSR, by evaluating intracellular calcium ([Ca2+]i) influx after stimulation with extracellular calcium (Ca2+). Several BMD measurements were performed during the patient's follow-up until late puberty. A novel CaSR mutation (p.L123S) was identified, which, as demonstrated by functional analysis, renders CaSR more sensitive to extracellular changes of Ca2+ compared with the WT, although the difference is not statistically significant. BMD measurements, from early childhood to late puberty, revealed high normal to elevated BMD. We present the first Greek patient, to our knowledge, with sporadic ADH due to a novel gain-of-function mutation of the CaSR gene.

  14. Calcium supplementation in osteoporosis: useful or harmful?

    Science.gov (United States)

    Chiodini, Iacopo; Bolland, Mark J

    2018-04-01

    Osteoporosis and fragility fractures are important social and economic problems worldwide and are due to both the loss of bone mineral density and sarcopenia. Indeed, fragility fractures are associated with increased disability, morbidity and mortality. It is known that a normal calcium balance together with a normal vitamin D status is important for maintaining well-balanced bone metabolism, and for many years, calcium and vitamin D have been considered crucial in the prevention and treatment of osteoporosis. However, recently, the usefulness of calcium supplementation (alone or with concomitant vitamin D) has been questioned, since some studies reported only weak efficacy of these supplementations in reducing fragility fracture risk. On the other hand, besides the gastrointestinal side effects of calcium supplements and the risk of kidney stones related to use of co-administered calcium and vitamin D supplements, other recent data suggested potential adverse cardiovascular effects from calcium supplementation. This debate article is focused on the evidence regarding both the possible usefulness for bone health and the potential harmful effects of calcium and/or calcium with vitamin D supplementation. © 2018 European Society of Endocrinology.

  15. Absorbability of calcium from calcium-bound phosphoryl oligosaccharides in comparison with that from various calcium compounds in the rat ligated jejunum loop.

    Science.gov (United States)

    To-o, Kenji; Kamasaka, Hiroshi; Nishimura, Takahisa; Kuriki, Takashi; Saeki, Shigeru; Nakabou, Yukihiro

    2003-08-01

    Calcium-bound phosphoryl oligosaccharides (POs-Ca) were prepared from potato starch. Their solubility and in situ absorbability as a calcium source were investigated by comparing with the soluble calcium compounds, calcium chloride and calcium lactate, or insoluble calcium compounds, calcium carbonate and dibasic calcium phosphate. The solubility of POs-Ca was as high as that of calcium chloride and about 3-fold higher than that of calcium lactate. An in situ experiment showed that the intestinal calcium absorption rate of POs-Ca was almost comparable with that of the soluble calcium compounds, and was significantly higher (pcalcium groups. Moreover, the total absorption rate of a 1:1 mixture of the calcium from POs-Ca and a whey mineral complex (WMC) was significantly higher (psoluble calcium source with relatively high absorption in the intestinal tract.

  16. Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide.

    Science.gov (United States)

    Cano, Antonio; Chedraui, Peter; Goulis, Dimitrios G; Lopes, Patrice; Mishra, Gita; Mueck, Alfred; Senturk, Levent M; Simoncini, Tommaso; Stevenson, John C; Stute, Petra; Tuomikoski, Pauliina; Rees, Margaret; Lambrinoudaki, Irene

    2018-01-01

    Postmenopausal osteoporosis is a highly prevalent disease. Prevention through lifestyle measures includes an adequate calcium intake. Despite the guidance provided by scientific societies and governmental bodies worldwide, many issues remain unresolved. To provide evidence regarding the impact of calcium intake on the prevention of postmenopausal osteoporosis and critically appraise current guidelines. Literature review and consensus of expert opinion. The recommended daily intake of calcium varies between 700 and 1200mg of elemental calcium, depending on the endorsing source. Although calcium can be derived either from the diet or supplements, the former source is preferred. Intake below the recommended amount may increase fragility fracture risk; however, there is no consistent evidence that calcium supplementation at, or above, recommended levels reduces risk. The addition of vitamin D may minimally reduce fractures, mainly among institutionalised people. Excessive intake of calcium, defined as higher than 2000mg/day, can be potentially harmful. Some studies demonstrated harm even at lower dosages. An increased risk for cardiovascular events, urolithiasis and even fractures has been found in association with excessive calcium intake, but this issue remains unresolved. In conclusion, an adequate intake of calcium is recommended for general bone health. Excessive calcium intake seems of no benefit, and could possibly be harmful. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.

    Science.gov (United States)

    Takeda, A; Suzuki, M; Tempaku, M; Ohashi, K; Tamano, H

    2015-09-24

    Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. The increase in intracellular Zn(2+) was chelated with intracellular ZnAF-2 in the CA1 1h after local injection of ZnAF-2DA into the CA1, suggesting that intracellular Zn(2+) signaling induced during learning is blocked with intracellular ZnAF-2 when the learning was performed 1h after ZnAF-2DA injection. Object recognition was affected when training of object recognition test was performed 1h after ZnAF-2DA injection. These data suggest that intracellular Zn(2+) signaling in the CA1 is required for object recognition memory via LTP. Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. The Risks and Benefits of Calcium Supplementation

    Directory of Open Access Journals (Sweden)

    Chan Soo Shin

    2015-03-01

    Full Text Available The association between calcium supplementation and adverse cardiovascular events has recently become a topic of debate due to the publication of two epidemiological studies and one meta-analysis of randomized controlled clinical trials. The reports indicate that there is a significant increase in adverse cardiovascular events following supplementation with calcium; however, a number of experts have raised several issues with these reports such as inconsistencies in attempts to reproduce the findings in other populations and questions concerning the validity of the data due to low compliance, biases in case ascertainment, and/or a lack of adjustment. Additionally, the Auckland Calcium Study, the Women's Health Initiative, and many other studies included in the meta-analysis obtained data from calcium-replete subjects and it is not clear whether the same risk profile would be observed in populations with low calcium intakes. Dietary calcium intake varies widely throughout the world and it is especially low in East Asia, although the risk of cardiovascular events is less prominent in this region. Therefore, clarification is necessary regarding the occurrence of adverse cardiovascular events following calcium supplementation and whether this relationship can be generalized to populations with low calcium intakes. Additionally, the skeletal benefits from calcium supplementation are greater in subjects with low calcium intakes and, therefore, the risk-benefit ratio of calcium supplementation is likely to differ based on the dietary calcium intake and risks of osteoporosis and cardiovascular diseases of various populations. Further studies investigating the risk-benefit profiles of calcium supplementation in various populations are required to develop population-specific guidelines for individuals of different genders, ages, ethnicities, and risk profiles around the world.

  19. Stable cavitation induces increased cytoplasmic calcium in L929 fibroblasts exposed to 1-MHz pulsed ultrasound.

    Science.gov (United States)

    Tsukamoto, Akira; Higashiyama, Satoru; Yoshida, Kenji; Watanabe, Yoshiaki; Furukawa, Katsuko S; Ushida, Takashi

    2011-12-01

    An increase in cytoplasmic calcium (Ca(2+) increase) is a second messenger that is often observed under ultrasound irradiation. We hypothesize that cavitation is a physical mechanism that underlies the increase in Ca(2+) in these experiments. To control the presence of cavitation, the wave type was controlled in a sonication chamber. One wave type largely contained a traveling wave (wave type A) while the other wave type largely contained a standing wave (wave type B). Fast Fourier transform (FFT) analysis of a sound field produced by the wave types ascertained that stable cavitation was present only under wave type A ultrasound irradiation. Under the two controlled wave types, the increase in Ca(2+) in L929 fibroblasts was observed with fluorescence imaging. Under wave type A ultrasound irradiation, an increase in Ca(2+) was observed; however, no increase in Ca(2+) was observed under wave type B ultrasound irradiation. We conclude that stable cavitation is involved in the increase of Ca(2+) in cells subjected to pulsed ultrasound. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. TeBG- and CBG-bound steroid hormones in rabbits are available for influx into uterus in vivo

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Steingold, K.A.; Pardridge, W.M.; Judd, H.L.

    1988-01-01

    The metabolic clearance rate (MCR) of gonadal or adrenal steroid hormones in rabbits often does not bear the expected inverse relationship with hormone binding to testosterone-binding globulin (TeBG) or corticosteroid-binding globulin (CBG). This suggests TeBG or CBG may not impede steroid hormone delivery to tissues. The effects of rabbit plasma proteins on the influxes of 3 H-labeled steroids from the circulation into the rabbit uterus were measured in vivo using a tissue sampling single-injection technique. In the absence of plasma proteins, estradiol (E 2 ) and testosterone (T) were freely diffusible through the uterine microvasculature (i.e., extraction >80%). The extractions of dihydrostestosterone (DHT) and corticosterone (B) ranged from 60 to 72%, while that of cortisol (F) was reduced at 40%. Rabbit serum exerted no inhibition of the influxes of the steroids tested. The influxes of T and B greatly exceeded the rates that would be expected if only the free and albumin-bound fractions estimated in vitro were diffusible in vivo. However, the extraction of [ 3 H]corticosteroid-binding globulin or bovine [ 3 H]albumin were low, consistent with little, if any, extravascular uptake of the plasma proteins. The results indicate both albumin-bound and globulin-bound steroid hormone are available for transport into the uterus in the rabbit in vivo without significant exodus of the plasma protein, per se

  1. Endothelin receptor mediated Ca(2+) signaling in coronary arteries after experimentally induced ischemia/reperfusion injury in rat

    DEFF Research Database (Denmark)

    Kristiansen, Sarah Brøgger; Haanes, Kristian A.; Sheykhzade, Majid

    2017-01-01

    a phenotypical shift, which includes increased evoked ETB induced contraction in the smooth muscle cell, and also a higher basal tone development which both are dependent on Ca(2+) influx through VGCCs. This is combined with alterations in the ETA calcium handling, which has a stronger dependence on Ca(2...

  2. Deep-sea spherules from Pacific clay - Mass distribution and influx rate. [extraterrestrial origins from optical and electron microscopy

    Science.gov (United States)

    Murrell, M. T.; Davis, P. A., Jr.; Nishiizumi, K.; Millard, H. T., Jr.

    1980-01-01

    From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 microns were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of optical and electron microscopy and atomic absorption elemental analysis. An expression for the integral number of stony particles from this sediment in the mass range 20-300 micrograms was derived. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but no conclusions could be made.

  3. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  4. Effects of soaking and acidification on physicochemical properties of calcium-fortified rice.

    Science.gov (United States)

    Sirisoontaralak, Porntip; Limboon, Pailin; Jatuwong, Sujitra; Chavanalikit, Arusa

    2016-06-01

    Calcium-fortified rice was prepared by soaking milled rice in calcium lactate solution, steaming and drying, and physicochemical properties were determined to evaluate effects of calcium concentration (0, 30, 50 g L(-1) ), soaking temperature (ambient temperature, 40 °C, 60 °C) and acidification. Calcium-fortified rice had less lightness. More total solid loss was observed, especially at high soaking temperature. Harder texture was detected with increased calcium concentration. Calcium fortification lowered pasting viscosity of milled rice. Panelists accepted all fortified rice; however, only rice soaked at 50 g L(-1) concentration could be claimed as a good source of calcium. Increasing of soaking temperature induced more penetration of calcium to rice kernels but calcium was lost more easily after washing. With addition of acetic acid to the soaking solution, enriched calcium content was comparable to that of high soaking temperature but with better retention after washing and calcium solubility was improved. Acid induced reduction of lightness and cooked rice hardness but increased total solid loss and pasting viscosity. Although the taste of acetic acid remained, panelists still accepted the fortified rice. Calcium-fortified rice (190.47-194.3 mg 100 g(-1) ) could be successfully produced by soaking milled rice in 50 g L(-1) calcium lactate solution at 40 °C or at ambient temperature with acidification. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  6. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based food matrices.

    Science.gov (United States)

    McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores

    2017-12-15

    Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  9. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  10. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  11. Calcium homeostasis in diabetes mellitus.

    Science.gov (United States)

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  12. Effects of Eggshell Calcium Supplementation on Bone Mass in Postmenopausal Vietnamese Women.

    Science.gov (United States)

    Sakai, Seigo; Hien, Vu Thi Thu; Tuyen, Le Danh; Duc, Ha Anh; Masuda, Yasunobu; Yamamoto, Shigeru

    2017-01-01

    Bone mass decreases along with aging, especially for women after menopause because of lower estrogen secretion together with low calcium intake. This study was conducted to study the effect of eggshell calcium supplementation on bone mass in 54 postmenopausal Vietnamese women living in a farming area about 60 km from Hanoi, Vietnam. Sets of 3 subjects matched by age, bone mass, BMI and calcium intake were divided randomly into 3 groups with 18 subjects in each group. The eggshell calcium group was administered 300 mg/d calcium from eggshell, the calcium carbonate group 300 mg/d calcium from calcium carbonate and the placebo group received no calcium supplementation. Bone mass (Speed of Sound (SOS)) was measured at the beginning (the baseline), the middle (6th month) and the end of the study (12th month) by the single blind method. SOS of the eggshell group increased significantly at 12 mo (p0.05). In conclusion, eggshell calcium was more effective in increasing bone mass than calcium carbonate in postmenopausal Vietnamese women.

  13. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results...... in FHH, while in homozygous patients as well as in compound heterozygous or dominant negative heterozygous patients, it may result in neonatal severe hyperparathyroidism (NSHPT). Parathyroid surgery is not indicated in FHH and does not lower plasma calcium unless total parathyroidectomy is performed...

  14. Potassium Bicarbonate Attenuates the Urinary Nitrogen Excretion That Accompanies an Increase in Dietary Protein and May Promote Calcium Absorption

    Science.gov (United States)

    Ceglia, Lisa; Harris, Susan S.; Abrams, Steven A.; Rasmussen, Helen M.; Dallal, Gerard E.; Dawson-Hughes, Bess

    2009-01-01

    Context: Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system, particularly in older individuals with declining renal function. Objective: We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment. Design: We conducted a 41-d randomized, placebo-controlled, double-blind study of KHCO3 or placebo with a 16-d phase-in and two successive 10-d metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-d washout between diets. Setting: The study was conducted in a metabolic research unit. Participants: Nineteen healthy subjects ages 54–82 yr participated. Intervention: KHCO3 (up to 90 mmol/d) or placebo was administered for 41 d. Main Outcome Measures: We measured 24-h urinary nitrogen excretion, IGF-I, 24-h urinary calcium excretion, and fractional calcium absorption. Results: KHCO3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake (P = 0.015) and was associated with higher IGF-I levels on the low-protein diet (P = 0.027) with a similar trend on the high-protein diet (P = 0.050). KHCO3 was also associated with higher fractional calcium absorption on the low-protein diet (P = 0.041) with a similar trend on the high-protein diet (P = 0.064). Conclusions: In older adults, KHCO3 attenuates the protein-induced rise in urinary nitrogen excretion, and this may be mediated by IGF-I. KHCO3 may also promote calcium absorption independent of the dietary protein content. PMID:19050051

  15. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  16. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  17. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting.

    Directory of Open Access Journals (Sweden)

    Manoocher Soleimani

    Full Text Available Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2 and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2 in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of

  18. Mechanically induced intracellular calcium waves in osteoblasts demonstrate calcium fingerprints in bone cell mechanotransduction.

    Science.gov (United States)

    Godin, Lindsay M; Suzuki, Sakiko; Jacobs, Christopher R; Donahue, Henry J; Donahue, Seth W

    2007-11-01

    An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca (2+)](i)). This study analyzed the [Ca (2+)](i) wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest period. The area under the [Ca (2+)](i) wave increased in the second loading bout compared to the first. This suggests that rest periods may potentiate mechanically induced intracellular calcium signals. Furthermore, many of the [Ca (2+)](i) wave parameters were strongly, positively correlated between the two bouts of mechanical stimulation. For example, in individual primary osteoblasts, if a cell had a large [Ca (2+)](i) wave area in the first bout it was likely to have a large [Ca (2+)](i) wave area in the second bout (r (2) = 0.933). These findings support the idea that individual bone cells have "calcium fingerprints" (i.e., a unique [Ca (2+)](i) wave profile that is reproducible for repeated exposure to a given stimulus).

  19. Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton

    Science.gov (United States)

    Calcium absorption and whole-body bone mineral content are greater in young adolescents who receive 8 g/d of Synergy, a mixture of inulin-type fructans (ITF), compared with those who received a maltodextrin control. Not all adolescents responded to this intervention, however. We evaluated 32 respond...

  20. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.

    Science.gov (United States)

    Zolnik, Timothy A; Sha, Fern; Johenning, Friedrich W; Schreiter, Eric R; Looger, Loren L; Larkum, Matthew E; Sachdev, Robert N S

    2017-03-01

    The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed Ca

  1. [Studies on the calcium distribution in developing synergids of lettuce (Lactuca sativa L.)].

    Science.gov (United States)

    Qiu, Yi Lan; Liu, Ru Shi; Tian, Hui Qiao

    2007-08-01

    Potassium antimonite was used to locate calcium in the synergids of lettuce (Lactuca sativa L) during their development. The two synergids on 3d before anthesis formed evident polarity with most cytoplasm located in the micropylar end and nucleus in the middle and a big vacuole in the chalazal end. At this time, calcium precipitates were a few in both cells. Calcium precipitates in the two synergids began to increase on 2d before anthesis. Synergid wall in the micropylar end thickened on 1d before anthesis, in which many calcium precipitates located. Near anthesis, synergids formed filiform apparatus in which abundant calcium precipitates accumulated to prepare for attracting pollen tubes entering. At anthesis, the distribution of calcium precipitates between two synergids was the same. At 1h after pollination, calcium precipitates evidently increased in one synergid that seemed to degenerate, the other one was persistent and the distribution of calcium granules did not change. Two synergids kept intact at 1d after emasculated, and the distribution of calcium precipitates did not display difference, suggesting that the degeneration of one synergid was caused by approaching pollen tubes which might give some signal to induce calcium increase of the synergid. Before fusion of sperm cell with egg cell, the cytoplasm of degenerated synergid embraced the egg and formed a thin layer between the egg and the central cell. Calcium precipitates in the different parts of degenerated synergid were closely connected with the fertilization: calcium precipitates accumulated in the near chalazal end of degenerated synergid at 1h after pollination. At 2.5h after pollination, the calcium precipitates increased at the chalazal end, especially abundant in the thin layer between the egg and the central cell. However, at 4h after pollination, the fertilization had finished at this time, the distribution of calcium precipitates in degenerated synergid changed again: the precipitates

  2. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels

    International Nuclear Information System (INIS)

    Heusinkveld, Harm J.; Westerink, Remco H.S.

    2011-01-01

    Calcium plays a crucial role in virtually all cellular processes, including neurotransmission. The intracellular Ca 2+ concentration ([Ca 2+ ] i ) is therefore an important readout in neurotoxicological and neuropharmacological studies. Consequently, there is an increasing demand for high-throughput measurements of [Ca 2+ ] i , e.g. using multi-well microplate readers, in hazard characterization, human risk assessment and drug development. However, changes in [Ca 2+ ] i are highly dynamic, thereby creating challenges for high-throughput measurements. Nonetheless, several protocols are now available for real-time kinetic measurement of [Ca 2+ ] i in plate reader systems, though the results of such plate reader-based measurements have been questioned. In view of the increasing use of plate reader systems for measurements of [Ca 2+ ] i a careful evaluation of current technologies is warranted. We therefore performed an extensive set of experiments, using two cell lines (PC12 and B35) and two fluorescent calcium-sensitive dyes (Fluo-4 and Fura-2), for comparison of a linear plate reader system with single cell fluorescence microscopy. Our data demonstrate that the use of plate reader systems for high-throughput real-time kinetic measurements of [Ca 2+ ] i is associated with many pitfalls and limitations, including erroneous sustained increases in fluorescence, limited sensitivity and lack of single cell resolution. Additionally, our data demonstrate that probenecid, which is often used to prevent dye leakage, effectively inhibits the depolarization-evoked increase in [Ca 2+ ] i . Overall, the data indicate that the use of current plate reader-based strategies for high-throughput real-time kinetic measurements of [Ca 2+ ] i is associated with caveats and limitations that require further investigation. - Research highlights: → The use of plate readers for high-throughput screening of intracellular Ca 2+ is associated with many pitfalls and limitations. → Single cell

  3. Calcium

    Science.gov (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  4. Calcium intake and risk of fracture: systematic review

    OpenAIRE

    Bolland, Mark J; Leung, William; Tai, Vicky; Bastin, Sonja; Gamble, Greg D; Grey, Andrew; Reid, Ian R

    2015-01-01

    Objective To examine the evidence underpinning recommendations to increase calcium intake through dietary sources or calcium supplements to prevent fractures. Design Systematic review of randomised controlled trials and observational studies of calcium intake with fracture as an endpoint. Results from trials were pooled with random effects meta-analyses. Data sources Ovid Medline, Embase, PubMed, and references from relevant systematic reviews. Initial searches undertaken in July 2013 and upd...

  5. Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation

    Science.gov (United States)

    Scharfman, Helen E.; Schwartzkroin, Philip A.

    1989-10-01

    Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.

  6. Transient Increased Calcium and Calcitriol Requirements After Discontinuation of Human Synthetic Parathyroid Hormone 1-34 (hPTH 1-34) Replacement Therapy in Hypoparathyroidism.

    Science.gov (United States)

    Gafni, Rachel I; Guthrie, Lori C; Kelly, Marilyn H; Brillante, Beth A; Christie, C Michele; Reynolds, James C; Yovetich, Nancy A; James, Robert; Collins, Michael T

    2015-11-01

    Synthetic human PTH 1-34 (hPTH 1-34) replacement therapy in hypoparathyroidism maintains eucalcemia and converts quiescent bone to high-turnover bone. However, the skeletal and metabolic effects of drug discontinuation have not been reported. Nine subjects with hypoparathyroidism received subcutaneous injections of hPTH 1-34 two to three times daily for 19.8 to 61.3 months and then transitioned back to calcium and calcitriol. Biochemistries and bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) were assessed at baseline, while on treatment, and at follow-up 3 to 12 months after drug discontinuation. Two subjects developed hypocalcemia when hPTH 1-34 was abruptly discontinued. Thus, to avoid hypocalcemia, subjects were slowly weaned from hPTH 1-34 over several weeks. When hPTH 1-34 was stopped, subjects were requiring two to three times pretreatment doses of calcitriol and calcium to maintain blood calcium levels. Doses were gradually reduced over many weeks until calcium levels were stable on doses similar to baseline. Bone-specific alkaline phosphatase (BSAP), N-telopeptide (NTX), and osteocalcin (OC) increased significantly with hPTH 1-34; at follow-up, BSAP and NTX had returned to baseline while OC was still slightly elevated. During treatment, BMD was unchanged at the hip and lateral spine but declined at the anterior-posterior (AP) spine, radius, and total body. During weaning, BMD increased, with the hip and lateral spine exceeding pre-hPTH 1-34 values and the whole body returning to baseline. AP spine was increased non-significantly compared to baseline at follow-up. hPTH 1-34 must be gradually weaned in hypoparathyroid patients with high doses of oral medications given to avoid hypocalcemia. The transient increased requirements accompanied by increased BMD after long-term hPTH 1-34 therapy suggest a reversal of the expanded remodeling space favoring bone formation as the skeleton returns to a low-turnover state, reminiscent of the hungry

  7. Prevention of Fractures in Older People with Calcium and Vitamin D

    Directory of Open Access Journals (Sweden)

    Caryl A. Nowson

    2010-09-01

    Full Text Available The greatest cause of fracture in older people is osteoporosis which contributes to increased morbidity and mortality in older people. A number of meta-analyses have been performed assessing the effectiveness of calcium supplementation alone, vitamin D supplementation alone and the combined therapy on bone loss and fracture reduction in older people. The results of these meta-analyses indicate that vitamin D supplementation alone is unlikely to reduce fracture risk, calcium supplementation alone has a modest effect in reducing total fracture risk, but compliance with calcium supplements is poor in the long term. The combination of calcium supplementation with vitamin D supplementation, particularly in those at risk of marginal and low vitamin D status reduces total fractures, including hip fractures. Therefore older people would be recommended to consume adequate dietary calcium (>1100 mg/day together with maintaining adequate vitamin D status (>60 nmol/L 25(OHD to reduce risk of fracture. It is a challenge to consume sufficient dietary calcium from dietary sources, but the increasing range of calcium fortified foods could assist in increasing the dietary calcium intake of older people. In addition to the usual dairy based food sources, vitamin D supplements are likely to be required for older people with reduced mobility and access to sunlight.

  8. Electrophysical properties of calcium vanadates

    International Nuclear Information System (INIS)

    Krasnenko, T.I.; Fotiev, A.A.

    1983-01-01

    Electrophysical properties of calcium vanadates are studied for the case of alteration of external parameters of the medium (PO 2 , T). It is lshown that structural transformations bring about changes in the nature of electrophysical properties of Ca 2 V 2 O 7 , Ca 3 (VO 4 ) 2 , this being the reason for charge redistribution in anion groupings. It is obvious, that the general conductivity of calcium methavanadate is mainly caused by ion transport. Ca(VO 3 ) 2 possesses amphoteric character of semiconducting properties: the type of conductivity changes from ''p'' to ''n'' with temperature increase. Polytherms of conductivity and sums of ion numbers of Ca 2 V 2 O 7 transition are given. It is established that calcium pyrovanadate has a mixed electron-ion conductivity

  9. Preparation and biological efficacy of haddock bone calcium tablets

    Science.gov (United States)

    Huo, Jiancong; Deng, Shanggui; Xie, Chao; Tong, Guozhong

    2010-03-01

    To investigate the possible use of waste products obtained after processing haddock, the present study prepared haddock bone calcium powder by NaOH and ethanol soaking (alkalinealcohol method) and prepared haddock bone calcium tablets using the powder in combination with appropriate excipients. The biological efficacy of the haddock bone calcium tablets was investigated using Wistar rats as an experiment model. Results show that the optimal parameters for the alkalinealcohol method are: NaOH concentration 1 mol/L, immersion time 30 h; ethanol concentration 60%, immersion time 15 h. A mixture of 2% polyvinylpyrrolidone in ethanol was used as an excipient at a ratio of 1:2 to full-cream milk powder, without the use of a disintegrating agent. This process provided satisfactory tablets in terms of rigidity and taste. Animal studies showed that the haddock bone calcium tablets at a dose of 2 g·kg-1·d-1 or 5g·kg-1·d-1 significantly increased blood calcium and phosphorus levels and bone calcium content in rats. Therefore, these tablets could be used for calcium supplementation and prevent osteoporosis. Although the reasons of high absorption in the rats fed with haddock bone calcium tablets are unclear, it is suggested that there are some factors, such as treatment with method of alkaline-alcohol or the added milk, may play positive roles in increasing absorption ratio.

  10. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  11. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons.

    Science.gov (United States)

    Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2014-10-01

    Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Bridget M. Stroup

    2017-01-01

    Full Text Available Background. Skeletal fragility is a complication of phenylketonuria (PKU. A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF. Design. In a crossover design, 8 participants with PKU (16–35 y provided food records and 24-hr urine samples after consuming a low-Phe diet in combination with AA-MF and GMP-MF for 1–3 wks. We calculated potential renal acid load (PRAL of AA-MF and GMP-MF and determined bone mineral density (BMD measurements using dual X-ray absorptiometry. Results. AA-MF provided 1.5–2.5-fold higher PRAL and resulted in 3-fold greater renal net acid excretion compared to GMP-MF (p=0.002. Dietary protein, calcium, and magnesium intake were similar. GMP-MF significantly reduced urinary excretion of calcium by 40% (p=0.012 and magnesium by 30% (p=0.029. Two participants had low BMD-for-age and trabecular bone scores, indicating microarchitectural degradation. Urinary calcium with AA-MF negatively correlated with L1–L4 BMD. Conclusion. Compared to GMP-MF, AA-MF increase dietary acid load, subsequently increasing urinary calcium and magnesium excretion, and likely contributing to skeletal fragility in PKU. The trial was registered at clinicaltrials.gov as NCT01428258.

  13. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  14. Effect of curd washing on the properties of reduced-calcium and standard-calcium Cheddar cheese.

    Science.gov (United States)

    Hou, Jia; McSweeney, Paul L H; Beresford, Thomas P; Guinee, Timothy P

    2014-10-01

    Washed (W) and nonwashed (NW) variants of standard (SCa) and reduced-calcium (RCa) Cheddar cheeses were made in triplicate, ripened for a 270-d period, and analyzed for composition and changes during maturation. Curd washing was applied to cheeses to give a target level of lactose plus lactic acid in cheese moisture of 3.9 g/100 g in the W cheese, compared with a value of 5.3 g/100 g of lactose plus lactic acid in cheese moisture in the control NW cheeses. The 4 cheese types were denoted standard calcium nonwashed (SCaNW), standard calcium washed (SCaW), reduced-calcium nonwashed (RCaNW), and reduced-calcium washed (RCaW). The mean calcium level was 760 mg/100 g in the SCaNW and SCaW and 660 mg/100 g in the RCaNW and RCaW cheeses. Otherwise the gross composition of all cheeses was similar, each with protein, fat, and moisture levels of ~26, 32, and 36 g/100 g, respectively. Curd washing significantly reduced the mean level of lactic acid in the SCaW cheese and residual lactose in both SCaW and RCaW cheeses. The mean pH of the standard-calcium cheese over the 270-d ripening period increased significantly with curd washing and ripening time, in contrast to the reduced-calcium cheese, which was not affected by the latter parameters. Otherwise curd washing had little effect on changes in populations of starter bacteria or nonstarter lactic acid bacteria, proteolysis, rheology, or color of the cheese during ripening. Descriptive sensory analysis at 270 d indicated that the SCaW cheese had a nuttier, sweeter, less fruity, and less rancid taste than the corresponding SCaNW cheese. In contrast, curd washing was not as effective in discriminating between the RCaW and RCaNW cheeses. The RCaW cheese had a more buttery, caramel odor and flavor, and a more bitter, less sweet, and nutty taste than the SCaW cheese, whereas the RCaNW had a more pungent and less fruity flavor, a less fruity odor, a saltier, more-bitter, and less acidic taste, and a more astringent mouthfeel than

  15. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  16. Importance of vesicle release stochasticity in neuro-spike communication.

    Science.gov (United States)

    Ramezani, Hamideh; Akan, Ozgur B

    2017-07-01

    Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.

  17. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    International Nuclear Information System (INIS)

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurélio; Silva Dias, Celidarque da; Piuvezam, Márcia Regina

    2013-01-01

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca ++ influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  18. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro-Filho, Jaime [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Moraes de Carvalho, Katharinne Ingrid [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Mendes, Diego da [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Melo, Christianne Bandeira [Laboratório de Inflamação, Instituto Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro (Brazil); Martins, Marco Aurélio [Laboratório de Inflamação, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro (Brazil); Silva Dias, Celidarque da [Laboratório de Fitoquímica, Departamento de Ciências Farmacêuticas, UFPB, João Pessoa, Paraíba (Brazil); Piuvezam, Márcia Regina, E-mail: mrpiuvezam@ltf.ufpb.br [Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba (Brazil); and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  19. Changes in the distribution of lens calcium during development of x-ray cataract

    International Nuclear Information System (INIS)

    Hightower, K.R.; Giblin, F.J.; Reddy, V.N.

    1983-01-01

    The present study was designed to examine the possible role of calcium in the opacification of x-ray-induced cataract in rabbit. The results demonstrate that the concentration of calcium in x-rayed lenses, just prior to lens hydration (7.5 weeks postirradiation), was twice that present in contralateral control lenses. At this stage of immature cataract, the lens nucleus remained transparent and maintained a normal level of calcium, but the lens cortex, containing regions of subcapsular opacification, accumulated a level of calcium that was twice that of the control. In the completely opaque mature cataract, (8-9 weeks post x-ray), both the cortex and nucleus had gained significant amounts of calcium. As the concentration of total calcium increased in the immature x-ray cataract, the amount of the cation bound to membranes and insoluble proteins of the cytosol also increased comparably. However, the relative proportion of calcium in the various fractions remained unaltered in the immature cataract; in both control lenses and immature cataracts, 20% of the total calcium remained in the membrane pellet and 70% was located in the soluble protein fraction. Only in the mature stage of cataract was a shift in the distribution of calcium apparent, as the proportion of calcium in the soluble protein fraction increased to 90%. Although only 7% of the total calcium in a mature cataract was bound to membrane, the amount represented a fivefold increase over the control. The results of this study demonstrate that an elevation in lens calcium accompanies the opacification process in x-ray cataract. The work also suggests that changes in calcium levels are not likely to result from inactivation of Ca-ATPase

  20. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine

    1977-10-15

    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  1. The Indianapolis Flux Experiment (INFLUX: A test-bed for developing urban greenhouse gas emission measurements

    Directory of Open Access Journals (Sweden)

    Kenneth J. Davis

    2017-05-01

    Full Text Available The objective of the Indianapolis Flux Experiment (INFLUX is to develop, evaluate and improve methods for measuring greenhouse gas (GHG emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

  2. Calcium binding to low molecular weight compounds and health promoting products

    DEFF Research Database (Denmark)

    Vavrusova, Martina

    absorption. Therefore, calcium as an essential nutrient should not be underestimated in our diet. Milk and dairy products are good sources of bioavailable calcium due to specific protein binding. Other sources of calcium, apart from a balanced and healthy diet, are calcium supplements and calcium fortified...... food. Therefore, an understanding of the basic chemistry of calcium binding to low molecular weight compounds can contribute to a general knowledge about calcium bioavailability and also to product improvement. Calcium precipitation with palmitate was described by a first-order reaction for conditions...... of excess calcium in neutral aqueous solutions with a stoichiometry Ca:Pal lower than 1:2. Increasing pH during aging of the precipitate and solubility product determination lead to a suggestion of an initial precipitation of calcium hydroxy palmitate as a possible precursor phase. The binding of calcium...

  3. An analysis of the plasma impurity influx from alkali-metal coatings for fusion reactor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Davidson, J.N.; Krauss, A.R.; Gruen, D.M.

    1982-01-01

    Recently, it has been proposed that alkali-metal covered surfaces be applied to magnetic fusion devices as a means of controlling plasma impurity contamination and shielding the substrate from erosion. Monolayer films of alkali metals have been shown to sputter primarily as ions under particle bombardment. Thus, it is thought that a sheath potential and/or magnetic fields encountered by a sputtered ion will return the ion to the surface without entering the plasma. In this paper, we investigate the net wall impurity influx associated with coatings which exhibit substantial secondary ion emission compared with those which sputter only as neutral atoms. Included in the analysis are sputtered substrate atoms. These are sometimes found to be a significant fraction of the total sputtering yield for low-Z alkali monolayers and affect the overall performance of such coatings. Estimates of the impurity influx made in the neighborhood of a sheath potential show that secondary-ion emitting coatings are effective as a means of inhibiting plasma impurity contamination and wall erosion. (orig.)

  4. Calcium and bone disorders in pregnancy

    Directory of Open Access Journals (Sweden)

    Shriraam Mahadevan

    2012-01-01

    Full Text Available Significant transplacental calcium transfer occurs during pregnancy, especially during the last trimester, to meet the demands of the rapidly mineralizing fetal skeleton. Similarly, there is an obligate loss of calcium in the breast milk during lactation. Both these result in considerable stress on the bone mineral homeostasis in the mother. The maternal adaptive mechanisms to conserve calcium are different in pregnancy and lactation. During pregnancy, increased intestinal absorption of calcium from the gut mainly due to higher generation of calcitriol (1,25 dihydroxy vitamin D helps in maintaining maternal calcium levels. On the other hand, during lactation, the main compensatory mechanism is skeletal resorption due to increased generation of parathormone related peptide (PTHrP from the breast. Previous studies suggest that in spite of considerable changes in bone mineral metabolism during pregnancy, parity and lactation are not significantly associated with future risk for osteoporosis. However, in India, the situation may not be the same as a significant proportion of pregnancies occur in the early twenties when peak bone mass is not yet achieved. Further, malnutrition, anemia and vitamin D deficiency are commonly encountered in this age group. This may have an impact on future bone health of the mother. It may also probably provide an opportunity for health care providers for prevention. Other metabolic bone diseases like hypoparathyroidism, hyperparathyroidism and pseudohypoparathyroidism are rarely encountered in pregnancy. Their clinical implications and management are also discussed.

  5. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  6. Stability of the calcium hydroxyzincate protective layer developed on galvanized reinforcements after a further increase of the pH value

    Directory of Open Access Journals (Sweden)

    Andrade, C.

    1986-12-01

    Full Text Available In previous works on galvanized reinforcements in contact with Ca- containing highly alkaline media, the authors have reported the existence of a threshold pH of 13,3 ± 0,1, below which the Zn in contact with such a medium is passivated by formation of a continuous layer of calcium hydroxyzincate, but at pH values above this it corrodes continuously until it totally disappears. The investigation on the stability of the calcium hydroxyzincate layer after an increase of the pH to very high alkaline values, is the aim of the present paper. It has been establised that if the calcium hydroxyzincate is perfectly developed, a later increase of the pH does not affect the stability.

    En trabajos anteriores que estudian el comportamiento de armaduras galvanizadas en contacto con medios muy alcalinos que contienen calcio, los autores han señalado la existencia de un umbral de pH = 13,3 ±0,1 por debajo del cual el Zn en contacto con tales medios se pasiva por formación de una capa continua de hidroxizincato calcico, mientras que para valores de pH superiores se corroe continuamente hasta su total desaparición. Establecer la estabilidad del recubrimiento protector de hidroxizincato calcico a un aumento de pH a valores muy alcalinos posterior a su formación, es el objetivo del presente artículo. Como resultado de las investigaciones realizadas ha podido concluirse que si el recubrimiento de hidroxizincato cálcico se ha desarrollado perfectamente, un posterior incremento del pH del medio no afecta su estabilidad.

  7. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  8. Cation interdiffusion in polycrystalline calcium and strontium titanate

    International Nuclear Information System (INIS)

    Butler, E.P.; Jain, H.; Smyth, D.M.

    1991-01-01

    This paper discusses a method that has been developed to study bulk lattice interdiffusion between calcium and strontium titanate by fabrication of a diffusion couple using cosintering. The measured interdiffusion coefficients, D(C), indicate that strontium impurity diffusion in calcium titanate occurs at a faster rate than calcium impurity diffusion in strontium titanate. These interdiffusion coefficients are composition independent when the concentration of the calcium cation exceeds that of the strontium cation; otherwise D(C) is strongly composition dependent. Investigations into the effect of cation nonstoichiometry give results that are consistent with a defect incorporation reaction in which excess TiO 2 , within the solid solubility limit, produces A-site cation vacancies as compensating defects. The interdiffusion coefficients increase with increasing concentrations of TiO 2 , so it is concluded that interdiffusion of these alkaline-earth cations in their titanates occurs via a vacancy mechanism

  9. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2013-01-01

    offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...

  10. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E

    1976-01-01

    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  11. Effect of calcium chloride and calcium lactate on quality and shelf-life of fresh-cut guava slices

    International Nuclear Information System (INIS)

    Raheem, M.I.U.; Huma, N.; Anjum, F.M.

    2013-01-01

    Present study was conducted to investigate the effectiveness of chemical treatments at low temperature on the quality of fresh-cut guava slices during 2011-12. Uniform sized guava slices were made free from seeds and treated with calcium chloride and calcium lactate with concentration 0.9%, 1.8%, 2.7% or 3.6%. After packing in plastic boxes, all treated samples were stored at 5 degree C + 2 degree C in a refrigerator for 24 days with 6 day interval between different removals. The results obtained from physico-chemical analysis showed decrease in firmness (111.67-12.67gf) and increase in browning (1.19-1.93nm) of guava slices compared to control with the passage of storage interval. Moreover, scores in taste (7.33-1.00), flavour (7.33-1.00), colour (7.50-1.00) and texture (7.67-1.00) of guava slices was also decreased with respect to interaction of treatments and storage period. Calcium chloride at the rate 2.7% showed significantly higher stability than other concentrations of calcium chloride and calcium lactate in delaying firmness and browning of fresh-cut guava slices along with maintaining their organoleptic properties for longer storage period. However, calcium chloride imparted undesirable bitterness to fresh-cut guava slices at the concentration of 3.6%. Based on the overall quality performance, 2.7% calcium chloride and 3.6% calcium lactate exhibited better results than other concentrations and control with storage life of 8 days at 5 degree C + 2 degree C. (author)

  12. Does Increased Expression of the Plasma Membrane Calcium-ATPase Isoform 2 Confer Resistance to Apoptosis on Breast Cancer Cells?

    National Research Council Canada - National Science Library

    VanHouten, Joshua N

    2008-01-01

    The plasma membrane calcium ATPase isoform 2 (PMCA2) is highly expressed on the apical membrane of mammary epithelial cells during lactation, and is the predominant pump responsible for calcium transport into milk...

  13. Sulfate but not thiosulfate reduces calculated and measured urinary ionized calcium and supersaturation: implications for the treatment of calcium renal stones.

    Directory of Open Access Journals (Sweden)

    Allen Rodgers

    Full Text Available Urinary sulfate (SO4(2- and thiosulfate (S2O3(2- can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa and on supersaturation (SS of calcium oxalate (CaOx and calcium phosphate (CaP, and measured their in vitro effects on iCa and the upper limit of stability (ULM of these salts.Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1. A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS (Model 2. The Joint Expert Speciation System (JESS was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations.Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect.Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease.

  14. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  15. Is 24,25-dihydroxycholecalciferol a calcium-regulating hormone in man

    International Nuclear Information System (INIS)

    Kanis, J.A.; Cundy, T.; Bartlett, M.; Smith, R.; Heynen, G.; Warner, G.T.; Russell, R.G.G.

    1978-01-01

    Small doses (1 to 10 μg daily) of 24,25-dihydroxycholecalciferol (24,25-(OH) 2 D 3 ), a renal metabolite of vitamin D of uncertain function, increased intestinal absorption of calcium in normal people and in patients with various disorders of mineral metabolism, including anephric subjects. In five of six patients studied, calcium balance increased, but, unlike 1,25-dihydroxycholecalciferol, 24,25-(OH) 2 D 3 did not increase plasma or urinary calcium concentrations. These results suggest that 24,25-(OH) 2 D 3 may be an important regulator of skeletal metabolism in man with potential value as a therapeutic agent. (author)

  16. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  17. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  18. Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala

    DEFF Research Database (Denmark)

    Maigaard, Katrine; Pedersen, Ida Hageman; Jørgensen, Anders

    2012-01-01

    Although affective disorders have high prevalence, morbidity and mortality, we do not fully understand disease etiopathology, nor have we determined the exact mechanisms by which treatment works. Recent research indicates that intracellular calcium ion dysfunction might be involved. Here we use...... the chronic restraint stress model of affective disorder (6 h restraint per day for 21 days) in combination with electroconvulsive stimulations to examine the effects of stress and an effective antidepressive treatment modality on L-type voltage gated calcium channel subunit mRNA expression patterns...... in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3...

  19. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust

    Science.gov (United States)

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.

    1996-01-01

    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply

  20. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    International Nuclear Information System (INIS)

    Li, Xuerun; Zhang, Yu; Shen, Xiaodong; Wang, Qianqian; Pan, Zhigang

    2014-01-01

    The formation kinetics of tricalcium aluminate (C 3 A) and calcium sulfate yielding calcium sulfoaluminate (C 4 A 3 $) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C 3 A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca 3 Al 2 O 6 + CaSO 4 → Ca 4 Al 6 O 12 (SO 4 ) + 6CaO was the primary reaction 4 Al 6 O 12 (SO 4 ) + 10CaO → 6Ca 3 Al 2 O 6 + 2SO 2 ↑ + O 2 ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C 4 A 3 $ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C 4 A 3 $ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca 2+ and SO 4 2− were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C 3 A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion

  1. Why Calcium? How Calcium Became the Best Communicator*

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  2. Calcium blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003477.htm Calcium blood test To use the sharing features on this page, please enable JavaScript. The calcium blood test measures the level of calcium in the blood. ...

  3. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Products that contain calcium carbonate are certain: Antacids (Tums, Chooz) Mineral supplements Hand lotions Vitamin and mineral supplements Other products may also contain ...

  4. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  5. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  6. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements.

    Science.gov (United States)

    Combes, C; Miao, Baoji; Bareille, Reine; Rey, Christian

    2006-03-01

    The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composition was obtained by mixing amorphous calcium carbonate and vaterite with an aqueous medium. The cement set and hardened within 2h at 37 degrees C in an atmosphere saturated with water and the final composition of the cement consisted mostly of aragonite. The hardened cement was microporous and showed poor mechanical properties. Cytotoxicity tests revealed excellent cytocompatibility of calcium carbonate cement compositions. Calcium carbonates with a higher solubility than the apatite formed for most of the marketed calcium phosphate cements might be of interest to increase biomedical cement resorption rates and to favour its replacement by bone tissue.

  7. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  8. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    Science.gov (United States)

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  9. Calcium and vitamin D in post menopausal women

    Directory of Open Access Journals (Sweden)

    Sameer Aggarwal

    2013-01-01

    Full Text Available Calcium and Vitamin D are widely used therapies for Osteoporosis. Vitamin D is not a vitamin in true sense since it is produced in response to the action of sunlight on skin. Vitamin D has multiple roles in the body, not all of them well-understood. Vitamin D supplementation must be considered a form of hormone replacement therapy. Therefore it raises all the questions about efficacy, dose, and side effects. The Efficacy of use of Calcium and Vitamin D in all post menopausal women in terms of the prevention of fracture is uncertain. The Annual worldwide sales of these supplements have been several billion dollars. The variation of the results from various studies of Calcium and Vitamin D supplementation in elderly women suggest that benefit of calcium plus vitamin D on bone mineral density or the risk of fracture is small and may vary from group to group and baseline Vitamin D status. Women taking supplemental vitamin D and calcium have a statistically increased incidence of renal stones, according to evidence from the Women′s Health Initiative. Studies have shown association between calcium use and increased risk for cardiovascular disease. In a recent review of evidence from 6 randomized trials evaluating the use of vitamin D and calcium to prevent fractures in postmenopausal women who are not living in a nursing home or other institution, the United States Preventive Task Force (USPTF found no evidence of a benefit from supplementation with 400 IU or less of vitamin D3 and 1000 mg or less of calcium. Also in a report from institute of Medicine Committee, there was insufficient evidence, particularly from randomized trials, that vitamin D treatment affected the risk of non skeletal outcomes like risk of cancer, cardiovascular disease, diabetes, infections, autoimmune disease, and other extra skeletal outcomes.

  10. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  11. A study of calcium intake and sources of calcium in adolescent boys and girls from two socioeconomic strata, in Pune, India.

    Science.gov (United States)

    Sanwalka, Neha J; Khadilkar, Anuradha V; Mughal, M Zulf; Sayyad, Mehmood G; Khadilkar, Vaman V; Shirole, Shilpa C; Divate, Uma P; Bhandari, Dhanshari R

    2010-01-01

    Adequate intake of calcium is important for skeletal growth. Low calcium intake during childhood and adolescence may lead to decreased bone mass accrual thereby increasing the risk of osteoporotic fractures. Our aim was to study dietary calcium intake and sources of calcium in adolescents from lower and upper economic strata in Pune, India. We hypothesized that children from lower economic strata would have lower intakes of calcium, which would predominantly be derived from non-dairy sources. Two hundred male and female adolescents, from lower and upper economic stratum were studied. Semiquantitative food frequency questionnaire was used to evaluate intakes of calcium, phosphorus, oxalic acid, phytin, energy and protein. The median calcium intake was significantly different in all four groups, with maximum intake in the upper economic strata boys (893 mg, 689-1295) and lowest intake in lower economic strata girls (506 mg, 380-674). The median calcium intake in lower economic strata boys was 767 mg (585-1043) and that in upper economic strata girls was 764 mg (541-959). The main source of calcium was dairy products in upper economic strata adolescents while it was dark green leafy vegetables in lower economic strata adolescents. The median calcium intake was much lower in lower economic strata than in the upper economic strata both in boys and girls. Girls from both groups had less access to dairy products as compared to boys. Measures need to be taken to rectify low calcium intake in lower economic strata adolescents and to address gender inequality in distribution of dairy products in India.

  12. Effects of calcium and magnesium on strontium distribution coefficients

    Science.gov (United States)

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  13. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    International Nuclear Information System (INIS)

    Benson, D.W.; Hasselgren, P.O.; Hiyama, D.T.; James, J.H.; Li, S.; Rigel, D.F.; Fischer, J.E.

    1989-01-01

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calcium uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle

  14. The effect of habitat geology on calcium intake and calcium status of wild rodents.

    Science.gov (United States)

    Shore, R F; Balment, R J; Yalden, D W

    1991-12-01

    Calcium is essential for normal physiological function, reproduction and growth in mammals but its distribution in the natural environment is heterogeneous. Spatial variation in calcium soil content is especially marked in the Peak District, United Kingdom, where both calcium-rich limestone and calcium-poor gritstone rock types occur. Wood mice Apodemus sylvaticus (L) and bank voles Clethrionomys glareolus (Schreber 1780) from limestone areas had significantly higher calcium concentrations in stomach contents and in faeces compared with their counterparts from gritstone areas. Calcium status was assessed from serum calcium concentration, femur weight, ash content of the body, calcium concentration in the femur and body ash. There was no significant difference in serum calcium concentration, femur calcium concentration and body ash calcium concentration between animals from the limestone and the gritstone. However, on the limestone, bank voles, but not wood mice, had significantly heavier femora and a greater proportion of ash in the body compared with their gritstone counterparts.

  15. Calcium response to vitamin D supplementation

    Directory of Open Access Journals (Sweden)

    Francisco R. Spivacow

    2018-01-01

    Full Text Available Several studies show the importance of serum vitamin D sufficient levels to prevent multiple chronic diseases. However, vitamin D supplementation and its effects on urine calcium excretion remain controversial. The objective of this prospective and interventional study was to evaluate urine calcium excretion in women with normal calciuria or hypercalciuria, once serum vitamin D sufficiency was achieved. We studied 63 women with idiopathic hypercalciuria, (9 with renal lithiasis and 50 normocalciuric women. Both groups had serum vitamin D levels low (deficiency or insufficiency. Baseline urine calcium excretion was measured before being supplemented with vitamin D2 or D3 weekly or vitamin D3 100.000 IU monthly. Once serum vitamin D levels were corrected achieving at least 30 ng/ml, a second urine calcium excretion was obtained. Although in the whole sample we did not observe significant changes in urine calcium excretion according to the way of supplementation, some of those with weekly supplementation had significant higher urine calcium excretion, 19% (n = 12 of hypercalciuric women and 12% (n = 6 of the normocalciuric group. Monthly doses, also showed higher urine calcium excretion in 40% of hypercalciuric women (n = 4/10 and in 44% (n = 4/9 of the renal lithiasis hypercalciuric patients. In conclusion, different ways of vitamin D supplementation and adequate serum levels are safe in most patients, although it should be taken into account a subgroup, mainly with monthly loading doses, that could increase the calciuria significantly eventually rising renal lithiasis risk or bone mass loss, if genetically predisposed.

  16. Similar calcium status is present in infants fed formula with and without prebiotics

    Science.gov (United States)

    Prebiotic oligosaccharides can increase calcium absorption in adolescents and adults. Whether they affect calcium absorption in infants has not been assessed. Few data are available to compare the calcium status of infants fed modern infant formulas to that of breast fed infants. To evaluate calcium...

  17. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium.

    Science.gov (United States)

    Wang, Hongbo; Wang, Xiaolong; Li, Yan; Yu, Hao; Wang, Changliang; Feng, Chunmei; Xu, Guohui; Chen, Jiajun; You, Jiabin; Wang, Pengfei; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2018-04-01

    It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.

  18. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers.

    Science.gov (United States)

    Pinheiro, Vivian Barbosa; Baxmann, Alessandra Calábria; Tiselius, Hans-Göran; Heilberg, Ita Pfeferman

    2013-07-01

    To evaluate the effects of oral sodium bicarbonate (NaBic) supplementation upon urinary citrate excretion in calcium stone formers (CSFs). Sixteen adult calcium stone formers with hypocitraturia were enrolled in a randomized, double-blind, crossover protocol using 60 mEq/day of NaBic during 3 days compared to the same period and doses of potassium citrate (KCit) supplementation. Blood and 24-hour urine samples were collected at baseline and during the third day of each alkali salt. NaBic, similarly to KCit supplementation, led to an equivalent and significant increase in urinary citrate and pH. Compared to baseline, NaBic led to a significant increase in sodium excretion without concomitant increases in urinary calcium excretion, whereas KCit induced a significant increase in potassium excretion coupled with a significant reduction in urinary calcium. Although NaBic and KCit both reduced calcium oxalate supersaturation (CaOxSS) significantly vs baseline, KCit reduced calcium oxalate supersaturation significantly further vs NaBic. Both KCit and NaBic significantly reduced urinary phosphate and increased calcium phosphate supersaturation (CaPSS) compared to baseline. Finally, a significantly higher sodium urate supersaturation (NaUrSS) was observed after the use of the 2 drugs. This short-term study suggests that NaBic represents an effective alternative for the treatment of hypocitraturic calcium oxalate stone formers who cannot tolerate or afford the cost of KCit. In view of the increased sodium urate supersaturation, patients with pure uric acid stones and high urate excretion may be less suited for treatment with NaBic. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Why Calcium? How Calcium Became the Best Communicator.

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  1. HCO3(-)-coupled Na+ influx is a major determinant of Na+ turnover and Na+/K+ pump activity in rat hepatocytes

    International Nuclear Information System (INIS)

    Fitz, J.G.; Lidofsky, S.D.; Weisiger, R.A.; Xie, M.H.; Cochran, M.; Grotmol, T.; Scharschmidt, B.F.

    1991-01-01

    Recent studies in hepatocytes indicate that Na(+)-coupled HCO3- transport contributes importantly to regulation of intracellular pH and membrane HCO3- transport. However, the direction of net coupled Na+ and HCO3- movement and the effect of HCO3- on Na+ turnover and Na+/K+ pump activity are not known. In these studies, the effect of HCO3- on Na+ influx and turnover were measured in primary rat hepatocyte cultures with 22Na+, and [Na+]i was measured in single hepatocytes using the Na(+)-sensitive fluorochrome SBFI. Na+/K+ pump activity was measured in intact perfused rat liver and hepatocyte monolayers as Na(+)-dependent or ouabain-suppressible 86Rb uptake, and was measured in single hepatocytes as the effect of transient pump inhibition by removal of extracellular K+ on membrane potential difference (PD) and [Na+]i. In hepatocyte monolayers, HCO3- increased 22Na+ entry and turnover rates by 50-65%, without measurably altering 22Na+ pool size or cell volume, and HCO3- also increased Na+/K+ pump activity by 70%. In single cells, exposure to HCO3- produced an abrupt and sustained rise in [Na+]i from approximately 8 to 12 mM. Na+/K+ pump activity assessed in single cells by PD excursions during transient K+ removal increased congruent to 2.5-fold in the presence of HCO3-, and the rise in [Na+]i produced by inhibition of the Na+/K+ pump was similarly increased congruent to 2.5-fold in the presence of HCO3-. In intact perfused rat liver, HCO3- increased both Na+/K+ pump activity and O2 consumption. These findings indicate that, in hepatocytes, net coupled Na+ and HCO3- movement is inward and represents a major determinant of Na+ influx and Na+/K+ pump activity. About half of hepatic Na+/K+ pump activity appears dedicated to recycling Na+ entering in conjunction with HCO3- to maintain [Na+]i within the physiologic range

  2. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  3. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    Science.gov (United States)

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  4. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  5. Calcium decorated and doped phosphorene for gas adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, Murugan; Nataraj, Yuvarani; Lakshmipathi, Senthilkumar, E-mail: lsenthilkumar@buc.edu.in

    2016-07-30

    Highlights: • Phosphorene exhibits n-type/p-type nature on decorating/doping calcium respectively. • Gas molecules (CH{sub 4}, CO{sub 2}, H{sub 2} and NH{sub 3}) are physisorbed on phosphorene. • Ca decorated Phosphorene is recommended for high density hydrogen storage applications. • Calcium doping on zigzag and armchair sites makes phosphorene more reactive. • CH{sub 4}, CO{sub 2}, H{sub 2} prefer Ca-doped on zigzag1 site, whereas ammonia prefers Ca-doped on armchair. - Abstract: In this paper, we present the results from first-principles study based on the electronic structure and adsorption characteristics of CH{sub 4}, CO{sub 2}, H{sub 2} and NH{sub 3} adsorbed on Ca decorated/doped phosphorene. Our study finds that phosphorene exhibits n-type behaviour on decorating calcium, and p-type on doping calcium. Gas molecules are physisorbed on both pristine and calcium-mediated phosphorene, visible through their lower binding energy and charge transfer values. Ca decorated phosphorene is suitable for hydrogen storage due to its higher binding energy for H{sub 2}. Ca doped structures shows increased binding affinity towards CH{sub 4} and NH{sub 3} in zigzag1 direction and armchair directions respectively. The extracts of our study implies that Ca doped phosphorene possess increased binding affinity towards gas molecules, and the results are highly helpful for gas adsorption and to design gas sensors based on calcium doped or decorated phosphorene.

  6. The influence of magnesium deficiency on calcium metabolism in the rat

    International Nuclear Information System (INIS)

    Larvor, P.; Labat, M.-L.

    1978-01-01

    Calcium metabolism was studied in magnesium-deficient rats with an isotopic technique. 45 Ca was injected intravenously and the blood calcium radioactivity curve was analyzed mathematically to compute the kinetics of calcium exchange in the whole body. No important change was noticed after a 10-day magnesium deficiency; there was a significant reduction of the ratio calcium pool/total calcium output from the pool (P/Vsub(T)). After a 20-day deficiency, a dramatic decrease in the two compartments of exchangeable calcium (-40%), and a less important decrease of Vsub(T)(-15%) was noted. Blood plasma urea level increased during magnesium deficiency, while urea urinary clearance remained

  7. Effects of adding chymosin to milk on calcium homeostasis: a randomized, double-blind, cross-over study

    DEFF Research Database (Denmark)

    Liendgaard, Ulla Kristine Møller; Jensen, L.T.; Mosekilde, Leif

    2015-01-01

    either chymosin or similar placebo was added. Compared with placebo, chymosin did not affect 24-h urinary calcium, calcium/creatinine ratio, plasma parathyroid hormone, calcitonin or ionized calcium levels. However, during the first 4 h after intake of milk with chymosin, urinary calcium-creatinine ratio...... was significantly increased (17%) compared with placebo. Stratification by daily calcium intake showed effect of chymosin in participant with a habitual intake above the median (>1,050 mg/day) in whom both urinary calcium and calcium/creatinine ratio were significantly increased compared with placebo. Effects did...

  8. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  9. Inhibition of Glutathione Synthesis Induced by Exhaustive Running Exercise via the Decreased Influx Rate of L-Cysteine in Rat Erythrocytes.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Zhou, Shuai; Yu, Zhenhai; Zhao, Dongmei; Wang, Zhiqiang; Li, Yuling; Yan, Jingtong; Cai, Yu; Zhang, Wenqian

    2016-01-01

    The main purpose of this study was to investigate the effect of exhaustive exercise on L-cysteine uptake and its effect on erythrocyte glutathione (GSH) synthesis and metabolism. Rats were divided into three groups: sedentary control (C), exhaustive running exercise (ERE) and moderate running exercise (MRE) (n=12 rats/group). We determined the L-cysteine efflux and influx in vitro in rat erythrocytes and its relationship with GSH synthesis. Total anti-oxidant potential of plasma was measured in terms of the ferric reducing ability of plasma (FRAP) values for each exercise group. In addition, the glucose metabolism enzyme activity of erythrocytes was also measured under in vitro incubation conditions. Biochemical studies confirmed that exhaustive running exercise significantly increased oxidative damage parameters in thiobarbituric acid reactive substances (TBARS) and methemoglobin levels. Pearson correlation analysis suggested that L-cysteine influx was positively correlated with erythrocyte GSH synthesis and FRAP values in both the control and exercise groups. In vitro oxidation incubation significantly decreased the level of glucose metabolism enzyme activity in the control group. We presented evidence of the exhaustive exercise-induced inhibition of GSH synthesis due to a dysfunction in L-cysteine transport. In addition, oxidative stress-induced changes in glucose metabolism were the driving force underlying decreased L-cysteine uptake in the exhaustive exercise group. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  11. Changes in force and calcium sensitivity in the developing avian heart.

    Science.gov (United States)

    Godt, R E; Fogaça, R T; Nosek, T M

    1991-11-01

    The aim of this study was to characterize the development of the contractile properties of intact and chemically skinned muscle from chicken heart and to compare these characteristics with those of developing mammalian heart reported by others. Small trabeculae were dissected from left ventricles of Arbor Acre chickens between embryonic day 7 and young adulthood (7 weeks post-hatching). At all ages, increasing extracellular calcium (0.45-3.6 mM) progressively increased twitch force of electrically stimulated trabeculae. Twitch force at 1.8 mM extracellular calcium, normalized to cross-sectional area, increased to a maximum at 1 day post-hatching, remained constant through 3 weeks post-hatching, but then decreased at 7 weeks post-hatching. The maximal calcium-activated force of trabeculae chemically skinned with Triton X-100 detergent increased to a maximum 2 days before the time of hatching and was not significantly changed up to 7 weeks post-hatching. Over the ages studied, average twitch force in 1.8 mM calcium was between 26 and 66% of maximal calcium-activated force after skinning, suggesting that the contractile apparatus is not fully activated during the twitch in normal Ringer. In skinned trabeculae, the calcium sensitivity of the contractile apparatus was higher in the embryo than in the young adult. These age-dependent changes in calcium sensitivity are correlated with isoform switching in troponin T. A decrease in pH from 7.0 to 6.5 decreased the calcium sensitivity of the contractile apparatus to a greater degree in skinned trabeculae from young adult hearts than in those from embryonic hearts. This change in susceptibility to acidosis is temporally associated with isoform switching in troponin I.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Mechanical properties of polypropylene/calcium carbonate nanocomposites

    Directory of Open Access Journals (Sweden)

    Daniel Eiras

    2009-01-01

    Full Text Available The aim of this work was to study the influence of calcium carbonate nanoparticles in both tensile and impact mechanical properties of a polypropylene homopolymer. Four compositions of PP/CaCO3 nanocomposites were prepared in a co-rotational twin screw extruder machine with calcium carbonate content of 3, 5, 7 and 10 wt. (% The tests included SEM analyzes together with EDS analyzer and FTIR spectroscopy for calcium carbonate, tensile and impact tests for PP and the nanocomposites. The results showed an increase in PP elastic modulus and a little increase in yield stress. Brittle-to-ductile transition temperature was reduced and the impact resistance increased with the addition of nanoparticles. From the stress-strain curves we determined the occurrence of debonding process before yielding leading to stress softening. Debonding stress was determined from stress-strain curves corresponding to stress in 1% strain. We concluded that the tensile properties depend on the surface contact area of nanoparticles and on their dispersion. Finally we believe that the toughening was due to the formation of diffuse shear because of debonding process.

  13. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  14. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of

  15. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  16. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature

    Directory of Open Access Journals (Sweden)

    K. B. Kale

    2012-12-01

    Full Text Available The CO2 adsorption by calcium zirconate was explored at pre- and post- combustion temperature condition. The several samples of the calcium zirconate were prepared by different methods such as sol-gel, solid-solid fusion, template and micro-emulsion. The samples of the calcium zirconate were characterized by measurement of surface area, alkalinity/acidity, and recording the XRD patterns and SEM images. The CO2 adsorptions by samples of the calcium zirconate were studied in the temperature range 100 to 850 oC and the CO2 adsorptions were observed in the ranges of 6.88 to 40.6 wt % at 600 0C and 8 to 16.82 wt% at in between the temperatures 200 to 300 oC. The effect of Ca/Zr mol ratio in the samples of the calcium zirconate on the CO2 adsorption and alkalinity were discussed. The adsorbed moisture by the samples of the calcium zirconate was found to be useful for the CO2 adsorption. The promoted the samples of the calcium zirconate by K+, Na+, Rb+, Cs+, Ag+ and La3+ showed the increased CO2 adsorption. The exposure time of CO2 on the samples of the calcium zirconate showed the increased CO2 adsorption. The samples of the calcium zirconate were found to be regenerable and reusable several times for the adsorption of CO2 for at the post- and pre-combustion temperature condition. Copyright © 2012 by BCREC Undip. All rights reservedReceived: 23rd June 2012, Revised: 28th August 2012, Accepted: 30th August 2012[How to Cite: K. B. Kale, R. Y. Raskar, V. H. Rane and A. G.  Gaikwad (2012. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 124-136. doi:10.9767/bcrec.7.2.3686.124-136] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3686.124-136 ] | View in 

  17. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  18. Acid-gastric antisecretory effect of the ethanolic extract from Arctium lappa L. root: role of H+, K+-ATPase, Ca2+ influx and the cholinergic pathway.

    Science.gov (United States)

    da Silva, Luisa Mota; Burci, Ligia de Moura; Crestani, Sandra; de Souza, Priscila; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; Dartora, Nessana; de Souza, Lauro Mera; Cipriani, Thales Ricardo; da Silva-Santos, José Eduardo; André, Eunice; Werner, Maria Fernanda de Paula

    2018-04-01

    Arctium lappa L., popularly known as burdock, is a medicinal plant used worldwide. The antiulcer and gastric-acid antisecretory effects of ethanolic extract from roots of Arctium lappa (EET) were already demonstrated. However, the mechanism by which the extract reduces the gastric acid secretion remains unclear. Therefore, this study was designed to evaluate the antisecretory mode of action of EET. The effects of EET on H + , K + -ATPase activity were verified in vitro, whereas the effects of the extract on cholinergic-, histaminergic- or gastrinergic-acid gastric stimulation were assessed in vivo on stimulated pylorus ligated rats. Moreover, ex vivo contractility studies on gastric muscle strips from rats were also employed. The incubation with EET (1000 µg/ml) partially inhibited H + , K + -ATPase activity, and the intraduodenal administration of EET (10 mg/kg) decreased the volume and acidity of gastric secretion stimulated by bethanechol, histamine, and pentagastrin. EET (100-1000 µg/ml) did not alter the gastric relaxation induced by histamine but decreased acetylcholine-induced contraction in gastric fundus strips. Interestingly, EET also reduced the increase in the gastric muscle tone induced by 40 mM KCl depolarizing solution, as well as the maximum contractile responses evoked by CaCl 2 in Ca 2+ -free depolarizing solution, without impairing the effect of acetylcholine on fundus strips maintained in Ca 2+ -free nutritive solution. Our results reinforce the gastric antisecretory properties of preparations obtained from Arctium lappa, and indicate that the mechanisms involved in EET antisecretory effects include a moderate reduction of the H + , K + -ATPase activity associated with inhibitory effects on calcium influx and of cholinergic pathways in the stomach muscle.

  19. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  20. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  1. Calcium and bone metabolism disorders during pregnancy and lactation.

    Science.gov (United States)

    Kovacs, Christopher S

    2011-12-01

    Pregnancy and lactation cause a substantial increase in demand for calcium that is met by different maternal adaptations within each period. Intestinal calcium absorption more than doubles during pregnancy, whereas the maternal skeleton resorbs to provide most of the calcium content of breast milk during lactation. These maternal adaptations also affect the presentation, diagnosis, and management of disorders of calcium and bone metabolism. Although some women may experience fragility fractures as a consequence of pregnancy or lactation, for most women, parity and lactation do not affect the long-term risks of low bone density, osteoporosis, or fracture. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Risk of High Dietary Calcium for Arterial Calcification in Older Adults

    Directory of Open Access Journals (Sweden)

    Philip J. Klemmer

    2013-09-01

    Full Text Available Concern has recently arisen about the potential adverse effects of excessive calcium intakes, i.e., calcium loading from supplements, on arterial calcification and risks of cardiovascular diseases (CVD in older adults. Published reports that high calcium intakes in free-living adults have relatively little or no beneficial impact on bone mineral density (BMD and fracture rates suggest that current recommendations of calcium for adults may be set too high. Because even healthy kidneys have limited capability of eliminating excessive calcium in the diet, the likelihood of soft-tissue calcification may increase in older adults who take calcium supplements, particularly in those with age or disease-related reduction in renal function. The maintenance of BMD and bone health continues to be an important goal of adequate dietary calcium consumption, but eliminating potential risks of CVDs from excessive calcium intakes needs to be factored into policy recommendations for calcium by adults.

  3. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  4. Study of calcium chloride and calcium nitrate purification on inorganic sorbents

    International Nuclear Information System (INIS)

    Vasil'eva, L.V.; Knyazeva, A.N.; Fakeev, A.A.; Belyaeva, N.A.; Morozov, V.I.; Kucherova, V.V.

    1986-01-01

    Purification of calcium chloride and calcium nitrate from iron, chromium, manganese and cobalt impurities by sorption on some inorganic collectors are considered in this article. Study was conducted by means of radioactive-tracer technique at concurrent use of several γ-radioactive isotopes. As a collectors were used hydrated aluminium and zirconium oxides. Dependence of effectiveness of precipitation by collectors on ph-value of medium, quantity of collector, nature and concentration of components is studied. Optimal parameters of purification of calcium chloride and calcium nitrate are defined.

  5. Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme.

    Science.gov (United States)

    Gibson, Gary E; Zhang, Hui; Xu, Hui; Park, Larry C H; Jeitner, Thomas M

    2002-03-16

    Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.

  6. Multitrophic effects of calcium availability on invasive alien plants, birds, and bird prey items

    Science.gov (United States)

    Vince D' Amico; Greg Shriver; Jake Bowman; Meg Ballard; Whitney Wiest; Liz Tymkiw; Melissa. Miller

    2011-01-01

    Acid rain alters forest soil calcium concentrations in two ways: (1) hydrogen ions displace exchangeable calcium adsorbed to soil surfaces, and (2) aluminum is released to soil water by acid rain and displaces adsorbed calcium. This increases the absorption of aluminum by plant roots, and decreases the absorption of calcium, causing calcium to be more readily leached...

  7. Influence of calcium acetate on rye bread volume

    Directory of Open Access Journals (Sweden)

    Katharina FUCKERER

    2016-01-01

    Full Text Available Abstract The positive accepted savoury taste of rye bread is dependent on acetate concentration in the dough of such breads. In order to study how calcium acetate influences rye bread properties, the pH of rye doughs fortified with calcium acetate and the resulting volume of the breads were measured. Furthermore, CO2 formation of yeast with added calcium acetate and yeast with different pH levels (4, 7, 9 were measured. Thereby, it was determined that the addition of calcium acetate increased the pH of dough from 4.42 to 5.29 and significantly reduced the volume of the breads from 1235.19 mL to 885.52 mL. It could be proven that bread volume was affected by a 30.9% lower CO2 amount production of yeast, although bread volume was not affected by changing pH levels. Due to reduced bread volume, high concentrations of calcium acetate additions are not recommended for improving rye bread taste.

  8. Enzymatic pH control for biomimetic depostion of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Birgani, Z.T.; Li, Y.B.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  9. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  10. Association of Calcium-Sensing Receptor (CASR rs 1801725 with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Fateme Rostami

    2012-07-01

    Full Text Available Background: Calcium induces apoptosis in intestinal epithelial cells and subsequently prevents colorectal cancer through ion calcium receptor. Calcium-sensing receptor mutation reduces the expression of this receptor, and subsequently in reduces calcium transportation. Many studies have shown that Calcium-sensing receptor gene polymorphism may increase the risk of colorectal cancer. The purpose of this study is to assess the prevalence of calcium-sensing receptor polymorphisms (rs 1801725 in Iran society and to examine the role of this polymorphism in the increased risk of colorectal cancer (CRC.Materials and Methods: The research was a case-control study. 105 patients with colorectal cancer and 105 controls were randomly studied using polymerase chain reaction and restriction fragment length polymorphism. χ2 test and software 16- SPSS were used for statistical analysis.Results: In patient samples, the frequency of the genotypes TT, GT, GG in gene CASR rs 1801725 was respectively 64.8, 32.4, and 2.9 and the frequency of this polymorphism in control samples was respectively 51.2, 45.7, and 2.9. Frequency of allele G in patient samples was 0/48 and frequency of allele T was 0.25. In addition, Frequency of allele G in control samples was 0.74 and Frequency of allele T was calculated 0.19.Conclusion: The results show that calcium-sensing receptor variant (1801725 rs is not associated with increased risk of colorectal cancer.

  11. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    International Nuclear Information System (INIS)

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2006-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels

  12. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic beta-cells.

    Science.gov (United States)

    Squires, Paul E; Hills, Claire E; Rogers, Gareth J; Garland, Patrick; Farley, Sophia R; Morgan, Noel G

    2004-10-06

    beta-Carbolines (including harmane and pinoline) stimulate insulin secretion by a mechanism that may involve interaction with imidazoline I(3)-receptors but which also appears to be mediated by actions that are additional to imidazoline receptor agonism. Using the MIN6 beta-cell line, we now show that both the imidazoline I(3)-receptor agonist, efaroxan, and the beta-carboline, harmane, directly elevate cytosolic Ca(2+) and increase insulin secretion but that these responses display different characteristics. In the case of efaroxan, the increase in cytosolic Ca(2+) was readily reversible, whereas, with harmane, the effect persisted beyond removal of the agonist and resulted in the development of a repetitive train of Ca(2+)-oscillations whose frequency, but not amplitude, was concentration-dependent. Initiation of the Ca(2+)-oscillations by harmane was independent of extracellular calcium but was sensitive to both dantrolene and high levels (20 mM) of caffeine, suggesting the involvement of ryanodine receptor-gated Ca(2+)-release. The expression of ryanodine receptor-1 and ryanodine receptor-2 mRNA in MIN6 cells was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) and, since low concentrations of caffeine (1 mM) or thimerosal (10 microM) stimulated increases in [Ca(2+)](i), we conclude that ryanodine receptors are functional in these cells. Furthermore, the increase in insulin secretion induced by harmane was attenuated by dantrolene, consistent with the involvement of ryanodine receptors in mediating this response. By contrast, the smaller insulin secretory response to efaroxan was unaffected by dantrolene. Harmane-evoked changes in cytosolic Ca(2+) were maintained by nifedipine-sensitive Ca(2+)-influx, suggesting the involvement of L-type voltage-gated Ca(2+)-channels. Taken together, these data imply that harmane may interact with ryanodine receptors to generate sustained Ca(2+)-oscillations in pancreatic beta-cells and that this effect

  13. Calcium dips enhance volatile emission of cold-stored 'Fuji Kiku-8' apples.

    Science.gov (United States)

    Ortiz, Abel; Echeverría, Gemma; Graell, Jordi; Lara, Isabel

    2009-06-10

    Despite the relevance of volatile production for overall quality of apple (Malus x domestica Borkh.) fruit, only a few studies have focused on the effects of calcium treatments on this quality attribute. In this work, 'Fuji Kiku-8' apples were harvested at commercial maturity, dipped in calcium chloride (2%, w/v), stored at 1 degrees C and 92% relative humidity for 4 or 7 months under either air or ultralow oxygen (ULO; 1 kPa of O(2)/2 kPa of CO(2)), and placed subsequently at 20 degrees C. Ethylene production, standard quality parameters, emission of volatile compounds, and the activities of some related enzymes were assessed 7 days thereafter. Calcium concentration was higher in CaCl(2)-treated than in untreated fruit, suggesting that the treatment was effective in introducing calcium into the tissues. Higher calcium contents were concomitant with higher flesh firmness and titratable acidity after storage. Furthermore, calcium treatment led to increased production of volatiles in middle-term stored apples, probably arising from enhanced supply of precursors for ester production as a consequence of increased pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities. After long-term storage, higher volatile emission might have arisen also from the enhancement of alcohol o-acyltransferase (AAT) activity, which was increased as a result of calcium treatment. In addition to storage period, the effects of calcium treatment were also partially dependent on storage atmosphere and more noticeable for fruit stored in air.

  14. Original Paper Etude des effets vermicide et anti-diarrhéique du ...

    African Journals Online (AJOL)

    lisse intestinal qui serait due, soit à une inhibition de l'influx calcique, soit à une augmentation de l'efflux de calcium sans modification de l'influx ou même à une capture du Ca2+ libre cytoplasmique. Effet des concentrations croissantes du macéré aqueux des feuilles de Salvadora persica, L. sur la contracture induite par.

  15. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  16. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  17. Recent nutritional trends of calcium and vitamin D in East Asia

    Directory of Open Access Journals (Sweden)

    Hiroaki Ohta

    2016-12-01

    Full Text Available Calcium intake may play an important role on bone health. The recent national nutritional survey in Japan revealed the gradual decrease in calcium intake to around 480 mg/day. In addition, the patients with low level of vitamin D become too large in proportion. The present perspective proposes to increase calcium intake in Asian population.

  18. Inter-scan reproducibility of coronary calcium measurement using Multi Detector-Row Computed Tomography (MDCT)

    International Nuclear Information System (INIS)

    Sabour, Siamak; Rutten, A.; Schouw, Y. T. van der; Atsma, F.; Grobbee, D. E.; Mali, W. P.; Bartelink, M. E. L.; Bots, M. L.; Prokop, M.

    2007-01-01

    Purpose. To assess inter-scan reproducibility of coronary calcium measurements obtained from Multi Detector-Row CT (MDCT) images and to evaluate whether this reproducibility is affected by different measurement protocols, slice thickness, cardiovascular risk factors and/or technical variables.Design. Cross-sectional study with repeated measurements. Materials and methods. The study population comprised 76 healthy women. Coronary calcium was assessed in these women twice in one session using 16-MDCT (Philips Mx 8000 IDT 16). Images were reconstructed with 1.5 mm slice thickness and 3.0 mm slice thickness. The 76 repeated scans were scored. The Agatston score, a volume measurement and a mass measurement were assessed. Reproducibility was determined by estimation of mean, absolute, relative difference, the weighted kappa value for agreement and the Intra-class correlation coefficient (ICCC).Results. Fifty-five participants (72.4%) had a coronary calcification of more than zero in Agatston (1.5 mm slice thickness). The reproducibility of coronary calcium measurements between scans in terms of ranking was excellent with Intra-class correlation coefficients of >0.98, and kappa values above 0.80. The absolute difference in calcium score between scans increased with increasing calcium levels, indicating that measurement error increases with increasing calcium levels. However, no relation was found between the mean difference in scores and calcium levels, indicating that the increase in measurement error is likely to result in random misclassification in calcium score. Reproducibility results were similar for 1.5 mm slices and for 3.0 mm slices, and equal for Agatston, volume and mass measurements.Conclusion. Inter-scan reproducibility of measurement of coronary calcium using images from MDCT is excellent, irrespective of slice thickness and type of calcium parameter

  19. CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M.

    2014-01-01

    X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ 2 goodness-of-fit metric improves from 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs

  20. Estimation of ionized calcium, total calcium and albumin corrected calcium for the diagnosis of hypocalcaemia of malignancy

    International Nuclear Information System (INIS)

    Ijaz, A.; Mehmood, T.; Qureshi, A.H.; Anwar, M.; Dilawar, M.; Hussain, I.; Khan, F.A.; Khan, D.A.; Hussain, S.; Khan, I.A.

    2006-01-01

    Objective: To measure levels of ionized calcium, total calcium and albumin corrected calcium in patients with different malignant disorders for the diagnosis of hypercalcaemia of malignancy. Design: A case control comparative study. Place and Duration of Study: The study was carried out in the Department of Pathology, Army Medical College Rawalpindi, Armed Forces Institute of Pathology and Department of Oncology CMH, Rawalpindi from March 2003 to December 2003. Subjects and Methods: Ninety-seven patients of various malignant disorders, admitted in the Department of Oncology, CMH, Rawalpindi, and 39 age and gender-matched disease-free persons (as control) were included in the study. Blood ionized calcium (Ca/sup ++/), pH, sodium (Na/sup +/) and potassium (K/sup +/) were analysed by Ion selective electrode (ISE) on Easylyte> auto analyser. Other related parameters were measured by colorimetric methods. Results: Blood Ca/sup ++/ levels in patients suffering from malignant disorders were found significantly high (mean +- j 1.30+017 mmoV/L) as compared to control subjects (mean +- 1.23+0.03 mmoV/L) (p<0.001). The number of patients with hypercalcaemia of malignancy detected by Ca/sup ++/ estimation was significantly higher (38%) as compared to total calcium (8.4%) and albumin corrected calcium ACC (10.6%) (p<0.001). There was no statistically significant difference in other parameters e.g. phosphate, urea, creatinine, pH, Na/sup +/ and K/sup +/ levels in study subjects and controls. Conclusion: Detection of hypercalcaemia can be markedly improved if ionized calcium estimation is used in patients with malignant disorders. (author)