WorldWideScience

Sample records for increase vertical resolution

  1. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Science.gov (United States)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  3. Conflict Resolution in Vertical Collaborations in the Agri-food Sector

    Directory of Open Access Journals (Sweden)

    Vera Belaya

    2016-02-01

    Full Text Available Vertical collaborations in supply chains imply the achievement of mutual benefits for the participating partners such as increasing sales, reducing costs and risks and improving the overall performance. However, the benefits are sometimes difficult to gain due to existing differences in interests and goals of the individual chain members. Thus, conflicts are inevitable. Power can be seen as one of the mechanisms to resolve conflicts in supply chains. By and large, the findings provide support that power could have a profound impact on conflict resolution in vertical collaborations. However, in order to successfully resolve conflicts the knowledge of different power types is essential.

  4. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Science.gov (United States)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  5. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Directory of Open Access Journals (Sweden)

    J. Zhuang

    2018-05-01

    Full Text Available Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx or vertical resolution (Δz. Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx ∕ Δzopt ∼ 1000 for simulating the plumes. This is considerably higher than current global models (Δx ∕ Δz ∼ 20 and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3 over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz  ≈  80 m preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  6. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    and heat transport model (HydroGeoSphere). Subsequently, time series of vertical groundwater fluxes were computed based on the high-resolution vertical streambed sediment temperature profiles by coupling the model with PEST. The calculated vertical flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in vertical fluxes at the two test sites can also be observed, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.

  7. Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution

    Directory of Open Access Journals (Sweden)

    C. Bossuet

    Full Text Available Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere, and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere; the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the

  8. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    observed below the MH. The radiative power density absorbed into each atmospheric layer was normalized by the layer height to compare measurements taken at different sites with different vertical resolutions. The atmospheric absorption of radiative power below the MH ranged from +45.2±5.1 mW/m3 up to +103.3±16.2 mW/m3 and was ~2-3 times higher than above MH. The resulting heating rate was characterized by a vertical negative gradient with increasing height, from -2.6±0.2 K/(day km) up to -8.3±1.2 K/(day km), exerting a negative feedback on the atmospheric stability over basin valleys, weakening the ground-based thermal inversions and increasing the dispersal conditions.

  9. IMPROVING VERTICAL AND LATERAL RESOLUTION BY STRETCH-FREE, HORIZON-ORIENTED IMAGING

    Directory of Open Access Journals (Sweden)

    Pérez Gabriel

    2006-12-01

    Full Text Available The pre-stack Kirchhoff migration is implemented for delivering wavelet stretch-free imaged data, if the migration is (ideally limited to the wavelet corresponding to a target horizon. Avoiding wavelet stretch provides long-offset imaged data, far beyond what is reached in conventional migration and results in images from the target with improved vertical and lateral resolution and angular illumination. Increasing the range of imaged offsets also increases the sensitivity to event-crossing, velocity errors and anisotropy. These issues must be addressed to fully achieve the greatest potential of this technique. These ideas are further illustrated with a land survey seismic data application in Texas, U.S.

  10. Economic Effects of Increased Control Zone Sizes in Conflict Resolution

    Science.gov (United States)

    Datta, Koushik

    1998-01-01

    A methodology for estimating the economic effects of different control zone sizes used in conflict resolutions between aircraft is presented in this paper. The methodology is based on estimating the difference in flight times of aircraft with and without the control zone, and converting the difference into a direct operating cost. Using this methodology the effects of increased lateral and vertical control zone sizes are evaluated.

  11. Global carbon monoxide vertical distributions from spaceborne high-resolution FTIR nadir measurements

    Directory of Open Access Journals (Sweden)

    B. Barret

    2005-01-01

    Full Text Available This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM and are characterized in terms of vertical sensitivity and error budget. It is found that most of the IMG measurements contain between 1.5 and 2.2 independent pieces of information about the vertical distribution of CO from the lower troposphere to the upper troposphere-lower stratosphere (UTLS. The retrievals are validated against coincident NOAA/CMDL in situ surface measurements and NDSC/FTIR total columns measurements. The retrieved global distributions of CO are also found to be in good agreement with the distributions modeled by the GEOS-CHEM 3D CTM, highlighting the ability of IMG to capture the horizontal as well as the vertical structure of the CO distributions.

  12. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    Science.gov (United States)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  13. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    Science.gov (United States)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  14. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    Directory of Open Access Journals (Sweden)

    O. Membrive

    2017-06-01

    Full Text Available An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010. It consists of a long (>  100 m and narrow (<  1 cm stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i better capture the vertical distribution of CO2 and CH4, (ii provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm tube and a 100 m of 0.25 in. (6.35 mm tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h. The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada. High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a

  15. Improving MJO Prediction and Simulation Using AGCM Coupled Ocean Model with Refined Vertical Resolution

    Science.gov (United States)

    Tu, Chia-Ying; Tseng, Wan-Ling; Kuo, Pei-Hsuan; Lan, Yung-Yao; Tsuang, Ben-Jei; Hsu, Huang-Hsiung

    2017-04-01

    Precipitation in Taiwan area is significantly influenced by MJO (Madden-Julian Oscillation) in the boreal winter. This study is therefore conducted by toggling the MJO prediction and simulation with a unique model structure. The one-dimensional TKE (Turbulence Kinetic Energy) type ocean model SIT (Snow, Ice, Thermocline) with refined vertical resolution near surface is able to resolve cool skin, as well as diurnal warm layer. SIT can simulate accurate SST and hence give precise air-sea interaction. By coupling SIT with ECHAM5 (MPI-Meteorology), CAM5 (NCAR) and HiRAM (GFDL), the MJO simulations in 20-yrs climate integrations conducted by three SIT-coupled AGCMs are significant improved comparing to those driven by prescribed SST. The horizontal resolutions in ECHAM5, CAM5 and HiRAM are 2-deg., 1-deg and 0.5-deg., respectively. This suggests that the improvement of MJO simulation by coupling SIT is AGCM-resolution independent. This study further utilizes HiRAM coupled SIT to evaluate its MJO forecast skill. HiRAM has been recognized as one of the best model for seasonal forecasts of hurricane/typhoon activity (Zhao et al., 2009; Chen & Lin, 2011; 2013), but was not as successful in MJO forecast. The preliminary result of the HiRAM-SIT experiment during DYNAMO period shows improved success in MJO forecast. These improvements of MJO prediction and simulation in both hindcast experiments and climate integrations are mainly from better-simulated SST diurnal cycle and diurnal amplitude, which is contributed by the refined vertical resolution near ocean surface in SIT. Keywords: MJO Predictability, DYNAMO

  16. Mt. Graham: optical turbulence vertical distribution with standard and high resolution

    Science.gov (United States)

    Masciadri, Elena; Stoesz, Jeff; Hagelin, Susanna; Lascaux, Franck

    2010-07-01

    A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the C2N and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43 nights done with a Generalized Scidar (GS) used in standard configuration with a vertical resolution of ~1 km on the whole 20-22 km and with the new technique (HVR-GS) in the first kilometer. The latter achieves a resolution of ~ 20-30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the C2N. A discretized distribution of the typical C2N profiles useful for the Ground Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis for the LBT Laser Guide Star system ARGOS case is done including the calculation of the 'gray zones' for J, H and K bands. Mt. Graham confirms to be an excellent site with median values of the seeing without dome contribution equal to 0.72", the isoplanatic angle equal to 2.5" and the wavefront coherence time equal to 4.8 msec. We provide a cumulative distribution of the percentage of turbulence developed below H* where H* is included in the (0,1 km) range. We find that 50% of the whole turbulence develops in the first 80 m from the ground. The turbulence decreasing rate is very similar to what has been observed above Mauna Kea.

  17. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl NPP accident: influence of varying emission-altitude and model horizontal and vertical resolution

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-03-01

    The coupled model LMDzORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5°×1.25°, and the same grid stretched over Europe to reach a resolution of 0.45°×0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels, respectively, extending up to mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 vertical levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The best choice for the model validation was the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986. This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. However, the best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to Atlas), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of

  18. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    Science.gov (United States)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  19. Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico

    Science.gov (United States)

    Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping

    2018-02-01

    A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.

  20. New approaches to high-resolution mapping of marine vertical structures.

    Science.gov (United States)

    Robert, Katleen; Huvenne, Veerle A I; Georgiopoulou, Aggeliki; Jones, Daniel O B; Marsh, Leigh; D O Carter, Gareth; Chaumillon, Leo

    2017-08-21

    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures.

  1. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  2. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    Science.gov (United States)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  3. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-07-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5° × 1.27°, and the same grid stretched over Europe to reach a resolution of 0.66° × 0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for

  4. Constraining the Distribution of Vertical Slip on the South Heli Shan Fault (Northeastern Tibet) From High-Resolution Topographic Data

    Science.gov (United States)

    Bi, Haiyun; Zheng, Wenjun; Ge, Weipeng; Zhang, Peizhen; Zeng, Jiangyuan; Yu, Jingxing

    2018-03-01

    Reconstruction of the along-fault slip distribution provides an insight into the long-term rupture patterns of a fault, thereby enabling more accurate assessment of its future behavior. The increasing wealth of high-resolution topographic data, such as Light Detection and Ranging and photogrammetric digital elevation models, allows us to better constrain the slip distribution, thus greatly improving our understanding of fault behavior. The South Heli Shan Fault is a major active fault on the northeastern margin of the Tibetan Plateau. In this study, we built a 2 m resolution digital elevation model of the South Heli Shan Fault based on high-resolution GeoEye-1 stereo satellite imagery and then measured 302 vertical displacements along the fault, which increased the measurement density of previous field surveys by a factor of nearly 5. The cumulative displacements show an asymmetric distribution along the fault, comprising three major segments. An increasing trend from west to east indicates that the fault has likely propagated westward over its lifetime. The topographic relief of Heli Shan shows an asymmetry similar to the measured cumulative slip distribution, suggesting that the uplift of Heli Shan may result mainly from the long-term activity of the South Heli Shan Fault. Furthermore, the cumulative displacements divide into discrete clusters along the fault, indicating that the fault has ruptured in several large earthquakes. By constraining the slip-length distribution of each rupture, we found that the events do not support a characteristic recurrence model for the fault.

  5. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  6. Simulations of the transport and deposition of {sup 137}Cs over Europe after the Chernobyl Nuclear Power Plant accident. Influence of varying emission-altitude and model horizontal and vertical resolution

    Energy Technology Data Exchange (ETDEWEB)

    Evangeliou, N.; Balkanski, Y.; Cozic, A. [Institut Pierre et Simon Laplace, Gif sur Yvette (France). Lab. des Sciences du Climat et de l' Environnement; Moeller, A.P. [Univ. Paris-Sud, Orsay (France). Lab. d' Ecologie, Systematique et Evolution

    2013-07-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer {sup 137}Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5 x 1.27 , and the same grid stretched over Europe to reach a resolution of 0.66 x 0.51 . The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for {sup 137}Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained

  7. Simulations of the transport and deposition of "1"3"7Cs over Europe after the Chernobyl Nuclear Power Plant accident. Influence of varying emission-altitude and model horizontal and vertical resolution

    International Nuclear Information System (INIS)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Moeller, A.P.

    2013-01-01

    The coupled model LMDZORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer "1"3"7Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5 x 1.27 , and the same grid stretched over Europe to reach a resolution of 0.66 x 0.51 . The vertical dimension is represented with two different resolutions, 19 and 39 levels respectively, extending up to the mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The model is validated with the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986 using the emission inventory from Brandt et al. (2002). This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for "1"3"7Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. The best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to De Cort et al., 1998), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for

  8. Cephalometric changes in growing patients with increased vertical dimension treated with cervical headgear.

    Science.gov (United States)

    Sambataro, Sergio; Fastuca, Rosamaria; Oppermann, Nelson J; Lorusso, Paola; Baccetti, Tiziano; Franchi, Lorenzo; Caprioglio, Alberto

    2017-07-01

    The aim of the present study was to investigate the cephalometric changes in patients with increased vertical dimension after treatment with cervical headgear compared to controls. The sample of the present retrospective study consisted of 20 Class II patients (10 males, 10 females; mean age 8.54 ± 1.15 years) with increased vertical dimension treated with cervical headgear (treatment group) and 21 Class II patients (11 males, 10 females; mean age 8.41 ± 1.15 years) with increased vertical dimension who underwent no treatment (control group). Cephalograms were available for each subject at baseline (T1) and after treatment/observation time (T2) for both groups and cephalometric analysis allowed for evaluation of changes between time points and between groups. Regarding facial axis, N-ANS/ANS-Me, and overbite, there were no negatively significant changes in the treated group showing no significant worsening in the vertical dimension. Regarding facial angle, there was a significant increase in the treated group between the time points and when compared to the control group, showing counterclockwise rotation of the mandible in the treated group. The vertical dimension was not significantly altered after cervical headgear treatment although the anterior facial height was higher at the beginning of treatment. There was significant counterclockwise rotation of the mandible, and clockwise rotation and distal displacement of the maxilla after treatment.

  9. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    Science.gov (United States)

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p basketball play, as it is beneficial to vertical jump performance.

  10. Vertical integration increases opportunities for patient flow.

    Science.gov (United States)

    Radoccia, R A; Benvenuto, J A; Blancett, L

    1991-08-01

    New sources of patients will become more and more important in the next decade as hospitals continue to feel the squeeze of a competitive marketplace. Vertical integration, a distribution tool used in other industries, will be a significant tool for health care administrators. In the following article, the authors explain the vertical integration model that shows promise for other institutions.

  11. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    International Nuclear Information System (INIS)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K.; Plessis, S.

    2015-01-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C 2 H 6 and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry

  12. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [ICES, The University of Texas at Austin, 201 East 24th Street, Austin, TX 78712 (United States)

    2015-03-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C{sub 2}H{sub 6} and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry.

  13. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  14. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    Science.gov (United States)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  15. Vertical barriers with increased sorption capacities

    International Nuclear Information System (INIS)

    Bradl, H.B.

    1997-01-01

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed 'tailor-made' depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents

  16. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  17. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    Science.gov (United States)

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  18. Resolution of Reflection Seismic Data Revisited

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Mosegaard, Klaus; Zunino, Andrea

    The Rayleigh Principle states that the minimum separation between two reflectors that allows them to be visually separated is the separation where the wavelet maxima from the two superimposed reflections combine into one maximum. This happens around Δtres = λb/8, where λb is the predominant...... lower vertical resolution of reflection seismic data. In the following we will revisit think layer model and demonstrate that there is in practice no limit to the vertical resolution using the parameterization of Widess (1973), and that the vertical resolution is limited by the noise in the data...

  19. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  20. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  1. Experimental investigation on the evaporation of a wet porous layer inside a vertical channel with resolution of the heat equation by inverse method

    International Nuclear Information System (INIS)

    Terzi, A.; Foudhil, W.; Harmand, S.; Ben Jabrallah, S.

    2016-01-01

    Highlights: • Experimental study of the evaporation of a wet porous layer inside a vertical channel. • Resolution of the heat equation by inverse method. • The use of the porous layer is more efficient for high heating flux and low liquid inlet flow. • To improve the evaporation, the system must operate at low water inlet flow. - Abstract: In this paper, we realize an Experimental study of the evaporation of a wet porous layer inside a vertical channel. To develop this study, an experimental dispositive was realised. We measure the temperature along the plate and the evaporated flow rate using the test bed. From these measurements we note that the profiles of the temperature are divided into two areas: the heating and the evaporation zone. We also note that the use of the porous layer is more efficient for high heating flux and low liquid inlet flow. In addition, we studied different dimensionless numbers by solving the energy equation by inverse method. We note that the latent Nusselt number is more important than the sensible Nusselt Number, which proves that the flow dissipated by evaporation is greater than the one used by the film to increase its temperature.

  2. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  3. Dark-field scanning confocal microscope for vertical particle tracks in nuclear emulsion

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, S.V.; Tereshchenko, V.V.

    1999-01-01

    The principle of the DArk-FIeld Scanning CONfocal (DAFISCON) microscope for selective observation of the vertical particle tracks in nuclear emulsion is described. The construction of the DAFISCON microscope, built on the basis of the 2D measurement microscope, is described. The results of the experimental testing of the DAFISCON microscope, accomplished at high density of the vertical particle tracks, are presented. The 2D plot and the 1D plot of the CCD dark-field image are given. The spatial resolution of our microscope can be increased by using the objective with higher aperture

  4. Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)

    2017-03-15

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  5. Treatment timing for an orthopedic approach to patients with increased vertical dimension.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; Schulz, Scott O; McNamara, James A

    2008-01-01

    The aim of this study was to investigate the role of treatment timing on the effectiveness of vertical-pull chincup (V-PCC) therapy in conjunction with a bonded rapid maxillary expander (RME) in growing subjects with mild-to-severe hyperdivergent facial patterns. The records of 39 subjects treated with a bonded RME combined with a V-PCC were compared with 29 untreated subjects with similar vertical skeletal disharmonies. Lateral cephalograms were analyzed before (T1) and after treatment or observation (T2). Both the treated and the untreated samples were divided into prepubertal and pubertal groups on the basis of cervical vertebral maturation (prepubertal treated group, 21 subjects; pubertal treated group, 18 subjects; prepubertal control group, 15 subjects; pubertal control group, 14 subjects). Mean change differences from T2 to T1 were compared in the 2 prepubertal and the 2 pubertal groups with independent-sample t tests. No statistically significant differences between the 2 prepubertal groups were found for any cephalometric skeletal measures from T1 to T2. When compared with the untreated pubertal sample, the group treated with the RME and V-PCC at puberty showed a statistically significant reduction in the inclination of the mandibular plane to the Frankfort horizontal (-2.2 mm), a statistically significant reduction in the inclination of the condylar axis to the mandibular plane (-2.2 degrees), and statistically significant supplementary growth of the mandibular ramus (1.7 mm). Treatment of increased vertical dimension with the RME and V-PCC protocol appears to produce better results during the pubertal growth spurt than before puberty, although the absolute amount of correction in the vertical skeletal parameters is limited.

  6. Ultrasonic Ranging System With Increased Resolution

    Science.gov (United States)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  7. Analyzing and leveraging self-similarity for variable resolution atmospheric models

    Science.gov (United States)

    O'Brien, Travis; Collins, William

    2015-04-01

    Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.

  8. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  9. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    Science.gov (United States)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  10. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    Science.gov (United States)

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  11. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  12. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    Science.gov (United States)

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  13. Vertical Takeoff and Landing Vehicle with Increased Cruise Efficiency

    Science.gov (United States)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)

    2018-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  14. Second vertical derivative of potential fields using an adaptation of ...

    African Journals Online (AJOL)

    The second vertical derivative of magnetic fields is commonly used for resolution of anomalies in gravity and magnetic fields. It is also commonly used as an aid to geologic mapping i.e. for the delineation of geological discontinuities in the subsurface. Frequency domain methods for calculating second vertical derivatives ...

  15. LiDAR The Generation of Automatic Mapping for Buildings, Using High Spatial Resolution Digital Vertical Aerial Photography and LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    William Barragán Zaque

    2015-06-01

    Full Text Available The aim of this paper is to generate photogrammetrie products and to automatically map buildings in the area of interest in vector format. The research was conducted Bogotá using high resolution digital vertical aerial photographs and point clouds obtained using LIDAR technology. Image segmentation was also used, alongside radiometric and geometric digital processes. The process took into account aspects including building height, segmentation algorithms, and spectral band combination. The results had an effectiveness of 97.2 % validated through ground-truthing.

  16. Optimization of the energy resolution of an ideal ESCA-type hemispherical analyzer

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Benis, E.P.; Chatzakis, I.

    2005-01-01

    The overall base resolution R B of a high throughput ideal hemispherical deflector analyzer (HDA) equipped with a zoom lens and a position sensitive detector (PSD) placed a distance h from the exit focus plane of the HDA is investigated as a function of h, pre-retardation factor F and beam angle θ 0 . R B is in general a function of the linear lens magnification vertical bar M L vertical bar and can be minimized by choosing the optimal linear lens magnification vertical bar M L vertical bar o under the constraints of the Helmholtz-Lagrange law. Thus, the optimal resolution, R B (vertical bar M L vertical bar o ) can be computed as an analytic function of h,F,θ 0 and represents the ultimate resolution that can be attained ignoring fringing field effects. These results should be helpful in the efficient design and performance evaluation of any HDA utilizing a focusing lens and PSD as is typical for ESCA-type electron spectrometers

  17. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    Energy Technology Data Exchange (ETDEWEB)

    Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

    2011-10-01

    A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

  18. Vision 20/20: Increased image resolution versus reduced radiation exposure

    International Nuclear Information System (INIS)

    Ritman, Erik L.

    2008-01-01

    This is a review of methods, currently and potentially, available for significantly reducing x-ray exposure in medical x-ray imaging. It is stimulated by the radiation exposure implications of the growing use of helical scanning, multislice, x-ray computed tomography for screening, such as for coronary artery atherosclerosis and cancer of the colon and lungs. Screening requires high-throughput imaging with high spatial and contrast resolution to meet the need for high sensitivity and specificity of detection and classification of specific imaged features. To achieve this goal beyond what is currently available with x-ray imaging methods requires increased x-ray exposure, which increases the risk of tissue damage and ultimately cancer development. These consequences limit the utility of current x-ray imaging in screening of at-risk subjects who have not yet developed the clinical symptoms of disease. Current methods for reducing x-ray exposure in x-ray imaging, mostly achieved by increasing sensitivity and specificity of the x-ray detection process, may still have potential for an up-to-tenfold decrease. This could be sufficient for doubling the spatial resolution of x-ray CT while maintaining the current x-ray exposure levels. However, a spatial resolution four times what is currently available might be needed to adequately meet the needs for screening. Consequently, for the proposed need to increase spatial resolution, an additional order of magnitude of reduction of x-ray exposure would be needed just to keep the radiation exposure at current levels. This is conceivably achievable if refraction, rather than the currently used attenuation, of x rays is used to generate the images. Existing methods that have potential for imaging the consequences of refracted x ray in a clinical setting are (1) by imaging the edge enhancement that occurs at the interfaces between adjacent tissues of different refractive indices, or (2) by imaging the changes in interference

  19. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  20. Charge exchange K-tau scattering in the small Vertical BartVertical Bar range at momemtum 30 GeV/c

    International Nuclear Information System (INIS)

    Binon, F.; Gouanere, M.; Davydov, V.A.; Donskov, S.V.; Duteil, P.; Dufournaud, J.; Inayakin, A.V.; Kakauridze, D.B.; Kachanov, V.A.; Kulik, A.V.; Lagnaux, J.P.; Lednev, A.A.; Maisheev, V.A.; Mel'nik, Y.M.; Mikhailov, Y.V.; Peigneux, J.P.; Prokoshkin, Y.D.; Rodnov, Y.V.; Roosen, R.; Startsev, A.V.; Stroot, J.P.; Khaustov, G.V.

    1981-01-01

    Differential cross sections for the reaction K - p→K-bar 0 n at momentum 30 GeV/c have been measured with high angular resolution and statistical accuracy. The experiments were performed at the 70-GeV Serpukhov accelerator using a hodoscopic hadron calorimeter which recorded K 0 /sub L/ mesons. The t-dependence of the cross section shows a marked drop at small Vertical BartVertical Bar which corresponds to a dominant contribution from spin-flip in the rho- and A 2 -exchange amplitudes in the t-channel

  1. Alternative method for reconstruction of antihydrogen annihilation vertices

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C., E-mail: chanpreet.amole@cern.ch [York University, Department of Physics and Astronomy (Canada); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Butler, E. [CERN, Physics Department (Switzerland); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayano, R. S. [University of Tokyo, Department of Physics (Japan); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    The ALPHA experiment, located at CERN, aims to compare the properties of antihydrogen atoms with those of hydrogen atoms. The neutral antihydrogen atoms are trapped using an octupole magnetic trap. The trap region is surrounded by a three layered silicon detector used to reconstruct the antiproton annihilation vertices. This paper describes a method we have devised that can be used for reconstructing annihilation vertices with a good resolution and is more efficient than the standard method currently used for the same purpose.

  2. Alternative method for reconstruction of antihydrogen annihilation vertices

    CERN Document Server

    Amole, C; Andresen , G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    The ALPHA experiment, located at CERN, aims to compare the properties of antihydrogen atoms with those of hydrogen atoms. The neutral antihydrogen atoms are trapped using an octupole magnetic trap. The trap region is surrounded by a three layered silicon detector used to reconstruct the antiproton annihilation vertices. This paper describes a method we have devised that can be used for reconstructing annihilation vertices with a good resolution and is more efficient than the standard method currently used for the same purpose.

  3. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  4. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  5. Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency

    Science.gov (United States)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)

    2016-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  6. The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution

    Science.gov (United States)

    O'Dea, Enda; Furner, Rachel; Wakelin, Sarah; Siddorn, John; While, James; Sykes, Peter; King, Robert; Holt, Jason; Hewitt, Helene

    2017-08-01

    We describe the physical model component of the standard Coastal Ocean version 5 configuration (CO5) of the European north-west shelf (NWS). CO5 was developed jointly between the Met Office and the National Oceanography Centre. CO5 is designed with the seamless approach in mind, which allows for modelling of multiple timescales for a variety of applications from short-range ocean forecasting to climate projections. The configuration constitutes the basis of the latest update to the ocean and data assimilation components of the Met Office's operational Forecast Ocean Assimilation Model (FOAM) for the NWS. A 30.5-year non-assimilating control hindcast of CO5 was integrated from January 1981 to June 2012. Sensitivity simulations were conducted with reference to the control run. The control run is compared against a previous non-assimilating Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) hindcast of the NWS. The CO5 control hindcast is shown to have much reduced biases compared to POLCOMS. Emphasis in the system description is weighted to updates in CO5 over previous versions. Updates include an increase in vertical resolution, a new vertical coordinate stretching function, the replacement of climatological riverine sources with the pan-European hydrological model E-HYPE, a new Baltic boundary condition and switching from directly imposed atmospheric model boundary fluxes to calculating the fluxes within the model using a bulk formula. Sensitivity tests of the updates are detailed with a view toward attributing observed changes in the new system from the previous system and suggesting future directions of research to further improve the system.

  7. Assessing the value of increased model resolution in forecasting fire danger

    Science.gov (United States)

    Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth

    2003-01-01

    The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...

  8. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  9. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    Science.gov (United States)

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices.

  10. The role of vertical shear on the horizontal oceanic dispersion

    OpenAIRE

    A. S. Lanotte; R. Corrado; G. Lacorata; L. Palatella; C. Pizzigalli; I. Schipa; R. Santoleri

    2015-01-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispers...

  11. The effect of high-resolution orography on numerical modelling of atmospheric flow: a preliminary experiment

    International Nuclear Information System (INIS)

    Scarani, C.; Tampieri, F.; Tibaldi, S.

    1983-01-01

    The effect of increasing the resolution of the topography in models of numerical weather prediction is assessed. Different numerical experiments have been performed, referring to a case of cyclogenesis in the lee of the Alps. From the comparison, it appears that the lower atmospheric levels are better described by the model with higherresolution topography; comparable horizontal resolution runs with smoother topography appear to be less satisfactory in this respect. It turns out also that the vertical propagation of the signal due to the front-mountain interaction is faster in the high-resolution experiment

  12. Effects of Resolution on the Simulation of Boundary-layer Clouds and the Partition of Kinetic Energy to Subgrid Scales

    Directory of Open Access Journals (Sweden)

    Anning Cheng

    2010-02-01

    Full Text Available Seven boundary-layer cloud cases are simulated with UCLA-LES (The University of California, Los Angeles – large eddy simulation model with different horizontal and vertical gridspacing to investigate how the results depend on gridspacing. Some variables are more sensitive to horizontal gridspacing, while others are more sensitive to vertical gridspacing, and still others are sensitive to both horizontal and vertical gridspacings with similar or opposite trends. For cloud-related variables having the opposite dependence on horizontal and vertical gridspacings, changing the gridspacing proportionally in both directions gives the appearance of convergence. In this study, we mainly discuss the impact of subgrid-scale (SGS kinetic energy (KE on the simulations with coarsening of horizontal and vertical gridspacings. A running-mean operator is used to separate the KE of the high-resolution benchmark simulations into that of resolved scales of coarse-resolution simulations and that of SGSs. The diagnosed SGS KE is compared with that parameterized by the Smagorinsky-Lilly SGS scheme at various gridspacings. It is found that the parameterized SGS KE for the coarse-resolution simulations is usually underestimated but the resolved KE is unrealistically large, compared to benchmark simulations. However, the sum of resolved and SGS KEs is about the same for simulations with various gridspacings. The partitioning of SGS and resolved heat and moisture transports is consistent with that of SGS and resolved KE, which means that the parameterized transports are underestimated but resolved-scale transports are overestimated. On the whole, energy shifts to large-scales as the horizontal gridspacing becomes coarse, hence the size of clouds and the resolved circulation increase, the clouds become more stratiform-like with an increase in cloud fraction, cloud liquid-water path and surface precipitation; when coarse vertical gridspacing is used, cloud sizes do not

  13. A self-decoupling piezoresistive sensor for measuring microforce in horizontal and vertical directions

    International Nuclear Information System (INIS)

    Zhou, Jie; Rong, Weibin; Wang, Lefeng; Gao, Peng; Sun, Lining

    2016-01-01

    This paper presents the design, fabrication and calibration of a novel two-dimension microforce sensor with nano-Newton resolution. The sensor, mainly composed of a clamped–clamped beam (horizontal detecting beam), an overhanging beam (vertical detecting beam) and a half-folded beam, is highly sensitive to microforces in the horizontal (parallel to the probe of the designed sensor) and vertical (perpendicular to the wafer surface) directions. The four vertical sidewall surface piezoresistors (horizontal piezoresistors) and two surface piezoresistors (vertical piezoresistors) were fabricated to achieve the requirements of two-dimension microforce measurements. Combining the sensor structure with Wheatstone bridge configurations, the microforce decoupling among the x , y , and z direction can be realized. Accordingly, the sensor is capable of detecting microforces in the horizontal and vertical directions independently. The calibration results verified that the sensor sensitivities at room temperature are 210.58 V N −1 and 159.2 V N −1 in the horizontal and vertical directions, respectively. Additionally, the sensor’s corresponding force resolutions are estimated at 2 nN and 3 nN in theory, respectively. The sensor can be used to measure the contact force between manipulating tools and micro-objects, in fields such as microassembly and biological assays. (paper)

  14. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    International Nuclear Information System (INIS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    2017-01-01

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.

  15. Validation of High-resolution Climate Simulations over Northern Europe.

    Science.gov (United States)

    Muna, R. A.

    2005-12-01

    Two AMIP2-type (Gates 1992) experiments have been performed with climate versions of ARPEGE/IFS model examine for North Atlantic North Europe, and Norwegian region and analyzed the effect of increasing resolution on the simulated biases. The ECMWF reanalysis or ERA-15 has been used to validate the simulations. Each of the simulations is an integration of the period 1979 to 1996. The global simulations used observed monthly mean sea surface temperatures (SST) as lower boundary condition. All aspects but the horizontal resolutions are similar in the two simulations. The first simulation has a uniform horizontal resolution of T63L. The second one has a variable resolution (T106Lc3) with the highest resolution in the Norwegian Sea. Both simulations have 31 vertical layers in the same locations. For each simulation the results were divided into two seasons: winter (DJF) and summer (JJA). The parameters investigated were mean sea level pressure, geopotential and temperature at 850 hPa and 500 hPa. To find out the causes of temperature bias during summer, latent and sensible heat flux, total cloud cover and total precipitation were analyzed. The high-resolution simulation exhibits more or less realistic climate over Nordic, Artic and European region. The overall performance of the simulations shows improvements of generally all fields investigated with increasing resolution over the target area both in winter (DJF) and summer (JJA).

  16. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  17. High Resolution Atmospheric Modeling for Wind Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  18. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  19. ) Increasing Seismic Resolution in a River Delta Environment

    International Nuclear Information System (INIS)

    Akubelem, E.C.; De Bruin, J. A.

    2003-01-01

    Increasing the seismic frequency band on the high frequency side during field seismic data acquisition has always been an important, but difficult goal. An increase in frequency band will improve the resolution and accuracy of the data and have a significant impact on our success in finding and significant impact on our success in finding and developing oil and gas reservoirs. It will for example make it easier to resolve thin beds within a reservoir, therein giving a better handle on volumetrics, and enable better well positioning.An experiment was recently carried out by the SPDC with the aim to extending the seismic frequency band on the high frequency side. If the experiment was successful, it was hoped that seismic acquisition in most of the company's acreage in the Niger Delta and in similar terrain elsewhere on the globe would then adopt the approach. As is well known, the surface layer in the field is generally unconsolidated and has the effect of filtering out high frequencies. In this experiment; the seismic sources and receivers were buried below the thin weathered surface layer, thus avoiding this filtering effect. In this way it was possible to retain higher frequencies and thereby obtain a higher resolution image of the subsurface.There were also some other additional advantages of the approach. Only one geophone was used per station, instead of eighteen, as is traditionally the case in routine work. Recording using the new set-up could continue uninterruptedly during rain, which in big operations will result in a considerable reduction of downtime. Additionally, buried geophones can either be retrieved and used again, or left behind for the purpose of 4D data acquisition in the future.The present experiment has provided some very encouraging results. In the first 2.5 seconds, a better resolution was indeed obtained as was hoped. At deeper levels however, the data quality was found to deteriorate. This aspect of the result now needs to be investigated

  20. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  1. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  2. Vertical Wave Impacts on Offshore Wind Turbine Inspection Platforms

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Jacobsen, Niels Gjøl

    2011-01-01

    Breaking wave impacts on a monopile at 20 m depth are computed with a VOF (Volume Of Fluid) method. The impacting waves are generated by the second-order focused wave group technique, to obtain waves that break at the position of the monopile. The subsequent impact from the vertical run-up flow...... on a horizontal inspection platform is computed for five different platform levels. The computational results show details of monopile impact such as slamming pressures from the overturning wave front and the formation of run-up flow. The results show that vertical platform impacts can occur at 20 m water depth....... The dependence of the vertical platform load to the platform level is discussed. Attention is given to the significant downward force that occur after the upward force associated with the vertical impact. The effect of the numerical resolution on the results is assessed. The position of wave overturning is found...

  3. Characteristics of vertical velocity in marine stratocumulus: comparison of large eddy simulations with observations

    International Nuclear Information System (INIS)

    Guo Huan; Liu Yangang; Daum, Peter H; Senum, Gunnar I; Tao, W-K

    2008-01-01

    We simulated a marine stratus deck sampled during the Marine Stratus/Stratocumulus Experiment (MASE) with a three-dimensional large eddy simulation (LES) model at different model resolutions. Various characteristics of the vertical velocity from the model simulations were evaluated against those derived from the corresponding aircraft in situ observations, focusing on standard deviation, skewness, kurtosis, probability density function (PDF), power spectrum, and structure function. Our results show that although the LES model captures reasonably well the lower-order moments (e.g., horizontal averages and standard deviations), it fails to simulate many aspects of the higher-order moments, such as kurtosis, especially near cloud base and cloud top. Further investigations of the PDFs, power spectra, and structure functions reveal that compared to the observations, the model generally underestimates relatively strong variations on small scales. The results also suggest that increasing the model resolutions improves the agreements between the model results and the observations in virtually all of the properties that we examined. Furthermore, the results indicate that a vertical grid size <10 m is necessary for accurately simulating even the standard-deviation profile, posing new challenges to computer resources.

  4. On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias

    Science.gov (United States)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.

  5. Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    Science.gov (United States)

    Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.

    2010-01-01

    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with

  6. Tests of high-resolution simulations over a region of complex terrain in Southeast coast of Brazil

    Science.gov (United States)

    Chou, Sin Chan; Luís Gomes, Jorge; Ristic, Ivan; Mesinger, Fedor; Sueiro, Gustavo; Andrade, Diego; Lima-e-Silva, Pedro Paulo

    2013-04-01

    The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997. The model has gone through upgrades along these years. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain where it can rise from sea level up to about 1000 m. Accurate near-surface wind direction and magnitude are needed for the power plant emergency plan. Besides, the region suffers from frequent events of floods and landslides, therefore accurate local forecasts are required for disaster warnings. The objective of this work is to carry out a series of numerical experiments to test and evaluate high resolution simulations in this complex area. Verification of model runs uses observations taken from the nuclear power plant and higher resolution reanalyses data. The runs were tested in a period when flow was predominately forced by local conditions and in a period forced by frontal passage. The Eta Model was configured initially with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The series of experiments consists of replacing surface layer stability function, adjusting cloud microphysics scheme parameters, further increasing vertical and horizontal resolutions. By replacing the stability function for the stable conditions substantially increased the katabatic winds and verified better against the tower wind data. Precipitation produced by the model was excessive in the region. Increasing vertical resolution to 60 layers caused a further increase in precipitation production. This excessive

  7. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  8. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  9. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input or final-goods trade is liberalised and when the fixed cost of vertical integration is reduced. At the same time, one observes firms that shift away from either vertical integration, offshoring, or exporting. Further, we provide guidance for testing the open...

  10. High resolution silicon detectors for colliding beam physics

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.

    1984-01-01

    Resolution and linearity of the position measurement of Pisa multi-electrode silicon detectors are presented. The detectors are operated in slightly underdepleted mode and take advantage of their intrinsic resistivity for resistive charge partition between adjacent strips. 22 μm resolution is achieved with readout lines spaced 300 μm. Possible applications in colliding beam experiments for the detection of secondary vertices are discussed. (orig.)

  11. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.

    Science.gov (United States)

    Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo

    2018-04-01

    We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  13. Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions

    Science.gov (United States)

    Vemareddy, P.

    2017-12-01

    We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.

  14. Determining vertical bar Vub vertical bar from the B-bar→Xulν-bar dilepton invariant mass spectrum

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Ligeti, Zoltan; Luke, Michael

    2001-01-01

    The invariant mass spectrum of the lepton pair in inclusive semileptonic B-bar→X u lν-bar decay yields a model independent determination of vertical bar V ub vertical bar. Unlike the lepton energy and hadronic invariant mass spectra, nonperturbative effects are only important in the resonance region, and play a parametrically suppressed role when dΓ/dq 2 is integrated over q 2 >(m B -m D ) 2 , which is required to eliminate the B-bar→X c lν-bar background. We discuss these backgrounds for q 2 slightly below (m B -m D ) 2 , and point out that instead of q 2 >(m B -m D ) 2 =11.6 GeV 2 , the cut can be lowered to q 2 > or approx. 10.5 GeV 2 . This is important experimentally, particularly when effects of a finite neutrino reconstruction resolution are included

  15. Fog prediction using the modified asymptotic liquid water content vertical distribution formulation with the Weather Research and Forecasting model

    Science.gov (United States)

    Kim, E.; Lee, S.; Kim, J.; Chae, D.

    2017-12-01

    Fog forecasts have difficulty in forecasting due to temporal and spatial resolution problems, high numerical computations, complicated mechanisms related to turbulence in order to analyze the fog in the model, and a lack of appropriate fog physical processes. Conventional fog prediction is based on the surface visibility threshold "fog diagnosis method is based on the fog related variables near the surface, such as visibility, low stratus, relative humidity and wind speed but this method only predicts fog occurrence not fog intensity. To improve this, a new fog diagnostic scheme, based on an asymptotic analytical study of radiation fog (Zhou and Ferrier 2008, ZF08) is to increase the accuracy of fog prediction by calculating the vertical LWC considering cooling, turbulence and droplet settling, visibility, surface relative humidity and low stratus. In this study, we intend to improve fog prediction through the Weather Research and Forecasting (WRF) model using high-resolution data. Although the prediction accuracy can be improved by combining the WRF Planetary Boundary Layer (PBL) scheme and 1 dimension (1D) model, it is necessary to increase the vertical resolution in the boundary layer to implement the fog formation and persistence mechanism in the internal boundary layer in the PBL more accurately, we'll modify the algorithm to enhance the effects of turbulence and then compare the newly predicted fog and observations to determine the accuracy of the forecast of the fog occurring on the Korean peninsula.

  16. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Science.gov (United States)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  17. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  18. The Vertical Farm: A Review of Developments and Implications for the Vertical City

    Directory of Open Access Journals (Sweden)

    Kheir Al-Kodmany

    2018-02-01

    Full Text Available This paper discusses the emerging need for vertical farms by examining issues related to food security, urban population growth, farmland shortages, “food miles”, and associated greenhouse gas (GHG emissions. Urban planners and agricultural leaders have argued that cities will need to produce food internally to respond to demand by increasing population and to avoid paralyzing congestion, harmful pollution, and unaffordable food prices. The paper examines urban agriculture as a solution to these problems by merging food production and consumption in one place, with the vertical farm being suitable for urban areas where available land is limited and expensive. Luckily, recent advances in greenhouse technologies such as hydroponics, aeroponics, and aquaponics have provided a promising future to the vertical farm concept. These high-tech systems represent a paradigm shift in farming and food production and offer suitable and efficient methods for city farming by minimizing maintenance and maximizing yield. Upon reviewing these technologies and examining project prototypes, we find that these efforts may plant the seeds for the realization of the vertical farm. The paper, however, closes by speculating about the consequences, advantages, and disadvantages of the vertical farm’s implementation. Economic feasibility, codes, regulations, and a lack of expertise remain major obstacles in the path to implementing the vertical farm.

  19. Resolution limits of migration and linearized waveform inversion images in a lossy medium

    KAUST Repository

    Schuster, Gerard T.; Dutta, Gaurav; Li, Jing

    2017-01-01

    The vertical-and horizontal-resolution limits Delta x(lossy) and Delta z(lossy) of post-stack migration and linearized waveform inversion images are derived for lossy data in the far-field approximation. Unlike the horizontal resolution limit Delta x proportional to lambda z/L in a lossless medium which linearly worsens in depth z, Delta x(lossy) proportional to z(2)/QL worsens quadratically with depth for a medium with small Q values. Here, Q is the quality factor, lambda is the effective wavelength, L is the recording aperture, and loss in the resolution formulae is accounted for by replacing lambda with z/Q. In contrast, the lossy vertical-resolution limit Delta z(lossy) only worsens linearly in depth compared to Delta z proportional to lambda for a lossless medium. For both the causal and acausal Q models, the resolution limits are linearly proportional to 1/Q for small Q. These theoretical predictions are validated with migration images computed from lossy data.

  20. Resolution limits of migration and linearized waveform inversion images in a lossy medium

    KAUST Repository

    Schuster, Gerard T.

    2017-03-10

    The vertical-and horizontal-resolution limits Delta x(lossy) and Delta z(lossy) of post-stack migration and linearized waveform inversion images are derived for lossy data in the far-field approximation. Unlike the horizontal resolution limit Delta x proportional to lambda z/L in a lossless medium which linearly worsens in depth z, Delta x(lossy) proportional to z(2)/QL worsens quadratically with depth for a medium with small Q values. Here, Q is the quality factor, lambda is the effective wavelength, L is the recording aperture, and loss in the resolution formulae is accounted for by replacing lambda with z/Q. In contrast, the lossy vertical-resolution limit Delta z(lossy) only worsens linearly in depth compared to Delta z proportional to lambda for a lossless medium. For both the causal and acausal Q models, the resolution limits are linearly proportional to 1/Q for small Q. These theoretical predictions are validated with migration images computed from lossy data.

  1. Seasonality and vertical structure of microbial communities in an ocean gyre

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A

    2009-01-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change...

  2. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    Science.gov (United States)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  4. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  5. Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2012-01-01

    Full Text Available The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m−2 K−1 of material entropy production is due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport.

  6. Vertical control in the Class III compensatory treatment.

    Science.gov (United States)

    Sobral, Márcio Costa; Habib, Fernando A L; Nascimento, Ana Carla de Souza

    2013-01-01

    Compensatory orthodontic treatment, or simply orthodontic camouflage, consists in an important alternative to orthognathic surgery in the resolution of skeletal discrepancies in adult patients. It is important to point that, to be successfully performed, diagnosis must be detailed, to evaluate, specifically, dental and facial features, as well as the limitations imposed by the magnitude of the discrepancy. The main complaint, patient's treatment expectation, periodontal limits, facial pattern and vertical control are some of the items to be explored in the determination of the viability of a compensatory treatment. Hyperdivergent patients who present with a Class III skeletal discrepancy, associated with a vertical facial pattern, with the presence or tendency to anterior open bite, deserve special attention. In these cases, an efficient strategy of vertical control must be planned and executed. The present article aims at illustrating the evolution of efficient alternatives of vertical control in hiperdivergent patients, from the use, in the recent past, of extraoral appliances on the lower dental arch (J-hook), until nowadays, with the advent of skeletal anchorage. But for patients with a more balanced facial pattern, the conventional mechanics with Class III intermaxillary elastics, associated to an accentuated curve of Spee in the upper arch and a reverse curve of Spee in the lower arch, and vertical elastics in the anterior region, continues to be an excellent alternative, if there is extreme collaboration in using the elastics.

  7. Vertical control in the Class III compensatory treatment

    Directory of Open Access Journals (Sweden)

    Márcio Costa Sobral

    2013-04-01

    Full Text Available INTRODUCTION: Compensatory orthodontic treatment, or simply orthodontic camouflage, consists in an important alternative to orthognathic surgery in the resolution of skeletal discrepancies in adult patients. It is important to point that, to be successfully performed, diagnosis must be detailed, to evaluate, specifically, dental and facial features, as well as the limitations imposed by the magnitude of the discrepancy. The main complaint, patient's treatment expectation, periodontal limits, facial pattern and vertical control are some of the items to be explored in the determination of the viability of a compensatory treatment. Hyperdivergent patients who carry a Class III skeletal discrepancy, associated with a vertical facial pattern, with the presence or tendency to anterior open bite, deserve special attention. In these cases, an efficient strategy of vertical control must be planned and executed. OBJECTIVE: The present article aims at illustrating the evolution of efficient alternatives of vertical control in hiperdivergent patients, from the use, in the recent past, of extra-oral appliances on the lower dental arch (J-hook, until nowadays, with the advent of skeletal anchorage. But for patients with a more balanced facial pattern, the conventional mechanics with Class III intermaxillary elastics, associated to an accentuated curve of Spee in the upper arch and a reverse Curve of Spee in the lower arch, and vertical elastics in the anterior region, continues to be an excellent alternative, if there is extreme collaboration in using the elastics.

  8. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  9. Coordination Logic for Repulsive Resolution Maneuvers

    Science.gov (United States)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  10. Direct growth of vertically aligned carbon nanotubes on silicon substrate by spray pyrolysis of Glycine max oil

    Directory of Open Access Journals (Sweden)

    K. T. Karthikeyan

    2017-11-01

    Full Text Available Vertically aligned carbon nanotubes have been synthesized by spray pyrolysis from Glycine max oil on silicon substrate using ferrocene as catalyst at 650 °C. Glycine max oil, a plant-based hydrocarbon precursor was used as a source of carbon and argon as a carrier gas. The as-grown vertically aligned carbon nanotubes were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. Scanning electron microscopic images reveal that the dense bundles of aligned carbon nanotubes. High resolution transmission electron microscopy and Raman spectroscopy observations indicate that as-grown aligned carbon nanotubes are well graphitized.

  11. A Cost-effective Method for Resolution Increase of the Twostage Piecewise Linear ADC Used for Sensor Linearization

    Directory of Open Access Journals (Sweden)

    Jovanović Jelena

    2016-02-01

    Full Text Available A cost-effective method for resolution increase of a two-stage piecewise linear analog-to-digital converter used for sensor linearization is proposed in this paper. In both conversion stages flash analog-to-digital converters are employed. Resolution increase by one bit per conversion stage is performed by introducing one additional comparator in front of each of two flash analog-to-digital converters, while the converters’ resolutions remain the same. As a result, the number of employed comparators, as well as the circuit complexity and the power consumption originating from employed comparators are for almost 50 % lower in comparison to the same parameters referring to the linearization circuit of the conventional design and of the same resolution. Since the number of employed comparators is significantly reduced according to the proposed method, special modifications of the linearization circuit are needed in order to properly adjust reference voltages of employed comparators.

  12. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    Science.gov (United States)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  13. AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf

    Science.gov (United States)

    Graham, Jennifer A.; O'Dea, Enda; Holt, Jason; Polton, Jeff; Hewitt, Helene T.; Furner, Rachel; Guihou, Karen; Brereton, Ashley; Arnold, Alex; Wakelin, Sarah; Castillo Sanchez, Juan Manuel; Mayorga Adame, C. Gabriela

    2018-02-01

    This paper describes the next-generation ocean forecast model for the European north-west shelf, which will become the basis of operational forecasts in 2018. This new system will provide a step change in resolution and therefore our ability to represent small-scale processes. The new model has a resolution of 1.5 km compared with a grid spacing of 7 km in the current operational system. AMM15 (Atlantic Margin Model, 1.5 km) is introduced as a new regional configuration of NEMO v3.6. Here we describe the technical details behind this configuration, with modifications appropriate for the new high-resolution domain. Results from a 30-year non-assimilative run using the AMM15 domain demonstrate the ability of this model to represent the mean state and variability of the region.Overall, there is an improvement in the representation of the mean state across the region, suggesting similar improvements may be seen in the future operational system. However, the reduction in seasonal bias is greater off-shelf than on-shelf. In the North Sea, biases are largely unchanged. Since there has been no change to the vertical resolution or parameterization schemes, performance improvements are not expected in regions where stratification is dominated by vertical processes rather than advection. This highlights the fact that increased horizontal resolution will not lead to domain-wide improvements. Further work is needed to target bias reduction across the north-west shelf region.

  14. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    Science.gov (United States)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  15. Analysis and optimisation of vertical surface roughness in micro selective laser melting

    International Nuclear Information System (INIS)

    Abele, Eberhard; Kniepkamp, Michael

    2015-01-01

    Surface roughness is a major disadvantage of many additive manufacturing technologies like selective laser melting (SLM) compared to established processes like milling or drilling. With recent advancements the resolution of the SLM process could be increased to layer heights of less than 10 μm leading to a new process called micro selective laser melting (μSLM). The purpose of this paper is to analyze the influence of the μSLM process parameters and exposure strategies on the morphology of vertical surfaces. Contour scanning using varying process parameters was used to increase the surface quality. It is shown that it is possible to achieve average surface roughness of less than 1.7 μm using low scan speeds compared to 8–10 μm without contour scanning. Furthermore it is shown that a contour exposure prior to the core exposure leads to surface defects and thus increased roughness. (paper)

  16. Comparing the Effect of Different Voxel Resolutions for Assessment of Vertical Root Fracture of Permanent Teeth

    International Nuclear Information System (INIS)

    Uzun, Ismail; Gunduz, Kaan; Celenk, Peruze; Avsever, Hakan; Orhan, Kaan; Canitezer, Gozde; Ozmen, Bilal; Cicek, Ersan; Egrioglu, Erol

    2015-01-01

    The teeth with undiagnosed vertical root fractures (VRFs) are likely to receive endodontic treatment or retreatment, leading to frustration and inappropriate endodontic therapies. Moreover, many cases of VRFs cannot be diagnosed definitively until the extraction of tooth. This study aimed to assess the use of different voxel resolutions of two different cone beam computerized tomography (CBCT) units in the detection VRFs in vitro. The study material comprised 74 extracted human mandibular single rooted premolar teeth without root fractures that had not undergone any root-canal treatment. Images were obtained by two different CBCT units. Four image sets were obtained as follows: 1) 3D Accuitomo 170, 4 × 4 cm field of view (FOV) (0.080 mm 3 ); 2) 3D Accuitomo 170. 6 × 6 cm FOV (0.125 mm 3 ); 3) NewTom 3G, 6” (0.16 mm 3 ) and 4) NewTom 3G, 9” FOV (0.25 mm 3 ). Kappa coefficients were calculated to assess both intra- and inter-observer agreements for each image set. No significant differences were found among observers or voxel sizes, with high average Z (Az) results being reported for all groups. Both intra- and inter-observer agreement values were relatively better for 3D Accuitomo 170 images than the images from NewTom 3G. The highest Az and kappa values were obtained with 3D Accuitomo 170, 4 × 4 cm FOV (0.080 mm 3 ) images. No significant differences were found among observers or voxel sizes, with high Az results reported for all groups

  17. Combined VIS-IR spectrometer with vertical probe beam

    Science.gov (United States)

    Protopopov, V.

    2017-12-01

    A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.

  18. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  19. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  20. Iridium catalyzed growth of vertically aligned CNTs by APCVD

    International Nuclear Information System (INIS)

    Sahoo, R.K.; Jacob, C.

    2014-01-01

    Highlights: • Growth of uniform-diameter vertically-aligned multi-walled CNTs by APCVD. • Use of high melting point low carbon solubility iridium nanoparticles as catalyst. • Optimization of growth time for uniform sized, uniformly aligned CNTs. • Growth model for the various features in the vertically aligned CNTs is proposed. - Abstract: Vertically aligned carbon nanotubes (VA-CNTs) have been synthesized using high temperature catalyst nanoparticles of iridium. The catalyst layer was prepared by DC sputtering. Particle density, circularity and average particle size of the catalyst were analyzed using field emission scanning electron microscopy. The alignment, morphology and the length of the as-grown CNTs were analyzed using field-emission scanning electron microscopy. High resolution transmission electron microscopy was carried out to observe the layers of graphitic stacking which form the carbon nanotubes. Micro Raman measurement was used for the analysis of the graphitic crystallinity of the as-grown carbon nano structures. Effects of growth time variation on growth morphology and alignment have been studied. The alignment has been explained on the basis of the crowding effect of the neighboring nanoparticles

  1. Iridium catalyzed growth of vertically aligned CNTs by APCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, R.K.; Jacob, C., E-mail: cxj14_holiday@yahoo.com

    2014-07-01

    Highlights: • Growth of uniform-diameter vertically-aligned multi-walled CNTs by APCVD. • Use of high melting point low carbon solubility iridium nanoparticles as catalyst. • Optimization of growth time for uniform sized, uniformly aligned CNTs. • Growth model for the various features in the vertically aligned CNTs is proposed. - Abstract: Vertically aligned carbon nanotubes (VA-CNTs) have been synthesized using high temperature catalyst nanoparticles of iridium. The catalyst layer was prepared by DC sputtering. Particle density, circularity and average particle size of the catalyst were analyzed using field emission scanning electron microscopy. The alignment, morphology and the length of the as-grown CNTs were analyzed using field-emission scanning electron microscopy. High resolution transmission electron microscopy was carried out to observe the layers of graphitic stacking which form the carbon nanotubes. Micro Raman measurement was used for the analysis of the graphitic crystallinity of the as-grown carbon nano structures. Effects of growth time variation on growth morphology and alignment have been studied. The alignment has been explained on the basis of the crowding effect of the neighboring nanoparticles.

  2. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    Science.gov (United States)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  3. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    Science.gov (United States)

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  4. Structure and optical anisotropy of vertically correlated submonolayer InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Birkedal, Dan; Hvam, Jørn Märcher

    2003-01-01

    A vertically correlated submonolayer (VCSML) InAs/GaAs quantum-dot (QD) heterostructure was studied using transmission electron microscopy, high-resolution x-ray diffraction (HRXRD) and polarization-dependent photoluminescence. The HRXRD (004) rocking curve was simulated using the Tagaki-Taupin...

  5. Analysis of vertical stability limits and vertical displacement event behavior on NSTX-U

    Science.gov (United States)

    Boyer, Mark; Battaglia, Devon; Gerhardt, Stefan; Menard, Jonathan; Mueller, Dennis; Myers, Clayton; Sabbagh, Steven; Smith, David

    2017-10-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) completed its first run campaign in 2016, including commissioning a larger center-stack and three new tangentially aimed neutral beam sources. NSTX-U operates at increased aspect ratio due to the larger center-stack, making vertical stabilization more challenging. Since ST performance is improved at high elongation, improvements to the vertical control system were made, including use of multiple up-down-symmetric flux loop pairs for real-time estimation, and filtering to remove noise. Similar operating limits to those on NSTX (in terms of elongation and internal inductance) were achieved, now at higher aspect ratio. To better understand the observed limits and project to future operating points, a database of vertical displacement events and vertical oscillations observed during the plasma current ramp-up on NSTX/NSTX-U has been generated. Shots were clustered based on the characteristics of the VDEs/oscillations, and the plasma parameter regimes associated with the classes of behavior were studied. Results provide guidance for scenario development during ramp-up to avoid large oscillations at the time of diverting, and provide the means to assess stability of target scenarios for the next campaign. Results will also guide plans for improvements to the vertical control system. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  6. Vertical Transport by Coastal Mesoscale Convective Systems

    Science.gov (United States)

    Lombardo, K.; Kading, T.

    2016-12-01

    This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.

  7. Neglected locked vertical patellar dislocation

    Science.gov (United States)

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  8. Neglected locked vertical patellar dislocation

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Gupta

    2012-01-01

    Full Text Available Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge.

  9. Vertical Cable Seismic Survey for Hydrothermal Deposit

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  10. High-efficient method for spectrometric data real time processing with increased resolution of a measuring channel

    International Nuclear Information System (INIS)

    Ashkinaze, S.I.; Voronov, V.A.; Nechaev, Yu.I.

    1988-01-01

    Solution of reduction problem as a mean to increase spectrometric tract resolution when it is realized using the digit-by-digit modified method and special strategy, significantly reducing the time of processing, is considered. The results presented confirm that the complex measurement tract plus microcomputer is equivalent to the use of the tract with a higher resolution, and the use of the digit-by-digit modified method permits to process spectrometric information in real time scale

  11. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    Science.gov (United States)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the

  12. [EEG-markers of vertical postural organization in healthy persons].

    Science.gov (United States)

    Zhavoronkova, L A; Zharikova, A V; Kushnir, E M; Mikhalkova, A A

    2012-01-01

    In 10 healthy persons (22.8 +/- 0.67 years) spectral-coherence parameters of EEG were analyzed in different steps of verticalizations--from gorizontal position to seat and stand one. Maximal changes of all EEG parameters were observed in state with absence of visual control. We observed an increase of power for fast spectral bands of EEG (beta- and gamma-bands) in all conditions and additional increase of these EEG parameters was observed at situation of complication of conditions of vertical pose supporting. Results of EEG coherent analysis in conditions of human verticalization showed specific increase of coherence for the majority of rhythm ranges in the right hemisphere especially in the central-frontal and in occipital-parietal areas and for interhemispheric pairs for these leads. This fact can reflect participation of cortical as well as subcortical structures in these processes. In conditions of complicate conditions of vertical pose supporting the additional increase of EEG coherence in fast bands (beta-rhythm) was observed at the frontal areas. This fact can testify about increasing of executive functions in this conditions.

  13. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  14. The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, Hans; Klahr, Hubert [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kratter, Kaitlin M., E-mail: baehr@mpia.de [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-10-10

    Massive circumstellar disks are prone to gravitational instabilities, which trigger the formation of spiral arms that can fragment into bound clumps under the right conditions. Two-dimensional simulations of self-gravitating disks are useful starting points for studying fragmentation because they allow high-resolution simulations of thin disks. However, convergence issues can arise in 2D from various sources. One of these sources is the 2D approximation of self-gravity, which exaggerates the effect of self-gravity on small scales when the potential is not smoothed to account for the assumed vertical extent of the disk. This effect is enhanced by increased resolution, resulting in fragmentation at longer cooling timescales β . If true, it suggests that the 3D simulations of disk fragmentation may not have the same convergence problem and could be used to examine the nature of fragmentation without smoothing self-gravity on scales similar to the disk scale height. To that end, we have carried out local 3D self-gravitating disk simulations with simple β cooling with fixed background irradiation to determine if 3D is necessary to properly describe disk fragmentation. Above a resolution of ∼40 grid cells per scale height, we find that our simulations converge with respect to the cooling timescale. This result converges in agreement with analytic expectations which place a fragmentation boundary at β {sub crit} = 3.

  15. Recommended aquifer grid resolution for E-Area PA revision transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-03

    This memorandum addresses portions of Section 3.5.2 of SRNL (2016) by recommending horizontal and vertical grid resolution for aquifer transport, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.

  16. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  17. A high-resolution study of mesospheric fine structure with the Jicamarca MST radar

    Science.gov (United States)

    Sheth, R.; Kudeki, E.; Lehmacher, G.; Sarango, M.; Woodman, R.; Chau, J.; Guo, L.; Reyes, P.

    2006-07-01

    Correlation studies performed on data from recent mesospheric experiments conducted with the 50-MHz Jicamarca radar in May 2003 and July 2004 are reported. The study is based on signals detected from a combination of vertical and off-vertical beams. The nominal height resolution was 150 m and spectral estimates were obtained after ~1 min integration. Spectral widths and backscattered power generally show positive correlations at upper mesospheric heights in agreement with earlier findings (e.g., Fukao et al., 1980) that upper mesospheric echoes are dominated by isotropic Bragg scatter. In many instances in the upper mesosphere, a weakening of positive correlation away from layer centers (towards top and bottom boundaries) was observed with the aid of improved height resolution. This finding supports the idea that layer edges are dominated by anisotropic turbulence. The data also suggests that negative correlations observed at lower mesospheric heights are caused by scattering from anisotropic structures rather than reflections from sharp vertical gradients in electron density.

  18. A high-resolution study of mesospheric fine structure with the Jicamarca MST radar

    Directory of Open Access Journals (Sweden)

    R. Sheth

    2006-07-01

    Full Text Available Correlation studies performed on data from recent mesospheric experiments conducted with the 50-MHz Jicamarca radar in May 2003 and July 2004 are reported. The study is based on signals detected from a combination of vertical and off-vertical beams. The nominal height resolution was 150 m and spectral estimates were obtained after ~1 min integration. Spectral widths and backscattered power generally show positive correlations at upper mesospheric heights in agreement with earlier findings (e.g., Fukao et al., 1980 that upper mesospheric echoes are dominated by isotropic Bragg scatter. In many instances in the upper mesosphere, a weakening of positive correlation away from layer centers (towards top and bottom boundaries was observed with the aid of improved height resolution. This finding supports the idea that layer edges are dominated by anisotropic turbulence. The data also suggests that negative correlations observed at lower mesospheric heights are caused by scattering from anisotropic structures rather than reflections from sharp vertical gradients in electron density.

  19. Measuring of vertical stroke Vub vertical stroke in the forthcoming decade

    International Nuclear Information System (INIS)

    Kim, C.S.

    1997-01-01

    I first introduce the importance of measuring V ub precisely. Then, from a theoretician's point of view, I review (a) past history, (b) present trials, and (c) possible future alternatives on measuring vertical stroke V ub vertical stroke and/or vertical stroke V ub /V cb vertical stroke. As of my main topic, I introduce a model-independent method, which predicts Γ(B→X u lν)/Γ(B→X c lν)≡(γ u /γ c ) x vertical stroke V ub /V cb vertical stroke 2 ≅(1.83±0.28) x vertical stroke V ub /V cb vertical stroke 2 and vertical stroke V ub /V cb vertical stroke ≡(γ c /γ u ) 1/2 x [B(B→X u lν)/B(B→ X c lν]) 1/2 ≅(0.74±0.06) x [B(B→X u lν/)B(B→X c lν)] 1/2 , based on the heavy quark effective theory I also explore the possible experimental options to separate B→X u lν from the dominant B→X c lν: the measurement of inclusive hadronic invariant mass distributions, and the 'D-π' (and 'K-π') separation conditions I also clarify the relevant experimental backgrounds. (orig.)

  20. Global Distribution and Vertical Structure of Clouds Revealed by CALIPSO

    Science.gov (United States)

    Yi, Y.; Minnis, P.; Winker, D.; Huang, J.; Sun-Mack, S.; Ayers, K.

    2007-12-01

    Understanding the effects of clouds on Earth's radiation balance, especially on longwave fluxes within the atmosphere, depends on having accurate knowledge of cloud vertical location within the atmosphere. The Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite mission provides the opportunity to measure the vertical distribution of clouds at a greater detail than ever before possible. The CALIPSO cloud layer products from June 2006 to June 2007 are analyzed to determine the occurrence frequency and thickness of clouds as functions of time, latitude, and altitude. In particular, the latitude-longitude and vertical distributions of single- and multi-layer clouds and the latitudinal movement of cloud cover with the changing seasons are examined. The seasonal variablities of cloud frequency and geometric thickness are also analyzed and compared with similar quantities derived from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) using the Clouds and the Earth's Radiant Energy System (CERES) cloud retrieval algorithms. The comparisons provide an estimate of the errors in cloud fraction, top height, and thickness incurred by passive algorithms.

  1. On the origin of increased sensitivity and mass resolution using silicon masks in MALDI.

    Science.gov (United States)

    Diologent, Laurent; Franck, Julien; Wisztorski, Maxence; Treizebre, Anthony; Focsa, Cristian; Fournier, Isabelle; Ziskind, Michael

    2014-02-04

    Since its development, MALDI has proved its performance in the analysis of intact biomolecules up to high molecular weights, regardless of their polarity. Sensitivity of MALDI instruments is a key point for breaking the limits of observing biomolecules of lower abundances. Instrumentation is one way to improve sensitivity by increasing ion transmission and using more sensitive detection systems. On the other side, improving MALDI ion production yields would have important outcomes. MALDI ion production is still not well-controlled and, indeed, the amount of ions produced per laser shot with respect to the total volume of desorbed material is very low. This has particular implications for certain applications, such as MALDI MS imaging where laser beam focusing as fine as possible (5-10 μm) is searched in order to reach higher spatial resolution images. However, various studies point out an intrinsic decrease in signal intensity for strong focusing. We have therefore been interested in developing silicon mask systems to decrease an irradiated area by cutting rather than focusing the laser beam and to study the parameters affecting sensitivity using such systems. For this, we systematically examined variation with laser fluence of intensity and spectral resolution in MALDI of standard peptides when using silicon-etched masks of various aperture sizes. These studies demonstrate a simultaneous increase in spectral resolution and signal intensity. Origin of this effect is discussed in the frame of the two-step ionization model. Experimental data in the low fluence range are fitted with an increase of the primary ionization through matrix-silicon edge contact provided by the masks. On the other hand, behavior at higher fluence could be explained by an effect on the secondary ionization via changes in the plume dynamics.

  2. Evaluation of NCMRWF unified model vertical cloud structure with CloudSat over the Indian summer monsoon region

    Science.gov (United States)

    Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.

    2016-05-01

    Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.

  3. Turbulent vertical diffusivity in the sub-tropical stratosphere

    Directory of Open Access Journals (Sweden)

    I. Pisso

    2008-02-01

    Full Text Available Vertical (cross-isentropic mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS. We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  4. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  5. High-resolution sequence stratigraphic correlation of the braided river and vertical distribution characteristics of sand body-Take upper member of saihan formation of lower cretaceous in Bayanwula deposit, for instance

    International Nuclear Information System (INIS)

    Dai Mingjian; Peng Yunbiao; Yang Jianxin; Shen Kefeng

    2014-01-01

    In recent years, the high-resolution sequence stratigraphy of which reference surface is base level cycle get rapid development. Its biggest advantage is the ability to apply to the continental sedimentary basins controlled by multiple factors, especially applied to the thin layer contrast of the paleochannel sandstone type uranium reservoir. This paper, by using drill core and logging data, has made the high resolution sequence stratigraphy studies on braided river uranium reservoir of Upper Member of Saihan Formation of Lower Cretaceous (Kls2) in Bayanwula deposit and identified the base level cycle interface. The study interval is divided into one long-term cycle and seven mid-term base level cycle, and high-resolution time stratigraphic framework of the deposit is established. Depth analysis is taken for the relationship between the braided river sand body and base level cycles. And the position, distribution, and genesis in vertical of the braided river sand body are discussed in detail. Ore body is mainly hosted in edge of braided bar sand body, which formed in the low accommodation space, and braided channel and the braided bar interchange. So uranium enriched in the mid-term base level cycle MSC2-MSC5 in the study area. (authors)

  6. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  7. Human sensitivity to vertical self-motion.

    Science.gov (United States)

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  8. Using matrix peaks to map topography: Increased mass resolution and enhanced sensitivity in chemical imaging

    NARCIS (Netherlands)

    McDonnell, Liam A.; Mize, Todd H.; Luxembourg, Stefan L.; Koster, Sander; Eijkel, Gert B.; Verpoorte, Elisabeth; De Rooij, Nico F.; Heeren, Ron M. A.

    2003-01-01

    It is well known in secondary ion mass spectrometry (SIMS) that sample topography leads to decreased mass resolution. Specifically, the ion's time of flight is dependent on where it was generated. Here, using matrix-enhanced SIMS, it is demonstrated that, in addition to increasing the yield of

  9. The Conflict Resolution Connection: Increasing School Attachment in Cooperative Classroom Communities

    Science.gov (United States)

    Heydenberk, Roberta Anna; Heydenberk, Warren R.

    2007-01-01

    Although conflict resolution education programs are usually designed to help resolve crises and reduce school disruption, the power of these programs extends far beyond the original purpose of reacting to violence. This article highlights the positive impact of conflict resolution on student relationships and school climates.

  10. THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    DeRosa, M. L.; Schrijver, C. J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304 (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Leka, K. D.; Barnes, G. [NorthWest Research Associates, 3380 Mitchell Ln., Boulder, CO 80301 (United States); Amari, T.; Canou, A. [CNRS, Centre de Physique Théorique de l’École Polytechnique, F-91128, Palaiseau Cedex (France); Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Valori, G. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Wiegelmann, T. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077, Göttingen (Germany); Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Régnier, S. [Department of Mathematics and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST (United Kingdom)

    2015-10-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/Solar Optical Telescope Spectro-Polarimeter scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.

  11. Increase of electrodeposited catalyst stability via plasma grown vertically oriented graphene nanoparticle movement restriction.

    Science.gov (United States)

    Vanrenterghem, Bart; Hodnik, Nejc; Bele, Marjan; Šala, Martin; Amelinckx, Giovanni; Neukermans, Sander; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Breugelmans, Tom

    2017-08-17

    Beside activity, electrocatalyst stability is gaining in importance. The most common degradation mechanism is the loss of the active surface area due to nanoparticle growth via coalescence/agglomeration. We propose a particle confinement strategy via vertically oriented graphene deposition to overcome degradation of the nanoparticles.

  12. Development of Vertical Cable Seismic System (2)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Ishikawa, K.

    2012-12-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have carried out two field surveys in 2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, we have confirmed that the

  13. Increased lung neutrophil apoptosis and inflammation resolution in nonresponding pneumonia.

    Science.gov (United States)

    Moret, I; Lorenzo, M J; Sarria, B; Cases, E; Morcillo, E; Perpiñá, M; Molina, J M; Menéndez, R

    2011-11-01

    Neutrophil activation state and its relationship with an inflammatory environment in community-acquired pneumonia (CAP) remain insufficiently elucidated. We aimed to evaluate the neutrophil apoptosis and cytokine pattern in CAP patients after 72 h of treatment, and their impact on infection resolution. Apoptosis of blood and bronchoalveolar lavage (BAL) neutrophils was measured in nonresponding CAP (NCAP), in responding CAP (blood only) and in patients without infection (control). Pro-inflammatory (interleukin (IL)-6, IL-8) and anti-inflammatory (IL-10) cytokines were measured. Main outcomes were clinical stability and days of hospitalisation. Basal neutrophil apoptosis was higher in the BAL and blood of NCAP, whereas spontaneous apoptosis (after 24 h culture) was lower. Cytokines in NCAP were higher than in responding CAP and control: IL-6 was increased in BAL and blood, IL-8 in BAL and IL-10 in blood. An increased basal apoptosis (≥20%) in BAL of NCAP was associated with lower systemic IL-10 (p<0.01), earlier clinical stability (p=0.05) and shorter hospital stay (p=0.02). A significant correlation was found for systemic IL-6 and IL-10 with days to reach stability and length of stay. After 72 h of treatment, an increased basal alveolar neutrophil apoptosis might contribute to downregulation of inflammation and to faster clinical stability.

  14. Time multiplexing for increased FOV and resolution in virtual reality

    Science.gov (United States)

    Miñano, Juan C.; Benitez, Pablo; Grabovičkić, Dejan; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj

    2017-06-01

    We introduce a time multiplexing strategy to increase the total pixel count of the virtual image seen in a VR headset. This translates into an improvement of the pixel density or the Field of View FOV (or both) A given virtual image is displayed by generating a succession of partial real images, each representing part of the virtual image and together representing the virtual image. Each partial real image uses the full set of physical pixels available in the display. The partial real images are successively formed and combine spatially and temporally to form a virtual image viewable from the eye position. Partial real images are imaged through different optical channels depending of its time slot. Shutters or other schemes are used to avoid that a partial real image be imaged through the wrong optical channels or at the wrong time slot. This time multiplexing strategy needs real images be shown at high frame rates (>120fps). Available display and shutters technologies are discussed. Several optical designs for achieving this time multiplexing scheme in a compact format are shown. This time multiplexing scheme allows increasing the resolution/FOV of the virtual image not only by increasing the physical pixel density but also by decreasing the pixels switching time, a feature that may be simpler to achieve in certain circumstances.

  15. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    Full Text Available High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv and aerosol at the 425 K (18.5 km level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in

  16. Measurement of vertical stroke Vub vertical stroke using b hadron semileptonic decay

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    The magnitude of the CKM matrix element vertical stroke V ub vertical stroke is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → X u lν event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b → X u lν) to be (1.63 ±0.53 +0.55 -0.62 ) x 10 -3 . The first uncertainty is the statistical error and the second is the systematic error. From this analysis, vertical stroke V ub vertical stroke is determined to be: vertical stroke V ub vertical stroke =(4.00±0.65(stat) +0.67 -0.76 (sys)±0.19(HQE)) x 10 -3 . The last error represents the theoretical uncertainties related to the extraction of vertical stroke V ub vertical stroke from Br(b→X u l ν) using the Heavy Quark Expansion. (orig.)

  17. Regional modelling of tracer transport by tropical convection – Part 2: Sensitivity to model resolutions

    Directory of Open Access Journals (Sweden)

    J. Arteta

    2009-09-01

    Full Text Available The general objective of this series of two papers is to evaluate long duration limited-area simulations with idealised tracers as a possible tool to assess the tracer transport in chemistry-transport models (CTMs. In this second paper we analyse the results of three simulations using different horizontal and vertical resolutions. The goal is to study the impact of the model spatial resolution on convective transport of idealized tracer in the tropics. The reference simulation (REF uses a 60 km horizontal resolution and 300 m vertically in the upper troposphere/lower stratosphere (UTLS. A 20 km horizontal resolution simulation (HR is run as well as a simulation with 850 m vertical resolution in the UTLS (CVR. The simulations are run for one month during the SCOUT-O3 field campaign. Aircraft data, TRMM rainrate estimates and radiosoundings have been used to evaluate the simulations. They show that the HR configuration gives generally a better agreement with the measurements than the REF simulation. The CVR simulation gives generally the worst results. The vertical distribution of the tropospheric tracers for the simulations has a similar shape with a ~15 km altitude maximum for the 6h-lifetime tracer of 0.4 ppbv for REF, 1.2 for HR and 0.04 for CVR. These differences are related to the dynamics produced by the three simulations that leads to larger values of the upward velocities on average for HR and lower for CVR compared to REF. HR simulates more frequent and stronger convection leading to enhanced fluxes compared to REF and higher detrainment levels compared to CVR. HR provides also occasional overshoots over the cold point dynamical barrier. For the stratospheric tracers the differences between the three simulations are small. The diurnal cycle of the fluxes of all tracers in the Tropical Tropopause Layer exhibits a maximum linked to the maximum of convective activity.

  18. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  19. Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

    Science.gov (United States)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd

    2011-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal

  20. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  1. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  2. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  3. Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

    Directory of Open Access Journals (Sweden)

    Gokhan Sahin

    2018-03-01

    Full Text Available This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell’s photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base. Keywords: Depth base, Conversion efficiency, Electrical parameters, Open circuit, Short circuit

  4. Effect of the depth base along the vertical on the electrical parameters of a vertical parallel silicon solar cell in open and short circuit

    Science.gov (United States)

    Sahin, Gokhan; Kerimli, Genber

    2018-03-01

    This article presented a modeling study of effect of the depth base initiating on vertical parallel silicon solar cell's photovoltaic conversion efficiency. After the resolution of the continuity equation of excess minority carriers, we calculated the electrical parameters such as the photocurrent density, the photovoltage, series resistance and shunt resistances, diffusion capacitance, electric power, fill factor and the photovoltaic conversion efficiency. We determined the maximum electric power, the operating point of the solar cell and photovoltaic conversion efficiency according to the depth z in the base. We showed that the photocurrent density decreases with the depth z. The photovoltage decreased when the depth base increases. Series and shunt resistances were deduced from electrical model and were influenced and the applied the depth base. The capacity decreased with the depth z of the base. We had studied the influence of the variation of the depth z on the electrical parameters in the base.

  5. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    Science.gov (United States)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  6. Thrust stand for vertically oriented electric propulsion performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Trevor [University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States); Polzin, Kurt A. [NASA, Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    2010-11-15

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  7. Thrust stand for vertically oriented electric propulsion performance evaluation

    International Nuclear Information System (INIS)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  8. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  9. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer

    Energy Technology Data Exchange (ETDEWEB)

    Rozouvan, Tamara; Poperenko, Leonid [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine); Kravets, Vasyl, E-mail: vasyl_kravets@yahoo.com [School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Shaykevich, Igor [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine)

    2017-02-28

    Highlights: • The optical properties and surface structure of graphene films. • Chemical vapour deposition method. • Scanning tunneling microscopy revealed vertical crystal lattice structure of graphene layer. • We report a significant enhancement of the absorption band in the vertically-oriented graphene sheets. - Abstract: The optical properties and surface structure of graphene films grown on thin copper Cu (1 μm) layer using chemical vapour deposition method were investigated via spectroscopic ellipsometry and nanoscopic measurements. Angle variable ellipsometry measurements were performed to analyze the features of dispersion of the complex refractive index and optical conductivity. It was observed significant enhancement of the absorption band in the vertically-oriented graphene sheets layer with respect to the bulk graphite due to interaction between excited localized surface plasmon at surface of thin Cu layer and graphene’s electrons. Scanning tunneling microscopy measurements with atomic spatial resolution revealed vertical crystal lattice structure of the deposited graphene layer. The obtained results provide direct evidence of the strong influence of the growing condition and morphology of nanostructure on electronic and optical behaviours of graphene film.

  10. Vertical Cable Seismic Survey for SMS exploration

    Science.gov (United States)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two

  11. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  12. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  13. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    Science.gov (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  14. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  15. Annealing as grown large volume CZT single crystals for increased spectral resolution

    International Nuclear Information System (INIS)

    Li, Longxia

    2008-01-01

    have studied before). We used 3 weeks annealing time for 3-5 mm thickness CZT wafres, if the thickness increased to 10-15mm, the annealing time would be increased to many months, which is very unpractical and very difficult to control the CZT property. We have obtained as-grown CZT by using adding the extra Cd before growth, which showed the smaller size of Te-precipitates and excellent radiation performance. These CZT has very high (micro)τ(e) >1 x 10 -2 cm 2 /V, ρ > 2 x 10 10 (Omega)-cm, and the thickness could be up to 80-100mm. The energy resolution of the detector (thickness>10mm) at 662 keV is about 1.2% without any correction (2) and according to Aquila, the 0.5-0.8% resolution at 662 keV would be expected by using appropriated electronic correction.

  16. Toroidal inhomogeneity of the vertical field in a tokamak apparatus

    International Nuclear Information System (INIS)

    Sometani, Taro; Takashima, Hidekazu

    1977-01-01

    An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)

  17. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  18. Theory of nonaxisymmetric vertical displacement events in tokamaks

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    2011-01-01

    A semi-analytic sharp-boundary model of a nonaxisymmetric vertical displacement event (VDE) in a large aspect-ratio, high-beta (i.e. β ∼ ε), vertically elongated tokamak plasma is developed. The model is used to simulate nonaxisymmetric VDEs with a wide range of different plasma equilibrium and vacuum vessel parameters. These simulations yield poloidal halo current fractions and toroidal peaking factors whose magnitudes are similar to those seen in experiments, and also reproduce the characteristic inverse scaling between the halo current fraction and the toroidal peaking factor. Moreover, the peak poloidal halo current density in the vacuum vessel is found to correlate strongly with the reciprocal of the minimum edge safety factor attained during the VDE. In addition, under certain circumstances, the ratio of the net sideways force acting on the vacuum vessel to the net vertical force is observed to approach unity. Finally, the peak vertical force per unit area acting on the vessel is found to have a strong correlation with the equilibrium toroidal plasma current at the start of the VDE, but is also found to increase with increasing vacuum vessel resistivity relative to the scrape-off layer plasma.

  19. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  20. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  1. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  2. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    Directory of Open Access Journals (Sweden)

    K. S. Olsen

    2017-10-01

    variability within each data set. Partial columns are calculated from the VMR vertical profiles, and their correlations are examined. We find that the TANSO-FTS vertical profiles agree with the ACE-FTS and both MIPAS retrievals' vertical profiles within 4 % (± ∼  40 ppbv below 15 km when smoothing is applied to the profiles from instruments with finer vertical resolution but that the relative differences can increase to on the order of 25 % when no smoothing is applied. Computed partial columns are tightly correlated for each pair of data sets. We investigate whether the difference between TANSO-FTS and other CH4 VMR data products varies with latitude. Our study reveals a small dependence of around 0.1 % per 10 degrees latitude, with smaller differences over the tropics and greater differences towards the poles.

  3. Vertical dispersion produced by random closed orbit distortions and sextupoles

    International Nuclear Information System (INIS)

    Suzuki, Toshio.

    1977-01-01

    Vertical dispersion appears even in a machine designed with plane symmetry because of vertical closed orbit distortions, linear coupling and coupling due to sextupoles. This gives rise to several undesirable effects in an electron-positron storage ring such as PEP. Vertical dispersion at the interaction point will increase beam height and reduce luminosity. Vertical dispersion around the ring will modify vertical emittance and partition numbers for synchrotron radiation damping. It will also induce betatron-synchrotron resonance and affect chromaticity correction. Vertical dispersion due to random closed orbit distortions and sextupoles has been studied by Piwinski, and he has indicated that correction of chromaticity and chromatic change of β-function is important. However, he has assumed one error element and evaluated the dispersion at the position of the element. We generalize his argument to a more realistic case and derive more precise criteria for the correction of vertical dispersion. Horizontal dispersion due to perturbations is also studied. Vertical dispersion due to linear coupling is neglected in this note, since it has been studied by other authors. 7 refs

  4. Advantages of a vertical integration process in the design of DNW MAPS

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2015-01-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors

  5. Advantages of a vertical integration process in the design of DNW MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L. [Università di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); Manazza, A. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2015-06-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors.

  6. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Science.gov (United States)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  7. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  9. Vertical jump fatigue does not affect intersegmental coordination and segmental contribution

    Directory of Open Access Journals (Sweden)

    Gleber Pereira

    2014-09-01

    Full Text Available The aim of this study was to describe the intersegmental coordination and segmental contribution during intermittent vertical jumps performed until fatigue. Seven male visited the laboratory on two occasions: 1 the maximum vertical jump height was determined followed by vertical jumps habituation; 2 participants performed intermittent countermovement jumps until fatigue. Kinematic and kinetic variables were recorded. The overall reduction in vertical jump height was 5,5%, while the movement duration increased 10% during the test. The thigh segment angle at movement reversal significantly increased as the exercise progressed. Non-significant effect of fatigue on movement synergy was found for the intersegmental coordination pattern. More than 90% of the intersegmental coordination was explained by one coordination pattern. Thigh rotation contributed the most to the intersegmental coordination pattern, with the trunk second and the shank the least. Therefore, one intersegmental coordination pattern is followed throughout the vertical jumps until fatigue and thigh rotation contributes the most to jump height.

  10. Vertical instability in TCV: comparison of experimental and theoretical growth rates

    International Nuclear Information System (INIS)

    Hofmann, F.; Dutch, M.J.; Ward, D.J.; Anton, M.; Furno, I.; Lister, J.B.; Moret, J.M.

    1996-12-01

    Growth rates of the axisymmetric mode in vertically elongated plasmas in the TCV tokamak are measured and compared with numerically calculated growth rates for the reconstructed equilibria. This comparison is made over a range of discharge parameters including elongation, triangularity, and vertical position within the vacuum vessel. Growth rates increase with respect to increasing elongation, decreasing triangularity and increasing vertical distance from the top of the vacuum vessel, as expected. The agreement between the measured growth rates in the experiment and the numerically determined growth rates is excellent, in particular for the full linear MHD model which accounts for the non-rigid motion of strongly shaped plasma cross-sections. (author) 7 figs., 22 refs

  11. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean

    Science.gov (United States)

    Fuenzalida, Rosalino; Schneider, Wolfgang; Garcés-Vargas, José; Bravo, Luis; Lange, Carina

    2009-07-01

    Recent hydrographic measurements within the eastern South Pacific (1999-2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (oxygen minimum zone to be 9.82±3.60×10 6 km 2 and 2.18±0.66×10 6 km 3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ˜37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159-1168] and provide new baseline data useful for studies on the

  12. Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols

    Science.gov (United States)

    Lee, Seoung Soo; Li, Zhanqing; Zhang, Yuwei; Yoo, Hyelim; Kim, Seungbum; Kim, Byung-Gon; Choi, Yong-Sang; Mok, Jungbin; Um, Junshik; Ock Choi, Kyoung; Dong, Danhong

    2018-01-01

    This study investigates the roles played by model resolution and microphysics parameterizations in the well-known uncertainties or errors in simulations of clouds, precipitation, and their interactions with aerosols by the numerical weather prediction (NWP) models. For this investigation, we used cloud-system-resolving model (CSRM) simulations as benchmark simulations that adopt high-resolution and full-fledged microphysical processes. These simulations were evaluated against observations, and this evaluation demonstrated that the CSRM simulations can function as benchmark simulations. Comparisons between the CSRM simulations and the simulations at the coarse resolutions that are generally adopted by current NWP models indicate that the use of coarse resolutions as in the NWP models can lower not only updrafts and other cloud variables (e.g., cloud mass, condensation, deposition, and evaporation) but also their sensitivity to increasing aerosol concentration. The parameterization of the saturation process plays an important role in the sensitivity of cloud variables to aerosol concentrations. while the parameterization of the sedimentation process has a substantial impact on how cloud variables are distributed vertically. The variation in cloud variables with resolution is much greater than what happens with varying microphysics parameterizations, which suggests that the uncertainties in the NWP simulations are associated with resolution much more than microphysics parameterizations.

  13. Utilizing Interlayer Excitons in Bilayer WS2 for Increased Photovoltaic Response in Ultrathin Graphene Vertical Cross-Bar Photodetecting Tunneling Transistors.

    Science.gov (United States)

    Zhou, Yingqiu; Tan, Haijie; Sheng, Yuewen; Fan, Ye; Xu, Wenshuo; Warner, Jamie H

    2018-04-19

    Here we study the layer-dependent photoconductivity in Gr/WS 2 /Gr vertical stacked tunneling (VST) cross-bar devices made using two-dimensional (2D) materials all grown by chemical vapor deposition. The larger number of devices (>100) enables a statistically robust analysis on the comparative differences in the photovoltaic response of monolayer and bilayer WS 2 , which cannot be achieved in small batch devices made using mechanically exfoliated materials. We show a dramatic increase in photovoltaic response for Gr/WS 2 (2L)/Gr compared to monolayers because of the long inter- and intralayer exciton lifetimes and the small exciton binding energy (both interlayer and intralayer excitons) of bilayer WS 2 compared with that of monolayer WS 2 . Different doping levels and dielectric environments of top and bottom graphene electrodes result in a potential difference across a ∼1 nm vertical device, which gives rise to large electric fields perpendicular to the WS 2 layers that cause band structure modification. Our results show how precise control over layer number in all 2D VST devices dictates the photophysics and performance for photosensing applications.

  14. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix

    International Nuclear Information System (INIS)

    Jiang, Xuyuan; Asbach, Patrick; Streitberger, Kaspar-Josche; Hamm, Bernd; Sack, Ingolf; Guo, Jing; Thomas, Anke; Braun, Juergen

    2014-01-01

    To apply 3D multifrequency MR elastography (3DMMRE) to the uterus and analyse the viscoelasticity of the uterine tissue in healthy volunteers considering individual variations and variations over the menstrual cycle. Sixteen healthy volunteers participated in the study, one of whom was examined 12 times over two menstrual cycles. Pelvic 3DMMRE was performed on a 1.5-T scanner with seven vibration frequencies (30-60 Hz) using a piezoelectric driver. Two mechanical parameter maps were obtained corresponding to the magnitude (vertical stroke G* vertical stroke) and the phase angle (φ) of the complex shear modulus. On average, the uterine corpus had higher elasticity, but similar viscosity compared with the cervix, reflected by vertical stroke G* vertical stroke uterine corpus = 2.58 ± 0.52 kPa vs. vertical stroke G* vertical stroke cervix = 2.00 ± 0.34 kPa (p uterine corpus = 0.54 ± 0.08, φ cervix = 0.57 ± 0.12 (p = 0.428). With 2.23 ± 0.26 kPa, vertical stroke G* vertical stroke of the myometrium was lower in the secretory phase (SP) compared with that of the proliferative phase (PP, vertical stroke G* vertical stroke = 3.01 ± 0.26 kPa). For the endometrium, the value of vertical stroke G* vertical stroke in SP was 68 % lower than during PP (PP, vertical stroke G* vertical stroke = 3.34 ± 0.42 kPa; SP, vertical stroke G* vertical stroke = 1.97 ± 0.34 kPa; p = 0.0061). 3DMMRE produces high-resolution mechanical parameter maps of the uterus and cervix and shows sensitivity to structural and functional changes of the endometrium and myometrium during the menstrual cycle. (orig.)

  15. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuyuan [The First Affiliated Hospital of China Medical University, Department of Radiology, Shenyang (China); Asbach, Patrick; Streitberger, Kaspar-Josche; Hamm, Bernd; Sack, Ingolf; Guo, Jing [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Thomas, Anke [Charite - Universitaetsmedizin Berlin, Departments of Gynecology and Obstetrics, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Department of Medical Informatics, Berlin (Germany)

    2014-12-15

    To apply 3D multifrequency MR elastography (3DMMRE) to the uterus and analyse the viscoelasticity of the uterine tissue in healthy volunteers considering individual variations and variations over the menstrual cycle. Sixteen healthy volunteers participated in the study, one of whom was examined 12 times over two menstrual cycles. Pelvic 3DMMRE was performed on a 1.5-T scanner with seven vibration frequencies (30-60 Hz) using a piezoelectric driver. Two mechanical parameter maps were obtained corresponding to the magnitude (vertical stroke G* vertical stroke) and the phase angle (φ) of the complex shear modulus. On average, the uterine corpus had higher elasticity, but similar viscosity compared with the cervix, reflected by vertical stroke G* vertical stroke {sub uterine} {sub corpus} = 2.58 ± 0.52 kPa vs. vertical stroke G* vertical stroke {sub cervix} = 2.00 ± 0.34 kPa (p < 0.0001) and φ {sub uterine} {sub corpus} = 0.54 ± 0.08, φ {sub cervix} = 0.57 ± 0.12 (p = 0.428). With 2.23 ± 0.26 kPa, vertical stroke G* vertical stroke of the myometrium was lower in the secretory phase (SP) compared with that of the proliferative phase (PP, vertical stroke G* vertical stroke = 3.01 ± 0.26 kPa). For the endometrium, the value of vertical stroke G* vertical stroke in SP was 68 % lower than during PP (PP, vertical stroke G* vertical stroke = 3.34 ± 0.42 kPa; SP, vertical stroke G* vertical stroke = 1.97 ± 0.34 kPa; p = 0.0061). 3DMMRE produces high-resolution mechanical parameter maps of the uterus and cervix and shows sensitivity to structural and functional changes of the endometrium and myometrium during the menstrual cycle. (orig.)

  16. vertical bar Vub vertical bar from exclusive semileptonic B→π decays

    International Nuclear Information System (INIS)

    Flynn, Jonathan M.; Nieves, Juan

    2007-01-01

    We use Omnes representations of the form factors f + and f 0 for exclusive semileptonic B→π decays, paying special attention to the treatment of the B* pole and its effect on f + . We apply them to combine experimental partial branching fraction information with theoretical calculations of both form factors to extract vertical bar V ub vertical bar. The precision we achieve is competitive with the inclusive determination and we do not find a significant discrepancy between our result, vertical bar V ub vertical bar=(3.90+/-0.32+/-0.18)x10 -3 , and the inclusive world average value (4.45+/-0.20+/-0.26)x10 -3 [Heavy Flavor Averaging Group (HFAG), hep-ex/0603003

  17. Vertical migration of motile phytoplankton chains through turbulence

    Science.gov (United States)

    Climent, Eric; Lovecchio, Salvatore; Durham, William; Stocker, Roman

    2017-11-01

    Daily, phytoplankton needs to migrate vertically from and towards the ocean surface to find nutrients such as dissolved oxygen. To travel through the water column they need to fight against gravity (by swimming) and fluid turbulence which can make their journey longer. It is often observed that cells migrate across the water column as chains. The first benefit to form chains is that micro-organisms sum up their thrust while reducing their drag. Therefore, upwards swimming is faster for chains in a quiescent fluid with steady vertical orientation. However, as chain length increases their tendency to periodically tumble in turbulent structures increases which reduces orientation stability and limits their capacity to swim upwards. The purpose of our study is to elaborate on this apparent contradiction. We carried out direct numerical simulations and physical analysis of the coupled system of homogeneous isotropic turbulence and chain trajectories through Lagrangian tracking. Formation of chains is indeed favorable for vertical migration through the upper layer of the ocean.

  18. On measurement of acoustic pulse arrival angles using a vertical array

    Science.gov (United States)

    Makarov, D. V.

    2017-11-01

    We consider a recently developed method to analyze the angular structure of pulsed acoustic fields in an underwater sound channel. The method is based on the Husimi transform that allows us to approximately link a wave field with the corresponding ray arrivals. The advantage of the method lies in the possibility of its practical realization by a vertical hydrophone array crossing only a small part of the oceanic depth. The main aim of the present work is to find the optimal parameter values of the array that ensure good angular accuracy and sufficient reliability of the algorithm to calculate the arrival angles. Broadband pulses with central frequencies of 80 and 240 Hz are considered. It is shown that an array with a length of several hundred meters allows measuring the angular spectrum with an accuracy of up to 1 degree. The angular resolution is lowered with an increase of the sound wavelength due to the fundamental limitations imposed by the uncertainty relation.

  19. Certified standards and vertical coordination in aquaculture

    DEFF Research Database (Denmark)

    Trifkovic, Neda

    2014-01-01

    This paper explores the interaction between food standards and vertical coordination in the Vietnamese pangasius sector. For farmers and processors alike, the adoption of standards is motivated by a desire to improve market access by ensuring high quality supply. Instead of encouraging the applic......This paper explores the interaction between food standards and vertical coordination in the Vietnamese pangasius sector. For farmers and processors alike, the adoption of standards is motivated by a desire to improve market access by ensuring high quality supply. Instead of encouraging...... the application of standards and contract farming, processing companies prefer to vertically integrate primary production largely due to concerns over the stable supply of pangasius with satisfactory quality and safety attributes. These tendencies increase the market dominance of industrial farming and worsen...

  20. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    Science.gov (United States)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  1. Objective quality assessment of stereoscopic images with vertical disparity using EEG

    Science.gov (United States)

    Shahbazi Avarvand, Forooz; Bosse, Sebastian; Müller, Klaus-Robert; Schäfer, Ralf; Nolte, Guido; Wiegand, Thomas; Curio, Gabriel; Samek, Wojciech

    2017-08-01

    Objective. Neurophysiological correlates of vertical disparity in 3D images are studied in an objective approach using EEG technique. These disparities are known to negatively affect the quality of experience and to cause visual discomfort in stereoscopic visualizations. Approach. We have presented four conditions to subjects: one in 2D and three conditions in 3D, one without vertical disparity and two with different vertical disparity levels. Event related potentials (ERPs) are measured for each condition and the differences between ERP components are studied. Analysis is also performed on the induced potentials in the time frequency domain. Main results. Results show that there is a significant increase in the amplitude of P1 components in 3D conditions in comparison to 2D. These results are consistent with previous studies which have shown that P1 amplitude increases due to the depth perception in 3D compared to 2D. However the amplitude is significantly smaller for maximum vertical disparity (3D-3) in comparison to 3D with no vertical disparity. Our results therefore suggest that the vertical disparity in 3D-3 condition decreases the perception of depth compared to other 3D conditions and the amplitude of P1 component can be used as a discriminative feature. Significance. The results show that the P1 component increases in amplitude due to the depth perception in the 3D stimuli compared to the 2D stimulus. On the other hand the vertical disparity in the stereoscopic images is studied here. We suggest that the amplitude of P1 component is modulated with this parameter and decreases due to the decrease in the perception of depth.

  2. Digital Microfluidic System with Vertical Functionality

    Directory of Open Access Journals (Sweden)

    Brian F. Bender

    2015-11-01

    Full Text Available Digital (droplet microfluidics (DµF is a powerful platform for automated lab-on-a-chip procedures, ranging from quantitative bioassays such as RT-qPCR to complete mammalian cell culturing. The simple MEMS processing protocols typically employed to fabricate DµF devices limit their functionality to two dimensions, and hence constrain the applications for which these devices can be used. This paper describes the integration of vertical functionality into a DµF platform by stacking two planar digital microfluidic devices, altering the electrode fabrication process, and incorporating channels for reversibly translating droplets between layers. Vertical droplet movement was modeled to advance the device design, and three applications that were previously unachievable using a conventional format are demonstrated: (1 solutions of calcium dichloride and sodium alginate were vertically mixed to produce a hydrogel with a radially symmetric gradient in crosslink density; (2 a calcium alginate hydrogel was formed within the through-well to create a particle sieve for filtering suspensions passed from one layer to the next; and (3 a cell spheroid formed using an on-chip hanging-drop was retrieved for use in downstream processing. The general capability of vertically delivering droplets between multiple stacked levels represents a processing innovation that increases DµF functionality and has many potential applications.

  3. Heat transfer through natural convection in a porous saturated medium between two vertical cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Hasnaoui, M. [Faculte des Sciences Semlalia, Marrakech (Morocco); Vasseur, P.; Bilgen, E.; Robillard, L. [Ecole Polytechnique, Montreal, PQ (Canada)

    1993-12-31

    A numerical and analytical study of two dimensional, laminar and near steady convection in a vertical porous annular region. The mathematical model was established, basing on Darcy-Oberbeck-Boussinesq equations. The analytical resolution is in the limit where the width of the porous layer is small compared to the cylinders height and it is based on the hypothesis of the parallel flow. (Authors). 4 refs., 4 figs.

  4. Hydroacoustic resolution of small-scale vertical distribution in Baltic cod Gadus morhua - habitat choise and limits during spawning

    DEFF Research Database (Denmark)

    Schaber, Matthias; Hinrichsen, Hans-Harald; Neuenfeldt, Stefan

    2009-01-01

    to cod. The results showed a clear influence of ambient salinity and oxygen concentration on the distribution pattern and distributional limitation of cod during spawning time, and also consistency of data storage tag-derived distribution patterns with those based on individual echotracking. We therefore...... and hence the spatial structure of the ecosystem. Our aim here is to present a method to resolve small-scale distribution on an individual level, as needed for the behaviorally-based prediction of habitat choice and limits. We focused on the small-scale vertical distribution of cod Gadus morhua L....... in the Bornholm Basin, central Baltic Sea, during spawning time in 2 years with different vertical thermohaline and oxygen stratifications. Individual cod were identified by echotracking of real-time in situ hydroacoustic distribution data. In order to resolve and identify hydrographic preferences and limits...

  5. Diamond detector time resolution for large angle tracks

    Energy Technology Data Exchange (ETDEWEB)

    Chiodini, G., E-mail: chiodini@le.infn.it [INFN - Sezione di Lecce (Italy); Fiore, G.; Perrino, R. [INFN - Sezione di Lecce (Italy); Pinto, C.; Spagnolo, S. [INFN - Sezione di Lecce (Italy); Dip. di Matematica e Fisica “Ennio De Giorgi”, Uni. del Salento (Italy)

    2015-10-01

    The applications which have stimulated greater interest in diamond sensors are related to detectors close to particle beams, therefore in an environment with high radiation level (beam monitor, luminosity measurement, detection of primary and secondary-interaction vertices). Our aims is to extend the studies performed so far by developing the technical advances needed to prove the competitiveness of this technology in terms of time resolution, with respect to more usual ones, which does not guarantee the required tolerance to a high level of radiation doses. In virtue of these goals, measurements of diamond detector time resolution with tracks incident at different angles are discussed. In particular, preliminary testbeam results obtained with 5 GeV electrons and polycrystalline diamond strip detectors are shown.

  6. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    Science.gov (United States)

    Mewes, Benjamin; Hilbich, Christin; Delaloye, Reynald; Hauck, Christian

    2017-12-01

    Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  7. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    Directory of Open Access Journals (Sweden)

    B. Mewes

    2017-12-01

    Full Text Available Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity. Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  8. Contradictions about Fine Structures in Meson Spectra and Proposed High-Resolution Hadron Spectrometer Using 'Interactive' Solid-State Hydrogen Target

    International Nuclear Information System (INIS)

    Maglich, Bogdan C.

    2004-01-01

    High resolution has been discouraged in meson spectrometry for 4 decades by the Doctrine of Experiments Incompatible with Theory (DEIT). DEIT a priori rejects narrow hadron resonances on the paradigm that only broad hadron peaks, Γ≥ 100 MeV, can exist -- in spite of the accumulated evidence to the contrary. The facts are: Mesons 2 orders of magnitude narrower than 'allowed' for hadrons, have been confirmed; a new one was announced at this conference. Narrow meson structures have been repeatedly reported at high momentum transfer, vertical bar t vertical bar >0.2, while they are absent at the low transfer, vertical bar t vertical bar ∼0.01, where 99% of the experiments are performed. Modification of meson mass and width as a function of the density of nuclear matter in which they are produced, have been recently reported.We postulate for meson spectra: (1) Intrinsic ('true') width, Γ, is different from the observable ('apparent') width, Γ': Γ< Γ' (2) Γ of all meson states are narrow and can be observed only at or near the maximum vertical bar t vertical bar reachable in the reaction, and (3) Γ of all meson resonances are subject to broadening as vertical bar t vertical bar decreases. Since both Γ' and the production σ are inversely proportional to vertical bar t vertical ar, most of the observed spectra are produced at the lowest vertical bar t vertical bar <0.01 and thus the peaks appear broad. We have conceptually designed a novel type hadron spectrometer with an order of magnitude better resolution (0.1 MeV). It would operate at 2 orders of magnitude higher vertical bar t vertical bar (0.3< vertical bar t vertical bar <1 (GeV/c)2, than most experiments to date (vertical bar t vertical bar <0.01). Mesons in the mass region 0.5 < Mx<5 GeV would be produced in πP→PX (baryons in PP→PP*) in a 'solid state hydrogen target' consisting of an array of plastic scintillator fibers, CH; collisions with C are electronically rejected. Missing mass of P is

  9. Mandible vertical height correction using lingual bone-split pedicle onlay graft technique

    Directory of Open Access Journals (Sweden)

    Coen Pramono D

    2006-09-01

    Full Text Available As edentulous mandible become atrophic, a denture bearing area will also be reduced. Difficulty in the removable prosthesis rehabilitation will be present as well. The purpose of this paper reports an innovative surgical technique to cope a problem of unstable complete lower denture due to bone atrophy and resulted of vertical height reduction of the anterior region of the mandible necessary for denture retention. Vertical advancement of the lower jaw using lingual bone split pedicle onlay graft technique in the anterior region of the mandible and followed by secondary epithelization vestibuloplasty in achieving the vertical height dimension. The surgery was achieved satisfactorily as the vertical dimension of the mandible anterior region had increased and the denture seated more stable comparing with the previous denture worn by the patient. It concluded that the surgery was achieved with a great result as the vertical height of the anterior region of the mandible had increased positively therefore lead the denture seated more stable.

  10. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  11. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    OpenAIRE

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index ( ) with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS...

  12. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  13. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    Science.gov (United States)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  14. Geological mapping of the vertical southeast face of El Capitan, Yosemite Valley, California (Invited)

    Science.gov (United States)

    Stock, G. M.; Glazner, A. F.; Ratajeski, K.; Law, B.

    2010-12-01

    El Capitan in Yosemite Valley, California, is one of the world’s most accessible large granitic rock faces. At nearly 1 km tall, the vertical southeast face of El Capitan provides unique insight into igneous processes contributing to the assembly of the Sierra Nevada batholith ~103 million years ago. Although the base and summit dome of El Capitan have been mapped in detail, the vertical face has so far eluded comprehensive attempts at geologic mapping. We have combined field mapping by technical rock climbing with high-resolution gigapixel photography to develop the first detailed digital geologic map of the southeast face (North America Wall). Geologic units exposed on the face include the El Capitan and Taft Granites, at least two phases of dioritic intrusions, hybridized rocks, and late-stage aplite/pegmatite dikes and pods. We map these units on a high resolution far-range base image derived from a high-resolution panoramic photograph, and verify contact relationships with close-range field photographs and visual observations from anchor points along major climbing routes. Mapping of contact relationships between these units reveals the sequence of intrusion of the various units, as well as the relationship of the mafic intrusions with the more voluminous granites. Geologic mapping of the southeast face also informs geologic hazards by constraining the source area for lithologically distinct rock falls; for example, geologic mapping confirms that a 2.2 x 106 m3 rock avalanche that occurred circa 3,600 years ago originated from near the summit of El Capitan, within an area dominated by Taft Granite. In addition to expanding mapping to the southwest face, future mapping efforts will focus on integrating the high resolution base map with airborne and terrestrial LiDAR data to produce a three-dimensional geologic map of one of the most iconic rock formations in the world.

  15. The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    Science.gov (United States)

    LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.

    2008-01-01

    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.

  16. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    Science.gov (United States)

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  17. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  18. Effects of increased occlusal vertical dimension on the jaw-opening reflex in adult rats.

    Science.gov (United States)

    Makiguchi, Mio; Funaki, Yukiha; Kato, Chiho; Okihara, Hidemasa; Ishida, Takayoshi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2016-12-01

    Malocclusion with deep overbite and facial esthetics improve when facial height is intentionally increased during orthodontic extrusion of the posterior teeth. Thus, a better understanding of post-treatment stability of increased occlusal vertical dimension (iOVD) in adult patients is important. We focused on the jaw-opening reflex (JOR), which plays an important role in the control of jaw movements during mastication, and investigated the effects of iOVD on the JOR in rats with an electrophysiological technique. One hundred and twenty 13-week-old male Wistar rats were randomly divided into control and experimental groups. Rats in the experimental group received a 2-mm buildup of composite resin on the maxillary molars at 13 weeks of age. The JOR was induced by low-intensity electrical stimulation of the left inferior alveolar nerve. The electromyographic responses were recorded from the digastric muscle at 13, 14, 15, 17, 19, and 23 weeks of age. JOR properties including latency, duration, and peak-to-peak amplitude were measured and compared between the groups. The latency of the JOR was significantly longer and the peak-to-peak amplitude was significantly smaller in the experimental group than in the control group from 14 to 19 weeks of age, while the reflex duration was not significantly different. Intra-group comparisons of the latency and peak-to-peak amplitudes among rats 14-19 weeks of age were significantly different between the experimental group and the control group. iOVD affected the latency and amplitude of the JOR but not the duration. The JOR adapted after 10 weeks of iOVD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Older, A. A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron

  20. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  1. A global vertical reference frame based on four regional vertical datums

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 493-502 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotentinal * local vertical datums * global vertical reference frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.447, year: 2004

  2. On the vertical structure of wind gusts

    DEFF Research Database (Denmark)

    Suomi, I.; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    The increasing size of wind turbines, their height and the area swept by their blades have revised the need for understanding the vertical structure of wind gusts. Information is needed for the whole profile. In this study, we analyzed turbulence measurements from a 100m high meteorological mast...... and the turbulence intensity, of which the turbulence intensity was found to dominate over the peak factor in determining the effects of stability and height above the surface on the gust factor. The peak factor only explained 15% or less of the vertical decrease of the gust factor, but determined the effect of gust...... duration on the gust factor. The statistical method to estimate the peak factor did not reproduce the observed vertical decrease in near-neutral and stable conditions and near-constant situation in unstable conditions. Despite this inconsistency, the theoretical method provides estimates for the peak...

  3. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  4. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.

    Science.gov (United States)

    Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa

    2017-12-28

    Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  5. A Universal Intervention Program Increases Ethnic-Racial Identity Exploration and Resolution to Predict Adolescent Psychosocial Functioning One Year Later.

    Science.gov (United States)

    Umaña-Taylor, Adriana J; Kornienko, Olga; Douglass Bayless, Sara; Updegraff, Kimberly A

    2018-01-01

    Ethnic-racial identity formation represents a key developmental task that is especially salient during adolescence and has been associated with many indices of positive adjustment. The Identity Project intervention, which targeted ethnic-racial identity exploration and resolution, was designed based on the theory that program-induced changes in ethnic-racial identity would lead to better psychosocial adjustment (e.g., global identity cohesion, self-esteem, mental health, academic achievement). Adolescents (N =215; Mage =15.02, SD =.68; 50% female) participated in a small-scale randomized control trial with an attention control group. A cascading mediation model was tested using pre-test and three follow-up assessments (12, 18, and 67 weeks after baseline). The program led to increases in exploration, subsequent increases in resolution and, in turn, higher global identity cohesion, higher self-esteem, lower depressive symptoms, and better grades. Results support the notion that increasing adolescents' ethnic-racial identity can promote positive psychosocial functioning among youth.

  6. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  7. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms.

  8. High resolution in-vivo imaging of skin with full field optical coherence tomography

    Science.gov (United States)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  9. Measurement Variability of Vertical Scanning Interferometry Tool Used for Orbiter Window Defect Assessment

    Science.gov (United States)

    Padula, Santo, II

    2009-01-01

    The ability to sufficiently measure orbiter window defects to allow for window recertification has been an ongoing challenge for the orbiter vehicle program. The recent Columbia accident has forced even tighter constraints on the criteria that must be met in order to recertify windows for flight. As a result, new techniques are being investigated to improve the reliability, accuracy and resolution of the defect detection process. The methodology devised in this work, which is based on the utilization of a vertical scanning interferometric (VSI) tool, shows great promise for meeting the ever increasing requirements for defect detection. This methodology has the potential of a 10-100 fold greater resolution of the true defect depth than can be obtained from the currently employed micrometer based methodology. An added benefit is that it also produces a digital elevation map of the defect, thereby providing information about the defect morphology which can be utilized to ascertain the type of debris that induced the damage. However, in order to successfully implement such a tool, a greater understanding of the resolution capability and measurement repeatability must be obtained. This work focused on assessing the variability of the VSI-based measurement methodology and revealed that the VSI measurement tool was more repeatable and more precise than the current micrometer based approach, even in situations where operator variation could affect the measurement. The analysis also showed that the VSI technique was relatively insensitive to the hardware and software settings employed, making the technique extremely robust and desirable

  10. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  11. The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds

    International Nuclear Information System (INIS)

    Kassianov, Evgueni; Ackerman, Thomas; Kollias, Pavlos

    2005-01-01

    Both individual and combined effects of the horizontal and vertical variability of cumulus clouds on solar radiative transfer are investigated using a two-dimensional (x- and z-directions) cloud radar dataset. This high-resolution dataset of typical fair-weather marine cumulus is derived from ground-based 94GHz cloud radar observations. The domain-averaged (along x-direction) radiative properties are computed by a Monte Carlo method. It is shown that (i) different cloud-scale resolutions can be used for accurate calculations of the mean absorption, upward and downward fluxes; (ii) the resolution effects can depend strongly on the solar zenith angle; and (iii) a few cloud statistics can be successfully applied for calculating the averaged radiative properties

  12. Self-tuning control studies of the plasma vertical position problem

    International Nuclear Information System (INIS)

    Zheng, Guang Lin; Wellstead, P.E.; Browne, M.L.

    1993-01-01

    The plasma vertical position system in a tokamak device can be open-loop unstable with time-varying dynamics, such that the instability increases with system dynamical changes. Time-varying unstable dynamics makes the plasma vertical position a particularly difficult one to control with traditional fixed-coefficient controllers. A self-tuning technique offers a new solution of the plasma vertical position control problem by an adaptive control approach. Specifically, the self-tuning controller automatically tunes the controller parameters without an a priori knowledge of the system dynamics and continuously tracks dynamical changes within the system, thereby providing the system with auto-tuning and adaptive tuning capabilities. An overview of the self-tuning methods is given, and their applicability to a simulation of the Joint European Torus (JET) vertical plasma positions system is illustrated. Specifically, the applicability of pole-assignment and generalized predictive control self-tuning methods to the vertical plasma position system is demonstrated. 26 refs., 16 figs., 1 tab

  13. Vertical Wave Coupling associated with Stratospheric Sudden Warming Events analyzed in an Isentropic-Coordinate NWP Model.

    Science.gov (United States)

    Bleck, R.; Sun, S.; Benjamin, S.; Brown, J. M.

    2017-12-01

    Two- to four-week predictions of stratospheric sudden warming events during the winter seasons of 1999-2014, carried out with a high-resolution icosahedral NWP model using potential temperature as vertical coordinate, are inspected for commonalities in the evolution of both minor and major warmings. Emphasis is on the evolution of the potential vorticity field at different levels in the stratosphere, as well as on the sign and magnitude of the vertical component of the Eliassen-Palm flux vector suggestive of wave forcing in either direction. Material is presented shedding light on the skill of the model (FIM, developed at NOAA/ESRL) in predicting stratospheric warmings generally 2 weeks in advance. With an icosahedral grid ideally suited for studying polar processes, and a vertical coordinate faithfully reproducing details in the evolution of the potential vorticity and EP flux vector fields, FIM is found to be a good tool for investigating the SSW mechanism.

  14. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  15. Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome.

    Science.gov (United States)

    Richard, Jean-Christophe M; Maggiore, Salvatore Maurizio; Mancebo, Jordi; Lemaire, François; Jonson, Bjorn; Brochard, Laurent

    2006-10-01

    Supine position may contribute to the loss of aerated lung volume in patients with acute respiratory distress syndrome (ARDS). We hypothesized that verticalization increases lung volume and improves gas exchange by reducing the pressure surrounding lung bases. Prospective observational physiological study in a medical ICU. In 16 patients with ARDS we measured arterial blood gases, pressure-volume curves of the respiratory system recorded from positive-end expiratory pressure (PEEP), and changes in lung volume in supine and vertical positions (trunk elevated at 45 degrees and legs down at 45 degrees ). Vertical positioning increased PaO(2) significantly from 94+/-33 to 142+/-49 mmHg, with an increase higher than 40% in 11 responders. The volume at 20 cmH(2)O measured on the PV curve from PEEP increased using the vertical position only in responders (233+/-146 vs. -8+/-9 1ml in nonresponders); this change was correlated to oxygenation change (rho=0.55). End-expiratory lung volume variation from supine to vertical and 1 h later back to supine, measured in 12 patients showed a significant increase during the 1-h upright period in responders (n=7) but not in nonresponders (n=5; 215+/-220 vs. 10+/-22 ml), suggesting a time-dependent recruitment. Vertical positioning is a simple technique that may improve oxygenation and lung recruitment in ARDS patients.

  16. Vertical distribution of ozone at the terminator on Mars

    Science.gov (United States)

    Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck

    2016-10-01

    The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.

  17. Vertically aligned N-doped CNTs growth using Taguchi experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ricardo M. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, António J.S. [I3 N, Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Ferro, Marta C. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Pinna, Nicola [Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin Germany (Germany); Silva, Rui F., E-mail: rsilva@ua.pt [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-07-30

    Highlights: • Taguchi method is employed for the CVD growth of vertically aligned N-doped CNTs. • Optimal growth parameters: NH3 = 90 sccm, T = 825 °C and catalyst pretreatment time = 2 min. • SEM and HRTEM revealed VACNTs with bamboo-like structure of curved graphitic layers. • XPS analysis results indicated 2.00 at.% of N incorporation in the VACNTs. - Abstract: The Taguchi method with a parameter design L{sub 9} orthogonal array was implemented for optimizing the nitrogen incorporation in the structure of vertically aligned N-doped CNTs grown by thermal chemical deposition (TCVD). The maximization of the I{sub D}/I{sub G} ratio of the Raman spectra was selected as the target value. As a result, the optimal deposition configuration was NH{sub 3} = 90 sccm, growth temperature = 825 °C and catalyst pretreatment time of 2 min, the first parameter having the main effect on nitrogen incorporation. A confirmation experiment with these values was performed, ratifying the predicted I{sub D}/I{sub G} ratio of 1.42. Scanning electron microscopy (SEM) characterization revealed a uniform completely vertically aligned array of multiwalled CNTs which individually exhibit a bamboo-like structure, consisting of periodically curved graphitic layers, as depicted by high resolution transmission electron microscopy (HRTEM). The X-ray photoelectron spectroscopy (XPS) results indicated a 2.00 at.% of N incorporation in the CNTs in pyridine-like and graphite-like, as the predominant species.

  18. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  19. Vertical integration as a source of market power

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, J.H.

    1981-11-01

    This paper has put forward a theory of vertial integration where the ability of a group of firms to engage in noncompetitive pricing is increased by altering conjectural variations. An analysis of conditions faced by major oil companies at refining indicated little likelihood of market power, short of a complex, secret price fixing agreement. Vertical integration to branded retail outlets appears to have created the ability to price noncompetitively without overt collusion. More interesting for vertical policy are the results on non price rivalry where excess profits appear to have been turned into social costs.

  20. Towards vertical integration in general practice education: literature review and discussion paper.

    Science.gov (United States)

    O'Regan, A; Culhane, A; Dunne, C; Griffin, M; Meagher, D; McGrath, D; O'Dwyer, P; Cullen, W

    2013-09-01

    Medical education policy in Ireland has enabled an increase in undergraduate and postgraduate education activity in general practice. Internationally, 'vertical integration in general practice education' is suggested as a key strategy to support the implementation of this policy development. To review the emerging literature on vertical integration in GP education, specifically to define the concept of 'vertical integration' with regard to education in general practice and to describe its benefits and challenges. We searched 'Pubmed', 'Academic Search Complete', 'Google', and 'MEDLINE' databases using multiple terms related to 'vertical integration' and 'general practice education' for relevant articles published since 2001. Discussion papers, reports, policy documents and position statements were identified from reference lists and retrieved through internet searches. The key components of 'vertical integration' in GP education include continuous educational pathway, all stages in GP education, supporting the continuing educational/professional development needs of learners at each stage and effective curriculum planning and delivery. Many benefits (for GPs, learners and the community) and many challenges (for GPs/practices, learners and GPs in training) have been described. Characteristics of successful implementation include role sharing and collaborative organisational structures. Recent developments in medical education in Ireland, such as the increase in medical school clinical placements in general practice and postgraduate GP training and the introduction of new competence assurance requirements offer an important opportunity to further inform how vertical integration can support increased educational activity in general practice. Describing this model, recognising its benefits and challenges and supporting its implementation in practice are priorities for medical education in Ireland.

  1. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    Science.gov (United States)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  2. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  3. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Cronn Richard

    2009-12-01

    Full Text Available Abstract Background Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels? Results We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (ycf1, ycf2, highlighting their unusual evolutionary properties. Conclusion Plastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling

  4. Vertical orbit excursion fixed field alternating gradient accelerators

    Directory of Open Access Journals (Sweden)

    Stephen Brooks

    2013-08-01

    Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  5. Time resolution deterioration with increasing crystal length in a TOF-PET system

    CERN Document Server

    Gundacker, S; Auffray, E; Jarron, P; Meyer, T; Lecoq, P

    2014-01-01

    Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially avai...

  6. Vertical stability, high elongation, and the consequences of loss of vertical control on DIII-D

    International Nuclear Information System (INIS)

    Kellman, A.G.; Ferron, J.R.; Jensen, T.H.; Lao, L.L.; Luxon, J.L.; Skinner, D.G.; Strait, E.J.; Reis, E.; Taylor, T.S.; Turnbull, A.D.; Lazarus, E.A.; Lister, J.B.

    1990-09-01

    Recent modifications to the vertical control system for DIII-D has enabled operation of discharges with vertical elongation κ, up to 2.5. When vertical stability is lost, a disruption follows and a large vertical force on the vacuum vessel is observed. The loss of plasma energy begins when the edge safety factor q is 2 but the current decay does not begin until q ∼1.3. Current flow on the open field lines in the plasma scrapeoff layer has been measured and the magnitude and distribution of these currents can explain the observed force on the vessel. Equilibrium calculations and simulation of this vertical displacement episode are presented. 7 refs., 4 figs

  7. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  9. Transmission of vertical stress in a real soil profile. Part III

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    The transmission of stress in soils is extremely sensitive to changes in water content. According to the elasticity theory, for a given load applied to a given soil, an increase in soil water content yields a higher concentration of stresses under the centre of the load and a deeper propagation...... of stresses. We quantified the effect of soil water content of topsoil/subsoil layers (wet/wet, wet/dry, and dry/dry) on stress transmission. 3D measurements of vertical stresses under a towed wheel (800/50R34) were performed in situ in a Stagnic Luvisol. The tyre was loaded with 60 kN, and we used...... were measured in separate tests. Increase of water content in the topsoil by 114% increased the contact area by 149%, decreased the vertical stresses at the tyre–soil interface by 50%, and decreased the maximum vertical stress at 0.3 and 0.6 m depth by 46 and 63%, respectively. Stress attenuation...

  10. Gate Tunable Transport in Graphene/MoS2/(Cr/Au Vertical Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ghazanfar Nazir

    2017-12-01

    Full Text Available Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS2/(Cr/Au vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr, the electrical transport in our Gr/MoS2/(Cr/Au vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS2 can be modified by back-gate voltage and the current bias. Vertical resistance (Rvert of a Gr/MoS2/(Cr/Au transistor is compared with planar resistance (Rplanar of a conventional lateral MoS2 field-effect transistor. We have also studied electrical properties for various thicknesses of MoS2 channels in both vertical and lateral transistors. As the thickness of MoS2 increases, Rvert increases, but Rplanar decreases. The increase of Rvert in the thicker MoS2 film is attributed to the interlayer resistance in the vertical direction. However, Rplanar shows a lower value for a thicker MoS2 film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  11. Towards Improving Satellite Tropospheric NO2 Retrieval Products: Impacts of the spatial resolution and lighting NOx production from the a priori chemical transport model

    Science.gov (United States)

    Smeltzer, C. D.; Wang, Y.; Zhao, C.; Boersma, F.

    2009-12-01

    Polar orbiting satellite retrievals of tropospheric nitrogen dioxide (NO2) columns are important to a variety of scientific applications. These NO2 retrievals rely on a priori profiles from chemical transport models and radiative transfer models to derive the vertical columns (VCs) from slant columns measurements. In this work, we compare the retrieval results using a priori profiles from a global model (TM4) and a higher resolution regional model (REAM) at the OMI overpass hour of 1330 local time, implementing the Dutch OMI NO2 (DOMINO) retrieval. We also compare the retrieval results using a priori profiles from REAM model simulations with and without lightning NOx (NO + NO2) production. A priori model resolution and lightning NOx production are both found to have large impact on satellite retrievals by altering the satellite sensitivity to a particular observation by shifting the NO2 vertical distribution interpreted by the radiation model. The retrieved tropospheric NO2 VCs may increase by 25-100% in urban regions and be reduced by 50% in rural regions if the a priori profiles from REAM simulations are used during the retrievals instead of the profiles from TM4 simulations. The a priori profiles with lightning NOx may result in a 25-50% reduction of the retrieved tropospheric NO2 VCs compared to the a priori profiles without lightning. As first priority, a priori vertical NO2 profiles from a chemical transport model with a high resolution, which can better simulate urban-rural NO2 gradients in the boundary layer and make use of observation-based parameterizations of lightning NOx production, should be first implemented to obtain more accurate NO2 retrievals over the United States, where NOx source regions are spatially separated and lightning NOx production is significant. Then as consequence of a priori NO2 profile variabilities resulting from lightning and model resolution dynamics, geostationary satellite, daylight observations would further promote the next

  12. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  13. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  14. The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation

    Science.gov (United States)

    Williams, Jason E.; Folkert Boersma, K.; Le Sager, Phillipe; Verstraeten, Willem W.

    2017-02-01

    We provide a comprehensive description of the high-resolution version of the TM5-MP global chemistry transport model, which is to be employed for deriving highly resolved vertical profiles of nitrogen dioxide (NO2), formaldehyde (CH2O), and sulfur dioxide (SO2) for use in satellite retrievals from platforms such as the Ozone Monitoring Instrument (OMI) and the Sentinel-5 Precursor, and the TROPOspheric Monitoring Instrument (tropOMI). Comparing simulations conducted at horizontal resolutions of 3° × 2° and 1° × 1° reveals differences of ±20 % exist in the global seasonal distribution of 222Rn, being larger near specific coastal locations and tropical oceans. For tropospheric ozone (O3), analysis of the chemical budget terms shows that the impact on globally integrated photolysis rates is rather low, in spite of the higher spatial variability of meteorological data fields from ERA-Interim at 1° × 1°. Surface concentrations of O3 in high-NOx regions decrease between 5 and 10 % at 1° × 1° due to a reduction in NOx recycling terms and an increase in the associated titration term of O3 by NO. At 1° × 1°, the net global stratosphere-troposphere exchange of O3 decreases by ˜ 7 %, with an associated shift in the hemispheric gradient. By comparing NO, NO2, HNO3 and peroxy-acetyl-nitrate (PAN) profiles against measurement composites, we show that TM5-MP captures the vertical distribution of NOx and long-lived NOx reservoirs at background locations, again with modest changes at 1° × 1°. Comparing monthly mean distributions in lightning NOx and applying ERA-Interim convective mass fluxes, we show that the vertical re-distribution of lightning NOx changes with enhanced release of NOx in the upper troposphere. We show that surface mixing ratios in both NO and NO2 are generally underestimated in both low- and high-NOx scenarios. For Europe, a negative bias exists for [NO] at the surface across the whole domain, with lower biases at 1° × 1° at only ˜ 20

  15. Numerical Analysis and Geometry Optimisation of Vertical Vane of Room Air-conditioner

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Abdulkareem Sh. Mahdi

    2018-01-01

    Full Text Available Vertical vanes of room air-conditioners are used to control and direct cold air. This paper aims to study vertical vane as one of the parameters that affect the efficiency of dissipating cold air to a given space. The vertical vane geometry is analysed and optimised for lower production cost using CFD. The optimised geometry of the vertical vane should have the same or increased efficiency of dissipating cold air and have lesser mass compared to the existing original design. The existing original design of vertical vane is simplified and analysed by using ANSYS Fluent. Efficiency of wind direction is define as how accurate the direction of airflow coming out from vertical vane. In order to calculate the efficiency of wind direction, 15° and 30° rotation of vertical vane inside room air-conditioner are simulated. The efficiency of wind direction for 15° rotation of vertical vane is 57.81% while efficiency of wind direction for 30° rotation of vertical vane is 47.54%. The results of the efficiency of wind direction are used as base reference for parametric study. The parameters investigated for optimisation of vertical vane are focused at length of long span, tip chord and short span. The design of 15% decreased in vane surface area at tip chord is the best optimised design of vertical vane because the efficiency of wind direction is the highest as 60.32%.

  16. Is perception of vertical impaired in individuals with chronic stroke with a history of 'pushing'?

    Science.gov (United States)

    Mansfield, Avril; Fraser, Lindsey; Rajachandrakumar, Roshanth; Danells, Cynthia J; Knorr, Svetlana; Campos, Jennifer

    2015-03-17

    Post-stroke 'pushing' behaviour appears to be caused by impaired perception of vertical in the roll plane. While pushing behaviour typically resolves with stroke recovery, it is not known if misperception of vertical persists. The purpose of this study was to determine if perception of vertical is impaired amongst stroke survivors with a history of pushing behaviour. Fourteen individuals with chronic stroke (7 with history of pushing) and 10 age-matched healthy controls participated. Participants sat upright on a chair surrounded by a curved projection screen in a laboratory mounted on a motion base. Subjective visual vertical (SVV) was assessed using a 30 trial, forced-choice protocol. For each trial participants viewed a line projected on the screen and indicated if the line was tilted to the right or the left. For the subjective postural vertical (SPV), participants wore a blindfold and the motion base was tilted to the left or right by 10-20°. Participants were asked to adjust the angular movements of the motion base until they felt upright. SPV was not different between groups. SVV was significantly more biased towards the contralesional side for participants with history of pushing (-3.6 ± 4.1°) than those without (-0.1 ± 1.4°). Two individuals with history of pushing had SVV or SPV outside the maximum for healthy controls. Impaired vertical perception may persist in some individuals with prior post-stroke pushing, despite resolution of pushing behaviours, which could have consequences for functional mobility and falls. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Vertical Mulching e manejo da água em semeadura direta Vertical Mulching and water management in no tillage system

    Directory of Open Access Journals (Sweden)

    Sandra Maria Garcia

    2008-04-01

    soil structure degradation, soil compaction below the arable layer, and decreased macroporosity. These changes resulted in reduced soil water infiltration rate and increased runoff, soil erosion and sedimentation in rivers and reservoirs. In the no tillage system the water erosion from the soil surface is practically controlled, and the terraces were eliminated by the farmers. Nevertheless, the surface flow is higher than it was in the conventional tillage system. With the objective of evaluating the hydrological behavior of vertical mulching in no tillage systems as related to runoff, this study was developed in the growing seasons of 2002/2003 and 2003/2004 on a Red Latosol (Oxisol in the Planalto Médio region of Rio Grande do Sul State, Brazil. A field experiment was installed using plots without vertical mulching, with vertical mulching at every 10 m and with vertical mulching at every 5 m. It was used a randomized block design with three replications. Leveled furrows of vertical mulching, perpendicular to the soil slope (0.08 m wide by 0.38 m deep were dug and filled with straw compacted enough to stabilize the furrow sides. Rainfall intensities of 70 and 106 mm h-1 were simulated on soybean and wheat to determine runoff, soil water infiltration rate, and nutrient and organic carbon concentration in the runoff. The results showed that vertical mulching in no tillage significantly reduces surface runoff and increases the water infiltration rate into the soil. It also reduces the total nutrient and organic carbon losses due to the reduction of water runoff.

  18. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  19. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  20. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  1. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  2. Strong-coupling expansion for the ground-state energy in the Vertical BarxVertical Bar/sup α/ potential

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.; Simmons, L.M. Jr.

    1981-01-01

    Using lattice techniques we examine the strong-coupling expansion for the ground-state energy of a gVertical BarxVertical Bar/sup α/ (α>0) potential in quantum mechanics. We are particularly interested in studying the effectiveness of various Pade-type methods for extrapolating the lattice series back to the continuum. We have computed the lattice series out to 12th order for all α and we identify three regions. When α or =2 the lattice series has a finite radius of convergence; here, completely-off-diagonal Pade extrapolants work best. As α increases beyond 2 it becomes more difficult to obtain good continuum results, apparently because the sign pattern of the lattice series seems to fluctuate randomly. The onset of randomness occurs earlier in the lattice series as α→infinity

  3. Vertically aligned Si nanocrystals embedded in amorphous Si matrix prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Nogay, G. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Saleh, Z.M., E-mail: zaki.saleh@aauj.edu [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Physics, Arab American University–Jenin (AAUJ), Jenin, Palestine (Country Unknown); Özkol, E. [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Chemical Engineering, Middle East Technical University (METU), Ankara 06800 (Turkey); Turan, R. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey)

    2015-06-15

    Highlights: • Inductively-coupled plasma is used for nanostructured silicon at room temperature. • Low temperature deposition allows device processing on various substrates. • Deposition pressure is the most effective parameter in controlling nanostructure. • Films consist of quantum dots in a-Si matrix and exhibit columnar vertical growth. • Films are porous to oxygen infusion along columnar grain boundaries. - Abstract: Vertically-aligned nanostructured silicon films are deposited at room temperature on p-type silicon wafers and glass substrates by inductively-coupled, plasma-enhanced chemical vapor deposition (ICPCVD). The nanocrystalline phase is achieved by reducing pressure and increasing RF power. The crystalline volume fraction (X{sub c}) and the size of the nanocrystals increase with decreasing pressure at constant power. Columnar growth of nc-Si:H films is observed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The films exhibit cauliflower-like structures with high porosity that leads to slow but uniform oxidation after exposure to air at room temperature. Films deposited at low pressures exhibit photoluminescence (PL) signals that may be deconvoluted into three distinct Gaussian components: 760–810, 920–935, and 990–1000 nm attributable to the quantum confinement and interface defect states. Hydrogen dilution is manifested in significant enhancement of the PL, but it has little effect on the nanocrystal size and X{sub c}.

  4. Using Unmanned Aerial Vehicles (UAV for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments

    Directory of Open Access Journals (Sweden)

    Francesco Mancini

    2013-12-01

    Full Text Available The availability of high-resolution Digital Surface Models of coastal environments is of increasing interest for scientists involved in the study of the coastal system processes. Among the range of terrestrial and aerial methods available to produce such a dataset, this study tests the utility of the Structure from Motion (SfM approach to low-altitude aerial imageries collected by Unmanned Aerial Vehicle (UAV. The SfM image-based approach was selected whilst searching for a rapid, inexpensive, and highly automated method, able to produce 3D information from unstructured aerial images. In particular, it was used to generate a dense point cloud and successively a high-resolution Digital Surface Models (DSM of a beach dune system in Marina di Ravenna (Italy. The quality of the elevation dataset produced by the UAV-SfM was initially evaluated by comparison with point cloud generated by a Terrestrial Laser Scanning (TLS surveys. Such a comparison served to highlight an average difference in the vertical values of 0.05 m (RMS = 0.19 m. However, although the points cloud comparison is the best approach to investigate the absolute or relative correspondence between UAV and TLS methods, the assessment of geomorphic features is usually based on multi-temporal surfaces analysis, where an interpolation process is required. DSMs were therefore generated from UAV and TLS points clouds and vertical absolute accuracies assessed by comparison with a Global Navigation Satellite System (GNSS survey. The vertical comparison of UAV and TLS DSMs with respect to GNSS measurements pointed out an average distance at cm-level (RMS = 0.011 m. The successive point by point direct comparison between UAV and TLS elevations show a very small average distance, 0.015 m, with RMS = 0.220 m. Larger values are encountered in areas where sudden changes in topography are present. The UAV-based approach was demonstrated to be a straightforward one and accuracy of the vertical dataset

  5. MIPAS-ENVISAT limb-sounding measurements: trade-off study for improvement of horizontal resolution.

    Science.gov (United States)

    Ridolfi, Marco; Magnani, Luca; Carlotti, Massimo; Dinelli, Bianca Maria

    2004-11-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a limb-scanning spectrometer that has operated onboard the Environmental Satellite since the end of March 2002. Common features of limb-scanning experiments are both high vertical resolution and poor horizontal resolution. We exploit the two-dimensional geo-fit retrieval approach [Appl. Opt. 40, 1872-1875 (2001)] to investigate the possibility of improving the horizontal resolution of MIPAS measurements. Two different strategies are considered for this purpose, one exploiting the possibility (offered by the geo-fit analysis method) for an arbitrary definition of the retrieval grid, the other based on the possibility of saving measurement time by degrading the spectral resolution of the interferometer. The performances of the two strategies are compared in terms of the trade-off between the attained horizontal resolution and the retrieval precision. We find that for ozone it is possible to improve by a factor of 2 the horizontal resolution, which in the nominal measurement plan is approximately 530 km. This improvement corresponds to a degradation of the retrieval precision, which on average varies from a factor of 1.4 to 2.5, depending on the adopted spectral resolution.

  6. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    Science.gov (United States)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; hide

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  7. Changes in Quality of Health Care Delivery after Vertical Integration.

    Science.gov (United States)

    Carlin, Caroline S; Dowd, Bryan; Feldman, Roger

    2015-08-01

    To fill an empirical gap in the literature by examining changes in quality of care measures occurring when multispecialty clinic systems were acquired by hospital-owned, vertically integrated health care delivery systems in the Twin Cities area. Administrative data for health plan enrollees attributed to treatment and control clinic systems, merged with U.S. Census data. We compared changes in quality measures for health plan enrollees in the acquired clinics to enrollees in nine control groups using a differences-in-differences model. Our dataset spans 2 years prior to and 4 years after the acquisitions. We estimated probit models with errors clustered within enrollees. Data were assembled by the health plan's informatics team. Vertical integration is associated with increased rates of colorectal and cervical cancer screening and more appropriate emergency department use. The probability of ambulatory care-sensitive admissions increased when the acquisition caused disruption in admitting patterns. Moving a clinic system into a vertically integrated delivery system resulted in limited increases in quality of care indicators. Caution is warranted when the acquisition causes disruption in referral patterns. © Health Research and Educational Trust.

  8. Experiments on vertical gas-liquid pipe flows using ultrafast X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Banowski, M.; Beyer, M.; Lucas, D.; Hoppe, D.; Barthel, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung

    2016-12-15

    For the qualification and validation of two-phase CFD-models for medium and large-scale industrial applications dedicated experiments providing data with high temporal and spatial resolution are required. Fluid dynamic parameter like gas volume fraction, bubble size distribution, velocity or turbulent kinetic energy should be measured locally. Considering the fact, that the used measurement techniques should not affect the flow characteristics, radiation based tomographic methods are the favourite candidate for such measurements. Here the recently developed ultrafast X-ray tomography, is applied to measure the local and temporal gas volume fraction distribution in a vertical pipe. To obtain the required frame rate a rotating X-ray source by a massless electron beam and a static detector ring are used. Experiments on a vertical pipe are well suited for development and validation of closure models for two-phase flows. While vertical pipe flows are axially symmetrically, the boundary conditions are well defined. The evolution of the flow along the pipe can be investigated as well. This report documents the experiments done for co-current upwards and downwards air-water and steam-water flows as well as for counter-current air-water flows. The details of the setup, measuring technique and data evaluation are given. The report also includes a discussion on selected results obtained and on uncertainties.

  9. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    Science.gov (United States)

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  10. Precision and accuracy of the subjective haptic vertical in the roll plane

    Directory of Open Access Journals (Sweden)

    Bockisch Christopher J

    2010-07-01

    Full Text Available Abstract Background When roll-tilted, the subjective visual vertical (SVV deviates up to 40° from earth-vertical and trial-to-trial variability increases with head roll. Imperfections in the central processing of visual information were postulated to explain these roll-angle dependent errors. For experimental conditions devoid of visual input, e.g. adjustments of body posture or of an object along vertical in darkness, significantly smaller errors were noted. Whereas the accuracy of verticality adjustments seems to depend strongly on the paradigm, we hypothesize that the precision, i.e. the inverse of trial-to-trial variability, is less influenced by the experimental setup and mainly reflects properties of the otoliths. Here we measured the subjective haptic vertical (SHV and compared findings with previously reported SVV data. Twelve healthy right-handed human subjects (handedness assessed based on subjects' verbal report adjusted a rod with the right hand along perceived earth-vertical during static head roll-tilts (0-360°, steps of 20°. Results SHV adjustments showed a tendency for clockwise rod rotations to deviate counter-clockwise and for counter-clockwise rod rotations to deviate clockwise, indicating hysteresis. Clockwise rod rotations resulted in counter-clockwise shifts of perceived earth-vertical up to -11.7° and an average counter-clockwise SHV shift over all roll angles of -3.3° (± 11.0°; ± 1 StdDev. Counter-clockwise rod rotations yielded peak SHV deviations in clockwise direction of 8.9° and an average clockwise SHV shift over all roll angles of 1.8° (± 11.1°. Trial-to-trial variability was minimal in upright position, increased with increasing roll (peaking around 120-140° and decreased to intermediate values in upside-down orientation. Compared to SVV, SHV variability near upright and upside-down was non-significantly (p > 0.05 larger; both showed an m-shaped pattern of variability as a function of roll position

  11. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  12. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales

    Science.gov (United States)

    Cuzzone, Joshua K.; Morlighem, Mathieu; Larour, Eric; Schlegel, Nicole; Seroussi, Helene

    2018-05-01

    Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn) over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM) using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability to capture sharp

  13. Vertical Integration of Hospitals and Physicians: Economic Theory and Empirical Evidence on Spending and Quality.

    Science.gov (United States)

    Post, Brady; Buchmueller, Tom; Ryan, Andrew M

    2017-08-01

    Hospital-physician vertical integration is on the rise. While increased efficiencies may be possible, emerging research raises concerns about anticompetitive behavior, spending increases, and uncertain effects on quality. In this review, we bring together several of the key theories of vertical integration that exist in the neoclassical and institutional economics literatures and apply these theories to the hospital-physician relationship. We also conduct a literature review of the effects of vertical integration on prices, spending, and quality in the growing body of evidence ( n = 15) to evaluate which of these frameworks have the strongest empirical support. We find some support for vertical foreclosure as a framework for explaining the observed results. We suggest a conceptual model and identify directions for future research. Based on our analysis, we conclude that vertical integration poses a threat to the affordability of health services and merits special attention from policymakers and antitrust authorities.

  14. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos

    2003-01-01

    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  15. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  16. Ferrofluid meniscus in a horizontal or vertical magnetic field

    International Nuclear Information System (INIS)

    Rosensweig, R.E.; Elborai, S.; Lee, S.-H.; Zahn, M.

    2005-01-01

    An optical system using reflections of a narrow laser beam to measure the height and shape of a ferrofluid meniscus in response to uniform applied magnetic fields finds that meniscus height on a vertical flat wall decreases in horizontal applied field and increases in vertical applied field. An approximate energy minimization analysis predicts meniscus height in directional agreement with measurements. This study is a first step in calculating the tangential surface force acting in flows where magnetization magnitude and direction lag a changing magnetic field direction, and the meniscus shape is magnetically perturbed

  17. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  18. Measurement of vertical bar Vub vertical bar in semi-inclusive charmless B → πX decays

    International Nuclear Information System (INIS)

    Kim, C.S.; Lee, Jake; Oha, Sechul

    2002-01-01

    We study semi-inclusive charmless decays B → πX, where X does not contain a charm (anti)quark. The mode B-bar 0 → π - X turns out to be be particularly useful for determination of the CKM matrix element vertical bar V ub vertical bar. We present the branching ratio (BR) of B-bar 0 → π - X as a function of vertical bar V ub vertical bar, with an estimation of possible uncertainty. The BR is expected to be an order of 10 -4

  19. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  20. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  1. Vertical Integration in Teaching And Learning (VITAL): an approach to medical education in general practice.

    Science.gov (United States)

    Dick, Marie-Louise B; King, David B; Mitchell, Geoffrey K; Kelly, Glynn D; Buckley, John F; Garside, Susan J

    2007-07-16

    There is increasing demand to provide clinical and teaching experiences in the general practice setting. Vertical integration in teaching and learning, whereby teaching and learning roles are shared across all learner stages, has the potential to decrease time demands and stress on general practitioners, to provide teaching skills and experience to GP registrars, and to improve the learning experience for medical students, and may also help meet the increased demand for teaching in general practice. We consider potential advantages and barriers to vertical integration of teaching in general practice, and provide results of focus group discussions with general practice principals and registrars about vertical integration. We recommend further research into the feasibility of using vertical integration to enhance the capacity to teach medical students in general practice.

  2. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  3. Soft soils reinforced by rigid vertical inclusions

    Directory of Open Access Journals (Sweden)

    Iulia-Victoria NEAGOE

    2013-12-01

    Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.

  4. Assessing verticalization effects on urban safety perception

    OpenAIRE

    Lourenço, Ricardo Barros

    2017-01-01

    We describe an experiment with the modeling of urban verticalization effects on perceived safety scores as obtained with computer vision on Google Streetview data for New York City. Preliminary results suggests that for smaller buildings (between one and seven floors), perceived safety increases with building height, but that for high-rise buildings, perceived safety decreases with increased height. We also determined that while height contributing for this relation, other zonal aspects also ...

  5. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  6. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions

    Science.gov (United States)

    Wang, Xiaocong

    2017-04-01

    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  7. Vertical Scope, Turbulence, and the Benefits of Commitment and Flexibility

    DEFF Research Database (Denmark)

    Claussen, Jörg; Kretschmer, Tobias; Stieglitz, Nils

    2015-01-01

    We address the contested state of theory and the mixed empirical evidence on the relationship between turbulence and vertical scope by studying how turbulence affects the benefits of commitment from integrated development of components and the benefits of flexibility from sourcing components...... externally. We show that increasing turbulence first increases but then decreases the relative value of vertical integration. Moderate turbulence reduces the value of flexibility by making supplier selection more difficult and increases the value of commitment by mitigating the status quo bias of integrated...... structures. Both effects improve the value of integration. Higher levels of turbulence undermine the adaptive benefits of commitment, but have a less adverse effect on flexibility, making nonintegration more attractive. We also show how complexity and uneven rates of turbulence moderate the nonmonotonic...

  8. Potentially of using vertical and three dimensional isolation systems in nuclear structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiuang [Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai (China); Wong, Jenna [Lawrence Berkeley National Laboratories, Berkeley (United States); Mahin, Stephen [University of California, Berkeley (United States)

    2016-10-15

    Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

  9. Potentially of using vertical and three dimensional isolation systems in nuclear structures

    International Nuclear Information System (INIS)

    Zhou, Zhiuang; Wong, Jenna; Mahin, Stephen

    2016-01-01

    Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary

  10. Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

    Directory of Open Access Journals (Sweden)

    Zhiguang Zhou

    2016-10-01

    Full Text Available Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP, with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

  11. Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

    Science.gov (United States)

    Smith, Charlee C., Jr.; Lovell, Powell M., Jr.

    1954-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.

  12. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  13. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  14. Anomalous changes of vertical geomagnetic field in Kamchatka

    Directory of Open Access Journals (Sweden)

    Moroz Yuriy

    2016-01-01

    Full Text Available Secular variations of the vertical geomagnetic field at Paratunka (Kamchatka, Kakioka (Honshu, Mamambetsu (Hokkaido and Patrony (Irkutsk are considered from 1968 to 2014. Comparative analysis of secular variations showed that from 1968 to 2001, similar variations with the intensity of first hundreds on nT are obvious at four observatories. For the following period from 2001 to 2014, the secular variation at Paratunka observatory differs from other observatories. This disagreement of the secular geomagnetic variation at Paratunka observatory is timed to the increase of seismicity at the depth of 400-700 km in South Kamchatka region. It is suggested that in the result of increase of the seismicity in the region of transition from the upper to lower mantle, physical and chemical processes became more active. That caused formation of a large geo-electrical inhomogeneity which affected the behavior of the vertical component of geomagnetic field.

  15. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    Science.gov (United States)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  16. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    Science.gov (United States)

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  17. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    International Nuclear Information System (INIS)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-01-01

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  18. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    Science.gov (United States)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  19. Effect of Short-Crestedness and Obliquity on Non-Breaking and Breaking Wave Forces Applied to Vertical Caisson Breakwaters

    DEFF Research Database (Denmark)

    Martinelli, Luca; Lamberti, Alberto; Frigaard, Peter

    2007-01-01

    This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under multidirectio......This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under...

  20. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  1. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  2. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  3. Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements

    Directory of Open Access Journals (Sweden)

    G. E. Bodeker

    2008-09-01

    Full Text Available A new database of trace gases and aerosols with global coverage, derived from high vertical resolution profile measurements, has been assembled as a collection of binary data files; hereafter referred to as the "Binary DataBase of Profiles" (BDBP. Version 1.0 of the BDBP, described here, includes measurements from different satellite- (HALOE, POAM II and III, SAGE I and II and ground-based measurement systems (ozonesondes. In addition to the primary product of ozone, secondary measurements of other trace gases, aerosol extinction, and temperature are included. All data are subjected to very strict quality control and for every measurement a percentage error on the measurement is included. To facilitate analyses, each measurement is added to 3 different instances (3 different grids of the database where measurements are indexed by: (1 geographic latitude, longitude, altitude (in 1 km steps and time, (2 geographic latitude, longitude, pressure (at levels ~1 km apart and time, (3 equivalent latitude, potential temperature (8 levels from 300 K to 650 K and time.

    In contrast to existing zonal mean databases, by including a wider range of measurement sources (both satellite and ozonesondes, the BDBP is sufficiently dense to permit calculation of changes in ozone by latitude, longitude and altitude. In addition, by including other trace gases such as water vapour, this database can be used for comprehensive radiative transfer calculations. By providing the original measurements rather than derived monthly means, the BDBP is applicable to a wider range of applications than databases containing only monthly mean data. Monthly mean zonal mean ozone concentrations calculated from the BDBP are compared with the database of Randel and Wu, which has been used in many earlier analyses. As opposed to that database which is generated from regression model fits, the BDBP uses the original (quality controlled measurements with no smoothing applied in any

  4. Metal Oxide Vertical Graphene Hybrid Supercapacitors

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2018-01-01

    A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.

  5. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    Science.gov (United States)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  6. Organizing vertical layout environments: a forward-looking development strategy for high-rise building projects

    Science.gov (United States)

    Magay, A. A.; Bulgakova, E. A.; Zabelina, S. A.

    2018-03-01

    The article highlights issues surrounding development of high rise buildings. With the rapid increase of the global population there has been a trend for people to migrate into megacities and has caused the expansion of big city territories. This trend, coupled with the desire for a comfortable living environment, has resulted in numerous problems plaguing the megacity. This article proposes that a viable solution to the problems facing megacities is to create vertical layout environments. Potential options for creating vertical layout environments are set out below including the construction of buildings with atriums. Further, the article puts forth suggested spatial organization of the environment as well as optimal landscaping of high-rise buildings and constructions for the creation of vertical layout environments. Finally, the persuasive reasons for the adoption of vertical layout environments is that it will decrease the amount of developed urban areas, decrease traffic and increase environmental sustainability.

  7. ATCA digital controller hardware for vertical stabilization of plasmas in tokamaks

    International Nuclear Information System (INIS)

    Batista, A. J. N.; Sousa, J.; Varandas, C. A. F.

    2006-01-01

    The efficient vertical stabilization (VS) of plasmas in tokamaks requires a fast reaction of the VS controller, for example, after detection of edge localized modes (ELM). For controlling the effects of very large ELMs a new digital control hardware, based on the Advanced Telecommunications Computing Architecture trade mark sign (ATCA), is being developed aiming to reduce the VS digital control loop cycle (down to an optimal value of 10 μs) and improve the algorithm performance. The system has 1 ATCA trade mark sign processor module and up to 12 ATCA trade mark sign control modules, each one with 32 analog input channels (12 bit resolution), 4 analog output channels (12 bit resolution), and 8 digital input/output channels. The Aurora trade mark sign and PCI Express trade mark sign communication protocols will be used for data transport, between modules, with expected latencies below 2 μs. Control algorithms are implemented on a ix86 based processor with 6 Gflops and on field programmable gate arrays with 80 GMACS, interconnected by serial gigabit links in a full mesh topology

  8. Global vertical mass transport by clouds - A two-dimensional model study

    International Nuclear Information System (INIS)

    Olofsson, Mats

    1988-05-01

    A two-dimensional global dispersion model, where vertical transport in the troposphere carried out by convective as well as by frontal cloud systems is explicitly treated, is developed from an existing diffusion model. A parameterization scheme for the cloud transport, based on global cloud statistics, is presented. The model has been tested by using Kr-85, Rn-222 and SO 2 as tracers. Comparisons have been made with observed distributions of these tracers, but also with model results without the cloud transport, using eddy diffusion as the primary means of vertical transport. The model results indicate that for trace species with a turnover time of days to weeks, the introduction of cloud-transport gives much more realistic simulations of their vertical distribution. Layers of increased mixing ratio with height, which can be found in real atmosphere, are reproduced in our cloud-transport model profiles, but can never be simulated with a pure eddy diffusion model. The horizontal transport in the model, by advection and eddy diffusion, gives a realistic distribution between the hemispheres of the more long-lived tracers (Kr-85). A combination of vertical transport by convective and frontal cloud systems is shown to improve the model simulations, compared to limiting it to convective transport only. The importance of including cumulus clouds in the convective transport scheme, in addition to the efficient transport by cumulonimbus clouds, is discussed. The model results are shown to be more sensitive to the vertical detrainment distribution profile than to the absolute magnitude of the vertical mass transport. The scavenging processes for SO 2 are parameterized without the introduction of detailed chemistry. An enhanced removal, due to the increased contact with droplets in the in-cloud lifting process, is introduced in the model. (author)

  9. Technique for Simulation of Black Sea Circulation with Increased Resolution in the Area of the IO RAS Polygon

    Science.gov (United States)

    Gusev, A. V.; Zalesny, V. B.; Fomin, V. V.

    2017-11-01

    A numerical technique is presented for simulating the hydrophysical fields of the Black Sea on a variable-step grid with refinement in the area of IO RAS polygon. Model primitive equations are written in spherical coordinates with an arbitrary arrangement of poles. In order to increase the horizontal resolution of the coastal zone in the area of the IO RAS polygon in the northeastern part of the sea near Gelendzhik, one of the poles is placed at a land point (38.35° E, 44.75° N). The model horizontal resolution varies from 150 m in the area of the IO RAS polygon to 4.6 km in the southwestern part of the Black Sea. The numerical technique makes it possible to simulate a large-scale structure of Black Sea circulation as well as the meso- and submesoscale dynamics of the coastal zone. In order to compute the atmospheric forcing, the results of the regional climate model WRF with a resolution of about 10 km in space and 1 h in time are used. In order to demonstrate the technique, Black Sea hydrophysical fields for 2011-2012 and a passive tracer transport representing self-cleaning of Gelendzhik Bay in July 2012 are simulated.

  10. Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations

    Science.gov (United States)

    Durán Moro, Marina; Brankart, Jean-Michel; Brasseur, Pierre; Verron, Jacques

    2017-07-01

    Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below

  11. A new high-resolution electromagnetic method for subsurface imaging

    Science.gov (United States)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  12. The complete vertical stroke ΔS vertical stroke =2-hamiltonian in the next-to-leading order

    International Nuclear Information System (INIS)

    Herrlich, S.; Nierste, U.

    1996-04-01

    We present the complete next-to-leading order short-distance QCD corrections to the effective vertical stroke ΔS vertical stroke =2-hamiltonian in the Standard Model. The calculation of the coefficient η 3 is described in great detail. It involves the two-loop mixing of bilocal structures composed of two vertical stroke ΔS vertical stroke =1 operators into vertical stroke ΔS vertical stroke =2 operators. The next-to-leading order corrections enhance η 3 by 27% to η 3 =0.47(+0.03-0.04) thereby affecting the phenomenology of ε K sizeably. η 3 depends on the physical input parameters m t , m c and Λsub(anti M anti S) only weakly. The quoted error stems from renormalization scale dependences, which have reduced compared to the old leading log result. The known calculation of η 1 and η 2 is repeated in order to compare the structure of the three QCD coefficients. We further discuss some field theoretical aspects of the calculation such as the renormalization group equation for Green's functions with two operator insertions and the renormalization scheme dependence caused by the presence of evanescent operators. (orig.)

  13. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  14. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films

    International Nuclear Information System (INIS)

    Chen, Aiping; Bi, Zhenxing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2013-01-01

    Vertically aligned nanocomposite (VAN) oxide thin films have recently stimulated a significant amount of research interest owing to their novel architecture, vertical interfacial strain control and tunable material functionalities. In this work, the growth mechanisms of VAN thin films have been investigated by varying the composite material system, the ratio of the two constituent phases, and the thin film growth conditions including deposition temperature and oxygen pressure as well as growth rate. It has been shown that thermodynamic parameters, elastic and interfacial energies and the multiple phase ratio play dominant roles in the resulting microstructure. In addition, vertical interfacial strain has been observed in BiFeO 3 (BFO)- and La 0.7 Sr 0.3 MnO 3 (LSMO)-based VAN thin film systems; the vertical strain could be tuned by the growth parameters and selection of a suitable secondary phase. The tunability of physical properties such as dielectric loss in BFO:Sm 2 O 3 VAN and low-field magnetoresistance in LSMO-based VAN systems has been demonstrated. The enhancement and tunability of those physical properties have been attributed to the unique VAN architecture and vertical strain control. These results suggest that VAN architecture with novel microstructure and unique vertical strain tuning could provide a general route for tailoring and manipulating the functionalities of oxide thin films

  15. Resonant Tunneling in Gated Vertical One- dimensional Structures

    Science.gov (United States)

    Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Webb, K. J.

    1997-03-01

    Vertical sub-micron transistors incorporating resonant tunneling multiple quantum well heterostructures are interesting in applications for both multi-valued logic devices and the study of quantization effects in vertical quasi- one-, zero- dimensional structures. Earlier we have demonstrated room temperature pinch-off of the resonant peak in sub-micron vertical resonant tunneling transistors structures using a self-aligned sidewall gating technique ( V.R. Kolagunta et. al., Applied Physics Lett., 69), 374(1996). In this paper we present the study of gating effects in vertical multiple quantum well resonant tunneling transistors. Multiple well quasi-1-D sidewall gated transistors with mesa dimensions of L_x=0.5-0.9μm and L_y=10-40μm were fabricated. The quantum heterostructure in these devices consists of two non-symmetric (180 ÅÅi-GaAs wells separated from each other and from the top and bottom n^+ GaAs/contacts region using Al_0.3Ga_0.7As tunneling barriers. Room temperature pinch-off of the multiple resonant peaks similar to that reported in the case of single well devices is observed in these devices^1. Current-voltage characteristics at liquid nitrogen temperatures show splitting of the resonant peaks into sub-bands with increasing negative gate bias indicative of quasi- 1-D confinement. Room-temperature and low-temperature current-voltage measurements shall be presented and discussed.

  16. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    Science.gov (United States)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  17. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales

    Directory of Open Access Journals (Sweden)

    J. K. Cuzzone

    2018-05-01

    Full Text Available Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability

  18. Vertical integration: hospital ownership of physician practices is associated with higher prices and spending.

    Science.gov (United States)

    Baker, Laurence C; Bundorf, M Kate; Kessler, Daniel P

    2014-05-01

    We examined the consequences of contractual or ownership relationships between hospitals and physician practices, often described as vertical integration. Such integration can reduce health spending and increase the quality of care by improving communication across care settings, but it can also increase providers' market power and facilitate the payment of what are effectively kickbacks for inappropriate referrals. We investigated the impact of vertical integration on hospital prices, volumes (admissions), and spending for privately insured patients. Using hospital claims from Truven Analytics MarketScan for the nonelderly privately insured in the period 2001-07, we constructed county-level indices of prices, volumes, and spending and adjusted them for enrollees' age and sex. We measured hospital-physician integration using information from the American Hospital Association on the types of relationships hospitals have with physicians. We found that an increase in the market share of hospitals with the tightest vertically integrated relationship with physicians--ownership of physician practices--was associated with higher hospital prices and spending. We found that an increase in contractual integration reduced the frequency of hospital admissions, but this effect was relatively small. Taken together, our results provide a mixed, although somewhat negative, picture of vertical integration from the perspective of the privately insured.

  19. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra......Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids...

  20. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    The security of key exchange and secure channel protocols, such as TLS, has been studied intensively. However, only few works have considered what happens when the established keys are actually used—to run some protocol securely over the established “channel”. We call this a vertical protocol.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  1. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  2. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  3. Support schemes and vertical integration-Who skims the cream?

    International Nuclear Information System (INIS)

    Ropenus, Stephanie; Jensen, Stine Grenaa

    2009-01-01

    This paper examines how the effectiveness of feed-in tariffs for distributed generators, producing renewable electricity, depends on industry structure, i.e., vertical integration vs. unbundling. A stylized analytical model with a monopolist and a competitive fringe (distributed generators) will be developed to analyze the impact of feed-in tariffs on renewable power production. The vertically integrated monopolist maximizes profits by setting the electricity price for residual demand and a network access charge incurred by the fringe. The fringe receives a fixed feed-in tariff per unit of electricity produced. Under vertical integration, a rise in the feed-in tariff induces the monopolist to raise access charges for fringe firms and skim part of their additional income. This partially offsets the supply increase of the fringe firms stimulated by the feed-in tariff. However, in the case of effective unbundling with an externally set access charge, there is no possibility for the monopolist to extract part of the fringe's profit. Then, the feed-in tariff fully accrues to the competitive fringe, and its supply will further increase. This setting will be extended to horizontal expansion when the monopolist also enters the renewable production segment. The effects on prices and output will be derived and compared

  4. A new vertical axis wind turbine design for urban areas

    Science.gov (United States)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  5. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  6. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Relationship between stacking process and resolution; Jugo shori to bunkaino ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J; Rokugawa, S; Kato, Y [Geological Survey of Japan, Tsukuba (Japan); Yokota, T; Miyazaki, T [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1996-10-01

    This paper evaluates influences of stacking of incident angles against the reflecting surface on the resolution. Basic equations for evaluating the influences were deduced. A simple evaluation method has been provided using these equations. The present evaluation method is considered to be useful for acquisition design, processing, and interpretation of data as an indicator. According to the equations introduced in this study, there are some demerits for stacking traces whose incident angles were large. A total reflection region often appears due to the decreased resolution, and the vertical resolution decreases prior to stacking. Occasionally, it is not effective to remove traces having large incident angles from the viewpoint of resolution. In practice, the selection of most suitable trace through trial and error is not easy due to difference in individual regions. An evaluation method must be discussed, by which the optimal trace can be selected automatically during the data processing. 6 refs., 15 figs.

  8. Understanding conflict-resolution taskload: Implementing advisory conflict-detection and resolution algorithms in an airspace

    Science.gov (United States)

    Vela, Adan Ernesto

    2011-12-01

    From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal

  9. Relato de caso: transmissão vertical de dengue Case report: vertical dengue infection

    Directory of Open Access Journals (Sweden)

    Samara L. C. Maroun

    2008-12-01

    Full Text Available OBJETIVOS: Relatar um caso de transmissão vertical de dengue ocorrido durante epidemia de 2008 pelo vírus tipo II no Rio de Janeiro e revisar a literatura sobre transmissão vertical de dengue. DESCRIÇÃO: Relatamos um caso de transmissão vertical de dengue. Recém-nascido a termo do sexo feminino, peso de nascimento de 3.940 g, foi admitida na unidade de terapia intensiva neonatal com rash cutâneo, hipoatividade e febre no quinto dia de vida. O hemograma evidenciava plaquetopenia importante (38.000 plaquetas. A mãe apresentou quadro clínico compatível com dengue 3 dias antes do parto. Foram colhidos então IgM para dengue da mãe e do recém-nascido, realizados pelo método de ELISA, sendo positivos em ambos. Dengue tipo 2 foi detectado no recém-nascido através de reação em cadeia da polimerase. COMENTÁRIOS: Este relato enfatiza a importância do pediatra estar alerta para a possibilidade de transmissão vertical de dengue iniciando precocemente o tratamento.OBJECTIVES: To report a case of vertical dengue infection in a newborn from Rio de Janeiro, Brazil, and to review the literature concerning this problem. DESCRIPTION: We report a case of vertical dengue infection. Female neonate, birth weight 3,940 g, term, was admitted to a neonatal intensive care unit on the fifth day of life with fever and erythematous rash. Her mother had had dengue fever 3 days before delivery. Her platelet count was 38,000, dropping to 15,000. She did not have any hemorrhagic episodes, including cerebral hemorrhages. Anti-dengue antibodies (IgM were positive in the mother and infant. Dengue type 2 was detected in the infant using polymerase chain reaction. COMMENTS: This report emphasizes that pediatricians should be aware of the possibility of vertical dengue infection so that early management can be instituted.

  10. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.

    Science.gov (United States)

    Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G

    2012-03-02

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  11. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  12. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    Science.gov (United States)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  13. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  14. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  15. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution

    Science.gov (United States)

    Wild, O.; Prather, M. J.

    2005-12-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  16. Vertical distributions of autumn spawned larval herring (Clupea harengus L.) in the North Sea

    DEFF Research Database (Denmark)

    Heath, M.; Brander, Keith; Munk, Peter

    1991-01-01

    in all stages of development, from yolk-sac to pre-metamorphosis (35 mm). During diel migrations larvae were closer to the surface during daylight than at night. The amplitude of diel vertical migrations increased with the length of the larvae. Semi-diel cycles in the vertical distributions were rare...

  17. DIEL AND VERTICAL DYNAMIC OF LIMNOLOGICAL CHARACTERISTICS IN FISH REARING NET-CAGES ENVIROMENT DINÂMICA NICTIMERAL E VERTICAL DAS CARACTERÍSTICAS LIMNOLÓGICAS EM AMBIENTE DE CRIAÇÃO DE PEIXES EM TANQUES-REDE

    Directory of Open Access Journals (Sweden)

    Odair Diemer

    2010-04-01

    Full Text Available

    This study aimed to verify the diel and vertical dynamic characteristics in limnological environment for rearing native fish in net-cage at the reservoir of Itaipu Binacional. The parameters evaluated were water temperature, dissolved oxygen, electrical conductivity, pH, phosphorus, nitrite and ammonia. It was found that there was diel variation for all parameters, except for ammonia and phosphorus. But the variables are in the recommended limits for aquaculture, with the exception of dissolved oxygen that showed critical rates at night. For the vertical distribution concentrations of physical and chemical parameters of water did not exceed the limit established by CONAMA Resolution 357/05 for fish rearing, however, there was vertical variation for nitrite and phosphorus.

    KEY WORDS: Aquaculture, intensive culture, limnology, water quality.

    O presente trabalho teve como objetivo verificar a dinâmica nictimeral e vertical das características limnológicas em ambiente de criação de peixes nativos em tanques-rede no reservatório da Itaipu Binacional. Os parâmetros avaliados foram temperatura da água, oxigênio dissolvido, condutividade elétrica, pH, fósforo total, nitrito e amônia. Verificou-se que ocorreu variação nictimeral para todos os parâmetros, exceto para amônia e fósforo total. Entretanto, as variáveis estão dentro dos limites recomendados para a aquicultura, com exceção do oxigênio dissolvido, que apresentou valores críticos à noite. Para a distribuição vertical, as concentrações dos parâmetros físicos e químicos da água não ultrapassaram o limite estabelecido pela resolução do CONAMA 357/05 para criação de peixes. No entanto, houve variação vertical para nitrito e fósforo.

    PALAVRAS-CHAVES: Aquicultura, cultivo intensivo, limnologia, qualidade de água.

  18. Vertical dimensional stability and rigidity of occlusal registration materials.

    Science.gov (United States)

    Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas

    2009-01-01

    Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.

  19. Upstairs downstairs: vertical integration of a pediatric service.

    Science.gov (United States)

    Racine, A D; Stein, R E; Belamarich, P F; Levine, E; Okun, A; Porder, K; Rosenfeld, J L; Schechter, M

    1998-07-01

    and inpatient activities into four interdependent practice teams composed of attending pediatricians, allied health professionals, house officers, and social workers. The new vertically integrated service was designed to improve continuity of care for patients, provide a model of practice for professional trainees, conserve scarce resources, and create a clinical research infrastructure. The vertically integrated pediatric service augmented the role of attending pediatricians, extended the use of allied health professionals from the ambulatory to the inpatient sites, established interdisciplinary practice teams that unified the care of pediatric patients and their families, and used less inpatient resources. Controlling for trends within the study institution and trends in the practice of pediatrics across institutions throughout the time period, the vertical integration was associated with a decline in 0.6 days per case, the use of 0.62 fewer radiologic tests per case, 0.21 fewer ancillary tests per case, and 2.68 fewer laboratory tests per case. We conclude that vertical integration of a pediatric service at an inner-city municipal hospital is achievable; conveys advantages of improved continuity of care, enhanced opportunities for primary care training, and increased participation of senior clinicians; and has the potential to conserve significant amounts of inpatient resources.

  20. High resolution and simultaneous monitoring of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Muguntha Manikandan, N.; Komura, K.

    2005-01-01

    By using 11 extremely low background Ge detectors at Ogoya Underground Laboratory, it became possible to investigate temporal variations of airborne 212 Pb (T 1/2 =10.6 h) along with 210 Pb and 7 Be with order of magnitude higher time resolution. Then, we have measured airborne nuclides at three monitoring points, (1) roof of our laboratory (LLRL; 40 m ASL), (2) Shinshiku Plateau (640 m ASL) located about 8 km from LLRL as a comparison of vertical distribution, and (3) Hegura Island (10 m ASL) at about 50 km from Wajima located north of Noto Peninsula facing on the Sea of Japan (about 180 km to the north-northeast of LLRL), to investigate influence of Asian continent. Airborne nuclides were collected by high volume air samplers at intervals of a few hours at either two or three points simultaneously. In the same manner, high resolution monitoring was carried out also at the time of passage of typhoon and cold front. In this study, we observed drastic temporal variations of airborne radionuclides and correlations of multiple monitoring points. The results indicate that high resolution and simultaneous monitoring is very useful to understand dynamic state of variations of airborne nuclides due to short and long-term air-mass movement. (author)

  1. Analysing the impact of reflectance distributions and well geometries on vertical surface daylight levels in atria for overcast skies

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangtao; Sharples, Steve [School of Architecture, University of Sheffield, Crookesmoor Building, Conduit Road, Sheffield S10 1FL (United Kingdom)

    2010-07-15

    This study investigated the impacts of different diffuse reflectance distributions and well geometries on vertical daylight factors and vertical internally reflected components in atria. Two forms of reflectance distribution patterns of wall surface were examined: horizontal and vertical reflectance band variation. The square atrium models studied have a broader WI range of 0.25-2.0, which represent shallow, medium and high atria. Radiance, a powerful package based on backward ray tracing technique, was used for the simulations of vertical daylight levels. The results show that different reflectance distributions of square atrium walls do have an impact on the vertical daylight factors and vertical internally reflected components under overcast sky condition. The impact relates to the orientation of the band with different reflectance distributions on the wall. Compared with the vertical band surface, the horizontal band surface has a much more complicated effect. The horizontal distributions of the reflectances significantly affects the vertical daylight levels at the locations more than 30% atrium height on the wall. For an atrium with a height more than 1/2 the width, the effect tends to increase with the increasing well index. The vertical distributions of the reflectance, nevertheless, do not substantially take effect on the vertical daylight levels in atria except for some special reflectance distribution patterns. (author)

  2. Effect of plyometric training on vertical jump height in high school basketball players: randomised control trial

    Directory of Open Access Journals (Sweden)

    Chhaya Verma, Lakshmi Subramanium, Vijaya Krishnan

    2015-01-01

    Full Text Available Background: Plyometric involve high intensity eccentric contraction immediately after a powerful concentric contraction. A vertical leap in basketball also involves rapid & repeated muscle contraction & stretching. Various methods have been used to improve the vertical leap in players, but only few studies mention about plyometrics. Aim: To determine the effect of Plyometric training on vertical jump height in high school basketball players & compare them with their untrained counterparts. Methods and Materials: 144 students were randomly selected & distributed in Group I (Pre-pubertal & Group II (Pubertal which was further divided into Group A (trained players & Group B (untrained students. A gender wise distribution followed this. Plyometric training of 6 weeks was conducted & the vertical jump height pre & post training were recorded & compared. Results: Vertical jump height improved significantly post Plyometric in Group Bcompared to Group A. Boys showed improvement in Group B, however girls were better in Group A. Correlation of BMI with vertical jump height was negative & significant in Group B. Conclusion: Plyometric training brought significant change in untrained students. Boys gained more jump height while girls showed significant increase in jump height during pubertal growth spurt. Also, increased BMI reduced jump height.

  3. Vertical integration - Reducing the load on GP teachers.

    Science.gov (United States)

    Anderson, Katrina; Thomson, Jennifer

    2009-11-01

    With the increased medical student numbers in Australia there is an expectation that general practice will train students, junior doctors and registrars, and the teaching burden for busy general practitioners will rise. We discuss the model of vertical integration of general practice education set up at the Australian National University Medical School in the Australian Capital Territory and southeast New South Wales. This model of vertical integration is unique. It could be adapted in a range of vocational settings and spans medical student, prevocational doctor, registrar and international medical graduate teaching. A key aim of these strategies is to reduce the load on the clinical GP teacher as sustaining their contribution is crucial to the future of training in general practice.

  4. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  5. Three dimensions of the survival curve: horizontalization, verticalization, and longevity extension.

    Science.gov (United States)

    Cheung, Siu Lan Karen; Robine, Jean-Marie; Tu, Edward Jow-Ching; Caselli, Graziella

    2005-05-01

    Three dimensions of the survival curve have been developed: (1) "horizontalization," which corresponds to how long a cohort and how many survivors can live before aging-related deaths significantly decrease the proportion of survivors; (2) "verticalization," which corresponds to how concentrated aging-related ("normal") deaths are around the modal age at death (M); and (3) "longevity extension," which corresponds to how far the highest normal life durations can exceed M. Our study shows that the degree of horizontalization increased relatively less than the degree of verticalization in Hong Kong from 1976 to 2001. After age normalization, the highest normal life durations moved closer to M, implying that the increase in human longevity is meeting some resistance.

  6. The vertical structure of the Saharan boundary layer: Observations and modelling

    Science.gov (United States)

    Garcia-Carreras, L.; Parker, D. J.; Marsham, J. H.; Rosenberg, P.; Marenco, F.; Mcquaid, J.

    2012-04-01

    The vertical structure of the Saharan atmospheric boundary layer (SABL) is investigated with the use of aircraft data from the Fennec observational campaign, and high-resolution large-eddy model (LEM) simulations. The SABL is one of the deepest on Earth, and crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective region driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. These two layers are usually separated by a weak (≤1K) temperature inversion, making the vertical structure very sensitive to the surface fluxes. Large-eddy model (LEM) simulations initialized with radiosonde data from Bordj Bardji Mokhtar (BBM), southern Algeria, are used to improve our understanding of the turbulence structure of the stratification of the SABL, and any mixing or exchanges between the different layers. The model can reproduce the typical SABL structure from observations, and a tracer is used to illustrate the growth of the convective boundary layer into the residual layer above. The heat fluxes show a deep entrainment zone between the convective region and the SRL, potentially enhanced by the combination of a weak lid and a neutral layer above. The horizontal variability in the depth of the convective layer was also significant even with homogeneous surface fluxes. Aircraft observations from a number of flights are used to validate the model results, and to highlight the variability present in a more realistic setting, where conditions are rarely homogeneous in space. Stacked legs were performed to get an estimate of the mean flux profile of the boundary layer, as well as the variations in the vertical structure of the SABL with heterogeneous atmospheric and surface conditions. Regular radiosondes from BBM put

  7. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.

    2014-01-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple...

  8. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    Science.gov (United States)

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  9. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    International Nuclear Information System (INIS)

    Gong, Hong-Yu; Gu, Wei-Min

    2017-01-01

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transport and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.

  10. Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica

    Science.gov (United States)

    Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon

    2018-03-01

    Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.

  11. A Physician's Perspective On Vertical Integration.

    Science.gov (United States)

    Berenson, Robert A

    2017-09-01

    Vertical integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that vertically integrated health care systems raise prices and costs without observable improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other observations on five aspects of vertical integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in vertically integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that vertical integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.

  12. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  13. Remote alignment of Low beta quadrupoles with micrometric resolution

    CERN Document Server

    Acar, M; Herty, A; Mainaud-Durand, H; Marin, A; Quesnel, J P

    2008-01-01

    Considering their location in a high radiation environment and the alignment tolerancesrequested, the low beta quadrupoles of LHC will be positioned remotely (controlling 5 degrees of freedom), with a displacement resolution of few microns in horizontal and vertical. Stepping motor gearbox assemblies are plugged into the jacks which support the cryomagnets in order to move them to the desired position regarding the quality of the beam collisions in the detectors. This displacement will be monitored in real time by the sensors located on the magnets. This paper describes the positioning strategy implemented as well as the software tools used to manage it.

  14. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  15. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    Directory of Open Access Journals (Sweden)

    V. V. Ageev

    1999-06-01

    Full Text Available The influence of frequency dispersion of conductivity (induced polarization of rocks on the results of electromagnetic (EM sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous halfspace, two, three and multilayered sections were analyzed in frequency and time domains. The calculations for different values of chargeability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers. In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong changes in transient curves. In some cases quasiwave and quasistatic phenomena made EM sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of EM sounding. This was confirmed by an experience of "high-resolution" electroprospecting in Russia. The problem of interpretation of EM sounding data in polarizable sections is nonunique. To achieve uniqueness it is probably necessary to complement them by soundings of other type.

  16. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    International Nuclear Information System (INIS)

    Svetov, B.S.; Ageev, V.V.

    1999-01-01

    The influence of frequency dispersion of conductivity (induced polarization) of rocks on the results of electromagnetic (EM) sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous half space, two, three and multilayered section were analyzed in frequency and tim domains. The calculations for different values of charge ability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers). In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong change in transient curves. In same case in quasiwave and quasistatic phenomena made EM sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of EM sounding. This was confirmed by an experience of 'high-resolution' electroprospectring in Russia. The problem of interpretation of EM sounding data in polarizable sections is non unique. To achieve uniqueness it is probably to complement them by sounding of other type

  17. High resolution electromagnetic methods and low frequency dispersion of rock conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Svetov, B.S.; Ageev, V.V. [Geoelectromagnetic Research Institute, Institute of Physics of the Earth, RAS, Moscow (Russian Federation)

    1999-08-01

    The influence of frequency dispersion of conductivity (induced polarization) of rocks on the results of electromagnetic (EM) sounding was studied on the basis of calculation of electric field of vertical magnetic dipole above horizontally layered polarizable sections. Frequency dispersion was approximated by the Debye formula. Polarizable homogeneous half space, two, three and multilayered section were analyzed in frequency and tim domains. The calculations for different values of charge ability and time constants of polarization were performed. In the far zone of a source, the IP of rocks led to quasi-wave phenomena. They produced rapid fluctuations of frequency and transient sounding curves (interference phenomena, multireflections in polarizable layers). In the case of transient sounding in the near zone of a source quasistatic distortions prevailed, caused by the counter electromotive force arising in polarizable layers which may lead to strong change in transient curves. In same case in quasi wave and quasistatic phenomena made Em sounding curves non-interpretable in the class of quasistationary curves over non-dispersive sections. On the other hand, they could increase the resolution and depth of investigation of Em sounding. This was confirmed by an experience of 'high-resolution' electroprospectring in Russia. The problem of interpretation of EM sounding data in polarizable sections is non unique. To achieve uniqueness it is probably to complement them by sounding of other type.

  18. Processing vertical size disparities in distinct depth planes.

    Science.gov (United States)

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  19. Vertical motion and elastic light-scattering of a laser-levitated water droplet

    International Nuclear Information System (INIS)

    Chan, C. W.; Lee, W. K.

    2001-01-01

    We report the vertical motion and elastic scattered light of a single laser-levitated water microdroplet as it slowly evaporated. The vertical displacement as a function of time exhibited peaks of a variety of widths. Morphology-dependent resonances (MDRs) that induced the displacement peaks were identified. We found that the Stokes equation is adequate to describe the vertical motions driven by broad MDRs. For motions driven by relatively narrow MDRs, significant deviations from results predicted by the Stokes equation were found. The elastic scattered light intensity as a function of the size of the droplet showed sudden increases attributable to deformations of the droplet as its size parameter scanned through narrow MDRs. Copyright 2001 Optical Society of America

  20. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    Science.gov (United States)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  1. On production costs in vertical differentiation models

    OpenAIRE

    Dorothée Brécard

    2009-01-01

    In this paper, we analyse the effects of the introduction of a unit production cost beside a fixed cost of quality improvement in a duopoly model of vertical product differentiation. Thanks to an original methodology, we show that a low unit cost tends to reduce product differentiation and thus prices, whereas a high unit cost leads to widen product differentiation and to increase prices

  2. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    internally multiply scattered seismic waves to obtain highly resolved images delineating vertical faults that are otherwise not easily imaged by primaries. Seismic interferometry is conventionally based on the cross-correlation and convolution of seismic traces to transform seismic data from one acquisition geometry to another. The conventional interferometric transformation yields virtual data that suffers from low temporal resolution, wavelet distortion, and correlation/convolution artifacts. I therefore incorporate a least-squares datuming technique to interferometrically transform vertical-seismic-profile surface-related multiples to surface-seismic-profile primaries. This yields redatumed data with high temporal resolution and less artifacts, which are subsequently imaged to obtain highly resolved subsurface images. Tests on synthetic examples demonstrate the efficiency of the proposed techniques, yielding highly resolved migrated sections compared with images obtained by imaging conventionally redatumed data. I further advance the recently developed cost-effective Generalized Interferometric Multiple Imaging procedure, which aims to not only image first but also higher-order multiples as well. I formulate this procedure as a linearized inversion framework and solve it as a least-squares problem. Tests of the least-squares Generalized Interferometric Multiple imaging framework on synthetic datasets and demonstrate that it could provide highly resolved migrated images and delineate vertical fault planes compared with the standard procedure. The results support the assertion that this linearized inversion framework can illuminate subsurface zones that are mainly illuminated by internally scattered energy.

  3. High-resolution WRF-LES simulations for real episodes: A case study for prealpine terrain

    Science.gov (United States)

    Hald, Cornelius; Mauder, Matthias; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    While in most large or regional scale weather and climate models turbulence is parametrized, LES (Large Eddy Simulation) allows for the explicit modeling of turbulent structures in the atmosphere. With the exponential growth in available computing power the technique has become more and more applicable, yet it has mostly been used to model idealized scenarios. It is investigated how well WRF-LES can represent small scale weather patterns. The results are evaluated against different hydrometeorological measurements. We use WRF-LES to model the diurnal cycle for a 48 hour episode in summer over moderately complex terrain in southern Germany. The model setup uses a high resolution digital elevation model, land use and vegetation map. The atmospheric boundary conditions are set by reanalysis data. Schemes for radiation and microphysics and a land-surface model are employed. The biggest challenge in modeling arises from the high horizontal resolution of dx = 30m, since the subgrid-scale model then requires a vertical resolution dz ≈ 10m for optimal results. We observe model instabilities and present solutions like smoothing of the surface input data, careful positioning of the model domain and shortening of the model time step down to a twentieth of a second. Model results are compared to an array of various instruments including eddy covariance stations, LIDAR, RASS, SODAR, weather stations and unmanned aerial vehicles. All instruments are part of the TERENO pre-Alpine area and were employed in the orchestrated measurement campaign ScaleX in July 2015. Examination of the results show reasonable agreement between model and measurements in temperature- and moisture profiles. Modeled wind profiles are highly dependent on the vertical resolution and are in accordance with measurements only at higher wind speeds. A direct comparison of turbulence is made difficult by the purely statistical character of turbulent motions in the model.

  4. Improved Reading Gate For Vertical-Bloch-Line Memory

    Science.gov (United States)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.

  5. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

    Science.gov (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.

    2018-01-01

    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  6. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 3: Temperature uncertainty budget

    Science.gov (United States)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Haefele, Alexander; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    A standardized approach for the definition, propagation, and reporting of uncertainty in the temperature lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One important aspect of the proposed approach is the ability to propagate all independent uncertainty components in parallel through the data processing chain. The individual uncertainty components are then combined together at the very last stage of processing to form the temperature combined standard uncertainty. The identified uncertainty sources comprise major components such as signal detection, saturation correction, background noise extraction, temperature tie-on at the top of the profile, and absorption by ozone if working in the visible spectrum, as well as other components such as molecular extinction, the acceleration of gravity, and the molecular mass of air, whose magnitudes depend on the instrument, data processing algorithm, and altitude range of interest. The expression of the individual uncertainty components and their step-by-step propagation through the temperature data processing chain are thoroughly estimated, taking into account the effect of vertical filtering and the merging of multiple channels. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which means that covariance terms must be taken into account when vertical filtering is applied and when temperature is integrated from the top of the profile. Quantitatively, the uncertainty budget is presented in a generic form (i.e., as a function of instrument performance and wavelength), so that any NDACC temperature lidar investigator can easily estimate the expected impact of individual uncertainty components in the case of their own instrument. Using this standardized approach, an example of uncertainty budget is provided for the Jet Propulsion Laboratory (JPL) lidar at Mauna Loa Observatory, Hawai'i, which is

  7. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    International Nuclear Information System (INIS)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs

  8. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  9. Vertical designs and agriculture joined for food production in the modules for urban vertical gardens.

    Directory of Open Access Journals (Sweden)

    Fritz Hammerling Navas Navarro

    2012-10-01

    Full Text Available Modules for Vertical Urban Gardens (MHUG are a hybrid of vertical gardens and urban agriculture. Vertical gardens have been recognized for the past 2500 years, mainly in the form of the Hanging Gardens of Babylon, while urban agriculture is being practiced today by more than 700 million people worldwide. The benefits that MHUV offers are multiple, but perhaps the most significant is the consumption of foods free of chemicals, free of GMO’s, irrigated with potable water, and that are 100% organic. It is presented a “culinary and medicinal module” that can be implemented in the kitchen area, on roofs, terraces, balconies or patios, where species such as thyme, mint, peppermint, parsley, lemon balm and rosemary can be at hand when preparing dishes. The module consists of three plastic baskets that are recyclable and resistant to decay. Each basket has four rows with space for fourteen seedlings. The baskets are first lined on the interior with a black geotextile, and then are covered with a mesh (polisombra which helps support the substrate and seedlings. Each basket rests on a structure made of recycled wood (from pallets or crates that both holds the basket vertically and serves as a rain cover. The cages measure 0.33m by 0.55m by 0.14m. Each module comes with hosing and connectors for a drip irrigation system, and an instructional manual. The modules demonstrate the benefits of urban agriculture combined with the beauty and modality of vertical gardens, leading to useful applications for food production and decoration in the spaces where vertical urban gardens are possible.

  10. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  11. Comparing a Multivariate Global Ocean State Estimate With High-Resolution in Situ Data: An Anticyclonic Intrathermocline Eddy Near the Canary Islands

    Directory of Open Access Journals (Sweden)

    Bàrbara Barceló-Llull

    2018-03-01

    Full Text Available The provision of high-resolution in situ oceanographic data is key for the ongoing verification, validation and assessment of operational products, such as those provided by the Copernicus Marine Core Service (CMEMS. Here we analyze the ability of ARMOR3D—a multivariate global ocean state estimate that is available from CMEMS—to reconstruct a mesoscale anticyclonic intrathermocline eddy that was previously sampled with high-resolution independent in situ observations. ARMOR3D is constructed by merging remote sensing observations with in situ vertical profiles of temperature and salinity obtained primarily from the Argo network. In situ data from CTDs and an Acoustic Doppler Current Profiler were obtained during an oceanographic cruise near the Canary Islands (Atlantic ocean. The analysis of the ARMOR3D product using the in situ data is done over (i a high-resolution meridional transect crossing the eddy center and (ii a three-dimensional grid centered on the eddy center. An evaluation of the hydrographic eddy signature and derived dynamical variables, namely geostrophic velocity, vertical vorticity and quasi-geostrophic (QG vertical velocity, demonstrates that the ARMOR3D product is able to reproduce the vertical hydrographic structure of the independently sampled eddy below the seasonal pycnocline, with the caveat that the flow is surface intensified and the seasonal pycnocline remains flat. Maps of ARMOR3D density show the signature of the eddy, and agreement with the elliptical eddy shape seen in the in situ data. The major eddy axes are oriented NW-SE in both data sets. The estimated radius for the in situ eddy is ~46 km; the ARMOR3D radius is significantly larger at ~ 92 km and is considered an overestimation that is inherited from an across-track altimetry sampling issue. The ARMOR3D geostrophic flow is underestimated by a factor of 2, with maxima of 0.11 (−0.19 m s−1 at the surface, which implies an underestimation of the local

  12. Vertical Slot Convection: A linear study

    International Nuclear Information System (INIS)

    McAllister, A.; Steinolfson, R.; Tajima, T.

    1992-11-01

    The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and α are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr ∼ 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size

  13. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    Science.gov (United States)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  14. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    International Nuclear Information System (INIS)

    Fumagalli, L; Ferrari, G; Sampietro, M; Casuso, I; MartInez, E; Samitier, J; Gomila, G

    2006-01-01

    Nanoscale capacitance imaging with attofarad resolution (∼1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale

  15. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, L [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Ferrari, G [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Sampietro, M [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Casuso, I [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); MartInez, E [Plataforma de Nanotecnologia, Parc Cientific de Barcelona, C/ Josep Samitier 1-5, 08028-Barcelona (Spain); Samitier, J [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); Gomila, G [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain)

    2006-09-28

    Nanoscale capacitance imaging with attofarad resolution ({approx}1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale.

  16. An advection-based model to increase the temporal resolution of PIV time series.

    Science.gov (United States)

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence . In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence , where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time . An additional favorable effect is observed by the analysis in the

  17. Magnetic Field Fluctuations Due to Diel Vertical Migrations of Zooplankton

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2016-12-01

    Dean et al. (2016) have indicated that at high zooplankton concentrations, diel vertical migrations (DVM) cause velocity fluctuations and a respective increase of the dissipation rate of turbulent kinetic energy (TKE). In this work, we used a 3D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating organisms) via a discrete phase model to simulate the effect of turbulence generation by DVM. We tested a range of organism concentrations from 1000 to 10,000 organisms/m3. The simulation at an extreme concentration of zooplankton showed an increase in dissipation rate of TKE by two to three orders of magnitude during DVM over background turbulence, 10-8 W kg-1. At lower concentrations (Frank, J. Wood, 2016: Biomixing due to diel vertical migrations of zooplankton. Ocean Modelling 98, 51-64.

  18. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  19. Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...

    African Journals Online (AJOL)

    The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...

  20. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    Science.gov (United States)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important

  1. Modeling tides and vertical tidal mixing: A reality check

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    Recently, there has been a great interest in the tidal contribution to vertical mixing in the ocean. In models, vertical mixing is estimated using parameterization of the sub-grid scale processes. Estimates of the vertical mixing varied widely depending on which vertical mixing parameterization was used. This study investigated the performance of ten different vertical mixing parameterizations in a terrain-following ocean model when simulating internal tides. The vertical mixing parameterization was found to have minor effects on the velocity fields at the tidal frequencies, but large effects on the estimates of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations were eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were the new generic coefficients for the generic length scale schemes and Mellor-Yamada's 2.5 level closure scheme.

  2. The new horizon in 2D electrophoresis: new technology to increase resolution and sensitivity.

    Science.gov (United States)

    Moche, Martin; Albrecht, Dirk; Maaß, Sandra; Hecker, Michael; Westermeier, Reiner; Büttner, Knut

    2013-06-01

    A principally new type of an electrophoresis setup for the second dimension of 2DE named HPE (high performance electrophoresis) has recently become available that provides excellent reproducibility much superior to traditional 2DE. It takes up ideas from early beginnings of 2DE which could not be satisfactory realized at that time. The new HPE system is in contrast to all other established systems a horizontal electrophoresis that employs a new type of precast polyacrylamide gels on film-backing and runs on a multilevel flatbed electrophoresis apparatus. In a systematic approach we compared its features to traditional 2DE for the cytosolic proteome of Bacillus subtilis. Not only the reproducibility is enhanced, but also nearly all qualitative parameters as resolution, sensitivity, the number of protein spots (25% more), and the number of different proteins (also additional 25%) are markedly increased. More than 200 proteins were exclusively found in HPE. This new electrophoresis system does not use buffer tanks. No glass plates are needed. Therefore handling of gels is greatly facilitated and very simple to use even for personnel with low technical skills. The new HPE system is technically at the beginnings and further development with increased performance can be expected. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  4. Design study of the vertical field power supply for JT-60

    International Nuclear Information System (INIS)

    Yabuno, Kohei; Tani, Keiji; Shimada, Ryuichi; Kishimoto, Hiroshi; Yoshida, Hidetoshi

    1977-09-01

    The results of a basic design study of the vertical field power supply for JT-60 (JAERI large tokamak) are described. The objective of the study is to evaluate several types of power supply circuits for fast excitation and control of the vertical field. A design requirement is to produce a rapidly increasing vertical field within accuracy of +-5% around the proper field strength required to center the plasma in the vacuum vessel. The plasma current is assumed to increase at the rate of about 100 MA/sec. To meet the requirement, a maximum voltage of 15 kV is necessary in the current build-up time, while generally relatively low voltage is necessary after the current flattop is reached. A hybrid power supply which consists of a dc power source (a thyristor converter) and an inductive energy storage system is proposed. The maximum voltage of the dc power source is determined as 4 kV from the voltage required in the current flattop time. This is sufficient also in the current build-up time if the dc power source is used together with the inductive energy storage system. (auth.)

  5. On revealing the vertical structure of nanoparticle films with elemental resolution: A total external reflection X-ray standing waves study

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan, E-mail: zargham@ifp.uni-bremen.d [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Schmidt, Thomas; Flege, Jan Ingo; Sauerbrey, Marc; Hildebrand, Radowan [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Roehe, Sarah; Baeumer, Marcus [Applied and Physical Chemistry, University of Bremen, Leobener Str. 2, 28359, Bremen (Germany); Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany)

    2010-02-15

    We present a promising combination of methods to precisely determine the morphology of nanostructures, drawing on the example of monodisperse CoPt{sub 3} nanoparticle films deposited by spin coating and dip coating techniques on functionalized Au substrates. Ex-situ X-ray standing waves in total external reflection combined with X-ray reflectivity measurements were employed to determine element-specific atomic-density distributions in vertical direction.

  6. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    Science.gov (United States)

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.

  7. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  8. Viral lysis of marine microbes in relation to vertical stratification

    NARCIS (Netherlands)

    Mojica, K.D.A.

    2015-01-01

    Marine microorganisms represent the largest reservoir of living organic carbon in the ocean and collectively manage the pools and fluxes of nutrients and energy. Climate-induced increases in sea surface temperature and associated modifications to vertical stratification are affecting the structure

  9. Low-Resolution Modeling of Dense Drainage Networks in Confining Layers.

    Science.gov (United States)

    Pauw, P S; Van der Zee, S E A T M; Leijnse, A; Delsman, J R; De Louw, P G B; De Lange, W J; Oude Essink, G H P

    2015-01-01

    Groundwater-surface water (GW-SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a coefficient, often referred to as the "conductance." Previous studies have shown that in models with a low grid resolution, the resistance to GW-SW interaction below the surface water bed should often be accounted for in the parameterization of the conductance, in addition to the resistance across the surface water bed. Three conductance expressions that take this resistance into account were investigated: two that were presented by Mehl and Hill (2010) and the one that was presented by De Lange (1999). Their accuracy in low-resolution models regarding salt and water fluxes to a dense drainage network in a confined aquifer system was determined. For a wide range of hydrogeological conditions, the influence of (1) variable groundwater density; (2) vertical grid discretization; and (3) simulation of both ditches and tile drains in a single model cell was investigated. The results indicate that the conductance expression of De Lange (1999) should be used in similar hydrogeological conditions as considered in this paper, as it is better taking into account the resistance to flow below the surface water bed. For the cases that were considered, the influence of variable groundwater density and vertical grid discretization on the accuracy of the conductance expression of De Lange (1999) is small. © 2014, National GroundWater Association.

  10. Vertical vs. Horizontal Integration: Pre-emptive Merging.

    OpenAIRE

    Colangelo, Giuseppe

    1995-01-01

    Preemption plays a crucial role in arms merger decisions. The author studies whether and under which circumstances preemptive merging occurs in vertically related industries. He finds that vertical mergers often preempt horizontal mergers and are dominant outcomes. Preempting the threat of a detrimental horizontal integration may be the main reason for vertically integrating. Copyright 1995 by Blackwell Publishing Ltd.

  11. Surface rupture and vertical deformation associated with 20 May 2016 M6 Petermann Ranges earthquake, Northern Territory, Australia

    Science.gov (United States)

    Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark

    2017-04-01

    Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.

  12. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  13. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  14. A test of vertical economies for non-vertically integrated firms: The case of rural electric cooperatives

    International Nuclear Information System (INIS)

    Greer, Monica L.

    2008-01-01

    This paper seeks to evaluate unrealized economies of vertical integration for rural electric cooperatives. Given the well-established network economies that are inherent in the generation, transmission, and distribution of electricity, the coops long-standing choice of market structure is questionable (especially if their strategy is welfare maximization). Organized as either generation-and-transmission or distribution-only, the traditional measures of vertical economies will not work. Thus, I have devised an alternative method by which to measure such economies and find that, on average, cost savings in excess of 39% could have been realized had the coops adopted a vertically integrated structure. (author)

  15. Tolerances for the vertical emittance in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1991-11-01

    Future damping rings for linear colliders will need to have very small vertical emittances. In the limit of low beam current, the vertical emittance is primarily determined by the vertical dispersion and the betatron coupling. In this paper, the contributions to these effects from random misalignments are calculated and tolerances are derived to limit the vertical emittance with a 95% confidence level. 10 refs., 5 figs

  16. Characterizing the Effects of a Vertical Time Threshold for a Class of Well-Clear Definitions

    Science.gov (United States)

    Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Consiglio, Maria C.; Chamberlain James P.

    2015-01-01

    A fundamental requirement for the integration of unmanned aircraft into civil airspace is the capability of aircraft to remain well clear of each other and avoid collisions. This requirement has led to a broad recognition of the need for an unambiguous, formal definition of well clear. It is further recognized that any such definition must be interoperable with existing airborne collision avoidance systems (ACAS). A particular class of well-clear definitions uses logic checks of independent distance thresholds as well as independent time thresholds in the vertical and horizontal dimensions to determine if a well-clear violation is predicted to occur within a given time interval. Existing ACAS systems also use independent distance thresholds, however a common time threshold is used for the vertical and horizontal logic checks. The main contribution of this paper is the characterization of the effects of the decoupled vertical time threshold on a well-clear definition in terms of (1) time to well-clear violation, and (2) interoperability with existing ACAS. The paper provides governing equations for both metrics and includes simulation results to illustrate the relationships. In this paper, interoperability implies that the time of well-clear violation is strictly less than the time a resolution advisory is issued by ACAS. The encounter geometries under consideration in this paper are initially well clear and consist of constant-velocity trajectories resulting in near-mid-air collisions.

  17. Electron microscopy at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  18. Electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40 0 biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals

  19. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Buffin, S; Caprace, D-G; Winckelmans, G; Bricteux, L; Zeoli, S

    2017-01-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed. (paper)

  20. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  1. Differential effects of visual feedback on subjective visual vertical accuracy and precision.

    Directory of Open Access Journals (Sweden)

    Daniel Bjasch

    Full Text Available The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV, occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A-/E-effect are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps. After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross. Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg, errors were reduced significantly (p0.05 influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18-24 min (post-feedback block, i.e., was still significantly (p<0.002 different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision - depending mostly on otolith input - was not affected by visual

  2. Regional difference of the vertical structure of seasonal thermocline and its impact on sea surface temperature in the North Pacific

    Science.gov (United States)

    Yamaguchi, R.; Suga, T.

    2016-12-01

    Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.

  3. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  4. Combined interpretation of SkyTEM and high-resolution seismic data

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie; Lykke-Andersen, Holger; Jørgensen, Flemming Voldum

    2011-01-01

    made based on AEM (SkyTEM) and high-resolution seismic data from an area covering 10 km2 in the western part of Denmark. As support for the interpretations, an exploration well was drilled to provide lithological and logging information in the form of resistivity and vertical seismic profiling. Based...... on the resistivity log, synthetic SkyTEM responses were calculated with a varying number of gate-times in order to illustrate the effect of the noise-level. At the exploration well geophysical data were compared to the lithological log; in general there is good agreement. The same tendency was recognised when Sky...

  5. Topogrid Derived 10 Meter Resolution Digital Elevation Model of the Shenandoah National Park and Surrounding Region, Virginia

    Science.gov (United States)

    Chirico, Peter G.; Tanner, Seth D.

    2004-01-01

    Explanation The purpose of developing a new 10m resolution DEM of the Shenandoah National Park Region was to more accurately depict geologic structure, surfical geology, and landforms of the Shenandoah National Park Region in preparation for automated landform classification. Previously, only a 30m resolution DEM was available through the National Elevation Dataset (NED). During production of the Shenandoah10m DEM of the Park the Geography Discipline of the USGS completed a revised 10m DEM to be included into the NED. However, different methodologies were used to produce the two similar DEMs. The ANUDEM algorithm was used to develop the Shenadoah DEM data. This algorithm allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the elevation model. A statistical analysis using over 800 National Geodetic Survey (NGS) first and second order vertical control points reveals that the Shenandoah10m DEM, produced as a part of the Appalachian Blue Ridge Landscape project, has a vertical accuracy of ?4.87 meters. The metadata for the 10m NED data reports a vertical accuracy of ?7m. A table listing the NGS control points, the elevation comparison, and the RMSE for the Shenandoah10m DEM is provided. The process of automated terrain classification involves developing statistical signatures from the DEM for each type of surficial deposit and landform type. The signature will be a measure of several characteristics derived from the elevation data including slope, aspect, planform curvature, and profile curvature. The quality of the DEM is of critical importance when extracting terrain signatures. The highest possible horizontal and vertical accuracy is required. The more accurate Shenandoah 10m DEM can now be analyzed and integrated with the geologic observations to yield statistical correlations between the two in the development of landform and surface geology mapping projects.

  6. Development of Vertical Cable Seismic System (3)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of

  7. The otolithic contribution to vertical ocular stability in the cat.

    Science.gov (United States)

    Pettorossi, V E; Draicchio, F; Ferraresi, A; Bruni, R

    1994-10-01

    In cats, horizontal (HVOR) and vertical (VVOR) vestibulo-ocular reflexes were studied alone and combined with optokinetic stimulation. The upright VVOR (VVOR O degree) only showed higher gain and smaller phase lead compared to those of HVOR at frequencies below 0.05 Hz. The addition of optokinetic stimulation to the vestibular stimulation increased the gain of the horizontal and vertical ocular responses close to 1. VVOR was also studied in side down position (VVOR 90 degrees). In VVOR 90 degrees the ocular responses were asymmetric. The downward directed eye responses of VVOR 90 degrees showed lower gain and greater phase lead compared to those of VVOR 0 degree for the whole range of tested frequencies (0.01-0.4 Hz), while the upward eye responses only showed a lower gain at the lower range of frequencies tested. In the light the gain of VVOR 90 degrees increased, but the gain of downward directed eye responses was consistently lower than 1 at lower frequencies. The higher gain of the VVOR 0 degree compared to the VVOR 90 degrees and HVOR was attributed to the maculo-ocular reflex (MOR) evoked by the gravity modulation of the otolithic receptors, when the animals were oscillated in the pitch plane. The MOR was isolated from the VVOR 0 degree by plugging all semicircular canals. At very low frequencies the gain of the MOR was 0.3-0.35 and the phase was close to 0 degree. This reflex showed a progressive gain decrease and phase lag by increasing the stimulation frequencies. This suggests a low pass filtering process of the otolithic signal. Furthermore in plugged animals the asymmetry of the vertical optokinetic responses was reduced by adding the MOR. The quick phases (QPs) of the vestibular responses were also different depending upon the stimulation plane. The QPs of VVOR 0 degree were smaller and more delayed than those of HVOR and VVOR 90 degrees. In conclusion the main effects observed during otolithic coactivation in the VVOR 0 of the cat are: 1) the

  8. Vertical Integration and Reverse Engineering of Agricultural Enterprises

    Institute of Scientific and Technical Information of China (English)

    Gang; WU; Yong; DU

    2014-01-01

    This paper studies the potential effects of agricultural enterprise’s vertical integration and reverse engineering on downstream firms.Suppliers who invest reverse engineering technology can exploit customer’s information. An integrated supplier can obtain at no cost the information from its subsidiary. Based on repeated game and considered corporate " good" or " bad" type,this paper analysis supplier’s selection and downstream investment in innovation. The results showed that: when the cost is higher than the threshold value no company invest in reverse engineering,when the cost is lower than the threshold value the integration company invest in reverse engineering; in the second period,vertical integration reduce the downstream independent enterprise’s innovation investment and profits,integrated enterprise increase innovation investment and profits; during the first period of the game,the independent downstream firms being " completely foreclosure".

  9. Mathematically modelling the power requirement for a vertical shaft mowing machine

    Directory of Open Access Journals (Sweden)

    Jorge Simón Pérez de Corcho Fuentes

    2008-09-01

    Full Text Available This work describes a mathematical model for determining the power demand for a vertical shaft mowing machine, particularly taking into account the influence of speed on cutting power, which is different from that of other models of mowers. The influence of the apparatus’ rotation and translation speeds was simulated in determining power demand. The results showed that no chan-ges in cutting power were produced by varying the knives’ angular speed (if translation speed was constant, while cutting power became increased if translation speed was increased. Variations in angular speed, however, influenced other parameters deter-mining total power demand. Determining this vertical shaft mower’s cutting pattern led to obtaining good crop stubble quality at the mower’s lower rotation speed, hence reducing total energy requirements.

  10. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...

  11. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function...

  12. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem

    Science.gov (United States)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.

    2018-02-01

    The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .

  13. Increasing mouse embryonic fibroblast cells adhesion on superhydrophilic vertically aligned carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, A.O., E-mail: loboao@yahoo.com [Laboratory of Biomedical Nanotechnology (NanoBio), Instituto de Pesquisa e Desenvolvimento (IP and D), Universidade do Vale do Paraiba UniVap, Avenida Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, SP (Brazil) and Laboratory of Biomedical Vibrational Spectroscopy (LEVB), Instituto de Pesquisa e Desenvolvimento (IP and D), Universidade do Vale do Paraiba UniVap, Avenida Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, SP (Brazil); Marciano, F.R. [Laboratory of Biomedical Nanotechnology (NanoBio), Instituto de Pesquisa e Desenvolvimento (IP and D), Universidade do Vale do Paraiba UniVap, Avenida Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, SP (Brazil); Laboratory of Biomedical Vibrational Spectroscopy LEVB, Instituto de Pesquisa e Desenvolvimento (IP and D), Universidade do Vale do Paraiba (UniVap), Avenida Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, SP (Brazil); Ramos, S.C. [Laboratorio Associado de Sensores e Materiais (LAS), Instituto Nacional de Pesquisas Espaciais (INPE), Avenida dos Astronautas 1758, Sao Jose dos Campos, 12.245-970, SP (Brazil); Machado, M.M. [Centro Multidisciplinar para Investigacao Biologica na Area da Ciencia em Animais de Laboratorio (CEMIB), Universidade Estadual de Campinas (UNICAMP), Rua 05 de Junho s/no, Cidade Universitaria ' Zeferino Vaz' , 13083-877, Campinas (Brazil); Corat, E.J. [Laboratorio Associado de Sensores e Materiais (LAS), Instituto Nacional de Pesquisas Espaciais (INPE), Avenida dos Astronautas 1758, Sao Jose dos Campos, 12.245-970, SP (Brazil); Corat, M.A.F. [Centro Multidisciplinar para Investigacao Biologica na Area da Ciencia em Animais de Laboratorio (CEMIB), Universidade Estadual de Campinas (UNICAMP), Rua 05 de Junho s/no, Cidade Universitaria ' Zeferino Vaz' , 13083-877, Campinas (Brazil)

    2011-10-10

    We have analyzed the adhesion of mouse embryonic fibroblasts (MEFs) genetically modified by green fluorescence protein (GFP) gene cultured on vertically-aligned carbon nanotubes (VACNTs) after 6 days. The VACNTs films grown on Ti were obtained by microwave plasma chemical vapor deposition process using Fe catalyst and submitted to an oxygen plasma treatment, for 2 min, at 400 V and 80 mTorr, to convert them to superhydrophilic. Cellular adhesion and morphology were analyzed by scanning electron, fluorescence microscopy, and thermodynamics analysis. Characterizations of superhydrophilic VACNTs films were evaluated by contact angle and X-Ray Photoelectron Spectroscopy. Differences of crowd adhered cells, as well as their spreading on superhydrophilic VACNTs scaffolds, were evaluated using focal adhesion analysis. This study was the first to demonstrate, in real time, that the wettability of VACNTs scaffolds might have enhanced and differential adherence patterns to the MEF-GFP on VACNTs substrates. Highlights: {yields} A simple oxygen plasma treatment was used to obtain superhydrophilic CNT films. {yields} Superhydrophilic CNTs films were successfully produced by incorporation of carboxylic groups. {yields} Cellular adhesion on superhydrophilic VACNT films was analyzed in real time. {yields} Wettability of CNT films directly affects the cellular migration, proliferation and adhesion.

  14. The effect of vocal fold vertical stiffness gradient on sound production

    Science.gov (United States)

    Geng, Biao; Xue, Qian; Zheng, Xudong

    2015-11-01

    It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.

  15. Vertical farming monitoring system using the internet of things (IoT)

    Science.gov (United States)

    Chin, Yap Shien; Audah, Lukman

    2017-09-01

    Vertical farming had become a hot topic among peak development countries. However, vertical farming is hard to practice because minor changes on the surrounding would leave big impact to the productivity and quality of farming activity. Thus, the aim of this project is to provide a vertical farming monitoring system to help keeping track on the physical conditions of crops. In this system, varieties of sensors will be used to detect current physical conditions, and send the data to BeagleBone Black (BBB) microcontroller either in analog or digital input. Then, the data will be processed by BBB and upload to the Thingspeak Cloud. Furthermore, the system will record the position of equipment in used, which make it easier for maintenance when there is equipment broken down. The system also provide basic remote function where users could turn on/off the watering system, and the LED light via web-based application. The web-based application will also be designed to analyze and display data gathered in the form of graphs, charts or figures, for better understanding. With the improvement implemented on the vertical farming culture, it is expected that the productivity and quality of crops would increase significantly.

  16. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Crunelle, Cleo L.; Wit, Tim C. de; Bruin, Kora de; Ramakers, Ruud M.; Have, Frans van der; Beekman, Freek J.; Brink, Wim van den; Booij, Jan

    2012-01-01

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D 2/3 receptor (DRD 2/3 ) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD 2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [ 123 I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD 2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD 2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  17. Expected sliding distance of vertical slit caisson breakwater

    Science.gov (United States)

    Kim, Dong Hyawn

    2017-06-01

    Evaluating the expected sliding distance of a vertical slit caisson breakwater is proposed. Time history for the wave load to a vertical slit caisson is made. It consists of two impulsive wave pressures followed by a smooth sinusoidal pressure. In the numerical analysis, the sliding distance for an attack of single wave was shown and the expected sliding distance during 50 years was also presented. Those results were compared with a vertical front caisson breakwater without slit. It was concluded that the sliding distance of a vertical slit caisson may be over-estimated if the wave pressure on the caisson is evaluated without considering vertical slit.

  18. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  19. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    Science.gov (United States)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by 2000 masl

  20. Vertical specialization and industrial upgrading: a preliminary note

    OpenAIRE

    Xiao Jiang; William Milberg

    2012-01-01

    Abstract Vertical specialization is a measure of the import content of exports. Given the widely recognized importance of trade in tasks and global production networks, vertical specialization has recently gained the attention of international trade researchers and policy makers. In this note, we use measured changes in the within-country pattern of vertical specialization to gauge the relevance of task trade for industrial upgrading and economic development. We first calculate vertical speci...

  1. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  2. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    Science.gov (United States)

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  3. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  4. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  5. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  6. Parameters determining efficiency and degradation of TiO2 vertical bar dye vertical bar CuI solar cells

    International Nuclear Information System (INIS)

    Sirimanne, P.M.; Tributsch, Helmut

    2004-01-01

    The influence of the micro-morphological structure of the TiO 2 film, the distribution of CuI in TiO 2 pores and the concentration of added surfactant in the CuI coating solution on the photocurrent of solid-state TiO 2 vertical bar dye vertical bar CuI solar cells was examined by space resolved photocurrent imaging technique. Iodine is found to be competing with the oxidized dye molecules in accepting electrons from CuI and decreases the efficiency of the cell. TiO 2 vertical bar dye vertical bar CuI cell degrade two hundred times faster than wet sensitization cells. This instability is considered to be due to the decomposition of the electron transfer-bridge between the sensitizer and CuI

  7. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  8. 40 keV atomic resolution TEM

    International Nuclear Information System (INIS)

    Bell, David C.; Russo, Christopher J.; Kolmykov, Dmitry V.

    2012-01-01

    Here we present the first atomic resolution TEM imaging at 40 keV using an aberration-corrected, monochromated source TEM. Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron and improved spectroscopy efficiency, decreased delocalization effects and reduced knock-on damage. Together, these often improve the contrast to damage ratio obtained on a large class of samples. Third-order aberration correction now allows us to operate the TEM at low energies while retaining atomic resolution, which was previously impossible. At low voltage the major limitation to resolution becomes the chromatic aberration limit. We show that using a source monochromator we are able to reduce the effect of chromatic aberration and achieve a usable high-resolution limit at 40 keV to less than 1 Å. We show various materials' examples of the application of the technique to image graphene and silicon, and compare atomic resolution images with electron multislice simulations. -- Highlights: ► We present the first atomic resolution images recorded at 40 keV using an aberration-corrected, monochromated TEM. ► We show information transfer measured to better than 1 Å. ► At 40 keV an aberration-corrected monochromated TEM is limited by fifth-order spherical aberration. ► We show that using a monochromator the effect of chromatic aberration is reduced to enable high resolution imaging. ► Low voltage high resolution electron microscopy will be beneficial for imaging the organic/inorganic materials interface.

  9. Vertical distribution of pelagic photosynthesis

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke

    chlorophyll maxima (DCM) to be a general feature in the ocean. Today, it is generally accepted that DCMs occur in most of our oceans still, despite this empirical knowledge, subsurface primary production is still largely ignored in marine science. The work included in this PhD examines the vertical...... each of the three regions combined with 15 years of survey data for the Baltic Sea transition zone. Overall, the results of this PhD work show that the vertical distribution of phytoplankton and their activity is important for the understanding, dynamics and functioning of pelagic ecosystems. It, thus......, emphasizes that future research and modelling exercises aimed at improving understanding of pelagic ecosystems and their role in the global ocean should include a consideration of the vertical heterogeneity in phytoplankton distributions and activity....

  10. Cell vertices as independent actors during cell intercalation in epithelial morphogenesis

    Science.gov (United States)

    Loerke, Dinah

    Epithelial sheets form the lining of organ surfaces and body cavities, and it is now appreciated that these sheets are dynamic structures that can undergo significant reorganizing events, e.g. during wound healing or morphogenesis. One of the key morphogenetic mechanisms that is utilized during development is tissue elongation, which is driven by oriented cell intercalation. In the Drosophila embryonic epithelium, this occurs through the contraction of vertical T1 interfaces and the subsequent resolution of horizontal T3 interfaces (analogous to so-called T1 transitions in soap foams), where the symmetry breaking behaviors are created by a system of planar polarity of actomyosin and adhesion complexes within the cell layer. The dominant physical model for this process posits that the anisotropy of line tension directs T1 contraction. However, this model is inconsistent with the in vivo observation that cell vertices of T1 interfaces lack physical coupling, and instead show independent movements. Thus, we propose that a more useful explanation of intercalary behaviors will be possible through a description of the radially-directed and adhesion-coupled force events that lead to vertex movements and produce subsequent dependent changes in interface lengths. This work is supported by NIH R15 GM117463-01 and by a Research Corporation for Science Advancement (RCSA) Cottrell Scholar Award.

  11. Safety Aspects for Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.; Christiani, E.

    1996-01-01

    In this appendix some safety aspects in relation to vertical wall breakwaters are discussed. Breakwater structures such as vertical wall breakwaters are used under quite different conditions. The expected lifetime can be from 5 years (interim structure) to 100 years (permanent structure) and the ...

  12. Vertical integration and market power: A model-based analysis of restructuring in the Korean electricity market

    International Nuclear Information System (INIS)

    Bunn, Derek W.; Martoccia, Maria; Ochoa, Patricia; Kim, Haein; Ahn, Nam-Sung; Yoon, Yong-Beom

    2010-01-01

    An agent-based simulation model is developed using computational learning to investigate the impact of vertical integration between electricity generators and retailers on market power in a competitive wholesale market setting. It is observed that if partial vertical integration creates some market foreclosure, whether this leads to an increase or decrease in market power is situation specific. A detailed application to the Korean market structure reveals this to be the case. We find that in various cases, whilst vertical integration generally reduces spot prices, it can increase or decrease the market power of other market generators, depending upon the market share and the technology segment of the market, which is integrated, as well as the market concentrations before and after the integration.

  13. Vertical integration and market power. A model-based analysis of restructuring in the Korean electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Derek W.; Martoccia, Maria; Ochoa, Patricia [London Business School, London (United Kingdom); Kim, Haein; Ahn, Nam-Sung; Yoon, Yong-Beom [Korean Electric Power Corporation, Seoul (Korea)

    2010-07-15

    An agent-based simulation model is developed using computational learning to investigate the impact of vertical integration between electricity generators and retailers on market power in a competitive wholesale market setting. It is observed that if partial vertical integration creates some market foreclosure, whether this leads to an increase or decrease in market power is situation specific. A detailed application to the Korean market structure reveals this to be the case. We find that in various cases, whilst vertical integration generally reduces spot prices, it can increase or decrease the market power of other market generators, depending upon the market share and the technology segment of the market, which is integrated, as well as the market concentrations before and after the integration. (author)

  14. Vertical integration and market power: A model-based analysis of restructuring in the Korean electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Derek W., E-mail: dbunn@london.ed [London Business School, London (United Kingdom); Martoccia, Maria; Ochoa, Patricia [London Business School, London (United Kingdom); Kim, Haein; Ahn, Nam-Sung; Yoon, Yong-Beom [Korean Electric Power Corporation, Seoul (Korea, Republic of)

    2010-07-15

    An agent-based simulation model is developed using computational learning to investigate the impact of vertical integration between electricity generators and retailers on market power in a competitive wholesale market setting. It is observed that if partial vertical integration creates some market foreclosure, whether this leads to an increase or decrease in market power is situation specific. A detailed application to the Korean market structure reveals this to be the case. We find that in various cases, whilst vertical integration generally reduces spot prices, it can increase or decrease the market power of other market generators, depending upon the market share and the technology segment of the market, which is integrated, as well as the market concentrations before and after the integration.

  15. Proposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains

    Directory of Open Access Journals (Sweden)

    Reza Ahmadi

    2014-12-01

    Full Text Available To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD technique, have been proposed to simulate Ground-Penetrating Radar (GPR responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the forward modelling process to be very long lasting, even with modern high-speed computers. In the present study the well-known hyperbolic pattern response of horizontal cylinders, usually found in GPR B-Scan images, is used as a basic model to examine the possibility of reducing the forward modelling execution time. In general, the simulated GPR traces of common reflected objects are time shifted, as with the Normal Moveout (NMO traces encountered in seismic reflection responses. This suggests the application of Fourier transform to the GPR traces, employing the time-shifting property of the transformation to interpolate the traces between the adjusted traces in the frequency domain (FD. Therefore, in the present study two post-processing algorithms have been adopted to increase the speed of forward modelling while maintaining the required precision. The first approach is based on linear interpolation in the Fourier domain, resulting in increasing lateral trace-to-trace interval of appropriate sampling frequency of the signal, preventing any aliasing. In the second approach, a super-resolution algorithm based on 2D-wavelet transform is developed to increase both vertical and horizontal resolution of the GPR B-Scan images through preserving scale and shape of hidden hyperbola features. Through comparing outputs from both methods with the corresponding actual high-resolution forward response, it is shown that both approaches can perform satisfactorily, although the wavelet-based approach outperforms the frequency-domain approach noticeably, both in amplitude and

  16. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  17. Technical Note: Continuity of MIPAS-ENVISAT operational ozone data quality from full- to reduced-spectral-resolution operation mode

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2008-04-01

    Full Text Available MIPAS (Michelson Interferometer for Passive Atmospheric Sounding is operating on the ENVIronmental SATellite (ENVISAT since March 2002. After two years of nearly continuous limb scanning measurements, at the end of March 2004, the instrument was stopped due to problems with the mirror drive of the interferometer. Operations with reduced maximum path difference, corresponding to both a reduced-spectral-resolution and a shorter measurement time, were resumed on January 2005. In order to exploit the reduction in measurement time, the measurement scenario was changed adopting a finer vertical limb scanning. The change of spectral resolution and of measurement scenario entailed an update of the data processing strategy. The aim of this paper is the assessment of the differences in the quality of the MIPAS ozone data acquired before and after the stop of the operations. Two sets of MIPAS ozone profiles acquired in 2003–2004 (full-resolution measurements and in 2005–2006 (reduced-resolution measurements are compared with collocated ozone profiles obtained by GOMOS (Global Ozone Monitoring by Occultation of Stars, itself also onboard ENVISAT. The continuity of the GOMOS data quality allows to assess a possible discontinuity of the MIPAS performances. The relative bias and precision of MIPAS ozone profiles with respect to the GOMOS ones have been compared for the measurements acquired before and after the stop of the MIPAS operations. The results of the comparison show that, in general, the quality of the MIPAS ozone profiles retrieved from reduced-resolution measurements is comparable or better than that obtained from the full-resolution dataset. The only significant change in MIPAS performances is observed at pressures around 2 unit{hPa}, where the relative bias of the instruments increases by a factor of 2 from the 2003–2004 to 2005–2006 measurements.

  18. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale. Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  19. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  20. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  1. A 2D eye gaze estimation system with low-resolution webcam images

    Directory of Open Access Journals (Sweden)

    Kim Jin

    2011-01-01

    Full Text Available Abstract In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and the other one for the eye movements' direction detection. Eyeball is detected using deformable angular integral search by minimum intensity (DAISMI algorithm. Deformable template-based 2D gaze estimation (DTBGE algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor movements in a certain screen size and resolution. The core advantage of the system is that it does not employ the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection. Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed system is presented and experimental results are shown.

  2. Evaluation of vertical profiles to design continuous descent approach procedure

    Science.gov (United States)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  3. Vertical Integration in the Taiwan Aquaculture Industry

    OpenAIRE

    Tzong-Ru Lee (Jiun-Shen); Yi-Hsu; Cheng-Jen Lin; Kongkiti Phusavat; Nirote Sinnarong

    2011-01-01

    The study aims to improve the distribution channels in the Taiwan aquaculture industry through a better vertical integration. This study is derived from a need to improve the distribution performance of agricultural-based industries in response to increasing food demands in Asia and elsewhere. Based on a four-by-eight matrix derived from both a value chain and a service profit chain, thirty different strategies are developed. This development is based on key success factors and strategies for...

  4. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    Science.gov (United States)

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  5. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    International Nuclear Information System (INIS)

    Kaminski, Yelena; Shauly, Eitan; Paz, Yaron

    2015-01-01

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect

  6. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Yelena [Department of Chemical Engineering, Technion, Haifa (Israel); TowerJazz Ltd. Migdal Haemek (Israel); Shauly, Eitan [TowerJazz Ltd. Migdal Haemek (Israel); Paz, Yaron, E-mail: paz@tx.technion.ac.il [Department of Chemical Engineering, Technion, Haifa (Israel)

    2015-12-07

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  7. Internal wave-mediated shading causes frequent vertical migrations in fishes

    KAUST Repository

    Kaartvedt, Stein

    2012-04-25

    We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of fish created an overlapping zone. Near-bottom fish correspondingly left the benthic boundary zone at the wave trough, ascending into an acoustic scattering layer likely consisting of zooplankton and then descending to the benthic boundary zone at the wave crest. We suggest that this vertical fish migration is a response to fluctuations in light intensity of 3 to 4 orders of magnitude caused by shading from a turbid surface layer that had chlorophyll a values of 3 to 4 mg m−3 and varied in thickness from ~15 to 50 m at a temporal scale corresponding to the internal wave period (30 min). This migration frequency thus is much higher than that of the common and widespread light-associated diel vertical migration. Vertical movements affect prey encounters, growth, and survival. We hypothesize that FVM increase the likelihood of prey encounters and the time for safe visual foraging among planktivorous fish, thereby contributing to efficient trophic transfer in major upwelling areas.

  8. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    Science.gov (United States)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  9. Vertical interlocks of executives and performance of affiliated firms in state owned Chinese business groups

    DEFF Research Database (Denmark)

    Arnoldi, Jakob; Chen, Xin; Na, Chaohong

    . Further, the positive effects of vertically interlocking chairmen decrease as the number of pyramidal layers increases or regional marketization index improves. Such positive effects of interlocks, however, become greater as the divergence between cash flow rights and control rights of business groups...... increases. Our findings are consistent with the hypotheses that vertically interlocking executives can increase firm value by providing better protection against political interference and expropriation by the ultimate controllers of business groups. Our study sheds new light in the role and function...... of interlocks and adds to a small body of literature on the dynamics of state owned business groups in emerging markets generally and China particularly....

  10. Investigation of Vertical Microwave Publishing Caused by the Base Transceiver Station (BTS Antennas in Hashtgerd City

    Directory of Open Access Journals (Sweden)

    Simin Naseri

    2013-12-01

    Full Text Available Background and Objectives: New Hazards interface the environment and human life along with technology development. One of these pollutants is electromagnetic field and it’s known and unknown bad effects on the environment, this study determines the vertical publishing (height measurement of microwave antennas in the city of Hashtgerd. Methods: The basic information including the geographical location of the BTS antennas in the city, brand, the operator type, installation and its height was received from CRA and radio communications, and then the measuring was done by using the standard method of IEEE STD 95. 1 by the SPECTRAN 4060, and by using crane elevator in 17-meters height near the BTS antennas (15 meters.analysis were done by Spss16 and by Kolmogorov Smirnov test, multiple regression method. Results: Results show that in the both operators of Irancell and Hamrah-e-aval, density will increase by increasing measurement height or decreasing the vertical distance of broadcaster antenna. Regarding to the mix model test, a meaningful statistical relationship can be seen between measurement height and the density average in both types of the operators. Conclusion: while measuring height increased or in other words got closer to the antennas, density average increased in both operators, so the highest number was reported in the minimum vertical distance compared to the Irancell operator antenna was 25 mw/m2 and the lowest number was related to Hamrah-e-aval operator in the maximum vertical distance which was 0.02mw/m2. Thus, people stationed in the tall buildings parallel with installation height of antennas or in less vertical distance of them, are more exposed to the waves.

  11. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  12. Measurement of vertical stroke Vcb vertical stroke at the Z energy from B mesons exclusive decays

    International Nuclear Information System (INIS)

    Marinelli, N.

    1998-01-01

    Recent ALEPH, DELPHI and OPAL measurements of the form factors in the exclusive decay modes anti B 0 → D *+ l - anti ν l and anti B 0 →D + l - anti ν l are reviewed here. The values obtained allow an almost model-independent determination of vertical stroke V cb vertical stroke in the HQET framework. (orig.)

  13. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  14. Eastern equatorial Pacific sea surface temperature annual cycle in the Kiel climate model: simulation benefits from enhancing atmospheric resolution

    Science.gov (United States)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-05-01

    A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.

  15. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  16. High-Resolution Powder Diffractometer HRPT for Thermal Neutrons at SINQ

    International Nuclear Information System (INIS)

    Fischer, P.; Koch, M.; Koennecke, M.; Pomjakushin, V.; Schefer, J.; Schlumpf, N.

    1999-01-01

    The new neutron powder diffractometer at the Swiss continuous spallation neutron source SINQ is designed as a flexible instrument for high resolution [best values δd/d: ( -3 with d = lattice spacing in the high resolution or high intensity modes, respectively]. It uses large scattering angles 2Θ M = 120 deg or 90 deg of the monochromator, a 28 cm high, vertically focusing wafer type Ge(hkk) monochromator and a position-sensitive 3 He detector(3.6 bar) produced by Cerca at Romans, France. It has 1600 (25x64) detectors with an angular separation of 0.1 deg and includes modern electronics developed by E. Berruyer, Cerca and PSI. The SICS software of PSI controls the instrument with a server running on an unix workstation and clients written in Java through the TCP/IP network. The design principles and first experiences are presented. The interdisciplinary applications of HRPT will permit high-resolution refinement of chemical and magnetic structures as well as phase analysis including the detection of defects and internal microstrain. In particular real-time investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. (author)

  17. Assessment of vertically-resolved PM10 from mobile lidar observations

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2009-11-01

    Full Text Available We investigate in this study the vertical PM10 distributions from mobile measurements carried out from locations along the Paris Peripherique (highly trafficked beltway around Paris, examine distinctions in terms of aerosol concentrations between the outlying regions of Paris and the inner city and eventually discuss the influence of aerosol sources, meteorology, and dynamics on the retrieved PM10 distributions. To achieve these purposes, we combine in situ surface measurements with active remote sensing observations obtained from a great number of research programs in Paris area since 1999. Two approaches, devoted to the conversion of vertical profiles of lidar-derived extinction coefficients into PM10, have been set up. A very good agreement is found between the theoretical and empirical methods with a discrepancy of 3%. Hence, specific extinction cross-sections at 355 nm are provided with a reasonable relative uncertainty lower than 12% for urban (4.5 m2 g−1 and periurban (5.9 m2 g−1 aersols, lower than 26% for rural (7.1 m2 g−1 aerosols, biomass burning (2.6 m2 g−1 and dust (1.1 m2 g−1 aerosols The high spatial and temporal resolutions of the mobile lidar (respectively 1.5 m and 1 min enable to follow the spatiotemporal variability of various layers trapping aerosols in the troposphere. Appropriate specific extinction cross-sections are applied in each layer detected in the vertical heterogeneities from the lidar profiles. The standard deviation (rms between lidar-derived PM10 at 200 m above ground and surface network stations measurements was ~14μg m−3. This difference is particularly ascribed to a decorrelation of mass concentrations in the first meters of the boundary layer, as highlighted through multiangular lidar observations. Lidar signals can be used to follow mass concentrations with an uncertainty lower than 25% above urban areas and provide useful information on PM10 peak forecasting that affect air quality.

  18. Increasing efficacy of graminicides with a forward angled spray

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger

    2012-01-01

    Control of annual grass species with vertically oriented leaves in agricultural crops by application of foliar acting herbicides with conventional hydraulic sprayers can be increased using forward angled nozzles. Changing the spray angle from the normally predominantly vertical spray towards...... an angled spray increases the potential target size of vertically oriented targets. This theory was tested in field experiments from 2005 to 2009 investigating control of three different grass species and a dicotyledonous weed species at early growth stages using foliar acting herbicides. Lolium perenne...... efficacy on L. perenne at early growth stages using nozzles with different spray quality, at different driving speeds and in different wind conditions. Similarly graminicide efficacy was increased when nozzles were angled 60° forward controlling A. myosuroides. Experiments investigating control of the two...

  19. Reconstruction of B- → D*0e- anti νe decays and determination of vertical stroke Vcb vertical stroke

    International Nuclear Information System (INIS)

    Schubert, J.

    2006-01-01

    In this analysis the decay B - → D *0 e - anti ν e is measured. The underlying data sample consists of about 226 million B anti B-pairs accumulated on the Υ(4S) resonance by the BABAR detector at the asymmetric e + e - collider PEP-II. The reconstruction of the decay uses the channels D *0 → D 0 π 0 , D 0 → K - π + and π 0 → γγ. The neutrino is not reconstructed. Since the rest frame of the B meson is unknown, the boost w of the D *0 meson in the B meson rest frame is estimated by w. The w spectrum of the data is described in terms of the partial decay width dΓ/dw given by theory and the detector simulation translating each spectrum dΓ/dw into an expectation of the measured w spectrum. dΓ/dw depends on a form factor F(w) parameterizing the strong interaction in the decay process. To find the best descriptive dΓ/dw a fit to the data determines the following two parameters of dΓ/dw: (i) F(1) vertical stroke V cb vertical stroke, the product between F at zero D *0 -recoil and the CKM matrix element vertical stroke V cb vertical stroke; (ii) ρ 2 A1 , a parameter of the form factor F(w). The former parameter scales the height of dΓ/dw and ρ 2 A1 varies the shape of it. The determined values of F(1) vertical stroke V cb vertical stroke, ρ 2 A1 and B(B - → D *0 e - anti ν e ) are F(1) vertical stroke V cb vertical stroke =(35.8±0.5±1.5) x 10 -3 , ρ 2 A1 =(1.08±0.05±0.09) and B(B - → D *0 e - anti ν e )=(5.60±0.08±0.42)%, where the uncertainties are statistical and systematic, respectively. The values of B(B - → D *0 e - anti ν e ) has been determined by an integration of dΓ/dw over the allowed w range using the fitted values of F(1) vertical stroke V cb vertical stroke and ρ 2 A1 . (orig.)

  20. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  1. Vertical selection in the information domain of children

    NARCIS (Netherlands)

    Duarte Torres, Sergio; Hiemstra, Djoerd; Huibers, Theo W.C.

    In this paper we explore the vertical selection methods in aggregated search in the specific domain of topics for children between 7 and 12 years old. A test collection consisting of 25 verticals, 3.8K queries and relevant assessments for a large sample of these queries mapping relevant verticals to

  2. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  3. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  4. Vertical Object Layout and Compression for Fixed Heaps

    Science.gov (United States)

    Titzer, Ben L.; Palsberg, Jens

    Research into embedded sensor networks has placed increased focus on the problem of developing reliable and flexible software for microcontroller-class devices. Languages such as nesC [10] and Virgil [20] have brought higher-level programming idioms to this lowest layer of software, thereby adding expressiveness. Both languages are marked by the absence of dynamic memory allocation, which removes the need for a runtime system to manage memory. While nesC offers code modules with statically allocated fields, arrays and structs, Virgil allows the application to allocate and initialize arbitrary objects during compilation, producing a fixed object heap for runtime. This paper explores techniques for compressing fixed object heaps with the goal of reducing the RAM footprint of a program. We explore table-based compression and introduce a novel form of object layout called vertical object layout. We provide experimental results that measure the impact on RAM size, code size, and execution time for a set of Virgil programs. Our results show that compressed vertical layout has better execution time and code size than table-based compression while achieving more than 20% heap reduction on 6 of 12 benchmark programs and 2-17% heap reduction on the remaining 6. We also present a formalization of vertical object layout and prove tight relationships between three styles of object layout.

  5. Gallium nitride vertical power devices on foreign substrates: a review and outlook

    Science.gov (United States)

    Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás

    2018-07-01

    Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.

  6. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside.

  7. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I.

    2016-01-01

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside

  8. Vertical force and torque analysis during mechanical preparation of extracted teeth using hand ProTaper instruments.

    Science.gov (United States)

    Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa

    2011-08-01

    The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  9. Lousy mums: patterns of vertical transmission of an amphibious louse.

    Science.gov (United States)

    Leonardi, M S; Crespo, E A; Raga, J A; Aznar, F J

    2013-09-01

    In this study, we document patterns of vertical transmission of the amphibious louse Antarctophthirus microchir (Echinophthiriidae) in pups of South American sea lion, Otaria flavescens, from Patagonia. Vertical transmission is fundamental for the long-term stability of A. microchir populations because only pups stay long enough (1 month) on land for the louse to reproduce. A total of 72 pups ≤7 days old from a single rookery were captured and examined for lice. Infection parameters and population structure of A. microchir did not differ among pups collected at the beginning, middle, and end of the reproductive season, suggesting that patterns of early vertical transmission are not affected by the increase of rookery size during this period. Over 60% of 1-day-old pups were infected with A. microchir, and recruitment increased in pups up to 3 days old and then leveled off. In 1-day-old pups, significantly more adults than nymphs were found, but the pattern was reversed in older pups. The number of first-stage nymphs was significantly smaller than that of second- and third-stage nymphs, as it was the number of males vs. females, particularly in 1-day-old pups. Three non-exclusive hypotheses could account for these patterns, i.e., recruitment merely reflects the population structure of A. microchir is cows; the relative ability of lice to pass from cows onto pups increases in advanced instars; and/or natural selection favors transmission of adults, especially females, because they accrue greater fitness. The importance of latter hypothesis should not be underestimated in a species with a tight reproductive schedule.

  10. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  11. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  12. Incentives for vertical integration in healthcare: the effect of reimbursement systems.

    Science.gov (United States)

    Byrne, M M; Ashton, C M

    1999-01-01

    In the United States, many healthcare organizations are being transformed into large integrated delivery systems, even though currently available empirical evidence does not provide strong or unequivocal support for or against vertical integration. Unfortunately, the manager cannot delay organizational changes until further research has been completed, especially when further research is not likely to reveal a single, correct solution for the diverse healthcare systems in existence. Managers must therefore carefully evaluate the expected effects of integration on their individual organizations. Vertical integration may be appropriate if conditions facing the healthcare organization provide opportunities for efficiency gains through reorganization strategies. Managers must consider (1) how changes in the healthcare market have affected the dynamics of production efficiency and transaction costs; (2) the likelihood that integration strategies will achieve increases in efficiency or reductions in transaction costs; and (3) how vertical integration will affect other costs, and whether the benefits gained will outweigh additional costs and efficiency losses. This article presents reimbursement systems as an example of how recent changes in the industry may have changed the dynamics and efficiency of production. Evaluation of the effects of vertical integration should allow for reasonable adjustment time, but obviously unsuccessful strategies should not be followed or maintained.

  13. Confocal Microscopy for Process Monitoring and Wide-Area Height Determination of Vertically-Aligned Carbon Nanotube Forests

    Directory of Open Access Journals (Sweden)

    Markus Piwko

    2015-08-01

    Full Text Available Confocal microscopy is introduced as a new and generally applicable method for the characterization of the vertically-aligned carbon nanotubes (VACNT forest height. With this technique process control is significantly intensified. The topography of the substrate and VACNT can be mapped with a height resolution down to 15 nm. The advantages of confocal microscopy, compared to scanning electron microscopy (SEM, are demonstrated by investigating the growth kinetics of VACNT using Al2O3 buffer layers with varying thicknesses. A process optimization using confocal microscopy for fast VACNT forest height evaluation is presented.

  14. Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual

    Science.gov (United States)

    Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.; hide

    2001-01-01

    Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further