WorldWideScience

Sample records for incommensurate magnetic order

  1. Incommensurate magnetic ordering of PrPdAl

    Energy Technology Data Exchange (ETDEWEB)

    Keller, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Doenni, A. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan). Tsukuba Lab.; Fauth, F. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    The intermetallic rare earth compound PrPdAl with ZrNiAl-type structure was investigated by means of powder neutron diffraction. PrPdAl orders below T{sub N} {approx_equal}4.2 K with an incommensurate antiferromagnetic propagation vector k = [1/2,0,{tau}], {tau}=0.398. The best fit was obtained with a sinusoidal modulation of the magnetic moments along the c-axis. (author) 2 figs., 2 refs.

  2. Magnetic phase transitions with incommensurate structures in systems with coupled order parameters

    International Nuclear Information System (INIS)

    Izyumov, Yu.A.; Laptev, V.M.; Petrov, S.B.

    1984-01-01

    Modulated magnetic phases are investigated for the case when symmetry does not allow linear by gradients Lifshits invariants and magnetic momenta are converted by two irreducible representations. Possible phase diagrams with participation of incommensurable phases are plotted on the base of Ginsburg-Landau functional for 2 bound parameters of the order. The role of the highest harmonics in spatial distribution of the order parameters is clarified on the example of magnetic phase transitions in Er

  3. Magnetic-Field-Enhanced Incommensurate Magnetic Order in the Underdoped High-Temperature Superconductor YBa2Cu3O6.45

    DEFF Research Database (Denmark)

    Haug, D.; Hinkov, V.; Suchaneck, A.

    2009-01-01

    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift...

  4. Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  5. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases

    International Nuclear Information System (INIS)

    Perez-Mato, J M; Aroyo, M I; Ribeiro, J L; Petricek, V

    2012-01-01

    Superspace symmetry has been for many years the standard approach for the analysis of non-magnetic modulated crystals because of its robust and efficient treatment of the structural constraints present in incommensurate phases. For incommensurate magnetic phases, this generalized symmetry formalism can play a similar role. In this context we review from a practical viewpoint the superspace formalism particularized to magnetic incommensurate phases. We analyse in detail the relation between the description using superspace symmetry and the representation method. Important general rules on the symmetry of magnetic incommensurate modulations with a single propagation vector are derived. The power and efficiency of the method is illustrated with various examples, including some multiferroic materials. We show that the concept of superspace symmetry provides a simple, efficient and systematic way to characterize the symmetry and rationalize the structural and physical properties of incommensurate magnetic materials. This is especially relevant when the properties of incommensurate multiferroics are investigated. (topical review)

  6. Interlayer exchange coupling in Er|Tb superlattices mediated by short range incommensurate Er order

    International Nuclear Information System (INIS)

    Pfuhl, E; Brueckel, T; Voigt, J; Mattauch, S; Korolkov, D

    2010-01-01

    We study the magnetic correlations in Er|Tb superlattices by means of off-specular scattering of polarized neutrons. We show here the co-existence of inhomogeneous magnetic states: i) ferromagnetic order of moments within the Tb layers below 230 K (FM), correlation length of about 10 bilayer, ii) an incommensurate modulated magnetic order, restricted to single Er layers and iii) antiferromagnetic coupling of ferromagnetic layers below 70K (AFC). Polarised off-specular neutron scattering under grazing incidence reveals that i) magnetic fluctuations appear when the sample is cooled below 70 K, ii) these fluctuations lead to AFC, when the sample is cooled to 10 K, which iii) persists, when the sample is subsequently heated up to 45 K, while the order is not present during the cooling cycle. Also the short range incommensurate order changes accordingly, implying that the magnetic order in the Er layers mediates the interlayer coupling between ferromagnetic Tb layers.

  7. Magnetic ordering in TmGa

    DEFF Research Database (Denmark)

    Cadogan, J.M.; Stewart, G.A.; Muños Pérez, S.

    2014-01-01

    We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and 169Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order...... of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears...... to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The 169Tm hyperfine magnetic field...

  8. Incommensurate magnetism in non-superconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Boothroyd, A.T.; Hill, J.P.; McMorrow, D.F.

    1999-01-01

    We report the discovery of incommensurate magnetic order in non-superconducting single crystals PrBa2Cu3O6.92. Resonant X-ray magnetic scattering at the Pr L-II and L-III edges and high resolution neutron diffraction were used to characterise the magnetic order on the different magnetic sublattices...

  9. Incommensurate magnetism in PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Hill, J.P.; Boothroyd, A.T.; Andersen, N.H.

    1998-01-01

    We report resonant x-ray magnetic scattering and high-resolution neutron-diffraction studies of the Pr site magnetism in high quality single crystals of PrBa2Cu3O6.92. These studies reveal that the Pr sublattice orders at 19 K in a well correlated, long period incommensurate structure with probable...

  10. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  11. Magnetic anisotropy in the incommensurate ScFe{sub 4}Al{sub 8} system

    Energy Technology Data Exchange (ETDEWEB)

    Rećko, K., E-mail: k.recko@uwb.edu.pl [Faculty of Physics, University of Białystok, K. Ciołkowskiego 1L, 15-245 Białystok (Poland); Dobrzyński, L. [National Centre for Nuclear Research, A. Soltan 7, 05-400 Otwock-Świerk (Poland); Waliszewski, J.; Szymański, K. [Faculty of Physics, University of Białystok, K. Ciołkowskiego 1L, 15-245 Białystok (Poland)

    2015-08-15

    Neutron scattering and magnetization data are used for estimation of the spin ordering in ScFe{sub 4}Al{sub 8}. Results of experimental measurements are compared with the ground state configurations obtained by simulated annealing algorithms. The origins of the magnetocrystalline anisotropy of the scandium intermetallic alloy and the conditions of the coexistence of two different magnetic modulations as a function of the exchange integrals are discussed. The influence of the dipolar interactions for the noncollinearity and incommensurability in ScFe{sub 4}Al{sub 8} was determined. - Highlights: • We found dipolar and DM interactions as the anisotropy origins of 3d–3d–3p alloy. • We covered the explanation of incommensurability and noncollinearity of ScFe{sub 4}Al{sub 8}. • We discussed the magnetism resulting from competitiveness of exchange effects.

  12. Incommensurate magnetic fluctuations in La2xSrxCuO4

    DEFF Research Database (Denmark)

    Cheong, S.W.; Aeppli, G.; Mason, T.E.

    1991-01-01

    We use inelastic neutron scattering to establish the modulation vectors-delta and correlation lengths for the incommensurate magnetic fluctuations in metallic samples of La2-xSrxCuO4 with x = 0.075 and 0.14. In notation appropriate for a square lattice where the magnetic instability in the undoped...

  13. Linear spin-wave theory of incommensurably modulated magnets

    DEFF Research Database (Denmark)

    Ziman, Timothy; Lindgård, Per-Anker

    1986-01-01

    Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...

  14. Gracing incidence small angle neutron scattering of incommensurate magnetic structures in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Birgit; Pfleiderer, Christian; Boeni, Peter [Physik Department, Technische Universitaet Muenchen (Germany); Zhang, Shilei; Hesjedal, Thorsten [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Khaydukov, Yury; Soltwedel, Olaf; Keller, Thomas [Max-Planck-Institut fuer Festkoerperforschung (Germany); Max Planck Society, Outstation at FRM-II (Germany); Muehlbauer, Sebastian [Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany); Chacon, Alfonso [Physik Department, Technische Universitaet Muenchen (Germany); Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The topological stability of skyrmions in bulk samples of MnSi and the observation of spin transfer torque effects at ultra-low current densities have generated great interest in skyrmions in chiral magnets as a new route towards next generation spintronics devices. Yet, the formation of skyrmions in MBE grown thin films of MnSi reported in the literature is highly controversial. We report gracing incidence small angle neutron scattering (GISANS) of the magnetic order in selected thin films of MnSi grown by state of the art MBE techniques. In combination with polarised neutron reflectometry (PNR) and magnetisation measurements of the same samples our data provide direct reciprocal space information of the incommensurate magnetic order, clarifying the nature of magnetic phase diagram.

  15. Structure of the incommensurate phase of the quantum magnet TiOCl

    Czech Academy of Sciences Publication Activity Database

    Schönleber, A.; van Smaalen, S.; Palatinus, Lukáš

    2006-01-01

    Roč. 73, č. 21 (2006), 214410/1-214410/4 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : spin-Peierls transition * incommensurate phase Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 3.107, year: 2006

  16. Theory of field induced incommensurability: CsFeCl3

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1986-01-01

    Using correlation theory for the singlet-doublet magnet CsFeCl3 in a magnetic field, a field induced incommensurate ordering along K-M is predicted without invoking dipolar effects. A fully self-consistent RPA theory gives Hc=44 kG in agreement with experiments at T=1.3K. Correlation and dipolar...

  17. Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution

    DEFF Research Database (Denmark)

    Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel

    2009-01-01

    ) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN......Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes...

  18. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO 4

    Science.gov (United States)

    Smith, R.; Reyes, A. P.; Ashey, R.; Caldwell, T.; Prokofiev, A.; Assmus, W.; Teitel'baum, G.

    2006-05-01

    Our 51V NMR measurements in the LiCuVO 4 single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the 51V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  19. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    Science.gov (United States)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  20. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Reyes, A.P. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Ashey, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Caldwell, T. [NHMFL, Los Alamos, NM 87545 (United States); Prokofiev, A. [Goethe University, 60054 Frankfurt (Germany); Assmus, W. [Goethe University, 60054 Frankfurt (Germany); Teitel' baum, G. [E.K.Zavoiskii Institute for Technical Physics of the RAS, Sibirskii Trakt 10/7, Kazan 420029 (Russian Federation)]. E-mail: grteit@kfti.knc.ru

    2006-05-01

    Our {sup 51}V NMR measurements in the LiCuVO{sub 4} single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the {sup 51}V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  1. Synchrotron X-ray diffraction studies of the incommensurate phase of a spin-Peierls system CuGeO3 in strong magnetic fields

    International Nuclear Information System (INIS)

    Narumi, Yasuo; Katsumata, Koichi; Tanaka, Yoshikazu; Ishikawa, Tetsuya; Kitamura, Hideo; Hara, Toru; Tanaka, Takashi; Tamasaku, Kenji; Tabata, Yoshikazu; Kimura, Shojiro; Nakamura, Tetsuya; Yabashi, Makina; Goto, Shunji; Ohashi, Haruhiko; Takeshita, Kunikazu; Ohata, Toru; Matsushita, Tomohiro; Bizen, Teruhiko; Shimomura, Susumu; Matsuda, Masaaki

    2004-01-01

    Synchrotron X-ray diffraction measurements on a spin-Peierls material CuGeO 3 in applied magnetic fields, H, up to 15 T are made. We find that the temperature, T, dependence of the incommensurate Bragg peak at a lower H is quite different from that at a higher H. At sufficiently high fields, we find that the lattice incommensurability, δι, is almost independent of T, while at H slightly above the critical field = 12.25 T for the commensurate to incommensurate transition, δι decreases with increasing T. We interpret that this finding is due to a stabilization of the incommensurate state by a strong magnetic field which suppresses thermal fluctuations. (author)

  2. Incommensurate and commensurate magnetic structures of the ternary germanide CeNiGe3

    International Nuclear Information System (INIS)

    Durivault, L; Bouree, F; Chevalier, B; Andre, G; Weill, F; Etourneau, J; Martinez-Samper, P; Rodrigo, J G; Suderow, H; Vieira, S

    2003-01-01

    The structural properties of CeNiGe 3 have been investigated via electron diffraction and neutron powder diffraction (NPD). This ternary germanide crystallizes in the orthorhombic SmNiGe 3 -type structure (Cmmm space group). Electrical resistivity, ac- and dc-magnetization measurements show that CeNiGe 3 orders antiferromagnetically below T N = 5.5(2) K and exclude the occurrence at low temperatures of a spin-glass state for CeNiGe 3 as previously reported. Specific heat measurements and NPD both reveal two magnetic transitions, observed at T N1 = 5.9(2) K and T N2 = 5.0(2) K. Between T N1 and T N2 , the Ce magnetic moments in CeNiGe 3 are ordered in a collinear antiferromagnetic structure associated with the k 1 = (100) wavevector and showing a relationship with the magnetic structure of the Ce 3 Ni 2 Ge 7 ternary germanide. Below T N2 , this k 1 = (100) commensurate magnetic structure coexists with an incommensurate helicoidal magnetic structure associated with k 2 = (00.409(1)1/2). This last magnetic structure is highly preponderant below T N2 (93(5)% in volume). At 1.5 K, the Ce atoms in CeNiGe 3 carry a reduced ordered magnetic moment (0.8(2) μ B ). This value, smaller than that obtained in Ce 3 Ni 2 Ge 7 , results from an important hybridization of the 4f(Ce) orbitals with those of the Ni and Ge ligands

  3. Symmetry, incommensurate magnetism and ferroelectricity: The case of the rare-earth manganites RMnO3

    International Nuclear Information System (INIS)

    Ribeiro, J L

    2010-01-01

    The complete irreducible co-representations of the paramagnetic space group provide a simple and direct path to explore the symmetry restrictions of magnetically driven ferroelectricity. The method consists of a straightforward generalization of the method commonly used in the case of displacive modulated systems and allows us to determine, in a simple manner, the full magnetic symmetry of a given phase originated from a given magnetic order parameter. The potential ferroic and magneto-electric properties of that phase can then be established and the exact Landau free energy expansions can be derived from general symmetry considerations. In this work, this method is applied to the case of the orthorhombic rare-earth manganites RMnO 3 . This example will allow us to stress some specific points, such as the differences between commensurate or incommensurate magnetic phases regarding the ferroic and magnetoelectric properties, the possible stabilization of ferroelectricity by a single irreducible order parameter or the possible onset of a polarization oriented parallel to the magnetic modulation. The specific example of TbMnO 3 will be considered in more detail, in order to characterize the role played by the magneto-electric effect in the mechanism for the polarization rotation induced by an external magnetic field.

  4. Spin incommensurability and two phase competition in cobaltites.

    Science.gov (United States)

    Phelan, D; Louca, Despina; Kamazawa, K; Lee, S-H; Ancona, S N; Rosenkranz, S; Motome, Y; Hundley, M F; Mitchell, J F; Moritomo, Y

    2006-12-08

    The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.

  5. Elastic lattice in an incommensurate background

    International Nuclear Information System (INIS)

    Dickman, R.; Chudnovsky, E.M.

    1995-01-01

    We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices

  6. Incommensurate phases in dielectrics. 1. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Blinc, R [Ljubljana Univ. (Yugoslavia). J. Stefan Inst.; Levanyuk, A P [AN SSSR, Moscow. Inst. Kristallografii; eds.

    1986-01-01

    Incommensurate systems are intermediate between perfectly ordered crystals and disordered matter. They exhibit complete long range order but no translational lattice periodicity in three dimensions. The breaking of three dimensional lattice periodicity leads to a number of new phenomena which are not found in classical crystals, e.g. nonlinear multi-soliton lattice type ground states, phason and amplitudon excitations and solid state chaos. The study of incommensurate systems may thus lead to an improved understanding of the aperiodic state of matter. This contributed work has been divided into two volumes. Volume 1 treats the macroscopic and microscopic theory of incommensurate systems and provides a review of the experimental techniques used to study the new phenomena. (Auth.). Includes author and subject index

  7. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  8. Commensurate-incommensurate phase transition in the deformed crystal

    International Nuclear Information System (INIS)

    Parlinski, K.; Watanabe, Y.; Ohno, K.; Kawazoe, Y.

    1995-01-01

    Using simple orthorhombic microscopic model the commensurate-incommensurate phase transition has been studied. Coupling of the order parameter with spontaneous strain may lead to process which uses the ferroelastic domain walls to introduce the discommensurations to the incommensurate phase. (author). 4 refs, 1 fig

  9. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 K

    Directory of Open Access Journals (Sweden)

    Haifeng eLi

    2014-07-01

    Full Text Available The Neel temperature of the new frustrated family of SrRE2O4 (RE = rare earth compounds is yet limited to 0.9 K, which more or less hampers a complete understanding of the magnetic frustrations and spin interactions. Here we report on a new frustrated member to the family, SrTb2O4 with a record TN = 4.28(2 K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound of SrTb2O4 displays an incommensurate antiferromagnetic (AFM order with a transverse wave vector Q = (0.5924(1, 0.0059(1, 0 albeit with partially-ordered moments, 1.92(6 uB at 0.5 K, stemming from only one of the two inequivalent Tb sites by virtue of their different octahedral distortions. The localized moments are confined to the bc plane, 11.9(66 degree away from the b axis by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN ferromagnetic (FM arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb2O4 a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.

  10. Electronic bandstructure of an incommensurate crystal

    International Nuclear Information System (INIS)

    Rasing, T.

    1984-06-01

    The consequences of an incommensurate lattice modulation on the electronic energy levels have been studied by optical transmission experiments on Rb 2 ZnBr 4 . The results are analyzed with a simple tight-binding model in which the superspace symmetry of the crystal is taken into account. The lattice translational symmetry of crystalline matter leads to the well known concepts of the Brillouin zones, Bloch electrons, phonons and the like. In a crystal where the lattice is periodically distorted with a period that is incommensurate with the underlying lattice, this translational symmetry is broken. Nonetheless, incommensurate crystals are perfectly ordered and can be described by higher dimensional so-called superspace groups. In this paper we will show how this superspace approach provides a natural framework to understand their electronic bandstructure as well. 5 references, 3 figures

  11. Spin wave collapse and incommensurate fluctuations in URu2Si2

    DEFF Research Database (Denmark)

    Buyers, W.J.L.; Tun, Z.; Petersen, T.

    1994-01-01

    To test if the T(N) = 17.7 K transition in URu2Si2 is driven by a divergence of a magnetic order parameter we performed high-resolution neutron scattering. At the ordering wave vector the spin-wave energy collapsed. and the susceptibility diverged as T(N) was approached. This confirms that the or...... that the order parameter is the magnetic dipole, as shown by recent symmetry arguments and polarized neutron experiments [1]. We also observe incommensurate fluctuations, suggesting that competing temperature-dependent interactions may influence this weak-moment transition.......To test if the T(N) = 17.7 K transition in URu2Si2 is driven by a divergence of a magnetic order parameter we performed high-resolution neutron scattering. At the ordering wave vector the spin-wave energy collapsed. and the susceptibility diverged as T(N) was approached. This confirms...

  12. Incommensurately modulated structure of morpholinium tetrafluoroborate and configurational versus chemical entropies at the incommensurate and lock-in phase transitions

    Czech Academy of Sciences Publication Activity Database

    Noohinejad, L.; van Smaalen, S.; Petříček, Václav; Schönleber, A.

    2017-01-01

    Roč. 73, Jun (2017), s. 836-843 ISSN 2052-5206 R&D Projects: GA ČR(CZ) GA15-12653S Institutional support: RVO:68378271 Keywords : incommensurately modulated structure * morpholinium tetrafluoroborate * configurational entropy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.032, year: 2016

  13. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    International Nuclear Information System (INIS)

    Islam, Z.

    1999-01-01

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi 2 Ge 2 (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi 2 Ge 2 compounds. Generalized susceptibility, χ 0 (q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi 2 Ge 2 , and the commensurate structure in EuNi 2 Ge 2 . A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T N in EuNi 2 Ge 2 than that in GdNi 2 Ge 2 is also explained. Next, all the metamagnetic phases in TbNi 2 Ge 2 with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation

  14. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  15. A Davidsonian Argument Against Incommensurability

    NARCIS (Netherlands)

    Douven, I.; de Regt, H.W.

    2002-01-01

    The writings of Kuhn and Feyerabend on incommensurability challenged the idea that science progresses towards the truth. Davidson famously criticized the notion of incommensurability, arguing that it is incoherent. Davidson's argument was in turn criticized by Kuhn and others. This article argues

  16. Incommensurateness in nanotwinning models of modulated martensites

    Czech Academy of Sciences Publication Activity Database

    Benešová, B.; Frost, Miroslav; Kampschulte, M.; Melcher, C.; Sedlák, Petr; Seiner, Hanuš

    2015-01-01

    Roč. 92, č. 18 (2015), s. 180101-180101 ISSN 1098-0121 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GP14-28306P Grant - others:AV ČR(CZ) DAAD/14/11 Institutional support: RVO:61388998 Keywords : nanotwinning * incommensurateness * intermartensitic transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.180101

  17. Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures

    Science.gov (United States)

    Cancès, Eric; Cazeaux, Paul; Luskin, Mitchell

    2017-06-01

    We give an exact formulation for the transport coefficients of incommensurate two-dimensional atomic multilayer systems in the tight-binding approximation. This formulation is based upon the C* algebra framework introduced by Bellissard and collaborators [Coherent and Dissipative Transport in Aperiodic Solids, Lecture Notes in Physics (Springer, 2003), Vol. 597, pp. 413-486 and J. Math. Phys. 35(10), 5373-5451 (1994)] to study aperiodic solids (disordered crystals, quasicrystals, and amorphous materials), notably in the presence of magnetic fields (quantum Hall effect). We also present numerical approximations and test our methods on a one-dimensional incommensurate bilayer system.

  18. Evidence for coexisting magnetic order in frustrated three-dimensional honeycomb iridates Li2IrO3

    Science.gov (United States)

    Breznay, Nicholas; Ruiz, Alejandro; Frano, Alex; Analytis, James

    The search for unconventional magnetism has found a fertile hunting ground in 5d iridium oxide (iridate) materials. The competition between coulomb, spin-orbit, and crystal field energy scales in honeycomb iridates leads to a quantum magnetic system with localized spin-1/2 moments communicating through spin-anisotropic Kitaev exchange interactions. Although early and ongoing work has focused on layered two-dimensional honeycomb compounds such as Na2IrO3 and a 4d analog, RuCl3, recently discovered polytypes of Li2IrO3 take on three-dimensional honeycomb structures. Bulk thermodynamic studies, as well as recent resonant x-ray diffraction and absorption spectroscopy experiments, have uncovered a rich phase diagram for these three-dimensional honeycomb iridates. Low temperature incommensurate and commensurate magnetic orders can be stabilized by tuning the applied magnetic field, displaying a delicate coexistence that signals highly frustrated magnetism.

  19. Investigation of the commensurate magnetic structure in the heavy-fermion compound CePt2In7 using magnetic resonant x-ray diffraction

    Science.gov (United States)

    Gauthier, Nicolas; Wermeille, Didier; Casati, Nicola; Sakai, Hironori; Baumbach, Ryan E.; Bauer, Eric D.; White, Jonathan S.

    2017-08-01

    We investigated the magnetic structure of the heavy-fermion compound CePt2In7 below TN=5.34 (2 ) K using magnetic resonant x-ray diffraction at ambient pressure. The magnetic order is characterized by a commensurate propagation vector k1 /2=(1/2 ,1/2 ,1/2 ) with spins lying in the basal plane. Our measurements did not reveal the presence of an incommensurate order propagating along the high-symmetry directions in reciprocal space but cannot exclude other incommensurate modulations or weak scattering intensities. The observed commensurate order can be described equivalently by either a single-k structure or by a multi-k structure. Furthermore we explain how a commensurate-only ordering may explain the broad distribution of internal fields observed in nuclear quadrupolar resonance experiments [Sakai et al., Phys. Rev. B 83, 140408 (2011), 10.1103/PhysRevB.83.140408] that was previously attributed to an incommensurate order. We also report powder x-ray diffraction showing that the crystallographic structure of CePt2In7 changes monotonically with pressure up to P =7.3 GPa at room temperature. The determined bulk modulus B0=81.1 (3 ) GPa is similar to those of the Ce-115 family. Broad diffraction peaks confirm the presence of pronounced strain in polycrystalline samples of CePt2In7 . We discuss how strain effects can lead to different electronic and magnetic properties between polycrystalline and single crystal samples.

  20. Structure of incommensurate ammonium tetrafluoroberyllate studied by structure refinements and the maximum entropy method

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Amami, M.; van Smaalen, S.

    2004-01-01

    Roč. 60, - (2004), s. 127-137 ISSN 0108-7681 Grant - others:DFG(DE) XX Institutional research plan: CEZ:AV0Z1010914 Keywords : incommensurate modulation * superspace * maximum entropy method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.418, year: 2004

  1. An order-by-disorder process in the cyclic phase of spin-2 condensate with a weak magnetic field

    International Nuclear Information System (INIS)

    Zheng, Gong-Ping; Xu, Lei-Kuan; Qin, Shuai-Feng; Jian, Wen-Tian; Liang, J.-Q.

    2013-01-01

    We present in this paper a model study on the “order-by-disorder” process in the cyclic phase of spin-2 condensate, which forms a family of incommensurable, spiral degenerate ground states. On the basis of the ordering mechanism of entropic splitting, it is demonstrated that the energy corrections resulting from quantum fluctuations of disorder lift the accidental degeneracy of the cyclic configurations and thus lead to an eventual spiral order called the cyclic order. The order-by-disorder phenomenon is then realized even if the magnetic field exists. Finally, we show that our theoretic observations can be verified experimentally by direct detection of the cyclic order in the 87 Rb condensate of a spin-2 manifold with a weak magnetic field. -- Highlights: •A model for the order-by-disorder process in the cyclic phase of spin-2 condensate is presented. •The second-order quantum fluctuations of the mean-field states are studied. •The energy corrections lift the accidental degeneracy of the cyclic configurations. •The order-by-disorder phenomenon is realized even if a magnetic field exists. •The theoretic observations can be verified experimentally for 87 Rb condensate

  2. Polarized neutron scattering study of the multiple order parameter system NdB4

    Science.gov (United States)

    Metoki, N.; Yamauchi, H.; Matsuda, M.; Fernandez-Baca, J. A.; Watanuki, R.; Hagihala, M.

    2018-05-01

    Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f -electron system NdB4. We confirmed the noncollinear "all-in all-out" structure (Γ4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c -axis mc showed diagonally antiferromagnetic structure (Γ10), inconsistent with previously reported "vortex" structure (Γ2). The microscopic mixture of these two structures with q⃗0=(0 ,0 ,0 ) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. The unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ4 coupled with higher-order secondary order parameter Γ10. The magnetic moments were estimated to be 1.8 ±0.2 and 0.2 ±0.05 μB at T =7.5 K for Γ4 and Γ10, respectively. We also found a long-period incommensurate modulation of the q⃗1=(0 ,0 ,1 /2 ) antiferromagnetic structure of mc with the propagation q⃗s 1=(0.14 ,0.14 ,0.1 ) and q⃗s 2=(0.2 ,0 ,0.1 ) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about mc=1.0 ±0.2 μB at T =1.5 K. The local (0 ,0 ,1 /2 ) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of mc, opposite to the coexisting Γ10. The mc of Γ10 is significantly enhanced up to 0.6 μB at T =1.5 K, which is accompanied by the incommensurate modulations. The Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f -electron state play important roles.

  3. High resolution electron microscopy of the triply incommensurate phase of 2H-TaSe2

    Science.gov (United States)

    Onozuka, Takashi; Otsuka, Nobuo; Sato, Hiroshi

    1986-09-01

    The triply incommensurate phase of 2H-TaSe2 obtained by cooling from the normal phase was investigated by transmission electron microscopy between 87 and 113 K with the resolution of 3 Å, one order of magnitude better than earlier experiments. Moirélike patterns observed in this phase were confirmed to be interference fringes due to the first- and second-order diffraction beams (with small separation and possibly with higher-order diffraction beams) from the incommensurate structure and were not due to the dark-field diffraction contrast of domains of the commensurate structure as interpreted earlier. Lattice fringes (~9 Å) of this modulated phase do not show any discontinuity across the boundaries of regions of different contrasts of the moirélike fringes which is expected from domain boundaries. Instead, a periodic change in the spacing of the lattice fringes (phase-slip region) expected from the superposition of split superlattice spots in forming the lattice image is observed. This is what is believed to be the first direct observation of the existence of the phase-slip region which is also expected from the discommensuration theory. A series of observations presented here thus shows that the triply incommensurate phase is intrinsically incommensurate and suggests the need for a modification of interpretations of this phase in terms of the double honeycomb discommensuration model.

  4. Commensurate and incommensurate spin-density waves in heavy electron systems

    Directory of Open Access Journals (Sweden)

    P. Schlottmann

    2016-05-01

    Full Text Available The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector Q and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be suppressed by mismatching the nesting and a quantum critical point (QCP is obtained as the Néel temperature tends to zero. The transfer of pairs of electrons between the pockets can lead to a superconducting dome above the QCP (if Q is commensurate with the lattice, i.e. equal to G/2. If the vector Q is not commensurate with the lattice there are eight possible phases: commensurate and incommensurate spin and charge density waves and four superconductivity phases, two of them with modulated order parameter of the FFLO type. The renormalization group equations are studied and numerically integrated. A re-entrant SDW phase (either commensurate or incommensurate is obtained as a function of the mismatch of the Fermi surfaces and the magnitude of |Q − G/2|.

  5. Magnetic phase diagram of UNi2Si2 under magnetic field and high-pressure

    International Nuclear Information System (INIS)

    Honda, F.; Oomi, G.; Svoboda, P.; Syshchenko, A.; Sechovsky, V.; Khmelevski, S.; Divis, M.; Andreev, A.V.; Takeshita, N.; Mori, N.; Menovsky, A.A.

    2001-01-01

    Measurements of electrical resistance under high pressure and neutron diffraction in high-magnetic field of single crystalline UNi 2 Si 2 have been performed. We have found the analogy between the p-T and B-T magnetic phase diagrams. It is also found that the propagation vector q Z of incommensurate antiferromagnetic phase decreases with increasing magnetic field. A new pronounced pressure-induced incommensurate-commensurate magnetic phase transition has been detected

  6. Incommensurate composite crystal structure of scandium-II

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki

    2005-01-01

    The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated

  7. Charge density wave instabilities and incommensurate structural phase transformations

    International Nuclear Information System (INIS)

    Axe, J.D.

    1977-10-01

    Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed

  8. Incommensurate-commensurate phase transition in Rb2ZnBr4

    International Nuclear Information System (INIS)

    Iizumi, Masashi; Gesi, Kazuo

    1983-01-01

    The existence of the successive long-period superstructures, or the ''devil's staircase'', in the temperature evolution of the incommensurately modulated structure has been examined in Rb 2 ZnBr 4 by the neutron diffraction method. Detailed measurements of the third order satellite scattering in the temperature region close to the incommensurate-to-commensurate phase transition have shown that the temperature evolution takes place in more complicated manners than previously reported for this compound. At least three different modulations with distinct wave numbers separated by finite gaps coexist and each of them changes continuously with temperature accompanying the change in the population of the domains corresponding to the respective wave numbers. Assignment of some part of the wave number vs temperature curves to the stairs with fractional numbers afforded no positive evidence of the ''devil's staircase''. (author)

  9. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO42 frustrated honeycomb-lattice magnet

    Directory of Open Access Journals (Sweden)

    L.-P. Regnault

    2018-01-01

    Full Text Available The magnetic properties of the cobaltite BaCo2(AsO42, a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q, we have been able to determine the low-temperature magnetic structure of BaCo2(AsO42 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector k1=(kx,0,kz, with kx=0.270±0.005 and kz≈−1.31 appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component ≈0.25μB/Co2+, representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements Pyz and Pzy of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors Q=(0.27,0,3.1 and Q=(0.73,0,0.8 (energy transfer ΔE≈2.3 meV, no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic Pyz and Pzy matrix elements can be understood by assuming that the magnetic excitations in BaCo2(AsO42 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  10. Phasons and amplitudons in one dimensional incommensurate systems

    International Nuclear Information System (INIS)

    Weissmann, M.; Cohan, N.

    1982-08-01

    There has been recently great interest in two particular vibrational modes of incommensurate (I) systems: phasons and amplitudons. In this letter we show that for a 1D incommensurate system phasons and amplitudons can be obtained with the simplest possible model: that of harmonic interactions between first neighbours only, provided that a realistic dependence of the force constants k with distance r is used

  11. Are Allopathic and Holistic Medicine Incommensurable?

    Science.gov (United States)

    Evangelatos, Nikolaos; Eliadi, Irini

    2016-01-01

    The shift from the Aristotelian to the Newtonian scientific paradigm gave birth to progresses in the natural, hard sciences and contributed to the emergence of modernity. Allopathic medicine gradually implemented those progresses, transforming itself into contemporary biomedicine. In the early 20th century, replacement of Newtonian physics by quantum mechanics and Einstein's theory of relativity resulted in a new paradigm shift in the natural, hard sciences. This shift gave birth to post-modern perceptions, which attempt to put those changes in context. Within this new context, holistic therapeutic approaches are considered more compatible with the new paradigm. Different paradigms in the natural, hard sciences are considered to be incommensurable (in the Kuhnian sense). This incommensurability is also transferred to the different societal contexts, the different «Weltanschauungen» that rely on different scientific paradigms. However, drawing on arguments that range from historical and philosophical to practical and sociological ones, we argue that, although based on different scientific paradigms, allopathic and holistic medicine are not incommensurable, but rather complementary. This may be related to the inherent attributes of medicine, a fact that reinforces the debate on its epistemological status. © 2016 S. Karger GmbH, Freiburg.

  12. Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing...

  13. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet.

    Science.gov (United States)

    Regnault, L-P; Boullier, C; Lorenzo, J E

    2018-01-01

    The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  14. Magnetism in layered Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, Paul C.

    2008-07-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca{sub 2-x}Sr{sub x}RuO{sub 4} have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4} above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr{sub 2}RuO{sub 4}. With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7}, the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T{sub N}, excitations at this

  15. Magnetism in layered Ruthenates

    International Nuclear Information System (INIS)

    Steffens, Paul C.

    2008-01-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca 2-x Sr x RuO 4 have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca 1.8 Sr 0.2 RuO 4 , which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca 1.8 Sr 0.2 RuO 4 above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr 2 RuO 4 . With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca 3 Ru 2 O 7 , the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T N , excitations at this wave vector and another one, related to Sr 3 Ru 2 O 7 , have been

  16. Interplay between magnetic order at Mn and Tm sites alongside the structural distortion in multiferroic films of o -TmMn O3

    Science.gov (United States)

    Windsor, Y. W.; Ramakrishnan, M.; Rettig, L.; Alberca, A.; Bothschafter, E. M.; Staub, U.; Shimamoto, K.; Hu, Y.; Lippert, T.; Schneider, C. W.

    2015-06-01

    We employ resonant soft x-ray diffraction to individually study the magnetic ordering of the Mn and the Tm sublattices in single-crystalline films of orthorhombic (o -) TmMn O3 . The same magnetic ordering wave vector of (0 q 0 ) with q ≈0.46 is found for both ionic species, suggesting that the familiar antiferromagnetic order of the Mn ions induces a magnetic order on the Tm unpaired 4 f electrons. Indeed, intensity variations of magnetic reflections with temperature corroborate this scenario. Calculated magnetic fields at the Tm sites are used as a model magnetic structure for the Tm, which correctly predicts intensity variations at the Tm resonance upon azimuthal rotation of the sample. The model allows ruling out a b c -cycloid modulation of the Mn ions as the cause for the incommensurate ordering, as found in TbMn O3 . The structural distortion, which occurs in the ferroelectric phase below TC, was followed through nonresonant diffraction of structural reflections forbidden by the high-temperature crystal symmetry. The (0 q 0 ) magnetic reflection appears at the Mn resonance well above TC, indicating that this reflection is sensitive also to the intermediate sinusoidal magnetic phase. The model presented suggests that the Tm 4 f electrons are polarized well above the ferroelectric transition and are possibly not affected by the transition at TC. The successful description of the induced order observed at the Tm resonance is a promising example for future element-selective studies in which "spectator" ions may allow access to previously unobtainable information about other constituent ions.

  17. Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Haug, Daniel; Hinkov, Vladimir; Sidis, Yvan

    2010-01-01

    We present a neutron triple-axis and resonant spin-echo spectroscopy study of the spin correlations in untwinned YBa2Cu3O6+x single crystals with x=0.3, 0.35 and 0.45 as a function of temperature and magnetic field. As the temperature T→0, all samples exhibit static incommensurate magnetic order...... with propagation vector along the a-direction in the CuO2 planes. The incommensurability δ increases monotonically with hole concentration, as it does in La2−xSrxCuO4 (LSCO). However, δ is generally smaller than in LSCO at the same doping level, and there is no sign of a reorientation of the magnetic propagation...... vector at the lowest doping levels. The intensity of the incommensurate Bragg reflections increases linearly with magnetic field for YBa2Cu3O6.45 (superconducting Tc=35 K), whereas it is field independent for YBa2Cu3O6.35 (Tc=10 K). These results fit well into a picture in which superconducting and spin...

  18. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  19. Magnetic structures of iron-based materials. Through complex magnetism of CaFe4As3

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2011-01-01

    Magnetism of interpenetrating FeAs strips in the orthorhombic CaFe 4 As 3 was examined through neutron diffraction. Incommensurate and predominantly longitudinally (parallel b) modulated order develops through a 2nd order phase transition at T N - 90 K. A 1st order transition at T 2 - 26 K is associated with the development of components in a separate irreducible representation, locking the wave vector to 3b*/8. The ab-initio Fermi surface features sheets separated by near the observed wave vector. However, Fermi surface nesting seems to have a limited role, instead magnetic structures could result from competing 2nd and 3rd nearest neighbor interactions in a localized spin picture. (author)

  20. NATO Advanced Research Workshop on Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals

    CERN Document Server

    Clark, N

    1988-01-01

    In this NATO-sponsored Advanced Research Workshop we succeeded in bringing together approximately forty scientists working in the three main areas of structurally incommensurate materials: incommensurate crystals (primarily ferroelectric insulators), incommensurate liquid crystals, and metallic quasi-crystals. Although these three classes of materials are quite distinct, the commonality of the physics of the origin and descrip­ tion of these incommensurate structures is striking and evident in these proceedings. A measure of the success of this conference was the degree to which interaction among the three subgroups occurred; this was facili­ tated by approximately equal amounts of theory and experiment in the papers presented. We thank the University of Colorado for providing pleasant housing and conference facilities at a modest cost, and we are especially grate­ ful to Ann Underwood, who retyped all the manuscripts into camera-ready form. J. F. Scott Boulder, Colorado N. A. Clark v CONTENTS PART I: INCO...

  1. Spiral magnetic order, non-uniform states and electron correlations in the conducting transition metal systems

    Science.gov (United States)

    Igoshev, P. A.; Timirgazin, M. A.; Arzhnikov, A. K.; Antipin, T. V.; Irkhin, V. Yu.

    2017-10-01

    The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.

  2. Anisotropy of the incommensurate fluctuations in Sr2RuO4: a study with polarized neutrons.

    Science.gov (United States)

    Braden, M; Steffens, P; Sidis, Y; Kulda, J; Bourges, P; Hayden, S; Kikugawa, N; Maeno, Y

    2004-03-05

    The anisotropy of the magnetic incommensurate fluctuations in Sr2RuO4 has been studied by inelastic neutron scattering with polarized neutrons. We find a sizable enhancement of the out-of-plane component by a factor of 2 for intermediate energy transfer, which appears to decrease for higher energies. Our results qualitatively confirm calculations of the spin-orbit coupling, but the experimental anisotropy and its energy dependence are weaker than predicted.

  3. Convergent-beam electron diffraction study of incommensurately modulated crystals. Pt. 2. (3 + 1)-dimensional space groups

    International Nuclear Information System (INIS)

    Terauchi, Masami; Takahashi, Mariko; Tanaka, Michiyoshi

    1994-01-01

    The convergent-beam electron diffraction (CBED) method for determining three-dimensional space groups is extended to the determination of the (3 + 1)-dimensional space groups for one-dimensional incommensurately modulated crystals. It is clarified than an approximate dynamical extinction line appears in the CBED discs of the reflections caused by an incommensurate modulation. The extinction enables the space-group determination of the (3 + 1)-dimensional crystals or the one-dimensional incommensurately modulated crystals. An example of the dynamical extinction line is shown using an incommensurately modulated crystal of Sr 2 Nb 2 O 7 . Tables of the dynamical extinction lines appearing in CBED patterns are given for all the (3 + 1)-dimensional space groups of the incommensurately modulated crystal. (orig.)

  4. Incommensurate phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Currat, R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-11-01

    We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.

  5. Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3

    Science.gov (United States)

    Guo, Yinsheng; Yaffe, Omer; Paley, Daniel W.; Beecher, Alexander N.; Hull, Trevor D.; Szpak, Guilherme; Owen, Jonathan S.; Brus, Louis E.; Pimenta, Marcos A.

    2017-09-01

    Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here, we compare and contrast the evolution of the structure and dynamics of hybrid CH3NH3PbBr3 and inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal x-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, which are abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3 . Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies for the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.

  6. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    International Nuclear Information System (INIS)

    Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M

    2014-01-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)

  7. Unconventional spin order in the triangular lattice system NaCrO2: A neutron scattering study

    International Nuclear Information System (INIS)

    Hsieh, D.; Qian, D.; Berger, R.F.; Cava, R.J.; Lynn, J.W.; Huang, Q.; Hasan, M.Z.

    2008-01-01

    We report high resolution neutron scattering measurements on the rhombohedrally stacked triangular antiferromagnet NaCrO 2 which has recently been shown to exhibit an unusually broad fluctuating cross-over regime extending far below the onset of spin freezing at T c . Our results show that at T c purely two-dimensional quasi-static spin correlations of the 120 o type exist. Below some cross-over temperature (T∼0.75T c ) a small incommensuration develops which helps resolve the inter-layer spin frustration and drives short-range three-dimensional magnetic order. This incommensuration assisted dimensional cross-over suggests that inter-layer frustration is responsible for stabilizing the rare 2D correlated phase above 0.75T c

  8. An incommensurately modulated structure of eta '-phase of Cu.sub.3+x./sub.Si determined by quantitative electron diffraction tomography

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Klementová, Mariana; Dřínek, Vladislav; Jarošová, Markéta; Petříček, Václav

    2011-01-01

    Roč. 50, č. 8 (2011), s. 3743-3751 ISSN 0020-1669 R&D Projects: GA ČR GA203/09/1088 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40720504 Keywords : copper silicide * incommensurate structure * electron diffraction tomography * ab inition structure solution * superspace Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.601, year: 2011

  9. Scientific revolution, incommensurability and truth in theories ...

    African Journals Online (AJOL)

    Scientific revolution, incommensurability and truth in theories: objection to Kuhn's perspective. ... AFRREV STECH: An International Journal of Science and Technology ... The core of our discussion is, ultimately, to provide a clearer and broader picture of the general characteristics of scientific revolution or theory change.

  10. Investigation of the chiral magnets NdFe3(11BO3)4 and MnSi by means of neutron scattering

    International Nuclear Information System (INIS)

    Janoschek, Marc

    2008-01-01

    We investigated two different magnetic compounds that display magnetic chirality within the framework of this thesis, namely the multiferroic compound NdFe 3 ( 11 BO 3 ) 4 and the itinerant helimagnet MnSi. We investigated the magnetic structure of NdFe 3 ( 11 BO 3 ) 4 by unpolarised and polarised neutron scattering. As a result of this investigation we identified that NdFe 3 ( 11 BO 3 ) 4 orders antiferromagnetically below T N =31 K. By combined magnetic symmetry analysis and Rietvield fits of the powder diffraction data we identified two magnetic models for the commensurate magnetic phase that fitted our data equally well. By the use of spherical neutron polarimetry we finally revealed that for the correct magnetic model the magnetic moments of both Fe 3+ and Nd 3+ are oriented parallel to the basal hexagonal plane and couple antiferromagnetically along the hexagonal c-axis. Additionally the polarised neutron data yields that in the incommensurate magnetic phase below T ICM the magnetic structure is transformed into a long-period antiferromagnetic spiral that propagates parallel to the c-direction with a pitch of approximately 1140 A. Hence, our investigation clearly showed for the first time that NdFe 3 ( 11 BO 3 ) 4 is also a chiral magnet. Furthermore, a high resolution neutron diffraction experiment showed the presence of third order harmonics of the propagation vector in the incommensurate magnetic phase and suggests the evolution of a magnetic soliton lattice below the commensurate to incommensurate phase transition without the application of external forces like magnetic fields or pressure. Further we report our work on the cubic itinerant helimagnet MnSi. We carried out extensive unpolarised and polarised elastic neutron scattering experiments in the temperature regime where the sphere of magnetic intensity is observed in order to clarify the issue of a possible intermediate phase. Our data suggests that the cubic anisotropy energy that locks the

  11. Atomic and magnetic correlations in a copper - 5% manganese alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murani, A P; Schaerpf, O; Andersen, K [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Raphel, R [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1997-04-01

    Interest in magnetism of Cu-Mn alloys has been revived and sustained by a number of very interesting neutron investigations on single-crystal samples which show `spin-density wave` (SDW) peaks at incommensurate wave-vectors. Recently such peaks have been observed even in very dilute samples with Mn concentration as low as {approx} 0.5 at.%. The proposed interpretation by the authors that these peaks represent incommensurate antiferromagnetic ordering, therefore, questions the widely-held view that at low enough temperatures the solute spins in this and similar alloys freeze with random or quasi-random orientations, forming a spin-glass state. Atomic and magnetic correlations have been investigated in a single crystal of Cu-5 at.% Mn within the first Brillouin zone using polarised neutrons and making use of the multi-angle three-dimensional polarisation analysis capability of the D7 spectrometer as a firs step in our aim to shed further light on the phenomenon. (author). 6 refs.

  12. Value pluralism and incommensurability in Ecological Economics

    DEFF Research Database (Denmark)

    Pirgmaier, Elke; Urhammer, Emil

    2015-01-01

    problems of our time lie in a democracy where multiple values can be communicated. In order to provide inspiration for thinking about such a democracy, this paper provides an overview of a wide range of philosophical positions on values and value pluralism and analyses how values and value pluralism...... territory. This is reflected in a value hegemony framing everything from biodiversity to carbon emissions in monetary terms. We consider this a democratic problem since the diversity of values is thus not fairly represented in our current mode of decision-making. We believe that the solutions to the grand...... are treated in a selection of articles in ecological economics. The paper concludes that the treatment of values and incommensurability in ecological economics can be characterised as ambiguous. There is a need for further research on the theoretical aspects of these issues....

  13. Magnetic phase diagram of ErGe 1-xSi x (0

    Science.gov (United States)

    Thuéry, P.; El Maziani, F.; Clin, M.; Schobinger-Papamantellos, P.; Buschow, K. H. J.

    1993-10-01

    The composition-temperature magnetic phase diagram of ErGe 1- xSi x (0 0.40. For 0.17 ≥ x ≤ 0.55, a first-order transition occurs as function of the temperature between these two phases. For x ≥ 0.65, a lock-in transition takes place at TIC, leading from the wavevector ( k' x,0, k' z) to (1/2,0,1/2), as was already observed in ErSi. Finally, for x < 0.17 or 0.55 < x < 0.65, the wavevectors of the incommensurate phases characterized by (0,0, kz) or ( k' x,0, k' z) respectively remain unchanged in the whole temperature range below TN. For x≥0.65, a small amount of a magnetic phase characterized by the wavevector (0,0, 1/2) coexists with the main phases, below a Néel temperature T' N slightly lower than TN. In all cases, the erbium magnetic moments are colinear along the orthorhombic α-axis; the arrangement of the moments in the commensurate phases is the same as in ErSi and the incommensurate orderings correspond to sine-wave amplitude modulations. A brief account on the theoretical interpretation of this phase diagram is finally given.

  14. The role of hydrogen bonds in order-disorder transition of a new incommensurate low temperature phase beta-[Zn-(C.sub.7./sub.H.sub.4./sub.NO.sub.4./sub.).sub.2./sub.]·3H.sub.2./sub.O

    Czech Academy of Sciences Publication Activity Database

    Tabatabaee, M.; Poupon, Morgane; Eigner, Václav; Vaněk, Přemysl; Dušek, Michal

    2018-01-01

    Roč. 233, č. 1 (2018), s. 17-25 ISSN 2194-4946 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk(CZ) LO1603 EU Projects: European Commission(CZ) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : aperiodic structure * hydrogen bonds * incommensurate modulation * phase transition * zinc Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.179, year: 2016

  15. Synthesis, growth and characterization of 4-bromo-4'-nitrobenzylidene aniline (BNBA): a novel nonlinear optical material with a (3+1)-dimensional incommensurately modulated structure

    Czech Academy of Sciences Publication Activity Database

    Subashini, A.; Leela, S.; Ramamurthi, K.; Arakcheeva, A.; Stoeckli-Evans, H.; Petříček, Václav; Chapuis, G.; Pattison, P.; Reji, P.

    2013-01-01

    Roč. 15, č. 13 (2013), s. 2474-2481 ISSN 1466-8033 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : organic nonlinear optical material * crystal structure analysis * incommensurately modulated structures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.858, year: 2013

  16. Magnetic short range order and the exchange coupling in magnets

    International Nuclear Information System (INIS)

    Antropov, V.P.

    2006-01-01

    We discuss our recent results of time-dependent density functional simulations of magnetic properties of Fe and Ni at finite temperatures. These results indicated that a strong magnetic short range order is responsible for the magnetic properties of elementary Ni and any itinerant magnet in general. We demonstrated that one can use the value of the magnetic short range order parameter to produce new quantitative classification of magnets. We also discuss the nature of the exchange coupling and its connection with the short range order. The spin-wave like propagating and diffusive excitations in paramagnetic localized systems with small short range order have been predicted while in the itinerant systems the short range order is more complicated. The possible smallness of the quantum factor in the itinerant magnets with short range order is discussed

  17. The Doctrine of Incommensurability in Paul Feyerabend. An Objection Against a Particular Conception of Scientific Rationality

    Directory of Open Access Journals (Sweden)

    Teresa Gargiulo

    2017-08-01

    Full Text Available Incommensurability has caused many controversies and debates. In these debates seems to be unanimous the interpretation of that doctrine as an objection to objectivity, realism and scientific progress. Now this is a narrow hermeneutical framework for understanding the intention of Paul Feyerabend when formulating his doctrine of incommensurability. Because he was never intended to challenge such notions in themselves but only to show how vain turns out to be the neo-positivism and Popperian rationalism´s attempt to define them. In a positive sense we argue that incommensurability, according to Paul Feyerabend, prevents or impedes when we comes to define those notions return to dialectical of logical positivism or critical rationalism. Our intention in this paper is to present his thesis of incommensurability as a challenge to a particular way of conceiving scientific rationality and its consequent notions of objectivity, progress and scientific realism.

  18. Influence of defects on the incommensurate modulation in irradiated Ba2NaNb5O15

    International Nuclear Information System (INIS)

    Barre, S.; Mutka, H.; Roucau, C.; Litzler, A.; Schneck, J.; Toledano, J.C.; Bouffard, S.; Rullier-Albenque, F.

    1991-01-01

    Defect-induced properties of barium sodium niobate (Ba 2 NaNb 5 O 15 ) have been studied as a function of electron irradiation dose. Birefringence measurements at low doses indicate that the lock-in transition temperature, originally at about 280 degree C, decreases linearly with increasing dose. Complementary irradiations in situ in a high-voltage electron microscope show that the incommensurate phase can be stabilized down to room temperature. Simultaneously the satellite diffraction spots broaden and the lock-in transition becomes diffuse. The modification of the hysteresis of the birefringence, observed already at the lowest doses, indicates a progressive extension of the stability range of the 2q modulated phase to lower temperatures as the defect concentration increases. A similar conclusion can be drawn from the satellite reflection dark-field electron micrographs that show, once the incommensurate phase is stabilized at room temperature, the doubly modulated texture characteristic of the 2q modulated phase. Low doses of irradiation do not change qualitatively the configuration of the residual discommensurations in the lock-in phase nor the temperature dependence of the incommensurability. Accordingly, already in the as-grown samples the defects dominate the pinning of the incommensurate modulation and the intrinsic properties of this incommensurate system are not clearly observable

  19. X-ray-scattering study of copper magnetism in nonsuperconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Hill, J.P.; McMorrow, D.F.; Boothroyd, A.T.

    2000-01-01

    X-ray magnetic scattering from ordered Cu spins has been observed in a high-T-c compound. The measurements were made on the anomalous cuprate PrBa2Cu3O6.92 with x-ray photon energies tuned in the vicinity of the Cu K edge. The high wave-vector resolution enabled us to observe an incommensurate...... double-Q Cu spin structure below T-Pr = 19 K that forms as a result of coupling between the magnetically ordered Cu and Pr sublattices. Above T-Pr, the Cu ordering is commensurate, ruling out static spin-charge stripe order as an explanation for the absence of superconductivity in this material....

  20. Magnetic phase transitions and magnetization reversal in MnRuP

    Science.gov (United States)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  1. Modulated anharmonic ADPs are intrinsic to aperiodic crystals: a case study on incommensurate Rb2ZnCl4

    International Nuclear Information System (INIS)

    Li, Liang; Wölfel, Alexander; Schönleber, Andreas; Mondal, Swastik; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Smaalen, Sander van

    2011-01-01

    The superspace maximum entropy method (MEM) density in combination with structure refinements has been used to uncover the modulation in incommensurate Rb 2 ZnCl 4 close to the lock-in transition. Modulated atomic displacement parameters (ADPs) and modulated anharmonic ADPs are found to form an intrinsic part of the modulation. Refined values for the displacement modulation function depend on the presence or absence of modulated ADPs in the model. A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb 2 ZnCl 4 , at a temperature of T = 196 K, close to the lock-in transition at T lock-in = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to

  2. A more general expression for the average X-ray diffraction intensity of crystals with an incommensurate one-dimensional modulation

    International Nuclear Information System (INIS)

    Lam, E.J.W.; Beurskens, P.T.; Smaalen, S. van

    1994-01-01

    Statistical methods are used to derive an expression for the average X-ray diffraction intensity, as a function of (sinθ)/λ, of crystals with an incommensurate one-dimensional modulation. Displacive and density modulations are considered, as well as a combination of these two. The atomic modulation functions are given by truncated Fourier series that may contain higher-order harmonics. The resulting expression for the average X-ray diffraction intensity is valid for main reflections and low-order satellite reflections. The modulation of individual atoms is taken into account by the introduction of overall modulation amplitudes. The accuracy of this expression for the average X-ray diffraction intensity is illustrated by comparison with model structures. A definition is presented for normalized structure factors of crystals with an incommensurate one-dimensional modulation that can be used in direct-methods procedures for solving the phase problem in X-ray crystallography. A numerical fitting procedure is described that can extract a scale factor, an overall temperature parameter and overall modulation amplitudes from experimental reflection intensities. (orig.)

  3. Investigation of the chiral magnets NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} and MnSi by means of neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Janoschek, Marc

    2008-09-05

    We investigated two different magnetic compounds that display magnetic chirality within the framework of this thesis, namely the multiferroic compound NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} and the itinerant helimagnet MnSi. We investigated the magnetic structure of NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} by unpolarised and polarised neutron scattering. As a result of this investigation we identified that NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} orders antiferromagnetically below T{sub N}=31 K. By combined magnetic symmetry analysis and Rietvield fits of the powder diffraction data we identified two magnetic models for the commensurate magnetic phase that fitted our data equally well. By the use of spherical neutron polarimetry we finally revealed that for the correct magnetic model the magnetic moments of both Fe{sup 3+} and Nd{sup 3+} are oriented parallel to the basal hexagonal plane and couple antiferromagnetically along the hexagonal c-axis. Additionally the polarised neutron data yields that in the incommensurate magnetic phase below T{sub ICM} the magnetic structure is transformed into a long-period antiferromagnetic spiral that propagates parallel to the c-direction with a pitch of approximately 1140 A. Hence, our investigation clearly showed for the first time that NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} is also a chiral magnet. Furthermore, a high resolution neutron diffraction experiment showed the presence of third order harmonics of the propagation vector in the incommensurate magnetic phase and suggests the evolution of a magnetic soliton lattice below the commensurate to incommensurate phase transition without the application of external forces like magnetic fields or pressure. Further we report our work on the cubic itinerant helimagnet MnSi. We carried out extensive unpolarised and polarised elastic neutron scattering experiments in the temperature regime where the sphere of magnetic intensity is observed in order to clarify the issue of a possible

  4. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sakhratov, Yu. A. [National High Magnetic Field Laboratory (United States); Svistov, L. E., E-mail: svistov@kapitza.ras.ru [Russian Academy Sciences, Kapitza Institute for Physical Problems (Russian Federation); Kuhns, P. L.; Zhou, H. D.; Reyes, A. P. [National High Magnetic Field Laboratory (United States)

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  5. Incommensurate pinning mechanism in KCP

    International Nuclear Information System (INIS)

    Apostol, M.; Baldea, I.

    1984-07-01

    A new pinning mechanism (termed incommensurate) is put forward for K 2 Pt(CN) 4 Brsub(0.3)x3.2H 2 O(KCP) based on the Q-quasi-modulated distribution of the bromine anions (Br-bar) along the chain axis (Q/2 being the Fermi momentum reduced to the first Brillouin zone). The different origins of the direct current (d.c.) thermally-activated gap and optical gap are thereby explained. The spectrum of the collective excitations (amplitudons and phasons) and the dielectric function are calculated for the charge density wave (CDW) state. Fair agreement is obtained with the optical and neutron scattering data. (author)

  6. Discommensurates and incommensurate phases

    International Nuclear Information System (INIS)

    Gordon, Mirta Beatriz

    1983-01-01

    In its first part, this research thesis reports the study of the commensurate-incommensurate (C-I) transition of single layers of rare gases adsorbed on graphite. The anharmonicity of the interaction between adatoms could explain experimental results corresponding to krypton. The author also studied the orientation instability of the single layer with respect to the chemical potential. Near the C-I transition, walls or discommensurates are oriented in substrate symmetry directions which are determined. The effect of substrate deformation on C-I transition is also studied. In the second part, the author studied the phase diagram at low temperature of the anisotropic Ising model with competing interactions for the approximation of the mean field. Finally, the author presents a phenomenological model of Cerium Antimony which reproduces a large part of its phase diagram [fr

  7. Collinear order in the frustrated spin-(1)/(2) antiferromagnet Li{sub 2}CuW{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Tsirlin, Alexander A. [NICPB, Tallinn (Estonia); Nath, Ramesh; Ranjith, Kumar [Indian Institute of Science Education and Research, Trivandrum (India); Kasinathan, Deepa [MPI CPfS, Dresden (Germany); Skoulatos, Markos [Laboratory of Neutron Scattering, PSI, Villigen (Switzerland)

    2015-07-01

    Li{sub 2}CuW{sub 2}O{sub 8} is a three-dimensional spin-(1)/(2) antiferromagnet that features collinear spin order despite abundant magnetic frustration that would normally trigger a non-collinear incommensurate order, at least on the classical level. Using density-functional calculations, we establish the spin lattice comprising two non-coplanar triangular networks that introduce frustration along all three crystallographic directions. Magnetic susceptibility and heat capacity reveal a 1D-like magnetic response, which is, however, inconsistent with the naive spin-chain model. Moreover, the high saturation field of 29 T compared to the susceptibility maximum at as low as 8.5 K give strong evidence for the importance of interchain couplings and the magnetic frustration. Below T{sub N} ≅ 3.9 K, Li{sub 2}CuW{sub 2}O{sub 8} develops collinear magnetic order with parallel spins along a and c and antiparallel spins along b. The ordered moment is about 0.7 μ{sub B} according to neutron powder diffraction. This qualifies Li{sub 2}CuW{sub 2}O{sub 8} as a unique three-dimensional spin-(1)/(2) antiferromagnet, where collinear magnetic order is stabilized by quantum fluctuations.

  8. Powder Neutron Diffraction and Magnetic structures

    International Nuclear Information System (INIS)

    Vigneron, F.

    1986-01-01

    The determination of the magnetic structures of materials (ferromagnetic, antiferromagnetic, helimagnetic, .) can be achieved only by neutron diffraction. A general survey of the powder technique is given: 2-axis spectrometer and analysis of the magnetic data. For the REBe/sb13/ intermetallic compounds (RE = Rare Earth), commensurate and/or incommensurate magnetic structures are observed and discussed as a function of RE (Gd, Tb, Dy, Ho, Er)

  9. The incommensurable phase of K2SeO4 studied by means of EPR

    International Nuclear Information System (INIS)

    Dantas, M.S.S.

    1988-11-01

    The EPR technique was used to study SeO - 4 in K 2 SeO 4 in the temperature range of 130-93K where the crystal presents an incommensurable phase, characterized by the wave vector q-vector = (1 - δ) a * /3. By fitting of line form with EPR the β parameter (critical exponent) could be determined. The found values were: β = 0.33 +- 0.03 and 2 β = 0.58 +- 0.06. A summary of the experimental values of β found in literature is presented. The mean value of these measurements β = 0.347 +- 0.03 fits to the calculated value β = 0.3455 +- 0.0020 for the 3d XY model. It was possible to detect a change in the modulation of the plane wave regime to multisoliton regime through the δ parameter obtained also by fitting of line form. This parameter is related to soliton density (n s ), ''lock-in'' incommensurable transition order parameter. Close to T c , n s does not follow theoretical predictions and saturates in a value different than zero. This result was interpreted as due to mesh defects which fix phase modulation and create metastable states that may lead to a chaotic state between the multisolitons phase and ''lock-in'' phase. (A.C.A.S.) [pt

  10. Incommensurability and its Implications for Practical Reasoning, Ethics and Justice

    NARCIS (Netherlands)

    Boot, Martijn

    2017-01-01

    If values conflict and rival human interests clash we often have to weigh them against each other. However, under particular conditions incommensurability prevents the assignment of determinable and impartial weights. In those cases an objective balance does not exist. The original thesis of this

  11. Les incommensurables

    CERN Document Server

    Houdart, Sophie

    2015-01-01

    Le Large Hadron Collider, ou grand collisionneur de hadrons, est l'accélérateur de particules le plus grand et le plus puissant du monde. Prenant la forme d'un anneau de 26,659 kilomètres de circonférence, lové 100 mètres sous terre et officiellement domicilié à Meyrin, à la frontière de la France et de la Suisse, il est constitué d'aimants supraconducteurs et de structures accélératrices qui augmentent l'énergie des particules qui y circulent. Chaque jour, à l'intérieur de l'accélérateur, deux faisceaux de particules qui circulent en sens contraire à des énergies très élevées avant de rentrer en collision l'un avec l'autre. Les particules, lancées à 99,9999991 % de la vitesse de la lumière, effectuent 11245 fois le tour de l'accélérateur par seconde et entrent en collision quelque 600 millions de fois par seconde. Les Incommensurables est une minutieuse enquête de terrain sur cette "cathédrale" enfouie qui offre la possibilité de se connecter à l'immensité et aux mystères de...

  12. Dzyaloshinskii-Moriya interaction and magnetic anisotropies in Uranium compounds

    Science.gov (United States)

    Sandratskii, L. M.

    2018-05-01

    We report on the first-principles study of complex noncollinear magnetic structures in Uranium compounds. We contrast two cases. The first is the periodic magnetic structure of U2Pd2In with exactly orthogonal atomic moments, the second is an incommensurate plane spiral structure of UPtGe where the angle between atomic moments of nearest neighbors is also close to 90°. We demonstrate that the hierarchy of magnetic interactions leading to the formation of the magnetic structure is opposite in the two cases. In U2Pd2In, the magnetic anisotropy plays the leading role, followed by the Dzyaloshinskii-Moriya interaction (DMI) interaction specifying the chirality of the structure. Here, the interatomic exchange interaction does not play important role. In UPtGe the hierarchy of the interactions is opposite. The leading interaction is the interatomic exchange interaction responsible for the formation of the incommensurate spiral structure followed by the DMI responsible for the selected chirality of the helix. The magnetic anisotropy is very weak that is a prerequisite for keeping the distortion of the helical structure weak.

  13. Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields

    Science.gov (United States)

    Thakur, Pradeep; Durganandini, P.

    2018-02-01

    We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.

  14. Spectroscopic properties of tetravalent uranium in the incommensurate phase of thorium tetrabromide

    International Nuclear Information System (INIS)

    Delamoye, P.

    1985-04-01

    This thesis includes: the complete visible and infrared absorption (emission) spectra of U 4+ as doping ion in pure ThBr 4 , as well as the magnetic circular dichroism (MCD) measurements have been examined. At liquid - He temperature the absorption spectra consist of broad absorption bands with two edge singularities. The apparently continuous character of fluorescence lines in selective excitation experiments, and the MCD profiles suggest the existence of a continuous distribution of U 4+ sites in the host crystal. Raman scattering results indicate the existence of a displacive phase transition at Tsub(c) = 95 K. X-ray and neutron powder diffraction data show additional lines. Single-crystal neutron diffraction measurements indicate that below Tsub(c) ThBr 4 has a displacively modulated structure. Inelastic neutron scattering leads us to understand the dynamics of the phase transition. In conclusion this study led us to give a complete interpretation of the optical properties of an ion embedded in an incommensurate structure [fr

  15. Superspace group descriptions of the symmetries of incommensurate urea inclusion compounds

    NARCIS (Netherlands)

    vanSmaalen, S; Harris, KDM

    1996-01-01

    Urea inclusion compounds are a class of incommensurate composite crystals. The urea molecules form a three-dimensionally connected network, with approximate space group symmetry P6(1)22. This network contains tunnels (channels), which accommodate guest molecules. The periodicities of the urea

  16. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    Science.gov (United States)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  17. Charge and current orders in the spin-fermion model with overlapping hot spots

    Science.gov (United States)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2018-04-01

    Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.

  18. Ferro electricity from magnetic order by neutron measurement

    International Nuclear Information System (INIS)

    Kenzelmann, M.

    2009-01-01

    Magnetic insulators with competing exchange interactions can give rise to strong fluctuations and qualitatively new ground states. The proximity of such systems to quantum critical points can lead to strong cross-coupling between magnetic long-range order and the nuclear lattice. Case in point is a new class of multiferroic materials in which the magnetic and ferroelectric order parameters are directly coupled, and a magnetic field can suppress or switch the electric polarization [1]. Our neutron measurements reveal that ferro electricity is induced by magnetic order and emerges only if the magnetic structure creates a polar axis [2-5]. Our measurements provide evidence that commensurate magnetic order can produce ferro electricity with large electric polarization [6]. The spin dynamics and the field-temperature phase diagram of the ordered phases provide evidence that competing ground states are essential for ferro electricity. (author)

  19. Field-induced magnetic phases and electric polarization in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one...... is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total...

  20. Magnetic excitations in underdoped Ba (Fe1-x Cox)2 As2 with x = 0.047

    International Nuclear Information System (INIS)

    Tucker, G.S.; Fernandes, R.M.; Li, Haifeng; Thampy, Vivek; Ni, N.; Abernathy, Douglas L.; Budko, S.L.; Broholm, C.; Canfield, Paul; Vaknin, D.; Schmalian, J.; Mcqueeney, R.J.

    2012-01-01

    The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diusive spin dynamics. At low energies, the spec- trum around the magnetic ordering vector Q AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q AFM . We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.

  1. 87Rb-NMR in Rb2ZnCl4 below the incommensurable phase

    International Nuclear Information System (INIS)

    Grande, S.; Moskvich, Yu.N.; Aleksandrova, I.P.

    1983-01-01

    In Rb 2 ZnCl 4 crystals the curly polar phase, which changes into the incommensurable phase below 192 K, has been investigated by pulsed NMR. The angular correlations of the second-order quadrupole shifts have been measured and the corresponding tensors of the electric field gradient have been calculated. The six Rb layers change differently in magnitude and orientation compared to the paraelectric phase. The temperature dependences within the C-phase are also different. The spin-lattice relaxation times have been measured and discussed for each layer in the C-phase. All relaxation times show an anomaly at a further phase transition occurring at 72 K connected with an increase of the number of spectral lines

  2. Structural studies of charge disproportionation and magnetic order in CaFeO3

    International Nuclear Information System (INIS)

    Woodward, P.M.; Cox, D.E.; Moshopoulou, E.; Sleight, A.W.; Morimoto, S.

    2000-01-01

    The crystal and magnetic structures of CaFeO 3 have been determined at 300 and 15 K using synchrotron x-ray and neutron powder-diffraction techniques. At 300 K, CaFeO 3 adopts the GdFeO 3 structure, space group Pbnm with unit-cell dimensions a=5.326 30(4), b=5.352 70(4), and c=7.539 86(6) A. This structure is distorted from the ideal perovskite structure by tilting of the FeO 6 octahedra about [110] and [001]. The average Fe-O distance is 1.922(2) A, and the Fe-O-Fe angles are 158.4(2) deg. and 158.1(1) deg. . At 15 K the crystal structure belongs to space group P2 1 /n with a=5.311 82(3), b=5.347 75(4), c=7.520 58(5) A and β=90.065(1) deg. , and contains two distinct Fe sites. The average Fe-O bond length is 1.872(6) A about the one iron site, and 1.974(6) A about the second site, with bond valence sums of 4.58 and 3.48, respectively. This provides quantitative evidence for charge disproportionation, 2Fe 4+ →Fe 3+ +Fe 5+ , at low temperature. The temperature evolution of the lattice parameters indicates a second- (or higher-) order phase transition from the orthorhombic charge-delocalized state to the monoclinic charge-disproportionated state, beginning just below room temperature. The magnetic structure at 15 K is incommensurate, having a modulation vector [δ,0,δ] with δ ∼0.322, corresponding to one of the directions in the pseudocubic cell. A reasonable fit to the magnetic intensities is obtained with the recently proposed screw spiral structure [S. Kawasaki et al., J. Phys. Soc. Jpn. 67, 1529 (1998)], with Fe moments of 3.5 and 2.5μ B , respectively. However, a comparable fit is given by a sinusoidal amplitude-modulated model in which the Fe moments are directed along [010], which leaves open the possibility that the true magnetic structure may be intermediate between the spiral and sinusoidal models (a fan structure)

  3. Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)

    1996-12-09

    The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)

  4. Incommensurate magnetic modulations in the magnetic superconductor HoNi2B2C

    International Nuclear Information System (INIS)

    Schneider, M.; Zaharko, O.; Keller, L.; Allenspach, P.; Kreyssig, A.; Canfield, P.C.

    2006-01-01

    Full text: The borocarbide HoNi 2 B 2 C is an unconventional superconductor of particular interest, since long-range magnetism coexists and competes with superconductivity on a common energy range [1]. Our study is based on high quality single crystals of 11 B-substituted HoNi 2 B 2 C. The neutron diffraction investigations are devoted to two issues of specific relevance to HoNi 2 B 2 C. Firstly, the near re-entrant phase between 5K 2 B 2 C is more complicated than proposed so fare [2]. Furthermore we performed a spherical neutron polarimetry experiment to determine the two ICM magnetic structures of HoNi 2 B 2 C and neutron spectroscopy investigations to obtain the microscopic magnetic coupling parameters. All these studies resulted in quite a consistent and complete picture of magnetism in HoNi 2 B 2 C, however, we could not find clear evidence for a strong interaction between superconductivity and magnetism. (author)

  5. Pressure-Driven Commensurate-Incommensurate Transition Low-Temperature Submonolayer Krypton on Graphite

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Als-Nielsen, Jens Aage; Bohr, Jakob

    1981-01-01

    By using D2 gas as a source of two-dimensional spreading pressure, we have studied the commensurate-incommensurate (C-I) transition in submonolayer Kr on ZYX graphite at temperatures near 40 K. High-resolution synchrotron x-ray diffraction results show both hysteresis and C-I phase coexistence...

  6. High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Jensen, Jens; Jensen, Thomas Bagger Stibius

    2011-01-01

    The magnetically ordered phases and spin dynamics of magnetoelectric LiNiPO4 have been studied in fields up to 17.3 T along the c axis. Using neutron diffraction, we show that a previously proposed linearly polarized incommensurate (IC) structure exists only for temperatures just below the Neel...... temperature T-N. The ordered IC structure at the lowest temperatures is shown instead to be an elliptically polarized canted spiral for fields larger than 12 T. The transition between the two IC phases is of second order and takes place about 2 K below T-N. For mu H-0 > 16 T and temperatures below 10 K......, the spiral structure is found to lock in to a period of five crystallographic unit cells along the b axis. Based on the neutron-diffraction data, combined with detailed magnetization measurements along all three crystallographic axes, we establish the magnetic phase diagrams for fields up to 17.3 T along c...

  7. Nuclear signals in magnetically ordered media

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1993-01-01

    The book contains a review of theoretical and experimental investigations in the field of nuclear magnetism in magnetically ordered media. The semiclassical theory of nuclear spins motion is developed that takes into consideration three main features of magnetically ordered media: Suhl-Nakamura interaction, quadrupole interaction and microscopic inhomogeneity of nuclear frequencies. The detailed classification of nuclear spin echo signals is given for standard conditions of experiments, when the Suhl-Nakamura interaction is small in comparison with the NMR line width. The extremal states of the electron - nuclear magnetic system are described in detail: the coexistence of NMR and FMR, nuclear ferromagnetism and NMR at fast remagnetization of a ferromagnet. 157 refs., 20 figs

  8. Neutron and resonant x-ray scattering studies of RNi2B2C (R = rare earth) single crystals

    International Nuclear Information System (INIS)

    Stassis, C.; Goldman, A.I.; Iowa State Univ., Ames, IA

    1996-01-01

    This family of intermetallic compounds is ideal for the study of the interplay between superconductivity and magnetism since, in several of these compounds (Ho, Er, Tm, Dy), superconductivity coexists with magnetic ordering. The most important findings of the scattering studies are (a) in the Ho-compound, a complex magnetic structure characterized by two incommensurate wave vectors, rvec k a = 0.585 rvec a* and rvec k c = 0.915 rvec c*, exists in the vicinity of 5 K, where the almost reentrant behavior of this compound occurs; (b) an incommensurate magnetic structure with wave vector along rvec a*, close to the zone boundary, is observed in several of these compounds; and (c) pronounced soft-phonon behavior was observed for both the acoustic and first optical Δ 4 [ξ00] branches in the superconducting Lu and Ho compounds, a behavior characteristic of strongly coupled conventional superconductors. Furthermore, these phonon anomalies occur at wave vectors close to those of the incommensurate magnetically ordered structures observed in the magnetic compounds of this family. This observation suggests that both the magnetic ordering and phonon softening originate from common nesting features of the Fermi surfaces of these compounds. Band theoretical calculations are in qualitative agreement with these results

  9. Magnetic Excitations and Magnetic Ordering in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Chapellier, M.; Mackintosh, A. R.

    1975-01-01

    The dispersion relations for magnetic excitons propagating on the hexagonal sites of double-hcp Pr provide clear evidence for a pronounced anisotropy in the exchange. The energy of the excitations decreases rapidly as the temperature is lowered, but becomes almost constant below about 7 K......, in agreement with a random-phase-approximation calculation. No evidence of magnetic ordering has been observed above 0.4 K, although the exchange is close to the critical value necessary for an antiferromagnetic state....

  10. Beyond Participation: Politics, Incommensurability and the Emergence of Mental Health Service Users' Activism in Chile.

    Science.gov (United States)

    Montenegro, Cristian R

    2018-04-24

    Although the organisation of mental health service users and ex-users in Latin America is a recent and under-researched phenomenon, global calls for their involvement in policy have penetrated national agendas, shaping definitions and expectations about their role in mental health systems. In this context, how such groups react to these expectations and define their own goals, strategies and partnerships can reveal the specificity of the "user movement" in Chile and Latin America. This study draws on Jacques Rancière's theorisation of "police order" and "politics" to understand the emergence of users' collective identity and activism, highlighting the role of practices of disengagement and rejection. It is based on interviews and participant observation with a collective of users, ex-users and professionals in Chile. The findings show how the group's aims and self-understandings evolved through hesitations and reflexive engagements with the legal system, the mental health system, and wider society. The notion of a "politics of incommensurability" is proposed to thread together a reflexive rejection of external expectations and definitions and the development of a sense of being "outside" of the intelligibility of the mental health system and its frameworks of observation and proximity. This incommensurability problematises a technical definition of users' presence and influence and the generalisation of abstract parameters of engagement, calling for approaches that address how these groups constitute themselves meaningfully in specific situations.

  11. Nuclear magnetic ordering in PrNi5

    International Nuclear Information System (INIS)

    Kubota, M.

    1980-11-01

    The specific heat of the hyperfine enhanced nuclear magnetic system PrNi 5 has been measured from 0.2 mK to 100 mK and in magnetic fields up to 6 T. The system was found to order at (0.40+-0.02) mK. From the study of the measured thermodynamic quantities in various magnetic fields, we obtain various information, the order at T=0 K is ferromagnetic, the hyperfine enhancement factor 1+K=(12.2+-0.5), the enhanced nuclear magnetic moment is (0.027+-0.004)μsub(B) and a nuclear exchange parameter μsub(j)Ksup(N)sub(ij)/ksub(B)=(0.20+-0.04) mK. The nature of the interactions which cause the ordering is discussed, together with the magnetic properties of the system deduced from the analysis. (orig.)

  12. Magnetic ordering in arrays of one-dimensional nanoparticle chains

    International Nuclear Information System (INIS)

    Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J

    2009-01-01

    The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.

  13. Refractive indices of K2ZnCl4 crystals in an incommensurate phase under uniaxial stresses

    International Nuclear Information System (INIS)

    Gaba, V.M.; Kogut, Z.O.; Brezvin, R.S.; Stadnik, V.I.

    2010-01-01

    The influence of uniaxial mechanical stresses directed along the principal crystallophysical axes on refractiveindex temperature dependences in K 2 ZnCl 4 crystals was studied. It is established that the refractive indices ni are quite sensitive to uniaxial stresses. Significant baric shifts of the paraphase-incommensurate-commensurate phase transition points to different temperature regions were observed, which is due to the effect of the uniaxial stress on the K 2 ZnCl 4 crystal structure. It is found that applying uniaxial pressure increases the value of the temperature hysteresis of the commensurate-incommensurate phase transition. (authors)

  14. Some aspects of wave-functions in disordered and incommensurate models

    International Nuclear Information System (INIS)

    Roman, E.; Wiecko, C.

    1984-09-01

    We study the localization length and fractal dimensionality of wave functions in the random diagonal and off-diagonal Anderson model. This preliminary study is intended to establish how much connection between these two magnitudes exists and how they behave at the transition from the localized to extended regimes both in these random models as well as in the incommensurate models such as Aubry's. (author)

  15. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  16. Is compatible the idea of incommensurability with that of scientific progress? Some reasons in support of its compatibility [Spanish

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jaramillo Uribe

    2006-01-01

    Full Text Available The problem of incommensurability and, particulary, the one of the scientific progress, is associated two names: Kuhn and Feyerabend, whose proposals caused than many put in doubt the apparent evidence of the call scientific progress, relativizing its validity to each school or paradigm. In this writing we will show that this type of epistemic relativism —just as convergentist theory of the truth— they lack of philosophical validity and historical and how the idea of scientific progress is compatible with the thesis of the incommensurability beyond the ontosemantics difficulties that it implies. This suppose to leave the the call statement view of the scientific theories and adopt a non-statement view where the intertheoretical relation of approach allows to subsink different non trivial incommensurability and to validate in them the notion oaf scientific progress.

  17. The incommensurability of psychoanalysis and history.

    Science.gov (United States)

    Scott, Joan W

    2012-01-01

    This article argues that, although psychoanalysis and history have different conceptions of time and causality, there can be a productive relationship between them. Psychoanalysis can force historians to question their certainty about facts, narrative, and cause; it introduces disturbing notions about unconscious motivation and the effects of fantasy on the making of history. This was not the case with the movement for psychohistory that began in the 1970s. Then the influence of American ego-psychology on history-writing promoted the idea of compatibility between the two disciplines in ways that undercut the critical possibilities of their interaction. The work of the French historian Michel de Certeau provides theoretical insight into the uses of incommensurability, while that of Lyndal Roper demonstrates both its limits and its value for enriching historical understanding.

  18. Magnetic nanoparticles: synthesis, ordering and properties

    International Nuclear Information System (INIS)

    Vazquez, M.; Luna, C.; Morales, M.P.; Sanz, R.; Serna, C.J.; Mijangos, C.

    2004-01-01

    Polyol methods to synthesize nanoparticles and their arrays are firstly described. Magnetic nanoparticles self-assemble under particular conditions into spherical superstructures, like CoNi nanoparticles, or planar structures with hexagonal ordering, like FePt nanoparticles. Particles and their arrays are structurally analysed by techniques like TEM, X-ray, etc. Magnetic characterization is firstly performed by VSM magnetomer as a function of the nanoparticles size paying particular attention to the transition from multidomain to single-domain structures. Later on, magnetic exchange coupling effects are discussed including the temperature dependence of magnetic parameters as coercive and exchange bias fields, as well as the influence of field or zero-field cooling processes. Finally, magnetic polymers consisting of magnetic nanoparticles embedded into PVC polymeric matrix are prepared and magnetically analysed

  19. Strongly anisotropic and complex magnetic behavior in EuRhGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bednarchuk, Oleksandr; Kaczorowski, Dariusz, E-mail: D.Kaczorowski@int.pan.wroc.pl

    2015-10-15

    Single crystals of EuRhGe{sub 3} were studied by means of magnetic susceptibility, magnetization, heat capacity, resistivity and magnetoresistance measurements, performed in wide ranges of temperature and magnetic field strength. The compound was characterized as a Curie–Weiss paramagnet, due to divalent Eu ions, that orders antiferromagnetically at T{sub N} = 11.3 K. In the ordered state, EuRhGe{sub 3} exhibits strong magnetic anisotropy. The magnetic moments are probably nearly confined within the ab plane of the tetragonal crystallographic unit cell, and the magnetic propagation vector is likely perpendicular to this plane. The bulk thermodynamic and transport data concordantly suggest that in zero magnetic field the magnetic structure of EuRhGe{sub 3} is incommensurate with the chemical one and bears an amplitude-modulated character. In external magnetic field applied within the easy magnetization plane, two other magnetic structures were detected, each of them having an antiferromagnetic nature. - Highlights: • High-quality single crystals of EuRhGe{sub 3} were prepared. • Low-temperature physical behavior was studied along the main crystallographic directions. • Magnetic phase diagrams for B || ab and B || c were derived • EuRhGe{sub 3} was found highly anisotropic despite L = 0 electronic ground state. • As many as three distinct AFM phases were evidenced for B || ab.

  20. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    International Nuclear Information System (INIS)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M.

    1989-01-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a 0 -2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a 0 -2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a 0 -2H domain and the domain wall. (orig.)

  1. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research)

    1989-06-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a{sub 0}-2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a{sub 0}-2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a{sub 0}-2H domain and the domain wall. (orig.).

  2. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  3. Hybrid superconducting-magnetic memory device using competing order parameters.

    Science.gov (United States)

    Baek, Burm; Rippard, William H; Benz, Samuel P; Russek, Stephen E; Dresselhaus, Paul D

    2014-05-28

    In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

  4. Optimization of permanent-magnet undulator magnets ordering using simulated annealing algorithm

    International Nuclear Information System (INIS)

    Chen Nian; He Duohui; Li Ge; Jia Qika; Zhang Pengfei; Xu Hongliang; Cai Genwang

    2005-01-01

    Pure permanent-magnet undulator consists of many magnets. The unavoidable remanence divergence of these magnets causes the undulator magnetic field error, which will affect the functional mode of the storage ring and the quality of the spontaneous emission spectrum. Optimizing permanent-magnet undulator magnets ordering using simulated annealing algorithm before installing undulator magnets, the first field integral can be reduced to 10 -6 T·m, the second integral to 10 -6 T·m 2 and the peak field error to less than 10 -4 . The optimized results are independent of the initial solution. This paper gives the optimizing process in detail and puts forward a method to quickly calculate the peak field error and field integral according to the magnet remanence. (authors)

  5. Evolution of the magnetic structure of TbRu{sub 2}Al{sub 10} in applied field

    Energy Technology Data Exchange (ETDEWEB)

    White, R., E-mail: Reyner.White@student.adfa.edu.au [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT, 2600 (Australia); Hutchison, W.D. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT, 2600 (Australia); Mizushima, T. [Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555 (Japan); Studer, A.J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232 (Australia)

    2016-09-15

    TbRu{sub 2}Al{sub 10} is found to undergo two magnetic phase transitions as a function of temperature and three as a function of applied field at low temperature. The Tb{sup 3+} magnetic moments order antiferromagnetically along the c-axis at 15.0(3) K, with an incommensurate sinusoidally modulated structure with a propagation vector of k = (0, 0.759(1), 0). At 6.5(3) K the structure switches to square wave order. Analysis of single crystal TbRu{sub 2}Al{sub 10} has revealed that this square wave structure is altered to a ‘pulse wave’ on application of a 1.30 T magnetic field along the c-axis, with two in fifty of the magnetic moments across the structure changing direction to be aligned parallel with the direction of the field. At 1.85 T a further three moments flip, leading to a duty cycle of 60% and resulting in a total change of one in ten moments from the starting square wave structure. - Highlights: • The magnetic and physical properties of the intermetallic TbRu{sub 2}Al{sub 10} were examined. • TbRu{sub 2}Al{sub 10} was found to order antiferromagnetically at 15.0(3) K. • Neutron powder diffraction revealed sinusoidal magnetic ordering below 15 K. • Single crystal neutron diffraction revealed square wave magnetic order at 2 K. • An applied magnetic field along the c-axis forces the moments into pulse wave order.

  6. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  7. Study of magnetic properties of TGa6 with T = Ce, Pr, Nd, Tb, Ho, Dy and of solid solutions Ce(Ga1-x Alx)2

    International Nuclear Information System (INIS)

    Jerjini, M.

    1987-10-01

    At low temperature TGa 6 compounds are ordered with a Neel temperature of about 10 K. Magnetic structures are antiferromagnetic for T = Pr or Nd or modulated for T = Tb, Ho or Dy. Ce presents an abnormal behavior in CeGa 6 . Neutron inelastic scattering allows the determination of energy levels in the crystal field of cerium ion and evidences hybridation of 4f and valence electrons. Three magnetic transitions for T 6 . Study of CeGa 6 and solid solutions. Ce(Ga (1-x) Al x ) 2 shows that aluminium insertion reinforces the Kondo effect. For x = O.1 an incommensurable structure subsists at very low temperature. CeGa 2 is ordered with 3 magnetic structures. Magnetic moment is reduced with Al. The study of crystal field by neutron scattering shows that hybridation effects are more important for the compound with x = 0.1 [fr

  8. Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies

    DEFF Research Database (Denmark)

    Varón, M.; Beleggia, M; Kasama, T

    2013-01-01

    order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μ(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm...... cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present...... nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies....

  9. Magnetic property and pressure effect of a single crystal CeRhGe

    International Nuclear Information System (INIS)

    Ueda, Taiki; Honda, Daisuke; Shiromoto, Tomoyuki; Thamizhavel, Arumugam; Sugiyama, Kiyohiro; Settai, Rikio; Onuki, Yoshichika; Metoki, Naoto; Honda, Fuminori; Kaneko, Koji; Haga, Yoshinori; Matsuda, Tatsuma D.; Kindo, Kouichi

    2005-01-01

    We measured the electrical resistivity, specific heat, magnetic susceptibility, high-field magnetization, neutron scattering and electrical resistivity under pressure for CeRhGe. The anisotropy of the magnetic susceptibility and magnetization are very large, reflecting the orthorhombic crystal structure. The magnetic easy-axis is found to be oriented along the a-axis. From the neutron scattering experiment, the magnetic structure is, however, not simple, indicating an incommensurate antiferromagnetic structure. The magnetic susceptibility and magnetization were analyzed on the basis of the crystalline electric field scheme of localized-4f energy levels, indicating a very large splitting energy of the 4f levels. (author)

  10. Modern quantum magnetism by means of neutron scattering

    International Nuclear Information System (INIS)

    Grenier, B.; Ziman, T.

    2007-01-01

    We review a selection of recent applications of neutron scattering to the field of quantum magnetism. We focus on systems where, because of quantum fluctuations enhanced by frustration and low dimension, there is no long range magnetic order in the ground state. We select two examples that we treat in more depth to show how neutron studies, in conjunction with the results of other experimental techniques, can give new insights. The first is the case of the spin ladder NaV 2 O 5 , where the origin of the spin gap at low temperature is now understood in detail. Apparent contradictions between quantitative measures of the charge order from neutron inelastic scattering, resonant X-ray scattering and NMR have been resolved giving interesting insights into the correlations. The second case is that of spin dimer system Cs 3 Cr 2 X 9 (X = Br, Cl), undergoing transitions to field induced transverse magnetic order. The Br compound is attractive as the critical fields are sufficiently low that a complete study, in different field directions, is possible. In addition, it is noteworthy in that the magnon that softens and condenses is incommensurable with the lattice. The common description in terms of Bose-Einstein condensation must be extended to include a continuous degeneracy and single ion anisotropy, and conclusions can be drawn by comparison with the Cl compound. (authors)

  11. Highly ordered FEPT and FePd magnetic nano-structures: Correlated structural and magnetic studies

    International Nuclear Information System (INIS)

    Lukaszew, Rosa Alejandra; Cebollada, Alfonso; Clavero, Cesar; Garcia-Martin, Jose Miguel

    2006-01-01

    The micro-structure of epitaxial FePt and FePd films grown on MgO (0 0 1) substrates is correlated to their magnetic behavior. The FePd films exhibit high chemical ordering and perpendicular magnetic anisotropy. On the other hand FePt films exhibit low chemical ordering, with nano-grains oriented in two orthogonal directions, forcing the magnetization to remain in the plane of the films

  12. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  13. Magnetic short range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1976-01-01

    Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi

  14. Icosahedral symmetry described by an incommensurately modulated crystal structure model

    DEFF Research Database (Denmark)

    Wolny, Janusz; Lebech, Bente

    1986-01-01

    A crystal structure model of an incommensurately modulated structure is presented. Although six different reciprocal vectors are used to describe the model, all calculations are done in three dimensions making calculation of the real-space structure trivial. Using this model, it is shown that both...... the positions of the bragg reflections and information about the relative intensities of these reflections are in full accordance with the diffraction patterns reported for microcrystals of the rapidly quenched Al86Mn14 alloy. It is also shown that at least the local structure possesses full icosahedral...

  15. Magnetic order of Nd5Pb3 single crystals

    Science.gov (United States)

    Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.

    2018-04-01

    We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1  =  44 K and T N2  =  8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  16. Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems

    Science.gov (United States)

    Khan, Ayub; Tyagi, Arti

    2018-05-01

    In this paper, we have studied the hybrid projective synchronisation for incommensurate, integer and commensurate fractional-order financial systems with unknown disturbance. To tackle the problem of unknown bounded disturbance, fractional-order disturbance observer is designed to approximate the unknown disturbance. Further, we have introduced simple sliding mode surface and designed adaptive sliding mode controllers incorporating with the designed fractional-order disturbance observer to achieve a bounded hybrid projective synchronisation between two identical fractional-order financial model with different initial conditions. It is shown that the slave system with disturbance can be synchronised with the projection of the master system generated through state transformation. Simulation results are presented to ensure the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. Also, synchronisation error for commensurate, integer and incommensurate fractional-order financial systems is studied in numerical simulation.

  17. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy

    International Nuclear Information System (INIS)

    Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P.

    2009-01-01

    A stable pseudomorphic phase of α-quaterthiophene, a well known organic semiconductor, is obtained by growing films with organic molecular beam epitaxy (OMBE) on a single crystal of another organic semiconductor, namely, tetracene. The structural characteristics of the new phase are investigated by monitoring in situ the OMBE process by reflectance anisotropy spectroscopy; thus assessing that incommensurate epitaxy is in this case, the driving force for tuning the molecular packing in organic molecular films and in turn, their solid state properties

  18. Magnetic quasi-long-range ordering in nematic systems due to competition between higher-order couplings

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2018-05-01

    Critical properties of the two-dimensional X Y model involving solely nematic-like terms of the second and third orders are investigated by spin-wave analysis and Monte Carlo simulation. It is found that, even though neither of the nematic-like terms alone can induce magnetic ordering, their coexistence and competition leads to an extended phase of the magnetic quasi-long-range-order phase, wedged between the two nematic-like phases induced by the respective couplings. Thus, except for the multicritical point, at which all the phases meet, for any finite value of the coupling parameters ratio there are two phase transition: one from the paramagnetic phase to one of the two nematic-like phases followed by another one at lower temperatures to the magnetic phase. The finite-size scaling analysis indicates that the phase transitions between the magnetic and nematic-like phases belong to the Ising and three-state Potts universality classes. Inside the competition-induced algebraic magnetic phase, the spin-pair correlation function is found to decay even much more slowly than in the standard X Y model with purely magnetic interactions. Such a magnetic phase is characterized by an extremely low vortex-antivortex pair density attaining a minimum close to the point at which the two couplings are of about equal strength.

  19. Spin-orbit interaction driven dimerization in one dimensional frustrated magnets

    Science.gov (United States)

    Zhang, Shang-Shun; Batista, Cristian D.

    Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.

  20. Polarization effects in two-colour ionization of atomic hydrogen with incommensurable frequencies

    International Nuclear Information System (INIS)

    Cionga, A.

    1993-01-01

    The angular distribution of ejected electrons for two-colour ionization of atomic hydrogen are studied using an approach which takes into account the radiative corrections to both bound and the continuum states. One considers the ionization process in which one high-frequency photon has enough energy to ionize the atom, meanwhile, one extra-photon is exchanged between atomic system and the low-frequency field. We focus our attention to the case of two incommensurable frequencies. (Author)

  1. Percolative transport in the vicinity of charge-order ferromagnetic ...

    Indian Academy of Sciences (India)

    field driven charge transport in the system is modelled on the basis of an inhomogeneous medium consisting of ... The charge-ordered phase for incommensurate distribution of man- ganese ions (i.e. ... position x = 0.35 measured in a constant voltage mode. The electric ... a drop in resistance on decreasing the temperature.

  2. Nuclear magnetic ordering in silver

    International Nuclear Information System (INIS)

    Lefmann, K.

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of 109 Ag. The critical temperature is found to 700 pK, and the critical field is 100 μT. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs

  3. Incommensurate host-guest structures in compressed elements: Hume—Rothery effects as origin

    International Nuclear Information System (INIS)

    Degtyareva, V F

    2015-01-01

    Discovery of the incommensurate structure in the element Ba under pressure 15 years ago was followed by findings of a series of similar structures in other compressed elements. Incommensurately modulated structures of the host-guest type consist of a tetragonal host structure and a guest structure. The guest structure forms chains of atoms embedded in the channels of host atoms so that the axial ratio of these subcells along the c axis is not rational. Two types of the host-guest structures have been found so far: with the host cells containing 8 atoms and 16 atoms; in these both types the guest cells contain 2 atoms. These crystal structures contain a non-integer number of atoms in their unit cell: tI11* in Bi, Sb, As, Ba, Sr, Sc and tI19* in Na, K, Rb. We consider here a close structural relationship of these host-guest structures with the binary alloy phase Au 3 Cd 5 -tI32. This phase is related to the family of the Hume-Rothery phases that is stabilized by the Fermi sphere-Brillouin zone interaction. From similar considerations for alkali and alkaline-earth elements a necessary condition for structural stability emerges in which the valence electrons band overlaps with the upper core electrons and the valence electron count increases under compression. (paper)

  4. Commensurate and incommensurate '5M' modulated crystal structures in Ni-Mn-Ga martensitic phases

    International Nuclear Information System (INIS)

    Righi, L.; Albertini, F.; Pareti, L.; Paoluzi, A.; Calestani, G.

    2007-01-01

    It is well known that the composition of ferromagnetic shape memory Ni-Mn-Ga Heusler alloys determines both temperature of martensitic transformations and the structure type of the product phase. In the present work we focused our attention on the structural study of the so-called '5M' modulated structure. In particular, the structure of Ni 1.95 Mn 1.19 Ga 0.86 martensitic phase is analysed by powder X-ray diffraction (PXRD) and compared with that of the stoichiometric Ni 2 MnGa martensite. The study of the diffraction data reveals the occurrence of commensurate (C) structural modulation in Ni 1.95 Mn 1.19 Ga 0.86 ; this contrasts with Ni 2 MnGa, where an incommensurate (IC) structural modulation was evident. The two phases also differ in the symmetry of the fundamental martensitic lattice. In fact, the incommensurate modulation is related to an orthorhombic basic structure, while the commensurate variant presents a monoclinic symmetry. The commensurate modulated structure has been investigated by using the superspace approach already adopted to solve the structure of Ni 2 MnGa martensite. The structure has been determined by Rietveld refinement of PXRD data

  5. The Symmetry of Multiferroics

    OpenAIRE

    Harris, A. Brooks

    2006-01-01

    This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...

  6. Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties

    International Nuclear Information System (INIS)

    Esquinazi, P.; Barzola-Quiquia, J.; Spemann, D.; Rothermel, M.; Ohldag, H.; Garcia, N.; Setzer, A.; Butz, T.

    2010-01-01

    We discuss recently obtained data using different experimental methods including magnetoresistance measurements that indicate the existence of metal-free high-temperature magnetic order in graphite. Intrinsic as well as extrinsic difficulties to trigger magnetic order by irradiation of graphite are discussed in view of recently published theoretical work.

  7. Magnetic order in PrBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Nutley, M.P.; Boothroyd, A.T.

    1994-01-01

    We have studied the magnetic ordering of the Cu and Pr ions in PrBa2Cu3O6+x by neutron diffraction on single crystals with different oxygen contents. Two types of Cu ordering were observed, qualitatively similar to the anti-ferromagnetic phases reported in some studies of YBa2Cu3O6+x. A third...... magnetic structure was observed below 15K, which we believe corresponds to the magnetic ordering of the Pr sub-lattice....

  8. Modulated ordering Nb-H alloys

    International Nuclear Information System (INIS)

    Kajitani, T.; Brun, T.O.; Mueller, M.H.; Birnbaum, H.K.; Makenas, B.J.

    1979-01-01

    Ordering reactions in α' and β-NbH alloys have been investigated using elastic theory. The α'-β and β-lambda phase transformations are driven by the elastic interaction in the niobium lattice distorted by the protons on the t-site interstitials. The β phase is shown to have a three dimensional structure. The fundamental period of the long range modulation along the c-axis in the lambda-phase, an incommensurated β phase, is approximately 5 lattice constants

  9. TmCd quadrupolar ordering and magnetic interactions

    International Nuclear Information System (INIS)

    Aleonard, R.; Morin, P.

    1979-01-01

    The paramagnetic compound TmCd crystallizes with the CsCl-type structure. Its Jahn-Teller behavior was first observed by Luethi and coworkers. We analyze here various physical properties with a pure-harmonic-elasticity model. The structural transition between cubic and tetragonal phases is now fully described (first-order character and temperature of occurrence) as well as the magnetic susceptibility, magnetization process, specific-heat, elastic-constant, and strain data. The relevant Hamiltonian takes into account the second-order magnetoelastic coupling and the quadrupolar exchange in addition to the cubic crystal field and the Heisenberg bilinear interactions. TmCd appears to be closely related to isomorphous TmZn and completes the illustration of the competition between bilinear and quadrupolar interactions occurring in some rare-earth intermetallics. In these two compounds, the quadrupolar exchange is many times stronger than the magnetoelastic coupling and the quadrupolar ordering then drives the structural transition. This situation is opposite to that occurring in (actual) Jahn-Teller compounds

  10. Magnetic anisotropy and order parameter in nanostructured CoPt particles

    Science.gov (United States)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2013-10-01

    The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.

  11. Nuclear magnetic ordering in silver

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of {sup 109}Ag. The critical temperature is found to 700 pK, and the critical field is 100 {mu}T. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs.

  12. The magnetic structure of GdNi2B2C investigated by neutron powder diffraction

    International Nuclear Information System (INIS)

    Barcza, A.; Rotter, M.; Doerr, M.; Beuneu, B.

    2005-01-01

    Full text: The group of ReT 2 B 2 C (Re=rare earth, T=transition metal) shows a very interesting interplay between magnetism and superconductivity due to the rare earth metals. In this work the magnetism of GdNi 2 B 2 C was studied with neutron diffraction. Previous investigations with x-ray diffraction methods have determined the crystal structure as a body centered tetragonal structure (I 4/mmm). Hot neutrons were used for the diffraction experiment, because the absorption cross section of Gd is significantly smaller for short wavelengths. The investigated compound orders magnetically at TN=19.5 K, and so the experiment was carried out at two temperatures, namely 30 K and 2.2 K. The results show a incommensurate spin structure with a propagation vector of (0.55 0 0). To confirm this results additional simulations of the spin structure were done based on the Standard Model of rare earth magnetism. A neutron diffraction pattern was calculated using the McPhase program package and is compared to the experimental data. (author)

  13. High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields

    International Nuclear Information System (INIS)

    Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J

    2009-01-01

    We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.

  14. Influence of magnetic anisotropy on the superferromagnetic ordering in nanocomposites

    DEFF Research Database (Denmark)

    Mørup, Steen; Christiansen, Gunnar Dan

    1993-01-01

    Magnetic interaction between ultrafine particles may result in superferromagnetism, i.e., ordering of the magnetic moments of particles which would be superparamagnetic if they were noninteracting. In this article we discuss the influence of the magnetic anisotropy on the temperature dependence o...

  15. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    Science.gov (United States)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  16. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  17. Origin of the incommensurate phase of quartz. Pt. 2

    International Nuclear Information System (INIS)

    Vallade, M.; Berge, B.; Dolino, G.

    1992-01-01

    The results of an inelastic neutron scattering investigation of the low-frequency modes of β quartz, described in the preceding paper [1], are interpreted using two different approaches: i) a phenomenological model directly derived from a Landau-Ginzburg type expansion of the free energy; this model is only relevant for the long-wavelength part of the phonon spectrum but it allows an easy connection with thermodynamical data; ii) a microscopic lattice dynamical model, which is an extension of the Grimm-Dorner model; it is shown that the main properties of the low-frequency phonon spectrum and, in particular, the softening of a Σ 2 mode at an incommensurate wave vector close to the zone-center, can be understood by analysing the motions of nearly rigid SiO 4 tetrahedra. (orig.)

  18. Magnetic structure and excitation spectrum of the hyperhoneycomb Kitaev magnet β -Li2IrO3

    Science.gov (United States)

    Ducatman, Samuel; Rousochatzakis, Ioannis; Perkins, Natalia B.

    2018-03-01

    We present a theoretical study of the static and dynamical properties of the three-dimensional, hyperhoneycomb Kitaev magnet β -Li2IrO3 . We argue that the observed incommensurate order can be understood in terms of a long-wavelength twisting of a nearby commensurate period-3 state, with the same key qualitatively features. The period-3 state shows very different structure when either the Kitaev interaction K or the off-diagonal exchange anisotropy Γ is dominant. A comparison of the associated static spin structure factors with reported scattering experiments in zero and finite fields gives strong evidence that β -Li2IrO3 lies in the regime of dominant Kitaev coupling, and that the Heisenberg exchange J is much weaker than both K and Γ . Our predictions for the magnon excitation spectra, the dynamical spin structure factors, and their polarization dependence provide additional distinctive fingerprints that can be checked experimentally.

  19. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  20. Magnetic and superconducting order in some random pseudobinary compounds

    International Nuclear Information System (INIS)

    Dongen, J.C.M. van.

    1982-01-01

    This thesis presents the results of a study on the magnetic and superconducting ordering phenomena in some random pseudobinary compounds. In the investigations ternary systems are utilised in which two of the elements form a binary intermetallic compound, e.g. PdH, GdCu and YCo 2 . A third element is then randomly substituted into one of the sublattices without changing the basic intermetallic compound structure. In chapter II a study is presented on the Kondo effect and spin-glass freezing of the magnetic impurities Cr, Mn, and Fe in superconducting palladium hydride. Chapter III contains a study on crystal structure transformations and magnetic ordering phenomena in GdCusub(1-x)Gasub(x) and related pseudobinary compounds. In Chapter IV experiments on the magnetic properties and the electrical resistivity of the transition metal Laves phase compounds Y(Cosub(1-x)Fesub(x)) 2 , Y(Irsub(1-x)Fesub(x)) 2 and Hf(Cosub(1-x)Fesub(x)) 2 are described. (Auth.)

  1. Neutron scattering studies on magnetic excitations in complex ordered manganites

    International Nuclear Information System (INIS)

    Senff, D.

    2007-09-01

    This thesis deals with magnetic excitations in three different Manganese oxides, single-layered LaSrMnO 4 , charge- and orbital-ordered La 1/2 Sr 3/2 MnO 4 , and multiferroic TbMnO 3 , which are studied by means of inelastic neutron scattering. The properties of the first system, LaSrMnO 4 , are governed by the complex interplay of orbital, spin, and lattice degrees of freedom typical for the physics of manganites. The magnetic low-temperature behavior is quite unusual, and the comprehensive analysis of the spin-wave spectrum of LaSrMnO 4 suggests a heterogenous ground state with ferromagnetic orbital polarons embedded in an antiferromagnetic background. The doped system La 1/2 Sr 3/2 MnO 4 exhibits a stable charge- and orbital-ordered state, which today is discussed very controversially, as it is of great relevance for the colossal increase of electric conductivity at the metal-insulator transition in perovskite manganites. Analyzing the spin-wave dispersion of the ordered state, we find an excellent agreement with classical predictions by Goodenough and reject a recent alternative proposal. The different strength of the ferromagnetic and antiferromagnetic exchange in the CE-type ordering leads to the conclusion that the magnetic state has to be considered as a weak AFM coupling of stable FM elements. This thesis is further supported by the thermal evolution of the ordered state, revealing anisotropic correlations and the close competition of FM and AFM correlations above the Neel transition, as well as by the doping dependence of the charge- and orbital-ordered state, which is interpreted on the basis of a different response of the magnetic system with respect to additional electrons or holes. In the orthorhombic perovskite TbMnO 3 the electric polarization is closely coupled to the magnetic degrees of freedom via a complex, non-collinear magnetic ordering. Precisely characterizing the different magnon excitations allows to identify all relevant modes of the

  2. Incommensurate phases in the improper ferroelastic MgGeF sub 6 centre dot 6H sub 2 O:Mn sup 2 sup + studied by means of EPR

    CERN Document Server

    Skrylnik, P G

    2002-01-01

    The results of an EPR study of the inhomogeneous phases existing in the temperature interval T sub C = 311.0 +- 0.3 K < T < T sub i sub 1 = 403 +- 0.3 K in improper ferroelastic crystals of MgGeF sub 6 centre dot 6H sub 2 O:Mn sup 2 sup + are presented. On the basis of the analysis of the temperature and angle dependences of the experimental parameters and numerical calculations, the conclusion has been drawn that at T sub i sub 1 the crystals considered undergo a transition to a structurally modulated phase and the order parameter of this transition may be the angle of the Mg[H sub 2 O] sub 6 sup 2 sup + octahedra rotation around the crystal C sub 3 -axis. From T sub i sub 1 to T sub C the modes of the modulated phase follow according to a completely classical scenario for incommensurate crystals: the origin of the incommensurate structure with plane-wave modulation at T sub i sub 1 , the appearance of structural phase solitons below T sub i sub 2 = 380 +- 0.3 K and decrease of the soliton density to v...

  3. Development of magnetic order in superconducting systems

    International Nuclear Information System (INIS)

    Moncton, D.E.; Shirane, G.; Thomlinson, W.

    1979-08-01

    Two different classes of rare-earth (RE) ternary superconductors (RERh 4 B 4 and REMo 6 S 8 , X=S, Se) have provided the first instances in which chemically ordered sublattices of magnetic ions exist in superconductors. Neutron scattering studies show that simple, conventional antiferromagnetism coexists with superconductivity in a number of systems, while destruction of superconductivity occurs with the onset of ferromagnetism. The magnetic structural details are summarized for the coexistent antiferromagnets, and review measurements on the superconducting → ferromagnetic transition in ErRh 4 B 4

  4. Atom-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Zyryanova, A.N.

    1999-01-01

    Experimental results on magnetic susceptibility of nonstoichiometric hafnium carbide HfC y (0.6 0.71 , HfC 0.78 and HfC 0.83 in the range of 870-930 K the anomalies are revealed which are associated with superstructure short-range ordering in a non-metallics sublattice. It is shown that a short-range order in HfC 0.71 and HfC 0.78 carbides corresponds to Hf 3 C 2 ordered phase, and in HfC 0.83 carbide - to Hf 6 C 5 ordered phase. HfC 0.78 carbide is found to possesses zero magnetic susceptibility in temperature range 910-980 K [ru

  5. Incommensurability in Cross-Disciplinary Research: A Call for Cultural Negotiation

    Directory of Open Access Journals (Sweden)

    Anne MacCleave

    2006-06-01

    Full Text Available What happens when a clinical psychologist, a grounded theorist, an ethnographer, and a phenomenologist meet to collaborate on an interdisciplinary grant proposal on childhood loneliness? Excerpts of an imaginary dialogue reveal how different disciplines can be thought of as different “cultures,” because each has its own way of doing things, deeply embedded assumptions about knowledge and the construction/representation of reality, and different specialized languages. Some of these differences might be incommensurable and call for cultural negotiation if a coherent approach is to be adopted. Cultural negotiation helps to make differences more accessible and understandable rather than creating inflexible or polarized ideological camps. This process might help methodologists think about researching across disciplines in new and more effective ways.

  6. The structural representation and properties of mutually incommensurate composite crystal (BiS)xTS2 (T=Ti, V, Nb and Ta)

    International Nuclear Information System (INIS)

    Gotoh, Y.; Fujihisa, H.; Takeya, S.; Yamaguchi, I.

    2006-01-01

    The structural representation of mutually incommensurate composite crystal, (BiS) x TS 2 (T=Ti, V, Nb and Ta), with layered substructures has been described by superspace group approach. The incommensurate composite structures of (BiS) x TS 2 have been successfully characterized by the single-crystal X-ray-diffraction method. Temperature dependences of in-plane electrical resistivity of single composite crystals of (BiS) x TS 2 have been obtained by a standard d.c. four probe method in the range of 1.7-300 K. It has been found that the electronic transport properties of (BiS) x TS 2 compounds show metallic behavior below room temperature. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  8. Chaos synchronization of the fractional-order Chen's system

    International Nuclear Information System (INIS)

    Zhu Hao; Zhou Shangbo; He Zhongshi

    2009-01-01

    In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora-Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.

  9. Toward Monte Carlo simulation of general cases of static muon spin relaxation in disordered magnetic materials: long-range magnetic order in alloys

    International Nuclear Information System (INIS)

    Noakes, D.R.

    2001-01-01

    Monte Carlo simulations of zero-field (ZF) muon spin relaxation (μSR) functions generated by long-range-ordered states with disorder are presented, for the completely static limit. Understanding of this is necessary before Monte Carlo simulation of the effect of short-range magnetic ordering on μSR in spin glasses can begin. Alloy disorder, controlled by the magnetic ion concentration parameter f m , and partial ordering of each moment, controlled by the order parameter f o , are considered. Qualitatively different behavior is seen depending on whether the dense moment, perfect-order limit ( f m =1, f o =1) field at the muon site is non-zero, or cancels (as can happen in high-symmetry materials). Around the edges of the two-dimensional ( f m ,f o ) parameter space, four limit cases with qualitatively different behavior are identified: (A) f o →0, the random frozen spin glass for arbitrary magnetic ion concentration; (B) f o →1, nearly perfect magnetic ordering in a alloy of arbitrary magnetic ion concentration; (C) f m →0, magnetic order developing (as f o increases) in a dilute magnetic alloy; (D) f m →1, magnetic order developing (as f o increases) in a dense magnetic material. Case A was discussed in a previous publication. The results for case D answer the question of how the Gaussian Kubo-Toyabe relaxation function for perfect disorder develops into an oscillating function as magnetic order develops in a material. Case C indicates that the effects of magnetic ordering in the dilute moment limit produce only subtle effects in ZF-μSR spectra that would be difficult to unambiguously identify as due to ordering in a real-world experiment. Case B generates complicated multi-frequency behavior

  10. Ginsburg-Landau theory of two antagonistic order parameters: magnetism and superconductivity

    International Nuclear Information System (INIS)

    Suhl, H.

    1978-01-01

    An attempt is made to construct a Ginsburg-Landau theory of so-called magnetic superconductors. Two order parameters, the magnetization field and the gap function, are introduced in such a way as to inhibit each others growth. It is found that the non-local character of the superconducting order parameter must be taken into account in any evaluation of effects of the critical magnetic fluctuations. Some predictions are made within the limits of Ornstein-Zoernicke-like fluctuation theory and some comparison is made with available data. (Auth.)

  11. Wave-mixing with high-order harmonics in extreme ultraviolet region

    International Nuclear Information System (INIS)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-01

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process

  12. Neutron scattering studies on magnetic excitations in complex ordered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Senff, D

    2007-09-15

    This thesis deals with magnetic excitations in three different Manganese oxides, single-layered LaSrMnO{sub 4}, charge- and orbital-ordered La{sub 1/2}Sr{sub 3/2}MnO{sub 4}, and multiferroic TbMnO{sub 3}, which are studied by means of inelastic neutron scattering. The properties of the first system, LaSrMnO{sub 4}, are governed by the complex interplay of orbital, spin, and lattice degrees of freedom typical for the physics of manganites. The magnetic low-temperature behavior is quite unusual, and the comprehensive analysis of the spin-wave spectrum of LaSrMnO{sub 4} suggests a heterogenous ground state with ferromagnetic orbital polarons embedded in an antiferromagnetic background. The doped system La{sub 1/2}Sr{sub 3/2}MnO{sub 4} exhibits a stable charge- and orbital-ordered state, which today is discussed very controversially, as it is of great relevance for the colossal increase of electric conductivity at the metal-insulator transition in perovskite manganites. Analyzing the spin-wave dispersion of the ordered state, we find an excellent agreement with classical predictions by Goodenough and reject a recent alternative proposal. The different strength of the ferromagnetic and antiferromagnetic exchange in the CE-type ordering leads to the conclusion that the magnetic state has to be considered as a weak AFM coupling of stable FM elements. This thesis is further supported by the thermal evolution of the ordered state, revealing anisotropic correlations and the close competition of FM and AFM correlations above the Neel transition, as well as by the doping dependence of the charge- and orbital-ordered state, which is interpreted on the basis of a different response of the magnetic system with respect to additional electrons or holes. In the orthorhombic perovskite TbMnO{sub 3} the electric polarization is closely coupled to the magnetic degrees of freedom via a complex, non-collinear magnetic ordering. Precisely characterizing the different magnon excitations

  13. Medium-range order of magnetic amorphous alloys containing rare earth metals

    International Nuclear Information System (INIS)

    Boucher, B.

    1989-01-01

    The influence of nuclear order and surface layers on the magnetic order and the existence of two characteristic lengths (ξ=2π/k∼10 3 A or 10 A) have been established. The principal conclusions of theorists: concerning the abscence of infinite ferromagnetic clusters and the correlated spin glass or ferromagnet with wandering axis models are verified. The published results seem to indicate the existence of a critical temperature. The role of 3d ions in the magnetic ordering has not been extensively studied; it seems that the presence of 3d ions leads smaller correlation lengths. The Lorentzian scattering term correspond not only to spin waves but also to a static order. The origin of the L 3/2 scattering term observed in severals cases is discussed. It would be very useful to carry out measurements at lower q values so as to obtain more detailed informations concerning the nuclear or magnetic medium range order

  14. Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates

    International Nuclear Information System (INIS)

    Yuan Feng; Feng Shiping; Su Zhaobin; Yu Lu

    2001-08-01

    The doping, temperature and energy dependence of the dynamical spin structure factors of the underdoped lanthanum cuprates in the normal state is studied within the t-J model using the fermion-spin transformation technique. Incommensurate peaks are found at [(1±δ)π, π], [π, (1±δ)π] at relatively low temperatures with δ linearly increasing with doping at the beginning and then saturating at higher dopings. These peaks broaden and weaken in amplitude with temperature and energy, in good agreement with experiments. The theory also predicts a rotation of these peaks by π/4 at even higher temperatures, being shifted to [(1±δ/√2)π, (1±δ/√2)π]. (author)

  15. Magnetic ordering and spin-reorientation transitions in TbCo3B2

    International Nuclear Information System (INIS)

    Dubman, Moshe; Caspi, El'ad N.; Ettedgui, Hanania; Keller, Lukas; Melamud, Mordechai; Shaked, Hagai

    2005-01-01

    The magnetic structure of the compound TbCo 3 B 2 has been studied in the temperature range 1.5 K≤T≤300 K by means of neutron powder diffraction, magnetization, magnetic ac susceptibility, and heat capacity measurements. The compound is of hexagonal symmetry and is paramagnetic at 300 K, undergoes a magnetic Co-Co ordering transition at ∼170 K, and a second magnetic Tb-Tb ordering transition at ∼30 K. The latter induces a spin-reorientation transition, in which the magnetic axis rotates from the c axis toward the basal plane. Below this transition a symmetry decrease (γ magnetostriction) sets in, leading to an orthorhombic distortion of the crystal lattice. The crystal and magnetic structures and interactions and their evolution with temperature are discussed using a microscopic physical model

  16. Magnetic ordering in PrBa2Cu3-yAlyO6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Boothroyd, A.T.; Chen, C.K.

    1996-01-01

    The magnetic ordering in single crystals of PrBa2CU3O6+x has been investigated by elastic neutron scattering over the full range of temperatures for reduced and oxygenated crystals. The crystals were grown in alumina crucibles and therefore contained dissolved aluminum on the Cu(1) site. Both...... aluminum and oxygen contents were analyzed in detail in order to establish their effects on the magnetic ordering, Our crystals exhibited Pr ordering and the two types of antiferromagnetic Cu ordering frequently reported in related compounds, but our results differ in several respects from previous studies...... axis, we find the moment to be aligned well away from the c axis, in agreement with recent Yb-170(3+) Mossbauer spectroscopy results. Ridges of scattering indicative of 2D magnetic ordering were seen in both oxygenated and reduced crystals, though we believe different magnetic moments are responsible...

  17. Magnetic ordering and frustration in hexagonal UNi{sub 4}B

    Energy Technology Data Exchange (ETDEWEB)

    Mentink, S A.M. [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.; Drost, A [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Nieuwenhuys, G J [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.; Frikkee, E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Menovsky, A A [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.

    1994-05-01

    We have determined unusual magnetic ordering of the hexagonal intermetallic uranium compound UNi{sub 4}B via neutron diffraction. In the easy basal plane the U-moments have triangular symmetry with antiferromagnetic interactions. Along the hard c axis ferromagnetic coupling occurs. Below T{sub N} = 20 K only two out of every three U-moments of 1.2 {mu}{sub B} order in vortex-like arrangements around the third paramagnetic spin. This novel magnetic structure is related to the occurrence of a crystallographic superstructure. Previously observed anomalies in bulk properties below T{sub N} are attributed to unconventional spin-wave excitations associated with this type of ordering. (orig.).

  18. On magnetic ordering in silicon made amorphous by ion implantation

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.N.; Polyakov, S.M.

    1978-01-01

    Temperature dependences of the EPR intensity for silicon irradiated with the neon and argon ions at (2-4)x10 17 cm -2 doses have been studied. Paramagnetic defects with 2.0055 g-factor were recorded. Intensity jump associated with the transformation of the irradiated layer part to ferromagnetic state is observed at approximately 140 K. Paramagnetic centre distributions at temperatures above and lower the magnetic ordering temperature have heen investigated. It has been found, that ferromagnetic ordering is observed in a layer with the defect concentrations (3-7)x10 20 cm -3 , located at a depth > 100 A. Magnetic-ordered layer thickness is proportional to the incident ion energy

  19. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    Directory of Open Access Journals (Sweden)

    Sakae Meguro

    2016-05-01

    Full Text Available An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  20. Soft-edged magnet models for higher-order beam-optics map codes

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    2004-01-01

    Continuously varying surface and volume source-density distributions are used to model magnetic fields inside of cylindrical volumes. From these distributions, a package of subroutines computes on-axis generalized gradients and their derivatives at arbitrary points on the magnet axis for input to the numerical map-generating subroutines of the Lie-algebraic map code Marylie. In the present version of the package, the magnet menu includes: (1) cylindrical current-sheet or radially thick current distributions with either open boundaries or with a surrounding cylindrical boundary with normal field lines (which models high-permeability iron), (2) Halbach-type permanent multipole magnets, either as sheet magnets or as radially thick magnets, (3) modeling of arbitrary fields inside a cylinder by use of a fictitious current sheet. The subroutines provide on-axis gradients and their z derivatives to essentially arbitrary order, although in the present third- and fifth-order Marylie only the zeroth through sixth derivatives are needed. The formalism is especially useful in beam-optics applications, such as magnetic lenses, where realistic treatment of fringe-field effects is needed

  1. Evolution of magnetic order in mechanically alloyed Al-1 at%Fe

    International Nuclear Information System (INIS)

    Sebastian, Varkey; Lakshmi, N.; Venugopalan, K.

    2007-01-01

    The evolution of ferromagnetic order in high-energy ball-milled Al-1 at% Fe before the onset of a considerable Fe-Al solid solution phase has been investigated using 57 Fe Moessbauer and bulk magnetization studies. The unmilled sample does not exhibit bulk magnetic properties and an onset of bulk magnetization is observed only after 30 min of milling, when the grain size becomes comparable to the ferromagnetic exchange length. The Curie temperatures of all the samples are less than that of pure iron. The reduction in grain size is accompanied by an increase in coercivity and reduced remanence and a decrease in T C . The effective magnetic moment per iron atom decreases with the development of a non-magnetic, Al-rich Fe-Al solution on longer milling. The clustering of Fe at grain boundaries is responsible for the observed bulk magnetic ordering. The systematic variation of the magnetic properties has been qualitatively correlated with the evolution of microstructure, reduction in grain size and enhanced inter-granular exchange coupling

  2. Chaotic incommensurate fractional order Rössler system: active control and synchronization

    Directory of Open Access Journals (Sweden)

    Baleanu Dumitru

    2011-01-01

    Full Text Available Abstract In this article, we present an active control methodology for controlling the chaotic behavior of a fractional order version of Rössler system. The main feature of the designed controller is its simplicity for practical implementation. Although in controlling such complex system several inputs are used in general to actuate the states, in the proposed design, all states of the system are controlled via one input. Active synchronization of two chaotic fractional order Rössler systems is also investigated via a feedback linearization method. In both control and synchronization, numerical simulations show the efficiency of the proposed methods.

  3. First-Order Transitions and the Magnetic Phase Diagram of CeSb

    DEFF Research Database (Denmark)

    Lebech, Bente; Clausen, Kurt Nørgaard; Vogt, O.

    1980-01-01

    might exist in the magnetic phase diagram of CeSb at 16K for a field of approximately 0.3 T. The present study concludes that the transitions from the paramagnetic to the magnetically ordered states are of first order for fields below 0.8 T. Within the experimental accuracy no change has been observed......The high-temperature (14-17K) low-magnetic field (0-0.8 T) region of the phase diagram of the anomalous antiferromagnet CeSb has been reinvestigated by neutron diffraction in an attempt to locate a possible tricritical point. Previous neutron diffraction studies indicated that a tricritical point...

  4. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  5. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  6. Structure analysis of mutually incommensurate composite crystal (Ca0.5Y0.5)0.8CuO2

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaguchi, I.; Takeya, S.; Fujihisa, H.; Honda, K.; Ito, T.; Oka, K.; Yamaguchi, H.

    2006-01-01

    Single-crystal X-ray structure analysis of mutually incommensurate (Ca 0.5 Y 0.5 ) 0.8 CuO 2 , 'Ca 2 Y 2 Cu 5 O 1 ' has been performed by the composite approach which leads to average substructures and their relative arrangement. The composite crystal structure of (Ca 0.5 Y 0.5 ) 0.8 CuO 2 has the CuO 2 substructure and the Ca 0.5 Y 0.5 substructure. The CuO 2 substructure with a 1 = 10.598(2) A, b = 6.189(2) A, c 1 = 2.825(2) A, β 1 = 90.19(4) o , V 1 = 185.4(1) A 3 , Z = 4 and space group F2/m has the plane of edge-shared one-dimensional CuO 2 chains along the c-axis. The Ca 0.5 Y 0.5 substructure with a 2 = 10.629(2) A, b = 6.189(2) A, c 2 3.517(1) A, β 2 = 94.36(3) o , V 2 = 230.7(1) A 3 , Z = 4 and space group F2/m forms the sheet of (Ca, Y) atoms in the ac-plane. By considering (3 + 1)-dimensional superspace group symmetry, it is concluded that the incommensurate composite crystal structure of (Ca 0.5 Y 0.5 ) 0.8 CuO 2 should be described by the combination of F2/m for the CuO 2 substructure and F2/c for the Ca 0.5 Y 0.5 substructure. The composite approach has made clear that the plane of CuO 2 chains and the sheet of (Ca, Y) atoms stack alternately to form a mutually incommensurate composite crystal with layered substructures

  7. Study of lifetimes of fluorescence levels of tetravalent uranium in the incommensurate phase of thorium tetrabromide and tetrachloride

    International Nuclear Information System (INIS)

    Milicic, A.

    1989-01-01

    The lifetimes of radiative levels of tetravalent uranium in the incommensurate phase of thorium tetrahalides have been measured as a function of different parameters: site symmetry, temperature and concentration. The incommensurate phase of thorium tetrabromide and tetrachloride is characterized by a continuous distribution of site symmetries induced by a continuous and weak displacement of the halides around the thorium (uranium) ions. At low temperature, 4.2 K, the lifetime variation as a function of excited classes of symmetry is governed by the radiative process probability as well as the energy transfer between uranium ions in different sites. At higher temperature, a model based on a Boltzmann equilibrium between closed energy levels is able to reproduce the experimental lifetime variation as a function of the temperature, for a given class of symmetry. For the variation of lifetime as a function of uranium ion concentrations, at high dilution and in the case of U 4+ : ThBr 4 , there is a competition between the energy transfer and thermal population of excited states [fr

  8. Emergence of magnetic order in ultra-thin pyrochlore iridate films

    Science.gov (United States)

    Cheema, Suraj; Serrao, Claudy; Mundy, Julia; Patankar, Shreyas; Birgeneau, Robert; Orenstein, Joseph; Salahuddin, Sayeef; Ramesh, Ramamoorthy

    We report on thickness-dependent magnetotransport in (111) - oriented Pb2Ir2O7-x (Pb227) epitaxial thin films. For thicknesses greater than 4 nm, the magnetoresistance (MR) of metallic Pb227 is positive, linear and non-saturated up to 14 T. Meanwhile at 4 nm, the conduction turns nonmetallic and the MR becomes negative and asymmetric upon field-cooling; such traits are reminiscent of all-in-all-out (AIAO) magnetic order in the insulating pyrochlore iridates. Hysteretic low-field MR dips and trained-untrained resistivity bifurcations suggest the presence of magnetic conducting domain walls within the chiral AIAO spin structure. Beyond just AIAO order, angular-dependent MR indicates a magnetic phase space hosting 2-in-2-out (2I2O) spin ice order. Such anomalous magnetotransport calls for re-evaluation of the pyrochlore iridate phase diagram, as epitaxially strained Pb227 exhibits traits reminiscent of both the insulating magnetic and metallic spin-liquid members. Furthermore, these results open avenues for realizing topological phase predictions in (111) - oriented pyrochlore slabs of kagome-triangular iridate heterostructures. This work is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.

  9. Fluctuation, thermal impurity depinning and commensurate-incommensurate transition of charge density waves on the (100) face of W

    International Nuclear Information System (INIS)

    Chui, S.T.

    1979-01-01

    Recent experiments on the (100) face of W with and without H are interpreted. The significance of large thermal fluctuations in low dimensionality situation and their observation in the present system is pointed out. A thermal impurity depinning transition is discussed. The existence of a commensurate-incommensurate transition as hydrogen coverage is changed is speculated. (author)

  10. Magnetic phase diagrams of UNiGe

    International Nuclear Information System (INIS)

    Nakotte, H.; Hagmusa, I.H.; Klaasse, J.C.P.; Hagmusa, I.H.; Klaasse, J.C.P.

    1997-01-01

    UNiGe undergoes two magnetic transitions in zero field. Here, the magnetic diagrams of UNiGe for B parallel b and B parallel c are reported. We performed temperatures scans of the magnetization in static magnetic fields up to 19.5T applied along the b and c axes. For both orientations 3 magnetic phases have been identified in the B-T diagrams. We confirmed the previously reported phase boundaries for B parallel c, and in addition we determined the location of the phase boundaries for B parallel b. We discuss a possible relationship of the two zero-field antiferromagnetic phases (commensurate: T<42K; incommensurate: 42K< T<50K) and the field-induced phase, which, at low temperatures, occurs between 18 and 25T or 4 and 10T for B parallel b or B parallel c, respectively. Finally, we discuss the field dependence of the electronic contribution γ to the specific heat for B parallel c up to 17.5T, and we find that its field dependence is similar to the one found in more itinerant uranium compounds

  11. Sodium ordering and the control of magnetism in sodium cobaltate

    International Nuclear Information System (INIS)

    Morris, D.J.P.; Roger, M.; Tennant, D.A.; Goff, J.P.; Gutmann, M.J.; Hoffmann, J.-U.; Prabhakaran, D.; Shannon, N.; Lake, B.; Deen, P.P.

    2007-01-01

    The long-range three-dimensional ordering of Na + ions was studied in a sample of composition Na 0.75 CoO 2 using single-crystal neutron diffraction. Large-scale numerical simulations reveal the ordering principle for this system, the formation of multi-vacancy charged droplets then order long range, and the structure factors from these defect clusters are in good agreement with the observed neutron diffraction intensities. The electrostatic potential is found to be the dominant factor in determining the sodium ordering and its associated distortion field. The superstructures induce a periodic potential in the CoO 2 , giving potential wells that are larger than the single-particle hopping frequency and so able to localize holes. The results readily explain many of the observed electrical and magnetic properties, including the three dimensionality of the magnetic excitations

  12. Magnetic ordering and specific heat analysis of TmPtSn

    Czech Academy of Sciences Publication Activity Database

    Vejpravová, J.; Svoboda, P.; Šebek, Josef; Janeček, M.; Komatsubara, T.

    2003-01-01

    Roč. 328, - (2003), s. 142-144 ISSN 0921-4526 R&D Projects: GA ČR GA106/02/0943 Grant - others:GA UK(CZ) 165/01; VACUUM PRAHA(CZ) 2002 Keywords : rare-earth intermetallic compounds * magnetic ordering * specific heat Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.908, year: 2003

  13. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    Science.gov (United States)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  14. Local order and magnetism of amorphous and disordered solids

    International Nuclear Information System (INIS)

    Friedt, J.M.

    1985-01-01

    Some topics related with the magnetic properties and local order in amorphous and disordered solids studied by Moessbauer spectroscopy, EXAFS, static and dynamical susceptibilities are presented. (L.C.) [pt

  15. Order of magnetic transition and large magnetocaloric effect in Er3Co

    International Nuclear Information System (INIS)

    Jun, Shen; Jian-Feng, Wu; Jin-Liang, Zhao; Feng-Xia, Hu; Ji-Rong, Sun; Bao-Gen, Shen

    2010-01-01

    We have studied the magnetic and magnetocaloric properties of the Er 3 Co compound, which undergoes ferromagnetic ordering below the Curie temperature T C = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er 3 Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around T C is found to result from the second-order ferromagnetic-to-paramagnetic transition. The maximal value of magnetic entropy change is 24.5 J/kg·K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0–5 T. Large reversible MEC and RC indicate the potentiality of Er 3 Co as a candidate magnetic refrigerant at low temperatures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Localized and Delocalized Motion of Colloidal Particles on a Magnetic Bubble Lattice

    International Nuclear Information System (INIS)

    Tierno, Pietro; Fischer, Thomas M.; Johansen, Tom H.

    2007-01-01

    We study the motion of paramagnetic colloidal particles placed above magnetic bubble domains of a uniaxial garnet film and driven through the lattice by external magnetic field modulation. An external tunable precessing field propels the particles either in localized orbits around the bubbles or in superdiffusive or ballistic motion through the bubble array. This motion results from the interplay between the driving rotating signal, the viscous drag force and the periodic magnetic energy landscape. We explain the transition in terms of the incommensurability between the transit frequency of the particle through a unit cell and the modulation frequency. Ballistic motion dynamically breaks the symmetry of the array and the phase locked particles follow one of the six crystal directions

  17. The influence of incommensurability on the long-range periodicity of the Pd(100)-(√{ 5 } ×√{ 5 })R27°-PdO(101)

    Science.gov (United States)

    Shipilin, Mikhail; Stierle, Andreas; Merte, Lindsay R.; Gustafson, Johan; Hejral, Uta; Martin, Natalia M.; Zhang, Chu; Franz, Dirk; Kilic, Volkan; Lundgren, Edvin

    2017-06-01

    The structural model of the (√{ 5 } ×√{ 5 })R27°-PdO(101) surface oxide grown on Pd(100) has been proposed and refined by a number of authors over more than a decade. In the current contribution we discuss the long-range periodicity of this structure arising along one of the crystallographic directions due to its incommensurability with the substrate. Analyzing the results of surface sensitive diffraction studies, we determined a slight distortion of the previously reported perfect (√{ 5 } ×√{ 5 })R27° surface oxide unit cell. Considering it, we were able to achieve both qualitatively and quantitatively better fit to the experimental diffraction data than it was possible for the perfect structure. Further, taking into account the experimentally obtained scanning tunneling microscopy data and closely examining high-resolution patterns recorded by means of high-energy surface X-ray diffraction, we developed a qualitative structural model based on a larger non-orthogonal surface unit cell to shed more light on the long-range order of the PdO(101) surface oxide. The model comprises a shift of the atoms of the PdO perpendicularly to the direction of the incommensurability to correct for it. This structural model reproduces the fine details of the high-resolution diffraction patterns and qualitatively explains the periodic stripes of structural distortion observed in the images recorded by a scanning tunneling microscope.

  18. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    Science.gov (United States)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  19. Crossover phenomena in the critical range near magnetic ordering transition

    Science.gov (United States)

    Köbler, U.

    2018-05-01

    Among the most important issues of Renormalization Group (RG) theory are crossover events and relevant (or non-relevant) interactions. These terms are unknown to atomistic theories but they will be decisive for future field theories of magnetism. In this experimental study the importance of these terms for the critical dynamics above and below magnetic ordering transition is demonstrated on account of new analyses of published data. When crossover events are overlooked and critical data are fitted by a single power function of temperature over a temperature range including a crossover event, imprecise critical exponents result. The rather unsystematic and floating critical exponents reported in literature seem largely to be due to this problem. It is shown that for appropriate data analyses critical exponents are obtained that are to a good approximation rational numbers. In fact, rational critical exponents can be expected when spin dynamics is controlled by the bosons of the continuous magnetic medium (Goldstone bosons). The bosons are essentially magnetic dipole radiation generated by the precessing spins. As a result of the here performed data analyses, critical exponents for the magnetic order parameter of β = 1/2, 1/3, 1/4 and 1/6 are obtained. For the critical paramagnetic susceptibility the exponents are γ = 1 and γ = 4/3.

  20. Two iridates, two models, and two approaches: A comparative study on magnetism in three-dimensional honeycomb materials

    Science.gov (United States)

    Lee, Eric Kin-Ho; Rau, Jeffrey G.; Kim, Yong Baek

    2016-05-01

    Two recent theoretical works studied the role of Kitaev interactions in the newly observed incommensurate magnetic order in the hyper-honeycomb (β -Li2IrO3 ) and stripy-honeycomb (γ -Li2IrO3 ) iridates. Each of these works analyzed a different model (J K Γ versus coupled zigzag chain model) using a contrasting method (classical versus soft-spin analysis). The lack of commonality between these works precludes meaningful comparisons and a proper understanding of these unusual orderings. In this study, we complete the unfinished picture initiated by these two works by solving both models with both approaches for both three-dimensional (3D) honeycomb iridates. Through comparisons between all combinations of models, techniques, and materials, we find that the bond-isotropic J K Γ model consistently predicts the experimental phase of β -Li2IrO3 regardless of the method used, while the experimental phase of γ -Li2IrO3 can be generated by the soft-spin approach with eigenmode mixing irrespective of the model used. To gain further insights, we solve a one-dimensional (1D) quantum spin-chain model related to both 3D models using the density matrix renormalization group method to form a benchmark. We discover that in the 1D model, incommensurate correlations in the classical and soft-spin analysis survive in the quantum limit only in the presence of the symmetric-off-diagonal exchange Γ found in the J K Γ model. The relevance of these results to the real materials is also discussed.

  1. Thermal expansion at the incommensurate phase transition in [N(CH3)4]2ZnCl4-xBrx crystals

    NARCIS (Netherlands)

    Maior, M.M.; Loosdrecht, P.H.M. van; Kempen, H. van; Molnar, S.B.; Slivka, V.Yu.

    1994-01-01

    The temperature dependence of the thermal expansion in the vicinity of the incommensurate phase transition in [N(CH3)4]2ZnCl4-xBrx mixed crystals is found to deviate from that predicted within the Landau theory of phase transitions. It is shown that the dominant contribution to this deviation in the

  2. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    Verbeek, B.H.

    1979-01-01

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  3. Magnetism and atomic short-range order in Ni-Rh alloys

    Science.gov (United States)

    Carnegie, D. W., Jr.; Claus, H.

    1984-07-01

    Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.

  4. Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization

    International Nuclear Information System (INIS)

    Biddle, J.; Das Sarma, S.

    2010-01-01

    Localization properties of noninteracting quantum particles in one-dimensional incommensurate lattices are investigated with an exponential short-range hopping that is beyond the minimal nearest-neighbor tight-binding model. Energy dependent mobility edges are analytically predicted in this model and verified with numerical calculations. The results are then mapped to the continuum Schroedinger equation, and an approximate analytical expression for the localization phase diagram and the energy dependent mobility edges in the ground band is obtained.

  5. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  6. Non-conventional ordering studied by magnetic resonance in Fe-doped manganites

    International Nuclear Information System (INIS)

    Gutierrez, J.; Siruguri, V.; Barandiaran, J.M.; Pena, A.; Lezama, L.; Rojo, T.

    2006-01-01

    Coexistence of ferromagnetic (FM) and paramagnetic (PM) phases in La 0.7 Pb 0.3 (Mn 1-x Fe x )O 3 (0.1=< x=<0.3) manganites is studied by the electron spin resonance (ESR) technique. Doping with Fe gives rise to a progressive decrease both in the low-temperature magnetic moment and magnetic order temperature values. Obtained spectra show narrow resonance signals above Curie temperature that transform to asymmetric Dyson-like signals as temperature decreases. The evolution of line width with temperature shows minima that correlate directly with the obtained paramagnetic Curie temperatures. Analysis of spectra above and below magnetic order temperatures reveals features of complex PM to FM transitions and coexistence of both type of phases in a wide range of temperatures

  7. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  8. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why?

    Directory of Open Access Journals (Sweden)

    Andrey V. Chubukov

    2016-12-01

    Full Text Available Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s^{+-} superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s^{+-} superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe_{2}As_{2} and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-based materials.

  9. Impurity effects on the magnetic ordering in chromium

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1992-05-01

    It is well-known that impurities profoundly alter the magnetic properties of chromium. While vanadium impurities suppress the Neel temperature T N , manganese impurities enhanced T N substantially. As evidenced by neutron scattering experiments, doping with as little as 0.2% vanadium changes the transition from weakly first order to second order. Young and Sokoloff explained that the first-order transition in pure chromium is caused by a charge-density wave which is the second harmonic of the spin-density wave. By examining the subtle balance between the spin-density and charge- density wave terms in the mean-field free energy, we find that the first-order transition is destroyed when the vanadium concentration exceeds about 0.15%, in agreement with experiments

  10. Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides

    International Nuclear Information System (INIS)

    Anisimov, M. A.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Samarin, N. A.; Filipov, V. B.; Shitsevalova, N. Yu.; Kuznetsov, A. V.; Sluchanko, N. E.

    2009-01-01

    The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB 6 and NdB 6 ) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB 6 and NdB 6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (-Δρ/ρ ∝ H 2 ), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB 6 and NdB 6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB 6 and NdB 6 , ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χ loc has been estimated. It has been demonstrated that, in the temperature range T N loc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χ loc ∝ (T - Θ p ) -1 .

  11. Magnetic-field-induced spin excitations and renormalized spin gap of the underdoped La1895Sr0105CuO4 superconductor

    DEFF Research Database (Denmark)

    Chang, J.; Schnyder, A.P.; Gilardi, R.

    2007-01-01

    High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895Sr0.105CuO4 (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer Q(IC)=(0.5,0.5 +/-delta,0),(0.5 +/-delta,0.5,0) ...

  12. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  13. Phase diagram of 2D Hubbard model by simulated annealing mean field approximation

    International Nuclear Information System (INIS)

    Kato, Masaru; Kitagaki, Takashi

    1991-01-01

    In order to investigate the stable magnetic structure of the Hubbard model on a square lattice, we utilize the dynamical simulated annealing method which proposed by R. Car and M. Parrinello. Results of simulations on a 10 x 10 lattice system with 80 electrons under assumption of collinear magnetic structure that the most stable state is incommensurate spin density wave state with periodic domain wall. (orig.)

  14. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Caspi, E.N.; Melamud, M.; Pinto, H.; Shaked, H.; Chmaissem, O.; Jorgensen, J.D.; Short, S.

    1999-01-01

    Complete text of publication follows. In a previous work on the (U 1-x Nd x )Co 2 Ge 2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: T N (x=0.4) = 130 K, and T N (x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  15. On magnetic ordering in heavily sodium substituted hole doped lanthanum manganites

    Energy Technology Data Exchange (ETDEWEB)

    Sethulakshmi, N. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Unnimaya, A.N. [Centre for Materials for Electronic Technology (CMET), Thrissur 680581, Kerala (India); Al-Omari, I.A.; Al-Harthi, Salim [Department of Physics, Sultan Qaboos University, PC 123 Muscat (Oman); Sagar, S. [Government College for Women, Thiruvananthapuram 695014, Kerala (India); Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala (India); Srinivasan, G. [Department of Physics, Oakland University, Rochester (United States); Anantharaman, M.R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2015-10-01

    Mixed valence manganite system with monovalent sodium substituted lanthanum manganites form the basis of the present work. Lanthanum manganites belonging to the series La{sub 1−x}Na{sub x}MnO{sub 3} with x=0.5–0.9 were synthesized using modified citrate gel method. Variation of lattice parameters and unit cell volume with Na concentration were analyzed and the magnetization measurements indicated ferromagnetic ordering in all samples at room temperature. Low temperature magnetization behavior indicated that all samples exhibit antiferromagnetism along with ferromagnetism and it has also been observed that antiferromagnetic ordering dominates ferromagnetic ordering as concentration is increased. Evidence for such a magnetic inhomogeneity in these samples has been confirmed from the variation in Mn{sup 3+}/Mn{sup 4+} ion ratio from X-ray Photoelectron Spectroscopy and from the absorption peak studies using Ferromagnetic Resonance Spectroscopy. - Highlights: • Higher substitution of more than 50 percent of monovalent ion, sodium for La sites in lanthanum manganites scarce in literature. • Structural studies using XRD and further structure refinement by Rietveld refinement confirmed orthorhombic pbnm spacegroup. • Ferromagnetic behavior at room temperature with saturation magnetization decreasing with increase in sodium concentration. • M vs T measurements using FC ZFC proved coexisting FM/AFM behavior arising from exchange interactions between different valence states of Mn ions. • Disparity in ratio of Mn valence ions indicated presence of vacancies providing the role of vacancies and oxygen stoichiometry in deciding magnetic inhomogeneity.

  16. Neutron diffraction study of the magnetic long-range order in Tb

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1967-01-01

    Like other heavy rare-earth metals, Tb exhibits a magnetic phase with a spiral structure. This appears within the temperature region from 216 to 226deg K between the ferromagnetic phase and the paramagnetic phase. The transition between ferromagnetic and spiral structure is of first order and imp...... at 216deg K to 20.7deg at 226deg K. The temperature variation of the transverse magnetostriction has also been measured and was found to vary approximately in proportion to the square of the magnetic long-range order....

  17. Dynamic magnetic susceptibility of systems with long-range magnetic order

    International Nuclear Information System (INIS)

    Vannette, Matthew Dano

    2009-01-01

    The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, ?, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies (∼10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in ? which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in ? well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.

  18. Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi

    NARCIS (Netherlands)

    Pan, Y.; Nikitin, A.M.; Bay, T.V.; Huang, Y.K.; Paulsen, C.; Yan, B.H.; de Visser, A.

    2013-01-01

    We report superconductivity at Tc = 1.22 K and magnetic order at TN = 1.06\\ K in the semimetallic noncentrosymmetric half-Heusler compound ErPdBi. The upper critical field, Bc2, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T - 0 . Magnetic order is found below

  19. Magnetic order, hysteresis, and phase coexistence in magnetoelectric LiCoPO4

    DEFF Research Database (Denmark)

    Fogh, Ellen; Toft-Petersen, Rasmus; Ressouche, Eric

    2017-01-01

    The magnetic phase diagram of magnetoelectric LiCoPO4 is established using neutron diffraction and magnetometry in fields up to 25.9 T applied along the crystallographic b axis. For fields greater than 11.9 T, the magnetic unit cell triples in size with propagation vector Q = (0, 1...... ≈ to (0, 1/2,0) appear for increasing fields in the hysteresis region below the transition field. Traces of this behavior are also observed in the magnetization. A simple model based on a mean-field approach is proposed to explain these additional ordering vectors. In the field interval 20.5-21.0 T....../3,0). A magnetized elliptic cycloid is formed with spins in the (b, c) plane and the major axis oriented along b. Such a structure allows for the magnetoelectric effect with an electric polarization along c induced by magnetic fields applied along b. Intriguingly, additional ordering vectors Q ≈ to (0, 1/4,0) and Q...

  20. Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order

    International Nuclear Information System (INIS)

    Pelka, R; Balanda, M; Pinkowicz, D; Drath, O; Nitek, W; Sieklucka, B; Rams, M; Majcher, A

    2011-01-01

    Isostructural series of chemical formula {[M II (pirazol) 4 ] 2 [Nb IV (CN) 8 ]· 4H 2 O} n (M II = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.

  1. Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order

    Science.gov (United States)

    Pełka, R.; Pinkowicz, D.; Drath, O.; Bałanda, M.; Rams, M.; Majcher, A.; Nitek, W.; Sieklucka, B.

    2011-07-01

    Isostructural series of chemical formula {[MII(pirazol)4]2[NbIV(CN)8]· 4H2O}n (MII = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.

  2. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  3. Electronic structures and magnetism of CaFeAsH and CaFeAsF

    International Nuclear Information System (INIS)

    Wang Guangtao; Shi Xianbiao; Liu Haipeng; Liu Qingbo

    2015-01-01

    We studied the electronic structures, magnetism, and Fermi surface (FS) nesting of CaFeAsH and CaFeAsF by first-principles calculations. In the nonmagnetic (NM) states, we found strong FS nesting, which induces magnetic instability and a spin density wave (SDW). Our calculations indicate that the ground state of CaFeAsH and CaFeAsF is the stripe antiferromagnetic state. The calculated bare susceptibility χ 0 (q) peaked at the M-point and was clearly suppressed and became slightly incommensurate with both electron doping and hole doping for both materials. (author)

  4. Solitonic lattice and Yukawa forces in the rare-earth orthoferrite TbFeO3

    DEFF Research Database (Denmark)

    Artyukhin, Sergey; Mostovoy, Maxim; Jensen, Niels Paduraru

    2012-01-01

    of higher-order harmonics. These domain walls are formed by Ising-like Tb spins. They interact by exchanging magnons propagating through the Fe magnetic sublattice. The resulting force between the domain walls has a rather long range that determines the period of the incommensurate state and is analogous...

  5. Explicit higher order symplectic integrator for s-dependent magnetic field

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D.S.

    2001-01-01

    We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings

  6. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  7. Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1-xCox)2As2

    DEFF Research Database (Denmark)

    Larsen, Jacob; Uranga, B. Mencia; Stieber, G.

    2015-01-01

    We have studied the magnetic and superconducting properties of Ba(Fe1-xCox)2As2 as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist...... and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can...... slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments....

  8. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Science.gov (United States)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  9. Moessbauer spectroscopic studies of magnetically ordered biological materials

    International Nuclear Information System (INIS)

    Dickson, D.P.E.

    1987-01-01

    This paper discusses recent work showing the application of Moessbauer spectroscopy to the study of the properties of the magnetically ordered materials which occur in a variety of biological systems. These materials display a diversity of behaviour which provides good examples of the various possibilities which can arise with iron-containing particles of different compositions and sizes. (orig.)

  10. Quantitative atom column position analysis at the incommensurate interfaces of a (PbS)1.14NbS2 misfit layered compound with aberration-corrected HRTEM

    International Nuclear Information System (INIS)

    Garbrecht, M.; Spiecker, E.; Tillmann, K.; Jaeger, W.

    2011-01-01

    Aberration-corrected HRTEM is applied to explore the potential of NCSI contrast imaging to quantitatively analyse the complex atomic structure of misfit layered compounds and their incommensurate interfaces. Using the (PbS) 1.14 NbS 2 misfit layered compound as a model system it is shown that atom column position analyses at the incommensurate interfaces can be performed with precisions reaching a statistical accuracy of ±6 pm. The procedure adopted for these studies compares experimental images taken from compound regions free of defects and interface modulations with a structure model derived from XRD experiments and with multi-slice image simulations for the corresponding NCSI contrast conditions used. The high precision achievable in such experiments is confirmed by a detailed quantitative analysis of the atom column positions at the incommensurate interfaces, proving a tetragonal distortion of the monochalcogenide sublattice. -- Research Highlights: → Quantitative aberration-corrected HRTEM analysis of atomic column positions in (PbS) 1.14 NbS 2 misfit layered compound reveals tetragonal distortion of the PbS subsystem. → Detailed comparison of multi-slice simulations with the experimental NCSI contrast condition imaging results lead to a high precision (better than 10 pm) for determining the positions of atoms. → Precision in gaining information of local structure at atomic scale is demonstrated, which may not be accessible by means of X-ray and neutron diffraction analysis.

  11. Signature of the magnetic transitions in Y0.2Pr0.8Ba2Cu3O7-δ in high field angular magnetoresistivity

    International Nuclear Information System (INIS)

    Sandu, V; Zhang, C; Almasan, C C; Taylor, B J; Maple, M B

    2006-01-01

    In-plane (ab) and out-of-plane (c-axis) magnetoresistivity display different symmetry crossovers and/or transitions in 14 T magnetic field applied parallel to the CuO 2 planes. The in-plane magnetoresistivity crosses over from four-fold symmetry below 6 K to two-fold symmetry at higher temperatures, which becomes dominant at temperatures higher than 40 K. The out-of-plane magnetoresistivity changes at 17 K from four fold symmetry to ordinary sin 2 θ at higher temperatures. The behaviour of the c-axis magnetoresistivity can be ascribed to the antiferromagnetic ordering of the Pr spins whereas the symmetry change of the in-plane magnetoresistivity at 6 K might be attributed to commensurate to incommensurate crossovers of the spin subsystems. The antiferromagnetic order of the Cu(2) sublattice seems to have only a week effect on the magnetoresistivity

  12. The History and Significance of the Incommensurability Thesis

    Science.gov (United States)

    Pearce, James Jacob

    The incommensurability thesis (IT) maintains that there are no non-prejudicial means of choosing between competing theories in the empirical sciences. If true, IT would entail that natural science is a fundamentally subjective or irrational activity. Should this latter claim prove justifiable, then empirical science cannot be regarded as an organ of objective knowledge, and "scientific realism" is eo ipso false. I follow the origin of IT from its pre-history in Logical Positivism, through certain preliminary philosophical developments in the work of Karl Popper, W. V. O. Quine, Stephen Toulmin and N. R. Hanson, to the eventual formulation and introduction of IT by Thomas Kuhn and Paul Feyerabend. I then examine the rigorous criticism of IT by various philosophers since about 1964, and discuss different methods of objective theory comparison which have been advanced by such philosophers as Hilary Putnam, W. H. Newton-Smith, Michael Devitt, Hartry Field, Philip Kitcher and Howard Sankey. I conclude by arguing for two counterintuitive claims: (1) Even if true, IT fails to provide evidence against scientific realism. (2) In fact, the truth of IT actually furnishes evidence for a necessary condition for scientific realism, and hence evidence which can be construed as indirectly favorable to scientific realism.

  13. Evidence of the extended orientational order in amorphous alloys obtained from magnetic measurements

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Tejada, J.

    1993-01-01

    Magnetic measurements of R-Fe-B (R = rare earth) amorphous alloys show that magnetic anisotropy axes are correlated on the scale ∼ 100 A. The X-ray study of these materials does not reveal any positional correlations beyond the 10 A scale. These observations support theoretical suggestions that the orientational order in amorphous systems can be much more extended than the positional order. (orig.)

  14. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    International Nuclear Information System (INIS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm 0.65 Ca 0.35 MnO 3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario

  15. Neutron Diffraction Studies of Nuclear Magnetic Ordering in Copper

    DEFF Research Database (Denmark)

    Jyrkkiö, T.A.; Huiku, M.T.; Siemensmeyer, K.

    1989-01-01

    for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized...... to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation...

  16. Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order

    Energy Technology Data Exchange (ETDEWEB)

    Pelka, R; Balanda, M [Institute of Physics PAN, Radzikowskiego 152, 31-342, Krakow (Poland); Pinkowicz, D; Drath, O; Nitek, W; Sieklucka, B [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Rams, M; Majcher, A, E-mail: robert.pelka@ifj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2011-07-06

    Isostructural series of chemical formula {l_brace}[M{sup II}(pirazol){sub 4}]{sub 2}[Nb{sup IV}(CN){sub 8}]{center_dot} 4H{sub 2}O{r_brace}{sub n} (M{sup II} = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.

  17. A search for strong, ordered magnetic fields in Herbig Ae/Be stars

    Science.gov (United States)

    Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.

    2007-04-01

    The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe

  18. Unconventional magnetic phase separation in γ -CoV2O6

    Science.gov (United States)

    Shen, L.; Jellyman, E.; Forgan, E. M.; Blackburn, E.; Laver, M.; Canévet, E.; Schefer, J.; He, Z.; Itoh, M.

    2017-08-01

    We have explored the magnetism in the nongeometrically frustrated spin-chain system γ -CoV2O6 which possesses a complex magnetic exchange network. Our neutron diffraction patterns at low temperatures (T ≤TN=6.6 K) are best described by a model in which two magnetic phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a single spin modulation. This model fits previous studies and our observations better than the model proposed by Lenertz et al. [J. Phys. Chem. C 118, 13981 (2014), 10.1021/jp503389c], which consisted of one phase with two spin modulations. By decreasing the temperature from TN, the minority phase of our model undergoes an incommensurate-commensurate lock-in transition at T*=5.6 K. Based on these results, we propose that phase separation is an alternative approach for degeneracy-lifting in frustrated magnets.

  19. Magnetic ordering at low temperatures in some random superconducting and insulating compounds

    International Nuclear Information System (INIS)

    Hueser, D.

    1985-01-01

    This thesis presents the results of some investigations on the magnetic ordering phenomena in some random superconducting and insulating materials. The results are described of an investigation of the coexistence of superconductivity and random magnetic freezing in (Th,Nd)Ru 2 . On the basis of various measurements as function of temperature and external magnetic field the author found that spin glass-like freezing can occur far below the superconductivity and even that a sample may re-enter the superconducting state below a freezing temperature. Associated with the isothermal remanent magnetization of a random magnetic material he observed strong anomalies in the critical field versus temperature curves. Also a magnetic field memory effect has been found. (Auth.)

  20. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  1. “不可通约性”论题的语言转向%Linguistic Turn of Incommensurability Issue

    Institute of Scientific and Technical Information of China (English)

    刘涛

    2015-01-01

    《科学革命的结构》出版后即引起了激烈的论战。由于库恩的不可通约性论点过分强调理论的不可比性,而采取了否认科学进步的极端观点,波普尔、拉卡托斯、夏皮尔等都指责库恩陷入相对主义和非理性主义范式,并且存在范式概念模糊不清的问题。这些人对《科学革命的结构》的解读,特别是对不可通约性概念的理解,均不能令库恩满意。当库恩不再谈论范式时,他希望对不可通约性概念更加精细地说明,能够为自己的立场提供坚实的基础。因此库恩在后期的主要研究旨趣,是要填补《科学革命的结构》遗漏的哲学环节。但在库恩看来,无论是传统的意义理论还是新的指称因果理论,都不能有效地说明科学革命后同一术语的意义变化。为此,库恩希望借助语言分析,对不可通约性提出新的分类学解释,这就是人们通常所理解的“语言转向”。研究通过对库恩在这一问题上的思想变化历程的考察指明这一变化的实际可能性,既是其应对批评的内在需要,也是他为挽救科学哲学而作的一种努力。%The publication of The Structure of Scientific Revolution caused an intensive controversy:Kuhn over-emphasized the point of incommensurability and took an extreme viewpoint that denied scientific development .Karl Popper, Lakatos, Dudley Shapere all pointed out that Kuhn had fallen into relativism and irrational paradigm , and there existed problems of vague concept of paradigm .The interpretation of The Structure of Scientific Revolution of those people , especially their understanding towards the concept of incommensurability , could not satisfied Kuhn . When Kuhn did not talk about paradigm , he hoped to elaborate the concept of incommensurability in order to pro-vide his standpoint with a stronger basis .So Kuhn ’ s later research aimed to complete the missing philosophical link in

  2. Spin-phonon and magnetostriction phenomena in CaMn7O12 helimagnet probed by Raman spectroscopy

    International Nuclear Information System (INIS)

    Nonato, A.; Araujo, B. S.; Ayala, A. P.; Maciel, A. P.; Yanez-Vilar, S.; Sanchez-Andujar, M.; Senaris-Rodriguez, M. A.; Paschoal, C. W. A.

    2014-01-01

    In this letter, we investigated the temperature-dependent Raman spectra of CaMn 7 O 12 helimagnet from room temperature down to 10 K. The temperature dependence of the Raman mode parameters shows remarkable anomalies for both antiferromagnetic and incommensurate transitions that this compound undergoes at low temperatures. The anomalies observed at the magnetic ordering transition indicate a spin-phonon coupling at higher-temperature magnetic transition in this material, while a magnetostriction effect at the lower-temperature magnetic transition

  3. Evidence for a New Magnetoelectric Effect of Current-Induced Magnetization in a Toroidal Magnetic Ordered State of UNi$_4$B

    OpenAIRE

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-01-01

    Magnetization measurements under direct electric currents were performed for toroidal magnetic ordered state of UNi$_4$B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local inversion symmetry.We found that each of the electric currents parallel to [$2\\bar{1}\\bar{1}0$] and [$0001$] in the hexagonal 4-index notation induces uniform magnetization in the direction of [$01\\bar{1}0$].The observed behavior of the induced magnetization is essent...

  4. Bandstructure study of magnetic and orbital order in BaCoO3

    International Nuclear Information System (INIS)

    Pardo, V.; Blaha, P.; Iglesias, M.; Baldomir, D.; Schwarz, K.; Pereiro, M.; Botana, J.; Arias, J.E.

    2005-01-01

    Ab initio calculations were performed in the quasi-one-dimensional BaCoO 3 using the FP-APW+lo method as implemented in the WIEN2k package utilizing the LDA+U approach. Several magnetic configurations were studied, exploring different intra- and inter-chain couplings. The most stable configuration is the ferromagnetic low-spin state. The electronic structure of the Co 4+ ion (t 2g 5 ) has an orbital degree of freedom. When an 'alternating-orbital' ordering is allowed along the Co chains, the energy of the system is drastically reduced, whereas the magnetic order is a secondary effect. This orbital ordered state reproduces the experimentally found semiconducting behaviour, which is analysed studying the bandstructure of the material

  5. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    International Nuclear Information System (INIS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Aeschlimann, Martin; Cinchetti, Mirko; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G F; Wurmehl, Sabine; Balke, Benjamin

    2015-01-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics.Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co 2 Fe 1 − x Mn x Si. The local ordering is studied by 59 Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  6. Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.

  7. Magnetic and magnetocaloric properties in La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3} exhibiting first-order and second-order magnetic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ho, T.A. [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Dang, N.T. [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam); Phan, The-Long [Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Yang, D.S. [Physics Division, School of Science Education, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, B.W. [Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Yu, S.C., E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2016-08-15

    Polycrystalline orthorhombic samples La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3} (x = 0–0.09) were prepared by solid-state reaction. The study of magnetic properties revealed that the ferromagnetic-paramagnetic (FM-PM) transition temperature (T{sub C}) increases from 255 to about 271 K with increasing Na-doping content (x) from 0 to 0.09, respectively. Around the T{sub C}, we have found the samples showing a large magnetocaloric (MC) effect with maximum values of magnetic entropy change (|ΔS{sub max}|) of 7–8 J kg{sup −1} K{sup −1} and relative cooling power RCP = 232–236 J/kg for the samples x = 0.03–0.09 in a magnetic-field interval ΔH = 40 kOe. Detailed analyses of isothermal magnetization data M(T, H) based on Banerjee's criteria indicated a first-to-second-order magnetic-phase transformation taking place at a threshold Na-doping concentration x{sub c} ≈ 0.06. This could also be observed clearly from the feature of entropy universal curves. An assessment of the magnetic-ordering exponent N = dLn|ΔS{sub m}|/dLnH demonstrates an existence of short-range magnetic order in the samples. We believe that the changes of the magnetic properties and MC effect in La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3} caused by Na doping are related to the changes in the structural parameters and Mn{sup 4+}/Mn{sup 3+} ratio, which are confirmed by the geometrical and electronic analyses based on X-ray diffraction and X-ray absorption fine structure. - Highlights: • Geometrical and electronic structures of La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3}. • Threshold of first-to-second-order phase transformation in La{sub 0.7}Ca{sub 0.3−x}Na{sub x}MnO{sub 3}. • Large magneto-caloric effect with |ΔS{sub max}| ≈ 7–8 J kg{sup −1} K{sup −1}, and RCP = 232–236 J/kg. • Universal curve of magnetic-entropy change.

  8. Ordering due to disorder in frustrated quantum magnetic system

    International Nuclear Information System (INIS)

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  9. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    Science.gov (United States)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  10. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad, E-mail: apjena@bose.res.in [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab, E-mail: biplab.sanyal@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-01-15

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied.

  11. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    International Nuclear Information System (INIS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied

  12. Magnetic order in Pu2M3Si5 (M = Co, Ni)

    International Nuclear Information System (INIS)

    Bauer, E D; Tobash, P H; Mitchell, J N; Kennison, J A; Ronning, F; Scott, B L; Thompson, J D

    2011-01-01

    The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu 2 M 3 Si 5 (M = Co, Ni) are reported. Pu 2 Ni 3 Si 5 crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, which can be considered a variant of the BaAl 4 tetragonal structure, while Pu 2 Co 3 Si 5 adopts the closely related monoclinic Lu 2 Co 3 Si 5 type. Magnetic order is observed in both compounds, with Pu 2 Ni 3 Si 5 ordering ferromagnetically at T C = 65 K then undergoing a transition into an antiferromagnetic state below T N = 35 K. Two successive magnetic transitions are also observed at T mag1 = 38 K and T mag2 = 5 K in Pu 2 Co 3 Si 5 . Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient γ ∼ 100 mJ/mol Pu K 2 in the magnetic state with comparable RKKY and Kondo energy scales.

  13. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    Science.gov (United States)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; Choi, Yongseong; Haskel, Daniel; Lee, Young S.

    2018-02-01

    The application of pressure reveals a rich phase diagram for the quantum S =1 /2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T =4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ˜6 GPa up to 215 K but possibly extends in temperature to above T =300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.

  14. Phasons modulate the atomic Debye-Waller factors in incommensurate structures: Experimental evidence in ThBr4 at 55 K

    International Nuclear Information System (INIS)

    Madariaga, G.; Perez-Mato, J.M.; Aramburu, I.

    1993-01-01

    The incommensurate displacive structure of β-ThBr 4 at 55 K has been determined from a neutron diffraction data set including main reflections and first-order satellites. The superspace group is Psub(s anti 1 s1)sup(I4 1 /amd). Final agreement factors are 0.0193, 0.0186 and 0.045 for all, main and satellite reflections, respectively. It is shown that the effect of phasons on the atomic Debye-Waller factors can be quantified by two additional structural parameters: The modulus β 11,2 Br and the phase χ 11,2 Br of a second harmonic that spatially modulates the temperature factors of Br atoms. Results are in good agreement, within the resolution of the experimental data, with the theoretically expected value for χ 11,2 Br . Crystal data for the average structure: M r =551.65, tetragonal, I4 1 /amd, a=8.919(1), c=7.902(1) A, V=628.6(2) A 3 , Z=4, D x =5.82 Mg m -3 , λ=0.84 A, wavevector q=0.32c*. (orig.)

  15. Pressure effects on the magnetic behaviour of copper (II) compounds: magnetic ordering of layered organic/inorganic magnets

    International Nuclear Information System (INIS)

    Levchenko, G; Varyukhin, V N; Berezhnaya, L V; Rusakov, V F

    2012-01-01

    The high hydrostatic pressure effect on the magnetic properties of the layered hybrid compounds Cu 2 (OH) 3 (C n H 2n+1 CO 2 )⋅mH 2 O with distance between magnetic layers of up to 40 Å is studied. It is shown that the temperature of the ferromagnetic ordering decreases linearly with pressure increase. From measurements of susceptibility in the paramagnetic region, using both quantum Heisenberg and Ising exchange coupling models in layers and dipole interaction between layers, the in- and interlayer interactions are deduced. The dipole interactions are calculated and are shown to coincide with the model of Ising interactions in the layers. The value and decrease of T c under pressure are mainly driven by the value and decrease of the in-plane interactions. The formation of the long range ordering in the layered sample with dipolar interaction between layers is analysed. As a conclusion it is suggested that for designing high temperature ferromagnetism in layer compounds it is enough to have large in-plane interactions of ions with specific symmetry in layers and weak dipole interactions between layers. (paper)

  16. Double symmetry breaking in TmFe{sub 4}Ge{sub 2} compared to RFe{sub 4}Ge{sub 2} (R=Y, Lu, Er, Ho, Dy) magnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Schobinger-Papamantellos, P., E-mail: Schobinger@mat.ethz.ch [Laboratory of Crystallography, ETH-Zürich, 8093 Zürich (Switzerland); Buschow, K.H.J. [Van der Waals-Zeeman Institute, University of Amsterdam, NL-1018 XE (Netherlands); Rodríguez-Carvajal, J. [Institut Laue-Langevin, 156X, 38042 Grenoble Cédex (France)

    2014-04-15

    TmFe4Ge{sub 2} undergoes a double magneto-elastic first order transition at T{sub N},T{sub c} where the high temperature (HT) tetragonal phase disproportionate into two distinct orthorhombic low temperature (LT) phases with commensurate and incommensurate magnetic wave vectors respectively: P4{sub 2}/mnm(HT)T{sub N},T{sub c}→Cmmmq{sub 1}=(0,1/2 ,0)+Pnnm(q{sub 2}=(0,q{sub y},0),q{sub y}≈2/11(LT) Neutron diffraction shows the relative portions of the LT Cmmm and Pnnm competing phases change linearly with T. The amount of the majority HT phase Pnnm (54% at 30 K) decreases linearly to 30% down to 10 K in favour of the Cmmm phase that dominates the range 26–1.5 K. The Tm moments point along the c-axis in both phases while the Fe moments have canted arrangements. The μ{sub Tm}=3.54(3) μ{sub B}/atom at 1.5 K is strongly reduced below the Tm{sup 3+} free ion value g{sub J}J=7 μ{sub B} for the q{sub 1} phase. The q{sub 2} phase corresponds to a 3D canted sinusoidal arrangement. The results are summarised on a phase diagram and compared to the findings in RFe{sub 4}Ge{sub 2} (R=Y, Lu, Er, Ho, Dy) that are reviewed. The multitude of transition paths occurring in those systems arise from the competing magnetoelastic mechanisms involving the R-crystal field anisotropy, the exchange interactions R–R, R–Fe, Fe–Fe of the two sublattices and their coupling to the lattice strain. The geometrical frustration emerging from the compact tetrahedral Fe arrangement with antiferromagnetic interactions leads to 2D and 3D canted, incommensurate and non-magnetic states. The Cmmm transition is triggered by dominating R–R and R–Fe interactions becoming stronger at LT while the Pnnm phase is promoted by Fe–Fe and R–Fe interactions that prevail at HT. Included is also the magnetic structure of the ferromagnetic impurity phase Fe{sub 3}Ge. - Highlights: • Magnetic phase diagram of tetragonal TmFe{sub 4}Ge{sub 2} compound studied by neutron diffraction. • Unusual first

  17. The structure of magnetic materials; La structure des substances magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Villain, J. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N. Saclay (France)

    1960-07-01

    The paper deals with the prediction of the structure of magnetic materials below the critical point. The molecular field approximation is used: exchange interactions with unlimited range are assumed; the magnetic ions are supposed to form a Bravais lattice. The critical temperature T{sub c} is first calculated (section 1) without assuming any decomposition of the crystal into sublattices, and the magnetic structure at T{sub c} is given. It is next shown (section 2) that the essential features of this structure persist below T{sub c}, and the various possible cases are considered. It is possible that no decomposition into sublattices takes place, i.e. the magnetic structure and the nuclear structure have incommensurable periods. A detailed treatment is then given for the body-centered quadratic lattice (section 3) with interaction between first, second and third neighbours. Reprint of a paper published in Journal of Physical Chemistry, vol. 11, no. 3/4, p. 303-309, 1959 [French] Ce travail a pour objet la prevision systematique de la structure des substances magnetiques au-dessous du point de transition et l'etude des differents cas qui peuvent se presenter lorsque les ions magnetiques forment un reseau de Bravais. On se place dans une approximation de champ moleculaire, mais on ne fait aucune restriction concernant la portee des interactions d'echange. Apres avoir determine (Section 1) la temperature critique et la structure magnetique a cette temperature sans supposer a priori l'existence d'une decomposition en sous-reseaux, on montre (Section 2) que cette structure reste stable en dessous de la temperature critique, et on etudie les divers cas possibles. Il peut arriver en particulier que la structure magnetique ait une periode incommensurable avec celle du reseau cristallin. L'example du reseau quadratique centre avec couplage entre premiers, seconds et troisiemes voisins (Section 3) fournit une bonne illustration de cette etude. Reproduction d'un article publie

  18. Study of the effect of magnetic ordering on order–disorder transitions in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Ambika Prasad [Department of Condensed Matter and Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit@bose.res.in [Department of Condensed Matter and Materials Science, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)

    2014-06-01

    We set up a mean-field approximation in a random Ising model characterized by two order parameters: the local sublattice magnetization and a mean-field occupation variable which act as an order parameter for the order–disorder transition. In the effective model Hamiltonian the two order-parameters are coupled. We solve the coupled equations arising from this to describe the total phase diagram. The exchange energies for FeCo alloys have then been accurately obtained from first-principles based on the technique of orbital peeling and a Monte Carlo analysis using a coupled Metropolis-Kawasaki updating has been carried out. Our results reasonably successfully agree with earlier experimental data. - Highlights: • In this paper we study the effect of magnetic ordering on order–disorder transitions in binary alloys. • It describes a system with two order parameters, magnetic and chemical ordering, which are coupled. • We set up a mean-field theory for initial understanding and then carry out Monte Carlo simulations. • One parameter follows Kawasaki-dynamics and the other Metropolis. • It is an interesting system for study and we apply it to FeCo with exchanges calculated from first principles techniques.

  19. Electronic structure and magnetic ordering of the unconventional antiferromagnet Yb3Pt4

    KAUST Repository

    Schwingenschlö gl, Udo; Gó mez, Javier Alexandra M; Grau-Crespo, Ricardo

    2009-01-01

    Applying density functional theory within the generalized gradient approximation, we investigate the electronic and magnetic properties of the intermetallic rare-earth system Yb3Pt4. This material recently has been put forward as host for quantum criticality, while details of the magnetic ordering could not be established (Bennett N. C.et al., J. Magn. & Magn. Mater., 321 (2009) 2021). In this context, we investigate the effect of spin-orbit coupling and compare various spin patterns from the energetic point of view, which enables us to determine the electronic ground state of Yb3Pt4. The assumption of an elementary superexchange mechanism yields a magnetic-coupling constant in good agreement with the experimental ordering temperature. Copyright © 2009 EPLA.

  20. Electronic structure and magnetic ordering of the unconventional antiferromagnet Yb3Pt4

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Applying density functional theory within the generalized gradient approximation, we investigate the electronic and magnetic properties of the intermetallic rare-earth system Yb3Pt4. This material recently has been put forward as host for quantum criticality, while details of the magnetic ordering could not be established (Bennett N. C.et al., J. Magn. & Magn. Mater., 321 (2009) 2021). In this context, we investigate the effect of spin-orbit coupling and compare various spin patterns from the energetic point of view, which enables us to determine the electronic ground state of Yb3Pt4. The assumption of an elementary superexchange mechanism yields a magnetic-coupling constant in good agreement with the experimental ordering temperature. Copyright © 2009 EPLA.

  1. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  2. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    Science.gov (United States)

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  3. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  4. 11B-NMR study of low-temperature phase transition in CuB2O4

    International Nuclear Information System (INIS)

    Yasuda, Y; Nakamura, H; Fujii, Y; Kikuchi, H; Chiba, M; Yamamoto, Y; Hori, H; Petrakovskii, G; Popov, M; Bezmaternikh, L

    2007-01-01

    The material CuB 2 O 4 presents a variety of phases in the B-T phase diagram, caused by the frustration and the Dzialoshinskii-Moriya interaction. In order to investigate the nature of the phase transitions, a 11 B-NMR experiment on CuB 2 O 4 has been performed under an applied magnetic field along the a-axis down to 0.4 K. A new incommensurate-incommensurate phase transition has been found at 0.8 K under a field of 0.5 T. Further, another phase transition has been observed at 4.7 K under a field of about 2 T, which is consistent with the transition reported by the neutron diffraction experiment

  5. Field induced magnetic phase transition as a magnon Bose Einstein condensation

    Directory of Open Access Journals (Sweden)

    Teodora Radu et al

    2007-01-01

    Full Text Available We report specific heat, magnetocaloric effect and magnetization measurements on single crystals of the frustrated quasi-2D spin -½ antiferromagnet Cs2CuCl4 in the external magnetic field 0≤B≤12 T along a-axis and in the temperature range 0.03 K≤T≤6 K. Decreasing the applied magnetic field B from high fields leads to the closure of the field induced gap in the magnon spectrum at a critical field Bcsimeq8.44 T and a long-range incommensurate state below Bc. In the vicinity of Bc, the phase transition boundary is well described by the power law TN~(Bc-B1/phi with the measured critical exponent phisimeq1.5. These findings provide experimental evidence that the scaling law of the transition temperature TN can be described by the universality class of 3D Bose–Einstein condensation (BEC of magnons.

  6. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  7. Medical devices; neurological devices; classification of the transcranial magnetic stimulator for headache. Final order.

    Science.gov (United States)

    2014-07-08

    The Food and Drug Administration (FDA) is classifying the transcranial magnetic stimulator for headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcranial magnetic stimulator for headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  8. Structural and magnetic order of ThMn12-type rare earth-iron-aluminium intermetallics studied by neutron diffraction

    International Nuclear Information System (INIS)

    Schaefer, W.; Halevy, I.; Gal, J.

    2000-01-01

    neutron powder diffraction data of ThMn 12 -type compounds RFe 4 Al 8 , RFe 5 Al 7 , and RFe 6 Al 6 (R = heavy rare earth) are compared to work out the structural variations and the different magnetic properties of these ternary intermetallics as a function of increasing iron concentrations. The variations of unit cell metric, of atomic coordinations and of interatomic distances are discussed. A magnetic phase diagram is presented showing the increase of the magnetic ordering temperatures from 120 K to 340 K and the change of the magnetic order from two separate magnetic phase transitions of rare earth and iron sublattices to one common ferrimagnetic transition of both sublattices, when changing the ratio of Fe/Al atoms from 4/8 to 6/6, respectively. Long range order is hampered by frozen spins. Magnetically ordered rare earth and iron moments are given. (orig.)

  9. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    Science.gov (United States)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  10. Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates

    Science.gov (United States)

    Middey, S.; Meyers, D.; Kareev, M.; Cao, Yanwei; Liu, X.; Shafer, P.; Freeland, J. W.; Kim, J.-W.; Ryan, P. J.; Chakhalian, J.

    2018-04-01

    Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO3 . Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.

  11. Comparative study of magnetic ordering in bulk and nanoparticles of Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3}: Magnetization and electron magnetic resonance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Goveas, Lora Rita, E-mail: loragoveas@gmail.com [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); St. Joseph' s College of Arts and Science, Bangalore 560027 (India); Anuradha, K. N. [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); Bhagyashree, K. S.; Bhat, S. V. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-05-07

    To explore the effect of size reduction to nanoscale on the hole doped Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3} compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  12. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    Science.gov (United States)

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  13. A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.

    Science.gov (United States)

    Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M

    2016-11-14

    A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co 4 O 4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.

  14. Origin of the incommensurate phase of quartz : II. Interpretation of inelastic neutron scattering data

    Science.gov (United States)

    Vallade, M.; Berge, B.; Dolino, G.

    1992-07-01

    The results of an inelastic neutron scattering investigation of the low-frequency modes of β quartz, described in the preceding paper [1], are interpreted using two different approaches : i) a phenomenological model directly derived from a Landau-Ginzburg type expansion of the free energy ; this model is only relevant for the long-wavelength part of the phonon spectrum but it allows an easy connection with thermodynamical data ; ii) a microscopic lattice dynamical model, which is an extension of the Grimm-Dorner model ; it is shown that the main properties of the low-frequency phonon spectrum and, in particular, the softening of a Σ_2 mode at an incommensurate wave vector close to the zone-center, can be underdtood by analysing the motions of nearly rigid SiO4 tetrahedra. Les résultats de l'investigation par diffusion inélastique des neutrons des modes de basse fréquence du quartz β, décrits dans l'article précédent [1], sont interprétés à l'aide de deux approches différentes: i) un modèle phénoménologique, directement issu d'un développement du type Landau-Ginzburg de l'énergie libre ; ce modèle n'est valable que pour la partie du spectre relatif aux phonons de grande longueur d'onde, mais il permet d'établir une connexion aisée avec les données thermodynamiques ; ii) un modèle microscopique de dynamique de réseau, qui est une extension du modèle de Grimm-Dorner (modèle à tétraèdres rigides) ; on montre que les principales caractéristiques du spectre des phonons de basse fréquence, et en particulier l'amollissement d'un mode Σ_2 à un vecteur d'onde incommensurable près du centre de zone, peut être compris par une analyse des mouvements de tétraèdres SiO4 presque rigides.

  15. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl3

    International Nuclear Information System (INIS)

    Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa; Tanaka, Hidekazu

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl 3 . Below the ordering temperature T N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  16. Spin-Peierls instability and incommensurability in the XY model-Dynamical and thermodynamical properties

    International Nuclear Information System (INIS)

    Lima, R.A.T. de.

    1982-01-01

    Within the variational method in statistical mechanics, dynamical and thermodynamical properties of anharmonic crystal are discussed, in particular the thermal behavior of the crystalline expasion, phonons spectrum, specific heat and Debye-Weller factor (which satisfctorily describes the experimental data). Through the temperature dependent Green functions framework, dynamical and thermodynamical properties associated with the spin-Peierls transition in the magnetostrictive XY model (with one-dimensional magnetic interactions but structurally three-dimensional) are also discussed. Emphasis is given to the influence of an external magnetic field (along the z-axis) on the structural order parameter, phase diagram, specific heat, magnetization, magnetic susceptibility and phonons spectrun (acoustic and optic branches). Results are extended and new ons are exhibited such as: a) a structural Lifshitz point, which separates the uniform (U), dimerized (D) and modulated (M) phases in the T-H phase diagram; b) another special point is detected for high magnetic fields; c) the D-M first-order frontier and the metastability limits are obtained; d) for high elastic constants, fixed temperature and increasing magnetic field, the unusual sequence non uniform-uniform - non uniform-uniform is possible; e) the thermal dependence of the sound velocity presents a gap at the critical temperature. The present results have provided a quite satisfactory qualitative (and partially quantitative) description of the experiments on the TTF-BDT and MEM-(TCNQ) 2 ; this fact enables us to hope that several of our predictions indeed occur in nature. (Author) [pt

  17. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules

    Science.gov (United States)

    Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-12-01

    In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.

  18. Superconductivity and magnetic fluctuations developing in the vicinity of strong first-order magnetic transition in CrAs

    International Nuclear Information System (INIS)

    Kotegawa, H; Matsushima, K; Nakahara, S; Tou, H; Kaneyoshi, J; Nishiwaki, T; Matsuoka, E; Sugawara, H; Harima, H

    2017-01-01

    We report single crystal preparation, resistivity, and nuclear quadrupole resonance (NQR) measurements for new pressure-induced superconductor CrAs. In the first part, we present the difference between crystals made by different thermal sequences and methods, and show the sample dependence of superconductivity in CrAs. In the latter part, we show NQR data focusing the microscopic electronic state at the phase boundary between the helimagnetic and the paramagnetic phases. They suggest strongly that a quantum critical point is absent on the pressure-temperature phase diagram of CrAs, because of the strong first-order character of the magnetic transition; however, the spin fluctuations are observed in the paramagnetic phase. The close relationship between the spin fluctuations and superconductivity can be seen even in the vicinity of the first-order magnetic transition in CrAs. (paper)

  19. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  20. Anti-Machiavellian Rancière: Aesthetic Cartography, Sites of Incommensurability and Processes of Experimentation

    Directory of Open Access Journals (Sweden)

    Anders Fjeld

    2016-01-01

    Full Text Available I argue that Rancière’s philosophy is anti-Machiavellian in the sense that his distinction between police and politics is not an originary division, but rather a gap in the sensible fabric of society. He thus moves from politics as a theory of agency to an aesthetic cartography of situations. It is a question of mapping the emergence of a political problem within a singular situation, and the ethics of such mapping is the insistence on the irreducible contingency of an existential choice of the problem. I will elaborate some new concepts (“sites of incommensurability,” “experimentation,” “fragmentation of social space” and specify how the three logics of identification, dis-identification, and over-identification are three ways of constructing and dealing with situated problems.

  1. Interacting spin-1/2 tetrahedral system Cu2Te2O5X2 (X = Cl, Br)

    DEFF Research Database (Denmark)

    Jensen, Jens

    2009-01-01

    Magnetic ordering and excitations of Cu2Te2O5Cl2 are analyzed in terms of a tetramerized spin model for the tetrahedral Cu clusters of spin 1/2. The mean-field model is able to account for the main properties of the incommensurable magnetic structure observed by Zaharko et al. [Phys. Rev. B 73......-dimensional fashion. Preliminary model calculations for the Cu2Te2O5Br2 system lead to the same conclusion. Udgivelsesdato: 7. Januar...

  2. Spin dynamics and magnetic ordering in mixed valence systems

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Moller, H.B.; Axe, J.D.; Birgeneau, R.J.; Bucher, E.

    1977-01-01

    Neutron scattering measurements are reported on the mixed valence compounds Ce/sub 1-x/Th/sub x/ and TmSe. The Chi''(Q,ω) as derived from the inelastic spectra of Ce 0 . 74 Th 0 . 26 shows a peak in the γ phase near 20.0 meV and shifts abruptly to greater than 70.0 meV at the transition to the α phase. The temperature independence of the susceptibility within the γ phase cannot be simply reconciled with the temperature dependence of the valence within the γ phase. TmSe is shown to order in a type I antiferromagnetic structure below T/sub N/ approx. 3.2 K. The magnetic phase diagram is understood as a successive domain reorientation and a metamagnetic phase transition for T 3+ orders in a type II structure but never achieves long range order

  3. Effects of dilution on the magnetic ordering of a two-dimensional lattice of dipolar magnets

    International Nuclear Information System (INIS)

    Patchedjiev, S M; Whitehead, J P; De'Bell, K

    2005-01-01

    Monte Carlo simulations are used to study the effects of dilution by random vacancies on the phenomenon of order arising from disorder in an ultrathin magnetic film. At very low concentrations of vacancies, both the collinear ordered phase observed in the undiluted system and the microvortex state are observed, and the boundary on which the reorientation transition between these states occurs is found to be consistent with the predictions of earlier work. However, even at vacancy densities as low as 0.5% there is evidence that the vacancies result in a energy landscape with a number of very nearly degenerate minima

  4. The superexchange interactions and magnetic ordering in low-dimentional ludwigite Ni_5GeB_2O_1_0

    International Nuclear Information System (INIS)

    Sofronova, S.N.; Bezmaternykh, L.N.; Eremin, E.V.; Nazarenko, I.I.; Volkov, N.V.; Kartashev, A.V.; Moshkina, E.M.

    2016-01-01

    The ludwigite Ni_5Ge(BO_5)_2 belongs to a family of oxyborates which have low-dimensional subunits in the form of three-leg ladders unit structure. This material was studied by magnetic and thermodynamic measurements. Ni_5Ge(BO_5)_2 does not show full long-range magnetic order, but one goes into a partial ordering or spin-glass state at 87 K. The superexchange interactions were calculated in the framework of a simple indirect coupling model. Different models of magnetic structure of Ni_5Ge(BO_5)_2 and its unique magnetic behaviour was discussed. - Highlights: • The single crystals of Ni_5Ge(BO_5)_2 with a ludwigite structure were grown. • Magnetic and the specific heat measurements were performed. • The calculation of the exchange interactions shows a competition between interactions. • The magnetic behaviour corresponds to ions moments part freezing or spin-glass state. • We propose two models of magnetic ordering in Ni_5Ge(BO_5)_2.

  5. Incommensurate Spiral Order from Double-Exchange Interactions

    NARCIS (Netherlands)

    Azhar, Maria; Mostovoy, Maxim

    2017-01-01

    The double-exchange model describing interactions of itinerant electrons with localized spins is usually used to explain ferromagnetism in metals. We show that for a variety of crystal lattices of different dimensionalities and for a wide range of model parameters, the ferromagnetic state is

  6. Analytical determination of 5th-order transfer matrices of magnetic quadrupole fringing fields

    International Nuclear Information System (INIS)

    Hartmann, B.; Irnich, H.; Wollnik, H.

    1993-01-01

    The fringing-field effects on particle trajectories in magnetic quadrupoles are described to 5th order by fringing-field integrals. It is shown that this method improves the description of fringing-field effects noticeably over the so far known use of third-order fringing-field integrals. (Author)

  7. A pulse spectrometer for NMR measurements on magnetically ordered materials

    International Nuclear Information System (INIS)

    Englich, J.; Pikner, B.; Sedlak, B.

    1975-01-01

    A simple design of a pulse nuclear magnetic resonance spectrometer is described. The spectrometer permits spin echo measurements on magnetically ordered substances. It operates in the frequency range 10 to 130 MHz, but this basic range can be extended by a replacement of the compact radiofrequency unit. The transmitter gives radiofrequency pulses with an amplitude of up to 1 kV on the coil with the investigated sample. The pulse programmer makes possible relaxation measurements in a time interval of 10 -5 to 10 -1 s. Attention was devoted to obtaining a maximum signal-to-noise ratio in the whole frequency range. Sensitivity of the spectrometer is demonstrated by spin echo measurement on pure iron powder. (author)

  8. Monte Carlo simulations of magnetic order in Fe-doped manganites

    International Nuclear Information System (INIS)

    Alonso, J.; Gutierrez, J.; Barandiaran, J.M.; Bermejo, F.J.; Brey, L.

    2008-01-01

    The effect of Fe doping on the magnetic properties of La 0.7 Pb 0.3 Mn 1-x Fe x O 3 (x=0, 0.05, 0.1, 0.15 and 0.2) manganites is studied by the Monte Carlo simulation technique. As a first approximation, by means of a simple Heisenberg Hamiltonian, experimental normalized magnetizations at low temperatures have been reproduced for concentrations of Fe (x<0.2), but the calculated order temperatures show a large deviation from the measured ones. This shortcoming can be corrected by using a one electron effective hopping semi-classical Hamiltonian, with a simplified expression for the kinetic energy of the free electrons, which also avoids time-consuming diagonalizations

  9. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa

    2014-01-15

    The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.

  10. A second-order approximation of particle motion in the fringing field of a dipole magnet

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1980-01-01

    The radial and axial motion of charged particles in the fringing field of an arbitrary dipole magnet has been considered with accuracy to the second-order of small quantities. The dipole magnet has an inhomogeneous field and oblique entrance and exit boundaries in the form of second-order curves. The region of the fringing field has a variable extension. A new definition of the effective boundary of the real fringing field has a variable extension. A new definition of the effective boundary of the real fringing field of the dipole magnet is used. A better understanding of the influence of the fringing magnetic field on the motion of charged particles in the pole gap of the dipole magnet has been obtained. In particular, it is shown that it is important to take into account, in the second approximation, some terms related formally to the next approximations. The results are presented in a form convenient for practical calculations. (orig.)

  11. Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis

    CERN Document Server

    De Simone, Andrea; Quiros, Mariano; Riotto, Antonio

    2011-01-01

    The generation of the observed baryon asymmetry may have taken place during the electroweak phase transition, thus involving physics testable at LHC, a scenario dubbed electroweak baryogenesis. In this paper we point out that the magnetic field which is produced in the bubbles of a first order phase transition endangers the baryon asymmetry produced in the bubble walls. The reason being that the produced magnetic field couples to the sphaleron magnetic moment and lowers the sphaleron energy; this strengthens the sphaleron transitions inside the bubbles and triggers a more effective wash out of the baryon asymmetry. We apply this scenario to the Minimal Supersymmetric extension of the Standard Model (MSSM) where, in the absence of a magnetic field, successful electroweak baryogenesis requires the lightest CP-even Higgs and the right-handed stop masses to be lighter than about 127 GeV and 120 GeV, respectively. We show that even for moderate values of the magnetic field, the Higgs mass required to preserve the ...

  12. Magnetic ordering induced giant optical property change in tetragonal BiFeO3

    Science.gov (United States)

    Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-12-01

    Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

  13. Longitudinal Spin Excitations and Magnetic Anisotropy in Antiferromagnetically Ordered BaFe_{2}As_{2}

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2013-12-01

    Full Text Available We report on a spin-polarized inelastic neutron-scattering study of spin waves in the antiferromagnetically ordered state of BaFe_{2}As_{2}. Three distinct excitation components are identified, with spins fluctuating along the c axis, perpendicular to the ordering direction in the ab plane and parallel to the ordering direction. While the first two “transverse” components can be described by a linear spin-wave theory with magnetic anisotropy and interlayer coupling, the third “longitudinal” component is generically incompatible with the local-moment picture. It points toward a contribution of itinerant electrons to the magnetism that is already in the parent compound of this family of Fe-based superconductors.

  14. Theoretical study of the magnetic order in α-CoV2O6

    Science.gov (United States)

    Saúl, A.; Vodenicarevic, D.; Radtke, G.

    2013-01-01

    The electronic structure and magnetic properties of α-CoV2O6 are investigated using density functional theory calculations including spin-orbit coupling and orbital polarization effects. These calculations reveal a strong magnetocrystalline anisotropy with a magnetization easy axis close to the c axis. The evaluation of magnetic couplings on the basis of broken-symmetry formalism suggests the occurrence of an antiferromagnetic ground-state order where ferromagnetic chains running along b are coupled antiferromagnetically to their nearest neighbors along a and c. Monte Carlo simulations are finally employed to explore the origins of the 1/3 plateau observed in the magnetization curves of this compound and to propose a structure for the corresponding state.

  15. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    International Nuclear Information System (INIS)

    Kurz, Alexander; Liu, Tao; Steinhauser, Matthias

    2014-07-01

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a μ had,NNLO = 1.24 ± 0.01 x 10 -10 , is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  16. Low Dimensionality Effects in Complex Magnetic Oxides

    Science.gov (United States)

    Kelley, Paula J. Lampen

    , Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.

  17. Synthesis and characterization of chemically ordered FePt magnetic nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, K. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Balaji, T., E-mail: theerthambalaji@yahoo.co [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Lingappa, Y. [Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Reddy, M.R.P.; Kumar, Arbind; Prakash, T.L. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India)

    2010-08-15

    Monodispersed FePt alloy magnetic nano-particles are prepared by reduction of platinum acetyl acetonate and iron acetyl acetonate salts together in the presence of oleic acid and oleyl amine stabilizers by polyol process. The particle size of FePt is in the range of 2-3 nm confirmed by transmission electron microscopy (TEM). As-synthesized FePt nano-particles are chemically disordered with face centre cubic (fcc) structure where as after vacuum annealing these particles changed to face centre tetragonal (fct) ordered structure confirmed by the X-ray diffraction technique. Magnetic coercivity of 5.247 KOe was observed for fct structure.

  18. ESR of Gd3+ in magnetically ordered Eu2CuO4

    International Nuclear Information System (INIS)

    Rettori, C.; Oseroff, S.B.; Rao, D.; Valdivia, J.A.; Barberis, G.E.; Martins, G.B.; Sarrao, J.; Fisk, Z.; Tovar, M.

    1996-01-01

    Electron spin resonance (ESR) experiments of Gd 3+ in the antiferromagnetic (AF) ordered phase (T N ) of Eu 2 CuO 4 can be interpreted in terms of four magnetically nonequivalent rare-earth sites with local internal fields H i =±310(30) Oe along the [100] and [010] directions. The internal field is well described by a dipolar magnetic field of a noncollinear AF array of 0.35(4) μ B per Cu moment aligned along the [100] and [010] directions. This is consistent with recent results of magnetic-field-dependent neutron-diffraction experiments. From the ESR and magnetic susceptibility data, the crystal field parameters for Gd 3+ and Eu 3+ in Eu 2 CuO 4 are determined. The exchange parameters between the rare earths are also estimated. copyright 1996 The American Physical Society

  19. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Oosawa, Akira; Osakabe, Toyotaka; Kakurai, Kazuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujisawa, Masashi [Tokyo Inst. of Technology, Dept. of Physics, Tokyo (Japan); Tanaka, Hidekazu [Tokyo Inst. of Technolgy, Research Center for Low Temperature Physics, Tokyo (Japan)

    2003-05-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl{sub 3}. Below the ordering temperature T{sub N} = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  20. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  1. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    International Nuclear Information System (INIS)

    Nadutov, V.M.; Kosintsev, S.G.; Svystunov, Ye.O.; Garamus, V.M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2011-01-01

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)x10 -6 K -1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy T C =195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Moessbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature Θ D =180 K was estimated using the temperature dependence of the integral intensity of Moessbauer spectra for specified temperature range. The inequality B eff =(0.7-0.9)B ext was obtained in external field Moessbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to B ext . Nano length scale magnetic inhomogeneities nearby and far above T C were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond. - Highlights: → Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy. → Carbon expanded the temperature range of anti-Invar behavior in Fe-Ni-based alloy. → Moessbauer data point to mixed interspin interaction and low the Dedye temperature. → The SANS experiments reveal nano length scale magnetic inhomogeneities ≤6 nm. → Anti-Invar behavior of Fe-Ni-C alloy explained by thermally varied magnetic order.

  2. Neutron diffraction studies of magnetic ordering in superconducting ErNi2B2C and TmNi2B2C in an applied magnetic field

    DEFF Research Database (Denmark)

    Toft, Katrine Nørgaard

    The field-induced magnetic structures of ErNi2B2C and TmNi2B2C in are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength ofsuperconductivity. ErNi2B2C: For magnetic fields along all.......483,0,0). The appearance of the QN phase wasinitially believed to be caused by the suppression of superconductivity. This suppression should make it favorable to create a magnetic order with a Q-vector determined by the maximum in the magnetic susceptibility at the Fermi surface nesting vector QN.The phase diagram...... three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures.Two results remain unresolved: 1. When applying the magnetic field along [010], the minority domain (QNB = (0,Q...

  3. Second order semiclassics with self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    $ effectively determines the strength of the field. We consider the weak field regime with $\\beta h^{2}\\ge {const}>0$, where $h$ is the semiclassical parameter. For smooth potentials we prove that the semiclassical asymptotics of the total energy is given by the non-magnetic Weyl term to leading order...... with an error bound that is smaller by a factor $h^{1+\\e}$, i.e. the subleading term vanishes. However, for potentials with a Coulomb singularity the subleading term does not vanish due to the non-semiclassical effect of the singularity. Combined with a multiscale technique, this refined estimate is used...

  4. Magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.48Sb0.52

    International Nuclear Information System (INIS)

    Brown, P J; Gandy, A P; Neumann, K U; Sheikh, A; Ziebeck, K R A; Ishida, K; Oikawa, K; Ito, W; Kainuma, R; Kanomata, T; Ouladdiaf, B

    2010-01-01

    Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory compound Ni 2 Mn 1.48 Sb 0.52 have confirmed that it is ferromagnetic below 350 K and undergoes a structural phase transition at T M ∼310 K. The high temperature phase has the cubic L2 1 structure with a = 5.958 A, with the excess manganese atoms occupying the 4(b) Sb sites. In the cubic phase above ∼310 K the manganese moments are ferromagnetically aligned. The magnetic moment at the 4(a) site is 1.57(12) μ B and it is almost zero (0.15(9) μ B ) at the 4(b) site. The low temperature orthorhombic phase which is only fully established below 50 K has the space group Pmma with a cell related to the cubic one by a Bain transformation a orth = (a cub + b cub )/2; b orth = c cub and c orth = (a cub - b cub ). The change in cell volume is ∼2.5%. The spontaneous magnetization of samples cooled in fields less than 0.5 T decreases at temperatures below T M and at 2 K the magnetic moment per formula unit in fields up to 5.5 T is 2.01(5) μ B . Neutron diffraction patterns obtained below ∼132 K gave evidence for a weak incommensurate magnetic modulation with propagation vector (2/3, 1/3, 0).

  5. Muon and other studies of magnetic ordering in cuprate layer-compounds

    International Nuclear Information System (INIS)

    Portis, A.M.; Celio, M.

    1989-01-01

    Muon spin rotation studies of magnetic ordering in the planar cuprates are reviewed. Particular attention is given to doped La 2 CuO 4 and oxygen-depleted YBa 2 Cu 3 O 7-δ and to related experimental investigations. Studies of transition element substituted compounds are also reviewed. (orig.)

  6. Size effect on magnetic ordering in Ce3Al11

    International Nuclear Information System (INIS)

    Wang, C.R.; Chen, Y.Y.; Neeleshwar, S.; Ou, M.N.; Ho, J.C.

    2003-01-01

    To study the size dependence of magnetic ordering, magnetic measurements have been made between 1.8 and 300 K on Ce 3 Al 11 particles having an average particle size of 1400 A. The nanoparticles were single phase as confirmed by X-ray diffraction. At low temperatures a ferromagnetic transition occurs at T C =6.2 K, which is the same as that for the bulk material. On the other hand, the antiferromagnetic transition at T N =3.2 K for the bulk material is not visible down to 1.8 K. Meanwhile, the slightly smaller Curie constant of nanoparticles as compared to that of the bulk indicates a certain degree of demagnetization of Ce ions when the particle size is sufficiently reduced

  7. Magnetic properties of the spin-density wave in (TMTSF)2X and (TMTTF)2Br

    International Nuclear Information System (INIS)

    Matsunaga, N.; Hosokawa, Y.; Iwasaki, H.; Nomura, K.; Nakamura, T.; Takahashi, T.; Saito, G.

    1999-01-01

    Magnetic properties of the spin density wave (SDW) phase in (TMTSF) 2 X (X=AsF 6 , PF 6 ) and (TMTTF) 2 Br were investigated through analyses of 1 H-NMR and static magnetization measurements. A divergent peak was observed, at the temperature T * well below the SDW transition temperature, in the 1 H spin-lattice relaxation rate in the incommensurate SDW phase of (TMTSF) 2 X. A decrease of the differential magnetic susceptibility of (TMTSF) 2 X with the field parallel to the a-axis was observed around T * . This anomaly indicates a difference of the spin canting above and below T * which divides the SDW phase. In the measurements of magnetic susceptibility on the commensurate SDW phase of (TMTTF) 2 Br, a large decrease of the spin susceptibility was observed above T SDW and non-activated type behavior in the b'-axis susceptibility is observed below the spin-flop field at low temperature. The data are discussed on the basis of commensurability. (orig.)

  8. The role of the incommensurate phase in the opalescence of quartz

    Science.gov (United States)

    Dolino, G.; Bastie, P.

    2001-12-01

    Forty five years ago, an intense light scattering was observed at the α-β transition of quartz but the origin of this opalescence has remained mysterious for a long time. Recently Saint-Grégoire et al and Aslanyan et al have explained the origin of the opalescence by introducing new incommensurate (`inc') phases with ferroelastic properties in the transition region. In this paper we recall the main features of the α-β transition, of the inc phase and of the opalescence of quartz, which presents different properties in two regions of the α-inc phase boundary. We also describe the three typical structures observed in the phase boundary regions by electron microscopy. We present briefly the two previous ferroelastic models and we propose our own explanation for the origin of the opalescence. We discuss the relations of these three models with experimental results concerning thermal behaviour, microscopic structures and the origin of the refractive index variations. Most experimental results are in agreement, at least qualitatively, with our model where the two opalescence regions correspond respectively to the presence of inc rotation patches and of irregular Dauphiné microtwins, both in a non-equilibrium state.

  9. The role of the incommensurate phase in the opalescence of quartz

    Energy Technology Data Exchange (ETDEWEB)

    Dolino, G.; Bastie, P. [Laboratoire de Spectrometrie Physique, Universite J. Fourier (Grenoble I), CNRS UMR 5588, BP 87, Saint Martin d' Heres Cedex (France)]. E-mail: Dolino@spectro.ujf-grenoble.fr

    2001-12-17

    Forty five years ago, an intense light scattering was observed at the {alpha}-{beta} transition of quartz but the origin of this opalescence has remained mysterious for a long time. Recently Saint-Gregoire et al and Aslanyan et al have explained the origin of the opalescence by introducing new incommensurate ('inc') phases with ferroelastic properties in the transition region. In this paper we recall the main features of the {alpha}- {beta} transition, of the inc phase and of the opalescence of quartz, which presents different properties in two regions of the -inc phase boundary. We also describe the three typical structures observed in the phase boundary regions by electron microscopy. We present briefly the two previous ferroelastic models and we propose our own explanation for the origin of the opalescence. We discuss the relations of these three models with experimental results concerning thermal behaviour, microscopic structures and the origin of the refractive index variations. Most experimental results are in agreement, at least qualitatively, with our model where the two opalescence regions correspond respectively to the presence of inc rotation patches and of irregular Dauphine microtwins, both in a non-equilibrium state. (author)

  10. Low temperature magnetic properties of NdCu2

    International Nuclear Information System (INIS)

    Hillberg, M.; Wagener, W.; Melo, M.A.C. de; Klauss, H.H.; Litterst, F.J.; Loewenhaupt, W.

    1997-01-01

    μSR experiments on NdCu 2 give evidence for short range order below 25 K above T N =6.5 K. No signal was detected between 16 K and 1.2 K where neutron scattering reveals an incommensurate spin structure. Below 1.2 K the μSR signal is recovered and shows a rotation with 22 MHz. This is interpreted with a squaring up of Nd spins accompanied by a decrease of magnon excitations which is reflected in a decrease of damping of the muon signal

  11. Electric–magnetic duality of lattice systems with topological order

    Energy Technology Data Exchange (ETDEWEB)

    Buerschaper, Oliver [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching (Germany); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, 8093 Zurich (Switzerland); Kong, Liang, E-mail: kong.fan.liang@gmail.com [Institute for Advanced Study (Science Hall), Tsinghua University, Beijing 100084 (China); Department of Mathematics and Statistics University of New Hampshire, Durham, NH 03824 (United States); Aguado, Miguel [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching (Germany)

    2013-11-11

    We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev's quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen's string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.

  12. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al2O3 and Diblock Copolymer Templates

    International Nuclear Information System (INIS)

    Erb, Denise

    2015-08-01

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al 2 O 3 substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al 2 O 3 - Magnetic nanostructures on nanofaceted α-Al 2 O 3 substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al 2 O 3 surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in-situ GISAXS and NRS, the magnetization

  13. The bonding character and magnetic properties of Fe3Al: Comparison between disordered and ordered alloy

    International Nuclear Information System (INIS)

    Fan Runhua; Qi Liang; Sun Kangning; Min Guanghui; Gong Hongyu

    2006-01-01

    Fe 3 Al with D0 3 -ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe 3 Al, with D0 3 -ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0 3 -ordered Fe 3 Al to 4sp(Fe)-3p(Al) for the disordered Fe 3 Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased

  14. Origin of second-order transverse magnetic anisotropy in Mn12-acetate

    International Nuclear Information System (INIS)

    Cornia, A.; Sessoli, R.; Sorace, L.; Gatteschi, D.; Barra, A. L.; Daiguebonne, C.

    2002-01-01

    The symmetry breaking effects for quantum tunneling of the magnetization in Mn 12 -acetate, a molecular nanomagnet, represent an open problem. We present structural evidence that the disorder of the acetic acid of crystallization induces sizable distortion of the Mn(III) sites, giving rise to six different isomers. Four isomers have symmetry lower than tetragonal and a nonzero second-order transverse magnetic anisotropy, which has been evaluated using a ligand field approach. The result of the calculation leads to an improved simulation of electron paramagnetic resonance spectra and justifies the tunnel splitting distribution derived from the field sweep rate dependence of the hysteresis loops

  15. Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan; Saber, Mohamed R.; Prosvirin, Andrey P.; Reibenspies, Joseph H.; Sun, Lei; Ballesteros-Rivas, Maria; Zhao, Hanhua; Dunbar, Kim R. (MIT); (TAM)

    2015-09-03

    Host–guest interactions between the aromatic molecules benzene, toluene, aniline and nitrobenzene and the redox-active TCNQ-based metal–organic framework (MOF), Fe(TCNQ)(4,4'-bpy) (1) (TCNQ = 7,7,8,8-tetracyanoquinodimethane), have been found to modulate spontaneous magnetization behaviours at low temperatures. An analogous MOF, Mn(TCNQ)(4,4'-bpy) (2) with isotropic Mn(II) ions as well as the two-dimensional compound Fe(TCNQ)(DMF)2·2DMF (3·2DMF), were also prepared as models for studying the effects of single-ion magnetic anisotropy and structural distortion on spin canting. The results indicate guest-dependent long range magnetic ordering occurs at low temperatures, which correlates with the electrostatic and steric effects of the incorporated aromatic guests.

  16. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  17. Could incommensurability in sulfosalts be more common than thought? The case of meneghinite, CuPb13Sb7S24.

    Science.gov (United States)

    Bindi, Luca; Petříček, Václav; Biagioni, Cristian; Plášil, Jakub; Moëlo, Yves

    2017-06-01

    The structure of meneghinite (CuPb 13 Sb 7 S 24 ), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0β0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb 3+ + [] → Pb 2+ + Cu + , thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.

  18. The interplay of magnetic order and superconductivity in GdxY1-xNi2B2C

    International Nuclear Information System (INIS)

    Drzazga, Z.; Fuchs, G.; Handstein, A.; Nenkov, K.; Mueller, K.-H.

    2003-01-01

    Resistivity, ac susceptibility and magnetization measurements are reported for polycrystalline samples of the Gd x Y 1-x Ni 2 B 2 C series as a function of temperature and magnetic field. The magnetic Gd impurities cause an almost linear decrease of the superconducting transition temperature T c with increasing Gd content in the range of x c have been observed. The effect of the 4f local moments manifests in a complete suppression of superconductivity for x≥0.3 and in antiferromagnetic ordering for x>0.3. In zero applied magnetic field, a distinct concentration region around x∼0.3 has been revealed separating superconductivity and antiferromagneting ordering. A metamagnetic transition has been observed in the compound with x=0.5 at a magnetic field of 0.8 T

  19. Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers

    Science.gov (United States)

    Liu, Yan; Guenneau, Sébastien; Gralak, Boris

    2013-01-01

    We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891

  20. Evidence of a New Current-Induced Magnetoelectric Effect in a Toroidal Magnetic Ordered State of UNi4B

    Science.gov (United States)

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-03-01

    Magnetization measurements under direct electric current were performed in a toroidal magnetic ordered state of UNi4B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local-inversion symmetry. We found that electric current parallel to [2\\bar{1}\\bar{1}0] and [0001] in the hexagonal 4-index notation induces a uniform magnetization along the [01\\bar{1}0] direction. The observed behavior of the induced magnetization is essentially consistent with the theoretical prediction; however, it also shows an inconsistency suggesting that the antiferromagnetic state of UNi4B could not be simply regarded as a uniform toroidal order in the ideal honeycomb layered structure.

  1. Spin ordered phase transitions in neutron matter under the presence of a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2011-01-01

    In dense neutron matter under the presence of a strong magnetic field, considered in the model with the Skyrme effective interaction, there are possible two types of spin ordered states. In one of them the majority of neutron spins are aligned opposite to magnetic field (thermodynamically preferable state), and in other one the majority of spins are aligned along the field (metastable state). The equation of state, incompressibility modulus and velocity of sound are determined in each case with the aim to find the peculiarities allowing to distinguish between two spin ordered phases.

  2. Breathing mode distortion and magnetic order in rare-earth nickelates RNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Alexander; Ederer, Claude [Materials Theory, ETH Zuerich (Switzerland)

    2016-07-01

    Rare-earth nickelate perovskites display a rich and not yet fully understood phase diagram, where all RNiO{sub 3} compounds with R from Sm to Lu undergo a non-magnetic metal-insulator transition (MIT). This transition is connected to a lattice distortion, which can be described as breathing mode of the oxygen octahedra surrounding the Ni cations. Between 100-250 K the RNiO{sub 3} compounds undergo a magnetic transition to an antiferromagnetic (AFM) state, with a wave-vector k= [(1)/(4) (1)/(4) (1)/(4)] relative to the underlying simple cubic perovskite structure. Here, we use density functional theory and its extensions (DFT+U, DFT+DMFT) together with distortion mode analysis to explore the interplay between lattice distortions, magnetic order, and the strength of the local Coulomb interaction U in rare earth nickelates. Our results show a strong dependency of the breathing mode amplitude on the magnetic order, with a much larger breathing mode obtained for the AFM state compared to the ferromagnetic case. Furthermore, we demonstrate that DFT+U is able to capture the correct trends of the lattice distortions across the nickelate series.

  3. Magnetic order and crystal fields in the Pnma phases of Tm2BaTO5(T=Co and Ni)

    International Nuclear Information System (INIS)

    Harker, S.J.; Stewart, G.A.

    2000-01-01

    The magnetic ordering and crystal field interactions of the Pnma phases of both Tm 2 BaCoO 5 and Tm 2 BaNiO 5 are investigated by 169 Tm Moessbauer spectroscopy and the temperature-dependent hyperfine interactions are compared with those obtained elsewhere for Tm 2 BaCuO 5 . The Pnma phases are shown to order magnetically at temperatures of 3.5(2) K (Tm 2 BaCoO 5 ) and 4.85(5) K (Tm 2 BaNiO 5 ), the order being induced by the transition metal. For Tm 2 BaNiO 5 an additional first-order transition observed at T≤1.4 K is identified with the independent magnetic order of the thulium sub-lattice. (orig.)

  4. Wide aperture multipole magnets of the kinematic separator COMBAS. Correcting pair of multipole magnets M3M4 (M5M6) with compensation for higher order aberrations

    International Nuclear Information System (INIS)

    Artyukh, A.G.; Gridnev, G.F.; Teterev, Yu.G.

    1999-01-01

    The high-resolving large aperture separator COMBAS has been created and commissioned. The magneto-optical structure of the separator is based on the strong focusing principle. The separator consists of eight wide aperture multipole magnets M1-M8. The magnets M1, M2, M7, M8 forming the 1 st order optics together with some higher order optical corrections and M3-M6 being dedicated to higher order corrections of the chromatic and spherical aberrations at the intermediate and exit foci of the separator. The multipole correctors M3-M6 contain the dipolar, sextupole and octupole components in their magnetic field distributions. It was the use of the rectangular dipoles M3-M6 as carriers of sextupole and octupole field components that let achieve high values of the separator angular and momentum acceptances. Measurements of the magnetic field distributions in the median planes of the pairs of magnets M3M6 (M4M5) have been performed. These measurements allowed one to analyze the magnets manufacturing quality. Based on the analysis, shimming of pole pieces of the pair of magnets M3M6 have been done. Pole surface correcting coils for the magnets M4M5 have been foreseen to compensate for small deviations (within a few percents) of the 2 nd and 3 rd order field components from the design values, which are probable due to manufacturing errors in all the magnets M1-M8. The measured magnetic field distributions are supposed to be used for particle trajectory simulations throughout the entire separator

  5. Excange interactions and induced Eu3+ magnetic order in RMnO3 investigated using resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Skaugen, Arvid

    2015-03-01

    The so-called multiferroics, materials that concomitantly exhibit more than one ferroic order, have in recent years attracted much attention owing to their possible applications in high density data storage, high sensitivity ac magnetic field sensors and novel spintronic devices. In particular, multiferroics with strong magnetoelectric coupling are more attractive. Among such multiferroics, an interesting special class is the orthorhombic manganites with perovskite structure. In these compounds, frustration serves to destabilize ordinary ferromagnetic or antiferromagnetic ordering, giving rise to rich phase diagrams due to several competing magnetic interactions. Interactions between strong rare earth magnetic moments and weaker transition metal moments add another level of complexity, as well as interest. The current dissertation presents results obtained investigating the magnetic structure responsible for ferroelectricity in a few selected multiferroic compounds, using x-ray resonant magnetic scattering (XRMS). In particular, single crystals of Eu 1-x Y x MnO 3 have been studied at low temperatures and in high magnetic fields. This series of compounds is similar in structure to the heavily studied RMnO 3 (R=Tb,Gd,Dy), only without rare earth magnetism. The novel technique of full polarization analysis has been used to determine the complicated cycloidal Mn magnetic ordering, and additional components due to the Dzyaloshinskii-Moriya interactions have been identified. In the compound Eu 0.8 Y 0.2 MnO 3 , two coexisting multiferroic phases were observed, and a magnetoelectric coupling between the two was established. Moreover, magnetic order of the formally non-magnetic rare earth ion Eu 3+ was observed in the same compound. It has been concluded to result from a Van Vleck type excitation of the J = 0 ground state due to the symmetry-breaking internal exchange field from the Mn magnetic moments. In addition, this dissertation reports on high field investigations

  6. Magnetic order and crystal structure study of YNi{sub 4}Si-type NdNi{sub 4}Si

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, Grenoble F-38042 (France); CNRS, Institut NEEL, 25 rue des martyrs, Grenoble F-38042 (France); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Ivanova, T.I. [Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Koshkid' ko, Yu.S. [International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland); VSB-Technical University of Ostrava, Ostrava-Poruba 70833 (Czech Republic); Bogdanov, A.E.; Nikitin, S.A. [Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Suski, W. [International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland); Polish Academy of Sciences, Trzebiatowski Institute of Low Temperatures and Structure Research, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2015-02-15

    Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the orthorhombic YNi{sub 4}Si-type (space group Cmmm) NdNi{sub 4}Si compound are presented. The magnetocaloric effect of NdNi{sub 4}Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of –3.3 J/kg K for a field change of 50 kOe near T{sub C}=12 K. Below ∼12 K, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group in a zero magnetic field. At 1.5 K, the neodymium atoms have the magnetic moment of 2.37(5) μ{sub B}. The orthorhombic crystal structure and its thermal evolution are discussed in comparison with the CaCu{sub 5}-type compound. - Graphical abstract: The NdNi{sub 4}Si supplement the series of the orthorhombic derivative of the CaCu{sub 5}-type, namely the YNi{sub 4}Si-type, RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho). Below ∼12 K in a zero applied magnetic field, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group. Compared to the CaCu{sub 5}-type NdNi{sub 4}Si compound, the YNi{sub 4}Si-type counterpart has the relatively high ferromagnetic ordering temperature (9.2 K vs. 12 K), the small magnetocaloric effect (–7.3 J/kg K vs. –3.3 J/kg K for ∆H=50 kOe), and the large magnetic anisotropy at low temperatures. In contrast with CaCu{sub 5}-type NdNi{sub 4}Si, YNi{sub 4}Si-type NdNi{sub 4}Si shows distinct hysteresis loop at 2 K.We suggest that orthorhombic distortion may be used as a prospective route for optimization of permanent magnetic properties in the family of CaCu{sub 5}-type rare earth materials. - Highlights: • Below ∼12 K the YNi{sub 4}Si-type NdNi{sub 4}Si shows a ferromagnetic ordering. • MCE of NdNi{sub 4}Si reaches value of –3.3 J/kg K in 0–50 kOe near Curie point. • NdNi{sub 4}Si exhibits b-axis ferromagnetic order with the Cmm′m magnetic space

  7. Element-specific observation of the ferromagnetic ordering process in UCoAl via soft x-ray magnetic circular dichroism

    Science.gov (United States)

    Takeda, Yukiharu; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2018-05-01

    We have performed soft x-ray magnetic circular dichroism (XMCD) experiments on the itinerant-electron metamagnet UCoAl at the U 4 d -5 f (N4 ,5) and Co 2 p -3 d (L2 ,3) absorption edges in order to investigate the magnetic properties of the U 5 f and Co 3 d electrons separately. From the line shape of the XMCD spectrum, it is deduced that the orbital magnetic moment of the Co 3 d electrons is unusually large. Through the systematic temperature (T )- and magnetic field (H )-dependent XMCD measurements, we have obtained two types of the magnetization curve as a function of H and T (M-H curve and M-T curve, respectively). The metamagnetic transition from a paramagnetic state to a field-induced ferromagnetic state was clearly observed under 15 K at HM. The value of the HM and its T dependence agree well between the U and Co sites, and the bulk magnetization. Whereas, we have discovered the remarkable differences in the M-H and M-T curves between the U and Co sites. The present findings clearly show that the role of the Co 3 d electrons should be considered more carefully in order to understand the origin of the magnetic ordering in UCoAl.

  8. The order parameter equations of superfluid Fermi-liquid with spin-triplet pairing near Tc in magnetic field

    International Nuclear Information System (INIS)

    Tarasov, A.N.

    1995-01-01

    The article is devoted to description of equilibrium properties of superfluid phases of 3 He in magnetic field at temperatures near the normal-superfluid point T c . The Landau Fermi-liquid (F-L) approach generalized to superfluid Fermi-liquids (SFLs) is used. Equations for the order parameter paramagnetic SFL with spin-triplet pairing in static and uniform (DC) moderately strong magnetic field are derived without taking into account strong-coupling (SC) effects. An integro-differential equation is deduced for the order parameter in the general case of spin-triplet pairing (spin of a pair is s = 1, orbital moment l of a pair is any odd number). It is valid in the approximation of small space inhomogeneities of the SFL for external DC magnetic field at temperatures near T c . In the case of spin-triplet p-wave pairing a Ginzburg-Landau (GL) equation is derived for the order parameter A αj (complex 3 x 3 matrix). Corrections to the coefficients in the GL eq. are resulted from taking into account the influence of moderately strong DC magnetic field and spin-exchange F-L interaction by the theory of permutations. In such fields these corrections can be of the same order of magnitude as the so-called > SC corrections to the GL eq. (or even exceed them) and are much higher than the particle-hole asymmetric contribution. The above corrections are connected with deformation of the order parameter in moderate magnetic fields and are of interest at description of 3 He - B at low pressures

  9. Temperature-dependent pitch and phase diagram for incommensurate XY spins in a slab geometry

    International Nuclear Information System (INIS)

    Collins, M.; Saslow, W.M.

    1996-01-01

    Strain-engineered Heisenberg antiferromagnets recently have been produced by controlling the layer thickness of MnSe/ZnTe superlattices. Neutron-scattering studies reveal a spiral that tends to untwist with increasing temperature. To simulate this system, we employ an XY model with nearest- and second-nearest neighbor antiferromagnetic interactions. The bulk mean-field phase diagram has four possible phases, for the full range of the exchange constants. Monte Carlo calculations are performed for a slab geometry, using an algorithm that allows the system to choose incommensurate boundary conditions. The phase diagram is constructed by monitoring the spiral pitch as a function of temperature for a range of exchange constants. For appropriate exchange constants, good agreement is obtained with experiment. From the mean-field phase diagram it appears that strain engineering an NaCl structure in a superlattice configuration might produce a type of spiral phase, and an associated antiferromagnetic-to-spiral phase transition. copyright 1996 The American Physical Society

  10. Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni–Mn–In metamagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Recarte, V.; Pérez-Landazábal, J.I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J.A.

    2012-01-01

    The analysis of atomic order and its influence on the magnetic and structural properties of Ni–Mn–In metamagnetic shape memory alloys has been performed. The effect of the different thermal treatments on the magnetic and structural transformation temperatures, as well as on the thermodynamics of the martensitic transformation, has been made by calorimetric measurements. The evolution of the degree of long-range atomic order with temperature has been determined by neutron diffraction experiments, thus confirming the effect of thermal treatments on the atomic order. Calorimetric and structural results allow thermal treatments to be directly related to atomic order, and to allow the effect of the atomic order on the martensitic and magnetic transformations in Ni–Mn–In alloys to be quantified. The thermodynamics of the martensitic transformation depends on the atomic order as indicated out by its influence on the transformation entropy. In addition, a correlation between the transformation entropy and changes in the magnetic-field-induced transformation temperatures has been found through the evolution of the atomic order.

  11. A model for metastable magnetism in the hidden-order phase of URu2Si2

    Science.gov (United States)

    Boyer, Lance; Yakovenko, Victor M.

    2018-01-01

    We propose an explanation for the experiment by Schemm et al. (2015) where the polar Kerr effect (PKE), indicating time-reversal symmetry (TRS) breaking, was observed in the hidden-order (HO) phase of URu2Si2. The PKE signal on warmup was seen only if a training magnetic field was present on cool-down. Using a Ginzburg-Landau model for a complex order parameter, we show that the system can have a metastable ferromagnetic state producing the PKE, even if the HO ground state respects TRS. We predict that a strong reversed magnetic field should reset the PKE to zero.

  12. Nature of the magnetic order in the charge-ordered cuprate La1.48Nd0.4Sr0.12CuO4

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, H.M.; Mesot, J.

    2007-01-01

    Using polarized neutron scattering we establish that the magnetic order in La1.48Nd0.4Sr0.12CuO4 is either (i) one dimensionally modulated and collinear, consistent with the stripe model or (ii) two dimensionally modulated with a novel noncollinear structure. The measurements rule out a number...... of alternative models characterized by 2D electronic order or 1D helical spin order. The low-energy spin excitations are found to be primarily transversely polarized relative to the stripe ordered state, consistent with conventional spin waves....

  13. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    Science.gov (United States)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  14. Identification of fractional-order systems via a switching differential evolution subject to noise perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wu, E-mail: dtzhuwu@gmail.com [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang, Jian-an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Tang, Yang, E-mail: yang.tang@pik-potsdam.de [Institute of Physics, Humboldt University, Berlin 12489 (Germany); Potsdam Institute for Climate Impact Research, Potsdam 14415 (Germany); Research Institute for Intelligent Control and System, Harbin Institute of Technology, Harbin 150006 (China); Zhang, Wenbing [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Xu, Yulong [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2012-10-01

    In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lü and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. -- Highlights: ► Switching population utilization strategy is applied for differential evolution. ► The parameters are estimated in both deterministic and stochastic environments. ► Comparisons with five other EAs verify the effectiveness of the proposed method.

  15. Identification of fractional-order systems via a switching differential evolution subject to noise perturbations

    International Nuclear Information System (INIS)

    Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Xu, Yulong

    2012-01-01

    In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lü and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. -- Highlights: ► Switching population utilization strategy is applied for differential evolution. ► The parameters are estimated in both deterministic and stochastic environments. ► Comparisons with five other EAs verify the effectiveness of the proposed method.

  16. Spin Dynamics and Magnetic Ordering in Mixed Valence Systems

    DEFF Research Database (Denmark)

    Shapiro, S. M.; Bjerrum Møller, Hans; Axe, J. D.

    1978-01-01

    . 0 meV at the transition to the alpha phase. The temperature independence of the susceptibility within the gamma phase cannot be simply reconciled with the temperature dependence of the valence within the gamma phase. TmSe is shown to order in a type I antiferromagnetic structure below T//N similar 3....... 2 K. The magnetic phase diagram is understood as a successive domain reorientation and a metamagnetic phase transition for T less than 3 K with increasing field. The mixed valence nature manifests itself in a reduced moment and a markedly altered crystal field. Another sample of TmSe with a lattice...

  17. The bonding character and magnetic properties of Fe{sub 3}Al: Comparison between disordered and ordered alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fan Runhua [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China)]. E-mail: fan@sdu.edu.cn; Qi Liang [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Sun Kangning [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Min Guanghui [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gong Hongyu [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China)

    2006-12-25

    Fe{sub 3}Al with D0{sub 3}-ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe{sub 3}Al, with D0{sub 3}-ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0{sub 3}-ordered Fe{sub 3}Al to 4sp(Fe)-3p(Al) for the disordered Fe{sub 3}Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased.

  18. Origin of the opalescence at the α-β transition of quartz: Role of the incommensurate phase studied by synchrotron radiation

    International Nuclear Information System (INIS)

    Dolino, G.; Bastie, P.; Capelle, B.; Chamard, V.; Haertwig, J.; Guzzo, P.L.

    2005-01-01

    The origin of the light scattering observed at the α-β transition of quartz is still a subject of controversy. We present structural studies performed during the coexistence of the α and the intermediate incommensurate (inc) phases using simultaneously synchrotron x-ray diffraction and optical techniques. The small and large angle light scatterings are due, respectively, to the orientation domains of the 3q inc phase and to the α phase twins revealed by diffuse x-ray scattering. In the vicinity of the interphase boundary, the two light scattering regions, both with perturbed properties, form a complex multiscale structure

  19. Origin of the Opalescence at the α-β Transition of Quartz: Role of the Incommensurate Phase Studied by Synchrotron Radiation

    Science.gov (United States)

    Dolino, G.; Bastie, P.; Capelle, B.; Chamard, V.; Härtwig, J.; Guzzo, P. L.

    2005-04-01

    The origin of the light scattering observed at the α-β transition of quartz is still a subject of controversy. We present structural studies performed during the coexistence of the α and the intermediate incommensurate (inc) phases using simultaneously synchrotron x-ray diffraction and optical techniques. The small and large angle light scatterings are due, respectively, to the orientation domains of the 3q inc phase and to the α phase twins revealed by diffuse x-ray scattering. In the vicinity of the interphase boundary, the two light scattering regions, both with perturbed properties, form a complex multiscale structure.

  20. Magnetic order of Au nanoparticle with clean surface

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Ryuju; Ishikawa, Soichiro; Sato, Hiroyuki; Sato, Tetsuya, E-mail: satoh@appi.keio.ac.jp

    2015-11-01

    Au nanoparticles, which are kept in vacuum after the preparation by gas evaporation method, show ferromagnetism even in 1.7 nm in diameter. The intrinsic magnetism is examined by detecting the disappearance of spontaneous magnetization in Au bulk prepared by heating the nanoparticles without exposure to the air. The temperature dependence of spontaneous magnetization is not monotonic and the increase in magnetization is observed after Au nanoparticles are exposed to the air. The magnetic behavior can be interpreted by the ferrimagnetic-like core–shell structure with shell thickness of 0.16±0.01 nm and magnetic moment of (1.5±0.1)×10{sup −2} μ{sub B}/Au atom, respectively. - Highlights: • Au nanoparticles with clean surface were prepared by the gas evaporation method. • The spontaneous magnetization was observed in Au nanoparticles. • Temperature dependent spontaneous magnetization of smaller Au particles was not monotonic. • The magnetic behavior was interpreted by the ferrimagnetic-like core–shell model. • The shell thickness and the magnetic moment per Au atom were estimated.

  1. A drift-ordered short mean-free path description of a partially ionized magnetized plasma

    International Nuclear Information System (INIS)

    Simakov, Andrei N

    2009-01-01

    Neutral particles that are present at the edge of plasma magnetic confinement devices can play an important role in energy and momentum transport, and their effects should be accounted for. This work uses the drift ordering to derive a closed fluid description for a collisional, magnetized, partially ionized plasma. Charge-exchange, ionization and recombination processes are taken into account. It is assumed that electron distribution function is unaffected by atomic processes, so that electron-ion momentum and energy exchange are described by the usual expressions for a fully ionized plasma, and that neutral-neutral collisions are unimportant. The collisional fluid equations derived herein generalize the drift-ordered description of a fully ionized collisional plasma (Catto P J et al 2004 Phys. Plasmas 11 90), agree with the MHD-ordered description of a partially ionized plasma (Helander P et al 1994 Phys. Plasmas 1 3174) in the large-flow limit and can be used to describe both turbulent and collisional behavior of a partially ionized plasma.

  2. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    Science.gov (United States)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  3. Mechanism of magnetic recovery in the disorder-order transformation of Fe70Al30 mechanically deformed alloys

    International Nuclear Information System (INIS)

    Rodriguez, D. Martin; Apinaniz, E.; Plazaola, F.; Garitaonandia, J.S.; Jimenez, J.A.; Schmool, D.S.; Cuello, G.J.

    2005-01-01

    The degree of order in Fe-Al intermetallic alloys has an important influence on their magnetic properties. Moreover, the deformation of ordered alloys causes a dramatic increase of magnetization. If deformed alloys are heated, their magnetic properties decrease again. The reordering process was monitored by neutron diffraction, Moessbauer spectroscopy, and calorimetric measurements on the Fe 70 Al 30 crushed alloy. This indicates that the reordering process occurs in two stages. In the first (150-200 deg. C) new small B2 phase domains are nucleated due to vacancy migration. A second reordering stage occurs between 300 and 450 deg. C, where dislocation motion induces B2 domain growth and A2 phase elimination. The main mechanism responsible for this decrease of magnetization during the reordering process is the decrease of the disordered A2 phase content in the alloy

  4. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  5. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    International Nuclear Information System (INIS)

    Kumari, Monika; Hirt, Ann M.; Widdrat, Marc; Faivre, Damien; Tompa, Éva; Pósfai, Mihály; Uebe, Rene; Schüler, Dirk

    2014-01-01

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  6. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  7. Could incommensurability in sulfosalts be more common than thought? The case of meneghinite, CuPb.sub.13./sub.Sb.sub.7./sub.S.sub.24./sub.

    Czech Academy of Sciences Publication Activity Database

    Bindi, L.; Petříček, Václav; Biagioni, C.; Plášil, Jakub; Moëlo, Y.

    2017-01-01

    Roč. 73, č. 3 (2017), s. 369-376 ISSN 2052-5206 R&D Projects: GA ČR(CZ) GA14-03276S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : meneghinite * crystal structure * incommensurability * sulfosalt Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.032, year: 2016

  8. Spin-phonon induced magnetic order in magnetized Spin Ice systems

    International Nuclear Information System (INIS)

    Albarracín, F A Gómez; Cabra, D C; Rosales, H D; Rossini, G L

    2014-01-01

    We study the behavior of spin ice pyrochlore systems above the well known [111] 1/3 plateau, under slight deviations of the direction of the external field. We model the relevant degrees of freedom by Ising spins on the kagome lattice. We propose the inclusion of lattice deformations, which imply phononic degrees of freedom in the adiabatic limit. We use analytical calculations to estimate how these new degrees of freedom affect the short and long range spin interactions in the presence of an external magnetic field. We then obtain the magnetization curves, explore the phases and the ground states of this system in the presence of magnetic field by Monte Carlo simulations. We discuss comparisons with experimental results

  9. Structural order and magnetism of rare-earth metallic amorphous alloys

    International Nuclear Information System (INIS)

    Maurer, M.

    1984-01-01

    Local symmetry (as evaluated from the electric field gradient tensor) and radial distribution functions (obtained by EXAFS measurement) are determined in a series of amorphous rare-earth base alloys. Local order is found to increase with the extent of heteroatomic interactions. Various magnetic phases (including ferromagnetic, spin-glass, reentrant spin-glass) occur for europium alloys with simple metals (Mg, Zn, Cd, Al, Au, ...). This variety reflects the sensitivity of exchange interactions to the presence of non-s conduction electrons. Asperomagnetic structures are established for the Dy alloys. The crystalline electric field interactions at the Dy 3+ ions are interpreted with the help of local symmetry data. Quadratic axial and non-axial crystal field terms are sufficient and necessary in order to account for the hyperfine and bulk experimental results [fr

  10. Crystal structure and magnetic properties of Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba multiferroics using neutron diffraction and Mossbauer spectroscopy

    Directory of Open Access Journals (Sweden)

    Manisha Rangi

    2014-08-01

    Full Text Available Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba multiferroics were studied using x-ray, neutron diffraction and magnetization techniques. All the samples crystallized in rhombohedral structure with space group R3c. The compounds exhibit antiferromagnetic (AFM ordering at 300 K and no evidence of further structural or magnetic transition was observed on lowering of temperature below it. The magnetic structure of these substituted compounds are found to be collinear G-type AFM structure as against the non collinear incommensurate magnetic structure reported in the case of parent compound. The moments on Fe at 6 K are aligned along the a-axis in the case of Ca-doped sample. With increase in the ionic radii of dopant, the moments are found to be aligned in the ac plane and the angle of tilt away from the a-axis increases. The observed change in the magnetic structure with substitution is attributed to the intrinsic structural distortion as evidenced by the change in the bond angle (Fe-O-Fe and bond distances (Bi-O, Fe-O. It has been found that heterovalent substitution A2+ results in the formation of oxygen vacancies in the parent lattices as the possibility of Fe4+ ruled out by Mössbauer spectra recorded at room temperature. Higher value of remnant magnetization (0.4187 emu/g and coercivity (4.7554kOe is observed in Bi0.8Ba0.2FeO3 sample in comparison to other substituted samples revealing a strong correlation between ionic radii and magnetization.

  11. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, James E., E-mail: j.wittig@vanderbilt.edu [Interdisciplinary Materials Science, Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232 (United States); Bentley, James, E-mail: bentleyj48@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States); Allard, Lawrence F., E-mail: allardlfjr@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States)

    2017-05-15

    In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L1{sub 0} ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500 °C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700 °C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5 min at 700 °C produced complete single-domain L1{sub 0} order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L1{sub 0} order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases. - Highlights: • HAADF STEM imaging reveals the

  12. Ab initio investigation on the magnetic ordering in Gd doped ZnO

    KAUST Repository

    Bantounas, Ioannis; Goumri-Said, Souraya; Benali Kanoun, Mohammed; Manchon, Aurelien; Roqan, Iman S.; Schwingenschlö gl, Udo

    2011-01-01

    The current study investigates the magnetic properties of the Gdx Zn1−xO, with x=0.0625 and 0.0185, dopedsemiconductor using the full potential (linearized) augmented plane wave plus local orbital method. We show that in contrast to the findings of Shi et al. [J. Appl. Phys. 106, 023910 (2009)], the implementation of the Hubbard U parameter to the Gd f states favors an antiferromagnetic phase in both wurtzite GdO and Gdx Zn1−xO. Spin polarized calculations on Gdx Zn1−xO indicate that, even if a ferromagnetic ground state were favored, the magnetic influence of Gd in a perfect ZnO wurtzite lattice is highly localized and limited to the first three nearest neighboring O atoms. Increasing the supercell size and thus diluting the concentration of Gd within the ZnO matrix does not show any changes in the net magnetic moment between these three O atoms nor in the remaining lattice sites, indicating that sizing effects do not influence the range of matrix polarization. We conclude that the localized Gd induced polarization can not account for long range magnetic ordering in a defect-free ZnO wurtzite lattice.

  13. Ab initio investigation on the magnetic ordering in Gd doped ZnO

    KAUST Repository

    Bantounas, Ioannis

    2011-04-22

    The current study investigates the magnetic properties of the Gdx Zn1−xO, with x=0.0625 and 0.0185, dopedsemiconductor using the full potential (linearized) augmented plane wave plus local orbital method. We show that in contrast to the findings of Shi et al. [J. Appl. Phys. 106, 023910 (2009)], the implementation of the Hubbard U parameter to the Gd f states favors an antiferromagnetic phase in both wurtzite GdO and Gdx Zn1−xO. Spin polarized calculations on Gdx Zn1−xO indicate that, even if a ferromagnetic ground state were favored, the magnetic influence of Gd in a perfect ZnO wurtzite lattice is highly localized and limited to the first three nearest neighboring O atoms. Increasing the supercell size and thus diluting the concentration of Gd within the ZnO matrix does not show any changes in the net magnetic moment between these three O atoms nor in the remaining lattice sites, indicating that sizing effects do not influence the range of matrix polarization. We conclude that the localized Gd induced polarization can not account for long range magnetic ordering in a defect-free ZnO wurtzite lattice.

  14. A common behaviour of thermoelectric layered cobaltites: incommensurate spin density wave states in [Ca2Co4/3Cu2/3O4]0.62[CoO2] and [Ca2CoO3]0.62[CoO2

    International Nuclear Information System (INIS)

    Sugiyama, J; Brewer, J H; Ansaldo, E J; Itahara, H; Dohmae, K; Xia, C; Seno, Y; Hitti, B; Tani, T

    2003-01-01

    Magnetism of a misfit layered cobaltite [Ca 2 Co 4/3 Cu 2/3 O 4 ] x RS [CoO 2 ] (x ∼ 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation (μ + SR) experiment. A transition to an incommensurate (IC) spin density wave (SDW) state was found below 180 K (= T C on ); and a clear oscillation due to a static internal magnetic field was observed below 140 K(= T C ). Furthermore, an anisotropic behaviour of the zero-field μ + SR experiment indicated that the IC-SDW lies in the a-b plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], i.e., Ca 3 Co 4 O 9 . Since the IC-SDW field in [Ca 2 Co 4/3 Cu 2/3 O 4 ] 0.62 RS [CoO 2 ] was approximately the same as those in pure and doped [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], it was concluded that the IC-SDW exists in the [CoO 2 ] planes

  15. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles

    International Nuclear Information System (INIS)

    Hernandez-Diaz, Lorenzo; Hernandez-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri

    2010-01-01

    We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.

  16. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles

    Science.gov (United States)

    Hernández-Díaz, Lorenzo; Hernández-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri

    2010-05-01

    We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.

  17. Coupling of demixing and magnetic ordering phase transitions probed by turbidimetric measurements in a binary mixture doped with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Diaz, Lorenzo; Hernandez-Reta, Juan Carlos; Encinas, Armando; Nahmad-Molinari, Yuri, E-mail: yuri@ifisica.uaslp.m [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2010-05-19

    We present a novel study on the effect of a magnetic field applied on a binary mixture doped with magnetic nanoparticles close to its demixing transition. Turbidity measurements in the Faraday configuration show that the effect of applying an external field produces changes in the critical opalescence of the mixture that allow us to track an aggregation produced by critical Casimir forces and a reversible aggregation due to the formation of chain-like flocks in response to the external magnetic field. The observation of a crossover of the aggregation curves through optical signals is interpreted as the evolution from low to high power dispersion nuclei due to an increase in the radius of the condensation seed brought about by Casimir or magnetic interactions. Finally, evidence of an enhanced magnetocaloric effect due to the coupling between mixing and ordering phase transitions is presented which opens up a nonsolid state approach of designing refrigerating cycles and devices.

  18. Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Parinya Anantachaisilp

    2017-01-01

    Full Text Available One of the key issues in control design for Active Magnetic Bearing (AMB systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG and H ∞ controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers.

  19. On the determination of the magnetic entropy change in materials with first-order transitions

    International Nuclear Information System (INIS)

    Caron, L.; Ou, Z.Q.; Nguyen, T.T.; Cam Thanh, D.T.; Tegus, O.; Brueck, E.

    2009-01-01

    An accurate method to determine the magnetic entropy change in materials with hysteretic first-order transitions is presented, which is needed to estimate their potential for applications. We have investigated the effect of the maximal entropy change derived from magnetization measurements performed in different measurement processes. The results show that the isothermal entropy change can be derived from the Maxwell relations even for samples with large thermal hysteresis. In the temperature region with hysteresis, overestimating the entropy change can be avoided by measuring the isothermal magnetization of the sample after it is cooled from the paramagnetic state to the measurement temperature. In this way the so-called peak effect is not observed as shown here for a few compounds.

  20. Effect of atomic disorder on the magnetic phase separation

    Science.gov (United States)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  1. The incommensurability of nursing as a practice and the customer service model: an evolutionary threat to the discipline.

    Science.gov (United States)

    Austin, Wendy J

    2011-07-01

    Corporate and commercial values are inducing some healthcare organizations to prescribe a customer service model that reframes the provision of nursing care. In this paper it is argued that such a model is incommensurable with nursing conceived as a moral practice and ultimately places nurses at risk. Based upon understanding from ongoing research on compassion fatigue, it is proposed that compassion fatigue as currently experienced by nurses may not arise predominantly from too great a demand for compassion, but rather from barriers to enacting compassionate care. These barriers are often systemic. The paradigm shift in which healthcare environments are viewed as marketplaces rather than moral communities has the potential to radically affect the evolution of nursing as a discipline. © 2011 Blackwell Publishing Ltd.

  2. Study of incommensurable phases in quantum chains

    International Nuclear Information System (INIS)

    Vollmer, J.

    1990-12-01

    The phases of quantum chains with spin-1/2 and spin-1-respresentations of the SU(2) algebra and the phases of a mixed spin-1/2 / spin-1 chain are reported and investigated. These chains are models with an XX-interaction in a magnetic field. In a certain range of the magnetic field the groundstate magnetisation depends continuously on the magnetic field and the energy gaps vanish, this is a so called 'floating phase'. Within this phase the energy spectrum is a conformal spectrum, comparable to the spectrum of the Gauss-model, but the momenta have a macroscopic part. These macroscopic momenta are connected to oscillating correlation functions, whose periods are determined by the magnetic field. The transition from the floating phase to an existing phase with constant groundstate magnetisation is a Pokrovsky-Talapov-transition, it is a universal transition in all three models. (orig.) [de

  3. First order magnetic transition in single crystal CaFe2As2 detected by 75As NMR

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Ho [Los Alamos National Laboratory; Curro, Nicholas J [UC - DAVIS

    2008-01-01

    We report {sup 75}As Nuclear Magnetic Resonance data in a single crystal of CaFe{sub 2}As{sub 2}. The Knight shift, the electric field gradient, and the spin lattice relaxation rate are strongly temperature dependent in the paramagnetic state, and change discontinuously at the structural transition temperature, T{sub S} = T{sub N} = 167 K. Immediately below, the NMR spectra reveal an internal field at the As site associated with the presence of a commensurate magnetic order. These results indicate that the structural and magnetic transitions in CaFe{sub 2}As{sub 2} are first order and strongly coupled, and that the electron density in the FeAs plane is highly sensitive to the out-of-plane structure.

  4. Coupling of structure to magnetic and superconducting orders in quasi-one-dimensional K2Cr3As3

    Science.gov (United States)

    Taddei, K. M.; Zheng, Q.; Sefat, A. S.; de la Cruz, C.

    2017-11-01

    Quasi-one-dimensional A2Cr3As3 (with A =K , Cs, Rb) is an intriguing new family of superconductors which exhibit many similar features to the cuprate and iron-based unconventional superconductor families. Yet, in contrast to these systems, no charge or magnetic ordering has been observed which could provide the electronic correlations presumed necessary for an unconventional superconducting pairing mechanism—an absence which defies predictions of first-principles models. We report the results of neutron scattering experiments on polycrystalline K2Cr3As3 (Tc˜7 K ) which probed the low-temperature dynamics near Tc. Neutron diffraction data evidence a subtle response of the nuclear lattice to the onset of superconductivity while inelastic scattering reveals a highly dispersive column of intensity at the commensurate wave vector q =(00 1/2 ) which loses intensity beneath Tc—indicative of short-range magnetic fluctuations. Using linear spin-wave theory, we model the observed scattering and suggest a possible structure to the short-range magnetic order. These observations suggest that K2Cr3As3 is in close proximity to a magnetic instability and that the incipient magnetic order both couples strongly to the lattice and competes with superconductivity, in direct analogy with the iron-based superconductors.

  5. Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.

    Science.gov (United States)

    Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi

    2014-06-11

    Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.

  6. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)

    2015-08-15

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  7. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    International Nuclear Information System (INIS)

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  8. Magnetic ordering in Ho-doped Bi{sub 2}Te{sub 3} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I.; Van der Laan, G.; Hesjedal, T. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot (United Kingdom); Harrison, S.E. [Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom); Department of Electrical Engineering, Stanford University, Stanford, CA (United States); Collins-McIntyre, L.J. [Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)

    2016-06-15

    We investigate the magnetic properties of Ho-doped Bi{sub 2}Te{sub 3} thin films grown by molecular beam epitaxy. Analysis of the polarized X-ray absorption spectra at the Ho M{sub 5} absorption edge gives an effective 4f magnetic moment which is ∝45% of the Hund's rule ground state value. X-ray magnetic circular dichroism (XMCD) shows no significant anisotropy, which suggests that the reduced spin moment is not due to the crystal field effects, but rather the presence of non-magnetic or antiferromagnetic Ho sites. Extrapolating the temperature dependence of the XMCD measured in total electron yield and fluorescence yield mode in a field of 7 T gives a Curie-Weiss temperature of and vartheta;{sub CW} ∼ -30 K, which suggests antiferromagnetic ordering, in contrast to the paramagnetic behavior observed with SQUID magnetometry. From the anomaly of the XMCD signal at low temperatures, a Neel temperature T{sub N} between 10 K and 25 K is estimated. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Phase separation, effects of magnetic field and high pressure on charge ordering in γ-Na0.5CoO2

    International Nuclear Information System (INIS)

    Yang, H.X.; Shi, Y.G.; Nie, C.J.; Wu, D.; Yang, L.X.; Dong, C.; Yu, H.C.; Zhang, H.R.; Jin, C.Q.; Li, J.Q.

    2005-01-01

    Transmission electron microscopy (TEM) observations reveal the presence of complex superstructures and remarkable phase separation in association with Na-ordering phenomenon in γ-Na 0.5 CoO 2 . Resistivity and magnetization measurements indicate that three phase transitions at the temperatures of 25, 53 and 90 K, respectively, appear commonly in γ-Na 0.5 CoO 2 samples. Under a high pressure up to 10 kbar, the low-temperature transport properties show certain changes below the charge order transition; under an applied magnetic field of 7 T, phase transitions at around 25 and 53 K, proposed fundamentally in connection with alternations of magnetic structure and charge ordering maintain almost unchanged

  10. The magnetic order of GdMn{sub 2}Ge{sub 2} studied by neutron diffraction and x-ray resonant magnetic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, S A [M V Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Kreyssig, A; Canfield, P C [Ames Laboratory USDOE, Iowa State University, Ames, IA 50011 (United States); Doerr, M; Loewenhaupt, M [TU Dresden, Institut fuer Festkoerperphysik, D-01062, Dresden (Germany); Ritter, C [Institut Laue-Langevin, F-38042 Grenoble Cedex 9 (France); Dudzik, E; Feyerherm, R, E-mail: ser@plms.r [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, BESSY, D-12489, Berlin (Germany)

    2010-06-09

    The magnetic structure of GdMn{sub 2}Ge{sub 2} (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T{sub C} = 96 K and the collinear antiferromagnetic phase in the temperature region T{sub C} < T < T{sub N} = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L{sub 2} absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  11. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    Science.gov (United States)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  12. Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Bone, S.; Qiao, R.; Yang, W.; Liu, Z.; Sposito, G.

    2010-11-01

    Mackinawite is a naturally occurring layer-type FeS mineral important in biogeochemical cycles and, more recently, in the development of microbial fuel cells. Conflicting results have been published as to the magnetic properties of this mineral, with Moessbauer spectroscopy indicating no magnetic ordering down to 4.2 K but density functional theory (DFT) predicting an antiferromagnetic ground state, similar to the Fe-based high-temperature superconductors with which it is isostructural and for which it is known that magnetism is suppressed by strong itinerant spin fluctuations. We investigated this latter possibility for mackinawite using photoemission spectroscopy, near-edge x-ray absorption fine structure spectroscopy, and DFT computations. Our Fe 3{sub s} core-level photoemission spectrum of mackinawite showed a clear exchange-energy splitting (2.9 eV) consistent with a 1 {micro}{sub B} magnetic moment on the Fe ions, while the Fe L-edge x-ray absorption spectrum indicated rather delocalized Fe 3{sub d} electrons in mackinawite similar to those in Fe metal. Our DFT computations demonstrated that the ground state of mackinawite is single-stripe antiferromagnetic, with an Fe magnetic moment (2.7 {micro}{sub B}) that is significantly larger than the experimental estimate and has a strong dependence on the S height and lattice parameters. All of these trends signal the existence of strong itinerant spin fluctuations. If spin fluctuations prove to be mediators of electron pairing, we conjecture that mackinawite may be one of the simplest Fe-based superconductors.

  13. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  14. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-08-01

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.

  15. On the existence of eigenmodes of linear quasi-periodic differential equations and their relation to the MHD continuum

    International Nuclear Information System (INIS)

    Salat, A.

    1981-12-01

    The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f(ω 1 t,ω 2 t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω 1 , ω 2 a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained. The equation considered is a model for the magneto-hydrodynamic 'continuum' in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently irrational magnetic surfaces. (orig.)

  16. Interplay of charge, orbital and magnetic order in Pr1-xCaxMnO3

    International Nuclear Information System (INIS)

    Zimmermann V, M.; Hill, J.P.; Gibbs, D.; Blume, M.; Casa, D.; Keimer, B.; Murakami, Y.; Tomioka, Y.; Tokura, Y.

    1999-01-01

    The authors report resonant x-ray scattering studies of charge and orbital order in Pr 1-x Ca x MnO 3 with x = 0.4 and 0.5. Below the ordering temperature, T O = 245 K, the charge and orbital order intensities follow the same temperature dependence, including an increase at the antiferromagnetic ordering temperature, T N . High resolution measurements reveal, however, that long range orbital order is never achieved. Rather, an orbital domain state is formed. Above T O , the charge order fluctuations are more highly correlated than the orbital fluctuations. Similar phenomenology is observed in a magnetic field. They conclude that the charge order drives the orbital order at the transition

  17. Chaos Suppression in Fractional order Permanent Magnet Synchronous Generator in Wind Turbine Systems

    Science.gov (United States)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash

    2017-06-01

    In this paper we investigate the control of three-dimensional non-autonomous fractional-order uncertain model of a permanent magnet synchronous generator (PMSG) via a adaptive control technique. We derive a dimensionless fractional order model of the PMSM from the integer order presented in the literatures. Various dynamic properties of the fractional order model like eigen values, Lyapunov exponents, bifurcation and bicoherence are investigated. The system chaotic behavior for various orders of fractional calculus are presented. An adaptive controller is derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the robust controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results derived through which we show that for the derived adaptive controller and the parameter update law, the origin of the system for any bounded initial conditions is asymptotically stable.

  18. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Lynch, Brian; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California–San Diego, La Jolla, California 92093 (United States)

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  19. Intralayer Cation Ordering in a Brownmillerite Superstructure: Synthesis, Crystal, and Magnetic Structures of Ca2FeCoO5

    International Nuclear Information System (INIS)

    Ramezanipour, Farshid; Greedan, John E.; Grosvenor, Andrew; Britten, James; Cranswick, Lachlan M.D.

    2010-01-01

    The synthesis, crystal, and magnetic structures and the bulk magnetic properties of Ca2FeCoO5, a brownmillerite type oxide, are presented. The crystal structure, solved and refined from single crystal X-ray and powder neutron diffraction data, is described in Pbcm with cell parameters, a = 5.3652(3), b = 11.0995(5), c = 14.7982(7) . Thus, one axis, b in this setting, is doubled in comparison with the standard brownmillerite structure description giving rise to two sets of octahedral and tetrahedral sites. Aided by the strong scattering contrast between Fe and Co for neutrons, a nearly perfect intralayer cation site ordering, not observed for any brownmillerite before, is detected in the tetrahedral layers. There is a lesser degree of cation site ordering in the octahedral sites. Overall, the Fe/Co site ordering is of the NaCl type both within and between the tetrahedral and octahedral layers. There are also both intra- and interlayer ordering of tetrahedral chain orientations. The left- and right-handed orientations alternate within each tetrahedral layer as well as between the closest tetrahedral layers. The occurrence of the rare Pbcm space group in Ca2FeCoO5 is not consistent with a recently proposed structure-field map for brownmillerite oxides. The magnetic structure is G-type antiferromagnetic, with preferred orientation of magnetic moments parallel to the longest axis between 3.8 K to 100 K which switches to the shortest axis between 225 K and 550 K. The neutron diffraction data indicate different site specific ordering temperatures at about 450(5) K and 555(5) K. The refined ordered moments at 3.8 K are somewhat smaller than expected for Fe3+ and Co3+(high spin) but are similar to those found in Sr2FeCoO5. There is evidence for spin canting from isothermal magnetization data that shows well pronounced hystereses and remnant magnetizations at 5 K and 200 K.

  20. Anisotropic magnetic structures of the Mn R MnSbO6 high-pressure doubly ordered perovskites (R =La , Pr, and Nd)

    Science.gov (United States)

    Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul

    2018-04-01

    A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .

  1. Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

    Science.gov (United States)

    Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.

    2018-03-01

    We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.

  2. Anomalous behavior of soft mode attenuation in the incommensurate phase in Cd2Nb2O7, K2SeO4 and Rb2ZnBr4

    International Nuclear Information System (INIS)

    Smolenskij, G.A.; Kolpakova, N.N.; Sher, E.S.; Brzhezina, B.

    1986-01-01

    Moderation of soft mode attenuation in the incommensurate phase in Cd 2 Nb 2 O 7 , K 2 SeO 4 and Rb 2 ZnBr 4 is observed at temperature drop and anomalous jump-like decrease of integral intensity of the soft mode under transition to the low-temperature commensurate phase. Anomalous behaviour of the soft mode is explained by wave amplitudon contribution (q=0) in Raman spectrum of the first order and composite tone (wave amplitudon (q=0) +- wave phase (q=K i )) in Raman spectrum of the second order. Relative contribution of the phase wave (q=K i ) to soft mode attenuation can be estimated supposing that wave amplitudon attenuation is G A ∼ (T i -T) -1 . ΔG f max makes up approximately 6 cm -1 in Cd 2 Nb 2 O 7 and approximately 3 cm -1 in K 2 SeO 4 and Rb 2 ZnBr 4 at temperatures above T c . In the low-temperature phase the soft mode corresponds to the wave amplitudon (q=0) in the Raman spectrum of the first order at T c - 26 K) in Cd 2 Nb 2 O 7 , T c - 13 K) in K 2 SeO 4 and T c - 163 K) in Rb 2 ZnBr 4

  3. Transition from order to chaos, and density limit, in magnetized plasmas.

    Science.gov (United States)

    Carati, A; Zuin, M; Maiocchi, A; Marino, M; Martines, E; Galgani, L

    2012-09-01

    It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so-called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.

  4. Loss of long-range magnetic order in a nanoparticle assembly due to random anisotropy

    International Nuclear Information System (INIS)

    Binns, C; Howes, P B; Baker, S H; Marchetto, H; Potenza, A; Steadman, P; Dhesi, S S; Roy, M; Everard, M J; Rushforth, A

    2008-01-01

    We have used soft x-ray photoemission electron microscopy (XPEEM) combined with x-ray magnetic circular dichroism (XMCD) and DC SQUID (superconducting quantum interference device) magnetometry to probe the magnetic ground state in Fe thin films produced by depositing size-selected gas-phase Fe nanoparticles with a diameter of 1.7 nm (∼200 atoms) onto Si substrates. The depositions were carried out in ultrahigh vacuum conditions and thicknesses of the deposited film in the range 5-50 nm were studied. The magnetometry data are consistent with the film forming a correlated super-spin glass with a magnetic correlation length ∼5 nm. The XPEEM magnetic maps from the cluster-assembled films were compared to those for a conventional thin Fe film with a thickness of 20 nm produced by a molecular beam epitaxy (MBE) source. Whereas a normal magnetic domain structure is observed in the conventional MBE thin film, no domain structure could be observed in any of the nanoparticle films down to the resolution limit of the XMCD based XPEEM (100 nm) confirming the ground state indicated by the magnetometry measurements. This observation is consistent with the theoretical prediction that an arbitrarily weak random anisotropy field will destroy long-range magnetic order

  5. Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene

    Science.gov (United States)

    Craco, L.

    2017-10-01

    Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.

  6. Fractional order nonlinear variable speed and current regulation of a permanent magnet synchronous generator wind turbine system

    Directory of Open Access Journals (Sweden)

    Anitha Karthikeyan

    2018-03-01

    Full Text Available In this paper we derived the fractional order model of the Permanent Magnet Synchronous Generator (PMSG from its integer model. The PMSG was employing a shaft sensor for the speed sensing and control. But this sensor would increase the hardware complexity as well as the cost of the system. Hence we have developed a Fractional order Nonlinear adaptive control method for speed and current tracking of the PMSG. The objective of an adaptive controller is to first define a virtual control state and force it to become a stabilizing function in accordance with a corresponding error dynamics. In order to study the Lyapunov exponents of the fractional order controller, we proposed a new method which would remove the complexity of finding the sign of the Lyapunov first derivative. The Fractional order control scheme is implemented in LabVIEW for simulation results. The simulation results indicated that the estimated rotor position and speed correspond to their actual values well. Keywords: Chaos suppression, Fractional order systems, Permanent magnet synchronous generator, Speed and current control, Lyapunov stability

  7. Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC; Petschlies, Marcus [Humboldt Univ. Berlin (Germany). Inst. fuer Physik

    2011-03-15

    We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, in nite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modi cation to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43).10{sup -12}, 5.72(16).10{sup -8} and 2.650(54).10{sup -6} for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%. (orig.)

  8. Annealing influence on the atomic ordering and magnetic moment in a Ni-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Gutierrez, J.; Lazpita, P.; Barandiaran, J.M.; Fdez-Gubieda, M.L.; Chaboy, J.; Kawamura, N.

    2007-01-01

    We have studied an alloy of composition Ni 51 Mn 28 Ga 21 prepared by rapid quenching in the form of a ribbon, with transformation temperature T M =337 K below the magnetic-order temperature, T C =344 K. Annealing of the samples was performed at 600 K for different times. From magnetic characterization a clear increase of the saturation magnetization accompanied with an increase of T C (up to 20 K) and T M (about 10 K) has been observed. XMCD measurements of both as-quenched and annealed samples have revealed great changes for the Mn and also the existence of a strong Ni signal. These results point out a possible non-negligible role of Ni, through the polarization of the conduction band, into driving the interplay between annealing and the magnetic properties in these materials

  9. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    Science.gov (United States)

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  10. Absence of magnetic ordering and field-induced phase diagram in the gadolinium aluminum garnet

    Science.gov (United States)

    Florea, O.; Lhotel, E.; Jacobsen, H.; Knee, C. S.; Deen, P. P.

    2017-12-01

    The robustness of spin liquids with respect to small perturbations, and the way magnetic frustration can be lifted by slight changes in the balance between competing magnetic interactions, remains a rich and open issue. We address this question through the study of the gadolinium aluminum garnet Gd3Al5O12 , a related compound to the extensively studied Gd3Ga5O12 . We report on its magnetic properties at very low temperatures. We show that despite a freezing at about 300 mK, no magnetic transition is observed, suggesting the presence of a spin-liquid state down to the lowest temperatures, similarly to Gd3Ga5O12 , in spite of a larger ratio between exchange and dipolar interactions. Finally, the phase diagram as a function of field and temperature is strongly reminiscent of the one reported in Gd3Ga5O12 . This study reveals the robust nature of the spin-liquid phase for Gd ions on the garnet lattice, in stark contrast to Gd ions on the pyrochlore lattice for which a slight perturbation drives the compound into a range of magnetically ordered states.

  11. Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Schmidt, Marcus [MPI CPfS, Dresden (Germany); Wilhelm, Heribert [Diamond Light Source Ltd., Chilton (United Kingdom); Roessler, Ulrich K.; Bogdanov, Alexei N.; Leonov, Andrey A. [IFW Dresden (Germany)

    2011-07-01

    We report on detailed magnetic measurements on the cubic helimagnet FeGe in external magnetic fields parallel to the direction and temperatures in the vicinity of the onset of long-range magnetic order at T{sub c}{approx}278 K. Depending on the temperature and field, a helical state (Hmagnets, the A{sub 1} phase could indicate existence of a +{pi} Skyrmion lattice, however, the A{sub 2} phase seems related to helicoids propagating in directions perpendicular to the applied field. We suggest that the observation of this A{sub 2}-phase can be explained by hexagonal arrays of spiral domains consisting essentially of helicoids.

  12. Modified Projective Synchronization between Different Fractional-Order Systems Based on Open-Plus-Closed-Loop Control and Its Application in Image Encryption

    Directory of Open Access Journals (Sweden)

    Hongjuan Liu

    2014-01-01

    Full Text Available A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS of different fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL control. Based on the stability theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.

  13. Specific heat and magnetic susceptibility vs long range order in V3Ga

    International Nuclear Information System (INIS)

    Junod, A.; Fluekiger, R.; Treyvaud, A.; Muller, J.

    1976-01-01

    A new technique of studying the magnetic susceptibility together with the specific heat and the superconducting transition of typical A15-type compounds in different ordering states enables us to consistently isolate the spin paramagnetism. Satisfactory results are obtained for V 3 Ga and these are compared with data on V 3 Au and Nb 3 (Au-Pt). (author)

  14. Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets

    International Nuclear Information System (INIS)

    Cinti, F.; Rettori, A.; Pini, M.G.; Mariani, M.; Micotti, E.; Lascialfari, A.; Papinutto, N.; Amato, A.; Caneschi, A.; Gatteschi, D.; Affronte, M.

    2010-01-01

    Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac) 3 NITEt. The specific heat presents two anomalies at T 0 =2.19(2)K and T N =1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T N =1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.

  15. Characterizing the Magnetic Properties of Natural Samples Using First-Order Reversal Curve Diagrams

    Science.gov (United States)

    Pike, C. R.; Roberts, A. P.; Verosub, K. L.

    2001-12-01

    A FORC diagram is calculated from a class of partial hysteresis curves known as first-order reversal curves or FORCs. The measurement of a FORC begins by saturating a sample in a large positive applied field. The field is then decreased to a specified field and reversed; the FORC consists of the magnetization curve that results when the applied field is increased from this reversal field back to saturation. By repeating this measurement for different reversal fields, one obtains a suite of curves that provide detailed information on the distribution of particle switching fields (coercivities) and interaction fields in the sample. These magnetization data are transformed into a FORC distribution by calculating a second derivative of the magnetization data, and by applying a change in co-ordinates. The FORC distribution is, therefore, an empirically well-defined quantity that can be used to probe subtle variations in hysteresis behavior. We have used FORC diagrams to characterize the main types of hysteresis behavior observed in rock magnetism and environmental magnetism. FORC diagrams can be calculated using room-temperature or low-temperature data and enable identification of superparamagnetic, single domain and multi-domain grains, as well as magnetostatic interactions, even in mixed magnetic mineral assemblages. Routine use of FORC diagrams to examine representative bulk samples from large sample collections can provide important information concerning the magnetic particles that cannot be obtained using standard hysteresis measurements. In addition to using FORC diagrams to identify specific magnetic components in a sample, they can also be used to understand fundamental problems in rock magnetism. Our results suggest that pseudo-single domain grains contain contributions from single domain and multi-domain moments and that the hysteresis behavior observed in the multi-domain grains typically encountered in rock magnetism cannot be solely explained through

  16. Muon spin rotation studies of magnetic order and strong magnetic correlations in magnetic and superconducting systems based on the high Tc copper oxide structures

    International Nuclear Information System (INIS)

    Rudnick, J.J.; Filipkowski, M.E.; Tan, Z.; Chamberland, B.; Niedermayer, C.; Weidinger, A.; Golnik, A.; Simon, R.; Rauer, M.; Recknagel, E.; Gluckler, H.; Baines, C.

    1990-01-01

    In this paper the authors review results of a series of muon spin rotation (μSR) studies extending down to milli Kelvin temperatures in order to explore the existence of magnetic correlations below T C in the La 2-x Sr x CuO 4 system. Evidence is presented for the existence of local magnetic fields thought to originate from Cu electronic moments in both superconducting La 2-x Sr x CuO 4 and in superconducting oxygen deficient YBa 2 Cu 3 O 6.6 . μSR results are also presented for oxygen deficient and superconducting GdBa 2 Cu 3 O 6+x samples. Some discussion of the relevance of these results to recent proposals for pairing mechanisms is presented

  17. Neutron diffraction studies of magnetic ordering in superconducting ErNi{sub 2}B{sub 2}C and TmNi{sub 2}B{sub 2}C in an applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Toft, K.N

    2004-01-01

    The field-induced magnetic structures of ErNi{sub 2}B{sub 2}C and TmNi{sub 2}B{sub 2}C in are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength of superconductivity. ErNi{sub 2}B{sub 2}C: For magnetic fields along all three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures. Two results remain unresolved: 1. When applying the magnetic field along [010], the minority domain (Q{sub N}{sup B} = (0,Q,0) with moments perpendicular to the field) shows no signs of hysteresis. I expected it to be a meta-stable state, which would be gradually suppressed by a magnetic field, and when decreasing the field it would not reappear until some small field of approximately 0.1 T. 2. When the field is applied along [110], the magnetic structure rotates a small angle of 0.5 degrees away from the symmetry direction. TmNi{sub 2}B{sub 2}C: A magnetic field applied in the [100] direction suppresses the zero field magnetic structure Q{sub F} = (0.094,0.094,0) (T{sub N} = 1.6 K), in favor of the Fermi surface nesting structure Q{sub N} = (0.483,0,0). The appearance of the Q{sub N} phase was initially believed to be caused by the suppression of superconductivity. This suppression should make it favorable to create a magnetic order with a Q-vector determined by the maximum in the magnetic susceptibility at the Fermi surface nesting vector Q{sub N}. The phase diagram for the magnetic structures is presented, however several properties of the Q{sub N} magnetic structure cannot be explained within any known models. Quadrupolar ordering is suggested as a possible candidate for explaining these features of the Q{sub N} structure. (au)

  18. Coexistence of superconductivity and magnetism in Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2}. Universal suppression of the magnetic order parameter in 122 iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp; Kamusella, Sirko; Sarkar, Rajib; Klauss, Hans-Henning [IFP, TU Dresden, 01062 Dresden (Germany); Harnagea, Luminita [IFW Dresden, Postfach 270016, 01171 Dresden (Germany); Wurmehl, Sabine; Buechner, Bernd [IFP, TU Dresden, 01062 Dresden (Germany); IFW Dresden, Postfach 270016, 01171 Dresden (Germany); Luetkens, Hubertus [PSI, 5232 Villigen (Switzerland); Timm, Carsten [ITP, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    We examined Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} single crystals with x=0.00, 0.35, 0.50, and 0.67 by means of muon spin relaxation and Moessbauer spectroscopy to investigate the electronic and structural properties of these compounds. CaFe{sub 2}As{sub 2} is a semimetal, which shows spin density wave order below 167 K. By hole doping via Ca→Na substitution, the magnetic order is suppressed and superconductivity emerges with T{sub c}∼34K at optimal doping including a substitution level region where both phases coexist. We have studied the interplay of order parameters in this coexistence region and found nanoscopic coexistence of both order parameters. This is proven by a reduction of the magnetic order parameter by 7% below the superconducting transition temperature. We present a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, T{sub c}/T{sub N}, for the 122 family of the iron-based superconductors.

  19. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO_3 nanoparticles in (GdMnO_3)_0_._7_0(CoFe_2O_4)_0_._3_0

    International Nuclear Information System (INIS)

    Mitra, A.; Mahapatra, A.S.; Mallick, A.; Chakrabarti, P.K.

    2017-01-01

    Nanoparticles of GdMnO_3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe_2O_4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below ~100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations. - Highlights: • Nanoparticles of GdMnO_3 are incorporated in the matrix of CoFe_2O_4. • RT magnetic ordering of GMO nanoparticles in GMO-CFO is observed. • Magnetic property of GMO-CFO is highly enhanced compared to GMO. • Exchange bias is found in GMO-CFO at low temperature.

  20. An experimental study of the incommensurate phase transformations in Rb2ZnBr4 and Na2CO3

    International Nuclear Information System (INIS)

    Pater, C.J. de.

    1978-01-01

    The object of this thesis is an experimental study of a novel quasi-crystalline state of certain materials. The structure in such a state is characterized by a three-dimensionally periodic basic structure which is deformed by a static displacement wave. The peculiarity of the structure is marked by the incommensurability of the displacement wave with respect to the basic lattice, resulting in a loss of three-dimensional periodicity. The wave-length and the amplitude of the modulation wave are temperature dependent. Upon raising the temperature the latter vanishes: a phase transition occurs to a normal crystalline state. In order to see what exactly happens at the phase transition, extensive neutron scattering experiments have been performed. This technique offers the opportunity to determine both the spatial arrangemet of the atoms as well as the time dependence of the atomic displacements. Dielectric measurements have been done to study the coupling of the modulation wave with an external electric field. For a similar reason ultra-sonic measurements have been performed, where the response of the sample to an external stress is measured. Finally, the nuclear quadrupole resonance technique was employed to investigate the electric field gradient at a specific type of nucleus. The latter three techniques were employed in the study of Rb 2 ZnBr 4 , since good single crystals with a volume of a few cm 3 were available of this compound, whereas only small crystals (.1 cm 3 ) of Na 2 CO 3 were available. (Auth.)

  1. Group theory for magnetic structure determination: Recent developments and quadrupolar ordering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al.Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: sikora@novell.ftj.agh.edu.pl; Pytlik, L. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al.Mickiewicza 30, 30-059 Cracow (Poland); Bialas, F. [Nowy Sacz School of Busines-National Louis University, 33-300 Nowy Sacz (Poland); Malinowski, J. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al.Mickiewicza 30, 30-059 Cracow (Poland)

    2007-09-13

    In this paper, the recent developments in practical applications of symmetry analysis are described. The theoretical basis shortly described in Section 1 has been implemented in several computer applications, one of which is the program 'MODY-win', developed by the authors of the paper. The program calculates the so-called basis vectors of irreducible representations of a given symmetry group, which can be used for calculation of possible ordering modes. Its practical application is demonstrated on some examples, presenting the recent aspects of using the symmetry analysis to description of various types of ordering encountered in solids. The scalar-type ordering (occupation probability) is discussed shortly for occupation of interstitial sites by hydrogen atoms in inter-metallic compounds. The description of vector ordering is demonstrated on the magnetic ordering modes, with special attention focused on the freedom that is left in the structure after imposing all the symmetry constraints. In practice, the final ordering mode usually contains some free parameters that cannot be determined from the symmetry itself. The last application presented in the paper is the description of quadrupolar ordering, recently found in some compounds of 4f (5f) elements. For the latter case, an additional advantage is demonstrated by calculation of possible displacements of neighboring atoms after the establishment of non-zero quadrupolar order parameter on the central atom.

  2. Charge ordering, ferroelectric, and magnetic domains in LuFe{sub 2}O{sub 4} observed by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, I. K.; Jeong, Y. H., E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Kim, Jeehoon [Department of Physics, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); CALDES, Institute of Basic Science, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Lee, S. H. [YE Team, Samsung Electronics, 1 Samsungjeonja-Ro, Hwaseong 445-330 (Korea, Republic of); Cheong, S.-W. [Laboratory of Pohang Emergent Materials, POSTECH, 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-04-13

    LuFe{sub 2}O{sub 4} is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below ∼230 K. The ferroelectric/charge order domains of LuFe{sub 2}O{sub 4} are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe{sub 2}O{sub 4} is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe{sub 2}O{sub 4} reveals that both domains have irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 μm. We also demonstrate that the origin of the formation of irregular domains in LuFe{sub 2}O{sub 4} is not extrinsic but intrinsic.

  3. Magnetic anisotropy and chemical long-range order in epitaxial ferrimagnetic CrPt sub 3 films

    CERN Document Server

    Maret, M; Köhler, J; Poinsot, R; Ulhaq-Bouillet, C; Tonnerre, J M; Berar, J F; Bucher, E

    2000-01-01

    Thin films of CrPt sub 3 were prepared by molecular beam epitaxy on both Al sub 2 O sub 3 (0 0 0 1) and MgO(0 0 1) substrates, either directly by co-deposition of Cr and Pt at high temperatures or after in situ annealing of superlattices [Cr(2 A)/Pt(7 A)]. In situ RHEED observations and X-ray diffraction measurements have allowed us to check the single-crystal quality of CrPt sub 3 films and to determine the degree of L1 sub 2 -type long-range order (LRO). In films co-deposited between 850 deg. C and 950 deg. C a nearly perfect LRO has been observed. As in bulk alloys, such ordering yields a ferrimagnetic order, while the disordered films are non-magnetic. In contrast with the ferromagnetic L1 sub 2 -type ordered CoPt sub 3 (1 1 1) films, the ferrimagnetic CrPt sub 3 (1 1 1) films exhibit perpendicular magnetic anisotropy with quality factors, K sub u /K sub d , as large as 5 and large coercivities around 450 kA/m. Such anisotropy could be related to the arrangement of Cr atoms, which owing to their large mag...

  4. Experimental and micromagnetic first-order reversal curves analysis in NdFeB-based bulk 'exchange spring'-type permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, Horia [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050, Iasi (Romania); Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050, Iasi (Romania); Stoleriu, Laurentiu [Al. I. Cuza University, Department of Solid State and Theoretical Physics, Blvd. Carol I, 11, 700506, Iasi (Romania)]. E-mail: lstoler@uaic.ro; Postolache, Petronel [Al. I. Cuza University, Department of Solid State and Theoretical Physics, Blvd. Carol I, 11, 700506, Iasi (Romania); Stancu, Alexandru [Al. I. Cuza University, Department of Solid State and Theoretical Physics, Blvd. Carol I, 11, 700506, Iasi (Romania)

    2007-09-15

    In this paper we present the results of applying the first-order reversal curves (FORC) diagram experimental method to the analysis of the magnetization processes of NdFeB-based permanents magnets. The FORC diagrams for this kind of exchange spring magnets show the existence of two magnetic phases-a soft magnetic phase and a hard magnetic one. Micromagnetic modeling is used for validating the hypotheses regarding the origin of the different features of the experimental FORC diagrams.

  5. Electron paramagnetic resonance response and magnetic interactions in ordered solid solutions of lithium nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, Pavia (Italy); Paleari, A. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita di Milano, Milan (Italy); Massarotti, V.; Capsoni, D. [Dipartimento di Chimica-Fisica, Universita di Pavia, Pavia (Italy)

    1996-09-23

    EPR data of ordered solid solutions of lithium nickel oxides are reported as a function of the lithium content. The features of the signal and the EPR centre density are analysed by a model of dynamical trapping of holes in [(Ni{sup 2+}-O-Ni{sup 2+})-h{sup +}] complexes. The possible origin of the interactions responsible for the magnetic ordering and some features of the transport properties are also discussed. (author)

  6. Magnetic properties of nanoscaled paramelaconite Cu{sub 4}O{sub 3−x} (x=0.0 and 0.5)

    Energy Technology Data Exchange (ETDEWEB)

    Djurek, D., E-mail: danijel.djurek@zg.t-com.hr [A. Volta Applied Ceramics (AVAC), 49247 Zlatar Bistrica, A. Šenoe 14 (Croatia); Prester, M.; Drobac, Dj. [Institute of Physics, 10000 Zagreb, Bijenička c. 46 (Croatia); Ivanda, M.; Vojta, D. [Ruđer Bošković Institute, 10000 Zagreb, Bijenička c. 54 (Croatia)

    2015-01-01

    Pure paramelaconite Cu{sub 4}O{sub 3−x} has been prepared in the form of nanoparticles with 56 nm in diameter. This mixed valency oxide crystallizes in a tetragonal lattice with 4 unit formulae and forms a pyrochlore structure which manifests in two stoichiometric forms; Cu{sub 4}O{sub 3} and Cu{sub 4}O{sub 2.5}, the latter form having two oxygen vacancies per unit cell. Magnetic lattice consists of Cu spin 1/2, and both stoichiometric forms obey transition to the antiferromagnetic state at T{sub N}=45–55 K. Defect free Cu{sub 4}O{sub 3} is indicated by an inversion symmetry and exhibits both antiferromagnetic and ferromagnetic state, where the latter is supposedly due to the superexchange interaction in Cu–O(1n)–Cu bonds. An additional magnetic transition was observed in Cu{sub 4}O{sub 3} at T=120 K, probably as a result of an incommensurate ordering. Absence of an inversion symmetry in the oxygen defect Cu{sub 4}O{sub 2.5} results in a long range Dzyaloshinsky–Moriya interaction accompanied by the strong superparamagnetism. - Highlights: • The first successful preparation of pure paramelaconite Cu{sub 4}O{sub 3−x}. • High resolution AC susceptibility measurements. • Evidence is presented for two stoichiometric forms of paramelaconite; defect free Cu{sub 4}O{sub 3} and Cu{sub 4}O{sub 2.5}. • Additional magnetic transition is observed at T=120 K in the defect free Cu{sub 4}O{sub 3}.

  7. Magnetocaloric effect in multiferroic Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe0.92Al0.0812O22

    Directory of Open Access Journals (Sweden)

    Wenfei Xu

    2014-06-01

    Full Text Available Magnetocaloric effect is investigated in multiferroic Ba0.5Sr1.5Zn2(Fe0.92Al0.0812O22 ceramic with Y-type hexagonal system. Three magnetic transitions, from alternating longitudinal conical to mixed conical at ∼240 K, to ferrimagnetic at ∼297 K, further to paramagnetic at ∼702 K, are unambiguously determined. Furthermore, obvious MCE is shown, and the maximum values of the magnetic entropy change and relative cooling power are evaluated to be 1.53 JKg−1K−1 and 280 JKg−1 for a field change of 7 T, respectively. In addition, inverse MCE is also observed, which might be associated with the first-order magnetic phase transition between two incommensurate longitudinal conical phases.

  8. Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes

    Czech Academy of Sciences Publication Activity Database

    Gu, Yanjun; Yu, Q.; Klimo, Ondřej; Esirkepov, T.Z.; Bulanov, S.V.; Weber, Stefan A.; Korn, Georg

    2016-01-01

    Roč. 4, Jun (2016), 1-5, č. článku e19. ISSN 2095-4719 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : high order laser mode * laser–plasma interaction * magnetic annihilation Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O(6+δ) superconductors identified by resonant elastic x-ray scattering.

    Science.gov (United States)

    Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G

    2012-10-19

    Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

  10. Magnetic ordering and electrical resistivity in Co0.2Zn0.8Fe2O4 spinel oxide

    International Nuclear Information System (INIS)

    Bhowmik, R.N.; Ranganathan, R.; Ghosh, B.; Kumar, S.; Chattopadhyay, S.

    2008-01-01

    We report the magnetic, Moessbauer spectroscopy and resistivity measurements in order to understand the electronic behaviour of bulk Co 0.2 Zn 0.8 Fe 2 O 4 spinel oxide. The effect of magnetic order on electrical behaviour is observed from the resistivity measurements in the absence and presence of magnetic field. The analysis of Moessbauer spectra suggests the absence of Fe 2+ ions in the system, which implies that complete hopping of charge carriers between localized Fe 3+ /Co 2+ and Fe 2+ /Co 3+ pair of ions in B sublattice is not the favourable mechanism in Co 0.2 Zn 0.8 Fe 2 O 4 . We suggest that electrical behaviour of the present sample may be consistent with a model of fractional charge transfer via Fe B 3+ -O 2- -Co B 2+ superexchange path

  11. Informing climate policy given incommensurable benefits estimates

    International Nuclear Information System (INIS)

    Jacoby, H.D.

    2003-01-01

    framework for assessing climate benefits, and not a particular estimation method. The objective might have been the development of a single estimation procedure, perhaps one that came as close as possible to a measure directly comparable to cost estimates, with all benefits converted to a common monetary unit. Unfortunately, the complexities of the climate issue combine to rule against the formulation of a single, widely accepted measure of this type. Inevitably, governments will be confronted with sets of benefits estimates that are incommensurable, i.e. they will share no common basis for comparison. To deal with this difficulty, it is recommended here that the OECD support the development of a portfolio of benefits measures, structured to provide transparency when viewing alternative estimates. The development of such a portfolio is a research task, and an effort is made below to outline the work needed. To limit the scope of this discussion several important issues are laid aside. Most important, the benefits considered here are limited to the damage caused by climate change (net of any positive effects) that could be prevented by emissions mitigation. The accounting for adaptation costs, which arises mainly in the context of monetary estimates, are not treated in detail, as they are dealt with in other parts of this OECD project. It is simply assumed that estimates of climate damage (or the benefits of avoiding it) include the effects and costs of economic adaptation. Secondary or ancillary benefits of mitigation actions also are not considered. This last omission is an important one, for many of the issues raised about (net) climate damage apply as well to ancillary benefits and costs. And, although distributional issues will emerge, the discussion does not pretend to cover the range of concerns of developing countries or of sustainable development more broadly. Again, these issues are important, but they as well only add more dimensions to the problem of

  12. Magnetic Order and Crystal Field Excitations in Er2Ru2O7: A Neutron Scattering Study

    International Nuclear Information System (INIS)

    Ehlers, Georg; Gardner, Jason

    2009-01-01

    The magnetic pyrochlore Er 2 Ru 2 O 7 has been studied with neutron scattering and susceptibility measurements down to a base temperature of 270 mK. For the low temperature phase in which the Er sublattice orders, new magnetic Bragg peaks are reported which can be indexed with integer (hkl) for a face centered cubic cell. Inelastic measurements reveal a wealth of crystal field levels of the Er ion and a copious amount of magnetic scattering below 15 meV. The three lowest groups of crystal field levels are at 6.7, 9.1 and 18.5 meV.

  13. New theory for competing interactions and microstructures in partially-ordered (liquid-crystalline) phases

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from a unique statistical-physics theory to predict and explain competing interactions and resulting microstructures in some partially-ordered [in this case, liquid-crystalline (LC)] phases is presented. The static aspects of both partial orientational and partial positional ordering of the molecules into various microstructures in these phases (including the incommensurate smectic-Ad phase) can be understood in terms of various competing interactions (both entropic and energetic) involved in the packing together of the different molecular sub-units at given pressures and temperatures. These microstructures are predicted and explained (using no ad hoc or arbitrarily adjustable parameter) as a function of molecule chemical structure [including lengths and shapes (from bond lengths and angles), intramolecular rotations, site-site polarizabilities and pair potentials, dipole moments, etc]. Theoretical results are presented for the nematic, re-entrant nematic, smectic-Ad, and smectic-Al LC phases and the isotropic phase

  14. Magnetic order and spin dynamics in the heavy Fermion system YbNi{sub 4}P{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Spehling, Johannes; Guenther, Marco; Yeche, Nicholas; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, TU Dresden (Germany); Luetkens, Hubertus; Baines, Chris [Laboratory for Muonm Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Krellner, Cornelius; Geibel, Christoph; Steglich, Frank [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2012-07-01

    A longstanding question in the field of quantum criticality relates to the possible existence of a ferromagnetic (FM) quantum critical point (QCP). At a QCP, collective quantum fluctuations tune the system continuously from a magnetically ordered to a non-magnetic ground state. However, so far no 4f-material with a FM QCP is found. Recently, in the HF metal YbNi{sub 4}P{sub 2} with a quasi 1D-electronic structure, FM quantum criticality above a low FM transition temperature of T{sub C}=170 mK was suggested. Our zero field muon spin relaxation on YbNi{sub 4}P{sub 2} proves static magnetic order with a strongly reduced ordered Yb{sup 3+} moment below T{sub C}. Above T{sub C}, the muon asymmetry function P(t,B) is dominated by quasi homogeneous spin fluctuations and exhibits a time-field scaling relation P(t,B)=P(t/B{sup {gamma}}) indicating cooperative critical spin dynamics. At T=190 mK, slightly above T{sub C}, {gamma}=0.81(5) K suggesting time-scale invariant power-law behavior for the dynamic electronic spin-spin autocorrelation function. The results are discussed in comparison with the AFM compound YbRh{sub 2}Si{sub 2}.

  15. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  16. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth

    2014-01-01

    The use of hyperpolarization to enhance the sensitivity of MRI has so far been limited by the decay of the polarization through T1 relaxation. Recently, methods have been proposed that extend the lifetime of the hyperpolarization by storing the spin order in slowly relaxing singlet states....... With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...

  17. Temperature-dependent transformation of the magnetic excitation spectrum on approaching superconductivity in Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5).

    Science.gov (United States)

    Xu, Zhijun; Wen, Jinsheng; Zhao, Yang; Matsuda, Masaaki; Ku, Wei; Liu, Xuerong; Gu, Genda; Lee, D-H; Birgeneau, R J; Tranquada, J M; Xu, Guangyong

    2012-11-30

    Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic spectral weight at the superconducting transition temperature, T(c), for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5) that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T≫T(c) to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperatures up to ~3T(c). If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to T(c) demonstrates that strong interactions are involved.

  18. 57Fe Moessbauer effect studies of magnetic ordering in Lasub(1-x) Srsub(x)CoO3

    International Nuclear Information System (INIS)

    Bhide, V.G.; Rajoria, D.S.

    1975-01-01

    A detailed investigation of the Lasub(1-x)Srsub(x)CoO 3 system was performed for the entire range of Sr concentrations using X-ray diffraction for structural studies, DTA for phase transition analysis, Moessbauer and magnetic susceptibility studies for magnetic properties, and electrical resistivity and Seebeck coefficient studies for electron transport properties. Among other interesting results, samples with x > 0.125 were found to show ferromagnetic ordering. (A.K.)

  19. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn (N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ̄N increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed. © 2013 Elsevier B.V.

  20. Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-05-15

    The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.

  1. Magneto-electric coupling in NdFe{sub 3}(BO{sub 3}){sub 4} studied by resonant x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hamann-Borrero, J.E.; Partzsch, S.; Hess, C.; Buechner, B.; Geck, J. [IFW Dresden, 01171 Dresden (Germany); Valencia, S.; Feyerherm, R. [Helmholtz Zentrum Berlin, Albert Einstein Str. 15, 12489 Berlin (Germany); Mazzoli, C.; Herrero-Martin, J. [ESRF, Boite Postale 220, 38043 Grenoble (France); Vasiliev, A. [Faculty of Physics, Moscow State University (Russian Federation); Bezmaternykh, L. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk (Russian Federation)

    2011-07-01

    Resonant x-ray magnetic scattering (RXS) experiments on NdFe{sub 3}(BO{sub 3}){sub 4} were performed at the Nd L{sub 2,3} and Fe K edges in order to determine its magnetic structure as a function of temperature (T) as well as applied magnetic (B) and electric (E) fields. Results of the T dependent measurements show that the magnetic structure changes from a commensurate collinear structure to an incommensurate spin helix structure. Moreover, the analysis of the resonant intensities shows that the T dependence of the magnetic order is different for the Nd and for the Fe sublattice. A mean field analysis implies that the magnetization of the Nd sublattice is induced by the Fe magnetization. When a B field is applied along the a-direction, the spin helix is destroyed and a collinear structure is formed where the moments align perpendicular to B. Since the critical B at which the spin helix is destroyed is the same at which the magnetic induced electric polarization is maximum. This shows that the spin helix is not the origin of the electric polarization in NdFe{sub 3}(BO{sub 3}){sub 4}.

  2. Ferri-magnetic order in Mn induced spinel Co_3_−_xMn_xO_4 (0.1≤x≤1.0) ceramic compositions

    International Nuclear Information System (INIS)

    Meena, P.L.; Sreenivas, K.; Singh, M.R.; Kumar, Ashok; Singh, S.P.; Kumar, Ravi

    2016-01-01

    We report structural and magnetic properties of spinel Co_3_−_xMn_xO_4 (x=0.1–1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co_3_−_xMn_xO_4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.1 0.5. - Highlights: • Synthesis of single phase polycrystalline Co_3_−_xMn_xO_4 ceramic. • Change in magnetic ordering with varying Mn concentration. • The complex spin distribution is contributing to FM ordering with higher Mn.

  3. Anomalous magnetic ordering in DyxPr1-x alloys

    DEFF Research Database (Denmark)

    Clegg, P.S.; Cowley, R.A.; Goff, J.P.

    2000-01-01

    Epitaxial thin-films of DyxPr1-x alloys have been studied using neutron diffraction and magnetization measurements. The crystal structure changes from HCP to Sm type to DHCP as x decreases; each crystal phase has different magnetic behaviour. Surprisingly, long-range order is suppressed in the DH...... allays, a possible explanation is outlined. (C) 2000 Elsevier Science B.V. All rights reserved....

  4. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations

    International Nuclear Information System (INIS)

    Pereira, Luciano Fabricio Dias

    2006-01-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m l = -2 and m l = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,π), (π,π,0) and ((π,π,π) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type (π,π,0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  5. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  6. Unusual antiferromagnetic structure of YbCo{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mufti, N. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Physics, State University of Malang, Malang (Indonesia); Kaneko, K. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai (Japan); Hoser, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Gutmann, M. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot (United Kingdom); Geibel, C.; Stockert, O. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Krellner, C. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Physikalisches Institut, Goethe-Universitaet Frankfurt, Frankfurt (Germany)

    2016-07-01

    We report on extensive powder and single crystal neutron diffraction experiments to study the magnetic structure in YbCo{sub 2}Si{sub 2} below the Neel temperature T{sub N} = 1.7 K in detail. Representation analysis has been used to find the possible magnetic structure models compatible with the experiments. Two different magnetically ordered phases can clearly be distinguished. At lowest temperatures a commensurate magnetic structure with a propagation vector k{sub 1} = (0.25 0.25 1) and equal moments or about 1.4 μ{sub B}/Yb is found, while the intermediate phase (T > 0.9 K) is characterized by an incommensurate amplitude-modulated magnetic structure with k{sub 2} = (0.25 0.086 1). The magnetic structure in YbCo{sub 2}Si{sub 2} is in stark contrast to all other compounds of the RCo{sub 2}Si{sub 2} family (R = rare earth element) likely due to some itineracy of the Yb 4f states being responsible for the magnetism.

  7. Non-conventional magnetic order in Fe-substituted La sub 0 sub . sub 7 Sr sub 0 sub . sub 3 MnO sub 3 giant-magnetoresistance manganites

    CERN Document Server

    Barandiaran, J M; Hernandez, T; Plazaola, F; Rojo, T

    2002-01-01

    Magnetization measurements and Moessbauer spectrometry have been performed on La sub 0 sub . sub 7 Sr sub 0 sub . sub 3 Mn sub 1 sub - sub x Fe sub x O sub 3 (x = 0.01, 0.05, 0.1, 0.2, 0.30), to clarify the local magnetic order around Fe sup 3 sup + ions. As Mn atoms are substituted for with Fe, the magnetic structure dramatically changes, because the ferromagnetic double-exchange chain is broken. At 4.2 K all compounds are magnetically ordered with large hyperfine fields. For x = 0.05 ferromagnetic and paramagnetic phases coexist over a large temperature range. Magnetic ordering occurs in a double step. Superparamagnetic effects are observed, and can explain part of this atypical ordering process, but there is evidence of segregation and clustering of Fe, even at this low concentration.

  8. Influence of Magnetic Ordering between Cr Adatoms on the Yu-Shiba-Rusinov States of the β -Bi2Pd Superconductor

    Science.gov (United States)

    Choi, Deung-Jang; Fernández, Carlos García; Herrera, Edwin; Rubio-Verdú, Carmen; Ugeda, Miguel M.; Guillamón, Isabel; Suderow, Hermann; Pascual, José Ignacio; Lorente, Nicolás

    2018-04-01

    We show that the magnetic ordering of coupled atomic dimers on a superconductor is revealed by their intragap spectral features. Chromium atoms on the superconductor β -Bi2Pd surface display Yu-Shiba-Rusinov bound states, detected as pairs of intragap excitations in tunneling spectra. By means of atomic manipulation with a scanning tunneling microscope's tip, we form Cr dimers with different arrangements and find that their intragap features appear either shifted or split with respect to single atoms. These spectral variations are associated with the magnetic coupling, ferromagnetic or antiferromagnetic, of the dimer, as confirmed by density functional theory simulations. The striking qualitative differences between the observed tunneling spectra prove that intragap Shiba states are extremely sensitive to the magnetic ordering on the atomic scale.

  9. Thermodynamics of the Heat-Flux Avalanches at the First-Order Magnetic Transition in Magnetocaloric Materials

    Science.gov (United States)

    Piazzi, Marco; Bennati, Cecilia; Basso, Vittorio

    2017-10-01

    We investigate the kinetics of first-order magnetic phase transitions by measuring and modeling the heat-flux avalanches corresponding to the irreversible motion of the phase-boundary interface separating the coexisting low- and high-temperature stable magnetic phases. By means of out-of-equilibrium thermodynamics, we encompass the damping mechanisms of the boundary motion in a phenomenological parameter αs. By analyzing the time behavior of the heat-flux signals measured on La (Fe -Mn -Si )13-H magnetocaloric compounds through Peltier calorimetry temperature scans performed at low rates, we relate the linear rise of the individual avalanches to the intrinsic-damping parameter αs.

  10. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-01-01

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a μ hvp , arising from quark-connected Feynman graphs. It is based on ensembles featuring N f =2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a μ hvp . Our final result including an estimate of the systematic uncertainty a μ hvp =6.74(21)(18)⋅10 −8 shows a good overall agreement with these computations

  11. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other...

  12. {mu}SR studies of the interplay of magnetic spin stripe order with superconductivity in transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Klauss, Hans-Henning, E-mail: h.klauss@physik.tu-dresden.de [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany)

    2012-11-01

    In this work we review muon spin relaxation experiments on the layered La{sub 2-x}Sr{sub x}NiO{sub 4} nickelate as well as La{sub 2-x}Ba{sub x}CuO{sub 4} and La{sub 2-x}Sr{sub x}CuO{sub 4} cuprate systems to examine spin stripe order. In particular, the interplay of stripe order with superconductivity in Nd and Eu doped La{sub 2-x}Sr{sub x}CuO{sub 4} cuprates is discussed. Detailed studies of the electronic phase diagrams as well as the magnetic and superconducting order parameters for different rare-earth and Sr doping levels in La{sub 2-x-y}RE{sub y}Sr{sub x}CuO{sub 4} revealed the strong correlation of static spin stripe order with the structural distortion in the low temperature tetragonal (LTT) phase and the competition with the superconducting ground state. High magnetic field studies demonstrate the nearly degenerate ground state energy of the different electronic phases. Slow transverse fluctuations of the charge stripes are found in nickelates and cuprates at low temperatures.

  13. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    Science.gov (United States)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  14. Chemical short range order and magnetic correction in liquid manganese–gallium zero alloy

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, B. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France); Ben Abdellah, A. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France); Innovation and Management of Industrial Systems, Abdelmalek Essaadi University, College of Sciences and Techniques of Tangier , P.O. Box 416, Postal code 90000, Tangier (Morocco); Université Internationale de Rabat, Parc Technopolis Rabat-Shore, 11100 Sala El Jadida (Morocco); Osman, S.M., E-mail: osm@squ.edu.om [Physics Department, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Al-Khod, Muscat (Oman); Ataati, J. [Innovation and Management of Industrial Systems, Abdelmalek Essaadi University, College of Sciences and Techniques of Tangier, P.O. Box 416, Postal code 90000, Tangier (Morocco); Gasser, J.G. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France)

    2015-12-15

    The Mn{sub 66}Ga{sub 34} alloy at this particular composition is known to be zero alloy in which the linear combination of the two neutron scattering lengths weighted by the atomic compositions vanish. Thus for this specific concentration, the effect of the partial structure factors S{sub NN} and S{sub NC} is cancelled by a weighted term, which value is zero. Then the measured total structure factor S(q) gives directly the concentration–concentration structure factor S{sub CC}(q). We present here the first experimental results of neutron diffraction on the Mn{sub 66}Ga{sub 34} “null matrix alloy” at 1050 °C. The main peak of the experimental S{sub CC}(q) gives a strong evidence of a hetero-atomic chemical order in this coordinated alloy. This order also appears in real space radial distribution function which is calculated by the Fourier transform of the structure factor. The degree of hetero-coordination is discussed together with other manganese-polyvalent alloys. However manganese also shows abnormal magnetic scattering in the alloy structure factor which must be corrected. This correction gives an experimental information on the mean effective spin of manganese in this liquid alloy. We present the first critical theoretical calculations of the magnetic correction factor in Mn–Ga zero-alloy based on our accurate experimental measurements of S{sub CC}(q).

  15. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Florian [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Feng, Xu [High Energy Accelerator Research Organization (KEK),Tsukuba 305-0801 (Japan); Hotzel, Grit [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, D-15738 Zeuthen (Germany); Department of Physics, University of Cyprus,P.O.Box 20537, 1678 Nicosia (Cyprus); Petschlies, Marcus [The Cyprus Institute,P.O.Box 27456, 1645 Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab,12000 Jefferson Avenue, Newport News, VA 23606 (United States); Collaboration: The ETM Collaboration

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub μ}{sup hvp}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sub μ}{sup hvp}. Our final result including an estimate of the systematic uncertainty a{sub μ}{sup hvp}=6.74(21)(18)⋅10{sup −8} shows a good overall agreement with these computations.

  16. {sup 77}Se NMR study of nonmagnetic-magnetic transition in (TMTSF){sub 2}X

    Energy Technology Data Exchange (ETDEWEB)

    Mito, T., E-mail: mito_takeshi@hotmail.co [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Nishiyama, K.; Koyama, T.; Ueda, K.; Kohara, T.; Takeuchi, K.; Akutsu, H.; Yamada, J. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Kornilov, A.; Pudalov, V.M. [P.N. Lebedev Physics Institute, Moscow 119991 (Russian Federation); Qualls, J.S. [Sonoma State University, Rohnert Park, CA 94928 (United States)

    2010-12-15

    {sup 77}Se NMR measurements have been carried out on (TMTSF){sub 2}X (X = PF{sub 6} and AsF{sub 6}) single crystals. For both compounds, NMR lines split into double-peaked spectra in the SDW state, which is explained with sinusoidal internal field at Se nucleus positions having the same incommensurate wave number with that of the SDW order. No change in the lineshape was observed at T{sub x} at which the spin-relaxation rate shows a kink, suggesting that this anomaly does not cause significant static changes in internal field at the Se-site.

  17. Antiferroquadrupolar ordering and anisotropic magnetic phase diagram of dysprosium palladium bronze, DyPd3S4

    International Nuclear Information System (INIS)

    Matsuoka, Eiichi; Tayama, Takashi; Sakakibara, Toshiro; Hiroi, Zenji; Takeda, Naoya; Ishikawa, Masayasu; Shirakawa, Naoki

    2007-01-01

    From the measurements of magnetization and specific heat, we constructed B-T phase diagrams of single-crystalline DyPd 3 S 4 which is known to exhibit antiferroquadrupolar (AFQ) and antiferromagnetic (AFM) ordering at low temperatures. The phase diagrams are found to be highly anisotropic and re-entrant, which are typical of rare-earth compounds exhibiting multipolar ordering. The crystalline electric field (CEF) scheme of Dy 3+ in DyPd 3S4 was deduced from the specific heat and magnetization measurements of the Y-diluted compounds Dy 1-x Y x Pd 3 S 4 (0.1≤x≤0.9) and discussed in detail. The CEF ground state was determined to be the orbitally-degenerated quartet Γ 67 (1) , and the overall splitting width was estimated to be about 104 K. No correlation was found between the anisotropy of T Q and that of the Zeeman splitting width of the ground quartet Γ 67 (1) . (author)

  18. Excitonic magnet in external field: Complex order parameter and spin currents

    Science.gov (United States)

    Geffroy, D.; Hariki, A.; Kuneš, J.

    2018-04-01

    We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.

  19. Partial magnetic order in the itinerant-electron magnet MnSi

    Indian Academy of Sciences (India)

    Neutron scattering techniques have been used to investigate the magnetic structure at and above c, i.e. triple-axis spectrometry and small angle neutron scattering. Surprisingly, sizeable quasi-static moments were found to survive to pressures considerably above c. They are, however, organized in a highly unusual way ...

  20. Order-disorder criticality, wetting, and morphological phase transitions in the irreversible growth of far-from-equilibrium magnetic films

    International Nuclear Information System (INIS)

    Candia, J.Julian; Albano, E.V.Ezequiel V.

    2003-01-01

    An exhaustive numerical investigation of the growth of magnetic films in confined (d+1)-dimensional stripped geometries (d=1,2) is carried out by means of extensive Monte Carlo simulations. Films in contact with a thermal bath at temperature T, are grown by adding spins having two possible orientations and considering ferromagnetic (nearest-neighbor) interactions. At low temperatures, thin films of thickness L are constituted by a sequence of well-ordered domains of average length l D >>L. These domains have opposite magnetization. So, the films exhibit 'spontaneous magnetization reversal' during the growth process. Such reversal occurs within a short characteristic length l R , such that l D >>l R ∼L. Furthermore, it is found that for d=1 the system is non-critical, while a continuous order-disorder phase transition at finite temperature takes place in the d=2 case. Using standard finite-size scaling procedures, the critical temperature and some relevant critical exponents are determined. Finally, the growth of magnetic films in (2+1) dimensions with competing short-range magnetic fields acting along the confinement walls is studied. Due to the antisymmetric condition considered, an interface between domains with spins having opposite orientation develops along the growing direction. Such an interface undergoes a localization-delocalization transition that is the precursor of a wetting transition in the thermodynamic limit. Furthermore, the growing interface also undergoes morphological transitions in the growth mode. A comparison between the well-studied equilibrium Ising model and the studied irreversible magnetic growth model is performed throughout. Although valuable analogies are encountered, it is found that the non-equilibrium nature of the latter introduces new and rich physical features of interest

  1. Change in the order parameter of a superconductor of type I in the presence of magnetic dipoles

    International Nuclear Information System (INIS)

    Lebeau, C.; Pinel, J.

    1977-01-01

    Taking the order parameter to be spatially constant, we show that magnetic dipoles modify the energy with a term proportional to the difference between the local fields in the normal and supercondcuting states. Evaluation of this difference predicts a second-order transition. The transition temperature only depends on the mean value of ferromagnetic magnetisation. Specific heat and susceptibility measurements made on HgFe are compared with this model [fr

  2. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    International Nuclear Information System (INIS)

    Farzin Nejad, N.; Shams, E.; Amini, M.K.

    2015-01-01

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m 2 g −1 ), maxima pore size of 3.3 nm and large pore volume (1.01 cm 3 g −1 ) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g −1 of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q max ) of Fe-OMC for DBT was found to be 111.1 mg g −1 . • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps

  3. Magnetic ordering of YPd{sub 2}Si-type HoNi{sub 2}Si and ErNi{sub 2}Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow, 119992 (Russian Federation); Isnard, O. [CNRS, Insitut. Néel, 25 Rue Des Martyrs BP166 x, F-38042 Grenoble (France); Université Grenoble Alpes, Inst. Néel, F-38042 Grenoble (France); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600 036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-12-01

    Magnetic properties of YPd{sub 2}Si-type HoNi{sub 2}Si and ErNi{sub 2}Si were investigated via neutron diffraction and magnetisation measurements. HoNi{sub 2}Si and ErNi{sub 2}Si show ferromagnetic-like ordering at T{sub C} of 9 K and 7 K, respectively. The paramagnetic Weiss temperatures are 9 K and 11 K and the effective magnetic moments are 10.76 μ{sub B}/fu and 9.79 μ{sub B}/fu for HoNi{sub 2}Si and ErNi{sub 2}Si compounds, respectively. The HoNi{sub 2}Si and ErNi{sub 2}Si are soft ferromagnets with saturation magnetization of 8.1 μ{sub B}/fu and 7.5 μ{sub B}/fu, respectively at 2 K and in field of 140 kOe. The isothermal magnetic entropy change, ΔS{sub m}, has a maximum value of −15.6 J/kg·K at 10 K for HoNi{sub 2}Si and −13.9 J/kg·K at 6 K for ErNi{sub 2}Si for a field change of 50 kOe. Neutron diffraction study in zero applied field shows mixed ferromagnetic-antiferromagnetic ordering of HoNi{sub 2}Si at ~9 K and its magnetic structure is a sum of a-axis ferromagnetic F{sub a}, b-axis antiferromagnetic AF{sub b} and c-axis antiferrromagnetic AF{sub c} components of Pn′a2{sub 1}′={1, m_x′/[1/2, 1/2, 1/2], 2_y′/[0, 1/2, 0], m_z/[1/2, 0, 1/2]} magnetic space group and propagation vector K{sub 0}=[0, 0, 0]. The holmium magnetic moment reaches a value of 9.23(9) μ{sub B} at 1.5 K and the unit cell of HoNi{sub 2}Si undergoes isotropic contraction around the temperature of magnetic transition. - Graphical abstract: HoNi{sub 2}Si: mixed ferro-antiferromagnet (F{sub a}+AF{sub b}+AF{sub c}){sup K0} with Pn′a2{sub 1}′ magnetic space group and K{sub 0}=[0, 0, 0] propagation vector below 10 K. - Highlights: • Ferro-antiferromagnetic ordering is observed in HoNi{sub 2}Si at 9 K and in ErNi{sub 2}Si at 7 K. • HoNi{sub 2}Si is soft ferromagnet with ΔS{sub m} of −15.6 J/kg·K at 10 K in field of 0–50 kOe. • ErNi{sub 2}Si is soft ferromagnet with ΔS{sub m} of −13.9 J/kg·K at 6 K in field of 0–50 kOe. • HoNi{sub 2}Si shows mixed F

  4. Study by neutrons diffusion and X-rays of structural and magnetic properties of Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4+{delta}} type superconductive cuprates; Etude par diffusion des neutrons et des rayons X des proprietes structurales et magnetiques des cuprates supraconducteurs de type Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu-Doloc, L

    1995-09-22

    In this work we have used inelastic and elastic neutron and X-ray scattering techniques for characterizing the incommensurate structural distortions in compounds belonging to the family Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4+{delta}} of high-Tc superconducting cuprates. We have searched the existence of structural instabilities specific of the CuO{sub 2} planes and of magnetic instabilities. The modulated structure of the 2212 phase has been refined from single-crystal neutron diffraction results and importance of distortion of CuO{sub 2} planes has thus been determined. It is shown that the additional oxygen is not ordered three-dimensionally within the modulated structure and that the information about it is contained in diffuse scattering results. A model of the short-range order associated with additional oxygen atoms is proposed and discussed. The temperature studies of the long-range order have shown a great stability of the amplitude and period of the incommensurate distortion wave in the one-layer, as well as in the double-layer compounds, either superconducting or insulating. We find such a behaviour to be highly incompatible with a distortion resulting from a charge-density-wave instability. The results we have obtained indicate that the bismuth-based high-Tc superconducting cuprates have essentially the same physics of the CuO{sub 2} planes as the previous two families, La{sub 2-x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 6+{delta}}, being at the proximity of three instabilities: a metal-insulator transition, an antiferromagnetic instability and a structural instability specific of the CuO{sub 2} planes. (author).

  5. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO{sub 3} nanoparticles in (GdMnO{sub 3}){sub 0.70}(CoFe{sub 2}O{sub 4}){sub 0.30}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, A.; Mahapatra, A.S.; Mallick, A.; Chakrabarti, P.K., E-mail: pabitra_c@hotmail.com

    2017-02-15

    Nanoparticles of GdMnO{sub 3} (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe{sub 2}O{sub 4} (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below ~100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations. - Highlights: • Nanoparticles of GdMnO{sub 3} are incorporated in the matrix of CoFe{sub 2}O{sub 4}. • RT magnetic ordering of GMO nanoparticles in GMO-CFO is observed. • Magnetic property of GMO-CFO is highly enhanced compared to GMO. • Exchange bias is found in GMO-CFO at low temperature.

  6. Magnetic order of Y{sub 3}NiSi{sub 3}-type R{sub 3}NiSi{sub 3} (R=Gd–DY) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Faculty of Geology, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Malik, S.K.; Quezado, S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil); Yao, Jinlei; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nigam, A.K. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, F-38042 Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, F-38042 Grenoble (France)

    2016-01-15

    Magnetic measurements and neutron powder diffraction investigations on the Y{sub 3}NiSi{sub 3}-type R{sub 3}NiSi{sub 3} compounds (R=Gd, Tb, Dy) reveal their complex antiferromagnetic ordering. Magnetic measurements on Gd{sub 3}NiSi{sub 3}, Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} indicate antiferromagnetic-like transition at temperatures 260 K, 202 K and 140 K, respectively. Also, the Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} compounds show spin-reorientation transition at 132 K and 99 K, respectively. Below the spin-reorientation transition, the isothermal magnetization curves indicate the metamagnetic-like behavior of Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3}. The magnetocaloric effect of Dy{sub 3}NiSi{sub 3} is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of −1.2 J/kg K and −1.1 J/kg K for a field change of 50 kOe near 146 K and 92 K, respectively. The neutron diffraction studies of Tb{sub 3}NiSi{sub 3} suggest the magnetic ordering of the Tb2 4j sublattice and no magnetic ordering of the Tb1 2a sublattice. Tb{sub 3}NiSi{sub 3} transforms from the high temperature paramagnetic state to the commensurate high-temperature a- and c-axis antiferromagnet of I′2/m magnetic space group below 250 K. Below 150 K, the high-temperature antiferromagnet transforms into the low-temperature a-, b- and c-axis antiferromagnet of I′i magnetic space group. At 1.5 K, the terbium magnetic moment in Tb2 sublattice and its a-, b- and c-axis components reach the values of M{sub Tb2}=8.2(1) μ{sub B}, M{sub aTb2}=5.9(1) μ{sub B}, M{sub bTb2}=4.3(2) μ{sub B} and M{sub cTb2}=3.7(2) μ{sub B}, respectively. - Highlights: • Gd{sub 3}NiSi{sub 3}, Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} have Neel points of 260. 202 and 140 K. • Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} show spin-reorientation transition at 132 and 99 K. • Tb{sub 3}NiSi{sub 3} exhibits the commensurate magnetic ordering of Tb2 4j sublattice

  7. Polar and Magnetic Layered A Site and Rock Salt B Site-Ordered NaLnFeWO6 (Ln = La, Nd) Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Tetuerto, Maria [State University of New Jersey, The; Li, Mang-Rong [State University of New Jersey, The; Ignatov, Alexander [State University of New Jersey, The; Croft, Mark [State University of New Jersey, The; Ramanujachary, Kandalam V. [Rowan University; Chi, Songxue [ORNL; Hodges, Jason P [ORNL; Dachraoui, W. [University of Antwerp; Hadermann, Joke [University of Antwerp; Thao Tran, T. [University of Houston, Houston; Shiv Halasyamani, P. [University of Houston, Houston; Grams, C. [Universitat zu Koln, Koln, Germany; Hemberger, J. [Universitat zu Koln, Koln, Germany; Greenblatt, M. [State University of New Jersey, The

    2013-01-01

    We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray absorption spectroscopy, dielectric measurements, and second harmonic generation. At room temperature, the crystal structures of both compounds can be defined in the noncentrosymmetric monoclinic P21 space group resulting from the combination of ordering both in the A and B sublattices, the distortion of the cell due to tilting of the octahedra, and the displacement of certain cations. The magnetic studies show that both compounds are ordered antiferromagnetically below TN 25 K for NaLaFeWO6 and at 21 K for NaNdFeWO6. The magnetic structure of NaNdFeWO6 has been solved with a propagation vector k = (1/2 0 1/2) as an antiferromagnetic arrangement of Fe and Nd moments. Although the samples are potential multiferroics, the dielectric measurements do not show a ferroelectric response.

  8. A unique distortion in K{sub 1/3}Ba{sub 2/3}AgTe{sub 2}: X-ray diffraction determination and electronic band structure analysis of its incommensurately modulated structure

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, O; Hanko, J; Boucher, F; Petricek, V; Whangbo, M H; Kanatzidis, M G; Evain, M

    2000-04-03

    The incommensurately modulated structure of a square Te-net, namely that of K{sub 1/3}Ba{sub 2/3}AgTe{sub 2}, is determined from single-crystal X-ray diffraction data within a (3+1)D higher dimension formalism. The phase is shown to crystallize in the monoclinic symmetry, P2{sub 1}({alpha}0{gamma}) superspace group with the following lattice parameters: a = 4.6441(10) {angstrom}, b = 4.6292(12) {angstrom}, c = 23.765(9) {angstrom}, and {beta} = 101.28(2){degree} with q = 0.3248(6)a* {minus}0.07(8)c*, that is, in a symmetry different from that reported for the average structure (tetragonal) or that assumed from electron diffraction measurements (orthorhombic). After the introduction of a crenel function for the Te displacive description, the refinement converged to a residual factor R = 0.033 for 2583 observed reflections and 115 parameters (R = 0.024 and 0.101 for 1925 main reflections and 658 first-order satellites, respectively). The [Ag{sub 2}-Te{sub 2}] and the Ba/K layers are found to be only weakly modulated. The modulation of the square Te-net is, however, both substantial and unique. Namely, it results in two different units: a V-shaped Te{sub 3} trimer and a W-shaped Te{sub 5} pentamer. To examine both unit types, which are segregated in domains that aperiodically alternate within the Te layers, first principles electronic band structure calculations were carried out for three model commensurate structures using the tight-binding linear-muffin-tin-orbital method (LMTO). The calculations show that the distorted structures of V-pattern (model 2) and W-pattern (model 3) are more stable than the average structure (model 1) and that the V-pattern distortion provides a slightly larger stabilization than does the W-pattern distortion. The Fermi surface calculated for the average structure shows nesting vectors that are consistent with the occurrence of the V- and W-pattern distortions in the Te layers. However, these vectors do not predict the observed modulation

  9. An effect of the fringing field in sector bending magnets: the coupling of the transverse planes in the solutions of the equation of motion at second-order

    International Nuclear Information System (INIS)

    Roy, G.

    1988-11-01

    Second order coupling terms for sector bending magnets due to edge effects at high energy are reviewed. Motion in the horizontal plane (bending plane) and in the vertical (nonbending) plane is considered. The model of Heaviside's function is outlined. The case of the complete bending magnet is treated. Three second order coupling terms between the vertical and horizontal planes in a complete bending magnet are found. Their origin is the fringing field, i.e., the intensity difference of the magnetic field between the outside and the inside of the magnet

  10. The influence of molecular order and microstructure on the R2* and the magnetic susceptibility tensor.

    Science.gov (United States)

    Wisnieff, Cynthia; Liu, Tian; Wang, Yi; Spincemaille, Pascal

    2016-06-01

    In this work, we demonstrate that in the presence of ordered sub-voxel structure such as tubular organization, biomaterials with molecular isotropy exhibits only apparent R2* anisotropy, while biomaterials with molecular anisotropy exhibit both apparent R2* and susceptibility anisotropy by means of susceptibility tensor imaging (STI). To this end, R2* and STI from gradient echo magnitude and phase data were examined in phantoms made from carbon fiber and Gadolinium (Gd) solutions with and without intrinsic molecular order and sub-voxel structure as well as in the in vivo brain. Confidence in the tensor reconstructions was evaluated with a wild bootstrap analysis. Carbon fiber showed both apparent anisotropy in R2* and anisotropy in STI, while the Gd filled capillary tubes only showed apparent anisotropy on R2*. Similarly, white matter showed anisotropic R2* and magnetic susceptibility with higher confidence, while the cerebral veins displayed only strong apparent R2* tensor anisotropy. Ordered sub-voxel tissue microstructure leads to apparent R2* anisotropy, which can be found in both white matter tracts and cerebral veins. However, additional molecular anisotropy is required for magnetic susceptibility anisotropy, which can be found in white matter tracts but not in cerebral veins. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, F., E-mail: fabio.cinti@fi.infn.i [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Rettori, A. [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Pini, M.G. [ISC-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Mariani, M.; Micotti, E. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Lascialfari, A. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Institute of General Physiology and Biological Chemistry, University of Milano, Via Trentacoste 2, I-20134 Milano (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Papinutto, N. [CIMeC, University of Trento, Via delle Regole, 101 38060 Mattarello (Italy); Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Amato, A. [Paul Scherrer Institute, CH-5232 Villingen PSI (Switzerland); Caneschi, A.; Gatteschi, D. [INSTM R.U. Firenze and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Italy); Affronte, M. [CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Department of Physics, University of Modena and Reggio Emilia Via Campi 213/A, I-41100 Modena (Italy)

    2010-05-15

    Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac){sub 3}NITEt. The specific heat presents two anomalies at T{sub 0}=2.19(2)K and T{sub N}=1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T{sub N}=1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.

  12. Coexistence of magnetic order and valence fluctuations in a heavy fermion system Ce{sub 2}Rh{sub 3}Sn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gamza, Monika [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom); MPI CPfS, Dresden (Germany); Institute of Physics, University of Silesia, Katowice (Poland); Gumeniuk, Roman [Institute of Experimental Physics, Freiberg University of Mining and Technology, Freiberg (Germany); MPI CPfS, Dresden (Germany); Schnelle, Walter; Burkhardt, Ulrich; Rosner, Helge [MPI CPfS, Dresden (Germany); Slebarski, Andrzej [Institute of Physics, University of Silesia, Katowice (Poland)

    2016-07-01

    While most Ce-based intermetallics contain either trivalent or intermediate-valent Ce ions, only for a few compounds a coexistence of both species has been reported. Here, we present a combined experimental and theoretical study based on thermodynamic measurements and spectroscopic data together with ab-initio electronic structure calculations aiming at exploring magnetic properties of Ce ions in two nonequivalent sites in Ce{sub 2}Rh{sub 3}Sn{sub 5}. Ce L{sub III} XAS spectra give direct evidence for valence fluctuations. Magnetization measurements show an onset of an antiferromagnetic order at T{sub N}∼2.5 K. The electronic structure calculations suggest that the magnetic ordering is related only to one Ce sublattice. This is in-line with a small entropy associated with the magnetic transition S{sub mag}∼0.35 R ln2 per Ce atom as revealed by the specific heat measurement. Furthermore, the temperature dependence of the magnetic susceptibility can be well described assuming that there are fluctuating moments of Ce{sup 3+} ions in one sublattice, whereas Ce atoms from the second sublattice are in a nonmagnetic intermediate valence state.

  13. Electronically soft phases in manganites.

    Science.gov (United States)

    Milward, G C; Calderón, M J; Littlewood, P B

    2005-02-10

    The phenomenon of colossal magnetoresistance in manganites is generally agreed to be a result of competition between crystal phases with different electronic, magnetic and structural order; a competition which can be strong enough to cause phase separation between metallic ferromagnetic and insulating charge-modulated states. Nevertheless, closer inspection of phase diagrams in many manganites reveals complex phases where the two order parameters of magnetism and charge modulation unexpectedly coexist. Here we show that such experiments can be naturally explained within a phenomenological Ginzburg-Landau theory. In contrast to models where phase separation originates from disorder or as a strain-induced kinetic phenomenon, we argue that magnetic and charge modulation coexist in new thermodynamic phases. This leads to a rich diagram of equilibrium phases, qualitatively similar to those seen experimentally. The success of this model argues for a fundamental reinterpretation of the nature of charge modulation in these materials, from a localized to a more extended 'charge-density wave' picture. The same symmetry considerations that favour textured coexistence of charge and magnetic order may apply to many electronic systems with competing phases. The resulting 'electronically soft' phases of matter with incommensurate, inhomogeneous and mixed order may be general phenomena in correlated systems.

  14. Coupling between Spin and Charge Order Driven by Magnetic Field in Triangular Ising System LuFe2O4+δ

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2018-02-01

    Full Text Available We present a study of the magnetic-field effect on spin correlations in the charge ordered triangular Ising system LuFe2O4+δ through single crystal neutron diffraction. In the absence of a magnetic field, the strong diffuse neutron scattering observed below the Neel temperature (TN = 240 K indicates that LuFe2O4+δ shows short-range, two-dimensional (2D correlations in the FeO5 triangular layers, characterized by the development of a magnetic scattering rod along the 1/3 1/3 L direction, persisting down to 5 K. We also found that on top of the 2D correlations, a long range ferromagnetic component associated with the propagation vector k1 = 0 sets in at around 240 K. On the other hand, an external magnetic field applied along the c-axis effectively favours a three-dimensional (3D spin correlation between the FeO5 bilayers evidenced by the increase of the intensity of satellite reflections with propagation vector k2 = (1/3, 1/3, 3/2. This magnetic modulation is identical to the charge ordered superstructure, highlighting the field-promoted coupling between the spin and charge degrees of freedom. Formation of the 3D spin correlations suppresses both the rod-type diffuse scattering and the k1 component. Simple symmetry-based arguments provide a natural explanation of the observed phenomenon and put forward a possible charge redistribution in the applied magnetic field.

  15. Microscopic interplay of superconducting and magnetic order parameters in ferropnictides

    Energy Technology Data Exchange (ETDEWEB)

    Maeter, H.; Goltz, T.; Spehling, J.; Klauss, H.H. [Institut fuer Festkoerperphysik, TU Dresden (Germany); Bendele, M.; Luetkens, H.; Khasanov, R.; Pascua, G.; Shermadini, Z.; Amato, A. [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Aswartham, S.; Hamann-Borrero, J.E.; Kondrat, A.; Hess, C.; Wolter, A.; Wurmehl, S.; Behr, G.; Buechner, B. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden (Germany); Wiesenmayer, E.; Johrendt, D. [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Potts, H.; Banusch, B. [Swiss Nanoscience Institute, Universitaet Basel (Switzerland)

    2012-07-01

    We present results of {mu}SR experiments of Ba{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} that show a large coupling of the superconducting and magnetic order parameters. This is unexpected in light of the phase separation in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}. However, in a {mu}SR study of Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} we unambiguously showed microscopic coexistence, even though there are many reports of phase separation in this system. In FeSe{sub 1-x} the interplay of phase separation and microscopic coexistence is also evident, here pressure can induce a change from microscopic coexistence to a combination of both. In light of the {mu}SR results it seems likely that phase separation and microscopic coexistence depend on the microscopic properties much more than on disorder.

  16. Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Farzin Nejad, N., E-mail: Farzinnejadn@ripi.ir [Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry, Tehran 14857-33111 (Iran, Islamic Republic of); Shams, E.; Amini, M.K. [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2015-09-15

    In this work, magnetic ordered mesoporous carbon adsorbent was synthesized using soft templating method to adsorb sulfur from model oil (dibenzothiophene in n-hexane). Through this research, pluronic F-127, resorcinol-formaldehyde and hydrated iron nitrate were respectively used as soft template, carbon source and iron source. The adsorbent was characterized by X-ray diffraction, nitrogen adsorption–desorption isotherm and transmission electron microscopy. Nitrogen adsorption–desorption measurement revealed the high surface area (810 m{sup 2} g{sup −1}), maxima pore size of 3.3 nm and large pore volume (1.01 cm{sup 3} g{sup −1}) of the synthesized sample. The adsorbent showed a maximum adsorption capacity of 111 mg dibenzothiophene g{sup −1} of adsorbent. Sorption process was described by the pseudo-second-order rate equation and could be better fitted by the Freundlich model, showing the heterogeneous feature of the adsorption process. In addition, the adsorption capacity of regenerated adsorbent was 78.6% of the initial level, after five regeneration cycles. - Highlights: • Adsorptive desulfurization of model oil with magnetic ordered mesoporous carbon adsorbent, Fe-OMC, was studied. • Maximum adsorption capacity (q{sub max}) of Fe-OMC for DBT was found to be 111.1 mg g{sup −1}. • Freundlich isotherm best represents the equilibrium adsorption data. • Rate of DBT adsorption process onto Fe-OMC is controlled by at least two steps.

  17. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  18. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  19. Magnetic ordering of CoCl2-GIC, a spin ceramic: hierarchical successive transitions and the intermediate glassy phase

    International Nuclear Information System (INIS)

    Suzuki, Masatsugu; Suzuki, Itsuko S; Matsuura, Motohiro

    2007-01-01

    Stage-2 CoCl 2 -graphite intercalation compound (GIC) is a spin ceramic which shows hierarchical successive transitions at T cu (= 8.9 K) and T cl (= 7.0 K) from the paramagnetic phase into an intra-cluster (two-dimensional ferromagnetic) order with inter-cluster disorder and then to an inter-cluster (three-dimensional antiferromagnetic like) order over the whole system. The nature of the inter-cluster disorder was suggested to be of spin glass by nonlinear magnetic response analyses around T cu and by studies on dynamical aspects of ordering between T cu and T cl . Here, we present a further extensive examination of a series of time dependence of zero-field cooled magnetization M ZFC after the ageing protocol below T cu . The time dependence of the relaxation rates S ZFC (t) = (1/H) dM ZFC (t)/dlnt dramatically changes from the curves of simple spin glass ageing effect below T cl to those of two peaks above T cl . The characteristic relaxation behaviour apparently indicates that there coexist two different kinds of glassy correlated region below T cu

  20. The phase transition of the incommensurate phases β-Ln(PO3)3(Ln=Y,Tb…Yb), crystal structures of α-Ln(PO3)3(Ln=Y,Tb…Yb) and Sc(PO3)3

    Science.gov (United States)

    Höppe, Hennig A.

    2009-07-01

    The incommensurately modulated room-temperature phases β-Ln(PO3)3(Ln=Y,Tb…Yb) undergo a topotactic phase transition monitored by vibrational spectroscopy below 180 K leading to α-Ln(PO3)3(Ln=Y,Dy…Yb), above 200 K the incommensurate phases are reobtained. The low-temperature phases exhibit a new structure type (α-Dy(PO3)3, P21/c, Z=12,a=14.1422(6), b=20.0793(9),c=10.1018(4) A˚, β=127.532(3)∘). α-Tb(PO3)3 is isotypic with Gd(PO3)3(α-Tb(PO3)3, I2/a,Z=16,a=25.875(6), b=13.460(3), c=10.044(2) A˚, β=119.13(3)∘). The symmetry relations between the involved phases of the phase transition are discussed. The crystal structure of Sc(PO3)3 is isotypic with that of Lu(PO3)3 and C-type phosphates. The polyphosphates consist of infinite zig-zag chains of corner-sharing PO4 tetrahedra, the cations are coordinated sixfold in an almost octahedral arrangement. To confirm the quality of the determined crystal structures the deviation of the phosphate tetrahedra from ideal symmetry was determined and discussed.

  1. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    Science.gov (United States)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  2. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  3. Effect of crystalline electric fields and long-range magnetic order on superconductivity in rare earth alloys and compounds

    International Nuclear Information System (INIS)

    McCallum, R.W.

    1977-01-01

    The behavior of rare earth ions in a superconducting matrix has been studied in two distinct regimes. First, the effects of crystal field splitting of the 4f levels of a magnetic rare earth ion in the alloy system (LaPr)Sn 3 were investigated in the limit of low Pr 3+ concentration. In this system the rare earth impurity ions occupy random La sites in the crystal lattice. Second, the interaction of long-range magnetic order and superconductivity was explored in the ternary rare earth molybdenum chalcogenide systems. In these compounds the rare earth ions occupy periodic lattice sites in contrast to the random distribution of magnetic ions in dilute impurity alloy systems such as (LaPr)Sn 3

  4. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals

    DEFF Research Database (Denmark)

    Faure, Bertrand; Wetterskog, Erik; Gunnarsson, Klas

    2013-01-01

    The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe2O3 spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-ang...

  5. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  6. Simulation of modulated protein crystal structure and diffraction data in a supercell and in superspace

    Czech Academy of Sciences Publication Activity Database

    Lovelace, J.J.; Simone, P.D.; Petříček, Václav; Borgstahl, G.E.O.

    2013-01-01

    Roč. 69, Part 6 (2013), 1062-1072 ISSN 0907-4449 Institutional support: RVO:68378271 Keywords : protein crystallograhy * superspace approach * incommensurately modulated structures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.232, year: 2013

  7. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  8. Application of matriciant method for calculation of the third order aberration coefficients for magnetic field with regard to boundary effects

    International Nuclear Information System (INIS)

    Mordik, S.N.; Ponomarev, A.G.

    2001-01-01

    To study nonlinear dynamics of charged particles in magnetic sector analyzers one applied the matriciant method. When calculating matriciants (transfer matrices) one took account of the boundary-value effects associated with the effect of scattering field, as well as, the higher harmonics of the sector magnetic field up to the third order inclusive. In case of the rectangular distribution of field components along the optical axis one obtained analytical expressions for all aberration coefficients up to the third order exclusive. To simulate the real field with the width of scattering field not equal to zero one applied smooth distribution of components for which calculation of similar aberration coefficients was conducted using the conservative numerical method [ru

  9. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2016-03-24

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  10. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, S.; Baras, A.; Roqan, I. S., E-mail: Iman.roqan@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Lee, J.-S. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-15

    We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaron percolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

  11. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    Science.gov (United States)

    Goyal, Amit , Kang; Sukill, [Knoxville, TN

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  12. Linear chains of magnetic ions stacked with variable distance: ferromagnetic ordering with a Curie temperature above 20 K

    Energy Technology Data Exchange (ETDEWEB)

    Friedlaender, Stefan; Poeppl, Andreas [Abteilung Magnetische Resonanz komplexer Quantenfestkoerper, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig (Germany); Liu, Jinxuan [Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology (China); Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rueger, Robert; Kuc, Agnieszka [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Leipzig (Germany); Guo, Wei; Zhou, Wencai; Wang, Zhengbang; Weidler, Peter G.; Woell, Christof [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Lukose, Binit [Engineering and Science, Department of Physics and Earth Science, Jacobs University Bremen (Germany); Ziese, Michael [Abteilung Supraleitung und Magnetismus, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig (Germany); Heine, Thomas [Engineering and Science, Department of Physics and Earth Science, Jacobs University Bremen (Germany); Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Leipzig (Germany)

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu{sup 2+} ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu{sup 2+} ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin {sup 1}/{sub 2} ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Heterogeneous bilayer films NiFe (Fe)-Dy: magnetic circular dichroism and Dy spin ordering

    Energy Technology Data Exchange (ETDEWEB)

    Markov, V.V. E-mail: ise@iph.krasn.ruise@iph.krasnoyarsk.su; Kesler, V.G.; Khudyakov, A.E.; Edelman, I.S.; Bondarenko, G.V

    2001-08-01

    Results of the magnetic circular dichroism (MCD) and Auger electron spectroscopy (AES) investigations in the 3d transition metal-Dy bi-layer films are presented. It is shown that even at room temperature the Dy layer makes a contribution to MCD of the bi-layer film, which corresponds to the MCD value in the single-layer Dy film measured below T{sub C}=85 K. According to the AES data there is no sharp interface between 3d and Dy layers in these films. Some amount of Ni and Fe atoms is dispersed in the Dy layer and some amount of Dy atoms is dispersed in the 3d layer. The comparison of the MCD and AES data allows one to suppose the Dy layer in the bi-layer films to be magnetically ordered at room temperature under the influence of the 3d-layer spin system. The influence spreads to long distances inside Dy layer through the 3d-ions dispersed in it.

  14. Heterogeneous bilayer films NiFe (Fe)-Dy: magnetic circular dichroism and Dy spin ordering

    International Nuclear Information System (INIS)

    Markov, V.V.; Kesler, V.G.; Khudyakov, A.E.; Edelman, I.S.; Bondarenko, G.V.

    2001-01-01

    Results of the magnetic circular dichroism (MCD) and Auger electron spectroscopy (AES) investigations in the 3d transition metal-Dy bi-layer films are presented. It is shown that even at room temperature the Dy layer makes a contribution to MCD of the bi-layer film, which corresponds to the MCD value in the single-layer Dy film measured below T C =85 K. According to the AES data there is no sharp interface between 3d and Dy layers in these films. Some amount of Ni and Fe atoms is dispersed in the Dy layer and some amount of Dy atoms is dispersed in the 3d layer. The comparison of the MCD and AES data allows one to suppose the Dy layer in the bi-layer films to be magnetically ordered at room temperature under the influence of the 3d-layer spin system. The influence spreads to long distances inside Dy layer through the 3d-ions dispersed in it

  15. Synchrotron X-ray diffraction studies of phase transitions in physisorbed monolayers of rare gases on graphite

    International Nuclear Information System (INIS)

    Bohr, J.

    1984-01-01

    This study is an investigation of phase transition in monoatomic layers adsorbed on graphite. Such effects can be considered physical realizations of two-dimensional systems. The experimental technique used is synchrotron X-ray diffraction. Systems which have been investigated include the commensurate-incommensurate phase transition in krypton monolayer. By adjusting the spreading pressure in the krypton layer by means of a coadsorbent deuterium gas it has been unambiguously demonstrated that at low temperatures the phase transition is of first order. A melting study of incommensurate argon monolayers demonstrates an experimental verification of the possibility for having a continuous melting transition in two-dimensions. Mixtures of two-components have been investigated for their phases. No (chemical) order-disorder transition is seen. A discussion is given on this lack of a chemical order. This lack is utilized to study the commensurate-incommensurate phase transition driven by average particle size. Finally, a special low-temperature phase is identified in a xenon monlayer which is diluted with freon. (Auth.)

  16. Asymmetric d-wave superconducting topological insulator in proximity with a magnetic order

    Science.gov (United States)

    Khezerlou, M.; Goudarzi, H.; Asgarifar, S.

    2018-02-01

    In the framework of the Dirac-Bogoliubov-de Gennes formalism, we investigate the transport properties in the surface of a 3-dimensional topological insulator-based hybrid structure, where the ferromagnetic and superconducting orders are simultaneously induced to the surface states via the proximity effect. The superconductor gap is taken to be spin-singlet d-wave symmetry. The asymmetric role of this gap respect to the electron-hole exchange, in one hand, affects the topological insulator superconducting binding excitations and, on the other hand, gives rise to forming distinct Majorana bound states at the ferromagnet/superconductor interface. We propose a topological insulator N/F/FS junction and proceed to clarify the role of d-wave asymmetry pairing in the resulting subgap and overgap tunneling conductance. The perpendicular component of magnetizations in F and FS regions can be at the parallel and antiparallel configurations leading to capture the experimentally important magnetoresistance (MR) of junction. It is found that the zero-bias conductance is strongly sensitive to the magnitude of magnetization in FS region mzfs and orbital rotated angle α of superconductor gap. The negative MR only occurs in zero orbital rotated angle. This result can pave the way to distinguish the unconventional superconducting state in the relating topological insulator hybrid structures.

  17. Magnetic ordering in single crystals of PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta

    CERN Document Server

    Uma, S; Gmelin, E; Rangarajan, G; Skanthakumar, S; Lynn, J W; Walter, R; Lorenz, T; Büchner, B; Walker, E; Erb, A

    1998-01-01

    Heat capacity measurements on pure but twinned single crystals of PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta reveal a sharp peak at T sub N sup P sup sub T =16.6 K, which according to thermal expansion, neutron diffraction, and magnetic susceptibility measurements originates from an antiferromagnetic ordering of the Pr-ion moments. A modest coupling to the Cu(2) spin system is observed. Below T sub N sup P sup sub T a first-order transition in the magnetic structure of the Pr spin system (at 13.4 K in warming; approx. 11 K in cooling) is found. Field-dependent heat capacity data show anisotropic temperature dependences of the c sub p -peaks and recover a Schottky-like anomaly due to the crystal-field-split ground state of the Pr sup 3 sup +. (author). Letter-to-the-editor

  18. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    Science.gov (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  19. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application.

    Science.gov (United States)

    Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang

    2018-03-01

    A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  1. Ferri-magnetic order in Mn induced spinel Co{sub 3−x}Mn{sub x}O{sub 4} (0.1≤x≤1.0) ceramic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Meena, P.L., E-mail: plmeena@gmail.com [Department of Physics, Deen Dayal Upadhyaya College (University of Delhi), Shivaji Marg, Karampura, New Delhi 110015 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, North Campus, Delhi 110007 (India); Singh, M.R. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Kumar, Ashok; Singh, S.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Kumar, Ravi [Beant College of Engineering and Technology, Gurdaspur, Punjab 143521 (India)

    2016-04-01

    We report structural and magnetic properties of spinel Co{sub 3−x}Mn{sub x}O{sub 4} (x=0.1–1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co{sub 3−x}Mn{sub x}O{sub 4} without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.10.5. - Highlights: • Synthesis of single phase polycrystalline Co{sub 3−x}Mn{sub x}O{sub 4} ceramic. • Change in magnetic ordering with varying Mn concentration. • The complex spin distribution is contributing to FM ordering with higher Mn.

  2. Stimulated emission (4F3/2 → 4I11/2 channel) with LD and Xe-flashlamp pumping of tetragonal, incommensurately modulated Ca2MgSi2O7:Nd3+(Na+) – a new disordered laser crystal

    International Nuclear Information System (INIS)

    Kaminskii, A A; Nakao, H; Ueda, K; Shirakawa, A; Bohatý, L; Becker, P; Liebertz, J; Kleinschrodt, R

    2010-01-01

    Non-centrosymmetric tetragonal crystal Ca 2 MgSi 2 O 7 :Nd 3+ (Na + ) with incommensurately modulated melilite-type structure is presented as a new laser crystal. By LD and Xe-flashlamp pumping its CW and free-running pulsed stimulated emission of the 4 F 3/2 → 4 I 11/2 generation channel of Nd 3+ lasant ions was excited

  3. Magnetic and electrical studies on La{sub 0.4}Sm{sub 0.1}Ca{sub 0.5}MnO{sub 3} charge ordered manganite

    Energy Technology Data Exchange (ETDEWEB)

    Krichene, A., E-mail: akramkri@hotmail.fr [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Solanki, P.S. [Department of Physics, Saurashtra University, Rajkot 360005 (India); Venkateshwarlu, D. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Rayaprol, S. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, B.A.R.C. Campus, Mumbai 400085 (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Kuberkar, D.G. [Department of Physics, Saurashtra University, Rajkot 360005 (India)

    2015-05-01

    We have reported in this work the effect of the partial substitution of lanthanum by samarium on the structural, electrical and magnetic properties of La{sub 0.5}Ca{sub 0.5}MnO{sub 3}. The magnetic study indicated that substitution promotes charge ordering and weakens ferromagnetism. Below T{sub C}=123 K, the compound La{sub 0.4}Sm{sub 0.1}Ca{sub 0.5}MnO{sub 3} is a mixture of ferromagnetic and charge ordered antiferromagnetic domains. Between T{sub C} and T{sub CO}=215 K, the structure is paramagnetic with the presence of antiferromagnetic domains. The fractions of the coexisting magnetic phases are highly dependent on the applied magnetic field value. Resistivity measurements reveal the presence of an insulating-metal transition at T{sub ρ}=123 K. The equality between T{sub C} and T{sub ρ} indicates the presence of a correlation between magnetization and resistivity. For only 1 T applied field, we have reported a colossal value of magnetoresistance reaching 73% around T{sub C}. The origin of this high value is attributed to phase separation phenomenon. - Highlights: • Sm doping enhances charge ordering and weakens ferromagnetism in La{sub 0.5}Ca{sub 0.5}MnO{sub 3.} • Colossal magnetoresistance (73%) is recorded at 123 K for only 1 T applied field. • Phase separation is responsible for the magnetic and the magnetoresistive behavior.

  4. Ferri-magnetic order in Mn induced spinel Co3-xMnxO4 (0.1≤x≤1.0) ceramic compositions

    Science.gov (United States)

    Meena, P. L.; Sreenivas, K.; Singh, M. R.; Kumar, Ashok; Singh, S. P.; Kumar, Ravi

    2016-04-01

    We report structural and magnetic properties of spinel Co3-xMnxO4 (x=0.1-1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co3-xMnxO4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.10.5.

  5. Magnetic properties and microstructure of low ordering temperature L10 FePt thin films

    International Nuclear Information System (INIS)

    Sun, A.C.; Kuo, P.C.; Chen, S.C.; Chou, C.Y.; Huang, H.L.; Hsu, J.H.

    2004-01-01

    Polycrystalline Fe 52 Pt 48 alloy thin films were prepared by dc magnetron sputtering on preheated natural-oxidized silicon wafer substrates. The film thickness was varied from 10 to 100 nm. The as-deposited film was encapsulated in a quartz tube and postannealed in vacuum at various temperatures for 1 h, then furnace cooled. It is found that the ordering temperature from as-deposited soft magnetic fcc FePt phase to hard magnetic fct L1 0 FePt phase could be reduced to about 350 deg. C by preheating substrate and furnace cooling treatment. The magnetic properties measurements indicated that the in-plane coercivity of the films was increased rapidly as annealing temperature is increased from 300 to 400 deg. C, but it decreased when the annealing temperature is higher than 400 deg. C. X-ray diffraction analysis shown that the as-deposited FePt thin film was a disorder fcc FePt phase. The magnetic measurement indicated that the transformation of disorder fcc FePt to fct L1 0 FePt phase was started at about 350 deg. C, which is consistent with the analysis of x-ray diffraction patterns. From scanning electron microscopy observation and selected area energy disperse spectrum analysis, the distributions of Fe and Pt elements in the films became nonuniform when the annealing temperature was higher than 500 deg. C due to the formation of the Fe 3 Pt phase. After annealing at 400 deg. C, the in plane coercivity of Fe 52 Pt 48 thin film with film thickness of 100 nm is 10 kOe, M s is 580 emu/cm3, and grain size is about 12 nm

  6. Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn{sub 3+x}Ni{sub 1−x}N

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Sihao; Sun, Ying; Wang, Lei; Shi, Kewen; Hu, Pengwei; Wang, Cong, E-mail: congwang@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); Wu, Hui; Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States)

    2016-01-25

    The near-zero temperature coefficient of resistivity (NZ-TCR) behavior is reported in the antiperovskite compounds Mn{sub 3+x}Ni{sub 1−x}N (0 ≤ x ≤ 0.333). Our results indicate that the broad temperature range (above 275 K extending to above 220 K) of NZ-TCR is obtained by Mn doping at the Ni site. The short-range magnetic ordering is revealed by both neutron powder diffraction and inverse magnetic susceptibility. Further, we find a strong correlation between the anomalous resistivity change of Mn{sub 3+x}Ni{sub 1−x}N from the metal-like to the NZ-TCR behavior and the lack of the long-range magnetic ordering. The possible mechanism of NZ-TCR behavior is discussed using the spin-disorder scattering model.

  7. An internal magnetic field strategy to reuse pulverized active materials for high performance: a magnetic three-dimensional ordered macroporous TiO2/CoPt/α-Fe2O3 nanocomposite anode.

    Science.gov (United States)

    Tang, Yiping; Hong, Liang; Li, Jiquan; Hou, Guangya; Cao, Huazhen; Wu, Liankui; Zheng, Guoqu; Wu, Qingliu

    2017-05-09

    A ferromagnetic three-dimensional ordered macroporous TiO 2 /CoPt/α-Fe 2 O 3 (3DOMTCF) nanocomposite was synthesized via a sol-gel approach templated by poly(methyl methacrylate) (PMMA) microspheres. After magnetization, it exhibited an extremely high reversible capacity and a long cycle life, which were ascribed to the internal magnetic field for reusing pulverized active materials and its unique structure.

  8. Muon Spin Relaxation Studies of RFeAsO and MFe2As2 Based Compounds

    Science.gov (United States)

    Luke, Graeme

    2010-03-01

    Muon spin relaxation measurements of a variety of iron pnictide systems have revealed commensurate long range magnetic order in the parent compounds which can change to incommensurate order with carrier doping. Magnetic order gives way to superconductivity with increased doping; however there are regions of the phase diagrams where the two phenomena co-exist. In the case of Ba1-xKxFe2As2 there is phase separation into superconducting and magnetic domains, whereas in Ba(Fe1-xCox)2As2 the coexistence is apparently microscopic for x=0.035->0.048. Transverse field muon spin rotation measurements of single crystal Ba(Fe1-xCox)2 and Sr(Fe1-xCox)2 exhibit an Abrikosov vortex lattice from which we are able to determine the magnetic field penetration depth and Ginzburg-Landau parameter. The temperature variation of the superfluid density is well described by a two-gap model. In Ba(Fe1-xCox)2As2, both the superconducting TC and the superfluid density decrease with increasing doping above x=0.06; in all of the pnictides we find that the superfluid density obeys the same nearly linear scaling with TC as found in the cuprates.

  9. Extending the range of low energy electron diffraction (LEED) surface structure determination: Co-adsorbed molecules, incommensurate overlayers and alloy surface order studied by new video and electron counting LEED techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogletree, D.F.

    1986-11-01

    LEED multiple scattering theory is briefly summarized, and aspects of electron scattering with particular significance to experimental measurements such as electron beam coherence, instrument response and phonon scattering are analyzed. Diffuse LEED experiments are discussed. New techniques that enhance the power of LEED are described, including a real-time video image digitizer applied to LEED intensity measurements, along with computer programs to generate I-V curves. The first electron counting LEED detector using a ''wedge and strip'' position sensitive anode and digital electronics is described. This instrument uses picoampere incident beam currents, and its sensitivity is limited only by statistics and counting times. Structural results on new classes of surface systems are presented. The structure of the c(4 x 2) phase of carbon monoxide adsorbed on Pt(111) has been determined, showing that carbon monoxide molecules adsorb in both top and bridge sites, 1.85 +- 0.10 A and 1.55 +- 0.10 A above the metal surface, respectively. The structure of an incommensurate graphite overlayer on Pt(111) is analyzed. The graphite layer is 3.70 +- 0.05 A above the metal surface, with intercalated carbon atoms located 1.25 +- 0.10 A above hollow sites supporting it. The (2..sqrt..3 x 4)-rectangular phase of benzene and carbon monoxide coadsorbed on Pt(111) is analyzed. Benzene molecules adsorb in bridge sites parallel to and 2.10 +- 0.10 A above the surface. The carbon ring is expanded, with an average C-C bond length of 1.72 +- 0.15 A. The carbon monoxide molecules also adsorb in bridge sites. The structure of the (..sqrt..3 x ..sqrt..3) reconstruction on the (111) face of the ..cap alpha..-CuAl alloy has been determined.

  10. Extending the range of low energy electron diffraction (LEED) surface structure determination: Co-adsorbed molecules, incommensurate overlayers and alloy surface order studied by new video and electron counting LEED techniques

    International Nuclear Information System (INIS)

    Ogletree, D.F.

    1986-11-01

    LEED multiple scattering theory is briefly summarized, and aspects of electron scattering with particular significance to experimental measurements such as electron beam coherence, instrument response and phonon scattering are analyzed. Diffuse LEED experiments are discussed. New techniques that enhance the power of LEED are described, including a real-time video image digitizer applied to LEED intensity measurements, along with computer programs to generate I-V curves. The first electron counting LEED detector using a ''wedge and strip'' position sensitive anode and digital electronics is described. This instrument uses picoampere incident beam currents, and its sensitivity is limited only by statistics and counting times. Structural results on new classes of surface systems are presented. The structure of the c(4 x 2) phase of carbon monoxide adsorbed on Pt(111) has been determined, showing that carbon monoxide molecules adsorb in both top and bridge sites, 1.85 +- 0.10 A and 1.55 +- 0.10 A above the metal surface, respectively. The structure of an incommensurate graphite overlayer on Pt(111) is analyzed. The graphite layer is 3.70 +- 0.05 A above the metal surface, with intercalated carbon atoms located 1.25 +- 0.10 A above hollow sites supporting it. The (2√3 x 4)-rectangular phase of benzene and carbon monoxide coadsorbed on Pt(111) is analyzed. Benzene molecules adsorb in bridge sites parallel to and 2.10 +- 0.10 A above the surface. The carbon ring is expanded, with an average C-C bond length of 1.72 +- 0.15 A. The carbon monoxide molecules also adsorb in bridge sites. The structure of the (√3 x √3) reconstruction on the (111) face of the α-CuAl alloy has been determined

  11. An increase of structural order parameter in Fe endash Co endash V soft magnetic alloy after thermal aging

    International Nuclear Information System (INIS)

    Zhu, Q.; Li, L.; Masteller, M.S.; Del Corso, G.J.

    1996-01-01

    Alloys of Fe 49 Co 49 V 2 (Hiperco Alloy 50) (Hiperco is a registered trademark of CRS Holdings, Inc.), both annealed and thermally aged, were studied using anomalous synchrotron x-ray and neutron powder diffraction. Rietveld and diffraction profile analysis indicated both an increase in the structural order parameter and a small lattice expansion (∼0.0004 A) after aging at 450 degree C for 200 h. In addition, a cubic minority phase (<0.3%) was identified in the open-quote open-quote annealed close-quote close-quote sample, which increased noticeably (0.3%→0.8%) as a result of aging. The presence of antiphase domain boundaries in the alloys was also revealed. These results directly correlate with the observed changes in the magnetization behavior and challenge the notion that a open-quote open-quote fully close-quote close-quote ordered Fe endash Co alloy demonstrates optimum soft magnetic properties. copyright 1996 American Institute of Physics

  12. The dependence of magnetic ordering temperature in amorphous semiconductors on paramagnetic centre concentration

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Satanin, A.M.

    1981-01-01

    In silicon amorphized by ion implantation (a-Si) the dependence of magnetic ordering temperature (theta) on localized spin concentration (Nsub(s)) is studied by EPR method. Nsub(s) changes by varying the Ne + ion dose from 6x10 14 to 2x10 17 cm -2 and sample annealing. From the comparison of the data obtained with literature ones conclusions are made about the existence of two critical values of Nsub(s) in a-Si (approximately 10 19 and approximately 2x10 20 cm -3 ), when a transition occurs from paramagnetism to antiferromagnetism (at T < theta) and from antiferromagnetism to ferromagnetism, respectively. (author)

  13. The phase transition of the incommensurate phases β-Ln(PO3)3(Ln=Y,Tb...Yb), crystal structures of α-Ln(PO3)3(Ln=Y,Tb...Yb) and Sc(PO3)3

    International Nuclear Information System (INIS)

    Hoeppe, Hennig A.

    2009-01-01

    The incommensurately modulated room-temperature phases β-Ln(PO 3 ) 3 (Ln=Y,Tb...Yb) undergo a topotactic phase transition monitored by vibrational spectroscopy below 180 K leading to α-Ln(PO 3 ) 3 (Ln=Y,Dy...Yb), above 200 K the incommensurate phases are reobtained. The low-temperature phases exhibit a new structure type (α-Dy(PO 3 ) 3 ,P2 1 /c,Z=12,a=14.1422(6),b=20.0793(9),c=10.1018(4)A, β=127.532(3) 0 ). α-Tb(PO 3 ) 3 is isotypic with Gd(PO 3 ) 3 (α-Tb(PO 3 ) 3 ,I2/a,Z=16,a=25.875(6),b=13.460(3),c=10.044(2)A, β=119.13(3) 0 ). The symmetry relations between the involved phases of the phase transition are discussed. The crystal structure of Sc(PO 3 ) 3 is isotypic with that of Lu(PO 3 ) 3 and C-type phosphates. The polyphosphates consist of infinite zig-zag chains of corner-sharing PO 4 tetrahedra, the cations are coordinated sixfold in an almost octahedral arrangement. To confirm the quality of the determined crystal structures the deviation of the phosphate tetrahedra from ideal symmetry was determined and discussed. - Abstract: Basic structure from which all crystal structures of the late lanthanoids' polyphosphates at room temperature and below can be derived.

  14. Tenth-Order Lepton Anomalous Magnetic Moment--Sixth-Order Vertices Containing Vacuum-Polarization Subdiagrams

    International Nuclear Information System (INIS)

    Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko

    2011-01-01

    This paper reports the values of contributions to the electron g-2 from 300 Feynman diagrams of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic anomaly M 6 obtained in the previous work. The mass-independent contributions of Set III(a) and Set III(b) are 2.1275(2) and 3.3271(6) in units of (α/π) 5 , respectively. Version B is based on the recently developed automatic code generation scheme. This method yields 2.1271(3) and 3.3271(8) in units of (α/π) 5 , respectively. They are in excellent agreement with the results of the first method within the uncertainties of numerical integration. Combining these results as statistically independent we obtain the best values, 2.1273(2), and 3.3271(5) times (α/π) 5 , for the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also evaluated mass-dependent contributions of diagrams containing muon and/or tau-particle loop. Including them the total contribution of Set III(a) is 2.1349(2) and that of Set III(b) is 3.3299(5) in units of (α/π) 5 . The total contributions to the muon g-2 of various leptonic vacuum-polarization loops of Set III(a) and Set III(b) are 112.418(32) and 15.407(5) in units of (α/π) 5 , respectively.

  15. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Chen, Xiaojun, E-mail: chenxj_njut@126.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Tang, Yin [Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600 (China); Ge, Lingna; Guo, Buhua [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Yao, Cheng, E-mail: yaochengnjut@163.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China)

    2014-03-01

    Highlights: • Three dimensional ordered macroporous magnetic electrode was newly used in electrochemical immunosensor. • The large surface area of macroporous magnetic electrode could improve the immobilized amount of antibody. • Au nanoparticles functionalized SBA-15 was used to immobilize enzyme labeled Ab₂ and enzyme. • Macroporous magnetic electrode and Au nanoparticles composite facilitated the direct electron transfer of enzyme. • The immunoassay avoided adding electron transfer mediator, simplifying the procedure. Abstract: A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab₁) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab₂) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO₂@Fe₃O₄ nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab₂) through the Au–SH or Au–NH₃⁺ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL⁻¹ with a detection limit of 0.01 U mL⁻¹. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from

  16. Varying Eu2+ magnetic order by chemical pressure in EuFe2(As1-xPx)2

    Science.gov (United States)

    Zapf, S.; Wu, D.; Bogani, L.; Jeevan, H. S.; Gegenwart, P.; Dressel, M.

    2011-10-01

    Based on low-field magnetization measurements on a series of single crystals, we present a scheme of the Eu2+ spin alignment in EuFe2(As1-xPx)2. We explain observations of the Eu2+ ordering previously reported, reconciling different existing phase diagrams. The magnetic moments of the Eu2+ ions are slightly canted, yielding a ferromagnetic contribution along the c direction that becomes stronger with pressure, until superconductivity sets in. The spin-density wave as well as the superconducting phase coexist with an antiferromagnetic interlayer coupling of the canted spins. Reducing the interlayer distance finally leads to a ferromagnetic Eu2+ interlayer coupling and to the suppression of superconductivity.

  17. Canted spin structure and the first order magnetic transition in CoFe{sub 2}O{sub 4} nanoparticles coated by amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, I.S. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Starchikov, S.S., E-mail: sergey.s.starchikov@gmail.com [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Gervits, N.E.; Korotkov, N.Yu.; Dmitrieva, T.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Lin, Chun-Rong, E-mail: crlinspin@gmail.com [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Tseng, Yaw-Teng [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Shih, Kun-Yauh [Department of Applied Chemistry, National Pingtung University, Pingtung County 90003, Taiwan (China); Lee, Jiann-Shing [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Wang, Cheng-Chien [Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan (China)

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe{sub 2}O{sub 4}/SiO{sub 2} composites. The spinel type crystal structure of CoFe{sub 2}O{sub 4} ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe{sub 2}O{sub 4}/SiO{sub 2} hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe{sub 2}O{sub 4} nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe{sub 2}O{sub 4}/SiO{sub 2} particles (2.2–4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation. - Highlights: • CoFe{sub 2}O{sub 4}/SiO{sub 2} nanocomposites in shell of hollow microcapsules designed for biomedical applications • The CoFe{sub 2}O{sub 4} particle size and magnetic properties can be tuned by thermal treatment • Canted spin structure in the CoFe{sub 2}O{sub 4} nanoparticles coated by SiO{sub 2} • The first order magnetic transition in the CoFe{sub 2}O{sub 4} nanoparticles coated by silica.

  18. MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies.

    Science.gov (United States)

    Ekinci, Yunus Levent

    2016-01-01

    This paper presents an easy-to-use open source computer algorithm (code) for estimating the depths of isolated single thin dike-like source bodies by using numerical second-, third-, and fourth-order horizontal derivatives computed from observed magnetic anomalies. The approach does not require a priori information and uses some filters of successive graticule spacings. The computed higher-order horizontal derivative datasets are used to solve nonlinear equations for depth determination. The solutions are independent from the magnetization and ambient field directions. The practical usability of the developed code, designed in MATLAB R2012b (MathWorks Inc.), was successfully examined using some synthetic simulations with and without noise. The algorithm was then used to estimate the depths of some ore bodies buried in different regions (USA, Sweden, and Canada). Real data tests clearly indicated that the obtained depths are in good agreement with those of previous studies and drilling information. Additionally, a state-of-the-art inversion scheme based on particle swarm optimization produced comparable results to those of the higher-order horizontal derivative analyses in both synthetic and real anomaly cases. Accordingly, the proposed code is verified to be useful in interpreting isolated single thin dike-like magnetized bodies and may be an alternative processing technique. The open source code can be easily modified and adapted to suit the benefits of other researchers.

  19. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film

    Science.gov (United States)

    Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing

    2018-02-01

    Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.

  20. Discovery of a new phase with magnetic short range correlations and its possible relevance for the hidden order in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Steffen [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Becker, Klaus W. [Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2016-07-01

    In this paper we discuss a new phase of the Kondo lattice model which arises from the competition of Kondo and RKKY energy scales. Normally the Kondo lattice model is used to capture the low-energy physics of heavy fermion systems. However, according to the so-called Doniach picture the Kondo state will be replaced by an antiferromagnetic state for the case that the Kondo energy scale becomes smaller than the magnetic interaction between magnetic ions. In the present study we start instead from a modified electronic one-particle dispersion which avoids nesting of particle-hole excitations. Thus the magnetic ordered state should be suppressed which provides an opportunity for the inset of a new low-energy state with competing Kondo and magnetic energies. As will be shown, this new state avoids magnetic symmetry breaking but leads to a number of physical properties which are relevant for the understanding of the hidden order state in URu{sub 2}Si{sub 2}.