WorldWideScience

Sample records for inconel ma 753

  1. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  2. Reciprocating sliding wear of Inconel 600 tubing in room temperature air

    International Nuclear Information System (INIS)

    Kim, Hun; Choi, Jong Hyun; Kim, Jun Ki; Hong, Hyun Seon; Kim, Seon Jin

    2003-01-01

    The sliding wear behavior of the material of a steam generator in a nuclear power station (Inconel 600) was investigated at room temperature. Effects of the wear parameters such as material combination, sliding distance and contact stress were examined with various mating materials including 304 austenitic stainless steel, Inconel 600 and Al-Cu alloy 2011. In the prediction of the wear volume by Archard's wear equation, the standard error range was calculated to be ±4.04x10 -9 m 3 and the reliability to be 71.9% for the combination of Inconel 600 and 304 stainless steel. The error range was considered to be relatively broad because the wear coefficient in Archard's equation was assumed to be a constant, regardless of the changes in the mechanical properties during the wear. In the present study, the sliding wear behavior turned out to be influenced by the material combination; the wear volume of 304 stainless steel did not linearly increase with the sliding distance, while that of other material combinations exhibited linear increases. Based on the experimental results, the wear coefficient was modified as a function of the sliding distance. The calculation with the modified wear equation showed that the error range narrowed down to ±2.60x10 -9 m 3 and the reliability increased to 75.3%, compared to Archard's original equation

  3. Bibliography on Hot Isostatic Pressing (HIP) Technology

    Science.gov (United States)

    1992-11-01

    Nimonic API, Rene’ 77 2. MA753, IN-853 7 3. C-103,WC-103 4. Alloy 454, PWA 1480 5. Mar- M250 , Maraging (250) 6. Rene 150, PA 101 (low C) 7. Inconel 718...Pressure Welding Parameters Bryant. W. A. Weld J 54 (12), 433-S-435-S, 1975 ( AD-DI02 316 Key Words: AISI 4340. MAR- M250 . AISI 1020, 9Ni-4Co steel. Inconel...creep rupture. hot corrosion, oxidation, grain size, thermomechanical treatment MAR- M250 1. Microstructures and Mechanical Properties of HIP

  4. 7 CFR 75.3 - Authority.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Authority. 75.3 Section 75.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections... CERTIFICATION OF QUALITY OF AGRICULTURAL AND VEGETABLE SEEDS Administration § 75.3 Authority. The Director is...

  5. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate...

  6. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    International Nuclear Information System (INIS)

    Hu, H.X.; Zheng, Y.G.; Qin, C.P.

    2010-01-01

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90 o , and almost equal to that of the Inconel 600 at impacting angle of 30 o . Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  7. ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Felipe Rocha Caliari

    2014-10-01

    Full Text Available Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six times bigger (~0.15 mA than those of double aged surfaces (~0.025 mA.

  8. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Zheng, Y.G., E-mail: ygzheng@imr.ac.c [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Qin, C.P. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China)

    2010-10-15

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90{sup o}, and almost equal to that of the Inconel 600 at impacting angle of 30{sup o}. Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  9. 28 CFR 75.3 - Categorization of records.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Categorization of records. 75.3 Section 75.3 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CHILD PROTECTION RESTORATION AND...; RECORDKEEPING AND RECORD-INSPECTION PROVISIONS § 75.3 Categorization of records. Records required to be...

  10. 14 CFR 25.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float design...

  11. 14 CFR 27.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...

  12. 14 CFR 23.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...

  13. 14 CFR 29.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...

  14. Dicty_cDB: CHD753 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHD753 (Link to dictyBase) - - - Contig-U15579-1 - (Link to Or...iginal site) - - CHD753Z 650 - - - - Show CHD753 Library CH (Link to library) Clone ID CHD753 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15579-1 Original site URL http://dictycdb.b...---IQACGPDNNYQCEFVDKICNTTNDKCLVESCEIGFGCLAIPKNCNDNDPCTTDHCDP AIGCYYDKFDNCDACNAVDTCITNDLCFPRECNPRGNPPCLINPINCTSTDPCIFSYCEN GVCIPTYICT...NPRGNPPCLINPINCTSTDPCIFSYCEN GVCIPTYICTPTPSVTPTVTPTVTPTVTPTVTPTVTPTVTPTPTTTPTPSPTTVPPRPTP TPLPADPPPYDLEEGCLV

  15. Studies on the Corrosion Resistance of Laser-Welded Inconel 600 and Inconel 625 Nickel-Based Superalloys

    Directory of Open Access Journals (Sweden)

    Łyczkowska K.

    2017-06-01

    Full Text Available The paper presents the results of the electrochemical corrosion tests of Inconel 600 and Inconel 625 laser-welded superalloys. The studies were conducted in order to assess the resistance to general and pitting corrosion in 3.5% NaCl solution. It was found that Inconel 600 possesses good corrosion resistance, however Inconel 625 is characterized by a greater resistance to general and also to pitting corrosion of the weld as well as the base metal.

  16. Bending of pipes with inconel cladding; Curvamento de tubos revestidos com inconel

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B; Vieira, Carlos R. Tavares [PROTUBO, Macae, RJ (Brazil)

    2008-07-01

    The pipes used in offshore equipment, such as wet Christmas trees, sub sea manifolds and rigid platform risers, as well as some pipes for refineries and ships, must have mechanical resistance to high pressure and also be resistant to corrosion from acids. Some special materials, such as stainless steel, duplex and super duplex steel are used to resolve this problem, but the cost is very high. Besides the problem of cost, these materials have other drawbacks, such as the difficulty of welding them, a technology mastered in few countries. As a better alternative, the use has been increasing of carbon steel and API pipes coated internally with inconel by welding deposition. This groundbreaking technology, of proven efficiency, has a far superior cost-benefit relation. Carbon steel and API pipes, besides having better mechanical resistance to high pressure and corrosion resistance, can be fabricated with technology mastered worldwide. Nickel alloys, such as inconel, are highly resistant to corrosion and temperature, and in these aspects are better than stainless steels. The pipes for transportation equipment and for refining hydrocarbons, as mentioned above, require various turns and special geometries, which generally are solved by the use of bends and spools made by high-frequency induction. This technology, already well established for various carbon and stainless steels, was developed to work with pipes coated internally with inconel (inconel cladding). Therefore, our work describes the process of fabricating bends from API steel pipes with inconel cladding, demonstrating the efficacy of this technology along with its quality gains and cost reduction. (author)

  17. Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys

    Energy Technology Data Exchange (ETDEWEB)

    El-Awadi, G.A., E-mail: gaberelawdi@yahoo.com [Atomic Energy Authority, NRC, Cyclotron Project, Abo-zabal, 13759 Cairo (Egypt); Abdel-Samad, S., E-mail: salem_abdelsamad@yahoo.com [Atomic Energy Authority, NRC, Cyclotron Project, Abo-zabal, 13759 Cairo (Egypt); Elshazly, Ezzat S. [Atomic Energy Authority, NRC, Metallurgy Dept., Abo-zabal, 13759 Cairo (Egypt)

    2016-08-15

    Highlights: • Supperalloy good resistance to high temperature oxidation. • Ni-base alloy IN738 and Inconel 617 good resistance to hot corrosion. • Corrosion resistance of supperalloys depending on environment of abrasive ions such as (NaCl or NaSO{sub 4}). • Hot corrosion resistance depend on what the oxides phases where formed. - Abstract: Superalloys are extensively used at high temperature applications due to their good oxidation and corrosion resistance properties in addition to their high stability were made at high temperature. Experimental measurements of hot corrosion at high temperature of Inconel 617 and Inconel 738 superalloys. The experiments were carried out at temperatures 700 °C, 800 °C and 900 °C for different exposure times to up to 100 h. The corrosive media was NaCl and Na{sub 2}SO{sub 4} sprayed on the specimens. Seven different specimens were used at each temperature. The corrosion process is endothermic and the spontaneity increased by increasing temperature. The activation energy was found to be Ea = 23.54 and E{sub a} = 25.18 KJ/mol for Inconel 738 and Inconel 617 respectively. X-ray diffraction technique (XRD) was used to analyze the formed scale. The morphology of the specimen and scale were examined by scanning electron microscopy (SEM). The results show that the major corrosion products formed were NiCr{sub 2}O{sub 4}, and Co Cr{sub 2}O{sub 4} spinles, in addition to Cr{sub 2}O{sub 3}.

  18. Manufacture of an Inconel pressure vessel

    International Nuclear Information System (INIS)

    Herz, H.; Iversen, K.; Stiefelhagen, B.

    1978-01-01

    The fabrication of a thermo-shock-loaded pressure vessel of high temperature nickel alloys required the individual licensing of the basic and addition materials according to the AD data sheets Contrary to the experience of Duennbleck processars, it was found that the alloy Inconel 718 in its hardened state could not be allowed due to the formation of the brittle daves phase in the welding deposit. Positive experience was acquired however with the non-hardenable alloy Inconel 625 which could be processed as jacket materials without problem. Rods of Inconel 625 were used as similar additive for WIG welding and the same type electrode 112 for E-welding. The heat resistance required of 320 N/cm 2 at 623 0 K and the lowest notch bar value of 35 J/cm 2 at RT were well surpassed. The mixed compounds of Inconel 625 and 718 were also no problem when welding with the non-hardening additives Inconel 625 and 112 and eliminating a thermal treatment. (orig.) [de

  19. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    Science.gov (United States)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  20. Total hemispherical emissivity of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Benjamin P.; Nelson, Shawn E.; Walton, Kyle L.; Ghosh, Tushar K.; Tompson, Robert V.; Loyalka, Sudarshan K., E-mail: LoyalkaS@missouri.edu

    2015-06-15

    Highlights: • We have measured the total hemispherical emissivity for Inconel 718 from about 600–1250 K. • Oxidation in air at 1073 K resulted in an increase in emissivity. • Sandblasting of Inconel 718 was also observed to increase the emissivity. • Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase in the emissivity. • Coating of graphite powder onto the 220 grit sandblasted Inconel 718 did show an increase in emissivity. - Abstract: Total hemispherical emissivity for Inconel 718 was measured in anticipation of its application in Very High Temperature Gas Reactors (VHTRs). A majority of current emissivity data for Inconel 718 is in the form of spectral measurements. The data presented here were obtained with an experimental apparatus based on the standard ASTM C835-06 for total hemispherical emittance. Measurements of Inconel 718 were made for four different surface types including: (i) ‘as-received’ from the manufacturer, (ii) oxidized in air and humidified helium, (iii) sandblasted with aluminum oxide powder, and (iv) with a thin coating of nuclear grade graphite powder (grade NGB-18). The emissivity for the ‘as-received’ sample ranged from 0.21 to 0.28 in the temperature interval from 760 K to 1275 K. Oxidation in air at 1073 K resulted in an increase in emissivity into the range from 0.2 at 650 K to 0.52 at 1200 K. There was no dependence on the oxidation times studied here. Oxidation with humidified helium at 1073 K produced less of an increase in emissivity than the oxidation in air but there was an increase up to the range from 0.2 at 600 K to 0.35 at 1200 K. Sandblasting of Inconel 718 was also observed to increase the emissivity up to the range from 0.43 at 780 K to 0.53 at 1270 K when 60 grit sized powder was used and up to the range from 0.45 at 683 K to 0.57 at 1267 K when 120 and 220 grit sized powders were used. Coating of graphite powder onto the ‘as-received’ Inconel 718 showed no increase

  1. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Byong Whi; Kim, In Sup; Park, Chi Yong

    1997-01-01

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  2. 33 CFR 117.753 - Ship Channel, Great Egg Harbor Bay.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Ship Channel, Great Egg Harbor Bay. 117.753 Section 117.753 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.753 Ship Channel, Great Egg Harbor Bay. The draw of the S52 (Ship...

  3. Corrosion Performance of Inconel 625 in High Sulphate Content

    Science.gov (United States)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  4. Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures

    Science.gov (United States)

    Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.

    1990-01-01

    After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.

  5. 50 CFR 600.753 - Notice of intent to establish a fishery negotiation panel.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Notice of intent to establish a fishery negotiation panel. 600.753 Section 600.753 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Fishery Negotiation Panels § 600.753 Notice...

  6. Microstructural evolution of hydroformed Inconel 625 bellows

    Energy Technology Data Exchange (ETDEWEB)

    Pavithra, E., E-mail: epavithrasenthil@gmail.com; Senthil Kumar, V.S., E-mail: vsskumar@annauniv.edu

    2016-06-05

    Fatigue cycle tests of Inconel 625 superalloy bellows expansion joints were conducted using a Fatigue testing machine at both room and elevated (650 °C) temperatures. Optical Microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were employed to investigate the microstructure evolution of grains and its boundaries. The intermetallic phases like γ″ were found and carbide precipitates were observed on the grain boundaries at elevated temperature. The recrystallization of the grains and its growth at the elevated temperature is characterized. - Highlights: • The fatigue test is conducted for Inconel 625 bellows in both room and elevated (650 °C) temperatures. • The investigation on the microstructural study of Fatigue behaviour of Inconel 625 Bellows Expansion joints. • The characterisation studies were done by Optical microscope and SEM/EDAS.

  7. Microstructural evolution of hydroformed Inconel 625 bellows

    International Nuclear Information System (INIS)

    Pavithra, E.; Senthil Kumar, V.S.

    2016-01-01

    Fatigue cycle tests of Inconel 625 superalloy bellows expansion joints were conducted using a Fatigue testing machine at both room and elevated (650 °C) temperatures. Optical Microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were employed to investigate the microstructure evolution of grains and its boundaries. The intermetallic phases like γ″ were found and carbide precipitates were observed on the grain boundaries at elevated temperature. The recrystallization of the grains and its growth at the elevated temperature is characterized. - Highlights: • The fatigue test is conducted for Inconel 625 bellows in both room and elevated (650 °C) temperatures. • The investigation on the microstructural study of Fatigue behaviour of Inconel 625 Bellows Expansion joints. • The characterisation studies were done by Optical microscope and SEM/EDAS.

  8. A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718

    Directory of Open Access Journals (Sweden)

    Zhao Haidong

    2016-01-01

    Full Text Available Inconel 718 is a kind of nickel-based alloys that are widely used in the aerospace and nuclear industry owing to their high temperature mechanical properties. Cutting of Inconel 718 in conventional cutting (CC is a big challenge in modern industry. Few researches have been studied on cutting of Inconel 718 using single point diamond tool applying the UEVC method. This paper shows an experimental study on UEVC of Inconel 718 by using polycrystalline diamond (PCD coated tools. Firstly, cutting tests have been carried out to study the effect of machining parameters in the UEVC in terms of surface finish and flank wear during machining of Inconel 718. The tests have clearly shown that the PCD coated tools in cutting of Inconel 718 by the UEVC have better performance at 0.1 mm depth of cut as compared to the lower 0.05 mm depth of cut and the higher 0.12 or 0.15 mm depth of cut. Secondly, like CC method, the cutting performance in UEVC increases with the decrease of the feed rate and cutting speed. The CC tests have also been carried out to compare performance of CC with UEVC method.

  9. Properties and application study of Inconel alloy tube made in China

    International Nuclear Information System (INIS)

    Yang Xiang; Su Xingwan; Wen Yan

    1997-01-01

    The mech-physical properties and the corrosion resistance properties of the SG tube of Inconel alloy made in China under any conditions are briefly presented, and the test and research for bending and expending the tubes have been performed. In the process of corrosion experiments the Inconel alloy tubes were compared with that of the same kind of materials made in foreign countries. The Inconel alloy tubes have better stress corrosion resistance cracking prosperities than Inconel 600 and Incoloy 800 when they were in the solutions which contained high concentrated chlorine ion and alkali at high temperature

  10. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  11. 42 CFR 405.753 - Appeal of a categorization of a device.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Appeal of a categorization of a device. 405.753... Under Medicare Part A § 405.753 Appeal of a categorization of a device. (a) CMS's acceptance of the FDA categorization of a device as an experimental/investigational (Category A) device under § 405.203 is a national...

  12. Increasing the Useful Life of Quench Reliefs with Inconel Bellows

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W. M. [Fermilab

    1999-01-01

    Reliable quench relief valves are an important part of superconducting magnet systems. Fermilab developed bellows-actuated cryogenic quench reliefs which have been in use since the early l 980's. The original design uses a stainless steel bellows. A high frequency, low amplitude vibration during relieving events has resulted in fatigue failures in the original design. To take advantage of the improved resistance to fatigue of Inconel, a nickel-chromium alloy, reliefs using Inconel 625 bellows were made. Design, development, and testing of the new version reliefs will be discussed. Tests show that relief valve lifetimes using Inconel bellows are more than five times greater than when using the original stainless steel bellows. Inconel bellows show great promise in increasing the lifetime of quench relief valves, and thus the reliability of accelerator cryogenic systems.

  13. 38 CFR 3.753 - Public Health Service.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Public Health Service. 3... Pension, Compensation, and Dependency and Indemnity Compensation Retirement § 3.753 Public Health Service... of the Public Health Service, who was receiving disability compensation on December 31, 1956, as...

  14. Elevated temperature creep behavior of Inconel alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Burke, W.F.

    1984-07-01

    Inconel 625 in the solution-annealed condition has been selected as the clad material for the fuel and control rod housing assemblies of the Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU). The clad is expected to be subjected to temperatures up to about 1100 0 C. Creep behavior for the temperature range of 800 0 C to 1100 0 C of Inconel alloy 625, in four distinct heat treated conditions, was experimentally evaluated

  15. Pitting resistance and mechanism of TiN-coated Inconel 600 in 100 C NaCl solution

    International Nuclear Information System (INIS)

    In, C.B.; Kim, J.S.; Chun, S.S.; Lee, W.J.

    1995-01-01

    TiN films were deposited on Inconel 600 by PACVD method using a gaseous mixture of TiCl 4 , N 2 , H 2 and Ar, and their pitting resistance and mechanism in 100 C NaCl solution were investigated. Anodic polarization measurement of TiN-coated Inconel 600 was compared with that of bare Inconel 600. TiN-coated Inconel 600 has a higher E np and a lower pit depth than bare Inconel 600. It also shows a smaller pit aspect ratio due to the concentration of the corrosion in the Inconel 600 contacted with the TiN film. When the Inconel 600 has a rough surface, E np decreases and the pit density increases to a great extent. However, E corr , pit depth and pit aspect ratio are not affected. ((orig.))

  16. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  17. Corrosion Test Results for Inconel 600 vs Inconel-Stainless UG Bellows

    International Nuclear Information System (INIS)

    Osborne, P.E.

    2002-01-01

    The Conversion Project (CP) of the Molten Salt Reactor Experiment at Oak Ridge National Laboratory (ORNL) involves converting slightly less than 40 kg of 233 U to a stable form for safe storage. The operation is performed within a few vessels interconnected by valves and 1/2-in. metal tubing. During this conversion, a particularly toxic and corrosive by-product is formed, namely aqueous hydrofluoric acid (HF). The production of HF is a result of the hydrolysis of UF 6 and subsequent steam treatments of UO 2 F 2 . For each mole of UF 6 converted, 6 mol of HF are produced. The HF that forms during conversion combines with water to produce approximately 1.5 L of 33 wt % HF. As this mixture is transferred within the process system, the tubing and valves are exposed to high concentrations of HF in liquid and vapor form. Of particular concern in the system are the almost 30 valves that have the potential for exposure to HF. For these valves, a vendor-supplied UG valve was installed. UG valves consist of an Alloy 400 (Monel) body and stem tip and Alloy 600 (Inconel) bellows. These valves have been used under experimental conditions that simulate the CP. It has been established that they have a finite life when exposed to a HF and air environment. Most failures were seen around the flange at the bottom of the bellows, and it was suspected that this flange and the weld material were not Inconel. In December 2001, the vendor confirmed that this flange was not Inconel but instead was stainless steel 316. After discussions between the vendor and ORNL staff involved with the CP effort, it was decided that the entire wetted area of the bellows would be fabricated from Alloy 600. In March 2002, four newly fabricated bellows assemblies were received from the vendor for the purposes of corrosion testing in HF. This report presents results from the corrosion tests conducted to determine if the new design of the bellows would enhance their corrosion resistance

  18. Phenotype-gene: 753 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 753 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u3ria224u929i abnormal for trait of behavior...tadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u12694594i abnormal for trait of behavior

  19. Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation

    Directory of Open Access Journals (Sweden)

    Asit Kumar Parida

    2018-06-01

    Full Text Available In the present paper, three nickel base alloys (Inconel 718, Inconel 625 and Monel-400 have been studied for chip formation in the hot turning process using flame heating. Cutting force, tool life, chip morphology, tool wear, and surface integrity (surface roughness and microhardness beneath the machined surface have been determined in both room and hot temperature conditions (300 °C and 600 °C. Flame heating (Liquefied petroleum gas and oxygen along with turning operation has been utilized for machining of three materials. It was observed that significant reduction of cutting force, tool wear, chatter formation, surface roughness and increase tool life, chip tool contact length, etc., for all three nickel base alloys in hot machining compared to room temperature machining. Keywords: Hot turning, Nickel base alloys, Machinability, Cutting forces, Tool wear

  20. Estudio del comportamiento en caliente del Inconel 718

    OpenAIRE

    Thomas, Amandine

    2005-01-01

    Las aleaciones Inconel son superaleaciones base níquel-cromo, que cubren un amplio espectro de composiciones y de propiedades. Son superaleaciones que tienen buenas propiedades de resistencia mecánica y a la corrosión que se mantienen a temperaturas altas. Las aplicaciones de estas aleaciones son muy amplias: recipientes para tratamiento térmico, turbinas, aviación, plantas nucleares generadoras de energía, etc... El Inconel 718 en particular es una aleación endurecible por precipitación, ...

  1. Interaction between zircaloy tube and inconel spacer grid at high temperature

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi; Furuta, Teruo

    1990-09-01

    In order to investigate the interaction between fuel cladding and spacer grid of the pressurized water reactor during a severe accident, isothermal reaction tests were performed at the temperature range from 1248 to 1673K. A specimen consisted of a short Zircaloy-4 cladding tube and a piece of spacer grid of Inconel-718. In the tests in an argon atmosphere, eutectic reaction between Zircaloy and Inconel was observed at the contact points at 1248K. Rapid reaction was observed at higher test temperatures. For example, in the test at 1373K for 300s, Zircaloy reacted with Inconel over the entire thickness (0.62mm) of the tube in the vicinity of the contact point. In the present tests, Zircaloy which has higher melting point than Inconel was dissolved preferentially due to eutectic formation. In the tests in an oxygen atmosphere, no eutectic reaction was observed at temperatures below 1437K. A trace of interaction was found at the contact point of specimen heated at 1573 and 1623K. However, decrease in Zircaloy thickness was not measured. The possibility of eutectic reaction between Zircaloy cladding and Inconel spacer grid seems to be quite limited when sufficient oxygen is supplied. (author)

  2. Application of eddy current inspection to the Inconel weld of BWR internals

    International Nuclear Information System (INIS)

    Machida, Eiji; Yusa, Noritaka

    2004-01-01

    In order to definite the basic specifications of application of ECT (Eddy Current Test) to Inconel weld of BWR internals, the inspection and numerical analysis were carried out. The characteristics of the existing ECT probe were studied by making sample as same as CRD stud tube, measuring the relative permeability and electric conductivity of Inconel and alloy and evaluating ECT probe. On the basis of the results obtained, the basic specifications were determined and a new eddy current probe for inspection was designed and produced. The new ECT probe was able to detect small notch in Inconel weld, to classify the defects by eddy current inspection signal and sizing the length and depth. It is concluded that the new ECT probe is able to apply the Inconel weld of BWR internals. (S.Y.)

  3. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ch.; Verdi, D.; Garrido, M.A.; Ruiz-Hervias, J.

    2016-07-01

    In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI) in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter. (Author)

  4. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2016-07-01

    Full Text Available In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter.

  5. Microstructural investigation of grain stability in cryomilled inconel 625

    International Nuclear Information System (INIS)

    Chung, K.H.; Lee, J.; Rodriguez, R.; Lavernia, E.J.; Shin, D.H.

    2002-01-01

    The grain growth behavior of nanocrystalline Inconel 625 powders prepared by cryomilling (mechanical milling under a liquid nitrogen environment) was investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average grain size of powders after 8 hours cryomilling was 22 nm. Along with this fine structure, ultrafine NiO and Cr 2 O 3 oxide particles were distributed in the cryomilled material with average size of 3 nm. It was found that the grain size remain under 250 nm after 4 hours heat treatment at 800 C, which correspond to T/T m ∝0.65. The cryomilled Inconel 625 showed improved grain stability compared to that of conventional Inconel 625 and cryomilled pure-Ni, due to the particle pinning of grain boundary by the oxide particles in addition to solute drag. (orig.)

  6. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    OpenAIRE

    Chao Chang; Davide Verdi; Miguel Angel Garrido; Jesus Ruiz-Hervias

    2016-01-01

    In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI) in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cerm...

  7. High Speed Finish Turning of Inconel 718 Using PCBN Tools under Dry Conditions

    Directory of Open Access Journals (Sweden)

    José Luis Cantero

    2018-03-01

    Full Text Available Inconel 718 is a superalloy, considered one of the least machinable materials. Tools must withstand a high level of temperatures and pressures in a very localized area, the abrasiveness of the hard carbides contained in the Inconel 718 microstructure and the adhesion tendency during its machining. Mechanical properties along with the low thermal conductivity become an important issue for the tool wear. The finishing operations for Inconel 718 are usually performed after solution heat treatment and age hardening of the material to give the superalloy a higher level of hardness. Carbide tools, cutting fluid (at normal or high pressures and low cutting speed are the main recommendations for finish turning of Inconel 718. However, dry machining is preferable to the use of cutting fluids, because of its lower environmental impact and cost. Previous research has concluded that the elimination of cutting fluid in these processes is feasible when using hard carbide tools. Recent development of new PCBN (Polycrystalline Cubic Boron Nitride grades for cutting tools with higher tenacity has allowed the application of these tool grades in the finishing operations of Inconel 718. This work studies the performance of commercial PCBN tools from four different tool manufacturers as well as an additional grade with equivalent performance during finish turning of Inconel 718 under dry conditions. Wear tests were carried out with different cutting conditions, determining the evolution of machining forces, surface roughness and tool wear. It is concluded that it is not industrially viable the high-speed finishing of Inconel 718 in a dry environment.

  8. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2017-10-01

    Full Text Available In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD for the selective laser melting (SLM process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g−1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

  9. Corrosion Test Results for Inconel 600 vs Inconel-Stainless UG Bellows

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, P.E.

    2002-09-11

    The Conversion Project (CP) of the Molten Salt Reactor Experiment at Oak Ridge National Laboratory (ORNL) involves converting slightly less than 40 kg of {sup 233}U to a stable form for safe storage. The operation is performed within a few vessels interconnected by valves and 1/2-in. metal tubing. During this conversion, a particularly toxic and corrosive by-product is formed, namely aqueous hydrofluoric acid (HF). The production of HF is a result of the hydrolysis of UF{sub 6} and subsequent steam treatments of UO{sub 2}F{sub 2}. For each mole of UF{sub 6} converted, 6 mol of HF are produced. The HF that forms during conversion combines with water to produce approximately 1.5 L of 33 wt % HF. As this mixture is transferred within the process system, the tubing and valves are exposed to high concentrations of HF in liquid and vapor form. Of particular concern in the system are the almost 30 valves that have the potential for exposure to HF. For these valves, a vendor-supplied UG valve was installed. UG valves consist of an Alloy 400 (Monel) body and stem tip and Alloy 600 (Inconel) bellows. These valves have been used under experimental conditions that simulate the CP. It has been established that they have a finite life when exposed to a HF and air environment. Most failures were seen around the flange at the bottom of the bellows, and it was suspected that this flange and the weld material were not Inconel. In December 2001, the vendor confirmed that this flange was not Inconel but instead was stainless steel 316. After discussions between the vendor and ORNL staff involved with the CP effort, it was decided that the entire wetted area of the bellows would be fabricated from Alloy 600. In March 2002, four newly fabricated bellows assemblies were received from the vendor for the purposes of corrosion testing in HF. This report presents results from the corrosion tests conducted to determine if the new design of the bellows would enhance their corrosion resistance.

  10. Microstructural evolution of inconel 625 during thermal aging

    Directory of Open Access Journals (Sweden)

    S. Malej

    2017-01-01

    Full Text Available Inconel 625 is due to alloying elements prone to precipitation of different intermetallic phases and secondary carbides during thermal aging. The base of investigation is nickel superalloy Inconel 625 in hot rolled state. Thermal aging was conducted at temperature 650 °C with different duration of treatment for each sample. Microstructural analysis was performed by light microscope and scanning electron microscope. The results of microstructure observation showed the precipitation of intermetallic γ››- Ni3Nb phase in the γ matrix and δ-Ni3Nb phase with M23C6 secondary carbides at the grain boundaries.

  11. 27 CFR 19.753 - Record of article manufacture.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Record of article... Account § 19.753 Record of article manufacture. Each processor qualified to manufacture articles shall maintain daily records arranged by the name and authorized use code of the article to show the following...

  12. Condition monitoring: a study on ageing in Inconel 718

    International Nuclear Information System (INIS)

    Acharya, Vidhi; Murthy, G.V.S.

    2015-01-01

    The development of contemporary high temperature materials is needed to enable the successful introduction of cleaner and more efficient next generation power plants. Due to inherent limitations in steels, new high temperature materials must be selected for a change in operating parameters. Inconel-718 is currently considered to be one of the leading materials for use in high temperature applications. Due to its excellent high-temperature mechanical properties, Inconel-718 is believed to be a contender for forged components of Advanced Ultra-Supercritical (A-USC) power plants. The A-USC power plant with steam conditions of 700°C/35 MPa, is expected to have greater efficiency. Thus the microstructural stability and its impact on the mechanical properties of this alloy at elevated temperatures will certainly be a crucial factor that influences the reliability of the power plants. Therefore it is of imminent importance to study the microstructural evolution of components made out of Inconel-718 preferably by Non-destructive methods

  13. Solidification paths in modified Inconel 625 weld overlay material

    DEFF Research Database (Denmark)

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John

    2009-01-01

    Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification....... Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular...

  14. High-temperature reverse-bend fatigue strength of Inconel Alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Greenfield, I.G.; Park, K.B.

    1983-06-01

    Inconel 625 has been selected as the clad material for Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU) fuel assemblies. The range of temperatures investigated is 900 to 1100 0 C. A reverse-bend fatigue test program was selected as the most-effective method of determining the fatigue characteristics of Inconel alloy 625 sheet metal. The paper describes the reverse bend fatigue experiments, the results obtained, and the analysis of data

  15. Beryllium coating on Inconel tiles

    International Nuclear Information System (INIS)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  16. Graphite to Inconel brazing using active filler metal

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Walls, J.C.; Hoffman, D.J.

    1989-01-01

    Ion cyclotron resonant frequency (ICRF) antennas are designed to supply large amounts of auxiliary heating power to fusion-grade plasmas in the Toroidal Fusion Test Reactor (TFTR) and Tore Supra fusion energy experiments. A single Faraday shield structure protects a pair of resonant double loops which are designed to launch up to 2 MW of power per loop. The shield consists of two tiers of actively cooled Inconel alloy tubes with the front tier being covered with semicircular graphite tiles. Successful operation of the antenna requires the making of high integrity bonds between the Inconel tubes and graphite tiles by brazing. This paper discusses this process

  17. Preparation of Inconel 740 superalloy by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); You, Qifan; Shi, Shuang; Li, Jiayan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Ye, Fei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Wei, Xin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2016-08-15

    A novel method, namely electron beam smelting (EBS) technology was used to prepare the Inconel 740 superalloy. The microstructures, hardness and oxidation behavior were characterized and compared with the traditionally prepared Inconel 740 superalloy. The results imply that the solution treatment gives rise to the coarsening of γ′ precipitates, with further aging treatment, the γ′ precipitates with size of less than 30 nm are distributed dispersively in the matrix, leading to a decreasing of the lattice parameters and an increasing of the misfit. The γ′ precipitates result in shearing mechanism of weakly pair coupling. The EBS 740 superalloy produces better properties than that prepared in the traditional method in both precipitation strengthening effect and oxidation resistance. - Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The EBS 740 shows higher strengthening effect than 740 made in traditional method. • The EBS 740 shows better oxidation resistance than traditional 740. • It shows application prospect of EBS technology in preparing Ni-base superalloys.

  18. Residual stresses in Inconel 718 engine disks

    Directory of Open Access Journals (Sweden)

    Dahan Yoann

    2014-01-01

    Full Text Available Aubert&Duval has developed a methodology to establish a residual stress model for Inconel 718 engine discs. To validate the thermal, mechanical and metallurgical parts of the model, trials on lab specimens with specific geometry were carried out. These trials allow a better understanding of the residual stress distribution and evolution during different processes (quenching, ageing, machining. A comparison between experimental and numerical results reveals the residual stresses model accuracy. Aubert&Duval has also developed a mechanical properties prediction model. Coupled with the residual stress prediction model, Aubert&Duval can now propose improvements to the process of manufacturing in Inconel 718 engine disks. This model enables Aubert&Duval customers and subcontractors to anticipate distortions issues during machining. It could also be usedt to optimise the engine disk life.

  19. Re-weldability tests of irradiated Inconel 625 by TIG welding method

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Shimizu, M.; Kawamura, H.; Matsuda, F.; Kalinin, G.

    1998-01-01

    Inconel 625 is one of the possible materials for the vacuum vessel (VV) and for the in-vessel components of fusion reactors where high strength and high electrical resistance are required. In particular, Inconel 625 is used for the VV of JET and for flexible branch pipe lines in the ITER design. One of the most important issues for their applications is its re-weldability between un-irradiated and irradiated materials. This has a large impact on the design of in-vessel components. In this study, re-weldability of un-irradiated and/or irradiated Inconel 625 that has been welded by the tungsten inert gas (TIG) welding process has been examined, and effect of helium generation amount on mechanical properties of the weld joint has been discussed. (authors)

  20. Mechanical properties and microstructure evaluation of powder bed fused inconel 625 nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Michael J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    The objectives of this report were to optimize and fabricate full density Inconel 625 samples using direct metal laser fusion, an additive manufacturing process; and to compare and evaluate precipitation and solid solution strengthening of Inconel 625 produced by PBF to conventional processed material.

  1. Thermal stability and environmental compatibility of Inconel 617

    International Nuclear Information System (INIS)

    Kimball, O.F.

    1989-01-01

    The thermal stability and environmental compatibility of Inconel 617, a prime nuclear process heat steam reformer candidate alloy, are described in this paper. This commercially available wrought nickel-base alloy has excellent high-temperature strength but is subject to loss of toughness and ductility due to thermal instability. Work done to improve the thermal stability of this alloy is discussed. Room-temperature tensile and toughness data and microstructural information for Inconel 617 specimens exposed at elevated temperatures are presented. Preliminary data indicate that controlling the chemistry of Inconel 617 can provide a substantial improvement in thermal stability. Preliminary work to define the range of high-temperature gas-cooled reactor (HTGR) primary coolant compositions within which minimal deleterious gas/metal reactions occur with Inconel 617 is described. Within this gas chemistry range a stable surface oxide forms and only slight carburization occurs. In other gas chemistry ranges, rapid carburization or decarburization can occur. The gas corrosion experiments discussed are part of a series of relatively short-term exposures to HTGR helium in which the effects of different H 2 O concentrations (0.01 to 1.0 Pa) were determined as a function of the systematic variation of a second constituent (CO and CH 4 for this work) in the test gas. The composition of the basic HTGR helium was 40 Pa H 2 , 4 Pa CO, 0.02 Pa CO 2 , 2 Pa CH 4 in helium at 0.2 MPa. Two other CO levels (1 and 12 Pa) and one additional CH 4 level (0.63 Pa) were used in these experiments. Experimental exposure methods are discussed and the results of gas-metal interaction studies are presented. These results include carbon analyses and optical and scanning electron microscopy to determine the morphology and type of surface and subsurface microstructures. (author). 15 refs, 6 figs, 5 tabs

  2. Weldability of Inconel 718 - a review

    International Nuclear Information System (INIS)

    Muralidharan, B.G.; Shankar, V.; Gill, T.P.S.

    1996-01-01

    The report discusses the main issues related to weldability of Inconel 718. How the problem of strain age cracking during post weld treatment is avoided in this alloy has also been discussed. It also elaborates phases present in the alloys of 718 and its solidification metallurgy

  3. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  4. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures

    International Nuclear Information System (INIS)

    Ganesh, P.; Kaul, R.; Paul, C.P.; Tiwari, Pragya; Rai, S.K.; Prasad, R.C.; Kukreja, L.M.

    2010-01-01

    Research highlights: → Mechanical test results of Laser rapid manufactured (LRM) Inconel 625 are reported. → 12 and 25 mm thick CT specimens of LRM Inconel 625 showed similar fatigue crack growth. → Stage II crack growth behavior is observed in the investigated ΔK range. → Fracture toughness testing by J-integral method yielded J 1c of about 200-250 kJ/m 2 . - Abstract: Fatigue crack growth and fracture toughness characteristics of laser rapid manufactured (LRMed) Inconel 625 compact tension specimens of thickness 12 and 25 mm were investigated. Fatigue crack propagation in all the specimens investigated in the stress intensity range (ΔK) of 14-38 MPa√m, exhibited stage II crack growth in Paris' regime with nearly same slopes of crack growth per cycle versus ΔK plot. Fatigue crack growth rates in the LRMed specimens of present study were found to be lower than the reported values for wrought Inconel 625 in the ΔK range of 14-24 MPa√m and above this range they tended to coincide. X-ray diffraction patterns of the fractured surfaces revealed that the crack propagated along the growth direction of the specimens which was predominantly along the (1 1 1) plane. The fracture toughness values (J 0.2 ) for LRMed Inconel 625 specimens were found to be in the range of about 200-255 kJ/m 2 . The LRMed specimens exhibited stable crack growth during the J-integral test.

  5. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel

    International Nuclear Information System (INIS)

    Mortezaie, A.; Shamanian, M.

    2014-01-01

    In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature. - Highlights: • Three filler metals including Inconel 625, Inconel 82 and 310 SS were used. • A columnar to equiaxed dendritic structure was seen for IN-625 weld metal. • A granular austenitic microstructure obtained for Inconel 82 weld metal. • Microstructure of 310 weld metal includes solidification cracks along SSGB. • IN-82 weld metal showed the highest corrosion potential

  6. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications

  7. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe 3 O 4 and NiFe 2 O 4 . On the other hand, the inner oxide layers are composed of Cr 2 O 3 , (Ni 1-x Ni x )(Cr 1-y Fe y ) 2 O 4 , and FeCr 2 O 4 . Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. It is revealed that Inconel-600 specimen is more

  8. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950°C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)—three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  9. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  10. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, P., E-mail: ganesh@rrcat.gov.in [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (MP) 452013 (India); Kaul, R.; Paul, C.P. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (MP) 452013 (India); Tiwari, Pragya; Rai, S.K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (MP) 452013 (India); Prasad, R.C. [Metallurgy and Materials Science Department, IIT Bombay, Mumbai 400 076 (India); Kukreja, L.M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (MP) 452013 (India)

    2010-11-15

    Research highlights: {yields} Mechanical test results of Laser rapid manufactured (LRM) Inconel 625 are reported. {yields} 12 and 25 mm thick CT specimens of LRM Inconel 625 showed similar fatigue crack growth. {yields} Stage II crack growth behavior is observed in the investigated {Delta}K range. {yields} Fracture toughness testing by J-integral method yielded J{sub 1c} of about 200-250 kJ/m{sup 2}. - Abstract: Fatigue crack growth and fracture toughness characteristics of laser rapid manufactured (LRMed) Inconel 625 compact tension specimens of thickness 12 and 25 mm were investigated. Fatigue crack propagation in all the specimens investigated in the stress intensity range ({Delta}K) of 14-38 MPa{radical}m, exhibited stage II crack growth in Paris' regime with nearly same slopes of crack growth per cycle versus {Delta}K plot. Fatigue crack growth rates in the LRMed specimens of present study were found to be lower than the reported values for wrought Inconel 625 in the {Delta}K range of 14-24 MPa{radical}m and above this range they tended to coincide. X-ray diffraction patterns of the fractured surfaces revealed that the crack propagated along the growth direction of the specimens which was predominantly along the (1 1 1) plane. The fracture toughness values (J{sub 0.2}) for LRMed Inconel 625 specimens were found to be in the range of about 200-255 kJ/m{sup 2}. The LRMed specimens exhibited stable crack growth during the J-integral test.

  11. Procedures for the characterization of the detritiation of steel, Inconel and graphite

    International Nuclear Information System (INIS)

    Poletiko, C.; Trabuc, P.; Durand, J.; Tormos, B.; Pignoly, L.

    2006-01-01

    Due to its high diffusivity and different trapping phenomena, tritium is present in materials, such as steel or Inconel that are in use in different parts of a nuclear power reactor, or even in graphite which is present in fusion reactor or in future HTR. From waste management point of view, it is necessary to know as accurately as possible the tritium inventory in such materials before disposal. Moreover the knowledge of tritium species (HTO or HT, etc) is also a significant information in case of detritiation prior to storage, since countries regulation already limit tritium contents and releases. Three different strategies for tritiated waste management are foreseen: the first one is based upon a storage with confined packages, the second one is waiting for radioactive decay while the third one consists in the application of detritiation processes. Studies have been performed to determine different processes that could be used for tritium removal. The aim of this paper was, to study, at laboratory scale, different detritiation procedures which may be used for stainless steel, Inconel and carbon materials. Thermal detritiation kinetics till 1300 K has been studied under various atmospheres; full chemical dissolution of samples has also been performed for steel, Inconel and graphite, this to perfectly know the tritium content in such matrices. A particular attention must be applied to Inconel, the main reason is linked to the presence of titanium which is supposed to be a tritium trap. Finally, a study of tritium content in steel and Inconel layers has also been made, to learn about the tritium behaviour. All results are given, allowing the possibility to take a decision either for detritiation procedure or storage conditions. The main result is that thermal out-gassing for steel and graphite enables higher than 95 % tritium extraction from the bulk at temperature in the range of 600 K, without any material destruction under hi-tech gas (Ar + 5% volume H 2 ), on

  12. Non-isothermal irradiation creep of nickel alloys Inconel 706 and PE-16

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Chin, B.A.

    1984-06-01

    The results of in-reactor step temperature change experiments conducted on two nickel alloys, PE-16 and Inconel 706, were evaluated to determine the creep behavior under nonisothermal conditions. The effect of the temperature changes was found to be significantly different for the two alloys. Following a step temperature change, the creep rate of PE-16 adjusted to the rate found in isothermal tests at the new temperature. In contrast for Inconel 706, a reduction in temperature from 540 to 425 0 C produced a 300% increase in creep above that measured at 540 0 C in isothermal tests. The response of in-reactor creep in Inconel 706 to temperature changes was attributed to the dissolution of the gamma double-prime phase and subsequent loss of precipitation-strengthening at temperatures below 500 C

  13. Thermal stability of the superalloys Inconel 625 and Nimonic 86

    International Nuclear Information System (INIS)

    Kohl, H.K.; Peng, K.

    1981-01-01

    The thermal stability of Inconel 625 and Nimonic 86, as received, cold worked (10, 20, and 40%), and solution treated, was investigated in the temperature range 500-900 0 C. The annealing times varied from 0.3 (0.03) to 100 days. Precipitation hardening and recovery (recrystallisation) takes place in cold worked material, beginning after shorter times in cold worked material than in as received material. The temperature interval for precipitation hardening is extended in Nimonic 86, due to cold working, from about 500-600 0 C to about 450-700 0 C. It is possible to suppress or retard the precipitation hardening in solution treated Inconel 625 and Nimonic 86 by fast cooling after solution annealing. Hardness was measured at room temperature with five different loads, so that the parameters k and n from Meyer's-law, and the Brinell hardness number (for F / D 2 = 30) could be determined. The lattice contraction of Inconel 625 due to ageing was investigated with X-ray measurements. The change of intensities of the diffractometer traces due to recovery was also determined. (orig.)

  14. The sectional size effect on the deformation behaviour of Inconel 718 at different temperatures

    Directory of Open Access Journals (Sweden)

    Zhao R.

    2015-01-01

    Full Text Available Inconel 718, as a multiphase super-alloy, is widely used in aeronautics and astronautics industries. In this field, a modified Hall-Petch equation was used to describe the grain size effect on the deformation behaviour of Inconel 718 sheet in uniaxial tension test. There is a piecewise linearity in the σ-d−1 curve: With the thickness t is a constant, the slope changes obviously after a critical t/d ratio, which increases with strain. Moreover, the influence on sectional curve caused by temperature is also an interesting issue. To address that, the sectionalized curve was fitted at different strains and temperatures, and the phenomena of grain size effect in piecewise curve at different temperatures were further explained. A surface model of Inconel 718 was proposed to explain the intrinsic mechanism of different slopes. The research provided an in-depth understanding of the size effect on the deformation behaviour of Inconel 718 at different hot working temperatures.

  15. Improved nickel plating of Inconel X-750

    Science.gov (United States)

    Farmer, M. E.; Feeney, J. E.; Kuster, C. A.

    1969-01-01

    Electroplating technique with acid pickling provides a method of applying nickel plating on Inconel X-750 tubing to serve as a wetting agent during brazing. Low-stress nickel-plating bath contains no organic wetting agents that cause the nickel to blister at high temperatures.

  16. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    Science.gov (United States)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  17. Fatigue-crack propagation behavior of Inconel 600

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effects of several parameters upon the fatigue-crack propagation behavior of Inconel 600. The parameters studied included temperature, cyclic frequency, stress ratio, thermal aging, and a limited amount of testing in a liquid sodium environment

  18. Inconel alloy 625 clad steel for application in wet scrubber systems

    International Nuclear Information System (INIS)

    Morse, S.L.; Shoemaker, L.E.

    1984-01-01

    Test panels from INCONEL 625 clad plate were successfully installed in two wet flue gas scrubber systems. In one system INCONEL 625 clad plate was located in the roof section of the absorber just ahead of the outlet ducting. The test plates, including weld seams, showed no signs to corrosion after six months of exposure. In the other scrubber test plates located in the outlet duct of an I.D. fan house, in the stack lining, and in the absorber quench area were unattacked after nine months

  19. Electromagnetic modeling of stress corrosion cracks in Inconel welds

    International Nuclear Information System (INIS)

    Huang, Haoyu; Miya, Kenzo; Yusa, Noritaka; Hashizume, Hidetoshi; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    This study evaluates suitable numerical modeling of stress corrosion cracks appearing in Inconel welds from the viewpoint of electromagnetic nondestructive evaluations. The stress corrosion cracks analyzed in this study are five artificial ones introduced into welded flat plate, and three natural ones found in a pressurized nuclear power plant. Numerical simulations model a crack as a planar region having a uniform conductivity inside and a constant width, and evaluate the width and conductivity that reproduce the maximum eddy current signals obtained by experiments. The results obtained validate the existence of the minimum value of the equivalent resistance, which is defined by the width divided by conductivity. In contrast, the values of the width and conductivity themselves vary across a wide range. The results also lead to a discussion about (1) the effect of probe utilized on the numerical model, (2) the difference between artificial and natural stress corrosion cracks, and (3) the difference between stress corrosion cracks in base metals and those in Inconel welds in their models. Electromagnetic characteristics of four different Inconel weld alloys are additionally evaluated using a resistance tester and a vibrating sample magnetometer to support the validity of the numerical modeling and the generality of results obtained. (author)

  20. Relating microstructures to SCC in Inconel 718

    International Nuclear Information System (INIS)

    Sheth, N.K.; Sanchez, J.M.; Hendrix, B.C.; Ide, H.; Miglin, M.T.

    1993-01-01

    Inconel 718, a nickel-iron-base superalloy, is used for stressed applications in the nuclear and oil industries. A major concern facing the continued and expanding use of Inconel 718 in these applications has been their susceptibility to Inter-Granular Stress Corrosion Cracking (IGSCC). Efforts to reduce stress corrosion cracking (SCC) have been aimed at reducing the susceptibility in this alloy to the formation of the deleterious delta (Ni 3 Nb) phase. Microstructural evaluation of SCC test specimens of different thermo-mechanical histories shows that inhomogeneities of all types, including carbides, nitrides, and different morphologies of δ phase, worsen the SCC resistance of IN718. Here the authors study five samples of IN718 with measured hardness and SCC growth rates. A preliminary ranking of the factors mentioned above on SCC resistance finds that precipitation of a fine δ phase, due to over-aging, has the most profound effect on SCC susceptibility of IN718

  1. The Evaluation of Surface Integrity During Machining of Inconel 718 with Various Laser Assistance Strategies

    Directory of Open Access Journals (Sweden)

    Wojciechowski Szymon

    2017-01-01

    Full Text Available The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM.

  2. Residual stresses analysis in ball end milling of nickel-based superalloy Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junteng; Zhang, Dinghua; Wu, Baohai; Luo, Ming [Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University (China)

    2017-11-15

    Inconel 718 is widely used in the aviation, space, automotive and biomedical industries because of its outstanding properties. Near-surface residual stresses that are induced by ball end milling in Inconel 718 can be crucial for the performance and service time of the machined parts. In this paper, the influences of cutting conditions, including the use of cutting parameters, cutting fluid and spindle angles, on the residual stresses in the ball end milling process of Inconel 718 alloy were investigated experimentally. X-ray diffraction measurements reveal that residual stress distributions are highly influenced by cutting parameters, especially the depth of cut and cutting speed. The milling operation with cooling induces more compressive stresses trend and the magnitude of the residual stresses increases in the tensile direction with the increase of spindle angles. These cutting induced effects were further discussed with respect to thermal- mechanical coupling theory and some observations made by optical microscopy. From this investigation, it is suggested that the machining process parameters are not the smaller the better for the control of residual stresses in the ball end milling process of Inconel 718. (author)

  3. Repair of Precision Castings Made of the Inconel 713C Alloy

    Directory of Open Access Journals (Sweden)

    Łyczkowska K.

    2017-09-01

    Full Text Available Inconel 713C precision castings are used as aircraft engine components exposed to high temperatures and the aggressive exhaust gas environment. Industrial experience has shown that precision-cast components of such complexity contain casting defects like microshrinkage, porosity, and cracks. This necessitates the development of repair technologies for castings of this type. This paper presents the results of metallographic examinations of melted areas and clad welds on the Inconel 713C nickel-based superalloy, made by TIG, plasma arc, and laser. The cladding process was carried out on model test plates in order to determine the technological and material-related problems connected with the weldability of Inconel 713C. The studies included analyses of the macro- and microstructure of the clad welds, the base materials, and the heat-affected zones. The results of the structural analyses of the clad welds indicate that Inconel 713C should be classified as a low-weldability material. In the clad welds made by laser, cracks were identified mainly in the heat-affected zone and at the melted zone interface, crystals were formed on partially-melted grains. Cracks of this type were not identified in the clad welds made using the plasma-arc method. It has been concluded that due to the possibility of manual cladding and the absence of welding imperfections, the technology having the greatest potential for application is plasma-arc cladding.

  4. The effect of swelling in Inconel 600 on the performance of FFTF [Fast Flux Test Facility] reflector assemblies

    International Nuclear Information System (INIS)

    Makenas, B.J.; Trenchard, R.G.; Hecht, S.L.; McCarthy, J.M.; Garner, F.A.

    1986-02-01

    The Fast Flux Test Facility (FFTF) is designed with non-fueled outer row assemblies, each of which consists of a stack of Inconel 600 blocks penetrated by 316 stainless steel (SS) coolant tubes. These assemblies act as a radial neutron reflector and as a straight but flexible core boundary. During an FFTF refueling outage it was observed that the degree of difficulty in withdrawing an outer row driver fuel assembly was a function of the peak fast fluence of neighboring reflector assemblies. It was subsequently determined through various postirradiation examinations that the reflector assemblies were both bowed and stiff. Measurements of the individual Inconel 600 blocks indicated that the blocks had distorted into a trapezoidal cross section due to differential swelling of Inconel 600 in a steep radial flux gradient. Immersion density results indicate greater irradiation induced volumetric swelling than any previously reported data or correlation for Inconel 600 at equivalent fast fluence. The Inconel 600 swelled approximately the same amount as the SA 316 SS reflector components. Transmission electron microscopy studies on the Inconel blocks and swelling measurements on related materials have been performed and these data have been related to the performance of the reflector materials

  5. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  6. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu

    2017-05-15

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  7. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    International Nuclear Information System (INIS)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-01-01

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO_4"2"− based film formed; however minor quantities of NiFe_xCr_2_-_xO_4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe_xCr_2_-_xO_4 spinel. The surface films on both alloys were identified as NiFe_2O_4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  8. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Science.gov (United States)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-05-01

    Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  9. Effects of pre-deformation in topological characterization of inconel 600 submitted to isothermal treatments

    International Nuclear Information System (INIS)

    Mourao, D.R.; Monteiro, E.

    1980-01-01

    INCONEL 600 samples were performed at thermal treatment between 550 0 C and 790 0 C during 3 hours after uniaxial tension testing. At each pair hardening-temperature were determined the microhardness and microstrostructure. With the objetive of to determine the influence of the hardening up to INCONEL's mechanical behavior, were plotted microhardness X temperature. (Author) [pt

  10. Stress corrosion cracking of Inconel in high temperature water; Corrosion fissurante sous contrainte de l'Inconel dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou,; Grall,; Gall, Le; Vettier, [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Some Inconel samples were subjected to hot water corrosion testing (350 deg. C), under stress slightly above the elastic limit. It has been observed that different types of alloys - with or without titanium - could suffer serious intergranular damage, including a complete rupture, within a three months period. In one case, we observed an unusual intergranular phenomenon which appeared quite different from common intergranular corrosion. (author) [French] Des essais de corrosion d'Inconel sont realises dans l'eau a 350 deg. C, et sous contrainte legerement superieure a la limite elastique. On constate que differentes varietes d'alliage avec ou sans titane donnent lieu a des accidents intergranulaires graves allant jusqu'a rupture complete en 3 mois. Dans un cas, on observe un phenomene intergranulaire particulier tres different de la corrosion intergranulaire classique. (auteur)

  11. Mechanisms of plastic deformation (cyclic and monotonous) of Inconel X750

    International Nuclear Information System (INIS)

    Randrianarivony, H.

    1992-01-01

    Plastic deformation mechanisms under cyclic or monotonous solicitations, are analysed in function of Inconel X750 initial macrostructure. Two heat treated Inconel (first one is treated at 1366 K one hour, air cooled, aged at 977 K 20 hours, and air cooled, the second alloy is aged at 1158 K 24 hours, air cooled, aged at 977 K 20 hours, and air cooled), are characterized respectively by a fine and uniform precipitation of the γ' phase (approximative formulae: Ni 3 (Al,Ti)), and by a bimodal distribution of γ' precipitates. In both alloys, dislocations pairs (characteristic of a shearing by antiphase wall creation) are observed, and the crossing mechanism of the γ' precipitates by creation of overstructure pile defects is the same. But, glissile loops dislocations are less numerous than dislocations pairs in the first alloy, involving denser bands structure for this alloy (dislocations loops are always observed around γ' precipitates). Some comportment explications of Inconel X750 in PWR medium are given. (A.B.). refs., figs., tabs

  12. Welding processes for Inconel 718- A brief review

    Science.gov (United States)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  13. Metallurgical and mechanical properties of Inconel 600 and stellite; Estudio del comportamiento mecanico-metalurgico de alceacion inconel 600 y estelita

    Energy Technology Data Exchange (ETDEWEB)

    Cstillo, Martin; Villa, Gabriel; Vite, Manuel [Instituto Politecnico Nacional, Mexico D.F. (Mexico); Palacios, Francisco [Instituto Nacional de Investigacion Nuclear (ININ), Estado de Mexico (Mexico); Hernandez, Luis H; Urriolagoita, Guillermo [Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-01-15

    The present work studies the metallurgical and mechanical properties of two alloys, Inconel 600 and stellite, which are within the group of high hardness alloys or superalloys, which are deposited through the electrical weld process to the metallic arc with coated electrode (SMAW) and thereinafter analyzed through electron microscopy, diffractometry and abrasion, Impact and hardness test. The relationship between the microstructure and the final properties of the coating (hardness and abrasion wear resistance) was observed. [Spanish] Este trabajo presenta el estudio sobre las propiedades metalurgicas y mecanicas de dos aleaciones, inconel 600 y estelita, clasificadas dentro del grupo de aleaciones de alta dureza o superaleaciones; las cuales fueron depositadas mediante el proceso de soldadura electrica al arco metalico con electrodo revestido (SMAW) y fueron analizadas mediante microscopia electronica (SEM), difractometria pruebas de abrasion, impacto y dureza. Se observo la relacion entre la microstructura y las propiedades del recubrimiento, como son: dureza, resistencia a la abrasion, resistencia al impacto, ente otras.

  14. Microstructural characterisation of Inconel 718 gas tungsten arc welds

    International Nuclear Information System (INIS)

    Ram, G.D.J.; Reddy, A.V.; Rao, K.P.

    2005-01-01

    The presence of Nb-rich, brittle, intermetallic Laves phase in Inconel 718 weld fusion zones is detrimental to weld mechanical properties. In the current work, autogenous bead-on-plate gas tungsten-arc welds were deposited in 2 mm thick IN 718 sheets. The welds were subjected to the following heat treatments: i) direct aging, ii) solution treatment at 980 C followed by aging, and iii) solution treatment at 1080 C followed by aging. Detailed microstructural characterisation was carried out using optical, scanning electron and transmission electron microscopes and electron probe microanalysis. The microstructural features in as-welded and post-weld heat treated conditions are discussed. The results show that post-weld heat treatments alone cannot provide satisfactory solution to the Laves problem in Inconel 718 gas tungsten-arc welds

  15. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  16. Microstructure and oxidation behaviour of aluminized coating of inconel 625

    International Nuclear Information System (INIS)

    Khalid, F.A.; Hussain, N.; Shahid, K.A.; Rehman, S.; Qureshi, A.H.; Khan, I.H.

    1999-01-01

    Microstructural and oxidation characteristics of aluminized coated Inconel 625 have been examined using scanning electron microscopy (SEM) and fine-probe spot and linescan EDS microanalysis techniques. The formation of slowly growing adherent metallic coatings is essential for protection against the severe environments. Aluminising of the superalloy samples was carried out by pack cementation process at 900 deg. C. in an argon atmosphere. The samples were subsequently oxidized in air at various temperatures to examine performance of the pack aluminized coated alloy. The microstructural changes that occurred in the aluminized layer at various exposure temperature and time were examined to study the oxidation behavior and formation of different phases in the aluminized coating deposited on Inconel 625. (author)

  17. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    International Nuclear Information System (INIS)

    Dinda, G.P.; Dasgupta, A.K.; Mazumder, J.

    2009-01-01

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO 2 laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  18. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, G.P., E-mail: dindag@focushope.edu [Center for Advanced Technologies, Focus: HOPE, Detroit, MI 48238 (United States); Center for Laser Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI 48109 (United States); Dasgupta, A.K. [Center for Advanced Technologies, Focus: HOPE, Detroit, MI 48238 (United States); Mazumder, J. [Center for Laser Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI 48109 (United States)

    2009-05-25

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO{sub 2} laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  19. Ring ductility of irradiated Inconel 706 and Nimonic PE16

    International Nuclear Information System (INIS)

    Huang, F.H.; Fish, R.L.

    1984-01-01

    The tensile ductility of fast neutron-irradiated, precipitation-hardened alloys Inconel 706 and Nimonic PE16 has been observed to be very low for certain test conditions. Explanations for the low ductility behavior have been sought by examination of broken tensile specimens with microscopy and other similar techniques. A ring compression test provides a method of evaluating the ductility of irradiated cladding specimens. Unlike the conventional uniaxial tensile testing in which the tensile specimen is deformed uniformly, the ring specimen is subjected to localized bending where the crack is initiated. The ductility can be estimated through an analysis of the bending of a ring in terms of strain hardening. Ring sections from irradiated, solution-treated Inconel 706 and Nimonic PE16 were compressed in the diametral direction to provide load-deflection records over a wide range of irradiation and test temperatures. Results showed that ductility in both alloys decreased with increasing test temperatures. The poorest ductility was exhibited at different irradiation temperatures in the two alloys - near 550 0 C for PE16 and 460 to 520 0 C for Inconel 706. The ring ductility data indicate that the grain boundary strength is a major factor in controlling the ductility of the PE16 alloy

  20. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)

  1. High Temperature Degradation Behavior and its Mechanical Properties of Inconel 617 alloy for Intermediate Heat Exchanger of VHTR

    International Nuclear Information System (INIS)

    Jo, Tae Sun; Kim, Se Hoon; Kim, Young Do; Park, Ji Yeon

    2008-01-01

    Inconel 617 alloy is a candidate material of intermediate heat exchanger (IHX) and hot gas duct (HGD) for very high temperature reactor (VHTR) because of its excellent strength, creep-rupture strength, stability and oxidation resistance at high temperature. Among the alloying elements in Inconel 617, chromium (Cr) and aluminum (Al) can form dense oxide that act as a protective surface layer against degradation. This alloy supports severe operating conditions of pressure over 8 MPa and 950 .deg. C in He gas with some impurities. Thus, high temperature stability of Inconel 617 is very important. In this work, the oxidation behavior of Inconel 617 alloy was studied by exposure at high temperature and was discussed the high temperature degradation behavior with microstructural changes during the surface oxidation

  2. Experience with Inconel-625 in cracker service in heavy water plants (Paper No. 5.6)

    International Nuclear Information System (INIS)

    Ramamurthy, C.B.; Paknikar, K.; Bhushan, Sashi

    1992-01-01

    In ammonia based heavy water plants working on monothermal process enriched ammonia is cracked into its individual constituents for further processing. The cracking of ammonia, which is an endothermic process, takes place in cracker tubes filled with a catalyst which are fired inside a furnace. The design pressure of the tube is 160 kg per sq.cm and the design temperature 765degC. Inconel-625 both wrought and cast type meet the requirements in the temperature range of operation of the cracker and therefore Inconel-625 is the best suited material for the cracker design on the basis of stress rupture strength. The experience with Inconel-625 is described. (author). 4 tabs., 1 fig

  3. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and Inconel-718 at high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.; Markiewicz, M.

    1994-06-01

    Isothermal reaction experiments were performed in the temperature range of 1000 - 1300 C in order to determine the chemical interactions between Zircaloy-4 fuel rod cladding and Inconel-718 spacer grids of Pressurized Water Reactors (PWR) under severe accident conditions. It was not possible to apply even higher temperatures since fast and complete liquefaction of the components occurred as a result of eutectic interactions during heatup. The liquid reaction products formed enhance and accelerate the degradation of the material couples and the fuel elements, respectively. Only small amounts of Inconel are necessary to liquefy large amounts of Zircaloy. Thin oxide layers on the Zircaloy surface delay the beginning of the chemical interactions with Inconel but cannot prevent them. In this work the reaction kinetics have been determined for the system: as-received and pre-oxidized Zircaloy-4/Inconel 718. The interactions can be described by parabolic rate laws; the Arrhenius equations for the various interactions are given. (orig.) [de

  4. Effects on stress rupture life and tensile strength of tin additions to Inconel 718

    Science.gov (United States)

    Dreshfield, R. L.; Johnson, W.

    1982-01-01

    Because Inconel 718 represents a major use of columbium and a large potential source of columbium for aerospace alloys could be that of columbium derived from tin slags, the effects of tin additions to Inconel 718 at levels which might be typical of or exceed those anticipated if tin slag derived columbium were used as a melting stock were investigated. Tin was added to 15 pound Inconel 718 heats at levels varying from none added to approximately 10,000 ppm (1 wt%). Limited 1200 F stress rupture testing was performed at stresses from 68,000 to 115,000 psi and a few tensile tests were performed at room temperature, 800 and 1200 F. Additions of tin in excess of 800 ppm were detrimental to ductility and stress rupture life.

  5. The manufacturing of Stress Corrosion Crack (SCC) on Inconel 600 tube

    International Nuclear Information System (INIS)

    Bae, Seunggi; Bak, Jaewoong; Kim, Seongcheol; Lee, Sangyul; Lee, Boyoung

    2014-01-01

    The Stress Corrosion Crack (SCC), taken a center stage in recently accidents about nuclear power plants, is one of the environmentally induced cracking occurred when a metallic structure under tensile stress is exposed to corrosive environment. In this study, the SCC was manufactured in the simulated corrosive environmental conditions on Inconel 600 tube that widely applied in the nuclear power plants. The tensile stress which is one of the main factors to induce SCC was given by GTAW welding in the inner surface of the specimen. The corrosive environment was simulated by using the sodium hydroxide (NaOH) and sodium sulfide (Na 2 S). In this study, SCC was manufactured in the simulated corrosive environmental conditions with Inconel 600 tube that widely applied in the nuclear power plants. 1) The SCC was manufactured on Inconel 600 tube in simulated operational environments of nuclear power plants. In the experiment, the welding heat input which is enough to induce the cracking generated the SCC near the welding bead. So, in order to prevent the SCC, the residual stress on structure should be relaxed. 2) The branch-type cracking was detected

  6. An analysis of ‘non-Johannine’ vocabulary in John 7:53–8:11, Part 1

    Directory of Open Access Journals (Sweden)

    John D. Punch

    2013-08-01

    Full Text Available Although scholars usually use external evidence to argue against the inclusion of John 7:53–8:11 in the Gospel of John, they frequently suggest arguments of internal evidence, mostly based on the inclusion of non-Johannine vocabulary, to support these objections. However, in contrast to the textual evidence, arguments about non-Johannine vocabulary seldom receive the necessary amount of evaluation. This article is the first of a two-part series that evaluates explanations for the appearance of various ‘non-Johannine’ terms. Both articles rebut claims of ’non-Johannine’ vocabulary in John 7:53–8:11, thereby providing opportunities for discussing Johannine features in the passage. Hoewel navorsers eksterne bewyse gebruik om teen die insluiting van Johannes 7:53–8:11 in die Evangelie van Johannes te argumenteer, maak hulle dikwels voorstelle van interne bewyse, meestal gebaseer op die insluiting van nie-Johannese terme, ter ondersteuning van sodanige besware. In teenstelling met die tekstuele bewyse, ontvang die voorstelle vir nie-Johannese terme egter selde die nodige evaluering. Hierdie artikel is die eerste van ’n tweeledige reeks wat verklarings vir die verskynsel van verskeie ‘nie-Johannese’ terme evalueer. Albei artikels weerlê die bewerings wat gemaak word ten opsigte van ‘nie-Johannese’ terme in Johannes 7:53–8:11 en skep daardeur geleentheid vir ’n bespreking van Johannese eienskappe.

  7. Investigation on Surface Roughness of Inconel 718 in Photochemical Machining

    Directory of Open Access Journals (Sweden)

    Nitin D. Misal

    2017-01-01

    Full Text Available The present work is focused on estimating the optimal machining parameters required for photochemical machining (PCM of an Inconel 718 and effects of these parameters on surface topology. An experimental analysis was carried out to identify optimal values of parameters using ferric chloride (FeCl3 as an etchant. The parameters considered in this analysis are concentration of etchant, etching time, and etchant temperature. The experimental analysis shows that etching performance as well as surface topology improved by appropriate selection of etching process parameters. Temperature of the etchant found to be dominant parameter in the PCM of Inconel 718 for surface roughness. At optimal etching conditions, surface roughness was found to be 0.201 μm.

  8. Measurements of emissivities on JT-60 first wall materials (inconel 625, Mo, TiC-coated Mo)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Shimizu, Masatsugu; Makino, Toshiro; Kunitomo, Takeshi.

    1985-02-01

    To evaluate heat removal performance of JT-60 first wall, emissivities and reflectivities on Inconel 625, Mo, TiC coated Mo with optically smooth surface and actual surface are measured at temperature from a room temperature to 1300 K. Spectra are measured in the rnage of wave lengthes from 0.34 μm to 20 μm. Actual surfaces are machined/pickled surfaces for Inconel 625, electro-polished surfaces for molybdenum, and as-coated surfaces for TiC-coated molybdenum. Results of Inconel 625 and molybdenum with oplically smooth surfaces are examined by a two-electrons-type dispersion model of optical constants. Electronic constants of the equation are given and formulated in order to correlates the macroscopic properties of the radiative heat transfer. Total emissivities, obtained from the spectral emissivities of optically smooth surface, are 0.13(RT) -- 0.21(1300 K) for Inconel 625, 0.035(RT) -- 0.18(1300 K) for Mo, and 0.053(RT) for TiC-coated Mo. Moreover, total emissivities of the actual surface at a room temperature are 0.35(Inconel 625), 0.124(Mo), and 0.073(TiC-coated Mo). Large dependence of the emissivities on temperature and wave length shows that the model including these dependences is necessary for an accurate evaluation of the radiative heat transfer. (author)

  9. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning

    International Nuclear Information System (INIS)

    Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L.

    2009-01-01

    The present paper is an attempt of an experimental investigation on the machinability of superalloy, Inconel 718 during high speed turning using tungsten carbide insert (K20) tool. The effect of machining parameters on the cutting force, specific cutting pressure, cutting temperature, tool wear and surface finish criteria were investigated during the experimentation. The machining parameters have been optimized by measuring forces. The effect of machining parameters on the tool wear was examined through SEM micrographs. During high speed turning acoustic emission signal were collected and analyzed to understand the effect of cutting parameters during online. The research work findings will also provide useful economic machining solution by utilizing economical tungsten carbide tooling during high speed processing of Inconel 718, which is otherwise usually machined by costly PCD or CBN tools. The present approach and results will be helpful for understanding the machinability of Inconel 718 during high speed turning for the manufacturing engineers

  10. Tensile Properties and Microstructure of Inconel 718 Fabricated with Electron Beam Freeform Fabrication (EBF(sup 3))

    Science.gov (United States)

    Bird, R. Keith; Hibberd, Joshua

    2009-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.

  11. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  12. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  13. Micro-structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited using LAAM

    Science.gov (United States)

    Bi, G.; Sun, C. N.; Nai, M. L.; Wei, J.

    In this paper, deposition of Ni-base Inconel 625 mixed with nano-TiC powders using laser aided additive manufacturing (LAAM) was studied. Micro-structure and mechanical properties were intensively investigated. The results showed that nano-size TiC distributed uniformly throughout the Ni- matrix. Inconel 625 can be reinforced by the strengthened grain boundaries with nano-size TiC. Improved micro-hardness and tensile properties were observed.

  14. Surface Roughness and Tool Wear on Cryogenic Treated CBN Insert on Titanium and Inconel 718 Alloy Steel

    International Nuclear Information System (INIS)

    Thamizhmanii, S; Mohideen, R; Zaidi, A M A; Hasan, S

    2015-01-01

    Machining of materials by super hard tools like cubic boron nitride (cbn) and poly cubic boron nitride (pcbn) is to reduce tool wear to obtain dimensional accuracy, smooth surface and more number of parts per cutting edge. wear of tools is inevitable due to rubbing action between work material and tool edge. however, the tool wear can be minimized by using super hard tools by enhancing the strength of the cutting inserts. one such process is cryogenic process. this process is used in all materials and cutting inserts which requires wear resistance. the cryogenic process is executed under subzero temperature -186° celsius for longer period of time in a closed chamber which contains liquid nitrogen. in this research, cbn inserts with cryogenically treated was used to turn difficult to cut metals like titanium, inconel 718 etc. the turning parameters used is different cutting speeds, feed rates and depth of cut. in this research, titanium and inconel 718 material were used. the results obtained are surface roughness, flank wear and crater wear. the surface roughness obtained on titanium was lower at high cutting speed compared with inconel 718. the flank wear was low while turning titanium than inconel 718. crater wear is less on inconel 718 than titanium alloy. all the two materials produced saw tooth chips. (paper)

  15. The Corrosion Behavior of Nickel and Inconel 600 in Sodium Hydroxide and Hydrochloric Acid Solution at 280 .deg. C

    International Nuclear Information System (INIS)

    Lee, Ihh Chong; Suk, Tae Won

    1980-01-01

    The corrosion behavior of nickel and Inconel 600 has been investigated by the weight change measurement method at pH ranges 3∼13 of the solution. The specimens were exposed to aqueous solutions in a static autoclave at 280 .deg. C for 210 hours. The pH of the solutions was adjusted by hydrochloric acid and sodium hydroxide and the dissolved oxygen concentration was fixed as 10 ppb by using pure nitrogen gas. Weight loss of Inconel 600 was much less than that of nickel over the tested pH ranges. At pH 9.5, nickel and Inconel 600 showed the minimum weight loss phenomenon and the values of weight loss were 1.5mg/dm 2 and 0.9mg/dm 2 , respectively. Microscopic examination showed that nickel surface was attacked uniformly, whereas Inconel 600 surface was not greatly

  16. Microstructural and Mechanical Study of Inconel 625 – Tungsten Carbide Composite Coatings Obtained by Powder Laser Cladding

    Directory of Open Access Journals (Sweden)

    Huebner J.

    2017-06-01

    Full Text Available This study focuses on the investigation of fine (~0.54 μm tungsten carbide particles effect on structural and mechanical properties of laser cladded Inconel 625-WC composite. Three powder mixtures with different Inconel 625 – WC weight ratio (10, 20 and 30 weight % of WC were prepared. Coatings were made using following process parameters: laser beam diameter ø ≈ 500 μm, powder feeder rotation speed – 7 m/min, scanning velocity – 10 m/min, laser power – 220 W changed to 320 W, distance between tracks – 1 mm changed to 0.8 mm. Microstructure and hardness were investigated. Coatings produced by laser cladding were crack and pore free, chemically and structurally homogenous. High cooling rate during cladding process resulted in fine microstructure of material. Hardness improved with addition of WC from 396.3 ±10.5 HV for pure Inconel 625, to 469.9 ±24.9 HV for 30 weight % of WC. Tungsten carbide dissolved in Inconel 625 which allowed formation of intergranular eutectic that contains TCP phases.

  17. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    Science.gov (United States)

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  18. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2014-10-01

    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  19. Phase transformation and liquid density redistribution during solidification of Ni-based superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2012-08-01

    Full Text Available The influences of chemical segregation and phase transformation on liquid density variation during solidification of Ni-based supperalloy Inconel 718 were investigated using SEM and EDS. It was found that significant segregation in liquid prompts high Nb phase to precipitate directly from liquid, which results in the redistribution of alloy elements and liquid density in their vicinity. The term “inter-precipitate liquid density” is therefore proposed and this concept should be applied to determine the solidification behavior of superalloy Inconel 718.

  20. The Corrosion Rate Measurement of Inconel 690 on High Temperature andPressure by Using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Febrianto

    2000-01-01

    The corrosion rate measurement of Inconel 690 on high temperature andpressure had been done. By using an Autoclave, pressure and temperature canbe simulated. The environment of this experiment is 0.1 ppm of chloridesolution, which permit to dissolved in secondary cooling of steam generator.The corrosion rate measurement was done on temperature between 150 o C and230 o C with step 10 o C. Pressure experiment is the pressure, which occurredin Autoclave. Corrosion rate is measured by CMS100. From the Tafel analysis,corrosion rate of Inconel 690 linearity increased from 6.548 x 10 -5 mpy to4.331 x 10 -4 mpy. It concludes that Inconel 690 is resist on corrosionenvironment, so it's most using on the fabrication of steam generator tubeson the advanced power plant. (author)

  1. Caustic stress corrosion cracking of Inconel-600, Incoloy-800, and Type 304 stainless steel

    International Nuclear Information System (INIS)

    Theus, G.J.

    1976-01-01

    High-temperature electrochemical tests have resulted in the stress corrosion cracking of Inconel-600 and Incoloy-800 (registered trademarks, International Nickel Company), and Type 304 stainless steel in caustic solutions. Results show that stress corrosion cracking of these alloys can be prevented or accelerated by varying their electrochemical potential. To a certain extent, the same effect can be achieved by altering the gas atmosphere above the test solution from a pure nitrogen cover gas to a mixture of 5 percent H 2 and 95 percent N 2 . The effect of the cover gas can then be negated by adjusting the specimen's electrochemical potential either to cause or to inhibit stress corrosion cracking. Some specifics of the test results reveal that in deoxygenated caustic solutions, Inconel-600 cracks intergranularly at mildly anodic potentials; Incoloy-800 cracks transgranularly at reduced potentials (at or near the open circuit potential) and intergranularly at highly oxidizing potentials; and cracking is mixed (transgranular/intergranular) for Type 304 stainless steel at or near the open circuit potential. The severity of cracking for both Inconel-600 and Incoloy-800 in deoxygenated caustic solutions is reduced by giving the materials a simulated post-weld heat treatment (1150 0 F for 18 h). Test results on Inconel-600 show that high-carbon (0.06 percent) material cracks less severely than low-carbon (0.02 percent) material, in both the simulated post-weld heat-treated condition and the mill-annealed condition

  2. Decarburization behavior and mechanical properties of Inconel 617 during high temperature oxidation in He environment

    International Nuclear Information System (INIS)

    Kim, Young Do; Kim, Dae Gun; Jo, Tae Sun; Kim, Hoon Sup; Lim, Jeong Hun

    2010-04-01

    Among Generation IV reactor concepts, high temperature gas-cooled reactors (HTGRs) are high-efficiency systems designed for the economical production of hydrogen and electricity. Inconel 617 is a solid-solution strengthening Ni-based superalloy that shows excellent strength, creep-rupture strength, and oxidation resistance at high temperatures. Thus, it is a desirable candidate for tube material of IHX and HGD in HTGRs. In spite of these excellent properties, aging degradation by long time exposure at high temperature induced to deterioration of mechanical properties and furthermore alloys' lifetime because of Cr-depleted zone and carbide free zone below external scale. Also, machinability of Inconel 617 is a important property for system design. In this study, oxidation and decarbrization behavior were evaluated at various aging temperature and environment. Also, cold rolling was carried out for the machinability evaluation of Inconel 617 and then microstructure change was evaluated

  3. Effects of post-weld heat treatment on microstructure and mechanical properties of TLP bonded Inconel718 superalloy

    International Nuclear Information System (INIS)

    Cao, J.; Wang, Y.F.; Song, X.G.; Li, C.; Feng, J.C.

    2014-01-01

    Transient liquid phase bonding of Inconel718 superalloy was carried out using a commercial Ni–Cr–Si–B amorphous interlayer. The interfacial microstructure of Inconel718 joints was analyzed by a scanning electron microscope and a transmission electron microscope. In particular, the effects of post-weld heat treatment on the interfacial microstructure and joining properties of Inconel718 joints were investigated in detail. The results showed that the precipitation of second phases in joints induced by post-weld heat treatment were beneficial to the improvement of joint properties. A tensile strength of 1130 MPa with an elongation percentage of 7% was achieved for a sample bonded at 1050 °C/60 min+1180 °C/60 min followed by the post-weld heat treatment

  4. Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-04-01

    Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.

  5. Optimization of process parameters for WEDM of Inconel 825 using grey relational analysis

    Directory of Open Access Journals (Sweden)

    Pawan Kuma

    2018-09-01

    Full Text Available Inconel 825 is high nickel-chromium-based superalloy which retains its mechanical properties and exhibits good corrosion and oxidation resistance at elevated temperature. Inconel 825 is extensively used for making aircraft engine parts like combustor casing and turbine blades in aero space industry. This research proposed the Response Surface Methodology with GRA to optimize multiple responses during Wire-cut EDM of Inconel 825. At optimum combination of input parameters i.e. A4B1C1D5E4F2, increase in MRR from 36.13 mm2/min to 41.822 mm2/min, decrease in SR from 2.842μm to 2.445μm and decrease in WWR from 0.01832 to 0.01758 was obtained. Experimental results showed that pulse-on time, wire feed, pulse-off time, and peak current significantly affected the MRR, and surface integrity of specimen and electrode with the formation of craters, pockmarks, debris, micro cracks, and recast layer. The optimal parametric combination obtained from the present study will be advantageous for working on high strength; high thermal conductivity and low melting point materials like nickel alloys.

  6. Applicability of eddy current inversion techniques to the sizing of defects in Inconel welds of BWR internals

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo; Machida, Eiji

    2004-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor, is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six probes in weld inspection evaluated. It is revealed that if suitable probes are applied, an Inconel weld does not provide large noise signals in eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches are performed using eddy current signals measured with the use of the uniform eddy current probe that showed the best results among the six probes in the inspection. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds. (author)

  7. Mechanical properties of nanostructured nickel based superalloy Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtarov, Sh; Ermachenko, A, E-mail: shamil@anrb.r [Institute for Metals Superplasticity Problems RAS, 39, Khalturina, Ufa, 450001 (Russian Federation)

    2010-07-01

    This paper will describe the investigations of a nanostructured (NS) state of nickel based INCONEL alloy 718. This structure was generated in bulk semiproducts by severe plastic deformation (SPD) via multiple isothermal forging (MIF) of a coarse-grained alloy. The initial structure consisted of {gamma}-phase grains with disperse precipitations of {gamma}{sup -}phase in the forms of discs, 50-75 nm in diameter and 20 nm in thickness. The MIF generated structures possess a large quantity of non-coherent plates and rounded precipitations of {delta}-phase, primarily along grain boundaries. In the duplex ({gamma}+{delta}) structure the grains have high dislocation density and a large number of nonequilibrium boundaries. Investigations to determine mechanical properties of the alloy in a nanostructured state were carried out. Nanocrystalline Inconel 718 (80 nm) possesses a very high room-temperature strength after SPD. Microcrystalline (MC) and NS states of the alloy were subjected to strengthening thermal treatment, and the obtained results were compared in order to determine their mechanical properties at room and elevated temperatures.

  8. Effect of grain structure on phase transformation events in Inconel 718

    International Nuclear Information System (INIS)

    Dahotre, N.B.; McCay, M.H.; McCay, T.D.; Hubbard, C.R.; Porter, W.D.; Cavin, O.B.

    1993-01-01

    Nickel base superalloys generally obtain their maximum strength from γ'[Ni 3 (Al,Ti)] and γ double-prime[Ni 3 (Al,Ti,Nb)] age hardening precipitates. During welding the γ' precipitation is very rapid and can lead to strain age cracking, which limits weldability. Thus, the weldable superalloys are limited in their Al and Ti content and hence in their ultimate strength. One method of increasing the ultimate strength of a superalloy, while avoiding strain age cracking, is the addition of Nb. This produces Ni 3 Nb(δ), and when used in conjunction with a limited amount of γ', results in an increase in strength without strain age cracking problems. The γ double-prime does not lead to strain age cracking because its transformation kinetics are too slow for formation during ordinary welding practice. This combination of γ' and γ double-prime strengthening is incorporated into the Inconel 718 alloys. The research reported herein was undertaken to determine the time-temperature response of Inconel 718 in the as-cast, wrought and wrought-grain-grown states, using differential thermal analysis (DTA). It is essential to locate the temperature regime of each phase transformation event and to study the transformation sequence in order to tailor sound laser welding techniques for Inconel 718. In the present research, a DTA technique was employed to study both the phase transformation events and the phase transformation sequence as a function of the pre-existing condition of the alloy

  9. Underwater laser cladding and seal welding for INCONEL 52

    International Nuclear Information System (INIS)

    Tamura, Masataka; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Yoda, Masaki

    2007-01-01

    Recently, stress corrosion cracking (SCC) has been observed at aged components of nuclear power plants under water environment and high exposure of radiation. Toshiba has been developing both an underwater laser welding directly onto surface of the aged components as maintenance and repair techniques. This paper reports underwater laser cladding and seal welding for INCONEL 52. (author)

  10. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  11. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting

    Science.gov (United States)

    Zhang, Baicheng; Bi, Guijun; Nai, Sharon; Sun, Chen-nan; Wei, Jun

    2016-06-01

    In this study, micron-size TiB2 particles were utilized to reinforce Inconel 625 produced by selective laser melting. Exceptional microhardness 600-700 HV0.3 of the composite was obtained. In further investigation, the microstructure and mechanical properties of Inconel 625/TiB2 composite can be significantly influenced by addition of TiB2 particles during SLM. It was found that the long directional columnar grains observed from SLM-processed Inconel 625 were totally changed to fine dendritic matrix due to the addition of TiB2 particles. Moreover, with laser energy density (LED) of 1200 J/m, a Ti, Mo rich interface around TiB2 particles with fine thickness can be observed by FESEM and EDS. The microstructure evolution can be determined by different laser energy density (LED): under 1200 J/m, γ phase in dendrite grains; under 600 J/m, γ phase in combination of dendritic and acicular grains; under 400 J/m, γ phase acicular grains. Under optimized LED 1200 J/m, the dynamic nanohardness (8.62 GPa) and elastic modulus (167 GPa) of SLM-processed Inconel 625/TiB2 composite are higher compared with those of SLM-processed Inconel 625 (3.97 GPa and 135 GPa, respectively).

  12. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Machida, Eiji; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo

    2005-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six different eddy current probes are conducted and efficiencies were evaluated for the six probes for weld inspection. It is revealed that if suitable probes are applied, an Inconel weld does not cause large noise levels during eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches is performed using eddy current signals measured using the uniform eddy current probe that showed the best results among the six probes in this study. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds

  13. Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali

    2018-06-01

    Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals' susceptibility to certain infections. Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p = 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p > 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p > 0.05). Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations.

  14. Fatigue crack growth behavior of Inconel 718 produced by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Nicoletto, G.; Bača, A.

    2016-01-01

    Roč. 35, č. 10 (2016), s. 31-40 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Inconel 718 * Selective laser melting * Microstructure * Fatigue crack growth * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics

  15. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  16. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  17. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    Science.gov (United States)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  18. Electron emission from Inconel under ion bombardment

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Oliva-Florio, A.

    1979-01-01

    Electron yields from clean and oxidized Inconel 625 surfaces have been measured for H + ,H 2 + ,He + ,O + and Ar + ions at normal incidence in the energy range 1.5 to 40 keV. These measurements have been made under ultrahigh vacuum and the samples were freed of surface contaminants by bombarding with high doses of either 20 keV H 2 + or 30 keV Ar + ions. Differences in yields of oxidized versus clean surfaces are explained in terms of differences in the probability that electrons internally excited escape upon reaching the surface. (author)

  19. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  20. Electrochemical Study about Microorganisms Induced Corrosion in Inconel

    OpenAIRE

    Domínguez-Sánchez, G.; Tiburcio, C. Gaona; Almeraya-Calderón, F.M.; Martínez-Villafañe, A.

    2005-01-01

    Inconel 600 has been designed to heat resistance. It is used in the chemistry industry, food industry and, of course, in the production of electric energy, among others. The goal of this project was to decrease the costs in the equipments and pipes deterioration by prolonging their lifetime, controlling and preventing their deterioration by means of appropriated and programmed maintenance, but above all knowing the mechanism and kinetic of corrosion that affects them. We used polarization cur...

  1. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae-Ho [Department of Materials Science and Engineering, RECAPT, Gyeongsang National University, Chinju (Korea, Republic of); Choi, Myung-Je [Korea Aerospace Industry, Sacheon (Korea, Republic of); Goto, Masahiro [Department of Mechanical Engineering, Oita University, Oita (Japan); Lee, Hong-Chul [Republic of Korea Air Force (Korea, Republic of); Kim, Sangshik, E-mail: sang@gnu.ac.kr [Department of Materials Science and Engineering, RECAPT, Gyeongsang National University, Chinju (Korea, Republic of)

    2014-09-15

    In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔK{sub th} value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanism of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔK{sub th} values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc.

  2. Quality Requirements Put On The Inconel 625 Austenite Layer Used On The Sheet Pile Walls Of The Boiler’s Evaporator To Utilize Waste Thermally

    Directory of Open Access Journals (Sweden)

    Słania J.

    2015-06-01

    Full Text Available Quality requirements and tests taken on the surfacing layer Inconel 625 are presented in the article. The reasons of using surfacing layer Inconel 625 and technologies of its making with a particular emphasis on the CMT method are described. Quality requirements for the surfacing weld Inconel 625 are provided. Basic requirements included in the Merkblatt 1166, as well as additional requirements, which are reflected in the technical specifications of the boilers’ producers are specified.

  3. Impact of shelf life on measured prompt fraction of spare Inconel in-core flux detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mohindra, VK; Sadeghi, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Crouse, B. [Darlington Nuclear Generating Station, Bowmanville, Ontario (Canada)

    2008-07-01

    Prompt fraction measurements associated with spare self-powered Inconel In-Core Flux Detectors (ICFDs) carried out a few years after installation on Shut Down System number 1 (SDS1) and Reactor Regulating System (RRS) at Darlington Nuclear Generating Station (DNGS), were found to be lower than those of the original detectors. These detectors, spares and originals, were manufactured in the late 80s, however, the former were kept at manufacturer's warehouse and latter were installed in the reactor core within a few years after manufacturing. Although the prompt fractions of the spare detectors were relatively low, the electronic/electrical behavior of the spare detectors was intact. The first batch of the original detectors performed as per the design requirements. Therefore, it is suspected that during shelf life, spare Inconel in-core flux detectors underwent changes that lowered their measured values of prompt fraction, which were taken within a few years after installation in the reactor. Detailed study of detectors' material composition and impurity concentrations revealed no association with the lower prompt fraction measurements. The evaluation of the limited data of the original and spare Inconel ICFDs installed at Darlington showed: 1. The reduction in prompt fraction was roughly proportional to the shelf life of the detectors; and 2. The rate of reduction in prompt fraction during storage was about double the rate of reduction during operation in the reactor. Above observations were based on the data provided by DNGS for a few detectors. The purpose of this paper is two fold, firstly to present the results of the complete study carried out to investigate the cause of relatively low prompt fractions measured on spare SDS1 and RRS Inconel ICFDs at DNGS, and secondly to generate interest/awareness within other CANDU utilities to add to the database of prompt fractions of spare Inconel ICFDs measured after installation. The data will help to improve

  4. Identification of acoustic emission sources in early stages of fatigue process of Inconel 713LC

    Energy Technology Data Exchange (ETDEWEB)

    Bartkova, Denisa; Vlasic, Frantisek; Mazal, Pavel [Brno Univ. of Technology, Brno (Czech Republic). Faculty of Mechanical Engineering

    2014-11-01

    Inconel 713LC is low carbon variant of Inconel 713 nickel-based cast alloy. The biggest advantage of these alloys is their ability to resist a wide variety of operating conditions (corrosive environment, high temperature, high stresses). Main area of applications is aircraft, energetic, chemical and petrochemical industry etc. In many applications, components undergo cyclic stresses. This study presents results of acoustic emission response of Inconel 713LC during high-cycle fatigue testing. In comparison with low-cycle fatigue, stage of initiation of micro cracks is in high-cycle region much more significant and can take several tens of percent of whole fatigue life. This work is focused on comparison of selected parameters of acoustic emission signal in pre-initiation and initiation stage of fatigue crack creation. Signal data were specified by linear location technique, hence only signal from shallow notch was analysed. Acoustic emission signal was correlated with frequency of load reversals which is a function of specimen's rigidity (modulus). Acoustic emission hits with higher stress were detected in pre-initiation stage whereas initiation stage hits exhibited low stress. Acoustic emission signal measurements are supplemented by fractographic and metallographic analysis.

  5. Exfoliation on stainless steel and inconel produced by 0.8-4 MeV helium ion bombardment

    International Nuclear Information System (INIS)

    Paszti, F.; Mezey, G.; Pogany, L.; Fried, M.; Manuaba, A.; Kotai, E.; Lohner, T.; Pocs, L.

    1982-11-01

    Trying to outline the energy dependence of surface deformations such as exfoliation and flaking on candidate CTR first-wall materials, stainless steel and two types of inconels were bombarded by 0.8, 1 and 4 MeV helium ions. All the bombarded spots could be characterized by by large exfoliations covering almost the total implanted area. No spontaneous rupture was observed except on one type of inconel where flaking took place right after reaching the critical dose. After mechanical opening of the formations, similar inner morphology was found as in our previous studies on gold. (author)

  6. Microstructure and Properties of the Ti6Al4V/Inconel 625 Bimetal Obtained by Explosive Joining

    Science.gov (United States)

    Topolski, Krzysztof; Szulc, Zygmunt; Garbacz, Halina

    2016-08-01

    The study is concerned with the bimetallic plate composed of the Ti6Al4V and Inconel 625 alloys. The alloys were joined together using the explosive method with the aim to produce a bimetallic joint. The structure and the mechanical properties of the as-received raw Ti6Al4V and Inconel 625 alloys, the Ti6Al4V/Inconel 625 joint, and the joint after annealing (600 °C for 1 h) were examined. The samples observations were performed using a light microscope and a scanning electron microscope. The mechanical properties were estimated by microhardness measurements, tensile tests, and three-point bending tests. Moreover, the deformation strengthening of the metals and the strength of the joint were analyzed. The explosive process resulted in a good quality bimetallic joint. Both sheets were deformed plastically and the joint surface between the alloys had a wavy shape. In the area of the joint surface, the hardness was increased. For example, the annealing at 600 °C for 1 h resulted in changes of the microhardness in the entire volume of the samples and in changes of the morphology of the joint surface. In three-point bending tests, the samples were examined in two opposite positions (Ti6Al4V on the top or Inconel 625 on the top). The results indicated to depend on the position in which the sample was tested.

  7. Release of corrosion products from construction materials containing cobalt. Pt.2: Inconel X750

    International Nuclear Information System (INIS)

    Falk, I.

    1978-02-01

    This report describes experimental work aimed at determining the release rate for corrosion products from 18Cr8Ni steel and Inconel X750 in BWR environments. For test purposes these environments were simulated in a high pressure loop, where irradiated samples of the materials were exposed for 720 hours. The amounts of released products were determined using gamma spectrometric analysis. The results show that the release from Inconel X750 is higher than that from 18Cr8Ni steel. The release calculated from Co58 measurements is 7 times higher and from Co60 measurements it is 1.5 times higher. Both the filtered and the deposited fractions of the released corrosion products exhibit the same relative concentrations of Co58 and Co60. (author)

  8. Diffusion of Hydrogen and Helium in Inconel 625

    Science.gov (United States)

    Palosz, W.; Gillies, D.; Lehoczky, S.

    2006-01-01

    Diffusion parameters for hydrogen and helium in Inconel 625 were investigated. The dependence of permeability of hydrogen in the temperature range 310 - 750 C is given. Solubility of hydrogen at 1 atm in the range 640 - 860 C was determined and diffusivity of the gas was calculated. Experiments with diffusion and solubility at 0.09 atm suggest a molecular mechanism of solution of hydrogen in the material. Diffusivity of helium was estimated at less than 10(exp -18) sq cm/s (at 1040 C).

  9. FLiNaK compatibility studies with Inconel 600 and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Graydon L., E-mail: yodergljr@ornl.gov [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Heatherly, Dennis; Wilson, Dane [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Caja, Mario [Electrochemical Systems, Inc. (ESI), 9320 Collingwood Rd., Knoxville, TN 37922 (United States)

    2016-10-15

    Highlights: • A versatile experimental design has been developed to examine liquid fluoride salt materials compatibility behavior. • Samples of silicon carbide and a grafoil/nickel spiral wound gasket were exposed to FLiNaK salt at 700 °C for 90 days and showed no degradation. • Alloy 600 showed material effects penetrating up to 300 μm below the salt interface after exposure to the salt for 90 days at 700 °C. • Comparison of the Alloy 600 corrosion results with existing data indicated that results were comparable to the few corrosion results available for Alloy 600. • Sapphire viewing windows incorporated in the experiment showed fogging by condensed salt components at the highest test temperatures. - Abstract: A small liquid fluoride salt test apparatus has been constructed and testing has been conducted to examine the compatibility of silicon carbide (SiC), Inconel 600 and a spiral wound gasket material in FLiNaK, the ternary eutectic alkaline metal fluoride salt mixture. These tests were conducted to evaluate materials and sealing systems that could be used in fluoride salt systems. Three months of testing at 700 °C was conducted to assure that these materials and seals would be acceptable when operating under prototypic operating conditions. The SiC specimens showed little or no change over the test period, while the spiral wound gasket material did not show any degradation except that salt might have been seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 μm in depth. Analysis indicated that the salt had leached chrome from the Inconel surface, as was expected for this material.

  10. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  11. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  12. Service experience and stress corrosion of Inconel 600 bellows expansion joints in turbine steam environments

    International Nuclear Information System (INIS)

    Kramer, L.D.; Michael, S.T.; Pement, F.W.

    The purpose of this paper is to discuss the service history of Inconel 600 expansion bellows, to illustrate a typical case of failure, propose S.C.C. mechanisms, and to rationalize the most probable mechanism. Inconel 600 is fully resistant to high-purity power plant steam (720 deg F maximum) for on-going service lifetimes which greatly exceed the incubation periods which are reported or postulated in the literature for delayed stress corrosion cracking in high-purity water tests (630-660 deg F). The only observed stress corrosion environments which are sufficiently rapidly deleterious to be consistent with failure lifetimes are molten NaOH in superheated steam or a very concentrated aqueous caustic solution containing silica contamination. (author)

  13. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  14. The electrochemical polishing behavior of the Inconel 718 alloy in perchloric-acetic mixed acids

    International Nuclear Information System (INIS)

    Huang, C.A.; Chen, Y.C.; Chang, J.H.

    2008-01-01

    The electropolishing behavior of the Inconel 718 alloy was studied by using rotating disc electrode (RDE) in the HClO 4 -CH 3 COOH mixed acids with different HClO 4 -concentrations. After electropolishing, surface morphologies of RDE specimens were examined with surface profiler, atomic force microscope and scanning electron microscope. According to the surface morphologies observed, three types of anodic dissolution behavior can be characterized in relation to the HClO 4 -content in mixed acids; namely, leveling without brightening of the surface in the mixed acids with 10 and 20 vol% HClO 4 , leveling and brightening of the surface in the mixed acids with 30 and 40 vol% HClO 4 , and a matt and gray surface in the mixed acids with 50 vol% or more HClO 4 . Anodic dissolution in the first and second dissolution types follows a mass-transfer controlled mechanism, in which a linear relationship between the reciprocal of limiting-current density and the reciprocal of square root of rotating speed of RDE specimen can be detected. Owing to precipitation of salt film on the polished surface of the Inconel 718 material, saturated dissolved metallic ions could be the chemical species for the mass-controlled mechanism. The salt film, in addition, could enhance the corrosion resistance of the Inconel 718 alloy

  15. Anti-Ma and anti-Ma2-associated paraneoplastic neurological syndromes.

    Science.gov (United States)

    Ortega Suero, G; Sola-Valls, N; Escudero, D; Saiz, A; Graus, F

    Analyse the clinical profile, associated tumour types, and response to treatment of paraneoplastic neurological syndromes associated with antibodies against Ma proteins. A retrospective study of patients with antibodies against Ma proteins identified in a neuroimmunology laboratory of reference. Of the 32 patients identified, 20 showed reactivity against Ma2 only (anti-Ma2 antibodies), 11 against Ma1 and Ma2 (anti-Ma antibodies), and 1 with reactivity against Ma1 only (anti-Ma1 antibodies). The most common clinical presentations were limbic encephalopathy, diencephalic dysfunction, or brainstem encephalopathy, frequently appearing as a combination of these features. Three patients had isolated cerebellar dysfunction with anti-Ma antibodies, and 2 exhibited peripheral nervous system syndrome with anti-Ma2 antibodies. Testicular tumours were the most common neoplasms (40%) in the anti-Ma2 cases. In the group associated with anti-Ma1 antibodies, the most common were lung tumours (36%), followed by testicular tumours. All idiopathic cases were reactive to Ma2. The clinical outcome was significantly better in the anti-Ma2 group. The patient with anti-Ma1 presented with limbic encephalitis and brainstem dysfunction associated with lymphoepithelioma of the bladder. Specifically determining the different reactivities of anti-Ma protein antibodies in order to differentiate between Ma1 and Ma2 antibodies is important because anti-Ma2-associated paraneoplastic syndromes have a better outcome. Lastly, this study is the first to confirm that there may be cases that react exclusively to antibodies against Ma1. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    International Nuclear Information System (INIS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L. III; Busby, Jeremy T.; Mo, Kun; Stubbins, James

    2013-01-01

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.

  17. Study of welding characteristics of inconel 600 alloy using a continuous wave Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Song, Seong Wook; Yoo, Young Tae; Shin, Ho Jun

    2004-01-01

    Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power. Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser

  18. Environmentally assisted cracking of Inconel X750

    International Nuclear Information System (INIS)

    Skeldon, P.; Lowick, J.H.B.; Hurst, P.

    1987-05-01

    The resistance of different heat treatments of Inconel X750 to environmentally assisted cracking in simulated PWR primary water at 340 0 C has been assessed by slow strain rate, U-bend and bent beam tests. At the corrosion potential (ca - 670 mV (Ag/AgCl)), in low oxygen conditions (≤ 2 ppb) a single-stage ageing (704 0 C/20 h) gives much improved resistance compared with two-stage ageing (885 0 C/24 h + 704 0 C/20 h). However, material given the former ageing treatment can be susceptible to cracking at highly anodic potentials (> - 200 mV (Ag/AgCl)) if the alloy is significantly sensitized. (author)

  19. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Science.gov (United States)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  20. Development of an inconel self powered neutron detector for in-core reactor monitoring

    International Nuclear Information System (INIS)

    Alex, M.; Ghodgaonkar, M.D.

    2007-01-01

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60 Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10 -18 A/R/h/cm (-9.3x10 -24 A/γ/cm 2 -s/cm), -5.2x10 -18 A/R/h/cm (-1.133x10 -23 A/γ/cm 2 -s/cm) and 34x10 -18 A/R/h/cm (7.14x10 -23 A/γ/cm 2 -s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10 -22 and 2.64x10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress

  1. Selective laser melting of Inconel super alloy-a review

    Science.gov (United States)

    Karia, M. C.; Popat, M. A.; Sangani, K. B.

    2017-07-01

    Additive manufacturing is a relatively young technology that uses the principle of layer by layer addition of material in solid, liquid or powder form to develop a component or product. The quality of additive manufactured part is one of the challenges to be addressed. Researchers are continuously working at various levels of additive manufacturing technologies. One of the significant powder bed processes for met als is Selective Laser Melting (SLM). Laser based processes are finding more attention of researchers and industrial world. The potential of this technique is yet to be fully explored. Due to very high strength and creep resistance Inconel is extensively used nickel based super alloy for manufacturing components for aerospace, automobile and nuclear industries. Due to law content of Aluminum and Titanium, it exhibits good fabricability too. Therefore the alloy is ideally suitable for selective laser melting to manufacture intricate components with high strength requirements. The selection of suitable process for manufacturing for a specific component depends on geometrical complexity, production quantity, and cost and required strength. There are numerous researchers working on various aspects like metallurgical and micro structural investigations and mechanical properties, geometrical accuracy, effects of process parameters and its optimization and mathematical modeling etc. The present paper represents a comprehensive overview of selective laser melting process for Inconel group of alloys.

  2. STUDY OF THE MECHANICAL PROPERTIES OF INCONEL 718 SUPERALLOY AFTER HOT TENSILE TESTS

    Directory of Open Access Journals (Sweden)

    Tarcila Sugahara

    2014-10-01

    Full Text Available This research work investigated some important mechanical properties of Inconel 718 superalloy using hot tensile tests like conventional yield strength to 0.2% strain (σe , ultimate strength (σr , and specific elongation (εu . Samples were strained to failure at temperatures of 600°C, 650°C, 700°C, 750°C, 800°C and 850°C and strain rate of 0.5 mm/min (2 × 10–4 s–1 according to ASTM E-8. The results showed higher values σe of yield strength at 700°C, this anomalous behavior can be attributed to the presence of hardening precipitates as observed in the TTT diagram of superalloy Inconel 718. Examination of the sample’s surfaces tensile fracture showed that with increasing temperature test the actuating mechanism changes from intergranular fracture to coalescence of the microcavities.

  3. Influence of Support Configurations on the Characteristics of Selective Laser-Melted Inconel 718

    Science.gov (United States)

    Nadammal, Naresh; Kromm, Arne; Saliwan-Neumann, Romeo; Farahbod, Lena; Haberland, Christoph; Portella, Pedro Dolabella

    2018-03-01

    Samples fabricated using two different support configurations by following identical scan strategies during selective laser melting of superalloy Inconel 718 were characterized in this study. Characterization methods included optical microscopy, electron back-scattered diffraction and x-ray diffraction residual stress measurement. For the scan strategy considered, microstructure and residual stress development in the samples were influenced by the support structures. However, crystallographic texture intensity and the texture components formed within the core part of the samples were almost independent of the support. The formation of finer grains closer to the support as well as within the columnar grain boundaries resulted in randomization and texture intensity reduction by nearly half for the sample built on a lattice support. Heat transfer rates dictated by the support configurations in addition to the scan strategy influenced the microstructure and residual stress development in selective laser-melted Inconel 718 samples.

  4. Fractography analysis of Inconel 718 fatigued at 700°C

    Directory of Open Access Journals (Sweden)

    Michal Jambor

    2016-12-01

    Full Text Available This work deals with the fractography analysis of nickel-base superalloy Inconel 718 fatigued at 700°C in air atmosphere in the high cycle region. During cyclic loading of this alloy at high temperatures some different mechanisms compared to cyclic loading at ambient temperature take place. Cyclic plastic deformation at high temperatures causes some structural changes, which could have some influence on the fatigue process.

  5. Anti-Ma2 antibody related paraneoplastic limbic/brain stem encephalitis associated with breast cancer expressing Ma1, Ma2, and Ma3 mRNAs.

    Science.gov (United States)

    Sahashi, K; Sakai, K; Mano, K; Hirose, G

    2003-09-01

    A 69 year old woman presented with cognitive impairment and supranuclear gaze palsy caused by paraneoplastic limbic/brain stem encephalitis associated with atypical medullary breast carcinoma. The cerebrospinal fluid from the patient harboured an anti-neuronal cell antibody against Ma2 antigen, but not against Ma1 or Ma3 antigen. Despite the antibody being restricted to the Ma2 antigen, the patient's cancer tissue expressed Ma1, Ma2, and Ma3 mRNAs. These results, and the expression of Ma2 mRNA in an atypical medullar breast carcinoma in another patient without paraneoplastic encephalitis, indicate that the induction of anti-Ma2 antibody depends on host immunoreponsiveness and not on the presence of the antigen itself in the cancer.

  6. The Study on bonding test of Inconel 617 Heat Exchanger by Measuring Properties

    International Nuclear Information System (INIS)

    Cho, Il Hwan; Song, Chan Ho; Yoon, Seok Ho; Park, Sang Jin

    2014-01-01

    Basic materials are not melted and bonded through the diffusion of atoms. It is different from welding in a view point of not melting and additional bonding insertion materials are not used which is different from the method in brazing. This bonding method is favor for ultra high temperature and pressure condition, and the bonding part becomes almost same structure and property with high heat resistance and strength when it is compared with brazing method. But the process time is long and the cost is high. The quantitative analysis in bonding surface has not been suggested yet. In this paper, the bonding performance for diffusion bonded heat exchanger is examined and analyzed where its material is Inconel 617. thermal and mechanical properties such as thermal diffusivity and tensile strength are measured and compared for different bonding conditions. In this study, the bonding performance for heat exchanger using Inconel 617 is analyzed by measuring thermal and mechanical properties such as thermal diffusivity and tensile strength. The following results are obtained. From measuring thermal diffusivity, it is found that the difference between the diffusion bonded plates and bond failed plates is within 3%. The tensile strength in diffusion bonding is about 25% lower than that of original plate at 1150 .deg. C, but it is over 600 MPa. As bonding temperature increases, the size of grain boundary decreases From these results, the possibility for Inconel 617 heat exchanger under the high temperature and pressure through diffusion bonding process could be obtained and it is thought to be applied for many industrial equipment

  7. The Study on bonding test of Inconel 617 Heat Exchanger by Measuring Properties

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il Hwan; Song, Chan Ho; Yoon, Seok Ho; Park, Sang Jin [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    Basic materials are not melted and bonded through the diffusion of atoms. It is different from welding in a view point of not melting and additional bonding insertion materials are not used which is different from the method in brazing. This bonding method is favor for ultra high temperature and pressure condition, and the bonding part becomes almost same structure and property with high heat resistance and strength when it is compared with brazing method. But the process time is long and the cost is high. The quantitative analysis in bonding surface has not been suggested yet. In this paper, the bonding performance for diffusion bonded heat exchanger is examined and analyzed where its material is Inconel 617. thermal and mechanical properties such as thermal diffusivity and tensile strength are measured and compared for different bonding conditions. In this study, the bonding performance for heat exchanger using Inconel 617 is analyzed by measuring thermal and mechanical properties such as thermal diffusivity and tensile strength. The following results are obtained. From measuring thermal diffusivity, it is found that the difference between the diffusion bonded plates and bond failed plates is within 3%. The tensile strength in diffusion bonding is about 25% lower than that of original plate at 1150 .deg. C, but it is over 600 MPa. As bonding temperature increases, the size of grain boundary decreases From these results, the possibility for Inconel 617 heat exchanger under the high temperature and pressure through diffusion bonding process could be obtained and it is thought to be applied for many industrial equipment.

  8. Corrosion fatigue cracking behavior of Inconel 690 (TT) in secondary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Xiao Jun; Chen Luyao; Qiu Shaoyu; Chen Yong; Lin Zhenxia; Fu Zhenghong

    2015-01-01

    Inconel 690 (TT) is one of the key materials for tubes of steam generators for pressurized water reactors, where it is susceptible to corrosion fatigue cracking. In this paper, the corrosion fatigue cracking behavior of Inconel 690 (TT) was investigated under small scale yielding conditions, in the simulated secondary water of pressurized water reactor. It was observed that the fatigue crack growth rate was accelerated by a maximum factor up to 3 in the simulated secondary water, comparing to that in room temperature air. In addition, it was found that the accelerating effect was influenced by out-of-plane cracking of corrosion fatigue cracks and also correlated with stress intensity factor range, maximum stress intensity factor and stress ratio. (authors)

  9. Microstructure of irradiated Inconel 706 fuel pin cladding

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Makenas, B.J.

    1983-08-01

    A fuel pin from the HEDL-P-60 experiment with a cladding of solution-annealed Inconel 706 breached in an apparently brittle manner at a position 12.7 cm above the bottom of the fuel column with a crack of 5.72 cm in length after 5.0 atomic percent burnup in EBR-II. Temperatures (time-averaged midwall) and fast fluences for the fractured area range from 447 0 C and 5.5 x 10 22 n/cm 2 to 526 0 C and 6.1 x 10 22 n/cm 2 (E > 0.1 MeV). Specimens of the fractured fuel pin section were successfully prepared and examined in both a scanning electron microscope and a transmission electron microscope. The fracture surfaces of the breached section showed brittle intergranular fracture characteristics for both the axial and circumferential cracks. Formation of γ' in the matrix near the breach confirmed that the irradiation temperature at the breached area was below 500 0 C, in agreement with other estimates of the temperature for the area, 447 to 526 0 C. A hexagonal eta-phase, Ni 3 (Ti,Nb), precipitated at boundaries near the breach. A more extensive eta-phase coating at grain boundaries was found in a section irradiated at 650 0 C. The eta-phase plates at grain boundaries are expected to have a detrimental effect on alloy ductility. A plane of weakness in this region along the (111) slip planes will develop in Inconel 706 because the eta-plates have a (111) habit relationship with the matrix

  10. Influence of microstructure in corrosion behavior of an Inconel 600 commercial alloy in 0.1 M sodium thiosulfate solution

    International Nuclear Information System (INIS)

    Granados, J.; Rodriguez, F.J.; Arganis, C.

    1999-01-01

    The Inconel 600 is used in diverse components of BWR and PWR type reactors, where diverse cases of intergranular stress corrosion have been presented. It has been reported susceptibility to the corrosion of this alloy, in presence of thiosulfates, which come from the degradation of the ion exchange resins of water treatments that use the reactors. The objective of this work is to study the influence of metallurgical condition in the corrosion velocity of Inconel 600 commercial alloy, in a 0.1 M thiosulfates solution. (Author)

  11. Face compression yield strength of the copper-Inconel composite specimen

    International Nuclear Information System (INIS)

    Horie, T.

    1987-05-01

    A new equation for the face compression yield strength of copper-Inconel composite material has been derived. Elastic-plastic finite element analyses were also made for composite specimens with various aspect ratios to examine the edge effect of the specimen. According to the results of both the new equation and the analyses, the face compression yield strength of the composite should be decreased by about 25% from the value obtained with Becker's equation

  12. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    Science.gov (United States)

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  13. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Yang Hua

    2018-05-01

    Full Text Available Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  14. Long fatigue crack growth in Inconel 718 produced by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Nicoletto, G.; Bača, A.

    2016-01-01

    Roč. 92, NOV (2016), s. 499-506 ISSN 0142-1123. [CP 2015 - International Conference on Crack Paths /5./. Ferrara, 16.09.2015-18.09.2015] Institutional support: RVO:68081723 Keywords : Inconel 718 * Selective laser melting * Microstructure * Fatigue crack growth * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  15. Influence Of The Laser Cladding Strategies On The Mechanical Properties Of Inconel 718

    International Nuclear Information System (INIS)

    Lamikiz, A.; Tabernero, I.; Ukar, E.; Lopez de Lacalle, L. N.; Delgado, J.

    2011-01-01

    This work presents different experimental results of the mechanical properties of Inconel registered 718 test parts built-up by laser cladding. Recently, turbine manufacturers for aeronautical sector have presented high interest on laser cladding processes. This process allows building fully functional structures on superalloys, such as Inconel registered 718, with high flexibility on complex shapes. However, there is limited data on mechanical properties of the laser cladding structures. Moreover, the available data do not include the influence of process parameters and laser cladding strategies. Therefore, a complete study of the influence of the laser cladding parameters and mainly, the variation of the tensile strength with the laser cladding strategy is presented. The results show that there is a high directionality of mechanical properties, depending on the strategies of laser cladding process. In other words, the test parts show a fiber -like structure that should be considered on the laser cladding strategy selection.

  16. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  17. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alex, M. [Electronics Division, BARC, Mumbai (India)]. E-mail: maryalex@barc.gov.in; Ghodgaonkar, M.D. [Electronics Division, BARC, Mumbai (India)

    2007-04-21

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the {sup 60}Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10{sup -18} A/R/h/cm (-9.3x10{sup -24} A/{gamma}/cm{sup 2}-s/cm), -5.2x10{sup -18} A/R/h/cm (-1.133x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) and 34x10{sup -18} A/R/h/cm (7.14x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10{sup -23} A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10{sup -22} and 2.64x10{sup -22} A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within {+-}5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  18. Effect of temperature upon the fatigue-crack propagation behavior of Inconel X-750

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of precipitation heat-treated Inconel X-750 in an air environment over the range 75-1200 0 F. In general, fatigue-crack growth rates increased with increasing test temperature

  19. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)

    2011-06-15

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  20. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Science.gov (United States)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  1. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    International Nuclear Information System (INIS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I.

    2011-01-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  2. J-resistance curves for Inconel 690 and Incoloy 800 nuclear steam generators tubes at room temperature and at 300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Bergant, Marcos A., E-mail: marcos.bergant@cab.cnea.gov.ar [Gerencia CAREM, Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Yawny, Alejandro A., E-mail: yawny@cab.cnea.gov.ar [División Física de Metales, Centro Atómico Bariloche (CNEA) / CONICET, Av. Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Perez Ipiña, Juan E., E-mail: juan.perezipina@fain.uncoma.edu.ar [Grupo Mecánica de Fractura, Universidad Nacional del Comahue / CONICET, Buenos Aires 1400, Neuquén 8300 (Argentina)

    2017-04-01

    The structural integrity of steam generator tubes is a relevant issue concerning nuclear plant safety. In the present work, J-resistance curves of Inconel 690 and Incoloy 800 nuclear steam generator tubes with circumferential and longitudinal through wall cracks were obtained at room temperature and 300 °C using recently developed non-standard specimens' geometries. It was found that Incoloy 800 tubes exhibited higher J-resistance curves than Inconel 690 for both crack orientations. For both materials, circumferential cracks resulted into higher fracture resistance than longitudinal cracks, indicating a certain degree of texture anisotropy introduced by the tube fabrication process. From a practical point of view, temperature effects have found to be negligible in all cases. The results obtained in the present work provide a general framework for further application to structural integrity assessments of cracked tubes in a variety of nuclear steam generator designs. - Highlights: •Non-standard fracture specimens were obtained from nuclear steam generator tubes. •Specimens with circumferential and longitudinal through-wall cracks were used. •Inconel 690 and Incoloy 800 steam generator tubes were tested at 24 and 300 °C. •Fracture toughness for circumferential cracks was higher than for longitudinal cracks. •Incoloy 800 showed higher fracture toughness than Inconel 690 steam generator tubes.

  3. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Okimoto, P.C.

    1988-01-01

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  4. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Ye, Y.; Sun, Z. [Department of Mechanical Engineering, Tsinghua University, Beijing (China); Liu, L., E-mail: liulei@tsinghua.edu.cn [The State Key Laboratory of Tribology, Tsinghua University, Beijing (China); Zou, G., E-mail: sunzhg@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing (China)

    2016-05-01

    Highlights: • Effects of processing parameters on the kerf size in Inconel 738 are investigated. • Defocus is a key parameter affecting the kerf width due to the intensity clamping. • The internal surface microstructures with different scanning speed are presented. • The material removal mechanism contains normal vaporization and phase explosion. • Oxidation mechanism is attributed to the trapping effect of the dangling bonds. - Abstract: Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.

  5. Tribological behavior of inconel 718 in sodium cooled reactor environments

    International Nuclear Information System (INIS)

    Wilson, W.L.; Galioto, T.A.; Schrock, S.L.

    1976-01-01

    Results of the present study on the tribological behavior of Inconel 718 in a sodium environment are summarized as follows: (a) Stroke lengths less than or equal to one-half the test pin diameter result in higher friction coefficients. (b) At elevated temperatures, the formation of a lubricative surface film can significantly influence the frictional behavior. (c) Tangential forces present during static dwell periods result in greater bonding tendencies. (d) Increasing contact pressure during static dwell periods results in lower breakaway friction coefficients

  6. Study of electrochemical corrosion characteristics of Inconel alloys with addition of trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Goon; Park, In Ho; Lee, Sang Hoon [Hanyang University, Seoul (Korea)

    2002-04-01

    Inconel alloys which have high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. But, since environments of steam generator are high temperature and pressure, there have been many reports of the damage cases of steam generators which are made with Inconel 600. The failure through corrosion of steam generator's parts made with Inconel alloy became generally known because of IGSCC result from Cr depletion zone. Therefore, the development of materials added element which obstructs formation of Cr depletion zone on grainboundary were imminent, we intended to investigate the effects on known prevention and different prevention mechanism of corrosion according to added amount of Nb known as proper inhibitor against SCC. Specimens used to experiment were divided into heat treatment(SA and SA SEN) and added amount of Nb(0, 2, 4, 6%), when DL-EPR Tests (measurement of degree of sensitization were executed, composition of electrolyte is aqueous solution mixed 0.5M H2SO4 and 5ppm KSCN , electrolytes were aqueous solution mixed 10% NaOH on potentiodynamic and potentiostatic tests at RT and high temperature. As a result of experiment, degree of sensitization of SA heat treated specimens was lower than that of SA SEN heat treated specimens. According to added Nb, degree of sensitization of specimens over 2% Nb were similar. There is no particularly different experimental results through added element, heat treatment on potentiondynamic and potentiostatic experiments at RT and high temperature. Although heat treatment and added amount of Nb affected a little degree of grainboundary sensitization, these experimental factors didn't have effects on forming the passive film. 13 refs., 19 figs. (Author)

  7. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    Science.gov (United States)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  8. 33 CFR 80.135 - Hull, MA to Race Point, MA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull, MA to Race Point, MA. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.135 Hull, MA to Race Point, MA. (a... the east coast of Massachusetts from the easternmost radio tower at Hull, charted in approximate...

  9. Performance of PVD-Coated Carbide Tools When Turning Inconel 718 in Dry Machining

    Directory of Open Access Journals (Sweden)

    Gusri Akhyar Ibrahim

    2011-01-01

    Full Text Available Inconel 718 has found its niche in many industries, owing to its unique properties such as high oxidation resistance and corrosion resistance even at very high temperatures. Coated carbide tool with hard layer of PVD TiAlN is used to turn Inconel 718. Taguchi method with the orthogonal array L9 is applied in this experiment with the parameter cutting speed of 60–80 m/min, feed rate of 0.2–0.3 mm/rev, and depth of cut of 0.3–0.5 mm. The results show that depth of cut is a significant influence to the tool life. Cutting speed of 60 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm are the optimum parameters. The flank wear, crater wear, notch wear, and nose wear are the wear mechanisms on the carbide tool. Through the SEM, abrasion, attrition, and adhesion are the wear mechanisms which can be seen on the cutting tool.

  10. Pitting corrosion of Inconel 600 in chloride and sulfate solutions at low temperature

    International Nuclear Information System (INIS)

    Chang Mingyu; Yu Geping

    1993-01-01

    Pitting corrosion of Inconel 600 was examined in chloride and sulfate solutions through usage of potentiodynamic polarization techniques. The effects of chloride and sulfate concentration were investigated in the range of 0.0001 to 0.1 M. Increasing chloride concentrations resulted in active shifts of the pit nucleation potential. Immunity to pitting corrosion was evident at a chloride level below 0.005 M. Increasing sulfate concentrations resulted in improved pitting resistance of Inconel 600 in chloride solutions. Detrimental effects associated with pitting were evident with low-level sulfate being added to dilute chloride media. The density of pits increased with increasing chloride concentrations or temperature between room temperature and 70 C. Systematic trends for the depth of pits were not evident. The observations of pitting corrosion in open immersion were consistent with those in polarization methods. Corrosion products contained in the pits were enriched in nickel, chromium and iron with a small amount of titanium and silicon. The enrichment of chlorine or sulfur was still, however, not found. (orig.)

  11. 42 CFR 495.202 - Identification of qualifying MA organizations, MA-EPs and MA-affiliated eligible hospitals.

    Science.gov (United States)

    2010-10-01

    ... qualifying MA-affiliated eligible hospitals under the MA EHR incentive program are required to identify...-EPs and MA-affiliated eligible hospitals. 495.202 Section 495.202 Public Health CENTERS FOR MEDICARE... STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE PROGRAM Requirements Specific to Medicare...

  12. Stress-corrosion cracking of Inconel alloy 600 in high-temperature water: an update

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    Inconel 600 has been tested in high-temperature aqueous media (without oxygen) in several tests. Data are presented to relate failure times to periods of crack initiation and propagation. Quantitative relationships have been developed from tests in which variations were made in temperature, applied load, strain rate, water chemistry, and the condition of the test alloy

  13. The Evaluation of Crevice Corrosion of Inconel-600 and 304 Stainless Steel in Reductive Decontamination Solutions

    International Nuclear Information System (INIS)

    Jung, Junyoung; Park, Sangyoon; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon; Park, Sojin

    2014-01-01

    In this sturdy, we investigated the characteristics of corrosion to Inconel-600 and type 304 stainless steel which are mainly used for the steam generator and primary system of PWR reactor respectively. We conducted the corrosion test for the HYBRID (HYdrazine Based metal Ion Reductive decontamination) which was developed in KAERI, Citrox and Oxalic acid solutions used in reductive decontamination of the inner surface of PWR. Since Citrox and oxalic acid solution were well-known conventional decontamination solutions, it is meaningful to compare the corrosion result of HYBRID with those solutions to confirm the corrosion compatibility. In order to obtain visible results in a limited time, we conducted the crevice corrosion tests under harsh condition. According to the results of crevice corrosion tests, we can conclude that metals such as type 304 stainless steel and Inconel-600 in HYBRID are very stable against crevice corrosion. On the other hand, those metals in Citrox and oxalic acid solutions were very susceptible to the crevice corrosion. Especially when using the oxalic acid solution, severe corrosion was observed not only Inconel-600 but also 304 stainless steel. The degree of corrosion can be expressed as; HYBRID << Citrox < OA. Conclusively, our results support that the HYBRID is more stable to the corrosion of structural materials in primary system than other Citrox and oxalic acid solutions. This finding will appoint the HYBRID solution as a candidate to solve the corrosion problem which is often issued by existing chemical decontamination processes

  14. Effect of lead on Inconel 600 and Incoloy 800 oxide layers formed in simulated steam generator secondary environments

    International Nuclear Information System (INIS)

    Garcia-Mazario, M.; Lancha, A.M.; Hernandez, M.; Maffiotte, C.

    1996-01-01

    The existence of lead in steam generators, detected during the analysis of deposits in the damaged areas of tubing, supports the hypothesis that lead may contribute to the cracking problems experienced in steam generator tubes. In addition, the harmful effect of lead on Inconel 600 is known not only through laboratory tests but also as a result of operating experience. Operating experience of Incoloy 800 is, however, much more limited and there are very few laboratory studies in this area. Taking into account that thin films formed on metals reflect the interaction between such metals and the aqueous environment and also that incoloy 800 is considered to be a suitable material for new steam generators as a substitute for Inconel 600, attempts to determine the effect of lead on corrosion films are considered useful with a view to better understanding the stress-corrosion-cracking behaviour of these materials. For these reasons the objective of this paper is to gain some insights into the effect of lead on the oxide layers forming on Inconel 600 and Incoloy 800 tested in the laboratory in various aggressive lead-containing environments. Auger electron spectroscopy (AES) and electron spectroscopy for chemical analysis (ESCA) have been used to study the composition of these oxide layers. (orig.)

  15. Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718

    International Nuclear Information System (INIS)

    Ramkumar, K. Devendranath; Kumar, B. Monoj; Krishnan, M. Gokul; Dev, Sidarth; Bhalodi, Aman Jayesh; Arivazhagan, N.; Narayanan, S.

    2015-01-01

    This research article addresses the joining of 5 mm thick plates of Inconel 718 by activated flux tungsten inert gas (A-TIG) welding process using SiO 2 and TiO 2 fluxes. Microstructure studies inferred the presence of Nb rich eutectics and/or laves phase in the fusion zone of the A-TIG weldments. Tensile studies corroborated that the ultimate tensile strength of TiO 2 flux assisted weldments (885 MPa) was better compared to SiO 2 flux assisted weldments (815 MPa) and the failure was observed in the parent metal for both the cases. Impact test results portrayed that both the weldments were inferior in toughness as compared to the parent metal, which was due to the presence of oxide inclusions. Also, the study investigated the structure–property relationships of the A-TIG weldments of Inconel 718

  16. Solute redistribution and Rayleigh number in the mushy zone during directional solidifi cation of Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2009-08-01

    Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.

  17. Ultrasonic measurements for in-service assessment of wrought Inconel 625 cracker tubes of heavy water plants

    International Nuclear Information System (INIS)

    Kumar, Anish; Rajkumar, K.V.; Jayakumar, T.; Raj, Baldev; Mishra, B.

    2006-01-01

    The degradation in mechanical properties of Inconel 625 ammonia cracker tubes occurs during the service for long duration in heavy water plants. The present study brings out the possibility of using Poisson's ratio (derived from measurement of time of flight of ultrasonic waves) in combination with hardness measurements, as an effective non-destructive tool for assessment of in-service degradation of Inconel 625 cracker tubes and qualification of re-solution annealing heat treatment for their rejuvenation. Further, the study also indicates the feasibility of extending the life of some of the tubes beyond the presently followed 120 000 h, before they are taken up for re-solution annealing, without affecting their serviceability. However, further studies are required to identify quantitative criterion for Poisson's ratio and hardness values, for deciding on the basis for removal of the tubes for rejuvenation

  18. Ma

    Directory of Open Access Journals (Sweden)

    Ingrid Berthon-Moine

    2012-01-01

    Full Text Available Ma (2009 is a single channel video of a mother and child walking together side by side, holding hands. The title is reminiscent of the affectionate nickname for a mother, 'Ma', but also a concealed way to convey maternal ambivalence. Maternal ambivalence is the result of the tension between the idealisation of motherhood and women’s lived experience of mothering. The maternal struggle finds its source in the difficulty of identifying with the ideological representation of the mother. This image still conveys an idealistic and nostalgic, patriarchal image of maternal love bounded by culture and history. http://podcast.ulcc.ac.uk/accounts/BirkbeckCollege/mamsie/MA.mov

  19. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    Science.gov (United States)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-02-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  20. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    Science.gov (United States)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-06-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  1. Residual stress determination of direct metal laser sintered (DMLS) inconel specimens and parts

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maziasz, Philip J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fancher, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peralta, Alonso [Honeywell Aerospace, Phoenix, AZ (United States); Sundarraj, Suresh [Honeywell Aerospace, Phoenix, AZ (United States); Neumann, James [Honeywell Aerospace, Phoenix, AZ (United States)

    2018-01-01

    Residual stress determinations and microstructural studies were performed on a series of Inconel 718Plus prisms built using Direct Metal Laser Sintering (DMLS) at Honeywell Aerospace (hereafter also referred to as Honeywell). The results are being used to validate and improve existing models at Honeywell, and ultimately will expedite the implementation of DMLS throughout various industrial sectors (automotive, biomedical, etc.).

  2. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    Science.gov (United States)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  3. Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Campo, L. del [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Emittance of Inconel 718 coated with plasma sprayed yttria stabilized zirconia. Black-Right-Pointing-Pointer The coating is opaque for {lambda} > 9 {mu}m and semi-transparent for {lambda} < 9 {mu}m. Black-Right-Pointing-Pointer In the semi-transparent region the emittance decreases with coating thickness. Black-Right-Pointing-Pointer 300 {mu}m thick coatings are still semi-transparent. Black-Right-Pointing-Pointer In the opaque region the surface roughness determines the emittance level. - Abstract: Knowledge of the radiative behaviour of the yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) is needed to perform radiative heat transfer calculations in industrial applications. In this paper, normal spectral emittance experimental data of atmospheric plasma sprayed (PS) YSZ films layered on Inconel 718 substrates are shown. The spectral emittance was measured between 2.5 and 22 {mu}m on samples with film thicknesses ranging from 20 to 280 {mu}m. The samples were heated in a controlled environment, and the emittance was measured for several temperatures between 330 and 730 Degree-Sign C. The dependence of the spectral emittance with film thickness, surface roughness and temperature has been studied and compared with the available results for YSZ TBCs obtained by electron-beam physical vapour deposition. The PS-TBC samples show a Christiansen point at {lambda} = 12.8 {mu}m. The films are semi-transparent for {lambda} < 9 {mu}m, and opaque for {lambda} > 9 {mu}m. In the semi-transparent region, the contribution of the radiation emitted by the Inconel 718 substrate to the global emittance of the samples is analysed. In addition, the influence of the roughness in the emittance values in the opaque spectral region is discussed. Finally, the total normal emittance is obtained as a function of the TBC thickness.

  4. The fatigue and corrosion fatigue behavior of welded Inconel 625 alloy employed in off-shore platforms; Avaliacao do comportamento a fadiga e a corrosao-fadiga de juntas soldadas da liga Inconel 625 testada para uso em plaaformas off-shore

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstag, M.E.; Schroeder, R.M.; Mueller, I.L. [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Dept. de Metalurgia. Lab. de Pesquisa em Corrosao], e-mail: maiquel10@walla.com

    2006-07-01

    The fatigue and corrosion fatigue behavior of welded Inconel 625 employed live like risers in off-shore platforms was studied. These risers may be employed integrally of this alloy, or combined with API 52 X60 steel in the form of 'Clads'. One of the most susceptible points in .these structures is the circumferential weld that joint the pipes together. In these regions, stresses and defects are generated by the welding process, and these material remind in contact with aggressive species like, chlorides and Co{sub 2} . Polarization curves, slow strain rate fatigue and corrosion fatigue tests were used to characterize the Inconel alloy behavior. In the welded deposit condition, this alloy shows an excellent resistance corrosion and a good fatigue and corrosion-fatigue behavior.(author)

  5. Microstructures and Mechanical Properties of Inconel 718 Alloy at Ultralow Temperatures

    Science.gov (United States)

    Yao, C. G.; Lv, H. J.; Yi, D. Q.; Meng, S.; Xiao, L. R.; Wang, B.

    2018-05-01

    The microstructures and mechanical properties of powder metallurgy Inconel 718 alloy were investigated in the temperatures range between 25 and - 253 °C. Tensile strength increased with the decrease in temperature, while the ductility first increased and then decreased. There was no significant change in impact toughness. When the temperature was - 253 °C, a zigzag stress-strain curve was observed for the alloy, owing to the interaction of dislocation glide and twinning, which effectively maintained the relatively good ductility.

  6. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    Science.gov (United States)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  7. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    Science.gov (United States)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  8. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  9. Microstructure Stability of Inconel 740H Alloy After Long Term Exposure at 750℃

    Directory of Open Access Journals (Sweden)

    DANG Ying-ying

    2016-09-01

    Full Text Available Unstressed exposure tests of Inconel 740H alloy tube were carried out at 750℃ for 500-3000h. The microstructure evolution and microhardness were studied by means of thermodynamic simulation, OM, FEG-SEM and microhardness testing. The results show that the tube is qualified if both chemical composition and tensile properties of the as-received alloy meet the corresponding requirements of ASME. After long term exposure, the main precipitates are γ' and M23C6, and no η and σ phase. With the prolonging of exposure time, the coarsening of γ' becomes faster and the law of relationship between the radius of γ' and time accords with LSW Ostwald ripening law; meanwhile, the change in size of M23C6 is not so obvious. During the whole process, microhardness increases firstly and then decreases, but the fluctuation is slight. The changes of microstructure and hardness indicate that, after long time exposure, the domestic Inconel 740H has good stability and can be used for further carrying out the investigation on the mechanical property of creep-rupture.

  10. Multi-criteria decision making in the selection of machining parameters for Inconel 718

    International Nuclear Information System (INIS)

    Thirumalai, R.; Senthilkumaar, J. S.

    2013-01-01

    Taguchi's methods and design of experiments are invariably used and adopted as quality improvement techniques in several manufacturing industries as tools for offline quality control. These methods optimize single-response processes. However, Taguchi's method is not appropriate for optimizing a multi-response problem. In other situations, multi-responses need to be optimized simultaneously. This paper presents multi-response optimization techniques. A set of non-dominated solutions are obtained using non-sorted genetic algorithm for multi-objective functions. Multi-criteria decision making (MCDM) is proposed in this work for selecting a single solution from nondominated solutions. This paper addresses a new method of MCDM concept based on technique for order preference by similarity to ideal solution (TOPSIS). TOPSIS determines the shortest distance to the positive-ideal solution and the greatest distance from the negative-ideal solution. This work involves the high-speed machining of Inconel 718 using carbide cutting tool with six objective functions that are considered as attributes against the process variables of cutting speed, feed, and depth of cut. The higher-ranked solution is selected as the best solution for the machining of Inconel 718 in its respective environment.

  11. Multi-criteria decision making in the selection of machining parameters for Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Thirumalai, R. [SNS College of Technology, Coimbatore (India); Senthilkumaar, J. S. [Bharathithasan Engineering College, Nattrampalli (India)

    2013-04-15

    Taguchi's methods and design of experiments are invariably used and adopted as quality improvement techniques in several manufacturing industries as tools for offline quality control. These methods optimize single-response processes. However, Taguchi's method is not appropriate for optimizing a multi-response problem. In other situations, multi-responses need to be optimized simultaneously. This paper presents multi-response optimization techniques. A set of non-dominated solutions are obtained using non-sorted genetic algorithm for multi-objective functions. Multi-criteria decision making (MCDM) is proposed in this work for selecting a single solution from nondominated solutions. This paper addresses a new method of MCDM concept based on technique for order preference by similarity to ideal solution (TOPSIS). TOPSIS determines the shortest distance to the positive-ideal solution and the greatest distance from the negative-ideal solution. This work involves the high-speed machining of Inconel 718 using carbide cutting tool with six objective functions that are considered as attributes against the process variables of cutting speed, feed, and depth of cut. The higher-ranked solution is selected as the best solution for the machining of Inconel 718 in its respective environment.

  12. Inconel 718 süper alaşımının farklı gerilme ve sıcaklıklarda yüksek sıcaklık sürünme davranışının incelenmesi

    Directory of Open Access Journals (Sweden)

    Ergün Subaşı

    2016-04-01

    Full Text Available Bu çalışmada, havacılıkta yaygın olarak kullanılan Inconel 718 süper alaşımının sürünme davranışına sıcaklık ve gerilmenin etkileri incelenmiştir. Deneyler; 750°C, 800°C sıcaklıklarında ve 200-350MPa gerilme aralığında gerçekleştirilmiştir. Deneysel çalışma sonuçlarından, gerilme üssü (n, sürünme hızı (έ ve aktivasyon enerjisi (Q hesaplanmıştır. Hesaplanan sonuçlara göre; sürünme hızlarının artan gerilme ile arttığı, ayrıca sıcaklığın artmasıyla birlikte sürünme hızları çok daha fazla artmaktadır. Aynı şekilde, artan gerilme ile birlikte aktivasyon enerjisi artmaktadır. Deney sonuçlarından elde edilen gerilme üssü değerlerine göre; etkin deformasyon mekanizmasının dislokasyon sürünmesi olduğu tespit edilmiştir. Inconel 718 süper alaşımının kopma sürünme ömrünü tahmin etmek için, Larson Miller grafiği çizilmiştir. Bu grafikle, Inconel 718’in yüksek sıcaklık sürünme ömürleri hesaplanabilir.

  13. Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of mill-annealed Inconel 625 in an air environment over the range 75 0 - 1200 0 F (24 0 - 649 0 C). In general, fatigue-crack growth rates increased with increasing test temperature. Two different specimen sizes were employed at each test temperature, and no effects of specimen size upon crack growth were noted

  14. Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, K. Devendranath, E-mail: ramdevendranath@gmail.com; Kumar, B. Monoj; Krishnan, M. Gokul; Dev, Sidarth; Bhalodi, Aman Jayesh; Arivazhagan, N.; Narayanan, S.

    2015-07-15

    This research article addresses the joining of 5 mm thick plates of Inconel 718 by activated flux tungsten inert gas (A-TIG) welding process using SiO{sub 2} and TiO{sub 2} fluxes. Microstructure studies inferred the presence of Nb rich eutectics and/or laves phase in the fusion zone of the A-TIG weldments. Tensile studies corroborated that the ultimate tensile strength of TiO{sub 2} flux assisted weldments (885 MPa) was better compared to SiO{sub 2} flux assisted weldments (815 MPa) and the failure was observed in the parent metal for both the cases. Impact test results portrayed that both the weldments were inferior in toughness as compared to the parent metal, which was due to the presence of oxide inclusions. Also, the study investigated the structure–property relationships of the A-TIG weldments of Inconel 718.

  15. The effect of vacuum environment on creep rupture properties of Inconel 617 at 1000 deg C

    International Nuclear Information System (INIS)

    Ohnami, Masateru; Imamura, Riuzo

    1981-01-01

    The creep rupture strength of nickel-base superalloy in weakly acidic gas at high temperature above 1000 deg C lowers remarkably as compared with that in the atmosphere, and this problem is one of the important subjects in connection with the research and development of high temperature heat exchangers for multi-purpose high temperature gas-cooled reactor system being developed in Japan. In the case of Inconel 617, abnormal decarbonization phenomenon occurs in weakly acidic gas, and this is regarded as the cause of lowering the creep strength. In this study, the effects of the decarbonization in weak vacuum at 1000 deg C and the oxidation of Inconel 617 on its crack occurrence and propagation were clarified experimentally with notched plate test pieces. The material used was Inconel 617 nickel-base superalloy made by Huntington Alloys Inc. in the U.S. The creep rupture experiment was carried out with a simple tension creep tester. At the nominal stress of 3.5 kg/mm 2 , the creep rupture time in 0.3 Torr was the shortest when the grain size was 78 μm, and the creep rupture time increased as the grain size became larger. The creep rupture time in 0.3 Torr decreased to a half of that in the atmosphere. In 0.3 Torr, cracks occurred early, and propagated fast as compared with in the atmosphere. This is because the local creep velocity at the bottom of notches and in front of creep cracks is fast owing to the lack of protective oxide film. (Kako, I.)

  16. Hydrogen effect on the fatigue behavior of LBM Inconel 718

    Directory of Open Access Journals (Sweden)

    Puydebois Simon

    2018-01-01

    Full Text Available For several years, Inconel 718 made by Laser Beam Melting (LBM has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.

  17. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Groenwall, B; Ljungberg, L; Huebner, W; Stuart, W

    1966-08-15

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 {mu}g/cm{sup 2}). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in

  18. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    International Nuclear Information System (INIS)

    Groenwall, B.; Ljungberg, L.; Huebner, W.; Stuart, W.

    1966-08-01

    Intercrystalline stress corrosion cracking has occurred in the Aagesta reactor in three so-called inspection tubes made of Inconel 600. The tubes had been exposed to 217 deg C light water, containing 1-4 ppm LiOH (later KOH) but only small amounts of oxygen, chloride and other impurities. Some of the circumferential cracks developed in or at crevices on the outside surface. At these positions constituents dissolved in the water may have concentrated. The crevices are likely to have contained a gas phase, mainly nitrogen. Local boiling in the crevices may also have occurred. Some few cracks were also found outside the crevice region. Irradiation effects can be neglected. No surface contamination could be detected except for a very minor fluoride content (1 μg/cm 2 ). The failed tubes had been subjected to high stresses, partly remaining from milling, partly induced by welding operations. The possibility that stresses slightly above the 0.2 per cent offset yield strength have occurred at the operating temperature cannot be excluded. The cracked tube material contained a large amount of carbide particles and other precipitates, both at grain boundaries and in the interior of grains. The particles appeared as stringers in circumferential zones. Zones depleted in precipitates were found along grain boundaries. The failed tube turned out to have an unusually high mechanical strength, likely due to a combination of some kind of ageing process and cold work (1.0 - 1.3 per cent plastic strain). Laboratory exposures of stressed surplus material in high purity water and in 1 M LiOH at 220 deg C showed some pitting but no cracking after 6800 h and 5900 h respectively. Though the encountered failures may have developed because of influence of some few or several of the above-mentioned detrimental factors, the actual cause cannot be stated with certainty. In the literature information is given concerning intercrystalline stress corrosion cracking of Inconel 600 both in caustic

  19. Caracterização de Uma Junta Dissimilar entre Aço Carbono e Inconel 625 Obtida por Soldagem por Explosão

    Directory of Open Access Journals (Sweden)

    Rodrigo Andrade Ribeiro

    Full Text Available Resumo Neste trabalho é caracterizada uma junta dissimilar entre aço carbono e inconel 625 obtida pela soldagem por explosão. A caracterização metalográfica foi feita com uso de diferentes ataques químicos e observação microestrutural do metal de base (MB, a interface e o revestimento de inconel 625 por meio de microscopia ótica (MO, microscopia eletrônica de varredura (MEV e espectroscopia de energia dispersa (EDS. Ensaios de microdureza foram realizados em todas as regiões. Os resultados mostram forte deformação dos grãos na proximidade da interface, tanto do lado do MB quanto do lado do inconel, tendo sido verificado significativo aumento da dureza. Na interface, ocorre o aparecimento de zonas localmente fundidas devido à dissipação de energia no impacto durante a explosão. Estas zonas apresentam microestrutura provavelmente martensítica. O trabalho conclui que o processo atinge os níveis de qualidade e produtividade característicos do segmento offshore.

  20. Laser post-processing of Inconel 625 made by selective laser melting

    Science.gov (United States)

    Witkin, David; Helvajian, Henry; Steffeney, Lee; Hansen, William

    2016-04-01

    The effect of laser remelting of surfaces of as-built Selective Laser Melted (SLM) Inconel 625 was evaluated for its potential to improve the surface roughness of SLM parts. Many alloys made by SLM have properties similar to their wrought counterparts, but surface roughness of SLM-made parts is much higher than found in standard machine shop operations. This has implications for mechanical properties of SLM materials, such as a large debit in fatigue properties, and in applications of SLM, where surface roughness can alter fluid flow characteristics. Because complexity and netshape fabrication are fundamental advantages of Additive Manufacturing (AM), post-processing by mechanical means to reduce surface roughness detracts from the potential utility of AM. Use of a laser to improve surface roughness by targeted remelting or annealing offers the possibility of in-situ surface polishing of AM surfaces- the same laser used to melt the powder could be amplitude modulated to smooth the part during the build. The effects of remelting the surfaces of SLM Inconel 625 were demonstrated using a CW fiber laser (IPG: 1064 nm, 2-50 W) that is amplitude modulated with a pulse profile to induce remelting without spallation or ablation. The process achieved uniform depth of melting and improved surface roughness. The results show that with an appropriate pulse profile that meters the heat-load, surface features such as partially sintered powder particles and surface connected porosity can be mitigated via a secondary remelting/annealing event.

  1. Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Sridhar, R.; Periwal, Saurabh; Oza, Smitkumar; Saxena, Vimal; Hidad, Preyas; Arivazhagan, N.

    2015-01-01

    Highlights: • Joining of dissimilar metals of Inconel 625 and UNS S32205 using electron beam welding. • Detailed structure – property relationship of dissimilar welds. • Improved metallurgical and tensile properties from the EB welding. - Abstract: The metallurgical and mechanical properties of electron beam welded Ni based superalloy Inconel 625 and UNS S32205 duplex stainless steel plates have been investigated in the present study. Interface microstructure studies divulged the absence of any grain coarsening effects or the formation of any secondary phases at the heat affected zone (HAZ) of the electron beam (EB) weldments. Tensile studies showed that the fracture occurred at the weld zone in all the trials and the average weld strength was reported to be 850 MPa. Segregation of Mo rich phases was witnessed at the inter-dendritic arms of the fusion zone. The study recommended the use of EB welding for joining these dissimilar metals by providing detailed structure – property relationships

  2. Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing

    Science.gov (United States)

    Lass, Eric A.; Stoudt, Mark R.; Williams, Maureen E.; Katz, Michael B.; Levine, Lyle E.; Phan, Thien Q.; Gnaeupel-Herold, Thomas H.; Ng, Daniel S.

    2017-11-01

    The microstructural evolution of laser powder-bed additively manufactured Inconel 625 during a post-build stress-relief anneal of 1 hour at 1143 K (870 °C) is investigated. It is found that this industry-recommended heat treatment promotes the formation of a significant fraction of the orthorhombic D0a Ni3Nb δ-phase. This phase is known to have a deleterious influence on fracture toughness, ductility, and other mechanical properties in conventional, wrought Inconel 625; and is generally considered detrimental to materials' performance in service. The δ-phase platelets are found to precipitate within the inter-dendritic regions of the as-built solidification microstructure. These regions are enriched in solute elements, particularly Nb and Mo, due to the micro-segregation that occurs during solidification. The precipitation of δ-phase at 1073 K (800 °C) is found to require up to 4 hours. This indicates a potential alternative stress-relief processing window that mitigates δ-phase formation in this alloy. Ultimately, a homogenization heat treatment is recommended for additively manufactured Inconel 625 because the increased susceptibility to δ-phase precipitation increases the possibility for significant degradation of materials' properties in service.

  3. Study of liquid phase formation kinetics due to solid/solid chemical interaction and its model. Application to the Zircaloy/Inconel

    International Nuclear Information System (INIS)

    Garcia, E.A.; Denis, A.

    1990-01-01

    A description is made of the chemical interaction between Inconel spacing grids and the Zircaloy of the sheaths. Experiments performed at 1000, 1100 and 1200 deg C with base Zircaloy and with a previously formed layer of ZrO 2 , show that the kinetics is parabolic. The difference between both types of experiments is that the oxide layer delays the initiation of the Inconel-Zry interaction. A model is presented, for the description of the solid/solid interaction, which leads to the formation of eutectic that is liquid at the experiment temperature. Also a model, which represents the oxide layer dissolution and predicts the instant in which it disappears completely, is presented. (Author) [es

  4. Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718

    Directory of Open Access Journals (Sweden)

    Pan Zhipeng

    2017-01-01

    Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.

  5. Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718

    Science.gov (United States)

    Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.

    2017-11-01

    This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.

  6. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751.

    Science.gov (United States)

    Balan, A S S; Vijayaraghavan, L; Krishnamurthy, R; Kuppan, P; Oyyaravelu, R

    2016-09-01

    The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL) and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2) and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50-65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  7. Mechanical Behaviour of Inconel 718 Thin-Walled Laser Welded Components for Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Enrico Lertora

    2014-01-01

    Full Text Available Nickel alloys are very important in many aerospace applications, especially to manufacture gas turbines and aero engine components, where high strength and temperature resistance are necessary. These kinds of alloys have to be welded with high energy density processes, in order to preserve their high mechanical properties. In this work, CO2 laser overlap joints between Inconel 718 sheets of limited thickness in the absence of postweld heat treatment were made. The main application of this kind of joint is the manufacturing of a helicopter engine component. In particular the aim was to obtain a specific cross section geometry, necessary to overcome the mechanical stresses found in these working conditions without failure. Static and dynamic tests were performed to assess the welds and the parent material fatigue life behaviour. Furthermore, the life trend was identified. This research pointed out that a full joint shape control is possible by choosing proper welding parameters and that the laser beam process allows the maintenance of high tensile strength and ductility of Inconel 718 but caused many liquation microcracks in the heat affected zone (HAZ. In spite of these microcracks, the fatigue behaviour of the overlap welds complies with the technical specifications required by the application.

  8. The Precipitation Processes and Mechanical Properties of Aged Inconel 718 Alloy After Annealing

    Directory of Open Access Journals (Sweden)

    Maj P.

    2017-09-01

    Full Text Available Inconel 718 is a precipitation hardenable nickel-iron based superalloy. It has exceptionally high strength and ductility compared to other metallic materials. This is due to intense precipitation of the γ’ and γ” strengthening phases in the temperature range 650-850°C. The main purpose of the authors was to analyze the aging process in Inconel 718 obtained in accordance with AMS 5596, and its effect on the mechanical properties. Tensile and hardness tests were used to evaluate the mechanical properties, in the initial aging process and after reheating, as a function of temperature and time respectively in the ranges 650°-900°C and 5-480 min. In addition, to link the mechanical properties with the microstructure transmission microscopy observations were carried out in selected specimens. As a result, factors influencing the microstructure changes at various stages of strengthening were observed. The authors found that the γ’’ phase nucleates mostly homogenously in the temperature range 650-750°C, causing the greatest increase in strength. On the other hand, the γ’ and δ phases are formed heterogeneously at 850°C or after longer annealing in 800°C, which may weaken the material.

  9. Effect of temperature on the elastic-plastic fracture toughness behavior of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1977-09-01

    The elastic-plastic J/sub Ic/ fracture toughness response of precipitation heat treated Inconel X-750 has been evaluated by the multi-specimen resistance curve (R-curve) technique at room temperature, 800 0 F (427 0 C), and 1000 0 F (538 0 C). The value of J/sub Ic/ for this nickel-base superalloy was found to be relatively independent of temperature over the test temperature range. On the other hand, the slopes of the fracture toughness R-curves were steeper at 800 and 1000 0 F (427 and 538 0 C) than at 75 0 F (24 0 C), thereby indicating that the resistance to crack extension was considerably greater at elevated temperatures, Metallographic and electron fractographic examination of the Inconel X-750 fracture surfaces revealed that this slope change phenomenon was associated with an intergranular to transgranular fracture mechanism transition. Under room temperature conditions, crack extension occurred primarily by an intergranular dimple rupture mechanism attributed to microvoid coalescence along a grain boundary denuded region. In the 800 to 1000 0 F (427 to 538 0 C) regime, the fracture surface was dominated by a faceted transgranular morphology

  10. Enhancing MA transmutation by irradiation of (MA, Zr)Hx in FBR blanket region - 5383

    International Nuclear Information System (INIS)

    Konashi, K.; Ikeda, K.; Itoh, K.; Hirai, M.; Koyama, T.; Kurosaki, K.

    2015-01-01

    Minor actinide (MA) hydride is proposed as transmutation target in sodium-cooled mixed oxide fuelled fast reactor. Preliminarily calculations have been done to check the transmutation efficiency of MA hydride targets. Three different types of MA target, MA-Zr alloy, (MA, Zr)O 2 and (MA, Zr)H x , have been compared on MA transmutation rate. The targets are assumed to be loaded around an active core in a 280 MWe sodium-cooled reactor; 54 MA target assemblies are respectively arranged in a row in the radial blanket zone. They are supposed to be irradiated for one year and then be cooled for 60 days. The transmuted mass has been evaluated by three-dimensional diffusion calculation to be 25, 15, 61 kg/EFPY for the alloy, the oxide and the hydride respectively, where production of MA in the active core is taken into account. The transmutation mass by (MA, Zr)H x is much larger than those by the other types of targets, while the core characteristics remain sound by locating MA targets outside of the active core. On top of that, two kinds of (MA, Zr)O 2 targets which are combined with ZrH x (x=1.7) pins have been calculated. Major Research/Development items are selected to establish the MA hydride transmutation method by reviewing technologies applicable to the transmutation system. The practical use of the MA hydride transmutation method is not far ahead technically, since this method can be developed by the extension of existing technologies. (authors)

  11. Postirradiation fracture toughness of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1983-01-01

    The effect of fast-neutron irradiation on the fracture toughness response of Inconel X-750 was characterized at 427 deg C using the J-R curve technique. Irradiation exposures ranging from 3 to 16 displacements per atom resulted in a reduction in Jsub(Ic) from 130 to 76 kJ/m 2 and a reduction in tearing modulus from 32 to 2.6. Postirradiation fractographic examination revealed that an intergranular fracture mechanism was dominant, in contrast to the extensive transgranular cracking mode found on unirradiated fracture surfaces. The enhanced intergranular failure observed after irradiation was caused by extensive heterogeneous slip in a matrix that was greatly strengthened by an irradiation-induced dislocation substructure. Specifically, intense planar slip bands impinged on the grain boundaries and generated large stress concentrations. Since the stress concentrations could not be relaxed by the hardened matrix, the grain boundaries 'unzipped' readily, resulting in the low toughness and tearing resistance. (author)

  12. Length change of the alloys Waspaloy and Inconel 718 after long-term annealing; Laengenaenderung der Legierungen Waspaloy und Inconel 718 nach Langzeitauslagerung

    Energy Technology Data Exchange (ETDEWEB)

    Kinzel, Svenja

    2016-07-01

    Within the scope of this work the contraction behavior of Ni-based superalloy Waspaloy could in detail be referred to a combination of different microstructural changes and the results could partially be transferred to Ni-Fe-based alloy Inconel 718. Isothermal annealing of sample rods at temperatures between 450 C and 750 C induces an average relative length contraction of about -2.10{sup -4}. It is apparent that contraction is more pronounced for lower temperatures (-3.10{sup -4} at 550 C) than for higher ones (-1.10{sup -4} at 750 C). Within the first 300 hours of annealing the contraction reaches about 70-75% of the value measured after 10,000 hours. This means the major part of the effect takes place at the beginning of long term annealing but even after 10,000 hours no saturation occurs. On the basis of lattice parameter measurements it could be found that within the first 300 hours a significant lattice parameter decrease of matrix and γ{sup '} phase emerged. Longer annealing time does not cause further lattice contraction. This sample behavior can be explained by temperature dependence of phase fractions and phase compositions. Thermodynamic calculations as well as stereological analysis of micrographs show a decrease of stable γ{sup '}-phase content with increasing temperature. In parallel, TEM-EDS measurements and calculated phase fractions show concentration fluctuations due to the different precipitate fraction, which cause contraction of the lattice parameter. Furthermore, within the first 100 hours at temperatures up to 650 C the formation or Ni-Cr rich domains could be observed. As these domains exhibit a smaller lattice parameter than the matrix they contribute to the more pronounced contraction at lower temperatures. While XRD measurements point to the formation of Ni{sub 3}Cr, TEM-EDS measurements reveal a composition of (Ni,Co){sub 2}Cr. Stress relief heat treatment at higher temperatures (815 C) after annealing shows that the effect

  13. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2014-10-01

    Full Text Available The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method.

  14. Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718

    International Nuclear Information System (INIS)

    Choi, Hong Seok; Ko, Dae Chul; Kim, Byung Min

    2007-01-01

    Metal forming is the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading process of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked product. Die material is SKD61 and initial temperature is 300 .deg. C. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out using DEFORM software before marking the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is know that forming load was decreased according to decreasing punch velocity

  15. Microstructure and interfacial behaviour of Alumina/Inconel 600 joints prepared by brazing route

    International Nuclear Information System (INIS)

    Laik, A.; Mishra, P.; Bhanumurthy, K.; Kashyap, B.P.

    2010-01-01

    Joining of metals to ceramics remains a technological challenge due to the wide difference in the physical and mechanical properties of the two classes of materials. Attempt was made to produce leak tight joints between Inconel-600 and alumina using the brazing route with Au-Ni brazing alloy. Alumina tubes were metallised following the Mo-Mn route and then coated with Ni. The metallised alumina tubes were brazed to Inconel-600 ferrules using Au-18%Ni brazing alloy under vacuum, at optimised process parameters. In order to study the effect of prolong annealing on the microstructural stability and the micro-chemistry of the brazing zone, brazed joints were subjected to prolong annealing at 400 deg C and 560 deg C for 8000 hrs each. Detailed analysis of the interfacial structure of the brazing zones was done using an electron probe microanalyser (EPMA). X-ray maps of the elements Fe, Ni, Cr, Al, Au, Mo and Mn along with BSE images of the brazing zone are given. These X-ray maps precisely reveal the micro-chemistry of the brazing zones. The various phases formed were identified. The distribution of the various elements across the interfaces was also obtained, which helps to reveal the chemical behaviour of the individual elements during the process of brazing. Two phases appear very distinctly in the brazement, one is rich in Au and the other is rich in Ni. Depending upon their affinity, rest of the elements shows a partitioning in these two phases. While Fe, Cr and Mo get dissolved in the Ni-rich phase, Mn seems to partition in the Au-rich phase. The microstructure and the X-ray maps of the couple annealed at 400 deg C shows that the spatial variation in the composition throughout the brazing zone gets homogenised due to diffusion at high temperatures. This effect is even more pronounced on annealing at 560 deg C. Moreover, the transport of Cr from the Inconel side to the surface of alumina is very evident. On annealing at 560 deg C, a region rich in Cr, was found to

  16. Zhigang Ma

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhigang Ma. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 575-578. Degradation and miscibility of poly(DL-lactic acid)/poly(glycolic acid) composite films: Effect of poly(DL-lactic-co-glycolic acid) · Zhigang Ma Na Zhao Chengdong Xiong.

  17. Effect of thermal exposure on microstructure and nano-hardness of broached Inconel 718

    Directory of Open Access Journals (Sweden)

    Chen Zhe

    2014-01-01

    Full Text Available Inconel 718 is a high strength, heat resistant superalloy that is used extensively for components in hot sections of gas turbine engines. This paper presents an experimental study on the thermal stability of broached Inconel 718 in terms of microstructure and nano-hardness. The broaching process used in this study is similar to that used in gas turbine industries for machining fir-tree root fixings on turbine discs. Severe plastic deformation was found under the broached surface. The plastic deformation induces a work-hardened layer in the subsurface region with a thickness of ∼50 μm. Thermal exposure was conducted at two temperatures, 550 ∘C and 650 ∘C respectively, for 300 h. Recrystallization occurs in the surface layer during thermal exposure at 550 ∘C and α-Cr precipitates as a consequence of the growth of recrystallized δ phases. More recrystallized grains with a larger size form in the surface layer and the α-Cr not only precipitates in the surface layer, but also in the sub-surface region when the thermal exposure temperature goes up to 650 ∘C. The thermal exposure leads to an increase in nano-hardness both in the work-hardened layer and in the bulk material due to the coarsening of the main strengthening phase γ′′.

  18. Effect of refining techniques on stress corrosion cracking behaviour of Inconel X-750

    International Nuclear Information System (INIS)

    Mishra, B.; Moore, J.J.

    1988-01-01

    High-strength age-hardenable nickel-base superalloy Inconel X-750, is susceptible to severe intergranular stress corrosion cracking (IGSCC) when used in the triple heat-treated condition. In this research, the slow strain-rate technique has been employed to evaluate the stress corrosion cracking susceptibility of alloy X-750 under simulated nuclear pressurized water reactor (PWR) conditions, using an automated autoclave system at 8 x 10 6 N m -2 pressure and 289 0 C temperature. The alloys produced via electroslag refining (ESR) or vacuum arc refining (VAR) processing routes containing 0.004% and 0.011% sulphur, respectively, were solution annealed at either 1075 or 1240 0 C for 2 h and water quenched followed by ageing in the 704 to 871 0 C temperature range for up to 200 h, followed by air cooling or furnace cooling. The scanning electron microscopy performed on fractured surfaces revealed that Inconel X-750 processed through the ESR route, solution annealed at 1240 0 C for 2 h and water quenched, aged at 871 0 C for 200 h and furnace cooled provided the best combination of strength, ductility and resistance to SCC. A less sensitized area adjacent to the grain boundary was responsible for the improvement in properties and the alloy X-750 is recommended for PWR applications in the above conditions of processing and heat treatment. (author)

  19. A new stress corrosion cracking model for Inconel 600 in PWR media

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A model of cracking in corrosion under stress, based on corrosion-plasticity interactions at cracking points, is proposed to describe the generally intergranular breakage of Inconel 600 in PWR medium. It is shown by calculation, and verified experimentally by observations in SEM, that a pseudo-intergranular breakage connected to the formation of micro facets in zigzags along the joints is possible, as well as a completely intergranular breakage. This allows us to assume that a continuity of mechanisms exists between the trans- and intergranular cracking by corrosion under material stress. (author)

  20. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751

    Directory of Open Access Journals (Sweden)

    A.S.S. Balan

    2016-09-01

    Full Text Available The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2 and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50–65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  1. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  2. Microstructure and micro-texture evolution during large strain deformation of Inconel alloy IN718

    Energy Technology Data Exchange (ETDEWEB)

    Nayan, Niraj [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208 016 (India); Narayana Murty, S.V.S., E-mail: susarla.murty@gmail.com [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Jha, Abhay K.; Pant, Bhanu; George, Koshy M. [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India)

    2015-12-15

    The hot deformation behaviour of Inconel alloy IN718 was studied in the temperature range of 950–1100 °C and at strain rates of 0.01 and 1 s{sup −1} with a view to understand the microstructural evolution as a function of strain rate and temperature. For this purpose, a single hit, hot isothermal plane strain compression (PSC) technique was used. The flow curves obtained during PSC exhibited weak flow softening at higher temperatures. Electron backscattered diffraction analysis (EBSD) of the PSC tested samples at the location of maximum strain revealed dynamic recrystallisation occurring at higher temperatures. Based on detailed microstructure and microtexture analyses, it was concluded that single step, large strain deformation has a distinct advantage in the thermo-mechanical processing of Inconel alloy IN718. - Highlights: • Plane strain compression (PSC) on IN718 was conducted. • Evolution of microstructure during large strain deformation was studied. • Flow curves exhibited weak softening at higher temperatures and dipping of the flow curve at a strain rate of 1 s{sup −1}. • Optimization of microstructure and process parameter for hot rolling possible by plane strain compression testing • Dynamic recrystallisation occurs in specimens deformed at higher temperatures and lower strain rates.

  3. Effects of Internal and External Hydrogen on Inconel 718

    Science.gov (United States)

    Walter, R. J.; Frandsen, J. D.

    1999-01-01

    Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin

  4. Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Woo, Young Han; Hur, Kwang Ho; Hong, Sang Hwui [Gyeongbuk Hybrid Technology Institute, Daegu (Korea, Republic of); Kim, Jun Hyong; Pyun, Young Sik [Sun Moon Univ., Asan (Korea, Republic of)

    2016-11-15

    This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and 600℃. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.

  5. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Czech Academy of Sciences Publication Activity Database

    Vesel, A.; Drenik, A.; Elersic, K.; Mozetič, M.; Kovač, J.; Gyergyek, T.; Stöckel, Jan; Varju, Jozef; Pánek, Radomír; Balat-Pichelin, M.

    2014-01-01

    Roč. 305, June (2014), s. 674-682 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : Inconel * Oxidation * High temperature * Oxygen plasma * Hydrogen plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.711, year: 2014 https://www.sciencedirect.com/science/article/pii/S0169433214007119

  6. Scaling of X pinches from 1 MA to 6 MA

    International Nuclear Information System (INIS)

    Bland, Simon Nicholas; McBride, Ryan D.; Wenger, David Franklin; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Pikuz, Sergei A.; Harding, Eric; Jennings, Christopher A.; Ampleford, David J.; Yu, Edmund P.; Cuneo, Michael Edward; Shelkovenko, Tatiana A.; Hansen, Stephanie B.

    2010-01-01

    This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parameters at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).

  7. Influence of INCONEL 625 composition on the activation characteristics of the vacuum vessel of experimental fusion tokamaks

    International Nuclear Information System (INIS)

    Cambi, G.; Cepraga, D.G.; Boeriu, S.; Maganzani, I.

    1995-01-01

    The radioactive inventory, the decay heat and the contact dose rate of permanent components such as the vacuum vessel of two experimental fusion tokamaks, the compact IGNITOR-ULT and the ITER-EDA fusion machines, are evaluated by using the ENEA-Bologna integrated methodology. The vacuum vessel material considered is the INCONEL 625. The neutron flux is calculated using the VITAMIN-C 171-group library, based on EFF-2 data and the 1-D transport code XSDRNPM in the S 8 -P 3 approximation. The ANITA-2 code, using updated cross sections and decay data libraries based on EAF-3 and IRDF90 evaluation files is used for activation calculations. The fusion neutron source has been normalised to a neutron first wall load of 2 MW/m 2 and 1 MW/m 2 for IGNITOR-ULT and ITER, respectively. The material irradiation have been described by multistep time histories, resulting in the designed total fluence. Variations in the composition of INCONEL 625 have been assessed and their impact on the activation characteristics are discussed, also from the point of view of waste disposal. (orig.)

  8. Investigation on un-peened and laser shock peened weldment of Inconel 600 fabricated by ATIG welding process

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, G., E-mail: gopalsamychandrasekar@gmail.com [Department of Mechanical Engineering, PSNA College of Engineering and Technology, Dindigul 624622, Tamilnadu (India); Kailasanathan, C., E-mail: uthrakailash@yahoo.co.in [Department of Mechanical Engineering, Sethu Institute of Technology, Virudhunagar District, Kariapatti 626115, Tamilnadu (India); Verma, Dhanesh Kant, E-mail: dkverma@bheltry.co.in [Welding Research Institute, Bharat Heavy Electricals Limited, Thiruchirappalli 620014, Tamilnadu (India)

    2017-04-06

    The present investigation articulates the joining of Inconel 600 plates using activated tungsten inert gas (ATIG) welding process. Before joining of Inconel 600 plates, welding parameters have been optimized and suitable flux has been selected to produce complete weld penetration in a single pass welding. The various mechanical and metallurgical characterizations were performed on the un-peened ATIG (UP-ATIG) weldment. The experimental results attested that the tensile failure occurred in the weld zone and also the tensile strength is lower than the base metal (BM) because of coarser grain structures and tensile residual stresses in the weld zone. Laser shock peening (LSP) was carried out on the welded joint to enhance its properties. After LSP treatment, the significant improvement was observed in the laser peened ATIG (LP-ATIG) weldment and the fracture occurred at the parent metal side owing to the compressive residual stresses developed by LSP. Residual stress measurements indicated that the compressive residual stresses were higher at the surface and they decrease with increasing depth.

  9. Investigation on un-peened and laser shock peened weldment of Inconel 600 fabricated by ATIG welding process

    International Nuclear Information System (INIS)

    Chandrasekar, G.; Kailasanathan, C.; Verma, Dhanesh Kant

    2017-01-01

    The present investigation articulates the joining of Inconel 600 plates using activated tungsten inert gas (ATIG) welding process. Before joining of Inconel 600 plates, welding parameters have been optimized and suitable flux has been selected to produce complete weld penetration in a single pass welding. The various mechanical and metallurgical characterizations were performed on the un-peened ATIG (UP-ATIG) weldment. The experimental results attested that the tensile failure occurred in the weld zone and also the tensile strength is lower than the base metal (BM) because of coarser grain structures and tensile residual stresses in the weld zone. Laser shock peening (LSP) was carried out on the welded joint to enhance its properties. After LSP treatment, the significant improvement was observed in the laser peened ATIG (LP-ATIG) weldment and the fracture occurred at the parent metal side owing to the compressive residual stresses developed by LSP. Residual stress measurements indicated that the compressive residual stresses were higher at the surface and they decrease with increasing depth.

  10. Requirements of Inconel 718 alloy for aeronautical applications

    Science.gov (United States)

    Ghiban, Brandusa; Elefterie, Cornelia Florina; Guragata, Constantin; Bran, Dragos

    2018-02-01

    The main requirements imposed by aviation components made from super alloys based on Nickel are presented in present paper. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Inconel 718 alloy. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, creep, density, yield strength, fracture toughness, fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength, durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it what limits the lifetime of the airframe. The excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  11. Discovery and utilization of sorghum genes (Ma5/Ma6)

    Science.gov (United States)

    Mullet, John E; Rooney, William L; Klein, Patricia E; Morishige, Daryl; Murphy, Rebecca; Brady, Jeff A

    2012-11-13

    Methods and composition for the production of non-flowering or late flowering sorghum hybrid. For example, in certain aspects methods for use of molecular markers that constitute the Ma5/Ma6 pathway to modulate photoperiod sensitivity are described. The invention allows the production of plants having improved productivity and biomass generation.

  12. Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints

    International Nuclear Information System (INIS)

    Kim, Jae Joong; Park, Jin-Woo; Eagar, Thomas W.

    2003-01-01

    This work presents transmission electron microscopy (TEM) analysis of the interfacial microstructure in Si 3 N 4 -to-Inconel 718 joints with Ni interlayers produced by partial transient liquid phase bonding (PTLPB). Ti and Cu microfoils have been inserted between Si 3 N 4 and the Ni interlayer and joining has been performed at lower temperatures than previous PTLPBs of Si 3 N 4 with the same insert metals. The TEM work is focused on phase identification of the reaction layers between the Si 3 N 4 and the Ni interlayer. According to the TEM analysis, most of the Cu precipitates without reacting with Ti and Ni. Si diffused in the filler metal and thin reaction layer formed at the interface between Si 3 N 4 and the filler metal producing good bond-formation and hence, high interfacial strength. No interfacial fractures occurred after cooling from the bonding temperature of 900 deg. C, which supports the results observed in the TEM analysis. This work confirms that this joining process can produce a more heat resistant Si 3 N 4 -to-Inconel 718 joint than active brazing using Ag-Cu-Ti alloys

  13. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    Inconel 718 is a corrosion-resistant and high strength nickel-based alloy with wide range of applications includingcomponents for cryogenic tankage, liquid fueled rockets and casings for aircraft engines. The material is characterizedby high hardness, high temperature strength, low thermal...

  14. Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters

    Directory of Open Access Journals (Sweden)

    Kamran Shah

    2014-01-01

    Full Text Available Laser direct metal deposition (LDMD has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process.

  15. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    conductivity and high strength causing it extremely difficult tomachine. Micro-Electrical Discharge Machining (Micro-EDM) is a non-conventional method that has a potential toovercome these restrictions for machining of Inconel 718. Response Surface Method (RSM) was used for modelling thetool Electrode Wear...

  16. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  17. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    Directory of Open Access Journals (Sweden)

    Victor Hugo C. de Albuquerque

    2015-05-01

    Full Text Available Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 \\(^\\circ\\C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms and accurate (accuracy of 88.75% and harmonic mean of 89.52 for the application proposed.

  18. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    Science.gov (United States)

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  19. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  20. Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures

    International Nuclear Information System (INIS)

    Petrenec, Martin; Obrtlik, Karel; Polak, Jaroslav

    2005-01-01

    The dislocations arrangement was studied using transmission electron microscopy in specimens of polycrystalline INCONEL 713 LC superalloy cyclically strained up to failure with constant total strain amplitudes at temperatures 300, 773, 973 and 1073 K. Planar dislocation arrangements in the form of bands parallel to the {1 1 1} planes were observed in specimens cycled at all the temperatures. The bands showed up as thin slabs of high dislocation density cutting both the γ channels and γ' precipitates. Ladder-like bands were observed at room temperature

  1. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    Science.gov (United States)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  2. Brazing Inconel 625 Using the Copper Foil

    Science.gov (United States)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  3. Morotochoerus from Uganda (17.5 Ma and Kenyapotamus from Kenya (13-11 Ma: implications for hippopotamid origins

    Directory of Open Access Journals (Sweden)

    Pickford, M.

    2011-12-01

    Full Text Available The aim of this paper is to describe and interpret suiform teeth from Moroto, Uganda, and Ngorora, Kenya, which contribute to the debate about hippo-anthracothere-whale relationships. The early stages of hippopotamid evolution are relatively poorly known on account of the paucity of their fossil record older than 7 Ma. New specimens of Morotochoerus from Uganda reveal that it is not closely related to Hippopotamidae; the superficial resemblances of the cheek teeth to those of hippos represent convergences and not homologies. Restricted samples of Palaeopotamus ternani are available from the Middle Miocene of Kenya {Maboko, ca 16 Ma; Muruyur, ca 14.5 Ma; Fort Ternan, ca 13.7 Ma} while from the base of the late Miocene, Kenyapotamus coryndonae is known from Kenya {Ngerngerwa, ca 10.5-10 Ma; Nakali, ca 10.5 Ma; Samburu Hills, ca 9.5 Ma}, Ethiopia {Ch’orora, ca 10.5 Ma} and Tunisia {Beglia Formation ca 11-10 Ma}. The recovery of specimens of Kenyapotamus from the Ngorora Formation, Kenya, aged ca 11 Ma, is of interest because it includes well preserved teeth, including an m/3 in good condition. These specimens support the hypothesis that hippopotamids descended from palaeochoerids and not from anthracotheres.El objetivo de este trabajo es describir e interpretar los dientes suiformes de Moroto, Uganda, y Ngorora, Kenia, que contribuyen al debate sobre las relaciones hipo-anthracothere-whale. Las primeras etapas de la evolución de los hipopotámidos son relativamente poco conocidas a causa de la escasez de su registro fósil en edades superiors a los 7 Ma. Nuevos ejemplares de Morotochoerus en Uganda revelan que no están estrechamente relacionados con Hippopotamidae, las semejanzas superficiales de los dientes de la mandíbula con los de los hipopótamos representan convergencias y no homologías. Algunas muestras de Palaeopotamus ternani aparecen en el Medio Mioceno de Kenia {Maboko, ca 16 Ma; Muruyur, ca 14.5 Ma; Fort Ternan, ca 13.7 Ma

  4. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Alexandre Royer

    2016-04-01

    Full Text Available The binder plays the most important role in the metal injection molding (MIM process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of this study is to develop a feedstock of superalloy Inconel 718 that is environmentally friendly. For these different binders, formulations based on polyethylene glycol (PEG, because of his water solubility property, and bio sourced polymers were studied. Polyhydroxyalkanoates (PHA were investigated as a bio sourced polymer due to its miscibility with the PEG. The result is compared to a standard formulation using polypropylene (PP. The chemical and rheological behavior of the binder formulation during mixing, injection and debinding process were investigated. The feedstock was characterized in the same way as the binders and the interactions between the powder and the binders were also studied. The results show the well adapted formulation of polymer binder to produce a superalloy Inconel 718 feedstock.

  5. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

    Science.gov (United States)

    McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.

    1989-09-01

    The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

  6. Cutting force response in milling of Inconel: analysis by wavelet and Hilbert-Huang Transforms

    Directory of Open Access Journals (Sweden)

    Grzegorz Litak

    Full Text Available We study the milling process of Inconel. By continuously increasing the cutting depth we follow the system response and appearance of oscillations of larger amplitude. The cutting force amplitude and frequency analysis has been done by means of wavelets and Hilbert-Huang transform. We report that in our system the force oscillations are closely related to the rotational motion of the tool and advocate for a regenerative mechanism of chatter vibrations. To identify vibrations amplitudes occurrence in time scale we apply wavelet and Hilbert-Huang transforms.

  7. Model for Analysis of the Energy Demand (MAED) users' manual for version MAED-1

    International Nuclear Information System (INIS)

    1986-09-01

    This manual is organized in two major parts. The first part includes eight main sections describing how to use the MAED-1 computer program and the second one consists of five appendices giving some additional information about the program. Concerning the main sections of the manual, Section 1 gives a summary description and some background information about the MAED-1 model. Section 2 extends the description of the MAED-1 model in more detail. Section 3 introduces some concepts, mainly related to the computer requirements imposed by the program, that are used throughout this document. Sections 4 to 7 describe how to execute each of the various programs (or modules) of the MAED-1 package. The description for each module shows the user how to prepare the control and data cards needed to execute the module and how to interpret the printed output produced. Section 8 recapitulates about the use of MAED-1 for carrying out energy and electricity planning studies, describes the several phases normally involved in this type of study and provides the user with practical hints about the most important aspects that need to be verified at each phase while executing the various MAED modules

  8. Age-Related Change in Visual Working Memory: A study of 55,753 Participants Aged 8 to 75

    Directory of Open Access Journals (Sweden)

    James R. Brockmole

    2013-01-01

    Full Text Available Visual working memory abilities of 55,753 individuals between the ages of 8 and 75 were assessed to provide the most fine-grain analysis of age-related change in visual working memory to date. Results showed that visual working memory changes throughout the lifespan, peaking at age 20. A sharp linear decline follows that is so severe that by age 55, adults possess poorer immediate visual memory than 8 and 9 year olds. These developmental changes were largely explained by changing visual working memory capacity coupled with small short-term visual feature binding difficulties among children and older adults.

  9. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek H. [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States); Bicknell, Jonathan; Jorgensen, Luke [Turbocam Energy Solutions, Turbocam International, Dover, NH 03820 (United States); Patterson, Brian M.; Cordes, Nikolaus L. [Materials Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsukrov, Igor [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States); Knezevic, Marko, E-mail: marko.knezevic@unh.edu [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-03-15

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porosity inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are

  10. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    International Nuclear Information System (INIS)

    Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke; Patterson, Brian M.; Cordes, Nikolaus L.; Tsukrov, Igor; Knezevic, Marko

    2016-01-01

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porosity inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are determined by

  11. [Herbological studies on Chinese crude drug Ma-huang. Part 1-On the botanical origin of Ma-huang in ancient China and the origin of Japanese Ma-huang].

    Science.gov (United States)

    Yoshizawa, Chieko; Kitade, Makiko; Mikage, Masayuki

    2005-01-01

    The botanical origin of a Chinese crude drug Ma-huang in ancient China and the origin of Japanese Ma-huang were herbologically studied. The results showed that the plants of Ephedra sinica Stapf, E. intermedia Schrenk & C. A. Meyer and E. equisetina Bunge were used as Ma-huang in China, and the first species was considered to be of high quality. The characters of Mao-zhou Ma-huang and Tong-zhou Ma-huang printed in Tu-jing-ben-cao, published in the Song Dynasty in China, were identified as E. likiangensis Florin and E. intermedia, respectively, and both species were recognized as excellent Ma-huang in the Ming Dynasty. The word origin of Katsune-kusa, the Japanese name for Ma-huang in the Heian Era, was etymologically considered as meaning the plant having reddish brown roots. In Japan, the plant of Equisetum ramosissimum Desf. var.japonicum Milde, of the family Equisetaceae, was substituted for Ma-huang in the middle of Edo Era, and it was designated that this action was based on the confusion of Ephedra plants and Equisetum plants those days in China.

  12. DESGASTE POR ABRASIÓN DEL ACERO API 5L X65 REVESTIDO CON NIOBIO POR ASPERSIÓN TÉRMICA A PLASMA Y CON INCONEL 625 POR SOLDADURA

    Directory of Open Access Journals (Sweden)

    JOSE MATOS

    2012-01-01

    Full Text Available El objetivo de este trabajo fue evaluar y caracterizar el comportamiento mecánico en desgaste del acero API 5L X65, revestido con niobio en comparación al desempeño del revestimiento de la aleación de inconel 625 empleados en la industria de petróleo y gas. El revestimiento de niobio fue obtenido por el proceso de aspersión térmica a plasma de arco no transferido y el revestimiento inconel 625 por soldadura con electrodo revestido. La resistencia al desgaste por abrasión fue evaluada según la norma Petrobras N-2568, en un tribómetro CTER, la rugosidad y el volumen de material desgastado se determinó a través de perfilometría y la dureza de los revestimientos por microscopia Vickers. Los revestimientos obtenidos fueron caracterizados respecto a su morfología por microscopia electrónica de barrido (MEB y microscopía óptica (MO. La mayor dureza del revestimiento con niobio obtenido puede haber contribuido a reducir la tasa de desgaste en comparación con el revestimiento de inconel 625.

  13. Effect of microstructure on properties of friction stir welded Inconel Alloy 600

    International Nuclear Information System (INIS)

    Sato, Y.S.; Arkom, P.; Kokawa, H.; Nelson, T.W.; Steel, R.J.

    2008-01-01

    Friction stir welding (FSW) has been widely used to metals with moderate melting temperatures, primarily Al alloys. Recently, tool materials that withstand high stresses and temperatures necessary for FSW of materials with high melting temperatures have been developed. In the present study, polycrystalline cubic boron nitride (PCBN) tool was used for partially penetrated FSW of Inconel Alloy 600, and a defect-free weld was successfully produced. Microstructural characteristics, mechanical and corrosion properties in the weld were examined. The weld had better mechanical properties than the base material due to formation of fine grain structure in the stir zone, but exhibited slightly the lower corrosion resistance in a part of the stir zone and heat-affected zone (HAZ)

  14. Microsegregation and Precipitates in Inconel 625 Arc Weld Overlay Coatings on Boiler Pipes / Mikrosegregacja I Wydzielenia W Powłokach Ze Stopu Inconel 625 Napawanych Łukowo Na Rury Kotłowe

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2015-12-01

    Full Text Available The aim of this work was to investigate the microsegregation and precipitates formed due to segregation in Inconel 625 arc weld overlay coatings on boiler pipes. Examination of microsegregation and precipitates were carried out by means of a scanning electron microscope (SEM equipped with an EDS detector as well as a transmission electron microscope (TEM equipped with a HAADF (STEM and an EDS detectors. The presence of precipitations in the weld overlay was also confirmed with X-ray diffraction analysis (XRD of residue in the form of powder that remained after the electrolytic dissolution of weld overlay matrix.

  15. Friction and wear behavior of Inconel 625 with Ni3Ti, TiN, TiC-CVD coatings in an HTGR environment

    International Nuclear Information System (INIS)

    Sarosiek, A.M.; Li, C.C.

    1984-04-01

    The following conclusions apply to Inconel 625 with Ni 3 Ti, TiN, TiC-CVD coatings, tested in an HTGR environment in a temperature range between 500 and 900 0 C at a contact pressure of 3.45 MPa. The average wear rate is very small varying between 0.0 and 1.7 x 10 -4 g/m. The wear rate shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases or as the sliding velocity decreases. Damage experienced by wear areas is minimal. Stick-slip friction was observed at low sliding velocity, however the friction coefficient is low (maximum 0.63) with an average value of about 0.44. The friction coefficient shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases, or as the sliding velocity decreases. Ni 3 Ti, TiN, TiC-CVD coatings, are considered effective in minimizing friction and wear damage of Inconel 625 in an HTGR environment

  16. Prevalence and distribution of odontogenic cysts in a Mexican sample. A 753 cases study.

    Science.gov (United States)

    Villasis-Sarmiento, Luis; Portilla-Robertson, Javier; Melendez-Ocampo, Arcelia; Gaitan-Cepeda, Luis-Alberto; Leyva-Huerta, Elba-Rosa

    2017-04-01

    Odontogenic cysts (OC) are the most frequent lesions of the jaws and their constant epidemiological update is necessary and indispensable. Therefore the principal objective of this report was To determine prevalence and clinical-demographical characteristics of OC in a Mexican sample. 753 cases of OC coming from the archive of a head and neck histopathological teaching service, from January 2000 to December 2013, were included. OC cases were re-assessed according 2005 WHO classification. Chi square test was used to establish possible associations ( p pulpar necrosis and impacted teeth, radicular cyst and dentigerous cyst could be prevenible. Therefore, it is necessary to establish preventive strategies to diminish dental decay and programs of prophylactic extractions of impacted teeth, to in consequence decrease the prevalence of odontogenic cysts. Key words: Cyst, dentigerous cyst, mexican, odontogenic cyst, radicular cyst.

  17. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    Energy Technology Data Exchange (ETDEWEB)

    Bakare, M.S. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Voisey, K.T., E-mail: Katy.voisey@nottingham.ac.uk [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Roe, M.J.; McCartney, D.G. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-15

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH){sub 2}, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  18. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring

    Science.gov (United States)

    Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing

    2018-02-01

    The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.

  19. Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition

    International Nuclear Information System (INIS)

    Xu, F.J.; Lv, Y.H.; Xu, B.S.; Liu, Y.X.; Shu, F.Y.; He, P.

    2013-01-01

    Highlights: ► PPAD Inconel 625 sample deposited with ICS strategy exhibits improved surface quality. ► ICS sample exhibits finer microstructure and improved mechanical properties. ► Higher level γ′ and γ″ phases are precipitated in the ICS sample. ► STA heat treatment reduced the concentration of Nb element. ► STA heat treatment improved the mechanical properties of PPAD Inconel 625. -- Abstract: Pulsed plasma arc deposition (PPAD), which combines pulsed plasma cladding with rapid prototyping, is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing. The aim of this study was to investigate the influences of interpass cooling strategy (ICS) and continuous deposition strategy (CDS) on microstructure and mechanical properties of the PPAD Inconel 625 non-ferrous alloy. The as-deposited samples in the two conditions were subjected to the post heat treatment: 980 °C solution treatment + direct aging (STA). The microstructures and mechanical properties of the samples were characterized by means of scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), micro-hardness and tensile testers. It was found that the as-deposited microstructure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. The as-deposited microstructure of ICS sample revealed smaller dendritic arm spacing, less niobium segregation and discontinuous finer Laves phase in the interdendritic regions compared to the case of continuous deposition strategy (CDS). The ICS sample exhibited better mechanical properties than CDS sample. After STA heat treatment, a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni 3 Nb). The tensile and yield strength of the as-deposited samples were

  20. High temperature mechanical behavior of tube stackings – Part I: Microstructural and mechanical characterization of Inconel® 600 constitutive material

    Energy Technology Data Exchange (ETDEWEB)

    Marcadon, V., E-mail: Vincent.Marcadon@onera.fr [Onera – The French Aerospace Lab, F-92322 Châtillon (France); Davoine, C.; Lévêque, D.; Rafray, A.; Popoff, F.; Horezan, N.; Boivin, D. [Onera – The French Aerospace Lab, F-92322 Châtillon (France)

    2016-11-20

    This paper is the first part of a set of two papers dedicated to the mechanical behavior of cellular materials at high temperatures. For that purpose, cellular materials made of brazed tube stacking cores have been considered here. This paper addresses the characterization of the elasto-viscoplastic properties of the constitutive material of the tubes, Inconel®600, by means of tensile tests. Various temperatures and strain rates were investigated, from room temperature to 800 °C, in order to study the influence of both the brazing heat treatment and the test temperature on the mechanical properties of Inconel®600. Whereas the heat treatment drastically decreases the strength of the tubes, a significant viscous effect is revealed at 800 °C. Electron backscattered diffraction analyses carried out post-mortem on samples showed that both dynamic recrystallization and recovery occurred during tensile tests performed at 800 °C, especially at lower strain rates. In contrast, a highly deformed and textured microstructure was observed for the tubes loaded at lower temperatures.

  1. ANALYSIS OF THE SURFACE PROFILE AND ITS MATERIAL SHARE DURING THE GRINDING INCONEL 718 ALLOY

    Directory of Open Access Journals (Sweden)

    Martin Novák

    2015-05-01

    Full Text Available Grinding is still an important method for surface finishing. At FPTM JEPU research, which deals with this issue is conducted. Experiments are carried out with grinding various materials under different conditions and then selected components of the surface integrity are evaluated. They include roughness Ra, Rm and Rz, Material ratio curve (Abbott Firestone curve and also the obtained roundness. This article deals with grinding nickel Inconel 718 alloy, when selected cutting grinding conditions were used and subsequently the surface profile and the material ratio curve were measured and evaluated.

  2. Anti Ma2-associated myeloradiculopathy: expanding the phenotype of anti-Ma2 associated paraneoplastic syndromes

    OpenAIRE

    Murphy, Sinead M; Khan, Usman; Alifrangis, Constantine; Hazell, Steven; Hrouda, David; Blake, Julian; Ball, Joanna; Gabriel, Carolyn; Markarian, Pierre; Rees, Jeremy; Karim, Abid; Seckl, Michael J; Lunn, Michael P; Reilly, Mary M

    2011-01-01

    Anti-Ma2 associated paraneoplastic syndrome usually presents as limbic encephalitis in association with testicular tumours.1, 2 Only four patients have been reported with involvement outside the CNS, two of whom also had limbic or brainstem encephalitis.2, 3 We report a man with anti- Ma2 associated myeloradiculopathy and previous testicular cancer whose neurological syndrome stabilised and anti-Ma2 titres fell following orchidectomy of a microscopically normal testis.

  3. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding

    International Nuclear Information System (INIS)

    Wang, J.F.; Sun, Q.J.; Wang, H.; Liu, J.P.; Feng, J.C.

    2016-01-01

    Additive layer manufacturing (ALM), using gas tungsten arc welding (GTAW) as heat source, is a promising technology in producing Inconel 625 components due to significant cost savings, high deposition rate and convenience of processing. With the purpose of revealing how microstructure and mechanical properties are affected by the location within the manufactured wall component, the present study has been carried out. The manufactured Inconel 625 consists of cellular grains without secondary dendrites in the near-substrate region, columnar dendrites structure oriented upwards in the layer bands, followed by the transition from directional dendrites to equiaxed grain in the top region. With the increase in deposited height, segregation behavior of alloying elements Nb and Mo constantly strengthens with maximal evolution in the top region. The primary dendrite arm spacing has a well coherence with the content of Laves phase. The microhardness and tensile strength show obvious variation in different regions. The microhardness and tensile strength of near-substrate region are superior to that of layer bands and top region. The results are further explained in detail through the weld pool behavior and temperature field measurement.

  4. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.F. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Sun, Q.J., E-mail: qjsun@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wang, H. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, J.P. [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300 (China); Feng, J.C. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2016-10-31

    Additive layer manufacturing (ALM), using gas tungsten arc welding (GTAW) as heat source, is a promising technology in producing Inconel 625 components due to significant cost savings, high deposition rate and convenience of processing. With the purpose of revealing how microstructure and mechanical properties are affected by the location within the manufactured wall component, the present study has been carried out. The manufactured Inconel 625 consists of cellular grains without secondary dendrites in the near-substrate region, columnar dendrites structure oriented upwards in the layer bands, followed by the transition from directional dendrites to equiaxed grain in the top region. With the increase in deposited height, segregation behavior of alloying elements Nb and Mo constantly strengthens with maximal evolution in the top region. The primary dendrite arm spacing has a well coherence with the content of Laves phase. The microhardness and tensile strength show obvious variation in different regions. The microhardness and tensile strength of near-substrate region are superior to that of layer bands and top region. The results are further explained in detail through the weld pool behavior and temperature field measurement.

  5. Length change of the alloys Waspaloy and Inconel 718 after long-term annealing

    International Nuclear Information System (INIS)

    Kinzel, Svenja

    2016-01-01

    Within the scope of this work the contraction behavior of Ni-based superalloy Waspaloy could in detail be referred to a combination of different microstructural changes and the results could partially be transferred to Ni-Fe-based alloy Inconel 718. Isothermal annealing of sample rods at temperatures between 450 C and 750 C induces an average relative length contraction of about -2.10"-"4. It is apparent that contraction is more pronounced for lower temperatures (-3.10"-"4 at 550 C) than for higher ones (-1.10"-"4 at 750 C). Within the first 300 hours of annealing the contraction reaches about 70-75% of the value measured after 10,000 hours. This means the major part of the effect takes place at the beginning of long term annealing but even after 10,000 hours no saturation occurs. On the basis of lattice parameter measurements it could be found that within the first 300 hours a significant lattice parameter decrease of matrix and γ"' phase emerged. Longer annealing time does not cause further lattice contraction. This sample behavior can be explained by temperature dependence of phase fractions and phase compositions. Thermodynamic calculations as well as stereological analysis of micrographs show a decrease of stable γ"'-phase content with increasing temperature. In parallel, TEM-EDS measurements and calculated phase fractions show concentration fluctuations due to the different precipitate fraction, which cause contraction of the lattice parameter. Furthermore, within the first 100 hours at temperatures up to 650 C the formation or Ni-Cr rich domains could be observed. As these domains exhibit a smaller lattice parameter than the matrix they contribute to the more pronounced contraction at lower temperatures. While XRD measurements point to the formation of Ni_3Cr, TEM-EDS measurements reveal a composition of (Ni,Co)_2Cr. Stress relief heat treatment at higher temperatures (815 C) after annealing shows that the effect of contraction is reversible. It causes an

  6. Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718

    Science.gov (United States)

    Qi, H.; Azer, M.; Ritter, A.

    2009-10-01

    Laser net shape manufacturing (LNSM) is a laser cladding/deposition based technology, which can fabricate and repair near-net-shape high-performance components directly from metal powders. Characterizing mechanical properties of the laser net shape manufactured components is prerequisite to the applications of LNSM in aircraft engine industrial productions. Nickel-based superalloys such as INCONEL 718 are the most commonly used metal materials in aircraft engine high-performance components. In this study, the laser deposition process is optimized through a set of designed experiments to reduce the porosity to less than 0.03 pct. It is found that the use of plasma rotating electrode processed (PREP) powder and a high energy input level greater than 80 J/mm are necessary conditions to minimize the porosity. Material microstructure and tensile properties of laser-deposited INCONEL 718 are studied and compared under heat treatment conditions of as deposited, direct aged, solution treatment and aging (STA), and full homogenization followed by STA. Tensile test results showed that the direct age heat treatment produces the highest tensile strength equivalent to the wrought material, which is followed by the STA-treated and the homogenization-treated tensile strengths, while the ductility exhibits the reverse trend. Finally, failure modes of the tensile specimens were analyzed with fractography.

  7. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  8. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition

    International Nuclear Information System (INIS)

    Shah, Kamran; Haq, Izhar ul; Khan, Ashfaq; Shah, Shaukat Ali; Khan, Mushtaq; Pinkerton, Andrew J

    2014-01-01

    Highlights: • Functionally graded steel and nickel super-alloy structures have been developed. • Mechanical properties of FGMs can be controlled by process input parameters. • SDAS is strongly dependent on the laser power and powder mass flow rate. • Carbides provide a mechanism to control the hardness and wear resistance of FGM. • Tensile strength of FGM is dependent on the laser power and powder mass flow rate. - Abstract: Laser direct metal deposition (LDMD) has developed from a prototyping to a single and multiple metals manufacturing technique. It offers an opportunity to produce graded components, with differing elemental composition, phase and microstructure at different locations. In this work, continuously graded Stainless Steel 316L and Inconel 718 thin wall structures made by direct laser metal deposition process have been explored. The paper considers the effects of process parameters including laser power levels and powder mass flow rates of SS316L and Inconel 718 during the deposition of the Steel–Ni graded structures. Microstructure characterisation and phase identification are performed by optical microscopy and X-ray diffraction techniques. Mechanical testing, using methods such as hardness, wear resistance and tensile testing have been carried out on the structures. XRD results show the presence of the NbC and Fe 2 Nb phases formed during the deposition. The effect of experimental parameters on the microstructure and physical properties are determined and discussed. Work shows that mechanical properties can be controlled by input parameters and generation of carbides provides an opportunity to selectively control the hardness and wear resistance of the functionally graded material

  9. Quality-productivity decision making when turning of Inconel 718 aerospace alloy: A response surface methodology approach

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2017-06-01

    Full Text Available Inconel 718 is among difficult to machine materials because of its abrasiveness and high strength even at high temperature. This alloy is mainly used in aircraft and aerospace industries. Therefore, it is very important to reveal and evaluate cutting tools behavior during machining of this kind of alloy. The experimental study presented in this research work has been carried out in order to elucidate surface roughness and productivity mathematical models during turning of Inconel 718 superalloy (35 HRC with SiC Whisker ceramic tool at various cutting parameters (depth of cut, feed rate, cutting speed and radius nose. A small central composite design (SCCD including 16 basics runs replicated three times (48 runs, was adopted and graphically evaluated using Fraction of design space (FDS graph, completed by a statistical analysis of variance (ANOVA. Mathematical models for surface roughness and productivity were developed and normality was improved using the Box-Cox transformation. Results show that surface roughness criterion Ra was mainly influenced by cutting speed, radius nose and feed rate, and that the depth of cut had major effect on productivity. Finally, ranges of optimized cutting conditions were proposed for serial industrial production. Industrial benefit was illustrated in terms of high surface quality accompanied with high productivity. Indeed, results show that the use of optimal cutting condition had an industrial benefit to 46.9 % as an improvement in surface quality Ra and 160.54 % in productivity MRR.

  10. Changing things around: Dramatic aspect in the Pericope Adulterae (Jn 7:53–8:11

    Directory of Open Access Journals (Sweden)

    Piet van Staden

    2015-09-01

    Full Text Available In this article the transactional model of narrative as expounded by Louise Rosenblatt, supported by an analysis in terms of dramatic aspect, is employed to show how the interpolated scene in John 7:53–8:11 (known as the Pericope Adulterae and hereafter referred to as PA functions as a pivot of power in the gospel. The content of the scene, as well as its placement within the gospel, serves to promote an aesthetic reading that focusses attention on the experience during the reading event. Awareness of sensations, images, feelings and ideas from past experiences, as well as the sounds and rhythms of the words become important. The reader responds to the aesthetic transaction, the various elements of total experience, rather than simply to the text, during and after the reading event.

  11. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    List, F.A., E-mail: listfaiii@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Dehoff, R.R.; Lowe, L.E. [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Sames, W.J. [Texas A and M University, College Station, TX (United States)

    2014-10-06

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  12. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    International Nuclear Information System (INIS)

    List, F.A.; Dehoff, R.R.; Lowe, L.E.; Sames, W.J.

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology

  13. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  14. An Analysis of Rheological Properties of Inconel 625 Superalloy Feedstocks Formulated with Backbone Binder Polypropylene System for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Gökmen U.

    2017-12-01

    Full Text Available Binder formula is one of the most significant factors which has a considerable influence on powder injection molding (PIM processes. In the study, rheological behaviors and properties of different binder systems containing PIM feedstocks, Inconel 625 powder commonly used in space industry, were investigated. The feedstocks were prepared 59%-69% (volume powder loading ratios with three diversified binder systems by use of Polypropylene as backbone binder. The average particle size of the Inconel 625 powder used was 12.86 microns. Components used in the binder were mixed for 30 minutes as dry in three dimensional mixing to prepare binder systems. Rheological features of the feedstock were characterized by using a capillary rheometer. Viscosities of the feedstocks were calculated within the range of 37.996-1900 Pa.s based on the shear rate, shear stress, binder formula and temperature. “n” parameters for PIM feedstocks were determined to be less than 1. Influences of temperature on the viscosities of the feedstocks were also studied and “Ea” under various shear stresses were determined within the range of 24.41-70.89 kJ/mol.

  15. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  16. Experimental Investigations during Dry EDM of Inconel - 718

    International Nuclear Information System (INIS)

    BHANDARE, A S; DABADE, U A

    2016-01-01

    Dry EDM is a modification of the conventional EDM process in which the liquid dielectric is replaced by a gaseous medium. Tubular tool electrodes are used and as the tool rotates, high velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. It is now known that apart from being an environment- friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone. Keeping literature review into consideration, in this paper, an attempt has been made by selecting compressed air as a dielectric medium, with Inconel - 718 as a work piece material and copper as a tool electrode. Experiments are performed using Taguchi DoE orthogonal array to observe and analyze the effects of different process parameters to optimize the response variables such as material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). In the current work, a unit has been developed to implement dry EDM process on existing oil based EDM machine. (paper)

  17. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  18. Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding

    Science.gov (United States)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present research work, dissimilar welding between Inconel 625 super alloy and AISI 904L super austenitic stainless steel using manual multi-pass continuous current gas tungsten arc (CCGTA) welding process employed with ERNiCrMo-4 and ERNiCrCoMo-1 fillers were performed to determine the mechanical properties and weldability. Tensile test results corroborated that the fracture had occurred at the parent metal of AISI 904L irrespective of filler used for all the trials. The presence of the macro and micro void coalescence in the fibrous matrix characterised for ductile mode of fracture. The hardness values at the weld interface of Inconel 625 side were observed to be higher for ERNiCrMo-4 filler due to the presence of strengthening elements such as W, Mo, Ni and Cr. The impact test accentuated that the weldments using ERNiCrMo-4 filler offered better impact toughness (41J) at room temperature. Bend test results showed that the weldments using these fillers exhibited good ductility without cracks.

  19. Microstructural evolution of cold-sprayed Inconel 625 superalloy coatings on low alloy steel substrate

    International Nuclear Information System (INIS)

    Chaudhuri, Atanu; Raghupathy, Y.; Srinivasan, Dheepa; Suwas, Satyam; Srivastava, Chandan

    2017-01-01

    This study illustrates microstructural evolution of INCONEL 625 superalloy coatings cold-sprayed on a 4130 chrome alloy steel with medium carbon content. INCONEL 625 powder (5–25 μm) were successfully cold sprayed without any oxidation. The comprehensive microstructure analysis of the as-sprayed coatings and of the substrate-coating interface was carried out using EBSD, TEM, and XRD. The coating microstructure at the substrate-coating interface was markedly different from the microstructure away from the interface. The coating microstructure at steel-coating interface consisted of a fine layer of small grains. The microstructure beyond this fine layer can be divided into splats, inter splat and intra splat boundaries. Both splat and splat boundaries exhibited deformation induced dislocations. Dynamic recovery of dislocations-ridden regions inside the splat was responsible for the development of sub grain structure inside a splat with both low and high angle grain boundaries. Splat-splat (inter splat) boundary consisted of a relatively high density of dislocations and shear bands as a result of adiabatic shear flow localisation. This flow instability is believed to enhance the microstructural integrity by eliminating porosity at splat-splat boundaries. Based on the microstructural analysis using electron microscopy, a plausible mechanism for the development of microstructure has been proposed in this work. Cold spray technique can thus be deployed to develop high quality coatings of commercial importance. - Graphical abstract: Schematics of the evolution of microstructure at the 4130 steel substrate close to interface. i) initial deformation close to interface. ii) Accumulation of dislocation in the substrate. iii) Formation of cell structure due to dislocation tangling and arrangement. iv) Dislocation rearrangement and subgrain formation. v.a) Formation HAGB from dislocation accumulation into LAGB. v.b) HAGB formation through DRX by progressive lattice rotation

  20. Étude du comportement structural de l'alliage NC 19 Fe Nb (Inconel 718)

    Science.gov (United States)

    Slama, C.; Cizeron, G.

    1997-03-01

    In the as-received state (following a double treatment at 720 and 620 °C), the structure of INC 718 consists of a γ matrix, intergranular β precipitates and (Nb,Ti)C carbides; moreover, γ{'} and γ{''} phases have precipitated in the matrix. Using different methods, the structural behaviour was analyzed which led to distinguish the temperature ranges in which occurs precipitation or dissolution of β, γ{'} and γ{''} phases on heating and to define the optimum conditions of homogeneization. Furthermore a CCT diagram for INC 718 has been drawn showing the respective precipitation of γ{'}, γ{''} and β phases as a function of the cooling rate applied from 990 °C. L'étude de l'alliage Inconel 718 (NC 19 Fe Nb) a permis de montrer que sa structure, dans l'état de livraison (après double revenu à 720 puis 620 °C), consiste en une matrice γ avec des précipités β intergranulaires et des carbures du type (Nb,Ti) C ; en outre, la matrice contient des précipités des phases γ{''} et γ{'}. L'analyse du comportement structural de l'alliage à l'aide de différentes méthodes physiques a conduit à délimiter les domaines de température dans lesquels interviennent, au chauffage, la précipitation ou la dissolution des phases β, γ{'}, γ{''} et de définir les conditions optimales d'homogénéisation. Le diagramme T.R.C. de l'Inconel 718 a ensuite été tracé : les intervalles de température dans lesquels interviennent les précipitations respectives des phases γ{'}, γ{''} et β en fonction de la vitesse de refroidissement imposée depuis 990 °C, ont ainsi pu être précisés.

  1. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue

    International Nuclear Information System (INIS)

    Nagesha, A.; Goyal, Sunil; Nandagopal, M.; Parameswaran, P.; Sandhya, R.; Mathew, M.D.; Mannan, Sarwan K.

    2012-01-01

    Highlights: ► Low cycle fatigue (LCF) and tensile tests were performed on Inconel ® Alloy 783. ► A stable cyclic stress response followed by continuous softening was noted under LCF. ► Material exhibited DSA in the temperature range, 573–723 K. ► Occurrence of DSA reduced the extent of cycling softening in LCF. ► Both interstitial and substitutional atoms were found to be responsible for DSA. - Abstract: Low cycle fatigue (LCF) tests were performed on Inconel ® Alloy 783 at a strain rate of 3 × 10 −3 s −1 and a strain amplitude of ±0.6%, employing various temperatures in the range 300–923 K. A continuous reduction in the LCF life was observed with increase in the test temperature. The material generally showed a stable stress response followed by a region of continuous softening up to failure. However, in the temperature range of 573–723 K, the alloy was seen to exhibit dynamic strain ageing (DSA) which was observed to reduce the extent of cyclic softening. With a view to identifying the operative mechanisms responsible for DSA, tensile tests were conducted at temperatures in the range, 473–798 K with strain rates varying from 3 × 10 −5 s −1 to 3 × 10 −3 s −1 . Interaction of dislocations with interstitial (C) and substitutional (Cr) atoms respectively, in the lower and higher temperature regimes was found to be responsible for DSA. Further, the friction stress, as determined using the stabilised stress–strain hysteresis loops, was seen to show a more prominent peak in the DSA range, compared to the maximum tensile stress.

  2. Development of a Biosensor for Identifying Novel Endocrine-Disrupting Chemicals

    Science.gov (United States)

    2008-02-01

    Silent Spring Institute Newton, MA 02458 REPORT DATE: February 2008 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research...8. PERFORMING ORGANIZATION REPORT NUMBER Silent Spring Institute Newton, MA 02458 9. SPONSORING / MONITORING AGENCY...Nature 389, 753–758. [22] Protein Data Bank, www.rcsb.org/pdb. [23] M. J. Tsai, B. W. O’Malley (1994) Molecular mechanisms of action of steroid/ thyroid

  3. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique

    Directory of Open Access Journals (Sweden)

    Jun-Hyong Kim

    2015-08-01

    Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.

  4. Phase Transformations in Nickel base Superalloy Inconel 718 during Cyclic Loading at High Temperature

    Directory of Open Access Journals (Sweden)

    Michal Jambor

    2017-06-01

    Full Text Available Nickel base superalloys are hi-tech materials intended for high temperature applications. This property owns a complex microstructure formed by matrix of Ni and variety of precipitates. The type, form and the amount of these phases significantly affect the resulting properties of these alloys. At sufficiently long exposure to high temperatures, the transformation phase can occur, which can lead to degradation of properties of these alloys. A cyclic plastic deformation can accelerate these changes, and they could occur at significantly lower temperatures or in shorter time of exposure. The aim of this study is to describe phase transformation, which can occur by a cyclic plastic deformation at high temperatures in nickel base superalloy Inconel 718.

  5. Development of safety evaluation technique of steam generator tubes for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk Sang; Kim, I. S.; Ann, Se Jin; Lee, S. J.; Seo, M. S.; Lee, Y. H.; Kim, J. H.; Hong, J. G. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-02-15

    Subject 1 - a technique for predicting the SCC susceptibility of steam generator tube material based on the repassivation kinetics was developed and the effects of Pb in the repassivation rate and SCC susceptibility rate of tube material was investigated with this technique. An alloy with a higher slope value of log i(t) vs. q(t) plot based on the current transient curve obtained by scratch test and a lower slope value log i(t) vs. l/q(t) plot (cBV) is repassivated faster with a more protective passive film and it can be predicted that it will show higher resistance to SCC. With PbO addition in all solution studied (pH 4, pH 10, Cl- containing pH 4), alloy 690TT showed decreased repassivation rate. So it can be predict that PbO addition lower the resistance of SCC of steam generator tune material. Subject 2 - SG wear testing of tube and support materials has been conducted at various load and sliding amplitude in air environment. The results showed effect of normal load and sliding amplitude on SG tube wear damage. It was also shown that, for predominantly sliding motion, the SG wear coefficient of work-rate model is lower for Inconel 690TT compared with inconel 600MA. SG tube wear data show that, for work-rates ranging from 4 to 25mW, average tube wear coefficient of 43.76{approx}54.05 X 10{sup 15} Pa{sup -1} for Inconel 600MA and 26.88{approx}33.94 X 10{sup -15} Pa{sup 1} for Inconel 690TT against 405 and 409 stainless steels.

  6. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  7. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    Science.gov (United States)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  8. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2017-06-01

    Full Text Available The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT method. Investigations were primarily carried out through transmission electron microscopy (TEM on thin foils prepared by FIB (Focus Ion Beam.

  9. Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718

    Directory of Open Access Journals (Sweden)

    Deepak Rajendra Unune

    2017-02-01

    Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.

  10. A study on the thermal and mechanical properties of inconel for steam generator U-tube

    International Nuclear Information System (INIS)

    Ryu, Woo Seong; Kang, Young Hwan; Park, Jong Man; Choo, Kee Nam; Kim, Sung Soo; Maeng, Wan Young; Park, Se Jin

    1993-12-01

    A series of laboratory tests was conducted to obtain the thermal and mechanical properties of Inconel 600 and 690 for the design document of steam generator U-tube. The following properties were measured as a function of temperature, and treated statistically to establish a database: 1) heat capacity, RT ∼ 500 deg C, 2) thermal expansion, RT ∼ 500 deg C, 3) thermal diffusivity, RT ∼ 500 deg C, 4) thermal conductivity, RT ∼ 500 deg C, 5) tensile property, RT ∼ 700 deg C 6) ductility, RT ∼ 700 deg C, 7) Elastic modulii and Poission's ratio, RT, 8) Microhardness, 9) Oxidation rate. (Author)

  11. The (mis)Measurement of M&A Performance

    DEFF Research Database (Denmark)

    Meglio, Olimpia; Risberg, Annette

    2011-01-01

    This paper seeks to further the understanding of the variety of meanings M&A scholars attach to the label “M&A performance” by providing an alternative way to interpret the claimed inconsistency of M&A research findings. While many scholars contend that the problem stems from the multiplicity of M......&A performance measures, we believe the problem rests in trying to compare different measures as if they were measuring the same feature of the organization. Through our narrative review of empirical research we analyze factors shaping the M&A – as well as the organizational – performance measurement process....... The conclusion is that it is not possible to talk about M&A performance as if it was a universal construct....

  12. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    Science.gov (United States)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  13. Reactivity Studies of Inconel 625 with Sodium, and Lunar Regolith Stimulant

    Science.gov (United States)

    Gillies, Donald; Salvail, Pat; Reid, Bob; Colebaugh, James; Easterling, Greg

    2008-01-01

    In the event of the need for nuclear power in exploration, high flux heat pipes will be needed for heat transfer from space nuclear reactors to various energy conversion devices, and to safely dissipate excess heat. Successful habitation will necessitate continuous operation of alkali metal filled heat pipes for 10 or-more years in a hostile environment with little maintenance. They must be chemical and creep resistant in the high vacuum of space (lunar), and they must operate reliably in low gravity conditions with intermittent high radiation fluxes. One candidate material for the heat pipe shell, namely Inconel 625, has been tested to determine its compatibility with liquid sodium. Any reactivity could manifest itself as a problem over the long time periods anticipated. In addition, possible reactions with the lunar regolith will take place, as will evaporation of selected elements at the external surfaces of the heat pipes, and so there is a need for extensive long-term testing under simulated lunar conditions.

  14. Erosive Wear of Inconel 625 Alloy Coatings Deposited by CMT Method

    Directory of Open Access Journals (Sweden)

    Solecka M.

    2016-06-01

    Full Text Available The article presents the investigation results concerning the determination of the characteristics of erosive wear caused by the impact of Al2O3 solid particles on the surface of Inconel 625 alloy after plastic working and the same material after weld cladding process using the CMT method. Erosion wear tests were performed at two temperatures: 20°C and 650°C. The erosion tests were conducted using the standard ASTM G76. A jet with a specified abrasive waight was directed to the surface of the tested material at an α impingement angle varied in the range of 30-90° at a velocity imparted to the abrasive by the medium, which was compressed air. The eroded surface was examined using a scanning electron microscope (SEM, while the depths of craters caused by the erosion tests were measured with an optical profilometer. The predominant mechanisms of the formation of mass losses during solid particle erosion were microcutting and microfissuring.

  15. Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690

    Science.gov (United States)

    Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.

    2018-03-01

    This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.

  16. Compatibility of aluminide-coated Hastelloy x and Inconel 617 in a simulated gas-cooled reactor environment

    International Nuclear Information System (INIS)

    Chin, J.; Johnson, W.R.; Chen, K.

    1982-03-01

    Commercially prepared aluminide coatings on Hastelloy X and Inconel 617 substrates were exposed to controlled-impurity helium at 850 0 and 950 0 C for 3000 h. Optical and scanning electron (SEM) microscopy, electron microprobe profiles, and SEM X-ray mapping were used to evaluate and compare exposed and unexposed control samples. Four coatings were evaluated: aluminide, aluminide with platinum, aluminide with chromium, and aluminide with rhodium. With extended time at elevated temperature, nickel diffused into the aluminide coatings to form epsilon-phase (Ni 3 Al). This diffusion was the primary cause of porosity formation at the aluminide/alloy interface

  17. Analysis of the effect on growth kinetics of gamma prima phase in Inconel 713C alloys

    International Nuclear Information System (INIS)

    Thorp, S.I.; Versaci, R.A.; Ges, A.; Palacio, H.A.

    1993-01-01

    This work shows the analysis of the effect on growth kinetics of gamma prima phase in Inconel 713C alloy of two thermic treatments. In this study, SEM are used and the results are analyzed by means of the theory developed by Lifshitz, Slyozov and Wagner (LSW theory). The findings have revealed that with such theory it is not possible to determine if the process of growth is controlled either through diffusion or through diffusion in the interface as to the time employed in the experiment (2600 hours); the time required is approximately 10000 hours. (Author)

  18. Maïs beperkt nitraatverlies van gras

    NARCIS (Netherlands)

    Verloop, J.; Boumans, L.

    2006-01-01

    Maïs staat bekend als een gewas dat veel nitraat naar het grondwater lekt. Maar maïs heeft ook goeie kanten. Nieuw in dit rijtje is dat maïs, in vruchtwisseling met gras, ook het nitraatverlies van grasland beperkt. Dit blijkt uit de metingen van het RIVM op De Marke.

  19. Forging Oxide-Dispersion-Strengthened Superalloys

    Science.gov (United States)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  20. Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application

    Science.gov (United States)

    Sharma, Priyaranjan; Tripathy, Ashis; Sahoo, Narayan

    2018-03-01

    A unique superalloy, Inconel 718 has been serving for aerospace industries since last two decades. Due to its attractive properties such as high strength at elevated temperature, improved corrosion and oxidation resistance, it is widely employed in the manufacturing of jet engine components. These components require complex shape without affecting the parent material properties. Traditional machining methods seem to be ineffective to fulfil the demand of aircraft industries. Therefore, an advanced feature of wire electrical discharge machining (WEDM) has been utilized to improve the surface features of the jet engine components. With the help of trim-offset technology, it became possible to achieve considerable amount of residual stresses, lower peak to valley height, reduced density of craters and micro globules, minimum hardness alteration and negligible recast layer formation.

  1. The surface topography of Inconel, stainless steel and copper after argon ion bombardment

    International Nuclear Information System (INIS)

    Vogelbruch, K.; Vietzke, E.

    1983-01-01

    Energetic particle bombardment of metals is known to change the surface topography. To simulate the behaviour of the first wall of a fusion device under real plasma conditions, we have investigated the surface topography of rotating targets after 30 keV argon ion bombardment at 70deg incident angle by electron scanning micrographs. Under these conditions Inconel 600, 601, 625, stainless steel, and copper showed no cones, pyramids or cliffs, but only etching figures and at higher ion doses relatively flat hills. Thus, it can be concluded, that the influence of energetic particles on the first wall of a fusion reactor is smaller than expected from the results of such sputtering experiments, which have dealt with the formation of surface structures under ion bombardment at constant incident direction. (author)

  2. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  3. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang-Min [Kyungpook National Univ., DMI Senior Fellow, Daegu (Korea, Republic of); Nahm, Seung-Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jun-Hyong; Pyun, Young-Sik [Sun Moon Univ., Chunan (Korea, Republic of)

    2016-07-15

    This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of 13 μm. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

  4. Extrusion and intrusion evolution in cyclically strained cast superalloy Inconel 738LC using confocal laser scanning microscope and AFM

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Juliš, M.; Man, Jiří; Podrábský, T.; Polák, Jaroslav

    2010-01-01

    Roč. 241, - (2010), Art. No. 012054 ISSN 1742-6588. [ICSMA-15 (15th International Conference on the Strength of Materials). Dresden, 16.08.2009-21.08.2009] R&D Projects: GA AV ČR 1QS200410502; GA ČR GA106/07/1507 Institutional research plan: CEZ:AV0Z20410507 Keywords : fatigue * persistent slip marking * Inconel 738LC Subject RIV: JL - Materials Fatigue, Friction Mechanics http://iopscience.iop.org/1742-6596/240/1/012054

  5. Artificial Neural Network-Based Constitutive Relationship of Inconel 718 Superalloy Construction and Its Application in Accuracy Improvement of Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Junya Lv

    2017-01-01

    Full Text Available The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which play critical roles in process design and optimization. In this investigation, the true stress-strain data of an Inconel 718 superalloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1153–1353 K and strain rate range of 0.01–10 s−1 on a Gleeble 3500 testing machine (DSI, St. Paul, DE, USA. Then the constitutive relationship was modeled by an optimally-constructed and well-trained back-propagation artificial neural network (ANN. The evaluation of the ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of Inconel 718 superalloy. Consequently, the developed ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the continuous mapping relationship for temperature, strain rate, strain and stress. Finally, the constructed ANN was implanted in a finite element solver though the interface of “URPFLO” subroutine to simulate the isothermal compression tests. The results show that the integration of finite element method with ANN model can significantly promote the accuracy improvement of numerical simulations for hot forming processes.

  6. Intercrystalline and transcrystalline vibration fatigue failure in the inconel 718 nickel-based alloy; Inter- und transkristalliner Schwingbruch in der Nickelbasislegierung Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Wanzek, Horst; Fruhner, Annett [Lufthansa Technik AG, Hamburg (Germany). Metallurgical Lab., HAM WR123

    2011-07-01

    The fracture of the turbine rotor disc resulted in the breakdown of the APU and high expenses. The APU is located below the vertical tailplane, at the tail of every major-sized aircraft. The vane receptacle failed in the mode of a vibration fatigue failure of an intercrystalline and transcrystalline progression. The cause of this damage is attributable to the fatigue of the material. This can result from the long service life (21 131 h) and the fact that 9 more vane receptacles exhibited a comparable damage pattern. In INCONEL 718 alloys, cracks propagate in a transcrystalline way when under an alternate bend stress and at temperatures below abt. 600 C. In contrast, cracks propagate because of grain boundary oxidation above abt. 600 C in an intercrystalline way. The phenomenon that the two crack modi occurred alternately on the same fracture area is explained from the fact that the component part was exposed to different temperatures during operation. While the crack progress was transcrystalline in the ''cooler'' starting and stopping phase crack propagation occurred along the grain boundaries (was intercrystalline) in a normal operation above 600 C. Besides a limitation of the running time in its service life, other measures could not be taken for this component part. (orig.)

  7. Isolation of MA-ACS Gene Family and Expression Study of MA-ACS1 Gene in Musa acuminata Cultivar Pisang Ambon Lumut

    Directory of Open Access Journals (Sweden)

    LISTYA UTAMI KARMAWAN

    2009-03-01

    Full Text Available Musa acuminata cultivar pisang ambon lumut is a native climacteric fruit from Indonesia. Climacteric fruit ripening process is triggered by the gaseous plant hormone ethylene. The rate limiting enzyme involved in ethylene biosynthesis is ACC synthase (ACS which is encoded by ACS gene family. The objective of this study is to identify MA-ACS gene family in M. acuminata cultivar pisang ambon lumut and to study the MA-ACS1 gene expression. The result showed that there were nine M. acuminata ACS gene family members called MA-ACS1–9. Two of them (MA-ACS1 and MA-ACS2 were assessed using reverse transcriptase PCR (RT-PCR for gene expression study and it was only MA-ACS1 correlated with fruit ripening. The MA-ACS1 gene fragment has been successfully isolated and characterized and it has three introns, four exons, and one stop codon. It also shows highest homology with MACS1 gene from M. acuminata cultivar Hsian Jien Chiao (GenBank accession number AF056164. Expression analysis of MA-ACS1 using quantitative PCR (qPCR showed that MA-ACS1 gene expression increased significantly in the third day, reached maximum at the fifth day, and then decreased in the seventh day after harvesting. The qPCR expression analysis result correlated with the result of physical analysis during fruit ripening.

  8. Effect of the As-Forged and Heat-Treated Microstructure on the Room Temperature Anisotropic Ductile Fracture of Inconel 718

    Science.gov (United States)

    Teimouri, Javad; Hosseini, Seyed Rahman; Farmanesh, Khosro

    2018-05-01

    The purpose of the present work was to investigate the effect of primary carbides and the δ-phase on the anisotropic ductile fracture of Inconel 718 in the forging process. Inconel 718 alloys were prepared by VIM + VAR processes with various carbon contents (0.009 and 0.027 wt.%). Then, the alloys were forged and annealed at temperatures of 980 and 1030 °C. The room temperature mechanical anisotropy of the alloys was evaluated at the longitudinal direction (LD) and transverse direction (TD). Tensile and impact tests were used to characterize the mechanical properties of the specimens. The microstructural characterization and the fractography of the alloys were carried out by FE-SEM. The obtained results showed that the fracture strain and the impact energy in the TD were 30-50% lower than the LD. The fracture was accelerated by the δ-phase, leading to the reduction of impact energy in the longitudinal and the lateral directions up to 50%. The low-carbon alloy indicated similar characteristics in both the LD and the TD. Aligned carbides changed the fracture path from a zigzag path in the LD to a fibrous path in the TD, while the δ-phase created a flat fracture path. The shear lip area ratio in the tensile fracture cross section was decreased by reducing ductility.

  9. Effect of cutting fluids and cutting conditions on surface integrity and tool wear in turning of Inconel 713C

    Science.gov (United States)

    Hikiji, R.

    2018-01-01

    The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.

  10. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  11. A multi objective optimization of gear cutting in WEDM of Inconel 718 using TOPSIS method

    Directory of Open Access Journals (Sweden)

    K.D. Mohapatra

    2017-07-01

    Full Text Available The present paper deals with the experimental analysis and multi objective optimization of gear cutting process of Inconel 718 using WEDM. The objective of the present work is to optimize the parameters in order to maximize the material removal rate and minimize the kerf in a gear cutting process to get the optimum value. The MRR and kerf play a major role in optimizing the parameters in WEDM process. The experiment is carried out in the wire EDM machine using brass wire as the electrode, Inconel 718 as the work-piece material and distilled water as the dielectric. The design array is created by using Design of Experiment in a Taguchi L16 orthogonal array repeated once. The gear has a base diameter of 20 mm, addendum diameter of 22.5 mm and a pressure angle of 20º with 16 numbers of teeth. The machining operation is carried out by taking 3 input parameters at 4 different levels each. The output parameters such as Material Removal rate and Kerf width were obtained and optimized using TOPSIS method to know the optimum setting. Microstructural analysis of both material and wire were studied to know the various defects during the machining operation. Various plots were obtained to know the effects of the process parameters in WEDM. A regression model was also obtained to validate the statistical model values with the experimental. ANOVA table and Response table were carried out to know the significant parameters and rank respectively in the Wire EDM process. Surface roughness, Addendum and Tooth width of gears were also found out at the optimum settings. The optimum setting of the gear obtained can be used to produce high quality gears and can also be applied for future findings.

  12. Performance of Silicon carbide whisker reinforced ceramic inserts on Inconel 718 in end milling process

    International Nuclear Information System (INIS)

    Reddy, M M; Joshua, C X H

    2016-01-01

    An experimental investigation is planned in order to study the machinability of Inconel 718 with silicon carbide whisker reinforced ceramic inserts in end milling process. The relationship between the cutting speed, feed rate, and depth of cut against the response factors are studied to show the level of significance of each parameter. The cutting parameters are optimized by using Taguchi method. Implementing analysis of variance, the parameter which influences the surface roughness the most is determined to be the cutting speed, followed by the feed rate and depth of cut. Meanwhile, the optimal cutting condition is determined to have high cutting speed, low feed rate, and high depth of cut in the range of selected parameters. (paper)

  13. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response.

    Science.gov (United States)

    Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei

    2017-01-01

    The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.

  14. Adole, MA

    African Journals Online (AJOL)

    Adole, MA. Vol 4, No 1 (2011) - Articles Effects of Groundnut Husk Ash-blended Cement on Chemical Resistance of Concrete Abstract PDF. ISSN: 1596-6035. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and ...

  15. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  16. FuSuMaTech workshop

    CERN Multimedia

    Olofsson, Simon

    2018-01-01

    The goal of the FuSuMaTecH IP workshop, organised at CERN Ideaquare 19-20 April, was to educate superconductivity and magnet experts about intellectual property. About 30 participants from multiple institutes and companies worked together in this two day interactive program which was facilitated by CERN Knowledge Transfer. Great progress was made in shaping the FuSuMaTech industrial demonstrator projects as well as the R&D&I subjects.

  17. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  18. Effect of electric discharge machining on the fatigue life of Inconel 718

    Science.gov (United States)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  19. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  20. Upbeat nystagmus in anti-Ma2 encephalitis.

    Science.gov (United States)

    Garcia-Reitboeck, Pablo; Thompson, Graham; Johns, Paul; Al Wahab, Yasir; Omer, Salah; Griffin, Colette

    2014-02-01

    Anti-Ma2 encephalitis is a paraneoplastic disorder characterised by brainstem and/or limbic involvement. Eye movement abnormalities can occur in this condition, often with confusion or somnolence. We describe a patient with progressive oscillopsia (with upbeat nystagmus) and unsteadiness, followed by acute pancreatitis. She did not respond to immunomodulatory treatment and subsequently died of complications related to pancreatitis and sepsis. There was no tumour identified at autopsy, but the anti-Ma2 antibodies in her serum and the discovery of a brainstem-predominant inflammatory infiltrate at autopsy strongly suggest a paraneoplastic disorder. Our case illustrates that upbeat nystagmus can be a predominant feature in anti-Ma2 encephalitis; clinicians should consider testing for anti-Ma2 antibodies in patients with upbeat nystagmus of unknown cause.

  1. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  2. Tensile behavior of Inconel alloy X-750 in air and vacuum at elevated temperatures

    International Nuclear Information System (INIS)

    Taplin, D.M.R.; Mukherjee, A.K.; Pandey, M.C.

    1984-01-01

    The hot tensile properties of Inconel alloy X-750 have been investigated experimentally at 700 C in air and vacuum at strain rates varying from 10 to the -7th to 1.2 x 10 to the -6th per s. The strength and ductile characteristics of the specimens tested in vacuum are found to be better than those tested in air. In air, a ductility minimum is observed at 625 C, whereas in vacuum, significant improvements in creep ductility are observed at 575 and 625 C, with the ductility minimum shifting from 625 to 700 C. It is shown that the creep ductility of the specimens tested in air is largely determined by the following two competing processes: (1) deformation-assisted oxygen diffusion and (2) grain boundary migration. 20 references

  3. In Situ Characterization of Inconel 718 Post-Dynamic Recrystallization within a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Meriem Zouari

    2017-11-01

    Full Text Available Microstructure evolution within the post-dynamic regime following hot deformation was investigated in Inconel 718 samples with different dynamically recrystallized volume fractions and under conditions such that no δ-phase particles were present. In situ annealing treatments carried out to mimic post-dynamic conditions inside the Scanning Electron Microscope (SEM chamber suggest the occurrence of both metadynamic and static recrystallization mechanisms. Static recrystallization was observed in addition to metadynamic recrystallization, only when the initial dynamically recrystallized volume fraction was very small. The initial volume fraction of dynamically recrystallized grains appears to be decisive for subsequent microstructural evolution mechanisms and kinetics. In addition, the formation of annealing twins is observed along with the growth of recrystallized grains, but then the twin density decreases as the material enters the capillarity-driven grain growth regime.

  4. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins.

    Science.gov (United States)

    Rosenfeld, M R; Eichen, J G; Wade, D F; Posner, J B; Dalmau, J

    2001-09-01

    Antibodies to Ma1 and Ma2 proteins identify a paraneoplastic disorder that affects the limbic system, brain stem, and cerebellum. Preliminary studies suggested the existence of other Ma proteins and different patterns of immune response associated with distinct neurologic symptoms and cancers. In this study, our aim was to isolate the full-length sequence of Ma2 and new family members, identify the major autoantigen of the disorder, and extend the dinical-immunological analysis to 29 patients. Sera from selected patients were used to probe a brainstem cDNA library and isolate the entire Ma2 gene and a new family member, Ma3. Ma3 mRNA is ubiquitously expressed in brain, testis, and several systemic tissues. The variable cellular expression of Ma proteins and analysis of protein motifs suggest that these proteins play roles in the biogenesis of mRNA. Immunoblot studies identify Ma2 as the major autoantigen with unique epitopes recognized by all patients' sera. Eighteen patients had antibodies limited to Ma2: they developed limbic, hypothalamic, and brainstem encephalitis, and 78% had germ-cell tumors of the testis. Eleven patients had antibodies to Ma2 and additional antibodies to Ma1 and/or Ma3; they usually developed additional cerebellar symptoms and more intense brainstem dysfunction, and 82% of these patients had tumors other than germ-cell neoplasms. Overall, 17 of 24 patients (71%) with brain magnetic resonance imaging studies had abnormalities within or outside the temporal lobes, some as contrast-enhancing nodular lesions. A remarkable finding of immunity to Ma proteins is that neurologic symptoms may improve or resolve. This improvement segregated to a group of patients with antibodies limited to Ma2.

  5. Reading John 7:53–8:11 as a narrative against male violence against women

    Directory of Open Access Journals (Sweden)

    Michael O'Sullivan

    2015-08-01

    Full Text Available Male violence against women is at shocking levels in South Africa. According to Faul, ‘A woman is killed by an intimate partner every eight hours, a probable underestimate because no perpetrator is identified in 20 percent of killings’, whilst ‘More than 30 percent of girls have been raped by the time they are 18’. Reeva Steenkamp’s killing by her partner, Oscar Pistorius, came ‘the day before she planned to wear black in a “Black Friday” protest against the country’s excruciatingly high number of rapes’ (Faul. The purpose of this article is to reread a key biblical text regarding male violence against women in order to highlight how Jesus would want us to respond to such violence. The text is John 7:53–8:11. The NRSV: Catholic Edition entitles the story ‘The woman caught in adultery’. However, this title is problematic as it can lead to misleading readings of the text, as I will show, and so I have given it a different title, namely ‘The woman threatened with stoning’.

  6. Stress corrosion cracking of Inconel 600 in aqueous solutions at elevated temperature. Pt. II. Effects of chloride and sulphate ions on the electrochemical behaviour of Inconel 600

    International Nuclear Information System (INIS)

    Ashour, E.A.; Schneider, F.; Mummert, K.

    1997-01-01

    For pt.I see ibid., p.151-6, 1997. The influencing effects of temperature, potential and electrolyte composition on the electrochemical behaviour of Inconel 600 in aqueous solutions are presented. Considering these effects the connection between the data have been obtained from chemo-mechanical fracture investigation on CT-samples in Part I of this paper and pitting corrosion are discussed. The results have shown that chloride ions depassivate the surfaces of cracks locally and hinder the formation of a new protective oxide layer on the fracture surfaces. Furthermore, chloride promotes the dissolution of metal and initiates the cracking, respectively. The resulting crevice corrosion promotes an increase of hydrogen absorption by the metal. The increase of the hydrogen content of the metal influences the mechanical fracture behaviour. Contrary, sulphate ions inhibit the initiation of corrosion mainly due to a hinderance of chloride ions adsorption on active sites of the fracture surfaces. The initiation of localized corrosion in the crevice region may be stimulated by chromate ions formed by oxidation of chromium from the oxide layer or the base metal in oxygen containing solutions. (orig.)

  7. Diffusion-bonded 16MND5-Inconel 690-316LN junction: elaboration and process residual stresses modeling

    International Nuclear Information System (INIS)

    Martinez, Michael

    1999-01-01

    The objective of this research thesis is, on the one hand, to elaborate and to characterise a bonded junction of 16MND5 and 316LN steels, and, on the other hand, to develop a simulation tool for the prediction of microstructures after bonding, as well as residual stresses related to this process. The author first reports the study of the use of diffusion bonding by hot isostatic pressing (HIP diffusion bonding) for the bonding of 16MND5 (steel used in French PWR vessel) and 316LN (austenitic stainless steel used in piping), in order to obtain junctions adapted to a use within PWRs. In this case, the use of an Inconel insert material appeared to be necessary to avoid stainless steel carburization. Thus, inserts in Inconel 600 and 690 have been tested. The objective has then been to develop a realistic calculation of residual stresses in this assembly. These stresses are stimulated by quenching. The author notably studied the simulation of temperature dependent phase transformations, and stress induced phase transformations. An existing model is validated and applied to HIP and quenching cycles. The last part reports the calculation of residual stresses by simulation of the mechanical response of the three-component material cooled from 900 C to room temperature and thus submitted to a loading of thermal origin (dilatation) and metallurgical origin (phase transformations in the 16MND5). The effect of carbon diffusion on mechanical properties has also been taken into account. The author discusses problems faced by existing models, and explains the choice of conventional macro-mechanical models. The three materials are supposed to have a plastic-viscoplastic behaviour with isotropic and kinematic strain hardening, and this behaviour is identified between 20 and 900 C [fr

  8. Effect of the Cutting Tool Geometry on the Tool Wear Resistance When Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2017-12-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  9. Effect of the Cutting Tool Geometry on the Tool Wear Resistance when Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2018-03-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  10. Inspection reliability comparison of digital radiography, film radiography and radioscopy for inspection of Inconel welds

    International Nuclear Information System (INIS)

    Meade, W.; Kidwell, C.; Warren, G.

    2004-01-01

    Digital Radiography offers the promise of economic and environmental advantages over traditional film based inspection. Boeing Commercial Aircraft Group has an on-going effort to evaluate this emerging radiographic method for production of aerospace hardware. Included in this effort was a program to evaluate the potential for utilizing amorphous silicon based digital radiography for the inspection of inconel weldments in engine ducting. For this particular program, probability of detection (POD) studies were conducted to compare the reliability of digital radiography with the existing production processes that utilize film radiography and image-intensifier based radioscopy. Cycle time studies were also conducted to determine the potential economic benefit for switching to the new process. The methodology and findings of this comparison are presented. (author)

  11. Inspection reliability comparison of digital radiography, film radiography and radioscopy for inspection of Inconel welds

    Energy Technology Data Exchange (ETDEWEB)

    Meade, W.; Kidwell, C.; Warren, G. [Boeing Commercial Aircraft Group, Renton, Washington (United States)

    2004-07-01

    Digital Radiography offers the promise of economic and environmental advantages over traditional film based inspection. Boeing Commercial Aircraft Group has an on-going effort to evaluate this emerging radiographic method for production of aerospace hardware. Included in this effort was a program to evaluate the potential for utilizing amorphous silicon based digital radiography for the inspection of inconel weldments in engine ducting. For this particular program, probability of detection (POD) studies were conducted to compare the reliability of digital radiography with the existing production processes that utilize film radiography and image-intensifier based radioscopy. Cycle time studies were also conducted to determine the potential economic benefit for switching to the new process. The methodology and findings of this comparison are presented. (author)

  12. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    International Nuclear Information System (INIS)

    Tucho, Wakshum M.; Cuvillier, Priscille; Sjolyst-Kverneland, Atle; Hansen, Vidar

    2017-01-01

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  13. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tucho, Wakshum M., E-mail: wakshum.m.tucho@uis.no [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Cuvillier, Priscille [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Sjolyst-Kverneland, Atle [Roxar/Emerson Process Management, POB 112, 4065 Stavanger (Norway); Hansen, Vidar [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway)

    2017-03-24

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  14. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Raju, S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P.

    2004-01-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 μm thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2θ values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10 -6 K -1

  15. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Juergen; Schulze, Volker [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials; Hessert, Roland; Koenig, Gerhard [MTU Aero Engines, Munich (Germany)

    2012-01-15

    The residual stress state induced by shot peening should be taken into account in the dimensioning of turbine components. Understanding the changes in the residual stress state caused by the application of quasi-static and cyclic loads is a prerequisite. In order to describe the residual stress state after quasi-static loading, several different shot peened Inconel 718 specimens were loaded isothermally up to specific tensile loadings. To analyze the residual stress state after cyclic loading, isothermal low cycle fatigue tests were performed. These tests were stopped after a defined number of cycles. Finally, after the specimens had been subjected to different loads, the surface residual stresses and - for special loadings - the residual stress depth distributions were determined experimentally by using X-ray diffraction. The surface - core model was adapted so that the complete residual stress depth distribution after quasi-static and cyclic loading can now be described. (orig.)

  16. Effect of machining parameters on surface finish of Inconel 718 in end milling

    Directory of Open Access Journals (Sweden)

    Sarkar Bapi

    2017-01-01

    Full Text Available Surface finish is an important criteria in machining process and selection of proper machining parameters is important to obtain good surface finish. In the present work effects of the machining parameters in end milling of Inconel 718 were investigated. Central composite design was used to design the total number of experiments. A Mathematical model for surface roughness has been developed using response surface methodology. In this study, the influence of cutting parameters such as cutting speed, feed rate and depth of cut on surface roughness was analyzed. The study includes individual effect of cutting parameters on surface roughness as well as their interaction. The analysis of variance (ANOVA was employed to find the validity of the developed model. The results show that depth of cut mostly affected the surface roughness. It is also observed that surface roughness values are comparable in both dry and wet machining conditions.

  17. Chatter identification in milling of Inconel 625 based on recurrence plot technique and Hilbert vibration decomposition

    Directory of Open Access Journals (Sweden)

    Lajmert Paweł

    2018-01-01

    Full Text Available In the paper a cutting stability in the milling process of nickel based alloy Inconel 625 is analysed. This problem is often considered theoretically, but the theoretical finding do not always agree with experimental results. For this reason, the paper presents different methods for instability identification during real machining process. A stability lobe diagram is created based on data obtained in impact test of an end mill. Next, the cutting tests were conducted in which the axial cutting depth of cut was gradually increased in order to find a stability limit. Finally, based on the cutting force measurements the stability estimation problem is investigated using the recurrence plot technique and Hilbert vibration decomposition method.

  18. The effect of dexamethasone on the radiation survival response and misonidazole-induced hypoxic-cell cytotoxicity in Chinese hamster cells V-79-753B in vitro

    International Nuclear Information System (INIS)

    Millar, B.C.; Jinks, S.

    1981-01-01

    Overnight exposure of Chinese hamster cells, V-79-753B, to microgram quantities of the synthetic corticosteroid, dexamethasone, resulted in a decrease in sensitivity towards radiation, both in air and in hypoxia. The effect was dose-modifying and the oxygen enhancement ratio did not change appreciably. Similarly, when dexamethasone-treated hypoxic cells were irradiated in the presence of misonidazole, a hypoxic cell radiosensitizer, there was a decrease in radiation sensitivity compared with untreated hypoxic cells irradiated with misonidazole. (author)

  19. EFIT fuel cycle analysis with the EQL3D procedure

    International Nuclear Information System (INIS)

    Krepel, Jiri; Mikityuk, Konstantin; Sarotto, Massimo; Artioli, Carlo

    2009-01-01

    Accelerator Driven Systems (ADS) represent one of the possible future strategies for Minor Actinides (MA) transmutation. EFIT - European Facility for Industrial Transmutation is a 400 MWth ADS designed in the future of EUROTRANS project. It is fuelled by MA and Pu embedded in the inert Mg matrix, cooled by lead (673-753 K), and driven by an accelerator, which provides 15 mA current of 800 MeV protons. The subcritical core is divided into three radial zones, which differ in pin diameter or inert matrix percentage. This design flattens the flux distribution and enables to maximize the power density. (author)

  20. Increase in physical activities in kindergarten children with cerebral palsy by employing MaKey-MaKey-based task systems.

    Science.gov (United States)

    Lin, Chien-Yu; Chang, Yu-Ming

    2014-09-01

    In this study, we employed Flash- and Scratch-based multimedia by using a MaKey-MaKey-based task system to increase the motivation level of children with cerebral palsy to perform physical activities. MaKey MaKey is a circuit board that converts physical touch to a digital signal, which is interpreted by a computer as a keyboard message. In this study, we used conductive materials to control this interaction. This study followed single-case design using ABAB models in which A indicated the baseline and B indicated the intervention. The experiment period comprised 1 month and a half. The experimental results demonstrated that in the case of two kindergarten children with cerebral palsy, their scores were considerably increased during the intervention phrases. The developmental applications of the results are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. MaRIE Undulator & XFEL Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Laboratory; Marksteiner, Quinn R. [Los Alamos National Laboratory; Anisimov, Petr Mikhaylovich [Los Alamos National Laboratory; Buechler, Cynthia Eileen [Los Alamos National Laboratory

    2015-03-23

    The 22 slides in this presentation treat the subject under the following headings: MaRIE XFEL Performance Parameters, Input Electron Beam Parameters, Undulator Design, Genesis Simulations, Risks, and Summary It is concluded that time-dependent Genesis simulations show the MaRIE XFEL can deliver the number of photons within the required bandwidth, provided a number of assumptions are met; the highest risks are associated with the electron beam driving the XFEL undulator; and risks associated with the undulator and/or distributed seeding technique may be evaluated or retired by performing early validation experiments.

  2. [Ma2 antibody and multiple mononeuropathies].

    Science.gov (United States)

    Ayrignac, X; Castelnovo, G; Landrault, E; Fayolle, H; Pers, Y-M; Honnorat, J; Campello, C; Figarella-Branger, D; Labauge, P

    2008-01-01

    Anti-Ma2 antibodies belong to a family of onconeuronal antibodies that target proteins expressed in brain, testis and several tumors. Previously observed in patients presenting with limbic encephalitis, they seem to be associated with several other paraneoplastic syndromes. We report the case of a 73-year-old woman presenting sensory and motor neuropathy associated with non-small-cell lung cancer who had Ma2-antibodies.

  3. Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization

    Science.gov (United States)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-03-01

    The Inconel-718 is one of the most demanding advanced engineering materials because of its superior quality. The conventional machining techniques are facing many problems to cut intricate profiles on these materials due to its minimum thermal conductivity, minimum elastic property and maximum chemical affinity at magnified temperature. The laser beam cutting is one of the advanced cutting method that may be used to achieve the geometrical accuracy with more precision by the suitable management of input process parameters. In this research work, the experimental investigation during the pulsed Nd:YAG laser cutting of Inconel-718 has been carried out. The experiments have been conducted by using the well planned orthogonal array L27. The experimentally measured values of different quality characteristics have been used for developing the second order regression models of bottom kerf deviation (KD), bottom kerf width (KW) and kerf taper (KT). The developed models of different quality characteristics have been utilized as a quality function for single-objective optimization by using particle swarm optimization (PSO) method. The optimum results obtained by the proposed hybrid methodology have been compared with experimental results. The comparison of optimized results with the experimental results shows that an individual improvement of 75%, 12.67% and 33.70% in bottom kerf deviation, bottom kerf width, and kerf taper has been observed. The parametric effects of different most significant input process parameters on quality characteristics have also been discussed.

  4. [Anti-Ma2-associated encephalitis and paraneoplastic limbic encephalitis].

    Science.gov (United States)

    Yamamoto, Tomotaka; Tsuji, Shoji

    2010-08-01

    Anti-Ma2-associated encephalitis (or anti-Ma2 encephalitis) is a paraneoplastic neurological syndrome (PNS) characterized by isolated or combined limbic, diencephalic, or brainstem dysfunction. Anti-Ma2 antibodies detected in the serum or cerebrospinal fluid of patients are highly specific for this disease entity and belong to a group of well-characterized onconeuronal antibodies (or classical antibodies). The corresponding antigen, Ma2 is selectively expressed intracellularly in neurons and tumors as is the case with other onconeuronal antigens targeted by classical antibodies. However, in most cases the clinical pictures are different from those of classical PNS and this creates a potential risk of underdiagnosis. Although limbic dysfunction is the most common manifestation in patients with anti-Ma2 encephalitis which is one of the major causes of paraneoplastic limbic encephalitis (LE), it has been reported that less than 30% of the patients with anti-Ma2 LE exhibit clinical presentations typical of the classical description of LE. Of the remaining, many exhibit excessive daytime sleepiness, vertical ophthalmoparesis, or both associated with LE, because of frequent involvement of the diencephalon and/or upper brainstem. Anti-Ma2 LE can also be manifested as a pure psychiatric disturbance such as obsessive-compulsive disorder in a few cases. Some patients develop mesodiencephalic encephalitis with minor involvement of the limbic system, and some may manifest severe hypokinesis. About 40% of the patients with anti-Ma2 antibodies also have antibodies against different epitopes on Ma1, a homologue of Ma2. These patients may have predominant cerebellar and/or brainstem dysfunctions due to more extensive involvement of subtentorial structures. Anti-Ma2 encephalitis is outstanding among other PNS associated with classical antibodies in that the response rate to treatment is relatively high. While it can cause severe neurological deficits or death in a substantial

  5. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy

    Directory of Open Access Journals (Sweden)

    Moukrane Dehmas

    2011-01-01

    Full Text Available Inconel 718 is widely used because of its ability to retain strength at up to 650∘C for long periods of time through coherent metastable  Ni3Nb precipitation associated with a smaller volume fraction of  Ni3Al precipitates. At very long ageing times at service temperature,  decomposes to the stable Ni3Nb phase. This latter phase is also present above the  solvus and is used for grain control during forging of alloy 718. While most works available on precipitation have been performed at temperatures below the  solvus, it appeared of interest to also investigate the case where phase precipitates directly from the fcc matrix free of  precipitates. This was studied by X-ray diffraction and transmission electron microscopy (TEM. TEM observations confirmed the presence of rotation-ordered domains in plates, and some unexpected contrast could be explained by double diffraction due to overlapping phases.

  6. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  7. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis.

    Science.gov (United States)

    Overeem, S; Dalmau, J; Bataller, L; Nishino, S; Mignot, E; Verschuuren, J; Lammers, G J

    2004-01-13

    Idiopathic narcolepsy is associated with deficient hypocretin transmission. Narcoleptic symptoms have recently been described in paraneoplastic encephalitis with anti-Ma2 antibodies. The authors measured CSF hypocretin-1 levels in six patients with anti-Ma2 encephalitis, and screened for anti-Ma antibodies in patients with idiopathic narcolepsy. Anti-Ma autoantibodies were not detected in patients with idiopathic narcolepsy. Four patients with anti-Ma2 encephalitis had excessive daytime sleepiness; hypocretin-1 was not detectable in their cerebrospinal fluid, suggesting an immune-mediated hypocretin dysfunction.

  8. PuMA: the Porous Microstructure Analysis software

    Science.gov (United States)

    Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.

    2018-01-01

    The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.

  9. Model for Analysis of Energy Demand (MAED-2)

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  10. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    Science.gov (United States)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  11. Precipitation and clustering in the early stages of ageing in Inconel 718

    International Nuclear Information System (INIS)

    Alam, Talukder; Chaturvedi, Mahesh; Ringer, Simon P.; Cairney, Julie M.

    2010-01-01

    Research highlights: → IN718 could be age hardened rapidly by secondary phase formation. → Co-located phases were observed in the earliest stage of detection. → Clustering of Ti/Al and Nb atoms was observed prior to precipitation. - Abstract: In this report we investigate the onset and evolution of precipitation in the early stages of ageing in the alloy WE 91, a variant of the Ni-Fe-Cr superalloy Inconel 718 (IN718). Transmission electron microscopy and atom probe tomography were used to study the size and volume fraction of γ' and γ'' precipitates and the extent of pre-precipitate clustering of Al/Ti and Nb. Co-located γ' and γ'' precipitates were observed from the shortest ageing times that precipitates could be visualised using atom probe. At shorter times, prior to the observation of precipitates, clustering of Al/Ti and Nb was shown to occur. The respective volume fraction of the γ' and γ'' precipitates and the clustering of Al/Ti and Nb suggest that γ'' nucleates prior to γ' during ageing at 706 deg. C for this alloy.

  12. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy

    Science.gov (United States)

    Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz

    2016-01-01

    The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.

  13. Application of laser ultrasonics to monitor microstructure evolution in Inconel 718 superalloy

    Directory of Open Access Journals (Sweden)

    Garcin Thomas

    2014-01-01

    Full Text Available Laser ultrasonics for metallurgy is an innovative sensor dedicated to the measurement of microstructure evolution during thermomechanical processing. In this technique, broadband ultrasound pulses are generated and detected with lasers. The properties of the ultrasounds are then related to the characteristics of the microstructure. Ultrasound attenuation is primary originated by the scattering at grain boundaries and its frequency dependence can be related to the grain size. The present work aims to introduce this technology as an exciting tool for metallurgists. As an illustration of its capability, the evolution of the grain size during isothermal annealing from a fine grained structure is in-situ monitored in an Inconel 718 superalloy. Laser ultrasonic measurements are compared with ex-situ metallography observations. Indication of heterogeneous grain growth is observed, correlated to the dissolution of δ-phase particles present in the initial structure. This preliminary study illustrates the potential of this new technique to monitor microstructure evolution in more complex scenarios including recrystallization during simulation of hot forging processes.

  14. Cinéma en France

    Directory of Open Access Journals (Sweden)

    Michel VIGOUROUX

    1992-06-01

    Full Text Available Le cinéma est l’objet de bases de données exhaustives sur les équipements et les fréquentations. Les données sur les salles permettent d’identifier le phénomène de concentration de propriété et d’exploitation. La perspective dynamique peut être observée sur 45 ans. À l’échelle régionale, on peut apprécier le dynamisme du cinéma en haute montagne alpine et la différence de réseaux sur le territoire (France de l’Ouest.

  15. Echt und modern? Diskurse über Männlichkeit

    Directory of Open Access Journals (Sweden)

    Florian Kahofer

    2014-09-01

    Full Text Available Der vorliegende Artikel befasst sich mit Repräsentationen von Männlichkeit im österreichischen Lifestyle-Magazin für Männer Wiener. Durch eine korpusbasierte Diskursanalyse wird ein umfassendes Korpus aller Ausgaben des Wieners von Anfang 2002 bis Ende 2012 untersucht. Auf theoretischer Ebene wird dabei eine Verbindung von Kritischer Männlichkeitsforschung (KMF und Feministisch Kritischer Diskursanalyse (FCDA unternommen. Es werden aktuelle Veröffentlichungen zu Kritischer Diskursanalyse und Männlichkeit vorgestellt und diskutiert. Durch den Einsatz einer Konkordanzsoftware werden Konkordanzen des Nomens MANN analysiert. Diese werden allerdings insofern eingeschränkt betrachtet, als nur Nominationen in der Form der häufigsten Adjektiv-Konstruktionen untersucht werden. Die Ergebnisse zeigen, dass neben den Diskursen über Krise und Neue Männlichkeit Themen wie Alter, Körper oder Beziehung auftauchen. Männlichkeit wird als ambivalent und vielfältig dargestellt. Deutungskämpfe um Männlichkeit lassen sich ausmachen.

  16. Treatment of anti-Ma2/Ta paraneoplastic syndrome.

    Science.gov (United States)

    Kraker, Jessica

    2009-01-01

    The paraneoplastic syndrome caused by Ma2/Ta antibodies alone (not in conjunction with Ma1 or Ma3 antibodies) varies in presentation from classic limbic encephalitis. The Ma2 syndrome may present with symptoms referable to the brainstem, diencephalon, and limbic system. These clinical symptoms are accompanied by MRI changes and abnormal electroencephalographic findings. It is important to recognize when the encephalitic syndrome is secondary to Ma2 paraneoplastic antibodies, as the patients improve or stabilize most often when the underlying carcinoma is treated. Treatment of the paraneoplastic syndrome begins with recognition of the symptoms, such as memory impairment, seizures, sleep disturbances, bradykinesia or hypokinesia, and eye movement abnormalities. If a primary tumor is discovered during the workup, it should be removed and treated with the most up-to-date oncologic treatment available. In addition to oncologic treatment, the syndrome may be treated with an immunosuppressant regimen to optimize the neurologic outcome. Leaving the patient untreated will result in decline and eventual death from the cancer itself or from complications of the paraneoplastic syndrome.

  17. Compter mes jours : recherche explorant l'espace entre ma pratique artistique et ma pratique comptable

    OpenAIRE

    Picard, Julie

    2017-01-01

    Cette recherche propose d’investiguer l’espace entre ma pratique artistique et ma pratique comptable à travers une approche qui déploie des activités de recherches théoriques sur l’art, des activités de recherches théoriques en comptabilité, la réalisation d’un protocole de création en atelier, et la prestation d’une conférence. L’approche flexible, multifocale et exploratoire adoptée se situe en affinité avec Intermedia, développé par Dick Higgins. Partant de ces deux figures type d’oppositi...

  18. Examination And Detecting Discontinuities In The Austenite Inconel 625 Layer Used On The Sheet Pile Walls Of The Boiler’s Evaporator To Utilize Waste Thermally

    Directory of Open Access Journals (Sweden)

    Słania J.

    2015-09-01

    Full Text Available There are practical aspects of a quality control of the Inconel 625 surfacing weld in terms of undergone examinations and detected defects in chapter three of the article. Visual inspections, examinations of the thickness of the surfacing weld, examinations of an iron content on the surface of the surfacing weld and detecting surface cracks are described. A process of undergone practical examinations is presented.

  19. Synthesis of 9,9,9-trideutero-1,4-dihydroxynonane mercapturic acid (d3-DHN-MA), a useful internal standard for DHN-MA urinalysis.

    Science.gov (United States)

    Chantegrel, B; Deshayes, C; Doutheau, A; Steghens, J P

    2002-10-01

    Racemic 1,4-dihydroxynonane mercapturic acid (DHN-MA) and 9,9,9-trideutero-1,4-dihydroxynonane mercapturic acid (d3-DHN-MA) are synthesized on a 400-mg scale (overall yield approximately 40%) by a two-step sequence involving Michael addition of N-acetyl-L-cysteine to methyl 4-hydroxynon-2(E)-enoate or methyl 9,9,9-trideutero-4-hydroxynon-2 (E)-enoate, followed by reduction of the intermediate adducts with lithium borohydride. The requisite starting methyl esters are obtained, respectively, from heptanal or 7,7,7-trideuteroheptanal and methyl 4-chlorophenylsulfinylacetate via a sulfoxide piperidine and carbonyl reaction described in the literature. The 7,7,7-trideuteroheptanal is easily prepared by classical methods in four steps from 6-bromo-1-hexanol. 13C NMR data indicate that DHN-MA as well as d3-DHN-MA are obtained as mixtures of four diastereomers. Preliminary results show that d3-DHN-MA could be used as an internal standard for mass spectrometric quantification of DHN-MA in human urine.

  20. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  1. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kanagarajah, P., E-mail: p.kanagarajah@uni-paderborn.de [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Brenne, F. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Niendorf, T. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47-49, 33098 Paderborn (Germany); Maier, H.J. [Direct Manufacturing Research Center (DMRC), Mersinweg 3, 33098 Paderborn (Germany); Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany)

    2013-12-20

    Nickel-based superalloys, such as Inconel 939, are a long-established construction material for high-temperature applications and profound knowledge of the mechanical properties for this alloy produced by conventional techniques exists. However, many applications demand for highly complex geometries, e.g. in order to optimize the cooling capability of thermally loaded parts. Thus, additive manufacturing (AM) techniques have recently attracted substantial interest as they provide for an increased freedom of design. However, the microstructural features after AM processing are different from those after conventional processing. Thus, further research is vital for understanding the microstructure-processing relationship and its impact on the resulting mechanical properties. The aim of the present study was to investigate Inconel 939 processed by selective laser melting (SLM) and to reveal the differences to the conventional cast alloy. Thorough examinations were conducted using electron backscatter diffraction, transmission electron microscopy, optical microscopy and mechanical testing. It is demonstrated that the microstructure of the SLM-material is highly influenced by the heat flux during layer-wise manufacturing and consequently anisotropic microstructural features prevail. An epitaxial grain growth accounts for strong bonding between the single layers resulting in good mechanical properties already in the as-built condition. A heat treatment following SLM leads to microstructural features different to those obtained after the same heat treatment of the cast alloy. Still, the mechanical performance of the latter is met underlining the potential of this technique for producing complex parts for high temperature applications.

  2. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3.

    Science.gov (United States)

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([ 11 C]MA2) and a fluorine-18 ([ 18 F]MA3) labeled analog of a highly potent N -arylamide oxadiazole CB2 agonist (EC 50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC 50 : 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for h CB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC 50 values when compared to the originally reported trifluoromethyl analog 12 . [ 11 C]MA2 and [ 18 F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [ 11 C]MA2 and [ 18 F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  3. Aspectos metalúrgicos de revestimentos dissimilares com a superliga à base de níquel inconel 625 Metallurgical aspects of dissimilar weld overlays of inconel 625 nickel based superalloys

    Directory of Open Access Journals (Sweden)

    Cleiton Carvalho Silva

    2012-09-01

    Full Text Available Prolongar a vida útil e aumentar a confiabilidade de equipamentos e tubulações de plantas de produção e processamento de petróleo é uma busca constante no setor de petróleo e gás. Tais aspectos dependem essencialmente do uso de ligas resistentes à corrosão. Neste contexto, a soldagem de revestimento com superligas à base de níquel tem sido uma alternativa interessante, pois confere aos equipamentos uma alta resistência à corrosão com um custo inferior, se comparado à fabricação de componentes ou tubulações maciças com superligas. Assim, o objetivo do presente trabalho foi investigar o comportamento metalúrgico de revestimento de superliga à base de níquel do tipo Inconel 625 depositados pelo processo TIG com alimentação de arame frio. As soldagens foram realizadas em uma bancada robotizada, empregando uma fonte eletrônica de soldagem com sistema de aquisição de dados para o monitoramento dos sinais de corrente e tensão. A caracterização microestrutural foi realizada através das técnicas de microscopia eletrônica de varredura (MEV e transmissão (MET, espectroscopia de energia dispersiva de raios-X (EDS. Os resultados mostraram que a microestrutura do metal de solda foi constituída por uma matriz γ com fases secundárias ricas em Nb. Foi encontrada a formação de precipitados complexos de carbonetos/nitretos de Ti e Nb.To extend the life and reliability of pipes and equipment in oil & gas production and processing settings is a continuous demand. These aspects are essentially dependent on corrosion resistant alloys used. In this context, the weld overlay with Ni-based superalloys is a great interesting alternative, since improve the corrosion resistance without increase the cost of manufacture when compared to massive equipment. Thus, the objective of this study was to evaluate the metallurgical aspects of Inconel 625 weld overlays deposited by GTAW cold wire feed process. The welds were performed using a

  4. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    International Nuclear Information System (INIS)

    Madariaga, A.; Esnaola, J.A.; Arrazola, P.J.; Ruiz-Hervias, J.; Muñoz, P.; Ostolaza, K.

    2015-01-01

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  5. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, A., E-mail: amadariaga@mondragon.edu [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Esnaola, J.A.; Arrazola, P.J. [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Ruiz-Hervias, J.; Muñoz, P. [Departamento Ciencia de Materiales, ETSI Caminos, Universidad Politécnica de Madrid, c/Profesor Aranguren s/n, Madrid 28040 (Spain); Ostolaza, K. [Materials and Processes Technology Department, ITP S.A., Parque Tecnológico, Edificio 300, 48170 Zamudio (Spain)

    2015-01-03

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  6. Oxide films in laser additive manufactured Inconel 718

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M.

    2013-01-01

    A continuous-wave 5 kW fiber laser welding system was used in conduction mode to deposit Inconel® alloy 718 (IN718) by employing filler wire on as-serviced IN718 parent material (PM) substrates. The direct laser deposited (DLD) coupons and as-serviced IN718 PM were then evaluated through tensile testing. To understand the failure mechanisms, the tensile fracture surfaces of the as-serviced IN718 PM, DLD and DLD-PM samples were analyzed using scanning electron microscopy. The fracture surfaces revealed the presence of both Al 2 O 3 and Cr 2 O 3 films, although the latter was reasoned to be the main oxide in IN718. Both the experimental observations and thermodynamic analysis indicated that oxidation of some alloying elements in IN718 cannot be completely avoided during manufacturing, whether in the liquid state under vacuum (for casting, the electron beam melting, welding and/or deposition) or with inert gas protection (for welding or laser deposition). The exposed surface of the oxide film on the fracture surface has poor wetting with the metal and thus can constitute a lack of bonding or a crack with either the metal and/or another non-wetted side of the oxide film. On the other hand, the wetted face of the oxide film has good atom-to-atom contact with the metal and may nucleate some intermetallic compounds, such as Laves, Ni 3 Nb-δ, Nb-rich MC and γ′ compounds. The potential of their nucleation on Cr 2 O 3 was assessed using planar disregistry. Coherent planes were found between these intermetallics and Cr 2 O 3

  7. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  8. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  9. Development of the advanced nuclear materials -Development of Inconel alloys-

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Chang, Jin Sung; Lee, Chang Kyu; Park, Soon Dong; Kim, Woo Kon; Jeong, Man Kyo; Woo, Yoon Myung; Han, Chang Hee

    1995-07-01

    The performance and the integrity of the steam generator U-tubes directly affects the efficiency and economics of nuclear power plant because they are closely interrelated with the maintenance and repair. Also the steam generator U-tubes have been one of world-wide hot issues in nuclear power plants for long time because of their continuing corrosion-related degradation. Right after stress corrosion cracking of Alloy 600 tubes are reported at primary side, in which the environment is believed to be tightly controlled all the time, in mid 80's, alloy 690 has started to replace alloy 600. Alloy 690 is basically same with alloy 600 except more Cr content. Firstly minor elements in alloy 690 (C, B, N, Y, Mo) were added or controlled to improve hot workability and corrosion resistance. It would be much more desirable if the mechanism or basic understanding of the degradation phenomena of steam generator U-tubes in operation conditions can be illuminated through the alloy modification research. Alloy 600 tubes which were preproduced in cooperation with Sammi Special Steel were evaluated, being compared with imported one. Also alloy 600 and alloy 690 tubes were produced from Inconel 600 and 690 INCO- forged bar. These will be closely evaluated with purely Korean-made alloy 600 and 690 tubes. 22 tabs., 93 figs., 14 refs. (Author)

  10. Synthesis, biodistribution and in vitro evaluation of brain permeable high affinity type 2 cannabinoid receptor agonists [11C]MA2 and [18F]MA3

    Directory of Open Access Journals (Sweden)

    Muneer Ahamed

    2016-09-01

    Full Text Available Abstract The type 2 cannabinoid receptor (CB2 is a member of the endocannabinoid system and is known for its important role in (neuroinflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2 and a fluorine-18 ([18F]MA3 labeled analogue of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM. MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analogue 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  11. Aluminizing of steel 316L and the nickel-base alloy inconel 625 and followed by a high-temperature oxidation process

    International Nuclear Information System (INIS)

    Skokanova, P.; Glasbrenner, H.; Zimmermann, H.

    1995-03-01

    The supercritical water oxidation process of hazardous waste has to be carried out in a reactor which is resistant against corrosion and high pressure and temperature. Pressure tube materials are coated for protection against corrosion. In this work, the reactor materials Inconel 625 and steel 316L have been powder pack aluminized. These coated specimens were subsequently oxidized. Powder mixtures of different composition were tested, time and temperature of the coating and the oxidation processes were varied. Good results were obtained on the steel 316L in respect to thickness of the layer, composition, and adherence on the steel. (orig.)

  12. Effect of Sulfur and Chlorine on Fireside Corrosion Behavior of Inconel 740 H Superalloy

    Science.gov (United States)

    Jin-tao, Lu; Yan, Li; Zhen, Yang; Jin-yang, Huang; Ming, Zhu; Gu, Y.

    2018-03-01

    Fireside corrosion behavior of Inconel 740H superalloy was studied at 750 °C in simulated coal ash/flue gas environments by means of XRD, SEM and EDS. The results indicated that the corrosion behavior was strongly related to the SO2 levels and was significantly affected by NaCl additions. In presence of the atmospheres with 0.1 % SO2, the alloy exhibited the highest corrosion resistance due to formation of a stable and dense Cr2O3 film. In presence of the atmosphere with 1.5 % SO2, however, a non-coherent and porous Cr2O3 film was formed. The thickness of film and internal sulfides were substantially increased. The NaCl additions significantly accelerated the corrosion process. A non-protective outer oxide film was formed, composed by multiple layers with serious inner sulfide and spallation. The depths of internal oxidizing and sulfuration zones were significantly increased. The mechanism of ash corrosion formation was also discussed.

  13. The HectoMAP Cluster Survey. I. redMaPPer Clusters

    Science.gov (United States)

    Sohn, Jubee; Geller, Margaret J.; Rines, Kenneth J.; Hwang, Ho Seong; Utsumi, Yousuke; Diaferio, Antonaldo

    2018-04-01

    We use the dense HectoMAP redshift survey to explore the properties of 104 redMaPPer cluster candidates. The redMaPPer systems in HectoMAP cover the full range of richness and redshift (0.08 systems included in the Subaru/Hyper Suprime-Cam public data release are bona fide clusters. The median number of spectroscopic members per cluster is ∼20. We include redshifts of 3547 member candidates listed in the redMaPPer catalog whether they are cluster members or not. We evaluate the redMaPPer membership probability spectroscopically. The purity (number of real systems) in redMaPPer exceeds 90% even at the lowest richness. Three massive galaxy clusters (M ∼ 2 × 1013 M ⊙) associated with X-ray emission in the HectoMAP region are not included in the public redMaPPer catalog with λ rich > 20, because they lie outside the cuts for this catalog.

  14. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal

    Science.gov (United States)

    Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun

    2018-02-01

    We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.

  15. Mass and Reliability System (MaRS)

    Science.gov (United States)

    Barnes, Sarah

    2016-01-01

    The Safety and Mission Assurance (S&MA) Directorate is responsible for mitigating risk, providing system safety, and lowering risk for space programs from ground to space. The S&MA is divided into 4 divisions: The Space Exploration Division (NC), the International Space Station Division (NE), the Safety & Test Operations Division (NS), and the Quality and Flight Equipment Division (NT). The interns, myself and Arun Aruljothi, will be working with the Risk & Reliability Analysis Branch under the NC Division's. The mission of this division is to identify, characterize, diminish, and communicate risk by implementing an efficient and effective assurance model. The team utilizes Reliability and Maintainability (R&M) and Probabilistic Risk Assessment (PRA) to ensure decisions concerning risks are informed, vehicles are safe and reliable, and program/project requirements are realistic and realized. This project pertains to the Orion mission, so it is geared toward a long duration Human Space Flight Program(s). For space missions, payload is a critical concept; balancing what hardware can be replaced by components verse by Orbital Replacement Units (ORU) or subassemblies is key. For this effort a database was created that combines mass and reliability data, called Mass and Reliability System or MaRS. The U.S. International Space Station (ISS) components are used as reference parts in the MaRS database. Using ISS components as a platform is beneficial because of the historical context and the environment similarities to a space flight mission. MaRS uses a combination of systems: International Space Station PART for failure data, Vehicle Master Database (VMDB) for ORU & components, Maintenance & Analysis Data Set (MADS) for operation hours and other pertinent data, & Hardware History Retrieval System (HHRS) for unit weights. MaRS is populated using a Visual Basic Application. Once populated, the excel spreadsheet is comprised of information on ISS components including

  16. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  17. Millennium Ecosystem Assessment: MA Biodiversity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Biodiversity provides data and information on amphibians, disease agents (extent and distribution of infectious and parasitic...

  18. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK... policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  19. Radiation blistering in Inconel-625 due to 100 KeV helium ion irradiation

    International Nuclear Information System (INIS)

    Whitton, J.L.; Rao, A.S.; Kaminsky, M.

    1988-01-01

    The objective of this study was to determine whether the change of angle of incidence of an ion beam impinging on surface blisters during their growth phase (before exfoliation) could influence the blister skin thickness and the blister crater depth. Polished, polycrystalline Inconel-625 samples were irradiated at room temperature and at normal incidence to the major sample surface with 100 keV helium ions to a total dose of 6.24x10 18 ions/cm 2 . The results revealed that many exfoliated blisters leave craters which have two or three concentric pits. The blister skin thickness near the center of the blister was found to agree well with the calculated projected range of 100 keV He ions in nickel. However, the blister skin thickness of some exfoliated blisters along the edge of the fracture surface showed different thicknesses. A model is proposed to explain the observed blister crater/blister fracture features in terms of a change of angle of incidence of the incident ions to the surface during the growth phase of surface blisters. (orig.)

  20. High productivity machining of holes in Inconel 718 with SiAlON tools

    Science.gov (United States)

    Agirreurreta, Aitor Arruti; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde

    2016-10-01

    Inconel 718 is often employed in aerospace engines and power generation turbines. Numerous researches have proven the enhanced productivity when turning with ceramic tools compared to carbide ones, however there is considerably less information with regard to milling. Moreover, no knowledge has been published about machining holes with this type of tools. Additional research on different machining techniques, like for instance circular ramping, is critical to expand the productivity improvements that ceramics can offer. In this a 3D model of the machining and a number of experiments with SiAlON round inserts have been carried out in order to evaluate the effect of the cutting speed and pitch on the tool wear and chip generation. The results of this analysis show that three different types of chips are generated and also that there are three potential wear zones. Top slice wear is identified as the most critical wear type followed by the notch wear as a secondary wear mechanism. Flank wear and adhesion are also found in most of the tests.

  1. M&A information technology best practices

    CERN Document Server

    Roehl-Anderson, Janice M

    2013-01-01

    Add value to your organization via the mergers & acquisitions IT function  As part of Deloitte Consulting, one of the largest mergers and acquisitions (M&A) consulting practice in the world, author Janice Roehl-Anderson reveals in M&A Information Technology Best Practices how companies can effectively and efficiently address the IT aspects of mergers, acquisitions, and divestitures. Filled with best practices for implementing and maintaining systems, this book helps financial and technology executives in every field to add value to their mergers, acquisitions, and/or divestitures via the IT

  2. Precipitation and clustering in the early stages of ageing in Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Talukder, E-mail: talukder.alam@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Chaturvedi, Mahesh [Department of Mechanical and Industrial Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 (Canada); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia)

    2010-11-15

    Research highlights: {yields} IN718 could be age hardened rapidly by secondary phase formation. {yields} Co-located phases were observed in the earliest stage of detection. {yields} Clustering of Ti/Al and Nb atoms was observed prior to precipitation. - Abstract: In this report we investigate the onset and evolution of precipitation in the early stages of ageing in the alloy WE 91, a variant of the Ni-Fe-Cr superalloy Inconel 718 (IN718). Transmission electron microscopy and atom probe tomography were used to study the size and volume fraction of {gamma}' and {gamma}'' precipitates and the extent of pre-precipitate clustering of Al/Ti and Nb. Co-located {gamma}' and {gamma}'' precipitates were observed from the shortest ageing times that precipitates could be visualised using atom probe. At shorter times, prior to the observation of precipitates, clustering of Al/Ti and Nb was shown to occur. The respective volume fraction of the {gamma}' and {gamma}'' precipitates and the clustering of Al/Ti and Nb suggest that {gamma}'' nucleates prior to {gamma}' during ageing at 706 deg. C for this alloy.

  3. 42 CFR 422.4 - Types of MA plans.

    Science.gov (United States)

    2010-10-01

    ... availability, service area, and quality. (ii) Coordinated care plans may include mechanisms to control... requirements of sections 138 and 220 of the Internal Revenue Code. (3) MA private fee-for-service plan. An MA... Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  4. Ma(d)skulinitet

    DEFF Research Database (Denmark)

    Leer, Jonatan

    Når tv-kokke som Jamie Oliver, Gordon Ramsay og brødrene Price toner frem på skærmen, laver de ikke kun mad. De mixer også maskulinitet. For når en mand laver mad, laver maden også manden. Det mener postdoc Jonatan Leer, der i Ma(ds)kulinitet. Kønskamp i tv-køkkenet præsenterer, hvordan og hvorfor...

  5. HoCaMA: Home Care Hybrid Multiagent Architecture

    Science.gov (United States)

    Fraile, Juan A.; Bajo, Javier; Abraham, Ajith; Corchado, Juan M.

    Home Care is one of the main objectives of Ambient Intelligence. Nowadays, the disabled and elderly population, which represents a significant part of our society, requires novel solutions for providing home care in an effective way. In this chapter, we present HoCaMA, a hybrid multiagent architecture that facilitates remote monitoring and care services for disabled patients at their homes. HoCaMA combines multiagent systems and Web services to facilitate the communication and integration with multiple health care systems. In addition, HoCaMA focuses on the design of reactive agents capable of interacting with different sensors present in the environment, and incorporates a system of alerts through SMS and MMS mobile technologies. Finally, it uses Radio Frequency IDentification and JavaCard technologies to provide advanced location and identification systems, as well as automatic access control facilities. HoCaMA has been implemented in a real environment and the results obtained are presented within this chapter.

  6. Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600

    International Nuclear Information System (INIS)

    Song, K.H.; Fujii, H.; Nakata, K.

    2009-01-01

    In order to evaluate the properties of a friction stir welded Ni base alloy, Inconel 600 (single phase type) was selected. Sound friction stir welds without weld defect were obtained at 150 and 200 mm/min in welding speed, however, a groove like defect occurred at 250 mm/min. The electron back scattered diffraction (EBSD) method was used to analyze the grain boundary character distribution. As a result, dynamic recrystallization was observed at all conditions, and the grain refinement was achieved in the stir zone, and it was gradually accelerated from 19 μm in average grain size of the base material to 3.4 μm in the stir zone with increasing the welding speed. It also has an effect on the mechanical properties so that friction stir welded zone showed 20% higher microhardness and 10% higher tensile strength than those of base material.

  7. Experience at the Los Alamos Meson Physics Facility with the use of alloy Inconel 718 as an enclosure for a beam degrader and as a proton beam entry window

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Brown, R.D.; Cedillo, C.M.; Zimmerman, E.

    1994-01-01

    Operation of the Los Alamos Meson Physics Facility (LAMPF) began in 1972 and continues at present. An injector delivers protons to a 0.8 kin long linear accelerator which produces a particle energy of 800 MeV; the protons are then transported to a variety of experimental areas. The proton beam is transported in a vacuum tube, controlled and bent by electromagnets. The highest intensity beam, at a maximum level of 1 mA, is delivered to the experimental area designated as Area A. At the end of the experimental area, the beam is transported through an interface between beamline vacuum and one atmosphere air pressure. This interface is made of metal and is generally referred to as a beam entry window. At LAMPF, after the beam has exited the vacuum tube, it becomes incident on a number of experiments or ''targets.'' These include capsules for radiation damage studies, a beam ''degrader'' for the long-term neutrino experiment, and as many nine targets in the Isotope Production (IP) stringer system used to produce medically significant isotopes. Following the IP system is a beam stop used for the purpose its name implies. The beam stop also contains a beam entry window, whose purpose is to separate the 250 psig water cooling environment from I atmosphere of air. The beam entry window, the beam degrader, and the beam stop window are made of alloy Inconel 718, have endured a lengthy irradiation service time at LAMPF, and are the subject of this report

  8. Millennium Ecosystem Assessment: MA Population

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Population data sets provide baseline population information as one of the drivers of ecosystem change. The data helped in...

  9. Microcap M&A: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Keith Turpie

    2014-06-01

    Full Text Available A substantial body of accounting and finance literature has been devoted to the study of Mergers and Acquisitions (M&As dominated by discussions relating to the gains and losses that accrue from transactions involving large public companies. This paper makes a unique contribution to the literature by investigating the M&A experience of microcap businesses. Transactions involving microcap M&A are substantially different to those involving large companies on a number of dimensions. This paper explores the determinants of microcap M&A success and pitfalls and problems from an integration perspective. Due to the paucity of research in the area an exploratory research design is employed, conducting interviews with five CEOs of companies that had each managed multiple transactions. We find microcap M&As are successful when measured against identified goals but generally take longer and cost more than expected. Further, culture and communication are key issues in determining success/failure. We also find the in-house management of integration aspects is problematic for these businesses and suggest this warrants further study.

  10. 46 CFR 308.517 - Open Cargo Policy, Form MA-300.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Open Cargo Policy, Form MA-300. 308.517 Section 308.517... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.517 Open Cargo Policy, Form MA-300. The standard form of War Risk Open Cargo, Form MA-300, may be obtained from the American War Risk...

  11. Changing the S and MA [Safety and Mission Assurance] Paradigm

    Science.gov (United States)

    Malone, Roy W., Jr.

    2010-01-01

    Objectives: 1) Optimize S&MA organization to best facilitate Shuttle transition in 2010, successfully support Ares developmental responsibilities, and minimize the impacts of the gap between last Shuttle flight and start of Ares V Project. 2) Improve leveraging of critical skills and experience between Shuttle and Ares. 3) Split technical and supervisory functions to facilitate technical penetration. 4) Create Chief Safety and Mission Assurance Officer (CSO) stand-alone position for successfully implementation of S&MA Technical Authority. 5) Minimize disruption to customers. 6) Provide early involvement of S&MA leadership team and frequent/open communications with S&MA team members and steak-holders.

  12. FİLMLERLE İLETİŞİM VE YABANCILAŞMA

    OpenAIRE

    ÖZTÜRK, Serdar

    2018-01-01

    Yabancılaşma konusu genellikle iktisadi, sosyolojik ve psikoloji boyutlarıyla tartışılmıştır. Oysa bir anlam paylaşımı olarak iletişim, yabancılaşmayla doğrudan ilişkilidir. Buna karşın iletişim ile yabancılaşma ilişkisini, analize filmleri de katarak inceleyen çok az çalışma bulunmaktadır. Bu çalışma, yabancılaşma kavramını tartışarak, yabancılaşmanın iletişim ile ilişkisini incelemektedir. Buna göre insanın kendi ürettiği sembollerine, medyanın üretim bölgesinde üretilen sembollere yabancıl...

  13. Alumni careers : MA Comparative European Social Studies Zuyd University

    OpenAIRE

    Riga, Albert

    2004-01-01

    In the preparation of the celebration of the 10th anniversary of the MA CESS all alumni were invited to participate in an alumni survey. The purpose of the survey was to thoroughly investigate the professional activities of MA CESS alumni and the way they build an alumni community. Another reason for starting the project is that it may play a part in maintaining and enhancing a mutually beneficial relationship between MA CESS and its alumni. All over Europe there are graduates working in the ...

  14. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  15. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes; Spectrometrie d`impedance electrochimique sur acier 316L, hastelloy, maraging inconel 600, elgiloy, acier au carbone, TiN, NiCr. Simulations en eau tritiee. 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs.

  16. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  17. Multiple performance optimization of electrochemical drilling of Inconel 625 using Taguchi based Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    N. Manikandan

    2017-04-01

    Full Text Available In this present investigation, a multi performance characteristics optimization based on Taguchi approach with Grey Relational Analysis (GRA is proposed for Electrochemical Drilling process on Inconel 625 material which is used for marine, nuclear, aerospace applications, especially in corrosive environments. Experimental runs have been planned as per Taguchi’s principle with three input machining variables such as feed rate, flow rate of electrolyte and concentration of electrolyte. Besides the material removal rate and surface roughness, the geometric measures such as overcut, form and orientation tolerance are included as performance measures in this investigation. Outcomes of the analysis show that the feed rate is the predominant variable for the desired performance characteristics. On establishing the desired performance measures and multiple regression models are developed to be used as predictive tools. The confirmation test also conducted to validate the results attained by GRA approach and affirmed that there is considerable improvement with the help of proposed approach.

  18. Multipass forging of Inconel 718 in the delta-Supersolvus domain: assessing and modeling microstructure evolution

    Directory of Open Access Journals (Sweden)

    Zouari Meriem

    2014-01-01

    Full Text Available This work is focused on the evolution of the microstructure of Inconel 718 during multi-pass forging processes. During the forming process, the material is subjected to several physical phenomena such as work-hardening, recovery, recrystallization and grain growth. In this work, transformation kinetics are modeled in the δ-Supersolvus domain (T>Tsolvus where the alloy is single-phase, all the alloying elements being dissolved into the FCC matrix. Torsion tests were used to simulate the forging process and recrystallization kinetics was modeled using a discontinuous dynamic recrystallization (DDRX two-site mean field model. The microstructure evolution under hot forging conditions is predicted in both dynamic and post-dynamic regimes based on the initial distribution of grain size and the evolution of dislocation density distribution during each step of the process. The model predicts recrystallization kinetics, recrystallized grain size distribution and stress–strain curve for different thermo-mechanical conditions and makes the connection between dynamic and post-dynamic regimes.

  19. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    Science.gov (United States)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  20. Comparative Analysis of Properties and Microstructure of the Plastically Deformed Alloy Inconel®718, Manufactured by Plastic Working and Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2016-03-01

    Full Text Available Nickel superalloys as Inconel® are materials widely used in the aerospace industry among others for diffusers, combustion chamber, shells of gas generators and other. In most cases, manufacturing process of those parts are used metal strips, produced by conventional plastic processing techniques, and thus by hot or cold rolling. An alternative technology allowing for manufacturing components for jet engines is the technique of 3D printing (additive manufacturing, and most of all Direct Metal Laser Sintering, which is one of the latest achievement in field of additive technologies.

  1. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.S., E-mail: yuzaisong@tpri.com.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China); Zhang, J.X. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Yuan, Y.; Zhou, R.C.; Zhang, H.J.; Wang, H.Z. [Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China)

    2015-05-14

    Inconel 718 was subjected to various heat treatments, i.e., solution heat treatment, standard ageing treatment and standard ageing plus 700 °C thermal exposure. The mechanical properties of the alloys were determined using tensile tests and Charpy pendulum impact tests at 650 °C and room temperature, respectively. The highest yield strength of 988 MPa was attained in the standard aged specimen, whereas a maximum impact toughness of 217 J cm{sup −2} was attained in the solution-treated specimen. After thermal exposure, the mechanical properties of the specimens degrade. Both the yield strength and impact toughness decreased monotonically with increasing thermal exposure time. Subjected to a 10000-h long-term thermal exposure, the yield strength dramatically decreased to 475 MPa (almost 50% of the maximum strength), and the impact toughness reduced to only 18 J cm{sup −2}. The microstructures of the specimens were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Coarsening of γ′ and γ″ and the transformation of γ″ to δ-Ni{sub 3}Nb was observed after thermal exposure. However, a complete transformation from metastable γ″ to δ-Ni{sub 3}Nb was never accomplished, even after the 10000-h long-term thermal exposure. Based on the obtained experimental results, the effects of the microstructural evolution on the mechanical properties are discussed.

  2. Experimental Physical Sciences Vistas: MaRIE (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack [Los Alamos National Laboratory

    2010-09-08

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materials science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national

  3. Effects of process variables on characteristics of Nd:YAG laser welds of Inconel 600

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee [Hanyang University, Seoul (Korea)

    1998-04-01

    This report described a basic study of the pulse shaping effects on weld dimension and weld discontinuities in the continuous seam welds of STS 310S using Nd:YAG laser. Further, laser weldability tests for STS 310S and Inconel 600 was carried out. Pulse shapes used in this experiment were general type, which has been applied generally in laser material processing, ramped-up type (3 steps) and ramped-down type (3 steps). The pulse energy was constant regardless of types of pulse shape. The penetration of laser welds became deeper as the pulse width was longer and the peak power was increased. The pulse of ramped-up type was most effective for deep penetration compared with others. With regard to the laser weldability and reduction of weld discontinuities such as porosity and hot cracking, the general type pulse was the worst and the ramped-down type pulse was the best among 3 types of pulse shape studied in this investigation. (author). 36 refs., 25 figs., 5 tabs.

  4. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718

    Directory of Open Access Journals (Sweden)

    WANG Ling

    2007-08-01

    Full Text Available The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718, under different cooling rates during directional solidification, were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  5. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal

    International Nuclear Information System (INIS)

    Jalilian, F.; Jahazi, M.; Drew, R.A.L.

    2006-01-01

    The influence of process parameters on microstructural characteristics of transient liquid phase (TLP) bonded Inconel 617 alloy was investigated. Experiments were carried out at 1065 deg. C using nickel based filler metal (Ni-4.5% Si-3% B) with B as the melting point depressant (MPD) element. Two different thickness of interlayer and various holding times were employed. The influence of these processing parameters on the characteristics of the joint area particularly size, morphology and composition of precipitates was investigated. The presence of MoB, Mo 2 B, M 23 C 6 , TiC, M 23 (B, C) 6 and Ni 3 B precipitates in the diffusion layer and Ni 3 B, Ni 3 Si and Ni 5 Si 2 precipitates in the interlayer at the interface between the base metal and interlayer were demonstrated using electron back scattered diffraction (EBSD), energy dispersive spectrometry (EDS) and TEM

  6. Texture and anisotropy of the mechanical properties of MA14 and MA2-1 alloys produced by granular metallurgy

    Science.gov (United States)

    Betsofen, S. Ya.; Konkevich, V. Yu.; Osintsev, O. E.; Avdyukhina, A. A.; Voskresenskaya, I. I.; Grushin, I. A.

    2015-10-01

    The contribution of texture to the anisotropy of the mechanical properties of semifinished products from MA14 and MA2-1 alloys prepared by capsule-free pressing of granules is quantitatively evaluated using inverse pole figures and calculated Taylor orientation factors for basal slip. It is shown that the texture intensity and the anisotropy of the mechanical properties of the pressed semiproducts are lower than those of the semiproducts from an ingot and the compressive yield strength is substantially higher.

  7. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  8. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  9. Large area imaging of forensic evidence with MA-XRF.

    Science.gov (United States)

    Langstraat, Kirsten; Knijnenberg, Alwin; Edelman, Gerda; van de Merwe, Linda; van Loon, Annelies; Dik, Joris; van Asten, Arian

    2017-11-08

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces like blood, semen, saliva, sweat and urine on fabric on the basis of Fe, Zn, K, Cl and Ca elemental signatures. With MA-XRF a new chemical contrast is introduced for human stain detection and this can provide a valuable alternative when the evidence item is challenging for conventional techniques. MA-XRF was also successfully employed for the chemical imaging and classification of gunshot residues (GSR). The full and non-invasive elemental mapping (Pb, Ba, Sr, K and Cl) of intact pieces of clothing allows for a detailed shooting incident reconstruction linking firearms and ammunition to point of impact and providing information on the shooting angle. In high resolution mode MA-XRF can even be used to provide information on the shooting order of different ammunition types. Finally, by using the surface penetration of X-rays we demonstrate that the lead signature of a bullet impact can be easily detected even if covered by multiple layers of wall paint or human blood.

  10. The repetitive flaking of Inconel 625 by 100 keV helium bombardment

    International Nuclear Information System (INIS)

    Whitton, J.L.; Chen, H.M.; Littmark, U.

    1981-01-01

    Repetitive flaking of Inconel 625 occurs with ion bombardment doses of > than 10 18 100 keV helium ions cm -2 , with up to 39 exfoliations being observed after bombardment with 3 x 10 19 ions cm -2 . The thickness of the flakes, measured by scanning electron microscopy, is some 30% greater than when measured by Rutherford backscattering (RBS) of 1.8 MeV helium ions. These RBS measurements compare well with the thickness of the remaining layers in the resultant craters and to the most probable range of the 100 keV helium. The area of the flakes is dictated by the grain boundaries, and when one flake is ejected, the adjacent grains are prevented from doing so since there now exists an escape route for the injected helium. A strong dose rate dependence is observed; decreasing the beam current from 640 μA cm -2 to 64 μA cm -2 results in a factor 20 fewer flakes being exfoliated (for the same total dose of 3 x 10 19 ions cm -2 ). Successive flakes decrease in area, suggesting that eventually a cratered, but stable, surface will result with the only erosion being by the much less effective mechanism of sputtering. (orig.)

  11. Large area imaging of forensic evidence with MA-XRF

    NARCIS (Netherlands)

    Langstraat, K.; Knijnenberg, A.; Edelman, G.; van de Merwe, L.; van Loon, A.; Dik, J.; van Asten, A.

    2017-01-01

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces

  12. Large area imaging of forensic evidence with MA-XRF

    NARCIS (Netherlands)

    Langstraat, Kirsten; Knijnenberg, Alwin; Edelman, Gerda; Van De Merwe, Linda; van Loon, A.; Dik, J.; van Asten, Arian C.

    2017-01-01

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces

  13. Separation of minor actinides from a genuine MA/LN fraction

    International Nuclear Information System (INIS)

    Satmark, B.; Courson, O.; Malmbeck, R.; Pagliosa, G.; Romer, K.; Glatz, J.P.

    2001-01-01

    Separation of the trivalent Minor Actinides (MA), Am and Cm, has been performed from a genuine MA(III) + Ln(III) solution using Bis-Triazine-Pyridine (BTP) as organic extractant. The representative MA/Ln fraction was obtained from a dissolved commercial LWR fuel (45.2 GWd/tM) submitted subsequently too a PUREX process followed by a DIAMEX process. A centrifugal extractor set-up (16-stages), working in a continuous counter-current mode, was used for the liquid-liquid separation. In the nPr-BTP process, feed decontamination factors for Am and Cm above 96 and 65, respectively were achieved. The back-extraction was more efficient for Am (99.1% recovery) than for Cm (97.5%). This experiment, using the Bis-Triazine-Pyridine molecule is the first successful demonstration of the separation of MA from lanthanides in a genuine MA/Ln fraction with a nitric acid concentration of ca. 1 M. It represents an important break through in the difficult field of minor actinide partitioning of high level liquid waste. (author)

  14. Diet of Theropithecus from 4 to 1 Ma in Kenya.

    Science.gov (United States)

    Cerling, Thure E; Chritz, Kendra L; Jablonski, Nina G; Leakey, Meave G; Manthi, Fredrick Kyalo

    2013-06-25

    Theropithecus was a common large-bodied primate that co-occurred with hominins in many Plio-Pleistocene deposits in East and South Africa. Stable isotope analyses of tooth enamel from T. brumpti (4.0-2.5 Ma) and T. oswaldi (2.0-1.0 Ma) in Kenya show that the earliest Theropithecus at 4 Ma had a diet dominated by C4 resources. Progressively, this genus increased the proportion of C4-derived resources in its diet and by 1.0 Ma, had a diet that was nearly 100% C4-derived. It is likely that this diet was comprised of grasses or sedges; stable isotopes cannot, by themselves, give an indication of the relative importance of leaves, seeds, or underground storage organs to the diet of this primate. Theropithecus throughout the 4- to 1-Ma time range has a diet that is more C4-based than contemporaneous hominins of the genera Australopithecus, Kenyanthropus, and Homo; however, Theropithecus and Paranthropus have similar proportions of C4-based resources in their respective diets.

  15. Avatares tántricos de Râma

    OpenAIRE

    Muñoz, Adrián

    2009-01-01

    Si bien el poema épico del Râmâyana es considerado como uno de los pilares literarios del hinduismo, no se trata de un texto fijo, pues la trama ha generado diversas versiones alternas en el sur y el sureste asiáticos. Al mismo tiempo, aunque Râma representa ideales sociales fundamentales para la ortodoxia hinduista, otras corrientes religiosas no ortodoxas han recurrido a y adaptado la figura de Râma. Este ensayo busca valorar en particular las manifestaciones tántricas y pseudo-tántrica...

  16. Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds

    Science.gov (United States)

    Senthur Prabu, S.; Devendranath Ramkumar, K.; Arivazhagan, N.

    2017-11-01

    In the present investigation an attempt has been made to join the dissimilar combination of Inconel 625 super alloy and super austenitic stainless steel (AISI 904L) using manual multi-pass continuous current gas tungsten arc (CCGTA) welding processes. Two different filler wires such as ERNiCrMo-4 and ERNiCrCoMo-1 have been used to compare the metallurgical properties of these welded joints. Both optical microscopy and scanning electron microscopy techniques were adopted to disseminate the microstructure traits of these weldments. Formation of secondary phases at the HAZ and weld interface of AISI 904L was witnessed while using the ERNiCrCoMo-1 filler, along with Solidification Grain Boundary (SGB) and Migrated Grain Boundary (MGB) were also observed at the weld zone.

  17. BaMa / Raivo Juurak

    Index Scriptorium Estoniae

    Juurak, Raivo, 1949-

    2002-01-01

    Eesti ülikoolide üleminekust 3+2 süsteemile. Lühend BaMa on tulnud kasutusele seoses Euroopa ülikoolide õppekavade reformimisega ning tähistab õppekava, kus esimese astme läbimise järel omandatakse bakalaureuse- ja teise järel magistrikraad. Õppekavade tüüpidest Eesti ja Euroopa Liidu kõrgkoolides ning Bologna deklaratsioonist

  18. Impact of M&A on the Employment in Japanese Companies

    OpenAIRE

    Hiroyuki Taguchi; Taichi Yanagawa; Masashi Harita

    2012-01-01

    With utilizing Financial Statements Statistics of Corporation by Industry, we analyzed the impact of M&A on the employment in Japanese companies. In this study, the impact of M&A on the employment was extracted by developing panel data for fiscal year 1995 to 2008 targeting 9,880 sample companies including 3,697 cases of M&A to estimate a labor demand model. Major findings of the study are described below. First, dynamically positive effect was confirmed mainly in the manufacturing industry a...

  19. Convective removal of the Tibetan Plateau mantle lithosphere by 26 Ma

    Science.gov (United States)

    Lu, Haijian; Tian, Xiaobo; Yun, Kun; Li, Haibing

    2018-04-01

    During the late Oligocene-early Miocene there were several major geological events in and around the Tibetan Plateau (TP). First, crustal shortening deformation ceased completely within the TP before 25 Ma and instead adakitic rocks and potassic-ultrapotassic volcanics were emplaced in the Lhasa terrane since 26-25 Ma. Several recent paleoelevation reconstructions suggest an Oligocene-early Miocene uplift of 1500-3000 m for the Qiangtang (QT) and Songpan-Ganzi (SG) terranes, although the exact timing is unclear. As a possible response to this uplift, significant desertification occurred in the vicinity of the TP at 26-22 Ma, and convergence between India and Eurasia slowed considerably at 26-20 Ma. Subsequently, E-W extension was initiated no later than 18 Ma in the Lhasa and QT terranes. In contrast, the tectonic deformation around the TP was dominated by radial expansion of shortening deformation since 25-22 Ma. The plateau-wide near-synchroneity of these events calls for an internally consistent model which can be best described as convective removal of the lower mantle lithosphere. Geophysical and petrochemical evidence further confirms that this extensive removal occurred beneath the QT and SG terranes. The present review concludes that, other than plate boundary stress, the internal stress within the TP lithosphere could have contributed to rapid wholesale uplift and a series of concomitant tectonic events, accompanied by major aridification, since 26 Ma.

  20. Alumni careers : MA Comparative European Social Studies Zuyd University

    NARCIS (Netherlands)

    Albert Riga

    2004-01-01

    In the preparation of the celebration of the 10th anniversary of the MA CESS all alumni were invited to participate in an alumni survey. The purpose of the survey was to thoroughly investigate the professional activities of MA CESS alumni and the way they build an alumni community. Another reason

  1. 42 CFR 422.2268 - Standards for MA organization marketing.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Standards for MA organization marketing. 422.2268 Section 422.2268 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Medicare Advantage Marketing Requirements § 422.2268 Standards for MA organizatio...

  2. Nano-scale characterization of white layer in broached Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe, E-mail: zhe.chen@liu.se [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Colliander, Magnus Hörnqvist; Sundell, Gustav [Department of Physics, Chalmers University of Technology, 41296 Gothenburg (Sweden); Peng, Ru Lin [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden); Zhou, Jinming [Division of Production and Materials Engineering, Lund University, 22100 Lund (Sweden); Johansson, Sten; Moverare, Johan [Division of Engineering Materials, Linköping University, 58183 Linköping (Sweden)

    2017-01-27

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718. TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  3. Geist, Logik, Kapital und die Technik des Maßes

    Directory of Open Access Journals (Sweden)

    Frank Engster

    2017-02-01

    Full Text Available Hegels Phänomenologie des Geistes (PhdG und seine Wissenschaft der Logik (WdL sowie Marx Kapital sind, so wird im ersten Teil gezeigt, jeweils Ausdruck einer Verlegenheit. Alle drei stehen nämlich vor der Herausforderung, in Geist, Logik und Kapital letztlich eine Methode darstellen zu müssen, und sie müssen darüber auch noch die Möglichkeit der Darstellung ebendieser Methode einholen und begründen. Diese Übereinkunft zwischen der Methode der Darstellung mit dem Methodischen aufseiten des dargestellten Geistes, der Logik und des Kapitals gelingt, so die These des zweiten Teils, durch die Technik des Maßes. Maß und Messung konstituieren bereits in der Naturwissenschaft Objektivität im neuzeitlichen Sinne: Gehalten an und gebrochen durch ihre eigenen Maß, werden die Verhältnisse der Natur durch die ermittelten Werte wie ein selbständiger Gegenstand objektiv bestimmbar und im Wissen subjektiv aufgehoben. Dagegen zeigen Geist, Logik und Kapital jeweils, dass die Technik des Maßes nicht nur Objektivität im neuzeitlichen Sinne konstituiert, sondern die gesamte neuzeitliche Form der Gegenständlichkeit von Objektivität und Subjektivität, Bewusstsein und Gegenstand. In Hegels Phänomenologie und seiner Logik sowie in Marx Kapital eröffnet das Maß diese Gegenständlichkeit, indem jeweils eine Objektivität konstituiert wird, die einem Subjekt buchstäblich zu denken gegeben wird. Es ist allerdings unmittelbar die Objektivität der Subjektivität selbst, die jeweils gegeben wird: phänomenologisch wird durch das Maß die Objektivität der Subjektivität des Geistes gegeben (PhdG, rein logisch wird die Objektivität des Seins durch die Subjektivität des Begriffs gegeben (WdL, und der kapitalistischen Gesellschaft ist durch quantitative Werte die eigene Objektivität gegeben, und zwar gegeben durch ein Geld, das dadurch zu einer überindividuellen, automatischen Subjektivität wird. Für das Maß steht in der Phänomenologie das

  4. MaRGEE: Move and Rotate Google Earth Elements

    Science.gov (United States)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  5. Studiju programmas direktora informatīvā sistēma

    OpenAIRE

    Gūtmanis, Matīss

    2012-01-01

    Šajā kvalifikācijas darbā tiek izstrādāta atbalsta sistēma studiju programmas direktoram pamata informācijas glabāšanai. Sistēma tiek plānota kā tīmekļa lietotne, kas ir brīvi pieejama ikvienam. Lietotne ir izstrādāta izmantojot JAVA, HTML, JavaScript, MySQL tehnoloģijas. Sistēma paredzēta Latvijas Universitātes Datorikas Fakultātes programmu direktoriem.

  6. Sesli Okuma ve Konuşma Prozodisi: İlişkisel Bir Çalışma

    Directory of Open Access Journals (Sweden)

    Hasan Keskin

    2013-02-01

    Full Text Available Bu araştırma,  ilköğretim dördüncü sınıf öğrencilerinin sesli okuma ve konuşma prozodileri arasındaki ilişkiyi incelemek amacıyla ilişkisel tarama modelinde yapılmıştır. Araştırmaya,  Konya ve Afyonkarahisar’da ilköğretim dördüncü sınıfa devam eden 50 öğrenci katılmıştır.  Öğrencilerin sesli okumaları ve konuşmaları video ile kayıt altına alınmış, daha sonra bu kayıtlar üzerinde ölçekler aracılığıyla puanlamalar yapılmıştır. Sesli okuma ve konuşma prozodisi arasındaki ilişkiyi belirlemeye yönelik, Pearson Momentler Çarpım Korelasyon Tekniği kullanılmıştır. Analiz sonuçlarına göre, öğrencilerin sesli okuma ve konuşma prozodileri arasında, pozitif yönlü orta düzeyde bir ilişki çıkmıştır. Öğrencilerin sesli okumaları ve konuşma prozodi puanları cinsiyet açısından ayrı ayrı incelenmiş; kız ve erkek öğrencilerin ortalamaları arasında anlamlı bir farklılık çıkmamıştır. Ayrıca, öğrencilerin sesli okuma ve konuşmalarındaki prozodik düzeyi belirlemeye yönelik ölçümler yapılmıştır. Bu ölçüm sonuçlarına göre, araştırmaya katılan öğrencilerin %52’sinin sesli okuma prozodilerinin,  %48’inin ise konuşma prozodilerinin düşük düzeyde olduğu görülmüştür.

  7. Where is the happy Ending of Shāhnāma?

    OpenAIRE

    بهروز چمن آرا

    2015-01-01

    The renowned proverb “Shāhnāma axarash xoš ast” has implicit question which its answer may change our understanding of the nature and function of Shāhnāma. The end of Shāhnāma contains numerous tragic events in Sassanid age. Also it does not seem to be normal if the Iranians have deemed the bitter adventure of the Shahs and Pahlavāns as a happy ending like what Firdausi narrates at the end of his Shāhnāma. This article tries to reply the main question using an illustration on the story platfo...

  8. Flank wear and I-kaz 3D correlation in ball end milling process of Inconel 718

    Directory of Open Access Journals (Sweden)

    M.A.S.M. Tahir

    2015-12-01

    Full Text Available Tool wear may deteriorate the machine product quality due to high surface roughness, dimension exceeding tolerance and also to machine tool itself. Tool wear monitoring system is vital to be used in machining process to achieve high quality of the machined product and at the same time improve the productivity. Nowadays, many monitoring system developed using various sensor and statistical technique to analyze the signals being used. In this paper, I-kaz 3D method is used to analyze cutting force signal in milling process of Inconel 718 for monitoring the status of tool wear in milling process. The results from analyzing cutting force show that I-kaz 3D coefficient has a correlation with cutting tool condition. Tool wear will generate high value of I-kaz 3D coefficient than the sharp cutting tool. Furthermore, the three dimension graphical representation of I-kaz 3D for all cutting condition shown that the degree of scattering data increases with tool wear progression.

  9. Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni-Si-B filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, F. [McGill University, Department of Mining, Metals and Materials Engineering, 3610 University St., M.H. Wong Building, Montreal Que., H3A 2B2 (Canada); Jahazi, M. [Aerospace Manufacturing Technology Center, National Research Council of Canada (Canada); Drew, R.A.L. [McGill University, Department of Mining, Metals and Materials Engineering, 3610 University St., M.H. Wong Building, Montreal Que., H3A 2B2 (Canada)]. E-mail: robin.drew@mcgill.ca

    2006-05-15

    The influence of process parameters on microstructural characteristics of transient liquid phase (TLP) bonded Inconel 617 alloy was investigated. Experiments were carried out at 1065 deg. C using nickel based filler metal (Ni-4.5% Si-3% B) with B as the melting point depressant (MPD) element. Two different thickness of interlayer and various holding times were employed. The influence of these processing parameters on the characteristics of the joint area particularly size, morphology and composition of precipitates was investigated. The presence of MoB, Mo{sub 2}B, M{sub 23}C{sub 6}, TiC, M{sub 23}(B, C){sub 6} and Ni{sub 3}B precipitates in the diffusion layer and Ni{sub 3}B, Ni{sub 3}Si and Ni{sub 5}Si{sub 2} precipitates in the interlayer at the interface between the base metal and interlayer were demonstrated using electron back scattered diffraction (EBSD), energy dispersive spectrometry (EDS) and TEM.

  10. Comprehensive analysis of NuMA variation in breast cancer

    Directory of Open Access Journals (Sweden)

    Aittomäki Kristiina

    2008-03-01

    Full Text Available Abstract Background A recent genome wide case-control association study identified NuMA region on 11q13 as a candidate locus for breast cancer susceptibility. Specifically, the variant Ala794Gly was suggested to be associated with increased risk of breast cancer. Methods In order to evaluate the NuMa gene for breast cancer susceptibility, we have here screened the entire coding region and exon-intron boundaries of NuMa in 92 familial breast cancer patients and constructed haplotypes of the identified variants. Five missense variants were further screened in 341 breast cancer cases with a positive family history and 368 controls. We examined the frequency of Ala794Gly in an extensive series of familial (n = 910 and unselected (n = 884 breast cancer cases and controls (n = 906, with a high power to detect the suggested breast cancer risk. We also tested if the variant is associated with histopathologic features of breast tumors. Results Screening of NuMA resulted in identification of 11 exonic variants and 12 variants in introns or untranslated regions. Five missense variants that were further screened in breast cancer cases with a positive family history and controls, were each carried on a unique haplotype. None of the variants, or the haplotypes represented by them, was associated with breast cancer risk although due to low power in this analysis, very low risk alleles may go unrecognized. The NuMA Ala794Gly showed no difference in frequency in the unselected breast cancer case series or familial case series compared to control cases. Furthermore, Ala794Gly did not show any significant association with histopathologic characteristics of the tumors, though Ala794Gly was slightly more frequent among unselected cases with lymph node involvement. Conclusion Our results do not support the role of NuMA variants as breast cancer susceptibility alleles.

  11. Comprehensive analysis of NuMA variation in breast cancer

    International Nuclear Information System (INIS)

    Kilpivaara, Outi; Rantanen, Matias; Tamminen, Anitta; Aittomäki, Kristiina; Blomqvist, Carl; Nevanlinna, Heli

    2008-01-01

    A recent genome wide case-control association study identified NuMA region on 11q13 as a candidate locus for breast cancer susceptibility. Specifically, the variant Ala794Gly was suggested to be associated with increased risk of breast cancer. In order to evaluate the NuMa gene for breast cancer susceptibility, we have here screened the entire coding region and exon-intron boundaries of NuMa in 92 familial breast cancer patients and constructed haplotypes of the identified variants. Five missense variants were further screened in 341 breast cancer cases with a positive family history and 368 controls. We examined the frequency of Ala794Gly in an extensive series of familial (n = 910) and unselected (n = 884) breast cancer cases and controls (n = 906), with a high power to detect the suggested breast cancer risk. We also tested if the variant is associated with histopathologic features of breast tumors. Screening of NuMA resulted in identification of 11 exonic variants and 12 variants in introns or untranslated regions. Five missense variants that were further screened in breast cancer cases with a positive family history and controls, were each carried on a unique haplotype. None of the variants, or the haplotypes represented by them, was associated with breast cancer risk although due to low power in this analysis, very low risk alleles may go unrecognized. The NuMA Ala794Gly showed no difference in frequency in the unselected breast cancer case series or familial case series compared to control cases. Furthermore, Ala794Gly did not show any significant association with histopathologic characteristics of the tumors, though Ala794Gly was slightly more frequent among unselected cases with lymph node involvement. Our results do not support the role of NuMA variants as breast cancer susceptibility alleles

  12. Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X-750

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Won [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Research and Development Center, KOS Limited, Yangsan 626-230 (Korea, Republic of); Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Jeong, Hi Won [Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Choi, Yoon Suk [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, Namhyun, E-mail: nhkang@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-02-15

    Highlights: • Stress relaxation after aging 620 °C increased carbides and maintained γ′ fraction. • Aging temperature increase to 732 °C raised the γ′ increment after stress relaxation. • Small increase of carbides induced the large increase of γ′ after stress relaxation. • Loading for stress relaxation raised γ′ increment due to dislocation multiplication. - Abstract: Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ′ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ′ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ′ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ′ volume fraction and gained a smaller fraction of γ′ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ′ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M{sub 23}C{sub 6} secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ′ thereby decreasing the volume fraction of γ′ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ′ volume fraction was

  13. Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings

    International Nuclear Information System (INIS)

    Zhang, D.; Harris, S.J.; McCartney, D.G.

    2003-01-01

    The nickel-based alloy Inconel 625 was thermally sprayed by two different variants of the high velocity oxy-fuel process. In this study, coatings deposited by a liquid-fuelled gun were compared with those produced by a gas-fuelled system; in general, the former generates higher particle velocities but lower particle temperatures. Investigations into the microstructural evolution of the coatings, using scanning electron microscopy and X-ray diffraction, are presented along with results on their aqueous corrosion behaviour, obtained from salt spray and potentiodynamic tests. It is inferred from coating microstructures that, during spraying, powder particles generally comprised three separate zones as follows: fully melted regions; partially melted zones; and an unmelted core. However, the relative proportions formed in an individual powder particle depended on its size, trajectory through the gun, the gas dynamics (velocity/temperature) of the thermal spray gun and the type of gun employed. Cr 2 O 3 was the principal oxide phase formed during spraying and the quantity appeared to be directly related to the degree to which particles were melted. The salt spray test provides a sensitive means of determining the presence of interconnected porosity in coatings and those produced with the liquid-fuelled gun exhibited reduced interconnected porosity and increased corrosion resistance compared with deposits obtained from the gas-fuelled system. In addition, potentiodynamic tests revealed that passive current densities are 10-20 times lower in liquid-fuel coatings than in those sprayed with the gas-fuelled gun

  14. "Sel kevadel olen ma eriti ilus..." : [luuletused] / Triin Soomets

    Index Scriptorium Estoniae

    Soomets, Triin

    2003-01-01

    Sisu: "Sel kevadel olen ma eriti ilus..." ; "Tahaksin teha midagi tõelist; midagi suurt..." ; "veebruaris on keha nii valge et syda läheb pahaks..." ; "kõige kohutavamad lepingud..." ; "Igal loojangul kutsun sind ja igal koidikul tõukan su ära..." ; "need hakid..." ; "Põhja vajudes on viimane asi, mida ma näen, rohelised sähvatused..."

  15. Clinical analysis of anti-Ma2-associated encephalitis.

    Science.gov (United States)

    Dalmau, Josep; Graus, Francesc; Villarejo, Alberto; Posner, Jerome B; Blumenthal, Deborah; Thiessen, Brian; Saiz, Albert; Meneses, Patricio; Rosenfeld, Myrna R

    2004-08-01

    Increasing experience indicates that anti-Ma2-associated encephalitis differs from classical paraneoplastic limbic or brainstem encephalitis, and therefore may be unrecognized. To facilitate its diagnosis we report a comprehensive clinical analysis of 38 patients with anti-Ma2 encephalitis. Thirty-four (89%) patients presented with isolated or combined limbic, diencephalic or brainstem dysfunction, and four with other syndromes. Considering the clinical and MRI follow-up, 95% of the patients developed limbic, diencephalic or brainstem encephalopathy. Only 26% had classical limbic encephalitis. Excessive daytime sleepiness affected 32% of the patients, sometimes with narcolepsy-cataplexy and low CSF hypocretin. Additional hormonal or MRI abnormalities indicated diencephalic-hypothalamic involvement in 34% of the patients. Eye movement abnormalities were prominent in 92% of the patients with brainstem dysfunction, but those with additional limbic or diencephalic deficits were most affected; 60% of these patients had vertical gaze paresis that sometimes evolved to total external ophthalmoplegia. Three patients developed atypical parkinsonism, and two a severe hypokinetic syndrome with a tendency to eye closure and dramatic reduction of verbal output. Neurological symptoms preceded the tumour diagnosis in 62% of the patients. Brain MRI abnormalities were present in 74% of all patients and 89% of those with limbic or diencephalic dysfunction. Among the 34 patients with cancer, 53% had testicular germ-cell tumours. Two patients without evidence of cancer had testicular microcalcification and one cryptorchidism, risk factors for testicular germ-cell tumours. After neurological syndrome development, 17 of 33 patients received oncological treatment (nine also immunotherapy), 10 immunotherapy alone, and six no treatment. Overall, 33% of the patients had neurological improvement, three with complete recovery; 21% had long-term stabilization, and 46% deteriorated. Features

  16. Progress toward determining the potential of ODS alloys for gas turbine applications

    Science.gov (United States)

    Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.

    1983-01-01

    The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.

  17. Construction of a high modulus asphalt (HiMA) trial section Ethekwini: South Africa's first practical experience with design, manufacturing and paving of HiMA

    CSIR Research Space (South Africa)

    Nkgapele, M

    2012-07-01

    Full Text Available A trial section was paved with the recently introduced High Modulus Asphalt (HiMA) technology on South Coast road in eThekwini (Durban). The trial section forms part of an effort to transfer HiMA technology to South Africa, in an initiative aimed...

  18. Avaliação das Tensões Residuais em Juntas Soldadas de Inconel 625 Obtidas Através da Soldagem por Fricção e Mistura Mecânica

    Directory of Open Access Journals (Sweden)

    Guilherme Vieira Braga Lemos

    Full Text Available Resumo A utilização de materiais nobres é requisito básico em aplicações onde existe um ambiente agressivo como na indústria do petróleo e nuclear. Neste panorama, a liga Inconel 625 é frequentemente utilizada como material de cladeamento no revestimento interno de dutos rígidos. Assim, as superligas de níquel exercem papel fundamental nos campos de exploração de águas profundas e, por isso, o conhecimento de métodos modernos de soldagem aplicados a estas ligas e suas consequências nos estados de tensões residuais é importante. Portanto, o presente trabalho faz uma avaliação das tensões residuais após a Soldagem por Fricção e Mistura Mecânica (SFMM em chapas soldadas de Inconel 625. A união das chapas foi realizada com rotação da ferramenta 200 e 1200 rpm e velocidade de soldagem constante (1mm/s. As medições de tensões residuais na superfície das juntas soldadas foram investigadas através da técnica de difração de raios-X. Além disso, foram avaliadas as macroestruturas e o aporte térmico de acordo com os parâmetros de soldagem empregados. Embora não existam muitos trabalhos relacionados ao processo SFMM para ligas de Inconel, provavelmente devido à sua dificuldade de soldagem, tem sido percebido um aumento na aplicação da soldagem no estado sólido como excelente alternativa para as superligas à base de níquel. Os resultados mostraram que diferentes parâmetros de processo produziram juntas soldadas distintas e, consequentemente, variações na distribuição de tensões residuais. Por fim, um aumento na velocidade de rotação da ferramenta ocasionou um aumento nas tensões residuais na zona de mistura.

  19. Investigation on wear resistance and corrosion resistance of electron beam cladding co-alloy coating on Inconel617

    Science.gov (United States)

    Liu, Hailang; Zhang, Guopei; Huang, Yiping; Qi, Zhengwei; Wang, Bo; Yu, Zhibiao; Wang, Dezhi

    2018-04-01

    To improve surface properties of Inconel 617 alloy (referred to as 617 alloy), co-alloy coating metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, phase composition, microhardness, tribological properties and corrosion resistance of the coatings were investigated. The XRD results of the coatings reinforced by co-alloy (Co800) revealed the presence of γ-Co, CoCx and Cr23C6 phase as matrix and new metastable phases of Cr2Ni3 and Co3Mo2Si. These hypoeutectic structures contain primary dendrites and interdendritic eutectics. The metallurgical bonding forms well between the cladding layer and the matrix of 617 alloy. In most studied conditions, the co-alloy coating displays a better hardness, tribological performance, i.e., lower coefficient of frictions and wear rates, corrosion resistance in 1 mol L‑1 HCl solution, than the 617 alloy.

  20. Ma ma (2015. A reflection of the Spanish woman with breast cáncer

    Directory of Open Access Journals (Sweden)

    Clara PERALTA NUENO

    2017-12-01

    Full Text Available Ma ma (2015 is a Spanish drama film directed by Julio Medem and produced by Morena Films. This film tells the story of Magda’s life, whose character is interpreted by Penélope Cruz. After being diagnosed with a breast cancer, Magda, an unemployed teacher, will not know how to act nor how this disease will change her life. But little by little, she will bring into the surface all her vital energy. Breast cancer represents the most frequent type of cancer among women. Although the majority of the identified risk factors can be modified, the health systems focus on activities that let strengthen the primary prevention and activities of secondary and tertiary prevention. The early detection and the right treatment are essential to fight against this disease. The emotional process caused by the presence of cancer involves a mechanism of psychic reconstitution that allows the patient develop an answer to the organic, cognitive, social, and emotional challenges they have to deal with. This process is easier when they have a solid socio-family support network among other factors.

  1. Orchiectomy for suspected microscopic tumor in patients with anti-Ma2-associated encephalitis.

    Science.gov (United States)

    Mathew, R M; Vandenberghe, R; Garcia-Merino, A; Yamamoto, T; Landolfi, J C; Rosenfeld, M R; Rossi, J E; Thiessen, B; Dropcho, E J; Dalmau, J

    2007-03-20

    To report the presence of microscopic neoplasms of the testis in men with anti-Ma2-associated encephalitis (Ma2-encephalitis) and to discuss the clinical implications. Orchiectomy specimens were examined using immunohistochemistry with Ma2 and Oct4 antibodies. Among 25 patients with Ma2-encephalitis younger than 50 years, 19 had germ-cell tumors, and 6 had no evidence of cancer. These 6 patients underwent orchiectomy because they fulfilled five criteria: 1) demonstration of anti-Ma2 antibodies in association with MRI or clinical features compatible with Ma2-encephalitis, 2) life-threatening or progressive neurologic deficits, 3) age Ma2 was expressed by neoplastic cells in three of three patients examined. Even though most patients had severe neurologic deficits at the time of orchiectomy (median progression of symptoms, 10 months), 4 had partial improvement and prolonged stabilization (8 to 84 months, median 22.5 months) and two did not improve after the procedure. In young men with Ma2-encephalitis, 1) the disorder should be attributed to a germ-cell neoplasm of the testis unless another Ma2-expressing tumor is found, 2) negative tumor markers, ultrasound, body CT, or PET do not exclude an intratubular germ-cell neoplasm of the testis, and 3) if no tumor is found, the presence of the five indicated criteria should prompt consideration of orchiectomy.

  2. A study of the machining characteristics of AISI 1045 steel and Inconel 718 with a cylindrical shape in laser-assisted milling

    International Nuclear Information System (INIS)

    Woo, Wan-Sik; Lee, Choon-Man

    2015-01-01

    Laser-assisted machining (LAM) is an effective and economic technique for enhancing the machinability of materials which are difficult-to-cut, such as nickel alloys, titanium alloys and various ceramics. Recently, many researchers have studied the effectiveness of laser-assisted turning (LAT) by measuring its cutting force, tool wear, specific cutting energy and surface roughness. However, research on laser-assisted milling (LAMill) is still in progress because it is difficult to control the laser heating source and tool path to machine the varying shape of the workpiece using this method. Moreover, there have been no researches of workpieces with three-dimensional shapes. During the LAMill process, the material is softened and the mechanical strength of the material is reduced when a laser is used to irradiate the surface of the workpiece. As a result, the cutting force is reduced and the surface roughness is improved with LAMill. The purpose of this study was to develop three-dimensional LAMill and to verify the effectiveness of this approach by comparing it to the conventional machining (CM) method. A thermal analysis was also conducted in order to determine the effective depth of cut (DOC). Also, the cutting force and surface roughness of AISI 1045 steel and Inconel 718 with cylindrical shapes were measured. Measured results of machining characteristics were also analyzed according to the cutting method, i.e., up cut milling, down cut milling and milling style. - Highlights: • The materials with cylindrical shape is first applied to laser-assisted milling (LAMill). • The method determining the depth of cut through thermal analysis is proposed. • The effectiveness of LAMill is verified by comparing the conventional machining. • Down cut milling is recommended for the case of Inconel 718.

  3. Assessment of an improved multiaxial strength theory based on creep-rupture data for Inconel 600

    International Nuclear Information System (INIS)

    Huddleston, R.L.

    1993-01-01

    A new multiaxial strength theory incorporating three independent stress parameters was developed and reported by the author in 1984. It was formally incorporated into ASME Code Case N47-29 in 1990. The new theory provided significantly more accurate stress-rupture life predictions than obtained using the classical theories of von Mises, Tresca, and Rankins (maximum principal stress), for Types 304 and 316 stainless steel tested at 593 and 600 degrees C respectively under different biaxial stress states. Additional results for Inconel 600 specimens tested at 816 degrees C under tension-tension and tension-compression stress states are presented in this paper and show a factor of approximately 2.4 reduction in the scatter of predicted versus observed lives as compared to the classical theories of von Mises and Tresca and a factor of about 5 as compared to the Rankins theory. A key feature of the theory, which incorporates the maximum deviatoric stress, the first invariant of the stress tensor, and the second invariant of the deviatoric stress tensor, is its ability to distinguish between life under tensile versus compressive stress states

  4. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-01-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  5. Design, Development and Testing of Inconel Alloy IN718 Spherical Gas Bottle for Oxygen Storage

    Science.gov (United States)

    Chenna Krishna, S.; Agilan, M.; Sudarshan Rao, G.; Singh, Satish Kumar; Narayana Murty, S. V. S.; Venkata Narayana, Ganji; Beena, A. P.; Rajesh, L.; Jha, Abhay K.; Pant, Bhanu

    2017-11-01

    This paper describes the details of design, manufacture and testing of 200 mm diameter spherical gas bottle of Inconel 718 (IN718) with nominal wall thickness of 2.3 mm. Gas bottle was designed for the specified internal pressure loading with a thickness of 2.9 mm at the circumferential weld which was brought down to 2.3 mm at the membrane locations. Hemispherical forgings produced through closed-die hammer forging were machined and electron beam welded to produce a spherical gas bottle. Duly welded gas bottle was subjected to standard aging treatment to achieve the required tensile strength. Aged gas bottle was inspected for dimensions and other stringent quality requirements using various nondestructive testing techniques. After inspection, gas bottle was subjected to pressure test for maximum expected operating pressure and proof pressure of 25 and 37.5 MPa, respectively. Strain gauges were bonded at different locations on the gas bottle to monitor the strains during the pressure test and correlated with the predicted values. The predicted strain matched well with the experimental strain confirming the design and structural integrity.

  6. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  7. Development of a dispersion strengthened copper alloy using a MA-HIP method

    Directory of Open Access Journals (Sweden)

    T. Yamada

    2016-12-01

    Full Text Available A new Cu-Al alloy was fabricated by a MA-HIP method for application to the heat sink materials of divertors. With the increase in MA time, the grain size and Vickers hardness decreased and increased, respectively. At MA time of 32hrs, the hardness of the alloy was comparable to that of Glidcop® although the grain size was much larger. X-ray diffractometry, electrical resistivity measurements and STEM-EDS analyses suggested precipitation of Al-rich phase by MA for 32hrs followed by HIP.

  8. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  9. Strain rate and temperature effects on the stress corrosion cracking of Inconel 600 steam generator tubing in the primary water conditions

    International Nuclear Information System (INIS)

    Kim, U.C.; van Rooyen, D.

    1985-01-01

    A single heat of Inconel Alloy 600 was examined in this work, using slow strain rate tests (SSRT) in simulated primary water at temperatures of 325 0 -345 0 -365 0 C. The best measure of stress corrosion cracking (SCC) was percent SCC present on the fracture surface. Strain rate did not seem to affect crack growth rate significantly, but there is some question about the accuracy of calculating these values in the absence of a direct indication of when a crack initiates. Demarcation was determined between domains of temperature/strain rate where SCC either did, or did not, occur. Slower extension rates were needed to produce SCC as the temperature was lowered. 10 figs

  10. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  11. The influence of microstructure and operating temperature on the fatigue endurance of hot forged Inconel{sup ®} 718 components

    Energy Technology Data Exchange (ETDEWEB)

    Maderbacher, H., E-mail: hermann.maderbacher@unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Oberwinkler, B., E-mail: bernd.oberwinkler@bohler-forging.com [Böhler Schmiedetechnik GmbH and Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Gänser, H.-P., E-mail: hans-peter.gaenser@mcl.at [Materials Center Leoben Forschung GmbH, Roseggerstraße 12, 8700 Leoben (Austria); Tan, W., E-mail: wen.tan@unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Rollett, M., E-mail: mathias.rollett@stud.unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Stoschka, M., E-mail: michael.stoschka@stud.unileoben.ac.at [Chair of Mechanical Engineering, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2013-11-15

    The dependence of the fatigue behavior of hot-forged Inconel{sup ®} 718 aircraft components on the operating temperature and the material microstructure is investigated. To this purpose, possible correlations between a variety of tested microstructural parameters and the results from low-cycle fatigue (LCF) testing are analyzed using statistical methods. To identify the prevailing damage mechanisms, failure analyses are carried out on specimens tested at different temperatures. Optical and scanning electron microscopy are used for the inspection of surface crack networks and of the final fracture surface. In addition, energy dispersive X-ray (EDX) analyses are performed at the crack initiation sites to track down possible accumulations of alloying elements. The results are critically reviewed and used to propose a temperature and microstructure dependent fatigue model for predicting LCF ε⧸N-curves.

  12. Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis

    Directory of Open Access Journals (Sweden)

    Asit Kumar Parida

    2017-04-01

    Full Text Available In the present work, the variation of nose radius on forces, cutting temperature, stress, has been studied using finite element modeling in hot turning operation of Inconel 718. Three values of nose radius were taken (0.4, 0.8 and 1.2 mm. Cutting force, thrust force, stress, and cutting temperature have been predicted using commercial DEFORM™ software at different cutting tool nose radius in both room and heated conditions. With the increase of tool nose radius in both room and elevated machining conditions the cutting force and thrust force increased. The cutting temperature, chip thickness and chip tool contact length also have been studied. In order to validate the numerical results an experimental analysis has been performed and good agreement between them has been observed

  13. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    Science.gov (United States)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  14. Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material

    Directory of Open Access Journals (Sweden)

    Bijaya Bijeta Nayak

    2016-03-01

    Full Text Available The present work proposes an experimental investigation and optimization of various process parameters during taper cutting of deep cryo-treated Inconel 718 in wire electrical discharge machining process. Taguchi's design of experiment is used to gather information regarding the process with less number of experimental runs considering six input parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension. Since traditional Taguchi method fails to optimize multiple performance characteristics, maximum deviation theory is applied to convert multiple performance characteristics into an equivalent single performance characteristic. Due to the complexity and non-linearity involved in this process, good functional relationship with reasonable accuracy between performance characteristics and process parameters is difficult to obtain. To address this issue, the present study proposes artificial neural network (ANN model to determine the relationship between input parameters and performance characteristics. Finally, the process model is optimized to obtain a best parametric combination by a new meta-heuristic approach known as bat algorithm. The results of the proposed algorithm show that the proposed method is an effective tool for simultaneous optimization of performance characteristics during taper cutting in WEDM process.

  15. 3D imaging and characterisation of strengthening particles in inconel 718 using FIB tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kruk, Adam; Gruszczynski, Adam; Czyrska-Filemonowicz, Aleksandra [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2011-07-01

    The Inconel 718 is a commercial nickel-base superalloy, widely used for critical pieces in turbine engines. Its microstructure consists of the {gamma} matrix and strengthening coherent nanoparticles {gamma}' and {gamma}''. In the present work FIB tomography technique was used for imaging and characterisation of strengthening particles. FIB tomography is based on a serial sectioning procedure using a FIB/SEM dual beam workstation. Repeated removal of layers as thin as several nm for some hundred times allows to investigate at total a volume of some {mu}m3 with a voxel size as 2.5 nm x 2.5 nm x 2.5 nm. 3D mapping of nanoparticles with high Z-resolution by serial FIB slicing (in a distance of about 2.5 nm) and SEM imaging was performed. Ga ion beam at 30 kV was used to perform a precise in-situ milling. The SEM images at accelerating voltage 1.5 kV were taken with using ESB detector. The real 3D-data of precipitates obtained by FIB tomography, open a new possibility for microstructure analysis of materials for industrial applications.

  16. Anisotropy effects during dwell-fatigue caused by δ-phase orientation in forged Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Colliander, Magnus Hörnqvist [Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg (Sweden); GKN Aerospace Engine Systems, R& T Centre, SE-46181 Trollhättan (Sweden); Moverare, Johan J. [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)

    2017-04-24

    Inconel 718 is a commonly used superalloy for turbine discs in the gas turbine industry. Turbine discs are often subjected to dwell-fatigue as a result of long constant load cycles. The effect of anisotropy on dwell-fatigue cracking in forged turbine discs have not yet been thoroughly investigated. Crack propagation behaviour was characterised using compact tension (CT) samples cut in different orientations from a real turbine disc forging. Samples were also cut in two different thicknesses in order to investigate the influence of plane strain and plane stress condition on the crack propagation rates. The samples were subjected to dwell-fatigue tests at 550 °C with 90 s or 2160 s dwell-times at maximum load. Microstructure characterisation was done using scanning electron microscopy (SEM) techniques such as electron channelling contrast imaging (ECCI), electron backscatter diffraction (EBSD), and light optical microscopy (LOM). The forged alloy exhibits strong anisotropic behaviour caused by the non-random δ-phase orientation. When δ-phases were oriented perpendicular compared to parallel to the loading direction, the crack growth rates were approximately ten times faster. Crack growth occurred preferably in the interface between the γ-matrix and the δ-phase.

  17. Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melting

    Science.gov (United States)

    Bagherifard, Sara; Roscioli, Gianluca; Zuccoli, Maria Vittoria; Hadi, Mehdi; D'Elia, Gaetano; Demir, Ali Gökhan; Previtali, Barbara; Kondás, Ján; Guagliano, Mario

    2017-10-01

    Cold spray offers the possibility of obtaining almost zero-porosity buildups with no theoretical limit to the thickness. Moreover, cold spray can eliminate particle melting, evaporation, crystallization, grain growth, unwanted oxidation, undesirable phases and thermally induced tensile residual stresses. Such characteristics can boost its potential to be used as an additive manufacturing technique. Indeed, deposition via cold spray is recently finding its path toward fabrication of freeform components since it can address the common challenges of powder-bed additive manufacturing techniques including major size constraints, deposition rate limitations and high process temperature. Herein, we prepared nickel-based superalloy Inconel 718 samples with cold spray technique and compared them with similar samples fabricated by selective laser melting method. The samples fabricated using both methods were characterized in terms of mechanical strength, microstructural and porosity characteristics, Vickers microhardness and residual stresses distribution. Different heat treatment cycles were applied to the cold-sprayed samples in order to enhance their mechanical characteristics. The obtained data confirm that cold spray technique can be used as a complementary additive manufacturing method for fabrication of high-quality freestanding components where higher deposition rate, larger final size and lower fabrication temperatures are desired.

  18. Ma olin Saddami poeg / Latif Jahija

    Index Scriptorium Estoniae

    Jahija, Latif

    1995-01-01

    Järg Jan/21.,28. lk. 7,5. L. Jahija sensatsiooniline raamat "Ma olin Saddami poeg", milles ta pajatab kuidas ta a. 1987-1991 oli Iraagi presidendi vanema poja teisik. Lühikokkuvõte sellest jutustusest

  19. y comercialización de maíz de Sinaloa

    Directory of Open Access Journals (Sweden)

    José Alberto García Salazar

    2006-01-01

    Full Text Available La política comercial instrumentada por el Gobierno de México dirigida al mercado de maíz se ha caracterizado por la autorización de importaciones libres de arancel superiores a la cuota establecida en el Tratado de Libre Comercio de América del Norte. Con el objetivo de analizar cómo esta política podría afectar la comercialización de la producción de maíz de Sinaloa, se usó un modelo de distribución de la producción del grano que incorpora características espaciales e intertemporales. Los resultados indican que si el consumo nacional real de maíz fuera menor en 10%, respecto al consumo nacional aparente, las mayores importaciones determinarían que 954 mil toneladas de la producción de la entidad no pudrían comercializarse. Debido a que esta situación resta competitividad al productor de maíz, puesto que la producción no comercializada tiene que almacenarse, los productores sinaloenses deberán estar pendientes y vigilar las decisiones del Gobierno en materia de cupos de importación de maíz.

  20. 46 CFR 308.306 - Second Seamen's War Risk Policy, Form MA-242.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Second Seamen's War Risk Policy, Form MA-242. 308.306... RISK INSURANCE Second Seamen's War Risk Insurance § 308.306 Second Seamen's War Risk Policy, Form MA-242. (a) The standard form of Second Seamen's War Risk Policy Form MA-242, may be obtained from the...

  1. Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA

    Science.gov (United States)

    Bonilla, Alaina

    2017-01-01

    MaNGA (Mapping of Nearby Galaxies at Apache Point Observatory) is a 6-year Sloan Digital Sky Survey fourth generation (SDSS-IV) project that will obtain integral field spectroscopy of a catalogue of 10,000 nearby galaxies. In this study, we explore the properties of the passive dwarf galaxy sample presented in Penny et al. 2016, making use of MaNGA IFU (Integral Field Unit) data to plot gas emission, stellar velocity, and flux maps. In addition, HI-MaNGA, a legacy radio-survey of MaNGA, collects single dish HI data retrieved from the GBT (Green Bank Telescope), which we use to study the the 21cm emission lines present in HI detections. Studying the HI content of passive dwarves will help us reveal the processes that are preventing star formation, such as possible AGN feedback. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from the Sloan Foundation to the Astrophysical Research Consortium.

  2. Ma2 antibodies: an evaluation of commercially available detection methods.

    Science.gov (United States)

    Johannis, Wibke; Renno, Joerg H; Wielckens, Klaus; Voltz, Raymond

    2011-01-01

    Ma2 antibodies belong to the onconeuronal antibodies which define a "definite" paraneoplastic neurological syndrome (PNS). Because of the clinical relevance, use of two separate methods (indirect immunofluorescence technique--IFT--and immunoblot) is advocated; however, with an increasing number of commercially available assay systems, usually only one assay is performed. We compared IFT and three commercially available immunoblots (ravo Diagnostika, Euroimmun, Milenia Biotec) on sera from 35 patients with clinically suspected PNS. 17 were Ma2 antibody associated as defined by consensus result (showing positive reactivity in 2 assays), 18 were Ma2 antibody negative controls. Sensitivity/specificity for single assays were for IFT 94%/94%, for ravo Diagnostika PNS blot 88%/100%, for Euroimmun Neuronal Antigens Profile blot 100%/89%, and for Milenia Biotec MTR blot 94%/100%. Our data confirm, although all tests performed well, a combination of 2 independent assays is still advisable for Ma2 antibody detection in order to achieve higher sensitivity and specificity rates.

  3. Patent Analysis for Supporting Merger and Acquisition (M&A) Prediction: A Data Mining Approach

    Science.gov (United States)

    Wei, Chih-Ping; Jiang, Yu-Syun; Yang, Chin-Sheng

    M&A plays an increasingly important role in the contemporary business environment. Companies usually conduct M&A to pursue complementarity from other companies for preserving and/or extending their competitive advantages. For the given bidder company, a critical first step to the success of M&A activities is the appropriate selection of target companies. However, existing studies on M&A prediction incur several limitations, such as the exclusion of technological variables in M&A prediction models and the omission of the profile of the respective bidder company and its compatibility with candidate target companies. In response to these limitations, we propose an M&A prediction technique which not only encompasses technological variables derived from patent analysis as prediction indictors but also takes into account the profiles of both bidder and candidate target companies when building an M&A prediction model. We collect a set of real-world M&A cases to evaluate the proposed technique. The evaluation results are encouraging and will serve as a basis for future studies.

  4. 42 CFR 422.52 - Eligibility to elect an MA plan for special needs individuals.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Eligibility to elect an MA plan for special needs..., and Enrollment § 422.52 Eligibility to elect an MA plan for special needs individuals. (a) General rule. In order to elect a specialized MA plan for a special needs individual (Special Needs MA plan, or...

  5. La evolución del mejoramiento del maíz

    OpenAIRE

    Arriaga, Héctor O.

    1987-01-01

    La producción e importancia primordial del maíz como grano forrajero, hacen que se sindique al maíz como el cereal más representativo de los países desarrollados. Por su producción mundial, ocupa el 2° lugar, después del trigo, con 481 millones de toneladas, de las que el 64 % corresponde a los países desarrollados. Estos son, a su vez, los principales exportadores y consumidores por ser también los más importantes importadores, con un 71 % de las 68 millones de toneladas de maíz que se...

  6. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Science.gov (United States)

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An Assured who elects to substitute a surety bond for a collateral deposit fund shall submit Form MA-309...

  7. Salatoimikud : ma tahan uskuda / Mart Rummo

    Index Scriptorium Estoniae

    Rummo, Mart

    2008-01-01

    USA sarjale "The X-Files" põhinev teine järjefilm "Salatoimikud: Ma tahan uskuda" ("The X-Files: I Want to Believe") : režissöör Chris Carter : peaosades David Duchovny, Gillian Anderson : Ameerika Ühendriigid - Kanada 2008

  8. MaMiCo: Software design for parallel molecular-continuum flow simulations

    KAUST Repository

    Neumann, Philipp; Flohr, Hanno; Arora, Rahul; Jarmatz, Piet; Tchipev, Nikola; Bungartz, Hans-Joachim

    2015-01-01

    The macro-micro-coupling tool (MaMiCo) was developed to ease the development of and modularize molecular-continuum simulations, retaining sequential and parallel performance. We demonstrate the functionality and performance of MaMiCo by coupling

  9. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718

    International Nuclear Information System (INIS)

    Alexandre, F.

    2004-03-01

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  10. Positive and Negative Impacts of Cross-border M&A

    Institute of Scientific and Technical Information of China (English)

    裴长洪; 林江

    2007-01-01

    Mergers and acquisitions of Chinese enterprises by foreign investors have moved onto the public radar in recent years.To date,the M&A frenzy has drawn widespread attention,with a mixed reaction from proponents and opponents.Proponents consider such mergers and acquisitions conducive to realizing strategic readjustment of the national economic structure,optimizing resource allocation and improving the corporate governance structure.Opponents,however,are concerned that foreign mergers and acquisitions may jeopardize China’s industrial security and erode the executive power of the central government in undertaking industrial development planning.Are the benefits of M&A outweighed by the costs,or vice versa? The focus column of this edition features two articles which debate this issue from opposing viewpoints.In the article"Positive and Negative Impacts of Cross-border M&A",the authors consider foreign M(?)A to be a new way of boosting the level of foreign investment utilization,and advocate China taking full advantage of this approach.The authors of the article"Self-Improvement Or Self-Mutilation",meanwhile,hold foreign M&A to blame for state-owned asset erosion,and insist that China should oppose mergers and acquisitions of key state- owned enterprises by foreign investors at fire-sale prices.

  11. Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Gokul; Ramkumar, K. Devendranath; Arivazhagan, N. [VIT University, Vellore (India)

    2015-03-15

    This article investigated the weldability, metallurgical and mechanical properties of Inconel 625 and AISI 316L stainless steel weldments obtained by continuous current (CC) and pulsed current (PC) gas tungsten arc welding (GTAW) processes employing ERNiCr-3 and ER2209 fillers. Microstructure studies showed the migrated grain boundaries at the weld zone of ERNiCr-3 weldments and multidirectional grain growth for ER2209 weldments. It was inferred from the tension tests that the fracture occurred at the parent metal of AISI 316L in all the cases. Charpy V-notch impact tests accentuated that the CCGTA weldments employing ERNiCr-3 filler offered better impact toughness of 77 J at room temperature. Further a detailed study has been carried out to analyze the structure - property relationships of these weldments using the combined techniques of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis.

  12. [The medical theory of Lee Je-ma and its character].

    Science.gov (United States)

    Lee, Kyung-Lock

    2005-12-01

    Lee Je-ma 1837-1900) was a prominent scholar as well as an Korean physician. classified every people into four distinctive types: greater yang [tai yang] person, lesser yin [shao yin] person, greater yin [tai yin] person, lesser yin [shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features. Using these four types he created The Medical Science of Four Types. This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy. According to Lee Je-Ma's theory of human being, human is an equal individual in a modern way of thinking, not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body. The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.

  13. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    Science.gov (United States)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  14. Technical committee on reactor physics of next generation. Examination of MA recycling by using PWRs

    International Nuclear Information System (INIS)

    Mori, Masaaki

    1995-01-01

    It is an important subject to be examined that during the period till full scale nuclear fuel recycling including the adoption of FBRs will be realized, we never have excess Pu. As the realistic examination considering the nuclear fuel recycling for the time being, the MOX fuel for PWRs of actinide recycling, ultralong life, placing emphasis on the concentrated charging of Pu and the confinement of MA in nuclear fuel cycling was examined. The change of the infinite multiplication rate of actinide recycling fuel is small throughout the burning, and there is the possibility of attaining the high burnup about twice of that of UO 2 fuel. The merit of the case of adding MA in small amount by recycling MA together with Pu at the proportion in spent fuel is shown. The amount of MA accumulation in Japan until 2050 was evaluated by the survey of the electric power generation of every reactor type using the long term reactor type strategy evaluation code LSER. By comparing the amount of MA accumulation in four MA recycling cases with the basic case without MA recycling, the amount of MA annihilation was evaluated. It was found that the MA recycling using PWRs only is not inferior to the multi-recycling of MA using FBRs. (K.I.)

  15. How to use MAED with other IAEA models in ENPEP

    International Nuclear Information System (INIS)

    Maksijan, B.

    1997-01-01

    This paper provides an outlook of the energy situation in Croatia and describes the experience with the IAEA planning methodologies with focus on the MAED model. Furthermore, it suggests an approach to integrate the results of the MAED module of ENPEP with other modules (e.g. BALANCE) by means of commercial software (EXCEL Microsoft). (author). 2 figs, 3 tabs

  16. How to use MAED with other IAEA models in ENPEP

    Energy Technology Data Exchange (ETDEWEB)

    Maksijan, B [Energy Sector, Ministry of Economic Affairs, Zagreb (Croatia)

    1997-09-01

    This paper provides an outlook of the energy situation in Croatia and describes the experience with the IAEA planning methodologies with focus on the MAED model. Furthermore, it suggests an approach to integrate the results of the MAED module of ENPEP with other modules (e.g. BALANCE) by means of commercial software (EXCEL Microsoft). (author). 2 figs, 3 tabs.

  17. Pfister y la Hibridación del Maíz

    Directory of Open Access Journals (Sweden)

    Kent. George

    1940-03-01

    Full Text Available En la Facultad Nacional de Agronomía, se están haciendo actualmente los trabajos de aclimatación del "maíz hibrido Pfister". Cuando el suscrito tuvo conocimiento del "maíz híbrido" obtenido como fruto de una experimentación de más de 20 años llevada a cabo en Illinois por el señor Pfister, se interesó vivamente en traer unas semillas a Colombia para intentar el proceso de aclimatación de las mejores variedades. A pesar de una larga correspondencia con el señor Pfister desde hace dos años, no nos fue posible lograr nuestro objeto. Durante la última visita del suscrito a ese país, obtuve, como una merced personal, una muy pequeña cantidad de las ocho mejores variedades de maíz híbrido, y al efecto, a la presente le estoy incluyendo a usted esas semillas de maíz sin otra retribución para nosotros, que el de hacer las siembras, observaciones y experimentaciones con todo el cuidado de que usted es capaz, y darnos cuenta oportuna de los resultados obtenidos con cada una de las variedades. Cada talego está marcado con el número de la variedad y no está por demás rogar a usted de la manera más encarecida llevar a efecto este trabajo con el mayor cuidado e interés para corresponder por lo menos al que hemos tenido nosotros en proporcionarle las dichas semillas. A pesar de que en Estados Unidos han hecho una súper selección de maíz en los últimos 50 años, las semillas seleccionadas han; quedado superadas por el maíz "Híbrido Pfister" con rendimientos de más de un 60%. Como nosotros no hemos hecho nada en selección de maíz, nuestro trabajo se puede limitar a un proceso de "aclimatación", que si logramos, tendríamos ganados muchos años de trabajo.

  18. Influence of overloads on dwell time fatigue crack growth in Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Moverare, Johan [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Siemens Industrial Turbomachinery AB, Materials Technology, SE-61283 Finspång (Sweden); Eriksson, Robert; Johansson, Sten [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)

    2014-08-26

    Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate.

  19. Influence of overloads on dwell time fatigue crack growth in Inconel 718

    International Nuclear Information System (INIS)

    Saarimäki, Jonas; Moverare, Johan; Eriksson, Robert; Johansson, Sten

    2014-01-01

    Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate

  20. Characterization of serrated yielding in service exposed Inconel 625 alloy

    International Nuclear Information System (INIS)

    Chatterjee, Arnomitra; Sharma, Garima; Chakravartty, J.K.

    2016-01-01

    The Alloy-625 is an austentic alloy which is being used for a variety of components in the aerospace, marine, chemical and nuclear industries. Tensile tests have been carried out on service exposed Inconel 625 ammonia cracker tube used at heavy water production plant to study the effect of microstructure on the mechanical properties of the material. Owing to temperature gradient during in service condition the microstructure was different in top (T), middle (M) and bottom (B) sections of the tube. The stress-strain curve obtained from conventional tensile test was found to exhibit serrated yielding with in an intermediate temperature regime of 250-600 °C. Both normal and inverse Portevin-Le Chatelier (PLC) effect could be identified at lower and higher temperature regime respectively. The normal behavior was associated with type (A+B) serrations and interstitial atom C was held responsible for the aging of dislocations in this region. On the contrary, the serrations were of type C in nature in inverse PLC regime and were attributed to the locking of dislocations by substitutional Mo atoms. Further analyses of activation energy and transition temperature for normal to inverse PLC dynamics, supported with Transmission Electron Microscopy (TEM) observation revealed that the basic deformation mechanism was different in M and B samples than that in the T samples. While the deformation in T samples were achieved by usual dislocation migration, in M and B samples it was through the propagation of stacking faults in large γ” precipitates. The transition temperature from normal to inverse PLC dynamics also varied appreciably in T samples than that of the M and B ones which could be explained in terms of the delayed depletion of Mo solutes in solution for T samples. (author)