Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
International Nuclear Information System (INIS)
Fouxon, Itzhak; Oz, Yaron
2008-01-01
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view
Gallouët, Thomas; Vialard, François-Xavier
2018-04-01
The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.
Pesch, L.; van der Vegt, Jacobus J.W.
2008-01-01
Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The
Ohkitani, K.
2010-05-01
We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.
On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions
Pomeau, Yves
2018-03-01
The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply. xml:lang="fr"
Multi-cell vortices observed in fine-mesh solutions to the incompressible Euler equations
International Nuclear Information System (INIS)
Rizzi, A.
1986-01-01
Results are presented for a three dimensional flow, containing a vortex sheet shed from a delta wing. The numerical solution indicates that the shearing caused by the trailing edge of the wing set up a torsional wave on the vortex core and produces a structure with multiple cells of vorticity. Although observed in coarse grid solutions too, this effect becomes better resolved with mesh refinement to 614 000 grid volumes. In comparison with a potential solution in which the vortex sheet is fitted as a discontinuity, the results are analyzed for the position of the vortex features captured in the Euler flow field, the accuracy of the pressure field, and for the diffusion of the vortex sheets
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
p-Euler equations and p-Navier-Stokes equations
Li, Lei; Liu, Jian-Guo
2018-04-01
We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.
Euler's fluid equations: Optimal control vs optimization
Energy Technology Data Exchange (ETDEWEB)
Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)
2009-11-23
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations
International Nuclear Information System (INIS)
Yuen, Manwai
2011-01-01
In this Letter, we construct a new class of blowup or global solutions with elementary functions to the 3-dimensional compressible or incompressible Euler and Navier-Stokes equations. And the corresponding blowup or global solutions for the incompressible Euler and Naiver-Stokes equations are also given. Our constructed solutions are similar to the famous Arnold-Beltrami-Childress (ABC) flow. The obtained solutions with infinite energy can exhibit the interesting behaviors locally. Furthermore, due to divu → =0 for the solutions, the solutions also work for the 3-dimensional incompressible Euler and Navier-Stokes equations. -- Highlights: → We construct a new class of solutions to the 3D compressible or incompressible Euler and Navier-Stokes equations. → The constructed solutions are similar to the famous Arnold-Beltrami-Childress flow. → The solutions with infinite energy can exhibit the interesting behaviors locally.
On the motion of incompressible inhomogeneous Euler-Korteweg fluids
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Feireisl, Eduard; Málek, J.; Shvydkoy, R.
2010-01-01
Roč. 3, č. 3 (2010), s. 497-515 ISSN 1937-1632 R&D Projects: GA MŠk LC06052; GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Korteweg fluid * inhomogeneous Euler fluid * Korteweg stress * local-in-time well-posedness * smooth solution Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5226
Entropy viscosity method applied to Euler equations
International Nuclear Information System (INIS)
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-01-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
On the Local Type I Conditions for the 3D Euler Equations
Chae, Dongho; Wolf, Jörg
2018-05-01
We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \
Variational problems with fractional derivatives: Euler-Lagrange equations
International Nuclear Information System (INIS)
Atanackovic, T M; Konjik, S; Pilipovic, S
2008-01-01
We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense
Equivariant analogues of the Euler characteristic and Macdonald type equations
Gusein-Zade, S. M.
2017-02-01
One of the simplest and, at the same time, most important invariants of a topological space is the Euler characteristic. A generalization of the notion of the Euler characteristic to the equivariant setting, that is, to spaces with an action of a group (say, finite) is far from unique. An equivariant analogue of the Euler characteristic can be defined as an element of the ring of representations of the group or as an element of the Burnside ring of the group. From physics came the notion of the orbifold Euler characteristic, and this was generalized to orbifold Euler characteristics of higher orders. The main property of the Euler characteristic (defined in terms of the cohomology with compact support) is its additivity. On some classes of spaces there are additive invariants other than the Euler characteristic, and they can be regarded as generalized Euler characteristics. For example, the class of a variety in the Grothendieck ring of complex quasi-projective varieties is a universal additive invariant on the class of complex quasi-projective varieties. Generalized analogues of the Euler characteristic can also be defined in the equivariant setting. There is a simple formula — the Macdonald equation — for the generating series of the Euler characteristics of the symmetric powers of a space: it is equal to the series (1-t)-1=1+t+t^2+\\cdots independent of the space, raised to a power equal to the Euler characteristic of the space itself. Equations of a similar kind for other invariants (`equivariant and generalized Euler characteristics') are called Macdonald type equations. This survey discusses different versions of the Euler characteristic in the equivariant setting and describes some of their properties and Macdonald type equations. Bibliography: 59 titles.
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2017-01-01
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy
International Nuclear Information System (INIS)
Yurov, A.V.; Yurova, A.A.
2006-01-01
The simple algebraic method for construction of exact solutions of two-dimensional hydrodynamic equations of incompressible flow is proposed. This method can be applied both to nonviscous flow (Euler equations) and to viscous flow (Navier-Stokes equations). In the case of nonviscous flow, the problem is reduced to sequential solving of three linear partial differential equations. In the case of viscous flow, the Navier-Stokes equations are reduced to three linear partial differential equations and one differential equation of the first order [ru
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
Euler's pioneering equation the most beautiful theorem in mathematics
Wilson, Robin
2018-01-01
In 1988 The Mathematical Intelligencer, a quarterly mathematics journal, carried out a poll to find the most beautiful theorem in mathematics. Twenty-four theorems were listed and readers were invited to award each a 'score for beauty'. While there were many worthy competitors, the winner was 'Euler's equation'. In 2004 Physics World carried out a similar poll of 'greatest equations', and found that among physicists Euler's mathematical result came second only to Maxwell's equations. The Stanford mathematician Keith Devlin reflected the feelings of many in describing it as "like a Shakespearian sonnet that captures the very essence of love, or a painting which brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence."
A novel numerical flux for the 3D Euler equations with general equation of state
Toro, Eleuterio F.; Castro, Cristó bal E.; Bok Jik, Lee
2015-01-01
Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both
ENTROPIES AND FLUX-SPLITTINGS FOR THE ISENTROPIC EULER EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors establish the existence of a large class of mathematical entropies (the so-called weak entropies) associated with the Euler equations for an isentropic, compressible fluid governed by a general pressure law. A mild assumption on the behavior of the pressure law near the vacuum is solely required. The analysis is based on an asymptotic expansion of the fundamental solution (called here the entropy kernel) of a highly singular Euler-Poisson-Darboux equation. The entropy kernel is only H lder continuous and its regularity is carefully investigated. Relying on a notion introduced earlier by the authors, it is also proven that, for the Euler equations, the set of entropy flux-splittings coincides with the set of entropies-entropy fluxes. These results imply the existence of a flux-splitting consistent with all of the entropy inequalities.
Canonical form of Euler-Lagrange equations and gauge symmetries
Energy Technology Data Exchange (ETDEWEB)
Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)
2003-06-13
The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.
Generalized force in classical field theory. [Euler-Lagrange equations
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-02-01
The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.
Regularity and energy conservation for the compressible Euler equations
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.; Wiedemann, E.
2017-01-01
Roč. 223, č. 3 (2017), s. 1375-1395 ISSN 0003-9527 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.392, year: 2016 http://link.springer.com/article/10.1007%2Fs00205-016-1060-5
Conservative numerical schemes for Euler-Lagrange equations
Energy Technology Data Exchange (ETDEWEB)
Vazquez, L. [Universidad Complutense, Madrid (Spain). Dept. de Matematica Aplicada; Jimenez, S. [Universidad Alfonso X El Sabio, Madrid (Spain). Dept. de Matematica Aplicada
1999-05-01
As a preliminary step to study magnetic field lines, the authors seek numerical schemes that reproduce at discrete level the significant feature of the continuous model, based on an underling Lagrangian structure. The resulting scheme give discrete counterparts of the variation law for the energy as well of as the Euler-Lagrange equations and their symmetries.
An improved front tracking method for the Euler equations
Witteveen, J.A.S.; Koren, B.; Bakker, P.G.
2007-01-01
An improved front tracking method for hyperbolic conservation laws is presented. The improved method accurately resolves discontinuities as well as continuous phenomena. The method is based on an improved front interaction model for a physically more accurate modeling of the Euler equations, as
Weyl-Euler-Lagrange Equations of Motion on Flat Manifold
Directory of Open Access Journals (Sweden)
Zeki Kasap
2015-01-01
Full Text Available This paper deals with Weyl-Euler-Lagrange equations of motion on flat manifold. It is well known that a Riemannian manifold is said to be flat if its curvature is everywhere zero. Furthermore, a flat manifold is one Euclidean space in terms of distances. Weyl introduced a metric with a conformal transformation for unified theory in 1918. Classical mechanics is one of the major subfields of mechanics. Also, one way of solving problems in classical mechanics occurs with the help of the Euler-Lagrange equations. In this study, partial differential equations have been obtained for movement of objects in space and solutions of these equations have been generated by using the symbolic Algebra software. Additionally, the improvements, obtained in this study, will be presented.
Incompressible Navier-Stokes equations. Theory and practice
Energy Technology Data Exchange (ETDEWEB)
Gjesdal, T.
1996-12-31
This paper contains notes from a seminar presented at the Dept. of Mathematics in the University of Bergen, Norway, Oct. 1996. It first introduces the theory of existence and uniqueness of solutions to the incompressible Navier-Stokes equation and defines a well-posed initial-boundary value problem. It then discusses different methods for solving numerically the Navier-Stokes equations in velocity-pressure formulation. The emphasis is on pressure correction methods. 19 refs.
Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions
International Nuclear Information System (INIS)
Lin, Hongxia; Du, Lili
2013-01-01
In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc
2014-03-11
This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Contact discontinuities in multi-dimensional isentropic Euler equations
Czech Academy of Sciences Publication Activity Database
Březina, J.; Chiodaroli, E.; Kreml, Ondřej
2018-01-01
Roč. 2018 (2018), č. článku 94. ISSN 1072-6691 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : isentropic Euler equations * non-uniqueness * Riemann problem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/94/abstr.html
Stochastic Optimal Prediction with Application to Averaged Euler Equations
Energy Technology Data Exchange (ETDEWEB)
Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chorin, Alexandre J. [Univ. of California, Berkeley, CA (United States); Crutchfield, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-04-24
Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.
Symmetries of the Euler compressible flow equations for general equation of state
Energy Technology Data Exchange (ETDEWEB)
Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-15
The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.
Incompressible limit of compressible Navier-Stokes equations
International Nuclear Information System (INIS)
Bessaih, H.
1994-01-01
In this paper we study the system which describes the motion of compressible viscous fluid in a bounded domain Ω of R 3 . When we introduce a parameter λ, that is the inverse of the Mach number, we prove, under small initial data and external force (for barotropic flows), that the solution of Navier-Stokes equations is the incompressible limit of the solution of compressible Navier-Stokes equations, as the Mach number becomes small. For this, we show the existence of a solution verifying estimates independent of λ. Compactness argument allow us to pass to the limit on λ in the nonlinear terms. (author). 17 refs
Perturbational blowup solutions to the compressible Euler equations with damping.
Cheung, Ka Luen
2016-01-01
The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.
A novel numerical flux for the 3D Euler equations with general equation of state
Toro, Eleuterio F.
2015-09-30
Here we extend the flux vector splitting approach recently proposed in (E F Toro and M E Vázquez-Cendón. Flux splitting schemes for the Euler equations. Computers and Fluids. Vol. 70, Pages 1-12, 2012). The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.
Iterative methods for compressible Navier-Stokes and Euler equations
Energy Technology Data Exchange (ETDEWEB)
Tang, W.P.; Forsyth, P.A.
1996-12-31
This workshop will focus on methods for solution of compressible Navier-Stokes and Euler equations. In particular, attention will be focused on the interaction between the methods used to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the resulting large sparse systems. Various types of block and incomplete LU factorization will be discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to industrial CFD problems will also be presented. Experience with the use of C++ for solution of large scale problems will also be discussed. The format for this workshop will be four fifteen minute talks, followed by a roundtable discussion.
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.
2017-05-23
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.
Self-similarity in incompressible Navier-Stokes equations.
Ercan, Ali; Kavvas, M Levent
2015-12-01
The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space.
Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions
Directory of Open Access Journals (Sweden)
R. Naz
2015-01-01
Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.
Particular solutions of generalized Euler-Poisson-Darboux equation
Directory of Open Access Journals (Sweden)
Rakhila B. Seilkhanova
2015-01-01
Full Text Available In this article we consider the generalized Euler-Poisson-Darboux equation $$ {u}_{tt}+\\frac{2\\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\\frac{2\\alpha }{x}{{u}_{x}}+\\frac{2\\beta }{y}{{u}_y},\\quad x>0,\\;y>0,\\;t>0. $$ We construct particular solutions in an explicit form expressed by the Lauricella hypergeometric function of three variables. Properties of each constructed solutions have been investigated in sections of surfaces of the characteristic cone. Precisely, we prove that found solutions have singularity $1/r$ at $r\\to 0$, where ${{r}^2}={{( x-{{x}_0}}^2}+{{( y-{{y}_0}}^2}-{{( t-{{t}_0}}^2}$.
High resolution solutions of the Euler equations for vortex flows
International Nuclear Information System (INIS)
Murman, E.M.; Powell, K.G.; Rizzi, A.; Tel Aviv Univ., Israel)
1985-01-01
Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research. 16 references
Numerical solution of Euler's equation by perturbed functionals
Dey, S. K.
1985-01-01
A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.
Implicit flux-split schemes for the Euler equations
Thomas, J. L.; Walters, R. W.; Van Leer, B.
1985-01-01
Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.
Euler-Lagrange Equations of Networks with Higher-Order Elements
Directory of Open Access Journals (Sweden)
Z. Biolek
2017-06-01
Full Text Available The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua’s periodic table. Newly defined potential functions for general (α, β elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.
Conservation of energy for the Euler-Korteweg equations
Dębiec, Tomasz
2017-12-30
In this article we study the principle of energy conservation for the Euler-Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.
Conservation of energy for the Euler-Korteweg equations
Dębiec, Tomasz; Gwiazda, Piotr; Świerczewska-Gwiazda, Agnieszka; Tzavaras, Athanasios
2017-01-01
In this article we study the principle of energy conservation for the Euler-Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.
International Nuclear Information System (INIS)
Tao Ganqiang; Yu Qing; Xiao Xiao
2011-01-01
Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Novotný, A.
2014-01-01
Roč. 70, č. 2 (2014), s. 279-307 ISSN 0095-4616 EU Projects: European Commission(XE) 320078 - MATHEF Keywords : compressible fluids * Navier-Stokes equations * singular limits Subject RIV: BA - General Mathematics Impact factor: 0.591, year: 2014 http://link.springer.com/article/10.1007%2Fs00245-014-9243-7
Study of the 3D Euler equations using Clebsch potentials: dual mechanisms for geometric depletion
Ohkitani, Koji
2018-02-01
incompressible velocity) using suitable canonical transforms. By a simple argument we show that they keep forming material separatrices under the time evolution of the 3D Euler equations. We argue on this basis that a singularity, if developed, will be associated with these exceptional material surfaces. The difficulty of having Clebsch potentials globally on all of space have been with us for a long time. The proposal rather seeks to turn the difficulty into an advantage by using their absence to identify and locate possible singularities.
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-01-01
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a
An Equal-Order DG Method for the Incompressible Navier-Stokes Equations
Cockburn, Bernardo; Kanschat, Guido; Schö tzau, Dominik
2008-01-01
We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability
Large Scale Simulations of the Euler Equations on GPU Clusters
Liebmann, Manfred; Douglas, Craig C.; Haase, Gundolf; Horvá th, Zoltá n
2010-01-01
The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one
Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations
Agrawal, S.; Barnett, R. M.; Robinson, B. A.
1991-01-01
A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.
General solutions of second-order linear difference equations of Euler type
Directory of Open Access Journals (Sweden)
Akane Hongyo
2017-01-01
Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.
Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited
Cortissoz, Jean C.; Montero, Julio A.
2018-03-01
In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/2Navier-Stokes equations, and we also present an elementary proof for a lower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when s>5/2.
Large Scale Simulations of the Euler Equations on GPU Clusters
Liebmann, Manfred
2010-08-01
The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.
Zhang, Ling
2017-01-01
The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
Directory of Open Access Journals (Sweden)
Ling Zhang
2017-10-01
Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
On singularity formation of a 3D model for incompressible Navier–Stokes equations
Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu
2012-01-01
We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei (2009) in [15] for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier–Stokes equations. One of the main results of this paper is that we prove rigorously th...
Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system
International Nuclear Information System (INIS)
Wang, C.
1992-01-01
The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories
Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method
International Nuclear Information System (INIS)
Suescun D, D.; Oviedo T, M.
2017-09-01
In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and
Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe
2011-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...
Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance
Directory of Open Access Journals (Sweden)
Pengcheng HAN
2017-12-01
Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.
Further Generalization of Golden Mean in Relation to Euler Divine Equation
Rakocevic, Miloje M.
2006-01-01
In the paper a new generalization of the Golden mean, as a further generalization in relation to Stakhov (1989) and to Spinadel (1999), is presented. Also it is first observed that the Euler divine equation represents a possible generalization of Golden mean. In this second version the Section 6 is added.
The incompressible non-relativistic Navier-Stokes equation from gravity
International Nuclear Information System (INIS)
Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.
2009-01-01
We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Destrade, M.; Goriely, A.; Saccomandi, G.
2010-01-01
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Euler and Navier endash Stokes limits of the Uehling endash Uhlenbeck quantum kinetic equations
International Nuclear Information System (INIS)
Arlotti, L.; Lachowicz, M.
1997-01-01
The Uehling endash Uhlenbeck evolution equations for gases of identical quantum particles either fermions or bosons, in the case in which the collision kernel does not depend on the distribution function, are considered. The existence of solutions and their asymptotic relations with solutions of the hydrodynamic equations both at the level of the Euler system and at the level of the Navier endash Stokes system are proved. copyright 1997 American Institute of Physics
Five-dimensional truncation of the plane incompressible navier-stokes equations
Energy Technology Data Exchange (ETDEWEB)
Boldrighini, C [Camerino Univ. (Italy). Istituto di Matematica; Franceschini, V [Modena Univ. (Italy). Istituto Matematico
1979-01-01
A five-modes truncation of the Navier-Stokes equations for a two dimensional incompressible fluid on a torus is considered. A computer analysis shows that for a certain range of the Reynolds number the system exhibits a stochastic behaviour, approached through an involved sequence of bifurcations.
International Nuclear Information System (INIS)
Sani, R.L.; Gresho, P.M.; Lee, R.L.
1979-01-01
The spurious pressures and acceptable velocities generated when using certain combinations of velocity and pressure approximations in a Galerkin finite element discretization of the primitive variable form of the incompressible Navier-Stokes equations are analyzed both theoretically and numerically for grids composed of quadrilateral finite elements. Schemes for obtaining usable pressure fields from the spurious numerical results are presented for certain cases
Sanderse, B.; Verstappen, R.W.C.P.; Koren, B.
2014-01-01
A discretization method for the incompressible Navier–Stokes equations conserving the secondary quantities kinetic energy and vorticity was introduced, besides the primary quantities mass and momentum. This method was extended to fourth order accuracy. In this paper we propose a new consistent
International Nuclear Information System (INIS)
Kambe, Tsutomu
2013-01-01
A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)
Incompressible spectral-element method: Derivation of equations
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
Euler and Navier-Stokes equations on the hyperbolic plane.
Khesin, Boris; Misiolek, Gerard
2012-11-06
We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.
Euler and Navier–Stokes equations on the hyperbolic plane
Khesin, Boris; Misiołek, Gerard
2012-01-01
We show that nonuniqueness of the Leray–Hopf solutions of the Navier–Stokes equation on the hyperbolic plane ℍ2 observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on ℍn whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting. PMID:23091015
New form of the Euler-Bernoulli rod equation applied to robotic systems
Directory of Open Access Journals (Sweden)
Filipović Mirjana
2008-01-01
Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .
Validity of the modified Reynolds equation for incompressible active lubrication
DEFF Research Database (Denmark)
Cerda Varela, Alejandro Javier; Santos, Ilmar
2016-01-01
The modified Reynolds equation for active lubrication has been the cornerstone around which the theoretical investigations regarding actively lubricated bearings have evolved over the years. Introduced originally in 1994, it enables to calculate in a simplified manner the bearing pressure field...... as a function of servovalve controlled pressurized oil injection. This article deals with a preliminary critical review of the simplificatory assumptions that are introduced into the modified Reynolds equation in order to model the phenomena taking place in the interface between the injection nozzle...... and the bearing clearance. The analysis is performed by means of direct comparison of the results of the modified Reynolds equation model versus benchmark CFD calculations, applied to a geometry representative of the system analyzed. The results show that the modified Reynolds equation mathematical simplicity...
A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes
Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.
2018-06-01
A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.
DEFF Research Database (Denmark)
Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef
2014-01-01
The Euler-Maruyama method is applied to a simple stochastic differential equation (SDE) with discontinuous drift. Convergence aspects are investigated in the case, where the Euler-Maruyama method is simulated in dyadic points. A strong rate of convergence is presented for the numerical simulations...
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
International Nuclear Information System (INIS)
Waltz, J.; Canfield, T.R.; Morgan, N.R.; Risinger, L.D.; Wohlbier, J.G.
2014-01-01
We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies
Parallelization of pressure equation solver for incompressible N-S equations
International Nuclear Information System (INIS)
Ichihara, Kiyoshi; Yokokawa, Mitsuo; Kaburaki, Hideo.
1996-03-01
A pressure equation solver in a code for 3-dimensional incompressible flow analysis has been parallelized by using red-black SOR method and PCG method on Fujitsu VPP500, a vector parallel computer with distributed memory. For the comparison of scalability, the solver using the red-black SOR method has been also parallelized on the Intel Paragon, a scalar parallel computer with a distributed memory. The scalability of the red-black SOR method on both VPP500 and Paragon was lost, when number of processor elements was increased. The reason of non-scalability on both systems is increasing communication time between processor elements. In addition, the parallelization by DO-loop division makes the vectorizing efficiency lower on VPP500. For an effective implementation on VPP500, a large scale problem which holds very long vectorized DO-loops in the parallel program should be solved. PCG method with red-black SOR method applied to incomplete LU factorization (red-black PCG) has more iteration steps than normal PCG method with forward and backward substitution, in spite of same number of the floating point operations in a DO-loop of incomplete LU factorization. The parallelized red-black PCG method has less merits than the parallelized red-black SOR method when the computational region has fewer grids, because the low vectorization efficiency is obtained in red-black PCG method. (author)
On the Use of Linearized Euler Equations in the Prediction of Jet Noise
Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.
1995-01-01
Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.
Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
Barth, Timothy J.; Frederickson, Paul O.
1990-01-01
High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.
Chen, Gui-Qiang G.; Schrecker, Matthew R. I.
2018-04-01
We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).
Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations
Energy Technology Data Exchange (ETDEWEB)
Trottenberg, U.; Oosterlee, K.; Ritzdorf, H. [and others
1996-12-31
The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.
Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.
Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun
2013-01-01
An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.
Equilibrium states for a plane incompressible perfect fluid
Energy Technology Data Exchange (ETDEWEB)
Boldrighini, C; Frigio, S [Camerino Univ. (Italy). Istituto di Matematica
1980-01-01
We associate to the plane incompressible Euler equation with periodic conditions the corresponding Hopf equation, as an equation for measures on the space of solenoidal distributions. We define equilibrium states as the solutions of the stationary Hopf equation. We find a class of equilibrium states which corresponds to a class of infinitely divisible distributions, and investigate the properties of gaussian and poissonian states. Equilibrium dynamics for a class of poissonian states is constructed by means of the Onsager vortex equations.
Chen, Huangxin; Sun, Shuyu; Zhang, Tao
2017-01-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i
General form of the Euler-Poisson-Darboux equation and application of the transmutation method
Directory of Open Access Journals (Sweden)
Elina L. Shishkina
2017-07-01
Full Text Available In this article, we find solution representations in the compact integral form to the Cauchy problem for a general form of the Euler-Poisson-Darboux equation with Bessel operators via generalized translation and spherical mean operators for all values of the parameter k, including also not studying before exceptional odd negative values. We use a Hankel transform method to prove results in a unified way. Under additional conditions we prove that a distributional solution is a classical one too. A transmutation property for connected generalized spherical mean is proved and importance of applying transmutation methods for differential equations with Bessel operators is emphasized. The paper also contains a short historical introduction on differential equations with Bessel operators and a rather detailed reference list of monographs and papers on mathematical theory and applications of this class of differential equations.
Solving the incompressible surface Navier-Stokes equation by surface finite elements
Reuther, Sebastian; Voigt, Axel
2018-01-01
We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
Sohn, J. L.; Heinrich, J. C.
1990-01-01
The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann
2003-01-01
The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...
Self-adjusting entropy-stable scheme for compressible Euler equations
Institute of Scientific and Technical Information of China (English)
程晓晗; 聂玉峰; 封建湖; LuoXiao-Yu; 蔡力
2015-01-01
In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, based on entropy variables, is employed to make the numerical diffusion term added around discontinuities automatically. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy.
Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
Chiodaroli, Elisabetta; Kreml, Ondřej
2018-04-01
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
Self-adjusting entropy-stable scheme for compressible Euler equations
International Nuclear Information System (INIS)
Cheng Xiao-Han; Nie Yu-Feng; Cai Li; Feng Jian-Hu; Luo Xiao-Yu
2015-01-01
In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, which is based on entropy variables, is employed to make the numerical diffusion term be automatically added around discontinuities. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy. (paper)
Solution of Euler unsteady equations using a second order numerical scheme
International Nuclear Information System (INIS)
Devos, J.P.
1992-08-01
In thermal power plants, the steam circuits experience incidents due to the noise and vibration induced by trans-sonic flow. In these configurations, the compressible fluid can be considered the perfect ideal. Euler equations therefore constitute a good model. However, processing of the discontinuities induced by the shockwaves are a particular problem. We give a bibliographical synthesis of the work done on this subject. The research by Roe and Harten leads to TVD (Total Variation Decreasing) type schemes. These second order schemes generate no oscillation and converge towards physically acceptable weak solutions. (author). 12 refs
Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories
International Nuclear Information System (INIS)
Niu Chao; Tian Yu; Wu Xiaoning; Ling Yi
2012-01-01
The dual fluid description for a general cutoff surface at radius r=r c outside the horizon in the charged AdS black brane bulk space-time is investigated, first in the Einstein-Maxwell theory. Under the non-relativistic long-wavelength expansion with parameter ε, the coupled Einstein-Maxwell equations are solved up to O(ε 2 ). The incompressible Navier-Stokes equation with external force density is obtained as the constraint equation at the cutoff surface. For non-extremal black brane, the viscosity of the dual fluid is determined by the regularity of the metric fluctuation at the horizon, whose ratio to entropy density η/s is independent of both the cutoff r c and the black brane charge. Then, we extend our discussion to the Gauss-Bonnet-Maxwell case, where the incompressible Navier-Stokes equation with external force density is also obtained at a general cutoff surface. In this case, it turns out that the ratio η/s is independent of the cutoff r c but dependent on the charge density of the black brane.
An Equal-Order DG Method for the Incompressible Navier-Stokes Equations
Cockburn, Bernardo
2008-12-20
We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element post-processing procedure is used to provide globally divergence-free velocity approximations. For small data, we prove the existence and uniqueness of discrete solutions and carry out an error analysis of the method. A series of numerical results are presented that validate our theoretical findings. © 2008 Springer Science+Business Media, LLC.
Solutions to three-dimensional Navier-Stokes equations for incompressible fluids
Directory of Open Access Journals (Sweden)
Jorma Jormakka
2010-07-01
Full Text Available This article gives explicit solutions to the space-periodic Navier-Stokes problem with non-periodic pressure. These type of solutions are not unique and by using such solutions one can construct a periodic, smooth, divergence-free initial vector field allowing a space-periodic and time-bounded external force such that there exists a smooth solution to the 3-dimensional Navier-Stokes equations for incompressible fluid with those initial conditions, but the solution cannot be continued to the whole space.
Energy Technology Data Exchange (ETDEWEB)
Fischer, P.F. [Brown Univ., Providence, RI (United States)
1996-12-31
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.
Kifonidis, K.; Müller, E.
2012-08-01
Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a
Numerical solutions of incompressible Navier-Stokes equations using modified Bernoulli's law
Shatalov, A.; Hafez, M.
2003-11-01
Simulations of incompressible flows are important for many practical applications in aeronautics and beyond, particularly in the high Reynolds number regime. The present formulation is based on Helmholtz velocity decomposition where the velocity is presented as the gradient of a potential plus a rotational component. Substituting in the continuity equation yields a Poisson equation for the potential which is solved with a zero normal derivative at solid surfaces. The momentum equation is used to update the rotational component with no slip/no penetration surface boundary conditions. The pressure is related to the potential function through a special relation which is a generalization of Bernoulli's law, with a viscous term included. Results of calculations for two- and three-dimensional problems prove that the present formulation is a valid approach, with some possible benefits compared to existing methods.
Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan
2018-04-01
We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.
Numerical solution of special ultra-relativistic Euler equations using central upwind scheme
Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul
2018-06-01
This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.
Energy Technology Data Exchange (ETDEWEB)
Gjesdal, Thor
1997-12-31
This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.
Mohamed, Mamdouh S.
2016-02-11
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-05-01
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Lagrange–Galerkin methods for the incompressible Navier-Stokes equations: a review
Directory of Open Access Journals (Sweden)
Bermejo Rodolfo
2016-09-01
Full Text Available We review in this paper the development of Lagrange-Galerkin (LG methods to integrate the incompressible Navier-Stokes equations (NSEs for engineering applications. These methods were introduced in the computational fluid dynamics community in the early eighties of the past century, and at that time they were considered good methods for both their theoretical stability properties and the way of dealing with the nonlinear terms of the equations; however, the numerical experience gained with the application of LG methods to different problems has identified drawbacks of them, such as the calculation of specific integrals that arise in their formulation and the calculation of the ow trajectories, which somehow have hampered the applicability of LG methods. In this paper, we focus on these issues and summarize the convergence results of LG methods; furthermore, we shall briefly introduce a new stabilized LG method suitable for high Reynolds numbers.
International Nuclear Information System (INIS)
Rosenfeld, M.; Kwak, D.; Vinokur, M.
1988-01-01
A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method. 23 references
Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow
Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.
2018-03-01
We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0Math J 45(3):863-916, 1996), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479-541, 1999), and Gie (Commun Math Sci 12(2):383-400, 2014).
Directory of Open Access Journals (Sweden)
Min Chen
2014-01-01
Full Text Available We study the one-dimensional bipolar nonisentropic Euler-Poisson equations which can model various physical phenomena, such as the propagation of electron and hole in submicron semiconductor devices, the propagation of positive ion and negative ion in plasmas, and the biological transport of ions for channel proteins. We show the existence and large time behavior of global smooth solutions for the initial value problem, when the difference of two particles’ initial mass is nonzero, and the far field of two particles’ initial temperatures is not the ambient device temperature. This result improves that of Y.-P. Li, for the case that the difference of two particles’ initial mass is zero, and the far field of the initial temperature is the ambient device temperature.
Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions
Walters, Robert W.; Dwoyer, Douglas L.
1987-01-01
A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.
An efficient iteration strategy for the solution of the Euler equations
Walters, R. W.; Dwoyer, D. L.
1985-01-01
A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two-dimensions is described. The basic algorithm has the property that convergence to the steady-state is quadratic for fully supersonic flows and linear otherwise. This is in contrast to the block ADI methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented here is easily enhanced to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, thus yielding a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing both oblique and normal shock waves which confirm the efficiency of the iteration strategy.
An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring
Buratynski, E. K.; Caughey, D. A.
1984-01-01
An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.
The Euler equation with habits and measurement errors: Estimates on Russian micro data
Directory of Open Access Journals (Sweden)
Khvostova Irina
2016-01-01
Full Text Available This paper presents estimates of the consumption Euler equation for Russia. The estimation is based on micro-level panel data and accounts for the heterogeneity of agents’ preferences and measurement errors. The presence of multiplicative habits is checked using the Lagrange multiplier (LM test in a generalized method of moments (GMM framework. We obtain estimates of the elasticity of intertemporal substitution and of the subjective discount factor, which are consistent with the theoretical model and can be used for the calibration and the Bayesian estimation of dynamic stochastic general equilibrium (DSGE models for the Russian economy. We also show that the effects of habit formation are not significant. The hypotheses of multiplicative habits (external, internal, and both external and internal are not supported by the data.
Energy Technology Data Exchange (ETDEWEB)
Chafi, Fatima Zohra; Halle, Stephane [Mechanical engineering department, Ecole de technologie superieure, Quebec university, 1100 rue Notre-Dame Ouest, Montreal, Quebec H3C 1K3 (Canada)
2011-02-15
This paper presents the results of a study that consists of estimating the temperature distribution and air flow movement in a model room with a numerical model based on the Euler equations. Numerical results obtained for two scenarios of ventilation and heating are compared with the predictions of a Navier-Stokes model, as well as with experimental results. A comparison of the local thermal comfort indices PMV and PPD obtained experimentally and numerically is also presented. Results show that the Euler model is capable of properly estimating the temperature distribution, the air movement and the comfort indices in the room. Furthermore, the use of Euler equations allows a reduction of computational time in the order of 30% compared to the Navier-Stokes modeling. (author)
International Nuclear Information System (INIS)
Saurel, Richard; Franquet, Erwin; Daniel, Eric; Le Metayer, Olivier
2007-01-01
A new projection method is developed for the Euler equations to determine the thermodynamic state in computational cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a computational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation process replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and provides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the computation of interface problems separating fluids with different EOS (liquid-gas interface for example) with the Euler equations. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface computation and shock propagation into mixtures
Aithal, Abhiram; Ferrante, Antonino
2017-11-01
In order to perform direct numerical simulations (DNS) of turbulent flows over curved surfaces and axisymmetric bodies, we have developed the numerical methodology to solve the incompressible Navier-Stokes (NS) equations in curvilinear coordinates for orthogonal meshes. The orthogonal meshes are generated by solving a coupled system of non-linear Poisson equations. The NS equations in orthogonal curvilinear coordinates are discretized in space on a staggered mesh using second-order central-difference scheme and are solved with an FFT-based pressure-correction method. The momentum equation is integrated in time using the second-order Adams-Bashforth scheme. The velocity field is advanced in time by applying the pressure correction to the approximate velocity such that it satisfies the divergence free condition. The novelty of the method stands in solving the variable coefficient Poisson equation for pressure using an FFT-based Poisson solver rather than the slower multigrid methods. We present the verification and validation results of the new numerical method and the DNS results of transitional flow over a curved axisymmetric body.
Enciso, Alberto; Poyato, David; Soler, Juan
2018-05-01
Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness
Tamellini, L.; Le Maî tre, O.; Nouy, A.
2014-01-01
In this paper we consider a proper generalized decomposition method to solve the steady incompressible Navier-Stokes equations with random Reynolds number and forcing term. The aim of such a technique is to compute a low-cost reduced basis approximation of the full stochastic Galerkin solution of the problem at hand. A particular algorithm, inspired by the Arnoldi method for solving eigenproblems, is proposed for an efficient greedy construction of a deterministic reduced basis approximation. This algorithm decouples the computation of the deterministic and stochastic components of the solution, thus allowing reuse of preexisting deterministic Navier-Stokes solvers. It has the remarkable property of only requiring the solution of m uncoupled deterministic problems for the construction of an m-dimensional reduced basis rather than M coupled problems of the full stochastic Galerkin approximation space, with m l M (up to one order of magnitudefor the problem at hand in this work). © 2014 Society for Industrial and Applied Mathematics.
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations
Loseille, A.; Dervieux, A.; Alauzet, F.
2010-04-01
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.
A stochastic Galerkin method for the Euler equations with Roe variable transformation
Pettersson, Per; Iaccarino, Gianluca; Nordströ m, Jan
2014-01-01
The Euler equations subject to uncertainty in the initial and boundary conditions are investigated via the stochastic Galerkin approach. We present a new fully intrusive method based on a variable transformation of the continuous equations. Roe variables are employed to get quadratic dependence in the flux function and a well-defined Roe average matrix that can be determined without matrix inversion.In previous formulations based on generalized polynomial chaos expansion of the physical variables, the need to introduce stochastic expansions of inverse quantities, or square roots of stochastic quantities of interest, adds to the number of possible different ways to approximate the original stochastic problem. We present a method where the square roots occur in the choice of variables, resulting in an unambiguous problem formulation.The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, the Roe formulation is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. For certain stochastic basis functions, the proposed method can be made more effective and well-conditioned. This leads to increased robustness for both choices of variables. We use a multi-wavelet basis that can be chosen to include a large number of resolution levels to handle more extreme cases (e.g. strong discontinuities) in a robust way. For smooth cases, the order of the polynomial representation can be increased for increased accuracy. © 2013 Elsevier Inc.
Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle
Tsuge, Naoki
2013-08-01
We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.
International Nuclear Information System (INIS)
Thuburn, J.; Woollings, T.J.
2005-01-01
Accurate representation of different kinds of wave motion is essential for numerical models of the atmosphere, but is sensitive to details of the discretization. In this paper, numerical dispersion relations are computed for different vertical discretizations of the compressible Euler equations and compared with the analytical dispersion relation. A height coordinate, an isentropic coordinate, and a terrain-following mass-based coordinate are considered, and, for each of these, different choices of prognostic variables and grid staggerings are considered. The discretizations are categorized according to whether their dispersion relations are optimal, are near optimal, have a single zero-frequency computational mode, or are problematic in other ways. Some general understanding of the factors that affect the numerical dispersion properties is obtained: heuristic arguments concerning the normal mode structures, and the amount of averaging and coarse differencing in the finite difference scheme, are shown to be useful guides to which configurations will be optimal; the number of degrees of freedom in the discretization is shown to be an accurate guide to the existence of computational modes; there is only minor sensitivity to whether the equations for thermodynamic variables are discretized in advective form or flux form; and an accurate representation of acoustic modes is found to be a prerequisite for accurate representation of inertia-gravity modes, which, in turn, is found to be a prerequisite for accurate representation of Rossby modes
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
International Nuclear Information System (INIS)
Bokhari, Ashfaque H.; Zaman, F. D.; Mahomed, F. M.
2010-01-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
International Nuclear Information System (INIS)
Vidovic, D.; Segal, A.; Wesseling, P.
2004-01-01
A method for linear reconstruction of staggered vector fields with special treatment of the divergence is presented. An upwind-biased finite volume scheme for solving the unsteady incompressible Navier-Stokes equations on staggered unstructured triangular grids that uses this reconstruction is described. The scheme is applied to three benchmark problems and is found to be superlinearly convergent in space
A simple and efficient outflow boundary condition for the incompressible Navier–Stokes equations
Directory of Open Access Journals (Sweden)
Yibao Li
2017-01-01
Full Text Available Many researchers have proposed special treatments for outlet boundary conditions owing to lack of information at the outlet. Among them, the simplest method requires a large enough computational domain to prevent or reduce numerical errors at the boundaries. However, an efficient method generally requires special treatment to overcome the problems raised by the outlet boundary condition used. For example, mass flux is not conserved and the fluid field is not divergence-free at the outlet boundary. Overcoming these problems requires additional computational cost. In this paper, we present a simple and efficient outflow boundary condition for the incompressible Navier–Stokes equations, aiming to reduce the computational domain for simulating flow inside a long channel in the streamwise direction. The proposed outflow boundary condition is based on the transparent equation, where a weak formulation is used. The pressure boundary condition is derived by using the Navier–Stokes equations and the outlet flow boundary condition. In the numerical algorithm, a staggered marker-and-cell grid is used and temporal discretization is based on a projection method. The intermediate velocity boundary condition is consistently adopted to handle the velocity–pressure coupling. Characteristic numerical experiments are presented to demonstrate the robustness and accuracy of the proposed numerical scheme. Furthermore, the agreement of computational results from small and large domains suggests that our proposed outflow boundary condition can significantly reduce computational domain sizes.
Wang, Zhiheng
2014-12-10
A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.
Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil
2015-11-01
We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.
Scholle, M.; Gaskell, P. H.; Marner, F.
2018-04-01
An exact first integral of the full, unsteady, incompressible Navier-Stokes equations is achieved in its most general form via the introduction of a tensor potential and parallels drawn with Maxwell's theory. Subsequent to this gauge freedoms are explored, showing that when used astutely they lead to a favourable reduction in the complexity of the associated equation set and number of unknowns, following which the inviscid limit case is discussed. Finally, it is shown how a change in gauge criteria enables a variational principle for steady viscous flow to be constructed having a self-adjoint form. Use of the new formulation is demonstrated, for different gauge variants of the first integral as the starting point, through the solution of a hierarchy of classical three-dimensional flow problems, two of which are tractable analytically, the third being solved numerically. In all cases the results obtained are found to be in excellent accord with corresponding solutions available in the open literature. Concurrently, the prescription of appropriate commonly occurring physical and necessary auxiliary boundary conditions, incorporating for completeness the derivation of a first integral of the dynamic boundary condition at a free surface, is established, together with how the general approach can be advantageously reformulated for application in solving unsteady flow problems with periodic boundaries.
International Nuclear Information System (INIS)
Batcho, P.F.; Karniadakis, G.E.
1994-01-01
The present study focuses on the solution of the incompressible Navier-Stokes equations in general, non-separable domains, and employs a Galerkin projection of divergence-free vector functions as a trail basis. This basis is obtained from the solution of a generalized constrained Stokes eigen-problem in the domain of interest. Faster convergence can be achieved by constructing a singular Stokes eigen-problem in which the Stokes operator is modified to include a variable coefficient which vanishes at the domain boundaries. The convergence properties of such functions are advantageous in a least squares sense and are shown to produce significantly better approximations to the solution of the Navier-Stokes equations in post-critical states where unsteadiness characterizes the flowfield. Solutions for the eigen-systems are efficiently accomplished using a combined Lanczos-Uzawa algorithm and spectral element discretizations. Results are presented for different simulations using these global spectral trial basis on non-separable and multiply-connected domains. It is confirmed that faster convergence is obtained using the singular eigen-expansions in approximating stationary Navier-Stokes solutions in general domains. It is also shown that 100-mode expansions of time-dependent solutions based on the singular Stokes eigenfunctions are sufficient to accurately predict the dynamics of flows in such domains, including Hopf bifurcations, intermittency, and details of flow structures
Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft
Directory of Open Access Journals (Sweden)
Yuma Fukushima
2015-01-01
Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.
A spectral element-FCT method for the compressible Euler equations
International Nuclear Information System (INIS)
Giannakouros, J.; Karniadakis, G.E.
1994-01-01
A new algorithm based on spectral element discretizations and flux-corrected transport concepts is developed for the solution of the Euler equations of inviscid compressible fluid flow. A conservative formulation is proposed based on one- and two-dimensional cell-averaging and reconstruction procedures, which employ a staggered mesh of Gauss-Chebyshev and Gauss-Lobatto-Chebyshev collocation points. Particular emphasis is placed on the construction of robust boundary and interfacial conditions in one- and two-dimensions. It is demonstrated through shock-tube problems and two-dimensional simulations that the proposed algorithm leads to stable, non-oscillatory solutions of high accuracy. Of particular importance is the fact that dispersion errors are minimal, as show through experiments. From the operational point of view, casting the method in a spectral element formulation provides flexibility in the discretization, since a variable number of macro-elements or collocation points per element can be employed to accomodate both accuracy and geometric requirements
Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements
Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.
2018-03-01
We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.
Lee, Byungjoon; Min, Chohong
2018-05-01
We introduce a stable method for solving the incompressible Navier-Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier-Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented. Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax-Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax-Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.
International Nuclear Information System (INIS)
Konopelchenko, B; Alonso, L MartInez; Medina, E
2010-01-01
It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock-type singularities are presented.
A new class of massively parallel direction splitting for the incompressible Navier–Stokes equations
Guermond, J.L.
2011-06-01
We introduce in this paper a new direction splitting algorithm for solving the incompressible Navier-Stokes equations. The main originality of the method consists of using the operator (I-∂xx)(I-∂yy)(I-∂zz) for approximating the pressure correction instead of the Poisson operator as done in all the contemporary projection methods. The complexity of the proposed algorithm is significantly lower than that of projection methods, and it is shown the have the same stability properties as the Poisson-based pressure-correction techniques, either in standard or rotational form. The first-order (in time) version of the method is proved to have the same convergence properties as the classical first-order projection techniques. Numerical tests reveal that the second-order version of the method has the same convergence rate as its second-order projection counterpart as well. The method is suitable for parallel implementation and preliminary tests show excellent parallel performance on a distributed memory cluster of up to 1024 processors. The method has been validated on the three-dimensional lid-driven cavity flow using grids composed of up to 2×109 points. © 2011 Elsevier B.V.
International Nuclear Information System (INIS)
Anderson, C.R.; Reider, M.B.
1994-01-01
The technique of combining solutions of the Prandtl equations with solutions of the Navier--Stokes equations to compute incompressible flow around two-dimensional bodies is investigated herein. Computational evidence is presented which shows that if the ''obvious'' coupling is used to combine the solutions, then the resulting solution is not accurate. An alternate coupling procedure is described which greatly improves the accuracy of the solutions obtained with the combined equation approach. An alternate coupling that can be used to create a more accurate vortex sheet/vortex blob method is then shown
Advances in Spectral Methods for UQ in Incompressible Navier-Stokes Equations
Le Maitre, Olivier
2014-01-06
In this talk, I will present two recent contributions to the development of efficient methodologies for uncertainty propagation in the incompressible Navier-Stokes equations. The first one concerns the reduced basis approximation of stochastic steady solutions, using Proper Generalized Decompositions (PGD). An Arnoldi problem is projected to obtain a low dimensional Galerkin problem. The construction then amounts to the resolution of a sequence of uncoupled deterministic Navier-Stokes like problem and simple quadratic stochastic problems, followed by the resolution of a low-dimensional coupled quadratic stochastic problem, with a resulting complexity which has to be contrasted with the dimension of the whole Galerkin problem for classical spectral approaches. An efficient algorithm for the approximation of the stochastic pressure field is also proposed. Computations are presented for uncertain viscosity and forcing term to demonstrate the effectiveness of the reduced method. The second contribution concerns the computation of stochastic periodic solutions to the Navier-Stokes equations. The objective is to circumvent the well-known limitation of spectral methods for long-time integration. We propose to directly determine the stochastic limit-cycles through the definition of its stochastic period and an initial condition over the cycle. A modified Newton method is constructed to compute iteratively both the period and initial conditions. Owing to the periodic character of the solution, and by introducing an appropriate time-scaling, the solution can be approximated using low-degree polynomial expansions with large computational saving as a result. The methodology is illustrated for the von-Karman flow around a cylinder with stochastic inflow conditions.
Advances in Spectral Methods for UQ in Incompressible Navier-Stokes Equations
Le Maitre, Olivier
2014-01-01
In this talk, I will present two recent contributions to the development of efficient methodologies for uncertainty propagation in the incompressible Navier-Stokes equations. The first one concerns the reduced basis approximation of stochastic steady solutions, using Proper Generalized Decompositions (PGD). An Arnoldi problem is projected to obtain a low dimensional Galerkin problem. The construction then amounts to the resolution of a sequence of uncoupled deterministic Navier-Stokes like problem and simple quadratic stochastic problems, followed by the resolution of a low-dimensional coupled quadratic stochastic problem, with a resulting complexity which has to be contrasted with the dimension of the whole Galerkin problem for classical spectral approaches. An efficient algorithm for the approximation of the stochastic pressure field is also proposed. Computations are presented for uncertain viscosity and forcing term to demonstrate the effectiveness of the reduced method. The second contribution concerns the computation of stochastic periodic solutions to the Navier-Stokes equations. The objective is to circumvent the well-known limitation of spectral methods for long-time integration. We propose to directly determine the stochastic limit-cycles through the definition of its stochastic period and an initial condition over the cycle. A modified Newton method is constructed to compute iteratively both the period and initial conditions. Owing to the periodic character of the solution, and by introducing an appropriate time-scaling, the solution can be approximated using low-degree polynomial expansions with large computational saving as a result. The methodology is illustrated for the von-Karman flow around a cylinder with stochastic inflow conditions.
International Nuclear Information System (INIS)
Botelho, D.A.; Moreira, M.L.
1991-06-01
The Reynolds turbulent transport equations for an incompressible fluid are integrated on a bi-dimensional staggered grid, for velocity and pressure, using the SIMPLER method. With the resulting algebraic relations it was developed the TURBO program, which final objectives are the thermal stratification and natural convection analysis of nuclear reactor pools. This program was tested in problems applications with analytic or experimental solutions previously known. (author)
A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid
Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.
1995-01-01
In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.
International Nuclear Information System (INIS)
Turner, L.
1996-01-01
Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity (vorticity) states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics (i.e., turbulence) may be traced back to the most primordial structure of the Navier-Stokes equation; namely, the driven triadic interaction. copyright 1996 The American Physical Society
Arteaga, Santiago Egido
1998-12-01
The steady-state Navier-Stokes equations are of considerable interest because they are used to model numerous common physical phenomena. The applications encountered in practice often involve small viscosities and complicated domain geometries, and they result in challenging problems in spite of the vast attention that has been dedicated to them. In this thesis we examine methods for computing the numerical solution of the primitive variable formulation of the incompressible equations on distributed memory parallel computers. We use the Galerkin method to discretize the differential equations, although most results are stated so that they apply also to stabilized methods. We also reformulate some classical results in a single framework and discuss some issues frequently dismissed in the literature, such as the implementation of pressure space basis and non- homogeneous boundary values. We consider three nonlinear methods: Newton's method, Oseen's (or Picard) iteration, and sequences of Stokes problems. All these iterative nonlinear methods require solving a linear system at every step. Newton's method has quadratic convergence while that of the others is only linear; however, we obtain theoretical bounds showing that Oseen's iteration is more robust, and we confirm it experimentally. In addition, although Oseen's iteration usually requires more iterations than Newton's method, the linear systems it generates tend to be simpler and its overall costs (in CPU time) are lower. The Stokes problems result in linear systems which are easier to solve, but its convergence is much slower, so that it is competitive only for large viscosities. Inexact versions of these methods are studied, and we explain why the best timings are obtained using relatively modest error tolerances in solving the corresponding linear systems. We also present a new damping optimization strategy based on the quadratic nature of the Navier-Stokes equations, which improves the robustness of all the
International Nuclear Information System (INIS)
Curchitser, E.N.; Pelz, R.B.; Marconi, F.
1992-01-01
The Euler and Navier-Stokes equations are solved for the steady, two-dimensional flow over a NACA 0012 airfoil using a 1024 node nCUBE/2 multiprocessor. Second-order, upwind-discretized difference equations are solved implicitly using ADI factorization. Parallel cyclic reduction is employed to solve the block tridiagonal systems. For realistic problems, communication times are negligible compared to calculation times. The processors are tightly synchronized, and their loads are well balanced. When the flux Jacobians flux are frozen, the wall-clock time for one implicit timestep is about equal to that of a multistage explicit scheme. 10 refs
Energy Technology Data Exchange (ETDEWEB)
Suescun D, D.; Oviedo T, M., E-mail: daniel.suescun@usco.edu.co [Universidad Surcolombiana, Av. Pastrana Borrero - Carrera 1, Neiva, Huila (Colombia)
2017-09-15
In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and
Directory of Open Access Journals (Sweden)
Boričić Zoran
2005-01-01
Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.
A non-linear multigrid method for the steady Euler equations
Hemker, P.W.; Koren, B.; Dervieux, A.; Leer, van B.; Periaux, J.; Rizzi, A.
1989-01-01
Higher-order accurate Euler-flow solutions are presented for some airfoil test cases. Second-order accurate solutions are computed by an Iterative Defect Correction process. For two test cases even higher accuracy is obtained by the additional use of a ~xtrapolation technique. Finite volume
A rigorous justification of the Euler and Navier-Stokes equations with geometric effects
Czech Academy of Sciences Publication Activity Database
Bella, P.; Feireisl, Eduard; Lewicka, M.; Novotný, A.
2016-01-01
Roč. 48, č. 6 (2016), s. 3907-3930 ISSN 0036-1410 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : isentropic Navier-Stokes system * isentropic Euler system * inviscid limit Subject RIV: BA - General Mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/10.1137/15M1048963
Directory of Open Access Journals (Sweden)
John Michael Rassias
2017-07-01
Full Text Available The aim of this paper is to investigate generalized Ulam-Hyers stabilities of the following Euler-Lagrange-Jensen-$(a,b$-sextic functional equation $$ f(ax+by+f(bx+ay+(a-b^6\\left[f\\left(\\frac{ax-by}{a-b}\\right+f\\left(\\frac{bx-ay}{b-a}\\right\\right]\\\\ = 64(ab^2\\left(a^2+b^2\\right\\left[f\\left(\\frac{x+y}{2}\\right+f\\left(\\frac{x-y}{2}\\right\\right]\\\\ +2\\left(a^2-b^2\\right\\left(a^4-b^4\\right[f(x+f(y] $$ where $a\
Dias, Clenilda F; Carvalho-Santos, Vagson L
2012-01-01
The Euler-Lagrange equations (EL) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of EL to study one-dimensional motions under the action of a constant force. From using the definition of partial derivative, we have proposed two operators, here called \\textit{mean delta operators}, which may be used to solve the EL in a simplest way. We have applied this simplification to solve three simple mechanical problems under th...
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann
2003-01-01
This brief report expresses the basic equations of an incompressible flow model in a form which can be translated easily into the form used by a numerical solver. The application of tensor notation makes is possible to effectively address the issue ofnumerical robustness and stating the model...... equations on a general form which accommodate curvilinear coordinates. Strong conservation form is obtained by formulating the equations so that the flow variables, velocity and pressure, are expressed in thephysical coordinate system while the location of evaluation is expressed within the transformed...... form of the equations is included which allows for special solutions to be developed in the transformedcoordinate system. Examples of applications are atmospheric flows over complex terrain, aerodynamically flows, industrial flows and environmental flows....
Czech Academy of Sciences Publication Activity Database
Šístek, Jakub; Cirak, F.
2015-01-01
Roč. 122, 20 November (2015), s. 165-183 ISSN 0045-7930 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : Navier-Stokes * incompressible flow * Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 1.891, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045793015003023
Guermond, Jean-Luc; Minev, Peter D.
2010-01-01
A new direction-splitting-based fractional time stepping is introduced for solving the incompressible Navier-Stokes equations. The main originality of the method is that the pressure correction is computed by solving a sequence of one-dimensional elliptic problems in each spatial direction. The method is very simple to program in parallel, very fast, and has exactly the same stability and convergence properties as the Poisson-based pressure-correction technique, either in standard or rotational form. © 2010 Académie des sciences.
Guermond, Jean-Luc
2010-05-01
A new direction-splitting-based fractional time stepping is introduced for solving the incompressible Navier-Stokes equations. The main originality of the method is that the pressure correction is computed by solving a sequence of one-dimensional elliptic problems in each spatial direction. The method is very simple to program in parallel, very fast, and has exactly the same stability and convergence properties as the Poisson-based pressure-correction technique, either in standard or rotational form. © 2010 Académie des sciences.
Chen, Huangxin
2017-09-01
In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
Chang, S.-C.; Adamczyk, J. J.
1986-01-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
Numerical solution of newton´s cooling differential equation by the methods of euler and runge-kutta
Directory of Open Access Journals (Sweden)
Andresa Pescador
2016-04-01
Full Text Available This article presents the first-order differential equations, which are a very important branch of mathematics as they have a wide applicability, in mathematics, as in physics, biology and economy. The objective of this study was to analyze the resolution of the equation that defines the cooling Newton's law. Verify its behavior using some applications that can be used in the classroom as an auxiliary instrument to the teacher in addressing these contents bringing answers to the questions of the students and motivating them to build their knowledge. It attempted to its resolution through two numerical methods, Euler method and Runge -Kutta method. Finally, there was a comparison of the approach of the solution given by the numerical solution with the analytical resolution whose solution is accurate.
Large CYBER-205-model of the Euler equations for vortex-stretched turbulent flow around Delta wings
International Nuclear Information System (INIS)
Rizzi, A.; Purcell, C.J.
1985-01-01
The large-scale numerical simulation of fluid flow is described as a discipline within the field of software engineering. As an example of such work, a vortex flow field is analyzed for its essential physical flow features, an appropriate mathematical description is presented (the Euler equations with an artificial viscosity model), a numerical algorithm to solve mathematical equations is described, and the programming methodology which allows us to attain a very high degree of vectorization on the CYBER 205 is discussed. Four simulated flowfields with vorticity shed from wing edges are computed with up to as many as one million grid points and verify the realism of the simulation model. The computed solutions show all of the qualitative features that are expected in these flows. The twisted cranked-and-cropped delta case is one where the leading-edge vortex is highly stretched and unstable, displaying ultimately inviscid large-scale turbulent-like phenomena
Czech Academy of Sciences Publication Activity Database
Šístek, Jakub; Cirak, F.
2015-01-01
Roč. 122, 20 November (2015), s. 165-183 ISSN 0045-7930 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : Navier-Stokes * incompressible flow * Krylov subspace method s Subject RIV: BA - General Mathematics Impact factor: 1.891, year: 2015 http://www. science direct.com/ science /article/pii/S0045793015003023
The flow of an incompressible electroconductive fluid past a thin airfoil. The parabolic profile
Directory of Open Access Journals (Sweden)
Adrian CARABINEANU
2014-04-01
Full Text Available We study the two-dimensional steady flow of an ideal incompressible perfectly conducting fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and pressure and the boundary conditions to obtain an integral equation for the jump of the pressure across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic induction.
Energy Technology Data Exchange (ETDEWEB)
Dellacherie, St. [CEA Saclay, Dir. de l' Energie Nucleaire DEN/SFNME/LMPE, Lab. de Modelisation Physique et de l' Enrichissement, 91 - Gif sur Yvette (France); Rency, N. [Paris-11 Univ., CNRS UMR 8628, 91 - Orsay (France)
2001-07-01
After having recalled the formal convergence of the semi-classical multi-species Boltzmann equations toward the multi-species Euler system (i.e. mixture of gases having the same velocity), we generalize to this system the closure relations proposed by B. Despres and by F. Lagoutiere for the multi-components Euler system (i.e. mixture of non miscible fluids having the same velocity). Then, we extend the energy relaxation schemes proposed by F. Coquel and by B. Perthame for the numerical resolution of the mono-species Euler system to the multi-species isothermal Euler system and to the multi-components isobar-isothermal Euler system. This allows to obtain a class of entropic schemes under a CFL criteria. In the multi-components case, this class of entropic schemes is perhaps a way for the treatment of interface problems and, then, for the treatment of the numerical mixture area by using a Lagrange + projection scheme. Nevertheless, we have to find a good projection stage in the multi-components case. At last, in the last chapter, we discuss, through the study of a dynamical system, about a system proposed by R. Abgrall and by R. Saurel for the numerical resolution of the multi-components Euler system.
Euler-Lagrange equations for holomorphic structures on twistorial generalized Kähler manifolds
Directory of Open Access Journals (Sweden)
Zeki Kasap
2016-02-01
showing motion modeling partial di¤erential equations have been obtained for movement of objects in space and solutions of these equations have been generated by using the Maple software. Additionally, of the implicit solution of the equations to be drawn the graph.
Dias, Clenilda F.; Araújo, Maria A. S.; Carvalho-Santos, Vagson L.
2018-01-01
The Euler-Lagrange equations (ELE) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of ELE to study one-dimensional motions under the action of a constant force. From the use of the definition of partial derivative, we have proposed two operators, here called mean delta operators, which may be used to solve the ELE in a simplest way. We have applied this simplification to solve three simple mechanical problems in which the particle is under the action of the gravitational field: a free fall body, the Atwood’s machine and the inclined plan. The proposed simplification can be used to introduce the lagrangian formalism in teaching classical mechanics in introductory physics courses.
Energy Technology Data Exchange (ETDEWEB)
Marc O Delchini; Jean E. Ragusa; Ray A. Berry
2015-07-01
We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.
International Nuclear Information System (INIS)
Rahmouni, Adib N.
2004-01-01
In 1994, Berenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique proposed by Berenger (loc. cit.) leads to a system which has lost the most important properties of the original one: strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model [IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper can be extended to various hyperbolic problems
International Nuclear Information System (INIS)
Pontaza, J.P.; Reddy, J.N.
2004-01-01
We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least
International Nuclear Information System (INIS)
Sabundjian, Gaiane
1999-01-01
This work presents a novel numeric method, based on the finite element method, applied for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. The method is based on the expansion of the variables in almost hierarchical functions. The used expansion functions are based on Legendre polynomials, adjusted in the rectangular elements in a such a way that corner, side and area functions are defined. The order of the expansion functions associated with the sides and with the area of the elements can be adjusted to the necessary or desired degree. This novel numeric method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature in two dimensions are analyzed. The results show the method capacity in supplying precise results. From the results obtained in this thesis it is possible to conclude that the hierarchical expansion method can be applied successfully for the solution of fluid dynamic problems that involve incompressible fluids. (author)
Ha, Sanghyun; Park, Junshin; You, Donghyun
2018-01-01
Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
Czech Academy of Sciences Publication Activity Database
Bellout, H.; Neustupa, Jiří; Penel, P.
2010-01-01
Roč. 27, č. 4 (2010), s. 1353-1373 ISSN 1078-0947 R&D Projects: GA AV ČR IAA100190905 Institutional research plan: CEZ:AV0Z10190503 Keywords : Euler equations * Navier-Stokes equations * zero viscosity limit Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5028
Ha, Sanghyun; Park, Junshin; You, Donghyun
2017-11-01
Utility of the computational power of modern Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. Due to its serial and bandwidth-bound nature, the present choice of numerical methods is considered to be a good candidate for evaluating the potential of GPUs for solving Navier-Stokes equations using non-explicit time integration. An efficient algorithm is presented for GPU acceleration of the Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution method used in the semi-implicit fractional-step method. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while Navier-Stokes equations are computed on a GPU. Extension to multiple NVIDIA GPUs is implemented using NVLink supported by the Pascal architecture. Performance of the present method is experimented on multiple Tesla P100 GPUs compared with a single-core Xeon E5-2650 v4 CPU in simulations of boundary-layer flow over a flat plate. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (Ministry of Science, ICT and Future Planning NRF-2016R1E1A2A01939553, NRF-2014R1A2A1A11049599, and Ministry of Trade, Industry and Energy 201611101000230).
International Nuclear Information System (INIS)
Koleshko, S.B.
1989-01-01
A three-parametric set of difference schemes is suggested to solve Navier-Stokes equations with the use of the relaxation form of the continuity equation. The initial equations are stated for time increments. Use is made of splitting the operator into one-dimensional forms that reduce calculations to scalar factorizations. Calculated results for steady- and unsteady-state flows in a cavity are presented
Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations
International Nuclear Information System (INIS)
Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C.; Michalowski, Nicholas
2015-01-01
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation
Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.
Dascaliuc, Radu; Michalowski, Nicholas; Thomann, Enrique; Waymire, Edward C
2015-07-01
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.
Is classical mechanics based on Newton's laws or Eulers analytical equations?
Directory of Open Access Journals (Sweden)
H.Iro
2005-01-01
Full Text Available In an example I illustrate how my picture of physics is enriched due to my frequent conversations with Reinhard Folk. The subject is: Who wrote down the basic equations of motion of classical mechanics for the first time? (To be sure, it was not Newton.
High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves
DEFF Research Database (Denmark)
Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter
2012-01-01
is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...
An adaptive-gridding solution method for the 2D unsteady Euler equations
J. Wackers (Jeroen)
2003-01-01
textabstractAdaptive grid refinement is a technique to speed up the numerical solution of partial differential equations by starting these calculations on a coarse basic grid and refining this grid only there where the solution requires this, e.g. in areas with large gradients. This technique has
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow
The finite volume element (FVE) and multigrid method for the incompressible Navier-Stokes equations
International Nuclear Information System (INIS)
Gu Lizhen; Bao Weizhu
1992-01-01
The authors apply FVE method to discrete INS equations with the original variable, in which the bilinear square finite element and the square finite volume are chosen. The discrete schemes of INS equations are presented. The FMV multigrid algorithm is applied to solve that discrete system, where DGS iteration is used as smoother, DGS distributive mode for the INS discrete system is also presented. The sample problems for the square cavity flow with Reynolds number Re≤100 are successfully calculated. The numerical solutions show that the results with 1 FMV is satisfactory and when Re is not large, The FVE discrete scheme of the conservative INS equations and that of non-conservative INS equations with linearization both can provide almost same accuracy
Piatkowski, Marian; Müthing, Steffen; Bastian, Peter
2018-03-01
In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.
A modelling of robot manipulator dynamics based on Newton-Euler's equations
International Nuclear Information System (INIS)
Sasaki, Shinobu
1990-09-01
In this paper is presented an algorithm for solving the inverse dynamics of robot manipulators. In comparison with the dynamical equations derived from the Lagrange's mechanics, the relations to be treated are of simple forms due to recursive expressions of relative link motions. A computer simulation for applying the algorithm to a six-link manipulator indicated that the present method might be most appropriate among the existing approaches from the viewpoint of computational efficiency. In particular, it is noted that the increase of the number of links has hardly great effect on the intricacy of calculation. (author)
Utilization of Euler-Lagrange Equations in Circuits with Memory Elements
Directory of Open Access Journals (Sweden)
Z. Biolek
2016-12-01
Full Text Available It is well known that the equation of motion of a system can be set up using the Lagrangian and the dissipation function, which describe the conservative and dissipative parts of the system. However, this procedure, consisting in a systematic differentiation of the above state functions, cannot be used for circuits containing simultaneously conventional nonlinear elements such as the resistor, capacitor, and inductor, and their nonlinear memory versions – the memristor, memcapacitor, and meminductor. The paper provides a general solution to this problem and demonstrates it on the example of modeling Josephson’s junction.
Kinetic equation of Lagrange particles and turbulence of an incompressible fluid
International Nuclear Information System (INIS)
Gordienko, S.N.
1999-01-01
Closed equation for the two-point function of the velocity and pressure gradient distribution is obtained. The spectral properties of the turbulent flow are studied on the basis of the analysis of scaling properties of the above equation and the problem on the role of the vorticity distribution in a turbulent flow alternation was considered. It is shown, that alternation is connected with boundary conditions. The geometric picture of the alternation is found. It is established, that distribution of the vorticity and correspondingly the role of alternation in the currents with spirality and without spirality are completely different
On partial stabilization of a system of the Euler-Bernoulli beam equations
International Nuclear Information System (INIS)
Zuyev, Alexander
2003-11-01
The paper is focused on the stabilization problem for the following system of differential equations ∂ 2 (t) = v, t ≥ 0, (∂ 2 ω i (x,t))/∂t 2 + c 2 (∂ 4 ω i (x,t))/∂x 4 = ∂ 2 (t)ω i (x,t) - (x+d)v, x is an element of [0,l], i = 1,2,...,k, where v is an element of R is the control parameter. The above system describes a rotating rigid body endowed with a number of elastic beams. To solve the stabilization problem, we prove a sufficient condition for partial strong asymptotic stability which is valid for general nonlinear dynamical systems in a Banach space. This result is applied to deriving a feedback control explicitly. In addition, we prove strong (non-asymptotic) stability in the sense of Lyapunov as well as precompacness of the trajectories for the corresponding nonlinear semigroup. Some simulation results are given in conclusion. (author)
Yang, Xuguang; Shi, Baochang; Chai, Zhenhua
2014-07-01
In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although some gradient operators are included in the correction terms, they can be computed efficiently using local computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also performed some simulations of the natural convection in a square cavity, and we found that the results agree well with those reported in the previous work, even at a very high Rayleigh number (Ra = 10(12)).
International Nuclear Information System (INIS)
Boergers, C.; Peskin, C.S.
1987-01-01
In the Lagrangian fractional step method introduced in this paper, the fluid velocity and pressure are defined on a collection of N fluid markers. At each time step, these markers are used to generate a Voronoi diagram, and this diagram is used to construct finite-difference operators corresponding to the divergence, gradient, and Laplacian. The splitting of the Navier--Stokes equations leads to discrete Helmholtz and Poisson problems, which we solve using a two-grid method. The nonlinear convection terms are modeled simply by the displacement of the fluid markers. We have implemented this method on a periodic domain in the plane. We describe an efficient algorithm for the numerical construction of periodic Voronoi diagrams, and we report on numerical results which indicate the the fractional step method is convergent of first order. The overall work per time step is proportional to N log N. copyright 1987 Academic Press, Inc
DEFF Research Database (Denmark)
Kolmogorov, Dmitry
turbine computations, collocated grid-based SIMPLE-like algorithms are developed for computations on block-structured grids with nonconformal interfaces. A technique to enhance both the convergence speed and the solution accuracy of the SIMPLE-like algorithms is presented. The erroneous behavior, which...... versions of the SIMPLE algorithm. The new technique is implemented in an existing conservative 2nd order finite-volume scheme flow solver (EllipSys), which is extended to cope with grids with nonconformal interfaces. The behavior of the discrete Navier-Stokes equations is discussed in detail...... Block LU relaxation scheme is shown to possess several optimal conditions, which enables to preserve high efficiency of the multigrid solver on both conformal and nonconformal grids. The developments are done using a parallel MPI algorithm, which can handle multiple numbers of interfaces with multiple...
The linearized pressure Poisson equation for global instability analysis of incompressible flows
Theofilis, Vassilis
2017-12-01
The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow. In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated grids.
Energy Technology Data Exchange (ETDEWEB)
Rocha, Jussiê S., E-mail: jussie.soares@ifpi.edu.br [Instituto Federal do Piauí (IFPI), Valença, PI (Brazil); Maciel, Edisson Sávio de Góes, E-mail: edissonsavio@yahoo.com.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Lira, Carlos A.B.O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Sousa, Pedro A.S.; Neto, Raimundo N.C., E-mail: augusto.96pedro@gmail.com, E-mail: r.correia17@hotmail.com [Instituto Federal do Piauí (IFPI), Teresina, PI (Brazil)
2017-07-01
Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D{sub E}ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)
International Nuclear Information System (INIS)
Potters, Max; Vaillant, Timothee; Bouchet, Freddy
2013-01-01
The 2D Euler equations are basic examples of fluid models for which a microcanonical measure can be constructed from first principles. This measure is defined through finite-dimensional approximations and a limiting procedure. Creutz’s algorithm is a microcanonical generalization of the Metropolis–Hastings algorithm (to sample Gibbs measures, in the canonical ensemble). We prove that Creutz’s algorithm can sample finite-dimensional approximations of the 2D Euler microcanonical measures (incorporating fixed energy and other invariants). This is essential as microcanonical and canonical measures are known to be inequivalent at some values of energy and vorticity distribution. Creutz’s algorithm is used to check predictions from the mean-field statistical mechanics theory of the 2D Euler equations (the Robert–Sommeria–Miller theory). We find full agreement with theory. Three different ways to compute the temperature give consistent results. Using Creutz’s algorithm, a first-order phase transition never observed previously and a situation of statistical ensemble inequivalence are found and studied. Strikingly, and in contrast to the usual statistical mechanics interpretations, this phase transition appears from a disordered phase to an ordered phase (with fewer symmetries) when the energy is increased. We explain this paradox. (paper)
International Nuclear Information System (INIS)
Greenough, J.A.; Rider, W.J.
2004-01-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the 'peak' shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are
International Nuclear Information System (INIS)
Egorov, Yurii V
2013-01-01
We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.
Shen, Hua
2018-05-28
We construct positivity-preserving space–time conservation element and solution element (CE/SE) schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes consisting of triangular and rectangular elements. The schemes use an a posteriori limiter to prevent negative densities and pressures based on the premise of preserving optimal accuracy. The limiter enforces a constraint for spatial derivatives and does not change the conservative property of CE/SE schemes. Several numerical examples suggest that the proposed schemes preserve accuracy for smooth flows and strictly preserve positivity of densities and pressures for the problems involving near vacuum and very strong discontinuities.
Riley, Douglas A.
We study the three-dimensional incompressible Navier- Stokes equations in a domain of the form W'×(0,e) . First, we assume W' is a C3 bounded domain and impose no-slip boundary conditions on 6W'×(0,e ) , and periodic conditions on W'×0,e . Physically, this models fluid flow through a pipe with cross-section W' where the inlet and outlet conditions are assumed periodic. Secondly, we assume W'=(0,l4) ×(0,l5) and impose periodic boundary conditions. This problem is of interest mathematically, and has been more widely considered than the pipe flow problem. For both sets of boundary conditions, we show that a strong solution exists for all time with conditions on the initial data and forcing. We start by recalling that if the forcing function and initial condition do not depend on x3, then a global strong solution exists which also does not depend on x3. Here (x1,x2,x3) ∈W≡W'×( 0,e) . With this observation as motivation, and using an additive decomposition introduced by Raugel and Sell, we split the initial data and forcing into a portion independent of x3 and a remainder. In our first result, we impose a smallness condition on the remainder and assume the forcing function is square- integrable in time as a function into L2(W) . With these assumptions, we prove a global existence theorem that does not require a smallness condition on e or on the portion of the initial condition and forcing independent of x3. However, these quantities do affect the allowable size of the remainder. For our second result, we assume the forcing is only bounded in time as a function into L2(W) . In this case, we need a smallness condition on the initial data, the forcing, and e to obtain global existence. The interesting observation is that the allowable sizes for the initial data and forcing grow as e-->0 . Thus, we obtain a `thin-domain' result as originally obtained by Raugel and Sell. In fact, our results allow the portion of the initial data and forcing independent of x3 to
International Nuclear Information System (INIS)
Rocha, Jussiê S.; Maciel, Edisson Sávio de Góes; Lira, Carlos A.B.O.; Sousa, Pedro A.S.; Neto, Raimundo N.C.
2017-01-01
Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D E ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)
Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias
2018-04-01
A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.
International Nuclear Information System (INIS)
Yoon, Jong Seon; Choi, Hyoung Gwon; Jeon, Byoung Jin; Jung, Hye Dong
2016-01-01
A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jong Seon; Choi, Hyoung Gwon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin [Yonsei Univ., Seoul (Korea, Republic of); Jung, Hye Dong [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)
2016-09-15
A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.
Hof, Bas van ’t; Veldman, Arthur E.P.
2012-01-01
The paper explains a method by which discretizations of the continuity and momentum equations can be designed, such that they can be combined with an equation of state into a discrete energy equation. The resulting 'MaMEC' discretizations conserve mass, momentum as well as energy, although no
Crittenden, P. E.; Balachandar, S.
2018-03-01
The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.
Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter
2017-11-01
The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.
Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method
International Nuclear Information System (INIS)
Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.
1981-01-01
A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model
Energy Technology Data Exchange (ETDEWEB)
Yamasaki, N; Nanba, M; Tashiro, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1996-03-27
Comparison study between solutions of a linear potential theory and numerical solution of Euler equations was made for flow in a supersonic through-flow fan. In numerical fluid dynamic technique, Euler equations are solved by finite difference method under the assumption of air and perfect gas fluid, and neglected viscosity and thermal conductivity of fluid. As a result, in a linear potential theory, expansion wave was regarded as equipotential discontinuous surface, while in Euler numerical solution, it was regarded as finite pressure gradient where a wave front fans out toward downstream. The latter reflection point of shock wave on a wing existed upstream as compared with the former reflection point. The shock wave angle was dominated by Euler equations, and different from the Mach line of a linear potential theory in both angle and discontinuous quantities in front and behind. Both calculated solutions well agreed with each other until the first reflection point of the Mach line, however, thereafter the difference between them increased toward downstream. 5 refs., 5 figs., 1 tab.
Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan
2016-12-01
For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function
Biyabani, S. R.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
Improving Euler computations at low Mach numbers
Koren, B.; Leer, van B.; Deconinck, H.; Koren, B.
1997-01-01
The paper consists of two parts, both dealing with conditioning techniques for lowMach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of
Improving Euler computations at low Mach numbers
Koren, B.
1996-01-01
This paper consists of two parts, both dealing with conditioning techniques for low-Mach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized linearized 1-D Euler equations, the smoothing behavior of
International Nuclear Information System (INIS)
Hof, Bas van’t; Veldman, Arthur E.P.
2012-01-01
The paper explains a method by which discretizations of the continuity and momentum equations can be designed, such that they can be combined with an equation of state into a discrete energy equation. The resulting ‘MaMEC’ discretizations conserve mass, momentum as well as energy, although no explicit conservation law for the total energy is present. Essential ingredients are (i) discrete convection that leaves the discrete energy invariant, and (ii) discrete consistency between the thermodynamic terms. Of particular relevance is the way in which finite volume fluxes are related to nodal values. The method is an extension of existing methods based on skew-symmetry of discrete operators, because it allows arbitrary equations of state and a larger class of grids than earlier methods. The method is first illustrated with a one-dimensional example on a highly stretched staggered grid, in which the MaMEC method calculates qualitatively correct results and a non-skew-symmetric finite volume method becomes unstable. A further example is a two-dimensional shallow water calculation on a rectilinear grid as well as on an unstructured grid. The conservation of mass, momentum and energy is checked, and losses are found negligible up to machine accuracy.
Numerical Tribute to Achievement of Euler
Figueroa-Navarro, Carlos; Molinar-Tabares, Martín Eduardo; Castro-Arce, Lamberto; Campos-García, Julio Cesar
2014-03-01
This work aims to make a tribute to one of the world's brightest personalities as it was the mathematical physicist Leonhard Euler (1707-1783). Some results where the influence of Euler persists with the novelty of applying numerical analysis using Matlab are here exposed. A first analysis was done with the series that defines Euler numbers and polynomials of Frobenius-Euler; another result is the characterization of the functions that carry to Euler-Macheroni constant. In hydrodynamics is also feasible to evaluate graphically the relationship between dimensions in diameter and the exit angle of the height of Euler for turbomachines. In differential equations of Cauchy-Euler solutions for the cases of distinct real roots and complex roots are generated. Furthermore we report the generation of the Fourier series and the Fourier transform calculated by using Direct Commands of Matlab. In variational calculus it is possible to obtain plots from a problem of the Euler Lagrange equations. Finally, the Euler function is analyzed. Our purpose is to present a tribute to this giant of science also it could be an excuse to study his legacy by utilizing modern computational techniques.
International Nuclear Information System (INIS)
Tzanos, C.P.
1992-01-01
A higher-order differencing method was recently proposed for the convection-diffusion equation, which even with a coarse mesh gives oscillation-free solutions that are far more accurate than those of the upwind scheme. In this paper, the performance of this method is investigated in conjunction with the performance of different iterative solvers for the solution of the Navier-Stokes equations in the vorticity-streamfunction formulation for incompressible flow at high Reynolds numbers. Flow in a square cavity with a moving lid was chosen as a model problem. Solvers that performed well at low Re numbers either failed to converge or had a computationally prohibitive convergence rate at high Re numbers. The additive correction method of Settari and Aziz and an iterative incomplete lower and upper (ILU) solver were used in a multigrid approach that performed well in the whole range of Re numbers considered (from 1000 to 10,000) and for uniform as well as nonuniform grids. At high Re numbers, point or line Gauss-Seidel solvers converged with uniform grids, but failed to converge with nonuniform grids
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Veldman, A.E.P.
1973-01-01
A numerical method is presented for the solution of the Navier-Stokes equations for flow past a paraboloid of revolution. The flow field has been computed for a large range of Reynolds numbers. Results are presented for the skinfriction and the pressure together with their respective drag
International Nuclear Information System (INIS)
Liu Miaoer; Ren Yuxin; Zhang Hanxin
2004-01-01
In this paper, a continuous projection method is designed and analyzed. The continuous projection method consists of a set of partial differential equations which can be regarded as an approximation of the Navier-Stokes (N-S) equations in each time interval of a given time discretization. The local truncation error (LTE) analysis is applied to the continuous projection methods, which yields a sufficient condition for the continuous projection methods to be temporally second order accurate. Based on this sufficient condition, a fully second order accurate discrete projection method is proposed. A heuristic stability analysis is performed to this projection method showing that the present projection method can be stable. The stability of the present scheme is further verified through numerical experiments. The second order accuracy of the present projection method is confirmed by several numerical test cases
Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin
2017-12-01
The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.
Wells, Dare A
1967-01-01
The book clearly and concisely explains the basic principles of Lagrangian dynamicsand provides training in the actual physical and mathematical techniques of applying Lagrange's equations, laying the foundation for a later study of topics that bridge the gap between classical and quantum physics, engineering, chemistry and applied mathematics, and for practicing scientists and engineers.
Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael
2018-06-01
In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.
Suisky, Dieter
2008-01-01
"Euler as Physicist" analyzes the exceptional role of Leonhard Euler (1707 - 1783) in the history of science and emphasizes especially his fundamental contributions to physics. Although Euler is famous as the leading mathematician of the 18th century, his contributions to physics are as important for their innovative methods and solutions. Several books are devoted to Euler as mathematician, but none to Euler as physicist, like in this book. Euler’s contributions to mechanics are rooted in his life-long plan presented in two volume treatise programmatically entitled "Mechanics or the science of motion analytically demonstrated". Published in 1736, Euler’s treatise indicates the turn over from the traditional geometric representation of mechanics to a new approach. In writing Mechanics Euler did the first step to put the plan and his completion into practice through 1760. It is of particular interest to study how Euler made immediate use of his mathematics for mechanics and coordinated his progress in math...
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
International Nuclear Information System (INIS)
Balsara, D.S.
1999-01-01
In this paper we analyze some of the numerical issues that are involved in making time-implicit higher-order Godunov schemes for the equations of radiation hydrodynamics (and the Euler or Navier-Stokes equations). This is done primarily with the intent of incorporating such methods in the author's RIEMANN code. After examining the issues it is shown that the construction of a time-implicit higher-order Godunov scheme for radiation hydrodynamics would be benefited by our ability to evaluate exact Jacobians of the numerical flux that is based on Roe-type flux difference splitting. In this paper we show that this can be done analytically in a form that is suitable for efficient computational implementation. It is also shown that when multiple fluid species are used or when multiple radiation frequencies are used the computational cost in the evaluation of the exact Jacobians scales linearly with the number of fluid species or the number of radiation frequencies. Connections are made to other types of numerical fluxes, especially those based on flux difference splittings. It is shown that the evaluation of the exact Jacobian for such numerical fluxes is also benefited by the present strategy and the results given here. It is, however, pointed out that time-implicit schemes that are based on the evaluation of the exact Jacobians for flux difference splittings using the methods developed here are both computationally more efficient and numerically more stable than corresponding time-implicit schemes that are based on the evaluation of the exact or approximate Jacobians for flux vector splittings. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Rubin, Karl
2014-01-01
One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic G
International Nuclear Information System (INIS)
Berry, Ray A.; Martineau, Richard C.
2007-01-01
The conservative-form, pressure-based PCICE numerical method (Martineau and Berry, 2004) (Berry, 2006), recently developed for computing transient fluid flows of all speeds from very low to very high (with strong shocks), is simplified and generalized. Though the method automatically treats a continuous transition of compressibility, three distinct, limiting compressibility regimes are formally defined for purposes of discussion and comparison with traditional methods - the strictly incompressible limit, the nearly incompressible limit, and the fully compressible limit. The PCICE method's behavior is examined in each limiting regime. In the strictly incompressible limit the PCICE algorithm reduces to the traditional MAC-type method with velocity divergence driving the pressure Poisson equation. In the nearly incompressible limit the PCICE algorithm is found to reduce to a generalization of traditional incompressible methods, i.e. to one in which not only the velocity divergence effect, but also the density gradient effect is included as a driving function in the pressure Poisson equation. This nearly incompressible regime has received little attention, and it appears that in the past, strictly incompressible methods may have been conveniently applied to flows in this regime at the expense of ignoring a potentially important coupling mechanism. This could be significant in many important flows; for example, in natural convection flows resulting from high heat flux. In the fully compressible limit or regime, the algorithm is found to reduce to an expression equivalent to density-based methods for high-speed flow. (author)
Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.
2000-01-01
A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Fractional Euler Limits and Their Applications
MacNamara, Shev; Henry, Bruce I; McLean, William
2016-01-01
Generalisations of the classical Euler formula to the setting of fractional calculus are discussed. Compound interest and fractional compound interest serve as motivation. Connections to fractional master equations are highlighted. An application to the Schlogl reactions with Mittag-Leffler waiting times is described.
Energy Technology Data Exchange (ETDEWEB)
Egorov, Yurii V [Institute de Mathematique de Toulouse, Toulouse (France)
2013-04-30
We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.
Efficient Parallel Algorithms for Unsteady Incompressible Flows
Guermond, Jean-Luc; Minev, Peter D.
2013-01-01
The objective of this paper is to give an overview of recent developments on splitting schemes for solving the time-dependent incompressible Navier–Stokes equations and to discuss possible extensions to the variable density/viscosity case. A particular attention is given to algorithms that can be implemented efficiently on large parallel clusters.
Particle Systems and Partial Differential Equations I
Gonçalves, Patricia
2014-01-01
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...
Euler-Poincare reduction for discrete field theories
International Nuclear Information System (INIS)
Vankerschaver, Joris
2007-01-01
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed
Van der Kallen, Wilberd|info:eu-repo/dai/nl/117156108
2015-01-01
Let R be a noetherian ring of dimension d and let n be an integer so that n≤d≤2n-3. Let (a
Directory of Open Access Journals (Sweden)
Dae San Kim
2012-01-01
Full Text Available We derive some interesting identities and arithmetic properties of Bernoulli and Euler polynomials from the orthogonality of Hermite polynomials. Let Pn={p(x∈ℚ[x]∣deg p(x≤n} be the (n+1-dimensional vector space over ℚ. Then we show that {H0(x,H1(x,…,Hn(x} is a good basis for the space Pn for our purpose of arithmetical and combinatorial applications.
Leonhard Euler and the mechanics of rigid bodies
Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.
2017-01-01
In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).
On preconditioning incompressible non-Newtonian flow problems
He, X.; Neytcheva, M.; Vuik, C.
2013-01-01
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space
Wavelets for the stimulation of turbulent incompressible flows
International Nuclear Information System (INIS)
Deriaz, E.
2006-02-01
This PhD thesis presents original wavelet methods aimed at simulating incompressible fluids. In order to construct 2D and 3D wavelets designed for incompressible flows, we resume P-G Lemarie-Rieussets and K. Urbans works on divergence free wavelets. We show the existence of associated fast algorithms. In the following, we use divergence-free wavelet construction to define the Helmholtz decomposition of 2D and 3D vector fields. All these algorithms provide a new method for the numerical resolution of the incompressible Navier-Stokes equations. (author)
Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course
Kull, Trent C.
2011-01-01
A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.; Shaikh, D.
2006-01-01
A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as 'nearly incompressible hydrodynamics', is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term 'locally incompressible' to describe the equations. This term should be distinguished from the term 'nearly incompressible', which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly
Swimming holonomy principles, exemplified with a Euler fluid in two dimensions
International Nuclear Information System (INIS)
Hannay, J H
2012-01-01
The idealized problem of swimming—the self-propulsion phenomenon whereby a cyclic change of shape of a ‘swimmer’ produces a net movement—is well studied for the case of a very viscous incompressible liquid. The opposite limit of zero viscosity, the ideal or ‘Euler’ fluid, has also received some attention. There remain to be articulated and explored some points of principle, set here in the context of the Euler fluid in two dimensions, though partly common to both limits and to both two and three dimensions. (i) Perhaps surprisingly, both limits are purely geometric effects, ‘holonomies’, not dependent on any timings or rates, but only on the sequence of shapes adopted by the swimmer. (ii) A principle fully determining swimming in a Euler fluid is simply stated: the fluid moves at every moment so as to minimize the sum of its and the swimmer's kinetic energy. (iii) Euler swimming would be solvable explicitly were it not for the standard impasse of potential theory: to find the boundary normal derivative of a function obeying Laplace's equation given its value around the boundary (or vice versa). As usual more analytical progress is possible in two dimensions (by complexifying) than three, but full tractability still requires the extreme of slight, rapid swimming strokes, and a simple example is given. In both limits, for a non-symmetrical swimming stroke, a rotation or orientation holonomy accompanies the translational one—the swimmer has turned somewhat as well as translated. The whole holonomy is non-Abelian (the order of the shape sequence matters), but (iv) for two dimensions the rotation part is Abelian. A benefit (albeit cosmetic) is that the one-stroke displacement and turning can be written down as a complex line integral. (v) Another benefit is that while Stokes's theorem (in shape space) is normally sacrificed in non-Abelian holonomies, a partial recovery of the theorem is possible in two-dimensional swimming. To illustrate this last
The symplectic structure of Euler-Lagrange superequations and Batalin-Vilkoviski formalism
Monterde, J
2003-01-01
We study the graded Euler-Lagrange equations from the viewpoint of graded Poincare-Cartan forms. An application to a certain class of solutions of the Batalin-Vilkoviski master equation is also given.
International Nuclear Information System (INIS)
Guo, Z.; Lin, P.; Lowengrub, J.S.
2014-01-01
In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C 0 finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C 0 finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme
Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows
International Nuclear Information System (INIS)
Tasso, H.; Throumoulopoulos, G.N.
1997-12-01
It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)
Multi-dimensional Fuzzy Euler Approximation
Directory of Open Access Journals (Sweden)
Yangyang Hao
2017-05-01
Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.
Berselli, Luigi C.; Spirito, Stefano
2018-06-01
Obtaining reliable numerical simulations of turbulent fluids is a challenging problem in computational fluid mechanics. The large eddy simulation (LES) models are efficient tools to approximate turbulent fluids, and an important step in the validation of these models is the ability to reproduce relevant properties of the flow. In this paper, we consider a fully discrete approximation of the Navier-Stokes-Voigt model by an implicit Euler algorithm (with respect to the time variable) and a Fourier-Galerkin method (in the space variables). We prove the convergence to weak solutions of the incompressible Navier-Stokes equations satisfying the natural local entropy condition, hence selecting the so-called physically relevant solutions.
Drawing Euler Diagrams with Circles
Stapleton, Gem; Zhang, Leishi; Howse, John; Rodgers, Peter
2010-01-01
Euler diagrams are a popular and intuitive visualization tool which are used in a wide variety of application areas, including biological and medical data analysis. As with other data visualization methods, such as graphs, bar charts, or pie charts, the automated generation of an Euler diagram from a suitable data set would be advantageous, removing the burden of manual data analysis and the subsequent task of drawing an appropriate diagram. Various methods have emerged that automatically dra...
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
On the Euler Function of the Catalan Numbers
2012-02-26
ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(Cm)/φ(Cn) = r...where r is a fixed rational number , Ck is the kth Catalan number and φ is the Euler function. We note that the number r = 4 is special for this...observation concerning φ(Cn+1)/φ(Cn) For a positive integer n, let (1) Cn = 1 n+ 1 ( 2n n ) be the n-th Catalan number . For a positive integer m we put φ(m) for
Euler-Poincare Reduction of Externall Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Euler-Poincare Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2005-01-01
|If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....
Euler-Poincaré Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Refinement of RAIM via Implementation of Implicit Euler Method
Energy Technology Data Exchange (ETDEWEB)
Lee, Yoonhee; Kim, Han-Chul [Korea Institute of Nuclear and Safety, Daejeon (Korea, Republic of)
2016-10-15
The first approach is a mechanistic approach which is used in LIRIC in which more than 200 reactions are modeled in detail. This approach enables to perform the detailed analysis. However, it requires huge computation burden. The other approach is a simplified model approach which is used in the IMOD, ASTEC/IODE, and etc. Recently, KINS has developed RAIM (Radio-Active Iodine chemistry Model) based on the simplified model approach. Since the numerical analysis module in RAIM is based on the explicit Euler method, there are major issues on the stability of the module. Therefore, implementation of a stable numerical method becomes essential. In this study, RAIM is refined via implementation of implicit Euler method in which the Newton method is used to find the solutions at each time step. The refined RAIM is tested by comparing to RAIM based on the explicit Euler method. In this paper, RAIM was refined by implementing the implicit Euler method. At each time step of the method in the refined RAIM, the reaction kinetics equations are solved by the Newton method in which elements of the Jacobian matrix are expressed analytically. With the results of OECD-BIP P10T2 test, the refined RAIM was compared to RAIM with the explicit Euler method. The refined RAIM shows better agreement with the experimental data than those from the explicit Euler method. For the rapid change of pH during the experiment, the refined RAIM gives more realistic changes in the concentrations of chemical species than those from the explicit Euler method. In addition, in terms of computing time, the refined RAIM shows comparable computing time to that with explicit Euler method. These comparisons are attributed to ⁓10 times larger time step size used in the implicit Euler method, even though computation burden at each time step in the refined RAIM is much higher than that of the explicit Euler method. Compared to the experimental data, the refined RAIM still shows discrepancy, which are attributed
Refinement of RAIM via Implementation of Implicit Euler Method
International Nuclear Information System (INIS)
Lee, Yoonhee; Kim, Han-Chul
2016-01-01
The first approach is a mechanistic approach which is used in LIRIC in which more than 200 reactions are modeled in detail. This approach enables to perform the detailed analysis. However, it requires huge computation burden. The other approach is a simplified model approach which is used in the IMOD, ASTEC/IODE, and etc. Recently, KINS has developed RAIM (Radio-Active Iodine chemistry Model) based on the simplified model approach. Since the numerical analysis module in RAIM is based on the explicit Euler method, there are major issues on the stability of the module. Therefore, implementation of a stable numerical method becomes essential. In this study, RAIM is refined via implementation of implicit Euler method in which the Newton method is used to find the solutions at each time step. The refined RAIM is tested by comparing to RAIM based on the explicit Euler method. In this paper, RAIM was refined by implementing the implicit Euler method. At each time step of the method in the refined RAIM, the reaction kinetics equations are solved by the Newton method in which elements of the Jacobian matrix are expressed analytically. With the results of OECD-BIP P10T2 test, the refined RAIM was compared to RAIM with the explicit Euler method. The refined RAIM shows better agreement with the experimental data than those from the explicit Euler method. For the rapid change of pH during the experiment, the refined RAIM gives more realistic changes in the concentrations of chemical species than those from the explicit Euler method. In addition, in terms of computing time, the refined RAIM shows comparable computing time to that with explicit Euler method. These comparisons are attributed to ⁓10 times larger time step size used in the implicit Euler method, even though computation burden at each time step in the refined RAIM is much higher than that of the explicit Euler method. Compared to the experimental data, the refined RAIM still shows discrepancy, which are attributed
Numerical methods for incompressible viscous flows with engineering applications
Rose, M. E.; Ash, R. L.
1988-01-01
A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.
Incompressible ionized fluid mixtures
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš
2006-01-01
Roč. 17, č. 7 (2006), s. 493-509 ISSN 0935-1175 Institutional research plan: CEZ:AV0Z10750506 Keywords : chemically reacting fluids * Navier-Stokes * Nernst-Planck * Possion equation s * heat equation s Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2006
A further note on the force discrepancy for wing theory in Euler flow
Indian Academy of Sciences (India)
The Euler equations use the assumption that the fluid does not impart any resistance ... viscosity, the kinetic energy associated with these flow fields is now bounded, ..... Combining all the results together from Appendices B, C and D we get.
Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Ramprasad, T.; Ramana, M.V.; Desa, M.; Shailaja, B.
are close to each other. A possible solution to these problems is prposed by simultaneously estimating the source location, depth and structural index assuming nonlinear background. The Euler equation is solved in a nonlinear fashion using the optimization...
Indian Academy of Sciences (India)
It is not hard to show that the series converges, for by com- bining pairs of terms it can be ..... not escape Euler's attention-but then few things did!) We consider the function ... the proof. In particular there is no such thing as an unrig- orous proof.
A mathematical model for turbulent incompressible flows through mixing grids
International Nuclear Information System (INIS)
Allaire, G.
1989-01-01
A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing
INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.
2010-01-01
The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.
Guo, H. Y.; Li, Y. Q.; Wu, K.; Wang, S. K.
2001-01-01
We study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncomutative differential geometry. By virtue of this variational principle, we get the difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory. We also explore the difference discrete versions for the Euler...
Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations
International Nuclear Information System (INIS)
Shin, Young Jae; Yun, Jong Hak; Seong, Kyeong Youn; Kim, Jae Ho; Kang, Sung Hwang
2006-01-01
A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on Paster nak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated
Statistical theory of turbulent incompressible multimaterial flow
International Nuclear Information System (INIS)
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe
Shock and rarefaction waves in a hyperbolic model of incompressible materials
Directory of Open Access Journals (Sweden)
Tommaso Ruggeri
2013-01-01
Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Existence Results for Incompressible Magnetoelasticity
Czech Academy of Sciences Publication Activity Database
Kružík, Martin; Stefanelli, U.; Zeman, J.
2015-01-01
Roč. 35, č. 6 (2015), s. 2615-2623 ISSN 1078-0947 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : magnetoelasticity * magnetostrictive solids * incompressibility * existence of minimizers * quasistatic evolution * energetic solution Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/kruzik-0443017.pdf
The incompressibility assumption in computational simulations of nasal airflow.
Cal, Ismael R; Cercos-Pita, Jose Luis; Duque, Daniel
2017-06-01
Most of the computational works on nasal airflow up to date have assumed incompressibility, given the low Mach number of these flows. However, for high temperature gradients, the incompressibility assumption could lead to a loss of accuracy, due to the temperature dependence of air density and viscosity. In this article we aim to shed some light on the influence of this assumption in a model of calm breathing in an Asian nasal cavity, by solving the fluid flow equations in compressible and incompressible formulation for different ambient air temperatures using the OpenFOAM package. At low flow rates and warm climatological conditions, similar results were obtained from both approaches, showing that density variations need not be taken into account to obtain a good prediction of all flow features, at least for usual breathing conditions. This agrees with most of the simulations previously reported, at least as far as the incompressibility assumption is concerned. However, parameters like nasal resistance and wall shear stress distribution differ for air temperatures below [Formula: see text]C approximately. Therefore, density variations should be considered for simulations at such low temperatures.
Mathematical aspects of finite element methods for incompressible viscous flows
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Meshless Solution of Incompressible Flow Over Backward-Facing Step
Directory of Open Access Journals (Sweden)
Mužík Juraj
2016-05-01
Full Text Available Article presents the use of the meshless method for numerical simulation of incompressible fluid flow. The article presents the implementation of the meshless local Petrov-Galerkin method (MLPG, with Navier-Stokes equation formulated using the local weighted residual principle. The trial function construction process is the most important part of the meshless method implementation. In this article the radial basis functions (RBF are used for the process of the trial functions construction.
International Nuclear Information System (INIS)
Cacciatori, Sergio L.; Cerchiai, Bianca L.; Della Vedova, Alberto; Ortenzi, Giovanni; Scotti, Antonio
2005-01-01
We provide a simple coordinatization for the group G 2 , which is analogous to the Euler coordinatization for SU(2). We show how to obtain the general element of the group in a form emphasizing the structure of the fibration of G 2 with fiber SO(4) and base H, the variety of quaternionic subalgebras of octonions. In particular this allows us to obtain a simple expression for the Haar measure on G 2 . Moreover, as a by-product it yields a concrete realization and an Einstein metric for H
Three dimensional steady subsonic Euler flows in bounded nozzles
Chen, Chao; Xie, Chunjing
The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.
Gibbon, John D; Pal, Nairita; Gupta, Anupam; Pandit, Rahul
2016-12-01
We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫_{0}^{t}E_{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.
International Nuclear Information System (INIS)
Moawad, S. M.; Ibrahim, D. A.
2016-01-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
Kalinina, Elizabeth A
2013-08-01
The explicit Euler's method is known to be very easy and effective in implementation for many applications. This article extends results previously obtained for the systems of linear differential equations with constant coefficients to arbitrary systems of ordinary differential equations. Optimal (providing minimum total error) step size is calculated at each step of Euler's method. Several examples of solving stiff systems are included. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Euler and His Contribution Number Theory
Len, Amy; Scott, Paul
2004-01-01
Born in 1707, Leonhard Euler was the son of a Protestant minister from the vicinity of Basel, Switzerland. With the aim of pursuing a career in theology, Euler entered the University of Basel at the age of thirteen, where he was tutored in mathematics by Johann Bernoulli (of the famous Bernoulli family of mathematicians). He developed an interest…
Analogues of Euler and Poisson Summation Formulae
Indian Academy of Sciences (India)
... f ( n ) have been obtained in a unified manner, where (()) is a periodic complex sequence; () is the divisor function and () is a sufficiently smooth function on [, ]. We also state a generalised Abel's summation formula, generalised Euler's summation formula and Euler's summation formula in several variables.
Combinatorial Aspects of the Generalized Euler's Totient
Directory of Open Access Journals (Sweden)
Nittiya Pabhapote
2010-01-01
Full Text Available A generalized Euler's totient is defined as a Dirichlet convolution of a power function and a product of the Souriau-Hsu-Möbius function with a completely multiplicative function. Two combinatorial aspects of the generalized Euler's totient, namely, its connections to other totients and its relations with counting formulae, are investigated.
Incompressibility of asymmetric nuclear matter
International Nuclear Information System (INIS)
Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan
2010-01-01
Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)
Formal solution of the Navier-Stokes initial- and boundary-value problem for incompressible fluids
International Nuclear Information System (INIS)
Alankus, T.
1984-01-01
A general formal solution of the integral equivalent of Navier-Stokes equation for incompressible viscous fluids is presented through a linear operator acting on the functionals of solenoidal vector fields. This solution operator is completely determined by the Green functions of Laplace and diffusion equations corresponding to the flow region
Nonlinear sausage-wave propagation in a magnetic slab in an incompressible fluid
International Nuclear Information System (INIS)
Ruderman, M.S.
1993-01-01
Long nonlinear sausage-wave propagation in a magnetic slab in an incompressible plasma is considered. The governing equation is derived with the aid of the reductive perturbation method. The solutions of this equation in the form of periodic waves of permanent shape are found numerically. (Author)
A meshless scheme for incompressible fluid flow using a velocity-pressure correction method
Bourantas, Georgios; Loukopoulos, Vassilios C.
2013-01-01
A meshless point collocation method is proposed for the numerical solution of the steady state, incompressible Navier-Stokes (NS) equations in their primitive u-v-p formulation. The flow equations are solved in their strong form using either a
The generalized Airy diffusion equation
Directory of Open Access Journals (Sweden)
Frank M. Cholewinski
2003-08-01
Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.
Directory of Open Access Journals (Sweden)
Meng Zhi-Jun
2016-01-01
Full Text Available This paper addresses the systems of the incompressible Navier-Stokes equations on Cantor sets without the external force involving the fractal heat-conduction problem vial local fractional derivative. The spherical Cantor type co-ordinate method is used to transfer the incompressible Navier-Stokes equation from the Cantorian co-ordinate system into the spherical Cantor type co-ordinate system.
Variational Integrals of a Class of Nonhomogeneous -Harmonic Equations
Directory of Open Access Journals (Sweden)
Guanfeng Li
2014-01-01
Full Text Available We introduce a class of variational integrals whose Euler equations are nonhomogeneous -harmonic equations. We investigate the relationship between the minimization problem and the Euler equation and give a simple proof of the existence of some nonhomogeneous -harmonic equations by applying direct methods of the calculus of variations. Besides, we establish some interesting results on variational integrals.
A blended pressure/density based method for the computation of incompressible and compressible flows
International Nuclear Information System (INIS)
Rossow, C.-C.
2003-01-01
An alternative method to low speed preconditioning for the computation of nearly incompressible flows with compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) approximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the transition from the incompressible, pressure based formulation to the compressible, density based formulation is established. It is found necessary to use preconditioning with this blending technique to account for a remaining 'compressible' contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach showed improved robustness for high lift flows close to separation
Phase-field modeling of isothermal quasi-incompressible multicomponent liquids
Tóth, Gyula I.
2016-09-01
In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.
Cavitation Modeling in Euler and Navier-Stokes Codes
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.
Some results on the well-posedness of Euler-Voigt and Navier-Stokes-Voigt models
Berselli, Luigi C.; Bisconti, Luca
2010-01-01
We consider the Euler-Voigt equations and the Navier-Stokes-Voigt equations, which are obtained by an inviscid alpha-regularization from the corresponding equations. The main result we show is the structural stability of the system in term of the variations of both viscosity of regularization parameters.
EULER - A Real Virtual Library for Mathematics
Jost, Michael
2004-01-01
The EULER project completed its work in November 2002. It forms the last part of a very successful project in the specialized but global discipline of mathematics. After a successful RTD project had created the technology, a take-up project has effectively exploited it to the point where its future is assured through a not-for-profit consortium. EULER is a European based, world class, real virtual library for mathematics with up-to-date technological solutions, well accepted by users. In particular, EULER provides a world reference and delivery service, transparent to the end user and offering full coverage of the mathematics literature world-wide, including bibliographic data, peer reviews and/or abstracts, indexing, classification and search, transparent access to library services, co-operation with commercial information providers (publishers, bookstores). The EULER services provide a gateway to the electronic catalogues and repositories of participating institutions, while the latter retain complete respo...
I-Love relations for incompressible stars and realistic stars
Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.
2015-02-01
In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Some New Integrable Equations from the Self-Dual Yang-Mills Equations
International Nuclear Information System (INIS)
Ivanova, T.A.; Popov, A.D.
1994-01-01
Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs
NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic
International Nuclear Information System (INIS)
Torrey, M.D.
1988-01-01
1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method
Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow
Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.
2018-02-01
We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.
Analysis of preconditioning and multigrid for Euler flows with low-subsonic regions
Koren, B.; Leer, van B.
1995-01-01
For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by convection across domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is sought in
Euler-Lagrange modeling of the hydrodynamics of dense multiphase flows
Padding, J.T.; Deen, N.G.; Peters, E. A. J. F.; Kuipers, J. A. M.
2015-01-01
The large-scale hydrodynamic behavior of relatively dense dispersed multiphase flows, such as encountered in fluidized beds, bubbly flows, and liquid sprays, can be predicted efficiently by use of Euler-Lagrange models. In these models, grid-averaged equations for the continuous-phase flow field are
Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula
International Nuclear Information System (INIS)
Henrice Junior, Edson; Goncalves, Alessandro da Cruz
2013-01-01
This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)
Accurate solution algorithms for incompressible multiphase flows
International Nuclear Information System (INIS)
Rider, W.J.; Kothe, D.B.; Mosso, S.J.; Cerutti, J.H.; Hochstein, J.I.
1994-01-01
A number of advances in modeling multiphase incompressible flow are described. These advances include high-order Godunov projection methods, piecewise linear interface reconstruction and tracking and the continuum surface force model. Examples are given
Error estimation and adaptivity for incompressible hyperelasticity
Whiteley, J.P.; Tavener, S.J.
2014-01-01
SUMMARY: A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined
Taylor Instability of Incompressible Liquids
Fermi, E.; von Neumann, J.
1955-11-01
A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.
Euler-Poincaré Reduction of Externally Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Review of the modified finite particle method and application to incompressible solids
Directory of Open Access Journals (Sweden)
D Asprone
2016-10-01
Full Text Available This paper focuses on the application of the Modified Finite Particle Method (MFPM on incompressibile elasticity problems. MFPM belongs to the class of meshless methods, nowadays widely investigated due to their characteristics of being totally free of any kind of grid or mesh. This characteristic makes meshless methods potentially useful for the study of large deformations problems and fluid dynamics. In particular, the aim of the work is to compare the results obtained with a simple displacement-based formulation, in the limit of incompressibility, and some formulations proposed in the literature for full incompressibility, where the typical divergence-free constraint is replaced by a different equation, the so-called Pressure Poisson Equation. The obtained results show that the MFPM achieves the expected second-order accuracy on formulation where the equations imposed as constraint satisfies also the original incompressibility equation. Other formulations, differently, do not satisfy the incompressibility constraint, and thus, they are not successfully applicable with the Modified Finite Particle Method.
Linear determining equations for differential constraints
International Nuclear Information System (INIS)
Kaptsov, O V
1998-01-01
A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed
Remarks on Heisenberg-Euler-type electrodynamics
Kruglov, S. I.
2017-05-01
We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.
Leonhard Euler's Wave Theory of Light
DEFF Research Database (Denmark)
Pedersen, Kurt Møller
2008-01-01
is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction......Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...
Directory of Open Access Journals (Sweden)
S.M. Moawad
Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices
Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3
Correia, Simão; Figueira, Mário
2018-03-01
We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.
Guermond, J.-L.; Salgado, Abner J.
2011-01-01
In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.
Boundary layers and the vanishing viscosity limit for incompressible 2D flow
Filho, Milton C. Lopes
2007-01-01
This manuscript is a survey on results related to boundary layers and the vanishing viscosity limit for incompressible flow. It is the lecture notes for a 10 hour minicourse given at the Morningside Center, Academia Sinica, Beijing, PRC from 11/28 to 12/07, 2007. The main topics covered are: a derivation of Prandtl's boundary layer equation; an outline of the rigorous theory of Prandtl's equation, without proofs; Kato's criterion for the vanishing viscosity limit; the vanishing viscosity limi...
Discretization vs. Rounding Error in Euler's Method
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
Euler Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2012-01-01
Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....
Development of Euler's ideas at the Moscow State Regional University
Vysikaylo, P. I.; Belyaev, V. V.
2018-03-01
In honor of the 250th anniversary of Euler's discovery of three libration points in Russia in 1767 in the area of two rotating gravitational attractors in 2017 an International Interdisciplinary Conference “Euler Readings MRSU 2017” was held in Moscow Region State University (MRSU). The Conference demonstrated that the Euler's ideas continue to remain relevant at the present time. This paper summarizes the main achievements on the basis of Leonard Euler's ideas presented at the Conference.
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc; Popov, Bojan
2014-01-01
), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
High order spectral difference lattice Boltzmann method for incompressible hydrodynamics
Li, Weidong
2017-09-01
This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.
Turbulence modelling for incompressible flows
International Nuclear Information System (INIS)
Rodi, W.
1985-12-01
EUROMECH colloquium 180 was held at Karlsruhe from 4-6 July, 1984, with the aim of bringing together specialists working in the area of turbulence modelling and of reviewing the state-of-the-art in this field. 44 scientists from 12 countries participated and 28 papers were presented. The meeting started with a review of the performance of two-equation turbulence models employing transport equations for both the velocity and the length scale of turbulence. These models are now generally well established, but it was found that their application to certain flow situations remains problematic. The modelling assumptions involved in Reynolds stress-equation models were reviewed next, and new assumptions were proposed. It was generally agreed that, as computing power increases, these more complex models will become more popular also for practical applications. The increase in computing power also allows more and more to resolve the viscous sublayer with low Reynolds numbers models, and the capabilities and problems of these models were discussed. In this connection, special aspects of boundary layer calculations were also discussed, namely those associated with 3D boundary layers, converging and diverging flow and slightly detached boundary layers. The complex physical phenomena prevalent in situations under the influence of buoyancy and rotation were reviewed, and several papers were presented on models for simulating these effects. (orig./HP) [de
Monte Carlo Euler approximations of HJM term structure financial models
Björk, Tomas
2012-11-22
We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify different error contributions arising from time and maturity discretization as well as the classical statistical error due to finite sampling. Explicit formulas for efficient computation of sharp error approximation are included. Due to the structure of the HJM models considered here, the computational effort devoted to the error estimates is low compared to the work to compute Monte Carlo solutions to the HJM model. Numerical examples with known exact solution are included in order to show the behavior of the estimates. © 2012 Springer Science+Business Media Dordrecht.
Monte Carlo Euler approximations of HJM term structure financial models
Bjö rk, Tomas; Szepessy, Anders; Tempone, Raul; Zouraris, Georgios E.
2012-01-01
We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify different error contributions arising from time and maturity discretization as well as the classical statistical error due to finite sampling. Explicit formulas for efficient computation of sharp error approximation are included. Due to the structure of the HJM models considered here, the computational effort devoted to the error estimates is low compared to the work to compute Monte Carlo solutions to the HJM model. Numerical examples with known exact solution are included in order to show the behavior of the estimates. © 2012 Springer Science+Business Media Dordrecht.
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
1994-01-01
through a one- All of the Jacobian matrices have real eigenvalues and a set dimensional nozzle is known to be set by the hack pressure, of linearly...MacCormack scheme results from a symmetric split sequence 1(x’) + (x’ ) + + 4% of the form (x -X,,)/ x,) ’ =L, -A-- L,(At)L, (tu", (2.4.21) pS4 If the...right-hand-side indicates the nonlinear updlating ait iiigigiiit tide. 1-q.; 2 4 72 i can be w.’ritteii the residual while sweeping hack arid torth in
Compression modes and the nuclear matter incompressibility ...
Indian Academy of Sciences (India)
We review the current status of the nuclear matter ( = and no Coulomb interaction) incompressibility coefﬁcient, , and describe the theoretical and the experimental methods used to determine from properties of compression modes in nuclei. In particular we consider the long standing problem of the conﬂicting ...
Chaotic dynamics of flexible Euler-Bernoulli beams
Energy Technology Data Exchange (ETDEWEB)
Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)
2013-12-15
Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.
A New Euler's Formula for DNA Polyhedra
Hu, Guang; Qiu, Wen-Yuan; Ceulemans, Arnout
2011-01-01
DNA polyhedra are cage-like architectures based on interlocked and interlinked DNA strands. We propose a formula which unites the basic features of these entangled structures. It is based on the transformation of the DNA polyhedral links into Seifert surfaces, which removes all knots. The numbers of components , of crossings , and of Seifert circles are related by a simple and elegant formula: . This formula connects the topological aspects of the DNA cage to the Euler characteristic of the underlying polyhedron. It implies that Seifert circles can be used as effective topological indices to describe polyhedral links. Our study demonstrates that, the new Euler's formula provides a theoretical framework for the stereo-chemistry of DNA polyhedra, which can characterize enzymatic transformations of DNA and be used to characterize and design novel cages with higher genus. PMID:22022596
Leonhard Euler's Wave Theory of Light
DEFF Research Database (Denmark)
Pedersen, Kurt Møller
2008-01-01
Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...... of achromatic lenses, the explanation of colors of thin plates and of the opaque bodies as proof of his theory. When it came to the fundamental issues, the correctness of his dispersion law and the prediction of frequencies of light he was not at all successful. His wave theory degenerated, and it was not until...... is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction...
Some thoughts on the pressure integration requirements of the Navier–Stokes equations
International Nuclear Information System (INIS)
Saad, Tony; Majdalani, Joseph
2012-01-01
The Navier–Stokes formulation represents a uniquely challenging system of partial differential equations that continues to influence modern applied science and engineering. In its simplest form, the system can be used to prescribe the motion of a viscous incompressible fluid with constant properties. It consists of four equations in three-dimensional space that account for both the kinematic and dynamic conditions that a fluid element senses. In this work, we investigate the pressure integration rules and restrictions that affect the resolution of the scalar pressure field. We begin our analysis by exploring the integration properties of Euler's equations in two dimensions while making use of Clairaut's theorem on the commutativity of mixed partial derivatives. We then extend our findings to three-dimensional space. This process gives rise to a theorem and four corollaries that help to clarify the conditions needed to obtain exact or asymptotic solutions for the pressure distribution. Consequently, we identify the fundamental conditions under which the Navier–Stokes equations can be properly integrated to arrive at an analytic expression for the pressure field, namely, one that is continuous and twice differentiable. In closing, several configurations are used to test the theorem and showcase its connection with the pressure formulation. These include potential flows for which the pressure can be obtained unconditionally, and inviscid rotational motions of the Taylor–Culick type with and without headwall injection. (paper)
Using Euler buckling springs for vibration isolation
Winterflood, J; Blair, D G
2002-01-01
Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.
Using Euler buckling springs for vibration isolation
International Nuclear Information System (INIS)
Winterflood, J; Barber, T; Blair, D G
2002-01-01
Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance
The matrix Euler-Fermat theorem
International Nuclear Information System (INIS)
Arnol'd, Vladimir I
2004-01-01
We prove many congruences for binomial and multinomial coefficients as well as for the coefficients of the Girard-Newton formula in the theory of symmetric functions. These congruences also imply congruences (modulo powers of primes) for the traces of various powers of matrices with integer elements. We thus have an extension of the matrix Fermat theorem similar to Euler's extension of the numerical little Fermat theorem
Large Eddy Simulation for Incompressible Flows An Introduction
Sagaut, P
2005-01-01
The first and most exhaustive work of its kind devoted entirely to the subject, Large Eddy Simulation presents a comprehensive account and a unified view of this young but very rich discipline. LES is the only efficient technique for approaching high Reynolds numbers when simulating industrial, natural or experimental configurations. The author concentrates on incompressible fluids and chooses his topics in treating with care both the mathematical ideas and their applications. The book addresses researchers as well as graduate students and engineers. The second edition was a greatly enriched version motivated both by the increasing theoretical interest in LES and the increasing number of applications. Two entirely new chapters were devoted to the coupling of LES with multiresolution multidomain techniques and to the new hybrid approaches that relate the LES procedures to the classical statistical methods based on the Reynolds-Averaged Navier-Stokes equations. This 3rd edition adds various sections to the text...
Comparison of 3-D finite elements for incompressible fluid flow
International Nuclear Information System (INIS)
Robichaud, M.; Tanguy, P.A.
1985-01-01
In recent years, the finite element method applied to the solution of incompressible fluid flow has been in constant evolution. In the present state-of-the-art, 2-D problems are solved routinely and reliable results are obtained at a reasonable cost. In 3-D the finite element method is still undergoing active research and many methods have been proposed to solve the Navier-Stokes equations at 'low cost'. These methods have in common the choice of the element which has a trilinear velocity and a discontinuous constant pressure (Q1-PO). The prohibitive cost of 3-D finite element method in fluid flow is the reason for this choice: the Q1-PO is the simplest and the cheapest 3-D element. However, as mentioned in (5) and (6), it generates 'spurious' pressure modes phenomenon called checkerboarding. On regular mesh these spurious modes can be filtered but on distorted mesh the pressure solution is meaningless. (author)
Mickens, Ronald E.
1989-01-01
A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.
A Simple Stochastic Differential Equation with Discontinuous Drift
DEFF Research Database (Denmark)
Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik
2013-01-01
In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...
Incompressible Navier-Stokes inverse design method based on adaptive unstructured meshes
International Nuclear Information System (INIS)
Rahmati, M.T.; Charlesworth, D.; Zangeneh, M.
2005-01-01
An inverse method for blade design based on Navier-Stokes equations on adaptive unstructured meshes has been developed. In the method, unlike the method based on inviscid equations, the effect of viscosity is directly taken into account. In the method, the pressure (or pressure loading) is prescribed. The design method then computes the blade shape that would accomplish the target prescribed pressure distribution. The method is implemented using a cell-centered finite volume method, which solves the incompressible Navier-Stokes equations on unstructured meshes. An adaptive unstructured mesh method based on grid subdivision and local adaptive mesh method is utilized for increasing the accuracy. (author)
Lavery, N.; Taylor, C.
1999-07-01
Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
Skiba, Yuri N
2017-01-01
This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.
Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao
2018-04-01
We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.
Time-asymptotic interaction of flocking particles and an incompressible viscous fluid
International Nuclear Information System (INIS)
Bae, Hyeong-Ohk; Choi, Young-Pil; Ha, Seung-Yeal; Kang, Moon-Jin
2012-01-01
We present a new coupled kinetic-fluid model for the interactions between Cucker–Smale (C–S) flocking particles and incompressible fluid on the periodic spatial domain T d . Our coupled system consists of the kinetic C–S equation and the incompressible Navier–Stokes equations, and these two systems are coupled through the drag force. For the proposed model, we provide a global existence of weak solutions and a priori time-asymptotic exponential flocking estimates for any smooth flow, when the kinematic viscosity of the fluid is sufficiently large. The velocity of individual C–S particles and fluid velocity tend to the averaged time-dependent particle velocities exponentially fast
Koren, B.; Hackbusch, W.; Trottenberg, U.
1991-01-01
Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the emphasis Iying on bath a good accuracy and a good solvability. The multi-dimensional upwinding consists of applying a one-dimensional Riemann solver with a locally rotated left and right state,
Zhu, Minjie; Scott, Michael H.
2017-07-01
Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.
On an incompressible model in radiation hydrodynamics
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2015-01-01
Roč. 38, č. 4 (2015), s. 765-774 ISSN 0170-4214 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier-Stokes-Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.002, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract
Inviscid incompressible limits for rotating fluids
Czech Academy of Sciences Publication Activity Database
Caggio, Matteo; Nečasová, Šárka
2017-01-01
Roč. 163, November (2017), s. 1-18 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : compressible Navier -Stokces system * rotating fluids * incompressible limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X17301815?via%3Dihub
Inviscid incompressible limits on expanding domains
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Nečasová, Šárka; Sun, Y.
2014-01-01
Roč. 27, č. 10 (2014), s. 2465-2477 ISSN 0951-7715 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * large domain * inviscid limit * incompressible limit Subject RIV: BA - General Mathematics Impact factor: 1.208, year: 2014 http://iopscience.iop.org/0951-7715/27/10/2465/
Inviscid incompressible limits for rotating fluids
Czech Academy of Sciences Publication Activity Database
Caggio, Matteo; Nečasová, Šárka
2017-01-01
Roč. 163, November (2017), s. 1-18 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokces system * rotating fluids * incompressible limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X17301815?via%3Dihub
Euler European Libraries and Electronic Resources in Mathematical Sciences
The Euler Project. Karlsruhe
The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.
Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.
Velescu, Cornel; Popa, Nicolae Calin
2014-01-01
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.
Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves
Directory of Open Access Journals (Sweden)
Cornel Velescu
2014-01-01
Full Text Available We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc., for the laminar and permanent motion regime.
Structure of reconnection boundary layers in incompressible MHD
International Nuclear Information System (INIS)
Sonnerup, B.U.Oe.; Wang, D.J.
1987-01-01
The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process
On a quaternionic generalisation of the Riccati differential equation
Kravchenko, Viktor; Kravchenko, Vladislav; Williams, Benjamin
2001-01-01
A quaternionic partial differential equation is shown to be a generalisation of the Riccati ordinary differential equation and its relationship with the Schrodinger equation is established. Various approaches to the problem of finding particular solutions are explored, and the generalisations of two theorems of Euler on the Riccati differential equation, which correspond to the quaternionic equation, are given.
Incompressible SPH (ISPH) with fast Poisson solver on a GPU
Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.
2018-05-01
This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.
Incompressible LFR MHD. A fluid model for stability analysis of a fusion plasma
International Nuclear Information System (INIS)
Scheffel, J.; Faghihi, M.
1986-10-01
A fluid model including FLR effects, named Incompressible Finite Larmor Radius MagnetoHydroDynamics, is presented and derived in this paper. It is an extension of ordinary, incompressible MHD to include the Larmor radius effects due to ion gyroviscosity, Hall current and electron diamagnetism. It is intended to use the model for stability analysis, on the Alfven wave time scale, of a fusion plasma and it is consequently based on transport coefficients in the collisionless limit. It will be demonstrated that for a fairly dense and cool plasma, such as for the EXTRAP z-pinch, all three Larmor radius effects may become important, that for a JET-type plasma no FLR effect is pronounced, and that in a reactor plasma the Hall and electron diamagnetism term may play a role. For scaling lengths signigicantly smaller than the plasma radius the effect of the FLR terms becomes enhanced. To study the importance of the choice of equations of state for the model the m=1 and k 2 r 2 towards infinity instability in cylindrical geometry is given special attention for zero Larmor radius. The full stability criterion of the double adiabatic model, including pressure anisotropy, is presented for what we believe to be the first time. It is found that when perpendicular p > parallel p stability can be reached for very high plasma perpendicular β-values. We demonstrate that no less complicated energy conserving fluid model, which takes into account pressure anisotropy, other than the double adiabativ model can be obtained. Since pressure anisotropy generally only weakly affects stability, we can assume isotropy in the Incompressible FLR MHD model. Also, the energy equation is replaced by the incompressibility condition, making FLR terms appearing in the energy equation irrelevant. (authors)
An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Peer Jesper
2015-01-07
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations.
An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul
2015-01-01
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.
Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system
Liu, Cunming; Peng, Yue-Jun
2017-06-01
We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
Additivity for parametrized topological Euler characteristic and Reidemeister torsion
Badzioch, Bernard; Dorabiala, Wojciech
2005-01-01
Dwyer, Weiss, and Williams have recently defined the notions of parametrized topological Euler characteristic and parametrized topological Reidemeister torsion which are invariants of bundles of compact topological manifolds. We show that these invariants satisfy additivity formulas paralleling the additive properties of the classical Euler characteristic and Reidemeister torsion of finite CW-complexes.
Euler deconvolution and spectral analysis of regional aeromagnetic ...
African Journals Online (AJOL)
Existing regional aeromagnetic data from the south-central Zimbabwe craton has been analysed using 3D Euler deconvolution and spectral analysis to obtain quantitative information on the geological units and structures for depth constraints on the geotectonic interpretation of the region. The Euler solution maps confirm ...
Kou, Jisheng; Sun, Shuyu
2013-01-01
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.
Kou, Jisheng
2013-06-20
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.
Zhu, Yongning; Wang, Yuting; Hellrung, Jeffrey; Cantarero, Alejandro; Sifakis, Eftychios; Teran, Joseph M.
2012-08-01
We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.
Liska, Sebastian; Colonius, Tim
2017-02-01
A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.
Diffusion-limited mixing by incompressible flows
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
Leptodermous expansion of finite-nucleus incompressibility
International Nuclear Information System (INIS)
Nayak, R.C.
1990-01-01
We consider the influence of higher-order terms in the leptodermous expansion used to extract the incompressibility K v of infinite nuclear matter from data on the breathing mode of finite nuclei. The terms we calculate are the curvature term K cv A -2/3 , the surface-symmetry term K ss I 2 A -1/3 , the quartic volume-symmetry term K 4 I 4 , and a Coulomb-exchange term. Working within the framework of the scaling model we derive expressions for their coefficients in terms of quantities that are defined for infinite and semi-infinite nuclear matter. We calculate these coefficients for four different Skyrme-type forces, using the extended Thomas-Fermi (ETF) approximation. With the same forces we also calculate the incompressibility K (A, I) for a number of finite nuclei, fit the results to the leptodermous expansion, and thereby extract new results for the same coefficients. The comparison of the two calculations shows that the leptodermous expansion is converging rapidly. Of the new terms, the term K 4 I 4 is quite negligible, the curvature term should be included, and we discuss to what extent the other higher-order terms are significant. (orig.)
Advanced mechanics from Euler's determinism to Arnold's chaos
Rajeev, S G
2013-01-01
Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evaluate the purpose of learning mechanics and look at old material in the light of modern developments. Once you have learned basic mechanics (Newton's laws, the solution of the Kepler problem) and quantum mechanics (the Schrodinger equation, hydrogen atom) it is time to go back and relearn classical mechanics in greater depth. It is the intent of this book to take you through the ancient (the original meaning of "classical") parts of the subject quickly: the ideas started by Euler and ending roughly with Poincare. We then take up the developments of twentieth century physics that have largely to do with chaos and discrete time evolution (the basis of numerical solutions).
Batina, John T.
1990-01-01
Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.
Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing
Batina, John T.
1991-01-01
Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
International Nuclear Information System (INIS)
Kawashima, S.; Matsumara, A.; Nishida, T.
1979-01-01
The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate tsup(-5/4)) as t → + infinitely to that of the compressible Navier-Stokes equation for the corresponding initial data. (orig.) 891 HJ/orig. 892 MKO
International Nuclear Information System (INIS)
Laval, H.
1981-01-01
This report describes the theoretical and numerical aspects of the finite element computer code CONVEC designed for the transient analysis of two-dimensional plane or three-dimensional axisymmetric incompressible flows including the effects of heat transfer. The governing equations for the above class of problems are the time-dependent incompressible Navier-Stokes equations and the thermal energy equation. The general class of flow problems analysed by CONVEC is discussed and the equations for the initial-boundary value problem are represented. A brief description of the finite element method and the weighted residual formulation is presented. The numerical solution of the incompressible equations is achieved by using a fractional step method. The mass lumping process associated with an explicit time integration scheme is described. The time integration is analysed and the stability conditions are derived. Numerical applications are presented. Standard problems of natural and forced convection are solved and the solutions obtained are compared with other numerical solutions published in the literature
An experiment for determining the Euler load by direct computation
Thurston, Gaylen A.; Stein, Peter A.
1986-01-01
A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.
Edge instability in incompressible planar active fluids
Nesbitt, David; Pruessner, Gunnar; Lee, Chiu Fan
2017-12-01
Interfacial instability is highly relevant to many important biological processes. A key example arises in wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014), 10.1140/epjst/e2014-02189-7], we perform a linear stability analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is always absent in this minimal model. Our results point to the crucial role of density variation in the fingering instability in tissue regeneration.
Error estimation and adaptivity for incompressible hyperelasticity
Whiteley, J.P.
2014-04-30
SUMMARY: A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and linear functionals of the stress on a boundary, where Dirichlet boundary conditions are applied. A second, higher order method for calculating a linear functional of the stress on a Dirichlet boundary is also presented together with an a posteriori error estimator for this approach. An implementation for a 2D model problem with known solution, where the entries of the strain tensor exhibit large, rapid variations, demonstrates the accuracy and sharpness of the error estimators. Finally, using a selection of model problems, the a posteriori error estimate is shown to provide a basis for effective mesh adaptivity. © 2014 John Wiley & Sons, Ltd.
Improved flux calculations for viscous incompressible flow by the variable penalty method
International Nuclear Information System (INIS)
Kheshgi, H.; Luskin, M.
1985-01-01
The Navier-Stokes system for viscous, incompressible flow is considered, taking into account a replacement of the continuity equation by the perturbed continuity equation. The introduction of the approximation allows the pressure variable to be eliminated to obtain the system of equations for the approximate velocity. The penalty approximation is often applied to numerical discretizations since it provides a reduction in the size and band-width of the system of equations. Attention is given to error estimates, and to two numerical experiments which illustrate the error estimates considered. It is found that the variable penalty method provides an accurate solution for a much wider range of epsilon than the classical penalty method. 8 references
International Nuclear Information System (INIS)
Wendroff, B.
1992-01-01
An analysis of the equations of chromatography from the point of view of hyperbolic conservation laws has been reviewed in recent literature. Serre was able to prove that the Lax-Friedrichs difference scheme, Godunov's method, and the viscosity method, have a subsequence converging to a weak solution of the chromatography equations, with no restriction on the size of the initial data. The purpose of this note is to announce that two versions of front tracking can be added to this list. After a brief description of the properties of the chromatography system and a definition of front tracking we give the basic steps of the proof. An example showing the quality of a front tracking solution is given. The equations of idealized electrophoresis and multiphase incompressible flow are very similar to the chromatography equations, but the former have linearly degenerate characteristic field, creating contact discontinuities. In the final section we briefly indicate how our result for chromatography carries over to this case
Hyhlík, Tomáš
2018-06-01
The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.
Directory of Open Access Journals (Sweden)
Hyhlík Tomáš
2018-01-01
Full Text Available The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.
NEWTON'S SECOND LAW OF MOTION, F=MA; EULER'S OR NEWTON'S?
Ajay Sharma
2017-01-01
Objective: F =ma is taught as Newton’s second law of motion all over the world. But it was given by Euler in 1775, forty-eight years after the death of Newton. It is debated here with scientific logic. Methods/Statistical analysis: The discussion partially deals with history of science so various aspects are quoted from original references. Newton did not give any equation in the Principia for second, third laws motion and law of gravitation. Conceptually, in Newton’s time, neither accele...
An adaptive Petrov-Galerkin formulation for solving the compressible Euler and Navier-Stokes
International Nuclear Information System (INIS)
Almeida, Regina Celia Cerqueira de
1993-01-01
A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author)
A-free rigidity and applications to the compressible Euler system
Czech Academy of Sciences Publication Activity Database
Chiodaroli, E.; Feireisl, Eduard; Kreml, Ondřej; Wiedemann, E.
2017-01-01
Roč. 196, č. 4 (2017), s. 1557-1572 ISSN 0373-3114 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : A-free condition * compressible Euler equations * measure-valued solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.864, year: 2016 https://link.springer.com/article/10.1007%2Fs10231-016-0629-9
Exploitation of ISAR Imagery in Euler Parameter Space
National Research Council Canada - National Science Library
Baird, Christopher; Kersey, W. T; Giles, R; Nixon, W. E
2005-01-01
.... The Euler parameters have potential value in target classification but have historically met with limited success due to ambiguities that arise in decomposition as well as the parameters' sensitivity...
Euler Polynomials and Identities for Non-Commutative Operators
De Angelis, V.; Vignat, C.
2015-01-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...
Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun
2017-11-01
The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.
Incompressible ionized non-Newtonean fluid mixtures
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš
2007-01-01
Roč. 39, č. 3 (2007), s. 863-890 ISSN 0036-1410 Grant - others:GA ČR(CZ) GA201/06/0352 Institutional research plan: CEZ:AV0Z10750506 Keywords : chemically reacting fluids * Eckart-Prigogine concept * Navier-Stokes equation * Nernst-Planck equation * Poisson equation * heat equation Subject RIV: BA - General Mathematics Impact factor: 1.119, year: 2007
On a complex differential Riccati equation
International Nuclear Information System (INIS)
Khmelnytskaya, Kira V; Kravchenko, Vladislav V
2008-01-01
We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schroedinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation such as the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical 'one-dimensional' results, we discuss new features of the considered equation including an analogue of the Cauchy integral theorem
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
Tukhvatullina, R. R.; Frolov, S. M.
2018-03-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
Dissipation, intermittency, and singularities in incompressible turbulent flows
Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.
2018-05-01
We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.
Incompressible viscous flow computations for the pump components and the artificial heart
Kiris, Cetin
1992-01-01
A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.
Qualitative behaviour of incompressible two-phase flows with phase ...
Indian Academy of Sciences (India)
Jan Prüss
2017-11-07
Nov 7, 2017 ... Qualitative behaviour of incompressible two-phase flows with phase ... Germany. 2Graduate School of Human and Environmental Studies, Kyoto University, ... Note that j is a dummy variable as it can be eliminated from the ...
Whiteley, J. P.
2017-10-01
Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.
Determination of regional Euler pole parameters for Eastern Austria
Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald
2017-04-01
The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.
Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion
Lee, Elizabeth M.; Batina, John T.
1990-01-01
Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.
A Coordinate Transformation for Unsteady Boundary Layer Equations
Directory of Open Access Journals (Sweden)
Paul G. A. CIZMAS
2011-12-01
Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.
Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-01-01
Full Text Available New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
On the variational principle for the equations of perfect fluid dynamics
International Nuclear Information System (INIS)
Serre, D.
1993-01-01
One gives a new version of the variational principle δL = 0, L being the usual Lagrangian, for the perfect fluid mechanics. It is formally equivalent to the well-known principle but it gives the first rigorous derivation of the conservation laws (momentum and energy), including the discontinuous case (shock waves, contact discontinuities). Thanks to a new formulation of the constraints, we do not involve any Lagrange multiplier, which in previous works were neither physically relevant, since they do not appear in the Euler equations, nor mathematically relevant. We even give a variational interpretation of the entropy inequality when shock waves occur. Our method covers all aspects of the perfect fluids, including stationary and unstationary motion, compressible and incompressible fluids, axisymmetric case. When the velocity field admits a stream function, the variational principle gives rise to extremal points of the Lagrangian on various infinite dimensional manifolds. For a suitable choice of this manifold, the flow is itself periodic, that is all the fluid particles have a periodic motion with the same period. The flow describes a closed geodesic on some group of diffeomorphisms. (author). 10 refs
3D GIS spatial operation based on extended Euler operators
Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing
2008-10-01
The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.
Explicit time marching methods for the time-dependent Euler computations
International Nuclear Information System (INIS)
Tai, C.H.; Chiang, D.C.; Su, Y.P.
1997-01-01
Four explicit type time marching methods, including one proposed by the authors, are examined. The TVD conditions of this method are analyzed with the linear conservation law as the model equation. Performance of these methods when applied to the Euler equations are numerically tested. Seven examples are tested, the main concern is the performance of the methods when discontinuities with different strengths are encountered. When the discontinuity is getting stronger, spurious oscillation shows up for three existing methods, while the method proposed by the authors always gives the results with satisfaction. The effect of the limiter is also investigated. To put these methods in the same basis for the comparison the same spatial discretization is used. Roe's solver is used to evaluate the fluxes at the cell interface; spatially second-order accuracy is achieved by the MUSCL reconstruction. 19 refs., 8 figs
Dr. Euler's fabulous formula Cures many mathematical ills
Nahin, Paul J
2006-01-01
I used to think math was no fun'Cause I couldn't see how it was doneNow Euler's my heroFor I now see why zeroEquals e[pi] i+1--Paul Nahin, electrical engineer In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula--long regarded as the gold standard for mathematical beauty--and shows why it still lies at the heart of complex number theory. This book is the seque
Euler polynomials and identities for non-commutative operators
De Angelis, Valerio; Vignat, Christophe
2015-12-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.
Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis
2013-01-01
We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331
The Boltzmann equation in the difference formulation
Energy Technology Data Exchange (ETDEWEB)
Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-05-06
First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.
Fractional hydrodynamic equations for fractal media
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2005-01-01
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered
Application of FCT to Incompressible Flows
National Research Council Canada - National Science Library
Liu, Junhui; Kaplan, Carolyn R; Mott, David R; Oran, Elaine S
2006-01-01
.... Since an odd-even decoupling instability arises in standard algorithms that update a pressure correction in the Poisson equation, we have avoided this instability by using an intermediate velocity...
Energy Technology Data Exchange (ETDEWEB)
Jobelin, M
2006-10-15
This thesis treats of time resolution methods for the Navier-Stokes equations. Based on the well-known projection method of Chorin and Temam, an original pressure correction method, named 'projection-penalty' is developed. Its specificity concerns the addition of a penalty term in the prediction step, which constrains the predicted velocity to fit with the mass balance. The precision improvements added by this method are demonstrated by some analysis results and by some numerical experiments of incompressible or dilatable flows. Finally, the potentialities offered by the use of the joint finite elements method in this type of fractionary step scheme is studied. Two applications are presented, one for local refinement purpose, the other for the resolution of a multi-physics problem. (J.S.)
International Workshop on Elliptic and Parabolic Equations
Schrohe, Elmar; Seiler, Jörg; Walker, Christoph
2015-01-01
This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.
Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles
Energy Technology Data Exchange (ETDEWEB)
Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)
2004-04-01
The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)
A boundary-fitted staggered difference method for incompressible flow using Riemann geometry
International Nuclear Information System (INIS)
Koshizuka, Seiichi; Kondo, Shunsuke; Oka, Yoshiaki.
1990-01-01
A boundary-fitted staggered difference method (BFSDM) is investigated for incompressible flow in nuclear plants. BFSDM employs control cells for scalars, staggered location of velocity components, and integrated formulation of div=0. Governing equations are written as coordinate-free forms using Riemann geometry. Flow velocity is represented with contravariant physical components in the present method. Connection terms emerge as source terms in the coordinate-free governing equations. These terms are studied from the viewpoints of physical meaning, numerical stability, and conservative property. Some flows on a round or slant boundary are solved using boundary-fitted curvilinear (BFC) grids and rectangular grids to compare the present method and the rectangular-type (R-type) staggered difference method (SDM). Supercomputing of the present method, including vector processing, is also discussed compared with the R-type method. (author)
Suzuki, Yukihito
2018-03-01
A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.
Simulation of Free Airfoil Vibrations in Incompressible Viscous Flow — Comparison of FEM and FVM
Directory of Open Access Journals (Sweden)
Petr Sváček
2012-01-01
Full Text Available This paper deals with a numerical solution of the interaction of two-dimensional (2-D incompressible viscous flow and a vibrating profile NACA 0012 with large amplitudes. The laminar flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian form. The profile with two degrees of freedom (2-DOF can rotate around its elastic axis and oscillate in the vertical direction. Its motion is described by a nonlinear system of two ordinary differential equations. Deformations of the computational domain due to the profile motion are treated by the arbitrary Lagrangian-Eulerianmethod. The finite volume method and the finite element method are applied, and the numerical results are compared.
Kou, Jisheng; Sun, Shuyu
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
Duddu, Ravindra
2011-10-05
We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.
Remapping HELENA to incompressible plasma rotation parallel to the magnetic field
Energy Technology Data Exchange (ETDEWEB)
Poulipoulis, G.; Throumoulopoulos, G. N. [Physics Department, University of Ioannina, Ioannina 451 10 (Greece); Konz, C. [Max-Planck Institut für Plasma Physics, 85748 Garching bei München (Germany)
2016-07-15
Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.
Generalized quantal equation of motion
International Nuclear Information System (INIS)
Morsy, M.W.; Embaby, M.
1986-07-01
In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)
Nearly incompressible MHD turbulence in the solar wind
International Nuclear Information System (INIS)
Matthaeus, W.H.; Zhou, Y.
1989-01-01
Observational studies indicate that solar wind plasma and magnetic field fluctuations may be meaningfully viewed as an example of magnetohydrodynamic turbulence. This paper presents a brief summary of some relevant results of turbulence theory and reviews a turbulence style description of 'typical' solar wind conditions. Recent results, particularly those regarding the radial evolution of inertial range cross helicity, support the viewpoint that interplanetary turbulence is active and evolving with heliocentric distance. A number of observed properties can be understood by appeal to incompressible turbulence mechanisms. This connection may be understood by appeal to incompressible turbulence mechanisms. This connection may be understood in terms of theories of pseudosound density fluctuations and nearly incompressible magnetohydrodynamics, which are also reviewed here. Finally, we summarize a recent two-scale dynamical theory of the radial and temporal evolution of the turbulence, which may provide an additional framework for understanding the observations. (author). 49 refs
Weak solutions for Euler systems with non-local interactions
Czech Academy of Sciences Publication Activity Database
Carrillo, J. A.; Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.
2017-01-01
Roč. 95, č. 3 (2017), s. 705-724 ISSN 0024-6107 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * dissipative solutions * Newtonian interaction Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.895, year: 2016 http://onlinelibrary.wiley.com/doi/10.1112/jlms.12027/abstract
Multipliers for the Absolute Euler Summability of Fourier Series
Indian Academy of Sciences (India)
In this paper, the author has investigated necessary and sufficient conditions for the absolute Euler summability of the Fourier series with multipliers. These conditions are weaker than those obtained earlier by some workers. It is further shown that the multipliers are best possible in certain sense.
Discovering Euler Circuits and Paths through a Culturally Relevant Lesson
Robichaux, Rebecca R.; Rodrigue, Paulette R.
2006-01-01
This article describes a middle school discrete mathematics lesson that uses the context of catching crawfish to provide students with a hands-on experience related to Euler circuits and paths. The lesson promotes mathematical communication through the use of cooperative learning as well as connections between mathematics and the real world…
Newton's Laws, Euler's Laws and the Speed of Light
Whitaker, Stephen
2009-01-01
Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…
Euler y la Conjetura de Fermat sobre Números Triangulares
Directory of Open Access Journals (Sweden)
José Manuel Sánchez Muñoz
2011-04-01
Full Text Available Este artículo describe la historia de como Euler demostró la existencia de infinitos números triangulares bicuadráticos, desde su correspondencia con su amigo Christian Goldbach hasta la publicación de sus resultados en la Academia de San Petesburgo.
Drawing Euler Diagrams with Circles: The Theory of Piercings.
Stapleton, Gem; Leishi Zhang; Howse, John; Rodgers, Peter
2011-07-01
Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.
Integration with respect to the Euler characteristic and its applications
Energy Technology Data Exchange (ETDEWEB)
Gusein-Zade, Sabir M [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-09-16
The notion of integration with respect to the Euler characteristic and its generalizations are discussed: integration over the infinite-dimensional spaces of arcs and functions, motivic integration. The author describes applications of these notions to the computation of monodromy zeta functions, Poincare series of multi-index filtrations, generating series of classes of certain moduli spaces, and so on. Bibliography: 70 titles.
NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic
International Nuclear Information System (INIS)
Torrey, M.D.
1992-01-01
1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers
Fluid-structure coupling in Lagrange-Lagrange and Euler-Lagrange descriptions
International Nuclear Information System (INIS)
Jones, A.V.
1981-01-01
Fluid-structure interaction problems are very common in the reactor safety field, examples being containment loading in LMFBR systems and the downcomer problem in LWRs. This article reviews the principal finite difference methodes employed for their solution. After a survey of the chief representations of the equations of motion of the fluid and structure and of their coupling, the Lagrange-Lagrange and Euler-Lagrange representations are examined in detail. The practical necessity of treating the structure in Lagrangian coordinates and the respective merits of the Lagrangian and Eulerian representations for the fluid are explained, both for coupling between continua and for coupling between a fluid and a thin shell. Detailed analyses of the stability and numerical dissipation of the Lagrange-Lagrange and Euler-Lagrange coupling techniques in a very simple one-dimensional problem are provided to supply indicators as to stability and dissipation in more complex multidimensional situations and to bring out the theoretical complexity of seemingly simple coupling algorithms. The article then presents some practical examples of coupled problems in which calculations can be compared with experiment, and concludes with a section on future trends in the field of fluid-structure coupling
N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1991-11-01
Gauge theory with a topological N=2 symmetry is discussed. This theory captures the de Rahm complex and Riemannian geometry of some underlying moduli space M and the partition function equals the Euler number χ (M) of M. Moduli spaces of instantons and of flat connections in 2 and 3 dimensions are explicitly dealt with. To motivate the constructions the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics are explained and a new kind of supersymmetric quantum mechanics is introduced, based on the Gauss-Codazzi equations. The gauge theory actions are interpreted from the Atiyah-Jeffrey point of view and related to super-symmetric quantum mechanics on spaces of connections. As a consequence of these considerations the Euler number χ (M) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. The possibility of constructing a topological version of the Penner matrix model is also commented. (author). 63 refs
Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics
Ahmad, Nashat N.
2016-01-01
Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.
Directory of Open Access Journals (Sweden)
Litesh N. Sulbhewar
Full Text Available The convergence characteristic of the conventional two-noded Euler-Bernoulli piezoelectric beam finite element depends on the configuration of the beam cross-section. The element shows slower convergence for the asymmetric material distribution in the beam cross-section due to 'material-locking' caused by extension-bending coupling. Hence, the use of conventional Euler-Bernoulli beam finite element to analyze piezoelectric beams which are generally made of the host layer with asymmetrically surface bonded piezoelectric layers/patches, leads to increased computational effort to yield converged results. Here, an efficient coupled polynomial interpolation scheme is proposed to improve the convergence of the Euler-Bernoulli piezoelectric beam finite elements, by eliminating ill-effects of material-locking. The equilibrium equations, derived using a variational formulation, are used to establish relationships between field variables. These relations are used to find a coupled quadratic polynomial for axial displacement, having contributions from an assumed cubic polynomial for transverse displacement and assumed linear polynomials for layerwise electric potentials. A set of coupled shape functions derived using these polynomials efficiently handles extension-bending and electromechanical couplings at the field interpolation level itself in a variationally consistent manner, without increasing the number of nodal degrees of freedom. The comparison of results obtained from numerical simulation of test problems shows that the convergence characteristic of the proposed element is insensitive to the material configuration of the beam cross-section.
Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes
Directory of Open Access Journals (Sweden)
V. G. Ferreira
2007-01-01
Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.
Toner, John
In this talk I'll describe the hydrodynamic theory of the motion of incompressible flocks: that is, collections of self-propelled entities (birds\\x9D) that are packed so tightly together that their density cannot change as they move. In two dimensions, this problem can be mapped onto an equilibrium magnet with a peculiar constraint. This problem, in turn, can be shown to be equivalent to a 2d smectic (soap\\x9D), with the flow lines of the flock playing the role of the smectic layers. Finally, this smectic problem can be mapped onto the 1+1 dimensional KPZ equation, which describes the growth or corrosion (sandblasting\\x9D) of a one dimensional interface. The scaling properties of this last system, which have been known exactly for a long time, can thereby be used to determine those of incompressible 2d flocks. One important implication of the resulting scaling laws is that such flocks can exhibit long-ranged order in two dimensions, unlike their equilibrium counterparts.
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios
Xie, Yu; Wodo, Olga; Ganapathysubramanian, Baskar
2016-01-01
In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.
A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios
Xie, Yu
2016-10-04
In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.
Numerical simulations of incompressible laminar flows using viscous-inviscid interaction procedures
Shatalov, Alexander V.
The present method is based on Helmholtz velocity decomposition where velocity is written as a sum of irrotational (gradient of a potential) and rotational (correction due to vorticity) components. Substitution of the velocity decomposition into the continuity equation yields an equation for the potential, while substitution into the momentum equations yields equations for the velocity corrections. A continuation approach is used to relate the pressure to the gradient of the potential through a modified Bernoulli's law, which allows the elimination of the pressure variable from the momentum equations. The present work considers steady and unsteady two-dimensional incompressible flows over an infinite cylinder and NACA 0012 airfoil shape. The numerical results are compared against standard methods (stream function-vorticity and SMAC methods) and data available in literature. The results demonstrate that the proposed formulation leads to a good approximation with some possible benefits compared to the available formulations. The method is not restricted to two-dimensional flows and can be used for viscous-inviscid domain decomposition calculations.
An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids
English, R. Elliot; Qiu, Linhai; Yu, Yue; Fedkiw, Ronald
2013-12-01
We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.
High order methods for incompressible fluid flow: Application to moving boundary problems
Energy Technology Data Exchange (ETDEWEB)
Bjoentegaard, Tormod
2008-04-15
Fluid flows with moving boundaries are encountered in a large number of real life situations, with two such types being fluid-structure interaction and free-surface flows. Fluid-structure phenomena are for instance apparent in many hydrodynamic applications; wave effects on offshore structures, sloshing and fluid induced vibrations, and aeroelasticity; flutter and dynamic response. Free-surface flows can be considered as a special case of a fluid-fluid interaction where one of the fluids are practically inviscid, such as air. This type of flows arise in many disciplines such as marine hydrodynamics, chemical engineering, material processing, and geophysics. The driving forces for free-surface flows may be of large scale such as gravity or inertial forces, or forces due to surface tension which operate on a much smaller scale. Free-surface flows with surface tension as a driving mechanism include the flow of bubbles and droplets, and the evolution of capillary waves. In this work we consider incompressible fluid flow, which are governed by the incompressible Navier-Stokes equations. There are several challenges when simulating moving boundary problems numerically, and these include - Spatial discretization - Temporal discretization - Imposition of boundary conditions - Solution strategy for the linear equations. These are some of the issues which will be addressed in this introduction. We will first formulate the problem in the arbitrary Lagrangian-Eulerian framework, and introduce the weak formulation of the problem. Next, we discuss the spatial and temporal discretization before we move to the imposition of surface tension boundary conditions. In the final section we discuss the solution of the resulting linear system of equations. (Author). refs., figs., tabs
Eulerian derivations of non-inertial Navier-Stokes equations
CSIR Research Space (South Africa)
Combrinck, MA
2014-09-01
Full Text Available The paper presents an Eulerian derivation of the non-inertial Navier-Stokes equations as an alternative to the Lagrangian fluid parcel approach. This work expands on the work of Kageyama and Hyodo [1] who derived the incompressible momentum equation...
An equation for the dimensionless friction factor of consolidated ...
African Journals Online (AJOL)
An equation that relates the dimensionless friction factor of a porous medium its Reynolds number, during incompressible and compressible fluid flow through the medium is proposed. The equation is a curve fit of a graph drawn from the results of Ohirhian for water (liquid) and that of Akpokene for Nitrogen (gas) flow ...
On PDE analysis of flows of quasi-incompressible fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Lu, Y.; Málek, J.
2016-01-01
Roč. 96, č. 4 (2016), s. 491-508 ISSN 0044-2267 Keywords : quasi-incompressible fluids * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400229
Wind turbine aerodynamics using an incompressible overset grid method
DEFF Research Database (Denmark)
Zahle, Frederik; Johansen, Jeppe; Sørensen, Niels N.
2007-01-01
In this paper 3D Navier-Stokes simulations of the unsteady flow over the NREL Phase VI turbine are presented. The computations are carried out using the structured grid, incompressible, finite volume flow solver EllipSys3D, which has been extended to include the use of overset grids. Computations...
Real-Time Incompressible Fluid Simulation on the GPU
Directory of Open Access Journals (Sweden)
Xiao Nie
2015-01-01
Full Text Available We present a parallel framework for simulating incompressible fluids with predictive-corrective incompressible smoothed particle hydrodynamics (PCISPH on the GPU in real time. To this end, we propose an efficient GPU streaming pipeline to map the entire computational task onto the GPU, fully exploiting the massive computational power of state-of-the-art GPUs. In PCISPH-based simulations, neighbor search is the major performance obstacle because this process is performed several times at each time step. To eliminate this bottleneck, an efficient parallel sorting method for this time-consuming step is introduced. Moreover, we discuss several optimization techniques including using fast on-chip shared memory to avoid global memory bandwidth limitations and thus further improve performance on modern GPU hardware. With our framework, the realism of real-time fluid simulation is significantly improved since our method enforces incompressibility constraint which is typically ignored due to efficiency reason in previous GPU-based SPH methods. The performance results illustrate that our approach can efficiently simulate realistic incompressible fluid in real time and results in a speed-up factor of up to 23 on a high-end NVIDIA GPU in comparison to single-threaded CPU-based implementation.
Calculation of incompressible fluid flow through cambered blades
Hsu, C. C.
1970-01-01
Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.
An efficient algorithm for incompressible N-phase flows
International Nuclear Information System (INIS)
Dong, S.
2014-01-01
We present an efficient algorithm within the phase field framework for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids, with possibly very different physical properties such as densities, viscosities, and pairwise surface tensions. The algorithm employs a physical formulation for the N-phase system that honors the conservations of mass and momentum and the second law of thermodynamics. We present a method for uniquely determining the mixing energy density coefficients involved in the N-phase model based on the pairwise surface tensions among the N fluids. Our numerical algorithm has several attractive properties that make it computationally very efficient: (i) it has completely de-coupled the computations for different flow variables, and has also completely de-coupled the computations for the (N−1) phase field functions; (ii) the algorithm only requires the solution of linear algebraic systems after discretization, and no nonlinear algebraic solve is needed; (iii) for each flow variable the linear algebraic system involves only constant and time-independent coefficient matrices, which can be pre-computed during pre-processing, despite the variable density and variable viscosity of the N-phase mixture; (iv) within a time step the semi-discretized system involves only individual de-coupled Helmholtz-type (including Poisson) equations, despite the strongly-coupled phase–field system of fourth spatial order at the continuum level; (v) the algorithm is suitable for large density contrasts and large viscosity contrasts among the N fluids. Extensive numerical experiments have been presented for several problems involving multiple fluid phases, large density contrasts and large viscosity contrasts. In particular, we compare our simulations with the de Gennes theory, and demonstrate that our method produces physically accurate results for multiple fluid phases. We also demonstrate the significant and sometimes dramatic effects of the
Upwind MacCormack Euler solver with non-equilibrium chemistry
Sherer, Scott E.; Scott, James N.
1993-01-01
A computer code, designated UMPIRE, is currently under development to solve the Euler equations in two dimensions with non-equilibrium chemistry. UMPIRE employs an explicit MacCormack algorithm with dissipation introduced via Roe's flux-difference split upwind method. The code also has the capability to employ a point-implicit methodology for flows where stiffness is introduced through the chemical source term. A technique consisting of diagonal sweeps across the computational domain from each corner is presented, which is used to reduce storage and execution requirements. Results depicting one dimensional shock tube flow for both calorically perfect gas and thermally perfect, dissociating nitrogen are presented to verify current capabilities of the program. Also, computational results from a chemical reactor vessel with no fluid dynamic effects are presented to check the chemistry capability and to verify the point implicit strategy.
Implementation of an Euler/Navier-Stokes finite element algorithm on the Connection Machine
International Nuclear Information System (INIS)
Shapiro, R.A.
1991-01-01
Massively parallel computers such as the Connection Machine (CM-2) have the potential to reduce significantly the computational cost for large problems of interest to the aerospace community. This paper examines the applicability of the CM-2 to an explicit, time-marching finite element solution method for the Euler and Navier-Stokes equations. The CM-2 architecture and the CM FORTRAN language are introduced. The paper points out some of the pitfalls involved in putting this code on the CM-2, with emphasis on interprocessor communications issues. The use of the FastGraph communication compiler and grid renumbering to reduce communication costs is discussed. Performance comparisons which indicate the approximate equivalence of a uniprocessor Cray and 1/8 of a CM-2 (8192 processors) for some typical problems are presented. 8 refs
Dynamic modelling and control of a rotating Euler-Bernoulli beam
Yang, J. B.; Jiang, L. J.; Chen, D. CH.
2004-07-01
Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.
Directory of Open Access Journals (Sweden)
Olurin Oluwaseun Tolutope
2017-12-01
Full Text Available Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30′–8°00′N and longitudes 4°30′–5°00′E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243 to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA. The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from –77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly and magnetic low intensities (low-amplitude magnetic anomaly in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from −500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.
On the Existence and the Applications of Modified Equations for Stochastic Differential Equations
Zygalakis, K. C.
2011-01-01
In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.
Discontinuous Galerkin finite element methods for hyperbolic differential equations
van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.
2002-01-01
In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas
Approximate variational solutions of the Grad-Shafranov equation
International Nuclear Information System (INIS)
Ludwig, G.O.
2001-01-01
Approximate solutions of the Grad-Schlueter-Shafranov equation based on variational methods are developed. The power series solutions of the Euler-Lagrange equations for equilibrium are compared with direct variational results for a low aspect ratio tokamak equilibrium. (author)
Energy Technology Data Exchange (ETDEWEB)
Kirtley, K.R.
1988-10-01
A new coupled parabolic-marching method was developed to solve the three-dimensional incompressible Navier-Stokes equation for turbulent turbomachinery flows. Earlier space-marching methods were analyzed to determine their global stability during multiple passes of the computational domain. The methods were found to be unconditionally unstable even when an extra equation for the pressure, namely the Poisson equation for the pressure, was used between passes of the domain. Relaxation of one constraint during the solution process was found to be necessary for the successful calculation of a complex flow.Thus, the method of pseudocompressibility was introduced into the partially parabolized Navier-Stokes equation to relax the mass flow constraint during a forward-marching integration as well as globally stable during successive passes of the domain. With consistent discretization, the new method was found to be convergent.
Energy Technology Data Exchange (ETDEWEB)
Almeida, Regina Celia Cerqueira de
1993-12-31
A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author) 63 refs., 40 figs.
Energy Technology Data Exchange (ETDEWEB)
Almeida, Regina Celia Cerqueira de
1994-12-31
A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author) 63 refs., 40 figs.
Measure-valued solutions to the complete Euler system revisited
Březina, Jan; Feireisl, Eduard
2018-06-01
We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.
Uniqueness of rarefaction waves in multidimensional compressible Euler system
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Kreml, Ondřej
2015-01-01
Roč. 12, č. 3 (2015), s. 489-499 ISSN 0219-8916 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler system * uniqueness * rarefaction wave * Riemann problem Subject RIV: BA - General Mathematics Impact factor: 0.556, year: 2015 http://www.worldscientific.com/doi/abs/10.1142/S0219891615500149
Measure-valued solutions to the complete Euler system revisited
Czech Academy of Sciences Publication Activity Database
Březina, J.; Feireisl, Eduard
2018-01-01
Roč. 69, č. 3 (2018), č. článku 57. ISSN 0044-2275 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * measure-valued solution * vanishing dissipation limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.687, year: 2016 https://link.springer.com/article/10.1007/s00033-018-0951-8
Smooth values of the iterates of the Euler's Phi function
Lamzouri, Youness
2005-01-01
Let $\\phi(n)$ be the Euler-phi function, define $\\phi_0(n) = n$ and $\\phi_{k+1}(n)=\\phi(\\phi_{k}(n))$ for all $k\\geq 0$. We will determine an asymptotic formula for the set of integers $n$ less than $x$ for which $\\phi_k(n)$ is $y$-smooth, conditionally on a weak form of the Elliott-Halberstam conjecture.
Parallel computation of Euler and Navier-Stokes flows
International Nuclear Information System (INIS)
Swisshelm, J.M.; Johnson, G.M.; Kumar, S.P.
1986-01-01
A multigrid technique useful for accelerating the convergence of Euler and Navier-Stokes flow computations has been restructured to improve its performance on both SIMD and MIMD computers. The new algorithm allows both the construction of longer coarse-grid vectors and the multitasking of entire grids. Computational results are presented for the CDC Cyber 205, Cray X-MP, and Denelcor HEP I. 15 references
Three Dimensional Steady Subsonic Euler Flows in Bounded Nozzles
Chen, Chao; Xie, Chunjing
2013-01-01
In this paper, we study the existence and uniqueness of three dimensional steady Euler flows in rectangular nozzles when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal compon...
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying,; LI Yu-Qi; WU Ke1; WANG Shi-Kun
2002-01-01
In this first paper of a series, we study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncommutative differential geometry. Regarding the difference as an entire geometric object, the difference discrete version of Legendre transformation can be introduced. By virtue of this variational principle, we can discretely deal with the variation problems in both the Lagrangian and Hamiltonian formalisms to get difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory.
International Nuclear Information System (INIS)
Celine Lapuerta; Bruno Piar; Franck Boyer; Philippe Angot; Michel Quintard
2005-01-01
This paper presents a Navier-Stokes/Cahn-Hilliard model designed for incompressible flows of three immiscible phases, characterized by different surface tensions and without phase change. This physical context is relevant to study the late phase of a hypothetical severe accident in a nuclear pressurized water reactor. Thanks to a suitable choice of a free energy and a particular form of the Cahn-Hilliard equation, the evolution of the three phases is described by only two order parameters. Moreover, this model allows the simulation of purely two phase flows as a limiting case: no artificial apparition of the third phase occurs if this later is physically absent which contrasts with others models of the literature. We examine the spreading of a liquid lens at the interface between two stratified phases. We present results showing that the method gives correct contact angles and pressure jumps, at equilibrium. (authors)
Swimming of a sphere in a viscous incompressible fluid with inertia
International Nuclear Information System (INIS)
Felderhof, B U; Jones, R B
2017-01-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)
Level Set Projection Method for Incompressible Navier-Stokes on Arbitrary Boundaries
Williams-Rioux, Bertrand
2012-01-12
Second order level set projection method for incompressible Navier-Stokes equations is proposed to solve flow around arbitrary geometries. We used rectilinear grid with collocated cell centered velocity and pressure. An explicit Godunov procedure is used to address the nonlinear advection terms, and an implicit Crank-Nicholson method to update viscous effects. An approximate pressure projection is implemented at the end of the time stepping using multigrid as a conventional fast iterative method. The level set method developed by Osher and Sethian [17] is implemented to address real momentum and pressure boundary conditions by the advection of a distance function, as proposed by Aslam [3]. Numerical results for the Strouhal number and drag coefficients validated the model with good accuracy for flow over a cylinder in the parallel shedding regime (47 < Re < 180). Simulations for an array of cylinders and an oscillating cylinder were performed, with the latter demonstrating our methods ability to handle dynamic boundary conditions.
International Nuclear Information System (INIS)
Cliffe, K.A.; Garratt, T.J.; Spence, A.
1992-03-01
This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalised eigenvalue problems arising from mixed finite element discretisations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and can be used in a scheme to determine the stability of steady state solutions and to detect Hopf bifurcations. We introduce a modified Cayley transform of the generalised eigenvalue problem which overcomes a drawback of the usual Cayley transform applied to such problems. Standard iterative methods are then applied to the transformed eigenvalue problem to compute approximations to the eigenvalue of smallest real part. Numerical experiments are performed using a model of double diffusive convection. (author)
International Nuclear Information System (INIS)
Sabir, O; Ahmad, Norhafizan; Nukman, Y; Tuan Ya, T M Y S
2013-01-01
This paper describes an innovative method for computing fluid solid interaction using Immersed boundary methods with two stage pressure-velocity corrections. The algorithm calculates the interactions between incompressible viscous flows and a solid shape in three-dimensional domain. The fractional step method is used to solve the Navier-Stokes equations in finite difference schemes. Most of IBMs are concern about exchange of the momentum between the Eulerian variables (fluid) and the Lagrangian nodes (solid). To address that concern, a new algorithm to correct the pressure and the velocity using Simplified Marker and Cell method is added. This scheme is applied on staggered grid to simulate the flow past a circular cylinder and study the effect of the new stage on calculations cost. To evaluate the accuracy of the computations the results are compared with the previous software results. The paper confirms the capacity of new algorithm for accurate and robust simulation of Fluid Solid Interaction with respect to pressure field
Robust boundary treatment for open-channel flows in divergence-free incompressible SPH
Pahar, Gourabananda; Dhar, Anirban
2017-03-01
A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.
Swimming of a sphere in a viscous incompressible fluid with inertia
Energy Technology Data Exchange (ETDEWEB)
Felderhof, B U [Institut für Theorie der Statistischen Physik RWTH Aachen University, Templergraben 55, D-52056 Aachen (Germany); Jones, R B, E-mail: ufelder@physik.rwth-aachen.de, E-mail: r.b.jones@qmul.ac.uk [Queen Mary University of London, The School of Physics and Astronomy, Mile End Road, London E1 4NS (United Kingdom)
2017-08-15
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier–Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid. (paper)
Swimming of a sphere in a viscous incompressible fluid with inertia
Felderhof, B. U.; Jones, R. B.
2017-08-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.
An efficient implicit direct forcing immersed boundary method for incompressible flows
International Nuclear Information System (INIS)
Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y
2015-01-01
A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.
Störmer problem restricted to a spherical surface and the Euler and Lagrange tops
International Nuclear Information System (INIS)
Piña, Eduardo; Cortés, Emilio
2016-01-01
In a recent work, Cortés and Poza (2015 Eur. J. Phys. 36 055009) analysed, in full, the dynamics of a charged particle in the field of a magnetic dipole restricted to a spherical surface with the dipole at its centre. This model can be considered as the classical non-relativistic Störmer problem on a sphere. Here, we started from a Lagrangian approach: we derived the Hamilton equations of motion and observed that in this restricted case the equations can be reduced to quadratures, and they were integrated numerically. From the Hamiltonian function we found, for the polar angle, an equivalent one-dimensional system of a particle in the presence of an effective potential. In the present work we start from a change of variable to the cosine of the polar angle. In terms of this variable we obtain an equation that turns out to be the same as the one of a particle in a quartic potential. Then, we can actually solve the equations of motion for the polar angle using Jacobi elliptic functions, and for the azimuthal angle we use the same integrals which were expressed by Jacobi in terms of theta functions, both in the Euler and Lagrange tops. In this restricted Störmer problem, the student at undergraduate or graduate level will have a good example of an integrable nonlinear physical system in which, after analysis of its complex dynamics, one can obtain an analytical solution by means of some special functions of mathematical physics. Additionally, one discovers that the equations of motion of this restricted case of a charge in a magnetic dipole field have the same mathematical structure as the corresponding equations of other well known integrable classical dynamical systems. (paper)
PELE-IC, 2-D Eulerian Incompressible Hydrodynamic and Bubble Dynamic after LWR LOCA
International Nuclear Information System (INIS)
McMaster, W.H.; Gong, E.Y.
1981-01-01
1 - Description of problem or function: PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of- coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles. 2 - Method of solution: The solution strategy is to first solve the Navier-Stokes equations explicitly using values from the previous time-step. Since these values do not necessarily satisfy the continuity equation, the pressure field is iterated upon until the incompressibility condition for each computational cell is satisfied within prescribed limits. The structural motion is computed by a finite element code from the applied pressure at the fluid-structure interface. The shell structure algorithm uses conventional thin-shell theory with transverse shear. The finite-element spatial discretization employs piecewise-linear interpolation functions and one-point quadrature applied to conical frustra. The Newmark implicit time integration method is used as a one-step module. The fluid code then uses the structure's position and velocity as boundary conditions. The fluid pressure field and the structure's response are corrected iteratively until the normal velocities of fluid and structure are equal. The effects of steam condensation and oscillatory chugging on structures are
Directory of Open Access Journals (Sweden)
Nikita E. Styopin
2016-09-01
Full Text Available Different variants of the Uzawa algorithm are compared with one another. The comparison is performed for the case in which this algorithm is applied to large-scale systems of linear algebraic equations. These systems arise in the finite-element solution of the problems of elasticity theory for incompressible materials. A modification of the Uzawa algorithm is proposed. Computational experiments show that this modification improves the convergence of the Uzawa algorithm for the problems of solid mechanics. The results of computational experiments show that each variant of the Uzawa algorithm considered has its advantages and disadvantages and may be convenient in one case or another.
Directory of Open Access Journals (Sweden)
Svetlana S. Vlasova
2016-09-01
Full Text Available The exact stationary solution of the boundary-value problem that describes the convective motion of an incompressible viscous fluid in the two-dimensional layer with the square heating of a free surface in Stokes's approach is found. The linearization of the Oberbeck–Boussinesq equations allows one to describe the flow of fluid in extreme points of pressure and temperature. The condition under which the counter-current flows (two counter flows in the fluid can be observed, is introduced. If the stagnant point in the fluid exists, six non-closed whirlwinds can be observed.
International Nuclear Information System (INIS)
Gama, R.M.S. da; Sampaio, R.
1985-01-01
The flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium which has a given inicial distribuition of the mentioned fluid, is analyzed. It is proposed a model that assumes that the motion is caused by concentration gradient, but it does not consider the friction between the porous medium and the fluid. We solve an onedimensional case where the mathematical problem is reduced to the solution of a non-linear hyperbolic system of differential equations, subjected to an inicial condition given by a step function, called 'Riemann Problem'. (Author) [pt
Zhu, Guangpu
2018-04-17
In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.
Zhu, Guangpu; Kou, Jisheng; Sun, Shuyu; Yao, Jun; Li, Aifen
2018-01-01
In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.
Optimal control of compressible Navier-Stokes equations
International Nuclear Information System (INIS)
Ito, K.; Ravindran, S.S.
1994-01-01
Optimal control for the viscous incompressible flows, which are governed by incompressible Navier-Stokes equations, has been the subject of extensive study in recent years, see, e.g., [AT], [GHS], [IR], and [S]. In this paper we consider the optimal control of compressible isentropic Navier-Stokes equations. We develop the weak variational formulation and discuss the existence and necessary optimality condition characterizing the optimal control. A numerical method based on the mixed-finite element method is also discussed to compute the control and numerical results are presented
Local mesh refinement for incompressible fluid flow with free surfaces
Energy Technology Data Exchange (ETDEWEB)
Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Variational characterization of generalized Jacobi equations
International Nuclear Information System (INIS)
Casciaro, B.
1995-09-01
A Lagrangian depending on derivatives of the fields up to a generic order is considered, together with a series development around a given section. The problem of extremality and stability of action for this system is then addressed. Higher-order variations in the Lagrangian, the Euler-Lagrange equation, the expansion of the action, the D-invariant decomposition of the Lagrangian, the Jacobi equation, and a unified description of the Euler-Lag range and Jacobi equations are discussed. As a conclusion of the work it is stated that the theory of second variations is worthy to be revisited and a comment on a recent paper by Taub is made. 10 refs
Felderhof, B. U.
2017-09-01
Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.
INCOMPRESSIBLE LAMINAR BOUNDARY LAYER CONTROL BY BLOWING AND SUCTION
AZZEDINE NAHOUI; LAKHDAR BAHI
2013-01-01
A two-dimensional incompressible laminar boundary layer and its control using blowing and suction over a flat plate and around the NACA 0012 and 661012 profiles, is studied numerically. The study is based on the Prandtl boundary layer model using the finite differences method and the Crank-Nicolson scheme. The velocity distribution, the boundary layer thickness and the friction coefficient, are determined and presented with and without control. The application of the control technique, has de...
Spatial Angular Compounding for Elastography without the Incompressibility Assumption
Rao, Min; Varghese, Tomy
2005-01-01
Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Previous results using spatial angular compounding, however, were based on the use of the tissue incompressibility assumption. Compounded elastograms were obtained from a spatially-weighted average of local strain estimated from radiofrequency echo signals acquired at different insonification angles. In this paper, we present a new method for reducing the noise artifacts in...
Dörsek, Philipp; Melenk, Jens M.
2017-01-01
We consider the extension of the p-robust equilibrated error estimator due to Braess, Pillwein and Schöberl to linear elasticity. We derive a formulation where the local mixed auxiliary problems do not require symmetry of the stresses. The resulting error estimator is p-robust, and the reliability estimate is also robust in the incompressible limit if quadratics are included in the approximation space. Extensions to other systems of linear second-order partial differential equations are discu...
Nuclear incompressibility: from finite nuclei to nuclear matter
International Nuclear Information System (INIS)
Treiner, J.; Krivine, H.; Bohigas, O.
1981-01-01
The recent increase of experimental data concerning the Giant Monopole Resonance Energy Esub(M) gives information on the incompressibility modulus of nuclear matter, provided one can extrapolate the incompressibility of a nucleus Ksub(A) defined by Esub(M)=[h 2 /m KA/ 2 >]sup(1/2), to the infinite medium. We discuss the theoretical interpretation of the coefficients of an Asup(-1/3) - expansion of Ksub(A) by studying the asymptotic behaviour of two RPA sum rules (corresponding to the scaling and the constrained model), evaluated using self-consistent Thomas-Fermi calculations. We show that the scaling model is the most suitable one as it leads to a rapidly converging Asup(-1/3)-expansion of the corresponding incompressibility Ksub(A)sup(S), whereas this is not the case with the constrained model. Some semi-empirical relations between the coefficients of the expansion of Ksub(A)sup(S) are established, which reduce to one the number of free-parameters in a best fit analysis of the experimental data. This reduction is essential due to the still limited number and accuracy of experimental data. We then show the compatibility of the data given by the various experimental groups with this parametrization and obtain a value of Ksub(nm)=220+-20 MeV, in good agreement with more microscopic analysis
Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
Campos, Joventino Oliveira; Dos Santos, Rodrigo Weber; Sundnes, Joakim; Rocha, Bernardo Martins
2018-04-01
Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance. Copyright © 2017 John Wiley & Sons, Ltd.
Functional equation for the Mordell-Tornheim multiple zeta-function
Okamoto, Takuya; Onozuka, Tomokazu
2016-01-01
We show a relation between the Mordell-Tornheim multiple zeta-function and the confluent hypergeometric function, and using it, we give the functional equation for the Mordell-Tornheim multiple zeta-function. In the double case, the functional equation includes the known functional equation for the Euler-Zagier double zeta-function.
Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.
Saveliev, V L; Gorokhovski, M A
2005-07-01
On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.
Navier-Stokes equations an introduction with applications
Łukaszewicz, Grzegorz
2016-01-01
This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from students to engineers and mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior o...
A Stabilized Incompressible SPH Method by Relaxing the Density Invariance Condition
Directory of Open Access Journals (Sweden)
Mitsuteru Asai
2012-01-01
Full Text Available A stabilized Incompressible Smoothed Particle Hydrodynamics (ISPH is proposed to simulate free surface flow problems. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. Even if the pressure is evaluated implicitly, the unrealistic pressure fluctuations cannot be eliminated. In order to overcome this problem, there are several improvements. One is small compressibility approach, and the other is introduction of two kinds of pressure Poisson equation related to velocity divergence-free and density invariance conditions, respectively. In this paper, a stabilized formulation, which was originally proposed in the framework of Moving Particle Semi-implicit (MPS method, is applied to ISPH in order to relax the density invariance condition. This formulation leads to a new pressure Poisson equation with a relaxation coefficient, which can be estimated by a preanalysis calculation. The efficiency of the proposed formulation is tested by a couple of numerical examples of dam-breaking problem, and its effects are discussed by using several resolution models with different particle initial distances. Also, the effect of eddy viscosity is briefly discussed in this paper.
Badia, Santiago; Martín, Alberto F.; Planas, Ramon
2014-10-01
The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.
A meshless scheme for incompressible fluid flow using a velocity-pressure correction method
Bourantas, Georgios
2013-12-01
A meshless point collocation method is proposed for the numerical solution of the steady state, incompressible Navier-Stokes (NS) equations in their primitive u-v-p formulation. The flow equations are solved in their strong form using either a collocated or a semi-staggered "grid" configuration. The developed numerical scheme approximates the unknown field functions using the Moving Least Squares approximation. A velocity, along with a pressure correction scheme is applied in the context of the meshless point collocation method. The proposed meshless point collocation (MPC) scheme has the following characteristics: (i) it is a truly meshless method, (ii) there is no need for pressure boundary conditions since no pressure constitutive equation is solved, (iii) it incorporates simplicity and accuracy, (iv) results can be obtained using collocated or semi-staggered "grids", (v) there is no need for the usage of a curvilinear system of coordinates and (vi) it can solve steady and unsteady flows. The lid-driven cavity flow problem, for Reynolds numbers up to 5000, has been considered, by using both staggered and collocated grid configurations. Following, the Backward-Facing Step (BFS) flow problem was considered for Reynolds numbers up to 800 using a staggered grid. As a final example, the case of a laminar flow in a two-dimensional tube with an obstacle was examined. © 2013 Elsevier Ltd.
A GPU-based incompressible Navier-Stokes solver on moving overset grids
Chandar, Dominic D. J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.
2013-07-01
In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.
The Finite-Surface Method for incompressible flow: a step beyond staggered grid
Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru
2017-11-01
We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.
Stability properties of the Euler-Korteweg system with nonmonotone pressures
Giesselmann, Jan
2016-12-21
We establish a relative energy framework for the Euler-Korteweg system with non-convex energy. This allows us to prove weak-strong uniqueness and to show convergence to a Cahn-Hilliard system in the large friction limit. We also use relative energy to show that solutions of Euler-Korteweg with convex energy converge to solutions of the Euler system in the vanishing capillarity limit, as long as the latter admits sufficiently regular strong solutions.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Cyranka, Jacek; Mucha, Piotr B.; Titi, Edriss S.; Zgliczyński, Piotr
2018-04-01
The paper studies the issue of stability of solutions to the forced Navier-Stokes and damped Euler systems in periodic boxes. It is shown that for large, but fixed, Grashoff (Reynolds) number the turbulent behavior of all Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in periodic box, is suppressed, when viewed in the right frame of reference, by large enough average flow of the initial data; a phenomenon that is similar in spirit to the Landau damping. Specifically, we consider an initial data which have large enough spatial average, then by means of the Galilean transformation, and thanks to the periodic boundary conditions, the large time independent forcing term changes into a highly oscillatory force; which then allows us to employ some averaging principles to establish our result. Moreover, we also show that under the action of fast oscillatory-in-time external forces all two-dimensional regular solutions of the Navier-Stokes and the damped Euler equations converge to a unique time-periodic solution.
Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-01-01
Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.
Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-09-01
Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.
Parallel implementations of 2D explicit Euler solvers
International Nuclear Information System (INIS)
Giraud, L.; Manzini, G.
1996-01-01
In this work we present a subdomain partitioning strategy applied to an explicit high-resolution Euler solver. We describe the design of a portable parallel multi-domain code suitable for parallel environments. We present several implementations on a representative range of MlMD computers that include shared memory multiprocessors, distributed virtual shared memory computers, as well as networks of workstations. Computational results are given to illustrate the efficiency, the scalability, and the limitations of the different approaches. We discuss also the effect of the communication protocol on the optimal domain partitioning strategy for the distributed memory computers
The Kerr/fluid duality and the singularity of solutions to the fluid equation
International Nuclear Information System (INIS)
Fujisawa, Ippei; Nakayama, Ryuichi
2016-01-01
An equation for a viscous incompressible fluid on a spheroidal surface that is dual to the perturbation around the near-near-horizon extreme Kerr (near-NHEK) black hole is derived. It is also shown that an expansion scalar θ of a congruence of null geodesics on the perturbed horizon of the perturbed near-NHEK spacetime, which is dual to a viscous incompressible fluid, is not in general positive semidefinite, even if initial conditions on the velocity are smooth. Unless the initial conditions are appropriately adjusted, caustics of null congruence will occur on the perturbed horizon in the future. A similar result is obtained for a perturbed Schwarzschild black hole spacetime, which is dual to a viscous incompressible fluid on S 2 . An initial condition that θ be positive semidefinite at any point on S 2 is a necessary condition for the existence of smooth solutions to the incompressible Navier-Stokes equation on S 2
Maiti, Soumyabrata; Bandyopadhyay, Ritwik; Chatterjee, Anindya
2018-01-01
We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for materials with randomly dispersed frictional microcracks. The virtual work of distributed dissipative moments is approximated using Gaussian quadrature, yielding a few discrete internal hysteretic states. Lagrange's equations are obtained for the modal coordinates. Differential equations for the modal coordinates and internal states are integrated together. Free vibrations decay exponentially when a single mode dominates. With multiple modes active, higher modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower modes show their own characteristic modal damping, while small amplitude higher modes show more erratic decay. Large dissipation, for the adopted model, leads mathematically to fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, harmonically forced, lightly damped responses of the beam are studied using both a slow frequency sweep and a shooting-method based search for periodic solutions along with numerical continuation. Shooting method and frequency sweep results match for large ranges of frequency. The shooting method struggles near resonances, where internal states collapse into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary resonances, simple numerically-aided harmonic balance gives excellent results. Insights are also obtained into the harmonic content of secondary resonances.