Directory of Open Access Journals (Sweden)
Ma Luo
2017-10-01
Full Text Available PURPOSE: To evaluate whether intravoxel incoherent motion (IVIM–related parameters could be used to differentiate malignant from benign focal liver lesions (FLLs and to improve diagnostic efficiency. METHODS: Seventy-four patients with 75 lesions, including 51 malignant FLLs and 24 benign FLLs, underwent liver 3.0-T magnetic resonance imaging for routine examination sequences. IVIM diffusion-weighted imaging (DWI with 11 b values (0-800 s/mm2 was also acquired concurrently. Apparent diffusion coefficient (ADCtotal and IVIM-derived parameters, such as the pure diffusion coefficient (D, the pseudodiffusion coefficient (D⁎, and the perfusion fraction (f, were calculated and compared between the two groups. A receiver operating characteristic curve analysis was performed to assess their diagnostic value. RESULTS: ADCtotal, D, and f were significantly lower in the malignant group than in the benign group, whereas D⁎ did not show a statistical difference. D had a larger area under the curve value (0.968 and higher sensitivity (92.30% for differentiation. CONCLUSION: IVIM is a useful method to differentiate malignant and benign FLLs. The D value showed higher efficacy to detect hepatic solid lesions.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ying-hua [Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Department of Radiology, Guangzhou (China); Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, Guangzhou (China); Li, Shao-lin; Zhao, Xiang-cheng; Hu, Shao-yong; Liu, Zhen-hua [Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Department of Radiology, Guangzhou (China); Liu, Zai-yi; Chen, Xin; Liang, Chang-hong [Guangdong Academy of Medical Sciences, Department of Radiology, Guangdong General Hospital, Guangzhou (China); Mei Ms, Ying-jie [Philips Healthcare, Guangzhou (China); Chan, Queenie [Philips Electronics Hong Kong Ltd, Hong Kong (China)
2015-09-15
To confirm feasibility and assess intravoxel incoherent motion (IVIM) to differentiate active sacroiliitis and ankylosing spondylitis. Forty-one patients were divided into two groups, an active group (n = 20) and a chronic group (n = 21), according to the Bath Ankylosing Spondylitis (AS) Disease Activity Index (BASDAI) and laboratory parameters. In addition, 21 healthy volunteers were chosen as the control group. Tissue diffusivity (D{sub slow}), perfusion fraction (f), and pseudo-diffusion coefficient (D{sub fast}) values were obtained for all three groups. One-way analysis of variance and receiver operating characteristic analysis were performed for all parameters. There was good interobserver agreement on the measurements between the two observers. The optimal cut-off values (with respective AUC, sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio) between active and chronic groups were D{sub slow} = 0.53 x 10{sup -3} mm{sup 2}/s (0.976, 90 %, 95.2 %, 18.9, 0.10) and f = 0.09 (0.545, 20 %, 95.5 %, 4.2, 0.84), and between chronic and control groups were D{sub slow} = 0.22 x 10{sup -3} mm{sup 2}/s (0.517, 9.52 %, 100 %, no number, 0.9) and f = 0.09 (0.935, 95.24 %, 80.95 %, 5, 0.059). D{sub slow} and f of IVIM diffusion-weighted (DW)-MRI in AS show a significant difference in the values of diffusion of water molecules and fractional perfusion-related volume among the three groups. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lai, Vincent; Li, Xiao; Huang, Bingsheng; Khong, Pek Lan [University of Hong Kong, Queen Mary Hospital, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Hong Kong (China); Lee, Victor Ho Fun; Lam, Ka On [University of Hong Kong, Queen Mary Hospital, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong (China); Fong, Daniel Yee Tak [University of Hong Kong, School of Nursing, Li Ka Shing Faculty of Medicine, Hong Kong (China); Chan, Queenie [Philips Healthcare, Hong Kong, New Territories (China)
2014-01-15
To explore intravoxel incoherent motion (IVIM) characteristics of nasopharyngeal carcinoma (NPC) and relationships with different tumour stages. We prospectively recruited 80 patients with newly diagnosed undifferentiated NPC. Diffusion-weighted MR imaging was performed and IVIM parameters (D, pure diffusion; f, perfusion fraction; D*, pseudodiffusion coefficient) were calculated. Patients were stratified into low and high tumour stage groups based on American Joint Committee on Cancer (AJCC) and TNM staging for determination of the predictive powers of IVIM parameters using t test, multiple logistic regression and ROC curve analyses. D, f and D* were all statistically significantly lower in high-stage groups in AJCC, T and N staging. D, f and D* were all independent predictors of AJCC staging, f and D* were independent predictors of T staging, and D was an independent predictor of N staging. D was most powerful for AJCC and N staging, whereas f was most powerful for T staging. Optimal cut-off values (area under the curve, sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) were as follows: AJCC stage, D = 0.782 x 10{sup -3} mm{sup 2}/s (0.915, 93.3 %, 76.2 %, 3.92, 0.09); T staging, f = 0.133 (0.905, 80.5 %, 92.5 %, 10.73, 0.21); N staging, D = 0.761 x 10{sup -3} mm{sup 2}/s (0.848, 87.5 %, 66.7 %, 2.62, 0.19). Multivariate analysis showed no diagnostic improvement. Nasopharyngeal carcinoma has distinctive intravoxel incoherent motion characteristics parameters in different tumour staging, potentially helping pretreatment staging. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yu-Dong; Wang, Qing; Wu, Chen-Jiang; Wang, Xiao-Ning; Zhang, Jing; Liu, Xi-Sheng; Shi, Hai-Bin [First Affiliated Hospital with Nanjing Medical University, Department of Radiology, Nanjing, Jiangsu Province (China); Liu, Hui [Siemens Healthcare, MR Collaborations NE Asia, Shanghai (China)
2015-04-01
To evaluate histogram analysis of intravoxel incoherent motion (IVIM) for discriminating the Gleason grade of prostate cancer (PCa). A total of 48 patients pathologically confirmed as having clinically significant PCa (size > 0.5 cm) underwent preoperative DW-MRI (b of 0-900 s/mm{sup 2}). Data was post-processed by monoexponential and IVIM model for quantitation of apparent diffusion coefficients (ADCs), perfusion fraction f, diffusivity D and pseudo-diffusivity D*. Histogram analysis was performed by outlining entire-tumour regions of interest (ROIs) from histological-radiological correlation. The ability of imaging indices to differentiate low-grade (LG, Gleason score (GS) ≤6) from intermediate/high-grade (HG, GS > 6) PCa was analysed by ROC regression. Eleven patients had LG tumours (18 foci) and 37 patients had HG tumours (42 foci) on pathology examination. HG tumours had significantly lower ADCs and D in terms of mean, median, 10th and 75th percentiles, combined with higher histogram kurtosis and skewness for ADCs, D and f, than LG PCa (p < 0.05). Histogram D showed relatively higher correlations (n = 0.641-0.668 vs. ADCs: 0.544-0.574) with ordinal GS of PCa; and its mean, median and 10th percentile performed better than ADCs did in distinguishing LG from HG PCa. It is feasible to stratify the pathological grade of PCa by IVIM with histogram metrics. D performed better in distinguishing LG from HG tumour than conventional ADCs. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lee, Elaine Yuen Phin; Yu, Xue; Khong, Pek-Lan [The University of Hong Kong, Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong (China); Chu, Mandy Man Yee; Ngan, Hextan Yuen Sheung [The University of Hong Kong, Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong (China); Siu, Steven Wai Kwan [Queen Mary Hospital, Department of Clinical Oncology, Hong Kong (China); Soong, Inda Sung [Pamela Youde Nethersole Eastern Hospital, Department of Clinical Oncology, Hong Kong (China); Chan, Queenie [Philips Healthcare, Hong Kong (China)
2014-07-15
To investigate the tissue characteristics of cervical cancer based on the intravoxel incoherent motion (IVIM) model and to assess the IVIM parameters in tissue differentiation in the female pelvis. Sixteen treatment-naive cervical cancer and 17 age-matched healthy subjects were prospectively recruited for diffusion-weighted (b = 0-1,000 s/mm{sup 2}) and standard pelvic MRI. Bi-exponential analysis was performed to derive the perfusion parameters f (perfusion fraction) and D* (pseudodiffusion coefficient) as well as the diffusion parameter D (true molecular diffusion coefficient) in cervical cancer (n = 16), normal cervix (n = 17), myometrium (n = 33) and leiomyoma (n = 14). Apparent diffusion coefficient (ADC) was calculated. Kruskal-Wallis test and receiver operating characteristics (ROC) curves were used. Cervical cancer had the lowest f (14.9 ± 2.6 %) and was significantly different from normal cervix and leiomyoma (p < 0.05). The D (0.86 ± 0.16 x 10{sup -3} mm2/s) was lowest in cervical cancer and was significantly different from normal cervix and myometrium (p < 0.05) but not leiomyoma. No difference was observed in D*. D was consistently lower than ADC in all tissues. ROC curves indicated that f < 16.38 %, D < 1.04 x 10{sup -3} mm{sup 2}/s and ADC < 1.13 x 10{sup -3} mm{sup 2}/s could differentiate cervical cancer from non-malignant tissues (AUC 0.773-0.908). Cervical cancer has low perfusion and diffusion IVIM characteristics with promising potential for tissue differentiation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dyvorne, Hadrien, E-mail: hadrien.dyvorne@mountsinai.org [Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Jajamovich, Guido, E-mail: guido.jajamovich@mountsinai.org [Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Kuehn, Bernd, E-mail: bernd.kuehn@siemens.com [Siemens AG, Healthcare Sector, Erlangen (Germany); Taouli, Bachir, E-mail: bachir.taouli@mountsinai.org [Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States)
2014-12-15
Highlights: • We assess the precision and reproducibility of liver IVIM diffusion parameters. • Liver IVIM DWI can be performed with 4 b-values with good parameter precision. • Liver IVIM DWI can be performed with 4 b-values with good parameter reproducibility. - Abstract: Purpose: To increase diffusion sampling efficiency in intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) of the liver by reducing the number of diffusion weightings (b-values). Materials and methods: In this IRB approved HIPAA compliant prospective study, 53 subjects (M/F 38/15, mean age 52 ± 13 y) underwent IVIM DWI at 1.5 T using 16 b-values (0–800 s/mm{sup 2}), with 14 subjects having repeat exams to assess IVIM parameter reproducibility. A biexponential diffusion model was used to quantify IVIM hepatic parameters (PF: perfusion fraction, D: true diffusion and D*: pseudo diffusion). All possible subsets of the 16 b-values were probed, with number of b values ranging from 4 to 15, and corresponding parameters were quantified for each subset. For each b-value subset, global parameter estimation error was computed against the parameters obtained with all 16 b-values and the subsets providing the lowest error were selected. Interscan estimation error was also evaluated between repeat exams to assess reproducibility of the IVIM technique in the liver. The optimal b-values distribution was selected such that the number of b-values was minimal while keeping parameter estimation error below interscan reproducibility error. Results: As the number of b-values decreased, the estimation error increased for all parameters, reflecting decreased precision of IVIM metrics. Using an optimal set of 4 b-values (0, 15, 150 and 800 s/mm{sup 2}), the errors were 6.5, 22.8 and 66.1% for D, PF and D* respectively. These values lie within the range of test–retest reproducibility for the corresponding parameters, with errors of 12.0, 32.3 and 193.8% for D, PF and D* respectively. Conclusion
Directory of Open Access Journals (Sweden)
Pu-Xuan Lu
Full Text Available PURPOSE: This study was aimed to determine whether pure molecular-based diffusion coefficient (D and perfusion-related diffusion parameters (perfusion fraction f, perfusion-related diffusion coefficient D* differ in healthy livers and fibrotic livers through intra-voxel incoherent motion (IVIM MR imaging. MATERIAL AND METHODS: 17 healthy volunteers and 34 patients with histopathologically confirmed liver fibrosis patients (stage 1 = 14, stage 2 = 8, stage 3 & 4 = 12, METAVIR grading were included. Liver MR imaging was performed at 1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150, 200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest based quantification of IVIM parameters were performed. RESULTS: D, f, and D* in healthy volunteer livers and patient livers were 1.096±0.155 vs 0.917±0.152 (10(-3 mm2/s, p = 0.0015, 0.164±0.021 vs 0.123±0.029 (p<0.0001, and 13.085±2.943 vs 9.423±1.737 (10(-3 mm2/s, p<0.0001 respectively, all significantly lower in fibrotic livers. As the fibrosis severity progressed, D, f, and D* values decreased, with a trend significant for f and D*. CONCLUSION: Fibrotic liver is associated with lower pure molecular diffusion, lower perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f and D* in the liver is significantly associated liver fibrosis severity.
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiao Quan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Choi, Young Jun; Sung, Yu Sub [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Yoon, Ra Gyoung [Department of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711 (Korea, Republic of); Jang, Seung Won; Park, Ji Eun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Heo, Young Jin [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392 (Korea, Republic of); Baek, Jung Hwan; Lee, Jeong Hyun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)
2016-11-01
To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.
Energy Technology Data Exchange (ETDEWEB)
Yan, Chenggong; Xiong, Wei; Wu, Yuankui; Li, Caixia; Xu, Yikai [Southern Medical University, Department of Medical Imaging Center, Nanfang Hospital, Guangzhou (China); Xu, Jun; Wei, Qi; Feng, Ru; Liu, Qifa [Southern Medical University, Department of Hematology, Nanfang Hospital, Guangzhou (China); Chan, Queenie [Philips Healthcare, New Territories, Hon Kong (China)
2017-01-15
The purpose of this study was to determine whether intravoxel incoherent motion (IVIM) -derived parameters and apparent diffusion coefficient (ADC) could act as imaging biomarkers for predicting antifungal treatment response. Forty-six consecutive patients (mean age, 33.9 ± 13.0 y) with newly diagnosed invasive fungal infection (IFI) in the lung according to EORTC/MSG criteria were prospectively enrolled. All patients underwent diffusion-weighted magnetic resonance (MR) imaging at 3.0 T using 11 b values (0-1000 sec/mm{sup 2}). ADC, pseudodiffusion coefficient D*, perfusion fraction f, and the diffusion coefficient D were compared between patients with favourable (n=32) and unfavourable response (n=14). f values were significantly lower in the unfavourable response group (12.6%±4.4%) than in the favourable response group (30.2%±8.6%) (Z=4.989, P<0.001). However, the ADC, D, and D* were not significantly different between the two groups (P>0.05). Receiver operating characteristic curve analyses showed f to be a significant predictor for differentiation, with a sensitivity of 93.8% and a specificity of 92.9%. IVIM-MRI is potentially useful in the prediction of antifungal treatment response to patients with IFI in the lung. Our results indicate that a low perfusion fraction f may be a noninvasive imaging biomarker for unfavourable response. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cercueil, Jean-Pierre [University of Burgundy, INSERM U866, BP 87900, Dijon (France); CHU (University Hospital), Department of Radiology, BP 77908, Dijon (France); Petit, Jean-Michel [University of Burgundy, INSERM U866, BP 87900, Dijon (France); CHU (University Hospital), Department of Endocrinology, Diabetology, and Metabolic Diseases, BP 77908, Dijon (France); Nougaret, Stephanie; Pierredon-Foulongne, Marie-Ange; Schembri, Valentina; Delhom, Elisabeth; Guiu, Boris [St-Eloi University Hospital, Department of Radiology, Montpellier (France); Soyer, Philippe [Hopital 1 Lariboisiere, Assistance Publique Hopitaux de Paris, Department of Body and Interventional Imaging, Paris Cedex 10 (France); Fohlen, Audrey [University Hospital, Department of Radiology, Caen (France); Schmidt, Sabine; Denys, Alban [Centre Hospitalier Universitaire Vaudois, Department of Radiology, Lausanne (Switzerland); Aho, Serge [CHU (University Hospital), Department of Biostatistics, BP 77908, Dijon (France)
2015-06-01
To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (D{sub i} ± standard deviations) and their fractions (f{sub i} ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D{sub 1} = 1.35 ± 0.03 x 10{sup -3} mm{sup 2}/s; f{sub 1} = 72.7 ± 0.9 %), a fast (D{sub 2} = 26.50 ± 2.49 x 10{sup -3} mm{sup 2}/s; f{sub 2} = 13.7 ± 0.6 %) and a very fast (D{sub 3} = 404.00 ± 43.7 x 10{sup -3} mm{sup 2}/s; f{sub 3} = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm{sup 2} The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm{sup 2} range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. (orig.)
Directory of Open Access Journals (Sweden)
Vincenza Granata
Full Text Available To assess the feasibility and effectiveness of quantitative intravoxel incoherent motion (IVIM of Diffusion-weighted imaging (DWI in the assessment of liver metastases treated with targeted chemotherapy agents.12 patients with unresectable liver metastases from colorectal cancer were enrolled and received neoadjuvant FOLFIRI (5-fluorouracil, leucovorin, irinotecan plus bevacizumab therapy. DWI was performed for 36 metastases at baseline and after 14 days from starting the treatment. In addition to the basic IVIM metrics, the product between pseudo-diffusivity and perfusion fraction was considered as a descriptor roughly analogous to the flow. Median diffusion parameters of Region of Interest (ROI were used as representative values for each lesion. Normalized parameters in comparison with the median value of spleen were also collected. The percentual change of the diffusion parameters was calculated. The response to chemotherapy was evaluated according the Response Evaluation Criteria in Solid Tumors (RECIST as calculated on whole-body CT scan obtained three months after treatment. Mann Whitney test and Receiver operating characteristic (ROC analysis were performed.24 lesions were categorized as responding and 12 as not responding. There was no statistically significant difference among absolute and normalized diffusion parameters between the pretreatment and the post-treatment findings. Instead, the perfusion fraction (fp values showed a statistical difference between responder and non-responder lesions: sensitivity and specificity of fp variation was 62% and 93%, respectively.IVIM parameters represent a valuable tool in the evaluation of the anti-angiogenic therapy in patients with liver metastases from colorectal cancer. A percentage change of fp represents the most effective DWI marker in the assessment of tumor response.
Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo
2016-01-01
Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.
Whole-body intravoxel incoherent motion imaging
Energy Technology Data Exchange (ETDEWEB)
Filli, Lukas; Wurnig, Moritz C.; Eberhardt, Christian; Guggenberger, Roman; Boss, Andreas [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Luechinger, Roger [University and ETH Zurich, Institute of Biomedical Technology, Zurich (Switzerland)
2015-07-15
To investigate the technical feasibility of whole-body intravoxel incoherent motion (IVIM) imaging. Whole-body MR images of eight healthy volunteers were acquired at 3T using a spin-echo echo-planar imaging sequence with eight b-values. Coronal parametrical whole-body maps of diffusion (D), pseudodiffusion (D*), and the perfusion fraction (F{sub p}) were calculated. Image quality was rated qualitatively by two independent radiologists, and inter-reader reliability was tested with intra-class correlation coefficients (ICCs). Region of interest (ROI) analysis was performed in the brain, liver, kidney, and erector spinae muscle. Depiction of anatomic structures was rated as good on D maps and good to fair on D* and F{sub p} maps. Exemplary mean D (10{sup -3} mm{sup 2}/s), D* (10{sup -3} mm{sup 2}/s) and F{sub p} (%) values (± standard deviation) of the renal cortex were as follows: 1.7 ± 0.2; 15.6 ± 6.5; 20.9 ± 4.4. Inter-observer agreement was ''substantial'' to ''almost perfect'' (ICC = 0.80 - 0.92). The coefficient of variation of D* was significantly lower with the proposed algorithm compared to the conventional algorithm (p < 0.001), indicating higher stability. The proposed IVIM protocol allows computation of parametrical maps with good to fair image quality. Potential future clinical applications may include characterization of widespread disease such as metastatic tumours or inflammatory myopathies. (orig.)
Universal Diffusion in Incoherent Black Holes
Blake, Mike
2016-01-01
We study charge and energy diffusion in holographic theories with broken translational symmetry. We find that when the effects of momentum relaxation are very strong the diffusion constants take universal values $D_{c} \\sim D_{e} \\sim \\hbar v_B^2/(k_B T)$. Here $v_B$ is the velocity of the butterfly effect and the coefficients of proportionality depend only on the scaling exponents of the infra-red fixed point. Our results suggest that diffusion in incoherent black holes is controlled by $\\tau \\sim {\\hbar}/(k_B T)$ independently of the mechanism of momentum relaxation.
Universal diffusion in incoherent black holes
Blake, Mike
2016-10-01
We study charge and energy diffusion in simple holographic theories with broken translational symmetry. We find that when the effects of momentum relaxation are very strong the diffusion constants take universal values Dc˜De˜ℏvB2/(kBT ) . Here vB is the velocity of the butterfly effect and the coefficients of proportionality depend only on the scaling exponents of the infra-red fixed point. Our results suggest that diffusion in these incoherent black holes is controlled by τ ˜ℏ/(kBT ) independently of the mechanism of momentum relaxation.
Institute of Scientific and Technical Information of China (English)
Yan-Chun Wang; Dao-Yu Hu; Xue-Mei Hu; Ya-Qi Shen; Xiao-Yan Meng; Hao Tang; Zhen Li
2016-01-01
Background:Diffusion-weighted imaging (DWI) with the intravoxel incoherent motion (IVIM) model has shown promising results for providing both diffusion and perfusion information in cervical cancer;however,its use to predict and monitor the efficacy of neoadjuvant chemotherapy (NACT) in cervical cancer is relatively rare.The study aimed to evaluate the use of DWI with IVIM and monoexponential models to predict and monitor the efficacy of NACT in cervical cancer.Methods:Forty-two patients with primary cervical cancer underwent magnetic resonance exams at 3 time points (pre-NACT,3 weeks after the first NACT cycle,and 3 weeks after the second NACT cycle).The response to treatment was determined according to the response evaluation criteria in solid tumors 3 weeks after the second NACT treatment,and the subjects were classified as two groups:responders and nonresponders groups.The apparent diffusion coefficient (ADC),true diffusion coefficient (D),perfusion-related pseudo-diffusion coefficient (D*),and perfusion fraction (f) values were determined.The differences in IVIM-derived variables and ADC between the different groups at the different time points were calculated using an independent samples t-test.Results:The D and ADC values were all significantly higher for the responders than for the nonresponders at all 3 time points,but no significant differences were observed in the D* and f values.An analysis of the receiver operating characteristic (ROC) curves indicated that a D value threshold ＜0.93 × 10-3 mm2/s and an ADC threshold ＜1.11 × 10-3 mm2/s could differentiate responders from nonresponders at pre-NACT time point,yielding area under the curve (AUC) of which were 0.771 and 0.806,respectively.The ROC indicated that the AUCs of D and ADC at the 3 weeks after the first NACT cycle and 3 weeks after the second NACT cycle were 0.823,0.763,and 0.787,0.794,respectively.The AUC values of D and ADC at these 3 time points were not significantly different (P =0
Can disorder enhance incoherent exciton diffusion?
Lee, Elizabeth M Y; Willard, Adam P
2015-01-01
Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we present a general model, based upon F\\"orster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific diffusivity is broadened in a manner that results i...
Valerio, Mariacristina; Zini, Chiara; Fierro, Davide; Giura, Francesca; Colarieti, Anna; Giuliani, Alessandro; Laghi, Andrea; Catalano, Carlo; Panebianco, Valeria
2016-04-01
To evaluate the potential added value of the intravoxel incoherent motion model to conventional multiparametric magnetic resonance protocol in order to differentiate between healthy and neoplastic prostate tissue in the peripheral zone. Mono-exponential and bi-exponential fits were used to calculate ADC and IVIM parameters in 53 patients with peripheral zone biopsy proved tumor. Inferential statistics analysis was performed on T2, ADC and IVIM parameters (D, D*, f) comparing healthy and neoplastic tissues. Linear discriminant analysis was performed for the conventional parameters (T2 and ADC), the IVIM parameters (molecular diffusion coefficient (D), perfusion-related diffusion coefficient (D*), and perfusion fraction (f) and the combined T2-weighted imaging/DWI and IVIM parameters (T2, ADC, D, D* and f). A correlation with Gleason scores was achieved. The values of T2, ADC and D were significantly lower in cancerous tissues (2749.82 ± 1324.67 ms, 0.76 ± 0.27 × 10(-3)mm(2)/s and 0.99 ± 0.38 × 10(-3)mm(2)/s respectively) compared to those found in the healthy tissues (3750.70 ± 1735.37 ms, 1.39 ± 0.48 × 10(-3)mm(2)/s and 1.77 ± 0.36 × 10(-3)mm(2)/s respectively); D* parameter was significantly increased in neoplastic compared to healthy tissue (15.56 ± 12.91 × 10(-3)mm(2)/s and 10.25 ± 10.52 × 10(-3)mm(2)/s respectively). The specificity, sensitivity and accuracy of the T2-weighted imaging/DWI and IVIM parameters were 100, 96 and 98%, respectively, compare to 88, 92 and 90% and 96, 92 and 94 for T2-weighted imaging/ADC and IVIM alone. IVIM parameters increase the specificity and sensitivity in the evaluation of peripheral zone prostate cancer. A statistical difference between low grade tumors and high grade tumors has been demostrated in that ADC, D and D* dataset; in particular, D has been found to have the highest significativity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Pieper CC
2016-07-01
Full Text Available Claus Christian Pieper,1 Carsten Meyer,1 Alois Martin Sprinkart,1 Wolfgang Block,1 Hojjat Ahmadzadehfar,2 Hans Heinz Schild,1 Petra Mürtz,1 Guido Matthias Kukuk1 1Department of Radiology, 2Department of Nuclear Medicine, University of Bonn, Bonn, Germany Purpose: To evaluate prognostic values of clinical and diffusion-weighted magnetic resonance imaging-derived intravoxel incoherent motion (IVIM parameters in patients undergoing primary radioembolization for metastatic breast cancer liver metastases.Subjects and methods: A total of 21 females (mean age 54 years, range 43–72 years with liver-dominant metastatic breast cancer underwent standard liver magnetic resonance imaging (1.5 T, diffusion-weighted imaging with b-values of 0, 50, and 800 s/mm2 before and 4–6 weeks after radioembolization. The IVIM model-derived estimated diffusion coefficient D’ and the perfusion fraction f’ were evaluated by averaging the values of the two largest treated metastases in each patient. Kaplan–Meier and Cox regression analyses for overall survival (OS were performed. Investigated parameters were changes in f’- and D’-values after therapy, age, sex, Eastern Cooperative Oncology Group (ECOG status, grading of primary tumor, hepatic tumor burden, presence of extrahepatic disease, baseline bilirubin, previous bevacizumab therapy, early stasis during radioembolization, chemotherapy after radioembolization, repeated radioembolization and Response Evaluation Criteria in Solid Tumors (RECIST response at 6-week follow-up.Results: Median OS after radioembolization was 6 (range 1.5–54.9 months. In patients with therapy-induced decreasing or stable f’-values, median OS was significantly longer than in those with increased f’-values (7.6 [range 2.6–54.9] vs 2.6 [range 1.5–17.4] months, P<0.0001. Longer median OS was also seen in patients with increased D’-values (6 [range 1.6–54.9] vs 2.8 [range 1.5–17.4] months, P=0.008. Patients with
Energy Technology Data Exchange (ETDEWEB)
Park, Sunghoon; Kwack, Kyu-Sung; Kim, Jae Ho [Ajou University School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, Suwon, Gyeonggi-do (Korea, Republic of); Ajou University Medical Center, Musculoskeletal Imaging Laboratory, Suwon (Korea, Republic of); Chung, Nam-Su [Ajou University School of Medicine, Department of Orthopaedic Surgery, Suwon (Korea, Republic of); Hwang, Jinwoo [Philips Healthcare, Department of Clinical Science, Seoul (Korea, Republic of); Lee, Hyun Young [Ajou University Medical Center, Regional Clinical Trial Center, Suwon (Korea, Republic of); Yonsei University College of Medicine, Department of Biostatistics, Seoul (Korea, Republic of)
2017-05-15
To evaluate the ability of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) parameters to differentiate nodular hyperplastic hematopoietic bone marrow (HHBM) from malignant vertebral bone marrow lesions (VBMLs). A total of 33 patients with 58 VBMLs, including 9 nodular HHBM lesions, 39 bone metastases, and 10 myelomas, were retrospectively assessed. All diagnoses were confirmed either pathologically or via image assessment. IVIM diffusion-weighted MRI with 11 b values (from 0 to 800 s/mm{sup 2}) were obtained using a 3.0-T MR imager. The apparent diffusion coefficient (ADC), pure diffusion coefficient (D), perfusion fraction (f), and pseudodiffusion coefficient (D*) were calculated. ADC and IVIM parameters were compared using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic performances of ADC, D, f, and D* in terms of VBML characterization. The diagnostic performance of morphological MR sequences was also assessed for comparison. The ADC and D values of nodular HHBM were significantly lower than those of malignant VBML (both p values < 0.001), whereas the f value was significantly higher (p < 0.001). However, there were no significant differences in D* between the two groups (p = 0.688). On ROC analysis, the area under the curve (AUC) for D was 1.000, which was significantly larger than that for ADC (AUC = 0.902). Intravoxel incoherent motion diffusion-weighted MRI can be used to differentiate between nodular HHBM and malignant VBML. The D value was significantly lower for nodular HHBM, and afforded a better diagnostic performance than the ADC, f, and D* values in terms of such differentiation. (orig.)
Pang, Y.; Turkbey, B.; Bernardo, M.; Kruecker, J.; Kadoury, S.; Merino, M.J.; Wood, B.J.; Pinto, P.A.; Choyke, P.L.
2012-01-01
Purpose: To evaluate the effect of different b-values on intravoxelincoherent motion (IVIM) and diffusion parameters for prostate cancer detection. Materials and methods: Thirty three patients (mean age of 61.6 years, mean serum PSA of 10 ng/dl) undergoing endorectal coil MRI of the prostate under
Energy Technology Data Exchange (ETDEWEB)
Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)
2014-06-15
Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.
Institute of Scientific and Technical Information of China (English)
党玉雪; 王晓明(审校)
2015-01-01
磁共振成像(MRI)技术在评估脑的解剖结构及功能变化方面得到日益广泛的应用。扩散峰度成像(DKI)是用于量化组织内水分子非高斯运动的磁共振新技术，是扩散成像技术的延伸，对于描绘脑组织微观结构具有独特优势。体素内不相干运动成像(IVIM)是近几年发展起来的无创评价活体组织内分子扩散运动及灌注的MRI新技术。本文对DKI和IVIM的成像原理以及对中枢神经系统的应用价值的研究进展予以综述。%AbstractMagnetic resonance imaging (MRI) is widely applied in assessing the changes of function and anatomical structure of the brain. Diffusion kurtosis imaging (DKI) is a new and promising diffusion imaging technique, which expands from diffusion tensor imaging (DTI) towards quantiifcation of non-Gaussian water diffusion. DKI has been demonstrated to be highly sensitve and directionally speciifc in probing the microstructure of biological tissues. Intravoxel incoherent motion (IVIM) is a new non-invasive MRI perfusion technique, which defines the ability to separate blood perfusion from true diffusion effects via a proper choice of the number and distribution of diffusion weightings, or b-values. This article will review and discuss the basic principles and the latest progresses of DKI and IVIM in brain imaging.
Directory of Open Access Journals (Sweden)
Ziyi Guo
Full Text Available To investigate the intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI as a potential valuable marker to monitor the therapy responses of VX2 to radiofrequency ablation (RF Ablation.The institutional animal care and use committee approved this study. In 10 VX2 tumor-bearing rabbits, IVIM-DWI examinations were performed with a 3.0T imaging unit by using 16 b values from 0 to 800 sec/mm2. The true diffusion coefficient (D, pseudodiffusion coefficient (D* and perfusion fraction (f of tumors were compared between before and instantly after RF Ablation treatment. The differences of D, D* and f and conventional perfusion parameters (from perfusion CT and dynamic enhanced magnetic resonance imaging, DCE-MRI in the coagulation necrosis area, residual unablated area, untreated area, and normal control had been calculated by compared t-test. The correlation between f or D* with perfusion weighted CT including blood flow, BF (milliliter per 100 mL/min, blood volume, BV (milliliter per 100 mL/min, and capillary permeability-surface area, PMB (as a fraction or from DCE-MRI: transfer constant (Ktrans, extra-vascular extra-cellular volume fraction (Ve and reflux constant (Kep values had been analyzed by region-of-interest (ROI methods to calculate Pearson's correlation coefficients.In the ablated necrosis areas, f and D* significantly decreased and D significantly increased, compared with residual unblazed areas or untreated control groups and normal control groups (P < 0.001. The IVIM-DWI derived f parameters showed significant increases in the residual unablated tumor area. There was no significant correlations between f or D* and conventional perfusion parameters.The IVIM-DW derived f, D and D* parameters have the potential to indicate therapy response immediately after RF Ablation treatment, while no significant correlations with classical tumor perfusion metrics were derived from DCE-MRI and perfusion-CT measurements.
Functional mapping of the human visual cortex with intravoxel incoherent motion MRI.
Directory of Open Access Journals (Sweden)
Christian Federau
Full Text Available Functional imaging with intravoxel incoherent motion (IVIM magnetic resonance imaging (MRI is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Intravoxel Incoherent Motion MR Imaging for Staging of Hepatic Fibrosis
Zhang, Bin; Liang, Long; Dong, Yuhao; Lian, Zhouyang; Chen, Wenbo; Liang, Changhong; Zhang, Shuixing
2016-01-01
Objectives To determine the potential of intravoxel incoherent motion (IVIM) MR imaging for staging of hepatic fibrosis (HF). Methods We searched PubMed and EMBASE from their inception to 31 July 2015 to select studies reporting IVIM MR imaging and HF staging. We defined F1-2 as non-advanced HF, F3-4 as advanced HF, F0 as normal liver, F1 as very early HF, and F2-4 as significant HF. Then we compared stage F0 with F1, F0-1 with F2-3, and F1-2 with F3-4 using IVIM-derived parameters (pseudo-diffusion coefficient D*, perfusion fraction f, and pure molecular diffusion parameter D). The effect estimate was expressed as a pooled weighted mean difference (WMD) with 95% confidence interval (CI), using the fixed-effects model. Results Overall, we included six papers (406 patients) in this study. Significant differences in D* were observed between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 2.46, 95% CI 0.83–4.09, P = 0.006; WMD 13.10, 95% CI 9.53–16.67, P < 0.001; WMD 14.34, 95% CI 10.26–18.42, P < 0.001, respectively). Significant differences in f were also found between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 1.62, 95% CI 0.06–3.18, P = 0.027; WMD 5.63, 95% CI 2.74–8.52, P < 0.001; WMD 3.30, 95% CI 2.10–4.50, P < 0.001, respectively). However, D showed no differences between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 0.05, 95% CI -0.01─0.11, P = 0.105; WMD 0.04, 95% CI -0.01─0.10, P = 0.230; WMD 0.02, 95% CI -0.02─0.06, P = 0.378, respectively). Conclusions IVIM MR imaging provides an effective method of staging HF and can distinguish early HF from normal liver, significant HF from normal liver or very early HF, and advanced HF from non-advanced HF. PMID:26820668
Intravoxel Incoherent Motion MR Imaging for Staging of Hepatic Fibrosis.
Directory of Open Access Journals (Sweden)
Bin Zhang
Full Text Available To determine the potential of intravoxel incoherent motion (IVIM MR imaging for staging of hepatic fibrosis (HF.We searched PubMed and EMBASE from their inception to 31 July 2015 to select studies reporting IVIM MR imaging and HF staging. We defined F1-2 as non-advanced HF, F3-4 as advanced HF, F0 as normal liver, F1 as very early HF, and F2-4 as significant HF. Then we compared stage F0 with F1, F0-1 with F2-3, and F1-2 with F3-4 using IVIM-derived parameters (pseudo-diffusion coefficient D*, perfusion fraction f, and pure molecular diffusion parameter D. The effect estimate was expressed as a pooled weighted mean difference (WMD with 95% confidence interval (CI, using the fixed-effects model.Overall, we included six papers (406 patients in this study. Significant differences in D* were observed between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 2.46, 95% CI 0.83-4.09, P = 0.006; WMD 13.10, 95% CI 9.53-16.67, P < 0.001; WMD 14.34, 95% CI 10.26-18.42, P < 0.001, respectively. Significant differences in f were also found between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 1.62, 95% CI 0.06-3.18, P = 0.027; WMD 5.63, 95% CI 2.74-8.52, P < 0.001; WMD 3.30, 95% CI 2.10-4.50, P < 0.001, respectively. However, D showed no differences between F0 and F1, F0-1 and F2-3, and F1-2 and F3-4 (WMD 0.05, 95% CI -0.01─0.11, P = 0.105; WMD 0.04, 95% CI -0.01─0.10, P = 0.230; WMD 0.02, 95% CI -0.02─0.06, P = 0.378, respectively.IVIM MR imaging provides an effective method of staging HF and can distinguish early HF from normal liver, significant HF from normal liver or very early HF, and advanced HF from non-advanced HF.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jeong Woo; Lee, Chang Hee; Park, Yang Shin; Kim, Kyeong Ah; Park, Cheol Min [Korea University College of Medicine, Departments of Radiology, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul (Korea, Republic of); Yoo, Kee Hwan [Korea University College of Medicine, Departments of Pediatrics, Korea University Guro Hospital, Seoul (Korea, Republic of); Je, Bo-Kyung [Korea University College of Medicine, Department of Radiology, Korea University Ansan Hospital, Seoul (Korea, Republic of); Kiefer, Berthold [Oncology Application Development, Siemens Healthcare, Erlangen (Germany)
2016-06-15
To compare the diffusion parameters of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) between the ''reflux'' and the ''non-reflux'' kidneys, and to evaluate the feasibility of using IVIM DWI to predict vesicoureteral reflux (VUR) in children with a urinary tract infection (UTI). Eighty-three kidneys from 57 pediatric patients with a UTI were classified into ''reflux'' and ''non-reflux'' groups according to voiding cystourethrography (VCUG) results. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (PF) were measured and compared in the renal pelvis of both groups. Four indices (D*/ADC, PF/ADC, D*/D, and PF/D) were calculated and receiver operating characteristic (ROC) curve analyses were performed. VURs were detected on VCUG in 21 kidneys. PF and D* were significantly higher in the ''reflux'' group than in the ''non-reflux'' group. The indices were all significantly higher. The PF/D index showed the best diagnostic performance in predicting VUR in children with UTI (A{sub z} = 0.864). PF and D* were significantly higher in the ''reflux'' kidney than in the ''non-reflux'' kidney. Our new index (PF/D) could prove useful for predicting VUR. (orig.)
Kneller, Gerald R.; Chevrot, Guillaume
2012-12-01
This paper addresses the question to which extent anisotropic atomic motions in proteins impact angular-averaged incoherent neutron scattering intensities, which are typically recorded for powder samples. For this purpose, the relevant correlation functions are represented as multipole series in which each term corresponds to a different degree of intrinsic motional anisotropy. The approach is illustrated by a simple analytical model and by a simulation-based example for lysozyme, considering in both cases the elastic incoherent structure factor. The second example shows that the motional anisotropy of the protein atoms is considerable and contributes significantly to the scattering intensity.
D-optimal design of b-values for accurate intra-voxel incoherent motion imaging
Sansone, Mario; Petrillo, Antonella
2016-01-01
The aim of this paper is to optimally design the set of b-values for diffusion weighted MRI with the aim of accurate estimation of intra- voxel incoherent motion (IVIM) parameters (f perfusion fraction, Ds slow diffusion, Df fast diffusion) according to the model developed by Le Bihan. Previous studies have addressed the design in a Monte Carlo fash- ion. Due to huge computation times, this approach is feasible only for a limited number of values of the parameters (local design): however, as the parameters of a specific exam are not known a priori, it would be desirable to optimise b-values over a region of parameters. In order to overcome this issue, we propose to use a D-optimal design approach. The optimal combination of b-values can be chosen from a candidate set of predefined values taken from the literature. Our study has two key results: first, the optimal design does not depend on perfusion fraction: this allow to perform a search over a 2D parameter space instead of 3D; second, as an exhaustive searc...
Cho, Gene Y; Gennaro, Lucas; Sutton, Elizabeth J; Zabor, Emily C; Zhang, Zhigang; Giri, Dilip; Moy, Linda; Sodickson, Daniel K; Morris, Elizabeth A; Sigmund, Eric E; Thakur, Sunitha B
2017-01-01
To examine the prognostic capabilities of intravoxel incoherent motion (IVIM) metrics and their ability to predict response to neoadjuvant treatment (NAT). Additionally, to observe changes in IVIM metrics between pre- and post-treatment MRI. This IRB-approved, HIPAA-compliant retrospective study observed 31 breast cancer patients (32 lesions). Patients underwent standard bilateral breast MRI along with diffusion-weighted imaging before and after NAT. Six patients underwent an additional IVIM-MRI scan 12-14 weeks after initial scan and 2 cycles of treatment. In addition to apparent diffusion coefficients (ADC) from monoexponential decay, IVIM mean values (tissue diffusivity Dt, perfusion fraction fp, and pseudodiffusivity Dp) and histogram metrics were derived using a biexponential model. An additional filter identified voxels of highly vascular tumor tissue (VTT), excluding necrotic or normal tissue. Clinical data include histology of biopsy and clinical response to treatment through RECIST assessment. Comparisons of treatment response were made using Wilcoxon rank-sum tests. Average, kurtosis, and skewness of pseudodiffusion Dp significantly differentiated RECIST responders from nonresponders. ADC and Dt values generally increased (∼70%) and VTT% values generally decreased (∼20%) post-treatment. Dp metrics showed prognostic capabilities; slow and heterogeneous pseudodiffusion offer poor prognosis. Baseline ADC/Dt parameters were not significant predictors of response. This work suggests that IVIM mean values and heterogeneity metrics may have prognostic value in the setting of breast cancer NAT.
Influence of earthquake ground motion incoherency on multi-support structures
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.
Energy Technology Data Exchange (ETDEWEB)
Hilbert, Fabian; Sauer, Alexander; Koestler, Herbert [University Hospital Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Holl-Wieden, Annette [University Hospital Wuerzburg, Department of Paediatrics, Wuerzburg (Germany); Neubauer, Henning [University Hospital Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); University Hospital Ulm, Department of Diagnostic and Interventional Radiology, Ulm (Germany)
2017-05-15
MRI of synovitis relies on use of a gadolinium-based contrast agent. Diffusion-weighted MRI (DWI) visualises thickened synovium but is of limited use in the presence of joint effusion. To investigate the feasibility and diagnostic accuracy of diffusion-weighted MRI with intravoxel incoherent motion (IVIM) for diagnosing synovitis in the knee joint of children with juvenile idiopathic arthritis. Twelve consecutive children with confirmed or suspected juvenile idiopathic arthritis (10 girls, median age 11 years) underwent MRI with contrast-enhanced T1-weighted imaging and DWI at 1.5 T. Read-out segmented multi-shot DWI was acquired at b values of 0 s/mm{sup 2}, 200 s/mm{sup 2}, 400 s/mm{sup 2} and 800 s/mm{sup 2}. We calculated the IVIM parameters perfusion fraction (f) and tissue diffusion coefficient (D). Diffusion-weighted images at b=800 s/mm{sup 2}, f parameter maps and post-contrast T1-weighted images were retrospectively assessed by two independent readers for synovitis using the Juvenile Arthritis MRI Scoring system. Seven (58%) children showed synovial hypertrophy on contrast-enhanced imaging. Diagnostic ratings for synovitis on DWI and on f maps were fully consistent with contrast-enhanced imaging, the diagnostic reference. Two children had equivocal low-confidence assessments on DWI. Median f was 6.7±2.0% for synovitis, 2.1±1.2% for effusion, 5.0±1.0% for muscle and 10.6±5.7% for popliteal lymph nodes. Diagnostic confidence was higher based on f maps in three (25%) children and lower in one child (8%), as compared to DWI. DWI with IVIM reliably visualises synovitis of the knee joint. Perfusion fraction maps differentiate thickened synovium from joint effusion and hence increase diagnostic confidence. (orig.)
Suh, Chong Hyun; Kim, Ho Sung; Lee, Seung Soo; Kim, Namkug; Yoon, Hee Mang; Choi, Choong-Gon; Kim, Sang Joon
2014-08-01
To determine the utility of intravoxel incoherent motion (IVIM)-derived perfusion and diffusion parameters for differentiation of atypical primary central nervous system lymphoma (PCNSL) from glioblastoma in patients who do not have acquired immunodeficiency syndrome. The institutional review board approved this retrospective study and waived the informed consent requirement. Sixty patients with either pathologic analysis-confirmed atypical PCNSLs (n = 19) or glioblastomas (n = 41) were assessed by using maximum IVIM-derived perfusion fraction (f) and minimum true IVIM diffusion parameter (D). Two readers independently calculated IVIM parameters and maximum normalized cerebral blood volume (nCBV) and minimum apparent diffusion coefficient. Leave-one-out cross-validation and intraclass correlation coefficients were assessed to determine reliability and reproducibility of the parameters, respectively. Mean maximum f was significantly higher in the glioblastoma group than in the atypical PCNSL group (reader 1, 0.101 ± 0.016 [standard deviation] vs 0.021 ± 0.010; P features.
Energy Technology Data Exchange (ETDEWEB)
Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Chen, Ya-Fang; Yang, Shun-Chung; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)
2015-08-15
To numerically and experimentally investigate the robustness of intravoxel incoherent motion (IVIM) magnetic resonance imaging in measuring perfusion indexes in the human brain. Eighteen healthy volunteers were imaged on a 3 T clinical system. Data of IVIM imaging (12 b-values ranging from 0 to 1000 s/mm{sup 2}, 12 repetitions) were fitted with a bi-exponential model to extract blood volume fraction (f) and pseudo-diffusion coefficient (D*). The robustness of measurement was assessed by bootstrapping. Dynamic susceptibility contrast (DSC) imaging and arterial spin-labelling (ASL) imaging were performed for cross-modal comparison. Numerical simulations were performed to assess the accuracy and precision of f and D* estimates at varied signal-to-noise ratio (SNR{sub b1000}). Based on our experimental setting (SNR{sub b1000} ∝ 30), the average error/variability is ∝ 5 %/25 % for f and ∝ 100 %/30 % for D* in gray matter, and ∝ 10 %/50 % for f and ∝ 300 %/60 % for D* in white matter. Correlation was found between f and DSC-derived cerebral blood volume in gray matter (r = 0.29 - 0.48 across subjects, p < 10{sup -5}), but not in white matter. No correlation was found between f-D* product and ASL-derived cerebral blood flow. f may provide noninvasive measurement of cerebral blood volume, particularly in gray matter. D* has limited robustness and should be interpreted with caution. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Liu, Chunling, E-mail: liuchunling79@163.com [Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, GuangZhou, Guangdong Province (China); Southern Medical University, GuangZhou, Guangdong Province (China); Liang, Changhong, E-mail: cjr.lchh@vip.163.com [Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, GuangZhou, Guangdong Province (China); Liu, Zaiyi, E-mail: zyliu@163.com [Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, GuangZhou, Guangdong Province (China); Zhang, Shuixing, E-mail: shui7515@126.com [Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, GuangZhou, Guangdong Province (China); Huang, Biao, E-mail: cjr.huangbiao@vip.163.com [Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, GuangZhou, Guangdong Province (China)
2013-12-01
Objectives: To obtain perfusion as well as diffusion information in normal breast tissues and breast lesions from intravoxel incoherent motion (IVIM) imaging with biexponential analysis of multiple b-value diffusion-weighted imaging (DWI) and compare these parameters to apparent diffusion coefficient (ADC) obtained with monoexponential analysis in their ability to discriminate benign lesions and malignant tumors. Materials and methods: In this prospective study, informed consent was acquired from all patients. Eighty-four patients with 40 malignant tumors, 41 benign lesions, 30 simple cysts and 39 normal breast tissues were imaged at 1.5 T utilizing contrast-enhanced magnetic resonance imaging (MRI) and DWI using 12 b values (range: 0–1000 s/mm{sup 2}). Tissue diffusivity (D), perfusion fraction (f) and pseudo-diffusion coefficient (D*) were calculated using segmented biexponential analysis. ADC (b = 0 and 1000 s/mm{sup 2}) was calculated with monoexponential fitting of the DWI data. D, f, D* and ADC values were obtained for normal breast tissues, simple cysts, benign lesions and malignant tumors. Receiver operating characteristic analysis was performed for all DWI parameters. Results: There was good interobserver agreement on the measurements between the 2 observers. D values were significantly different among malignant tumors, benign lesions, simple cysts and normal breast tissues (P = 0.000) and it was the same result for f, D* and ADC values. Further comparisons of these 4 parameters between every single pair were as the following. D and ADC values of malignant tumors were significantly smaller than those of benign lesions, simple cysts and normal tissues (P = 0.000, respectively). The f value of malignant tumors was significantly higher than that of benign lesions, simple cysts and normal breast tissues (P = 0.001, P = 0.000, and P = 0.000). D and ADC values demonstrated higher sensitivity and specificity in differentiating benign lesions and malignant
Assessment of cervical cancer with a parameter-free intravoxel incoherent motion imaging algorithm
Energy Technology Data Exchange (ETDEWEB)
Becker, Anton S.; Wurnig, Moritz C.; Boss, Andreas; Ghafoor, Soleen [Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich (Switzerland); Perucho, Jose A.; Khong, Pek Lan; Lee, Elaine Y. P. [Dept. of Diagnostic Radiology, The University of Hong Kong, Hong Kong (China)
2017-06-15
To evaluate the feasibility of a parameter-free intravoxel incoherent motion (IVIM) approach in cervical cancer, to assess the optimal b-value threshold, and to preliminarily examine differences in the derived perfusion and diffusion parameters for different histological cancer types. After Institutional Review Board approval, 19 female patients (mean age, 54 years; age range, 37–78 years) gave consent and were enrolled in this prospective magnetic resonance imaging study. Clinical staging and biopsy results were obtained. Echo-planar diffusion weighted sequences at 13 b-values were acquired at 3 tesla field strength. Single-sliced region-of-interest IVIM analysis with adaptive b-value thresholds was applied to each tumor, yielding the optimal fit and the optimal parameters for pseudodiffusion (D*), perfusion fraction (Fp) and diffusion coefficient (D). Monoexponential apparent diffusion coefficient (ADC) was calculated for comparison with D. Biopsy revealed squamous cell carcinoma in 10 patients and adenocarcinoma in 9. The b-value threshold (median [interquartile range]) depended on the histological type and was 35 (22.5–50) s/mm{sup 2} in squamous cell carcinoma and 150 (100–150) s/mm{sup 2} in adenocarcinoma (p < 0.05). Comparing squamous cell vs. adenocarcinoma, D* (45.1 [25.1–60.4] × 10{sup −3} mm{sup 2}/s vs. 12.4 [10.5–21.2] × 10{sup −3} mm{sup 2}/s) and Fp (7.5% [7.0–9.0%] vs. 9.9% [9.0–11.4%]) differed significantly between the subtypes (p < 0.02), whereas D did not (0.89 [0.75–0.94] × 10{sup −3} mm{sup 2}/s vs. 0.90 [0.82–0.97] × 10{sup −3} mm{sup 2}/s, p = 0.27). The residuals did not differ (0.74 [0.60–0.92] vs. 0.94 [0.67–1.01], p = 0.32). The ADC systematically underestimated the magnitude of diffusion restriction compared to D (p < 0.001). The parameter-free IVIM approach is feasible in cervical cancer. The b-value threshold and perfusion-related parameters depend on the tumor histology type.
Energy Technology Data Exchange (ETDEWEB)
Wu, Chih-Horng; Liang, Po-Chin; Shih, Tiffany Ting-Fang [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); National Taiwan University College of Medicine, Department of Radiology, Taipei (China); Ho, Ming-Chih; Hu, Rey-Heng; Lai, Hong-Shiee [National Taiwan University Hospital and College of Medicine, Department of Surgery, Taipei (China); Jeng, Yung-Ming [National Taiwan University Hospital and College of Medicine, Department of Pathology, Taipei (China)
2015-12-15
This study compared the diagnostic performance of intravoxel incoherent motion (IVIM) in magnetic resonance imaging (MRI) and acoustic radiation force impulse imaging (ARFI) in ultrasound (US) for liver fibrosis (LF) evaluation. A total of 49 patients scheduled for liver surgery were recruited. LF in the non-tumorous liver parenchyma at the right lobe was estimated using a slow diffusion coefficient, fast diffusion coefficient (D{sub fast}), perfusion fraction (f) of the IVIM parameters, the total apparent diffusion coefficient of conventional diffusion-weighted imaging and the shear wave velocity (Vs) of ARFI. LF was graded using the Metavir scoring system on histological examination. The Spearman rank correlation coefficient for correlation and analysis of variance was used for determining difference. The diagnostic performance was compared using receiver operating characteristic curve analysis. LF exhibited significant correlation with the three parameters D{sub fast}, f, and Vs (r = -0.528, -0.337, and 0.481, respectively, P < 0.05). The D{sub fast} values in the F4 group were significantly lower than those in the F0, F1 and F2 groups. D{sub fast} exhibited a non-inferior performance for diagnosing all fibrosis grades compared with that of Vs. Both IVIM and ARFI provide reliable estimations for the noninvasive assessment of LF. (orig.)
Nguyen, Audrey; Ledoux, Jean-Baptiste; Omoumi, Patrick; Becce, Fabio; Forget, Joachim; Federau, Christian
2017-01-01
The evaluation of local muscle recruitment during a specific movement can be done indirectly by measuring changes in local blood flow. Intravoxel incoherent motion perfusion imaging exploits some properties of the magnetic resonance to measure locally microvascular perfusion, and seems ideally suited for this task. We studied the selectivity of the increase in intravoxel incoherent motion blood flow related parameter fD* in the muscles of 24 shoulders after two physical exam maneuvers, Jobe and Lift-off test (test order reversed in half of the volunteers) each held 2min against resistance. After a lift-off, IVIM blood flow-related fD* was increased in the subscapularis (in 10(-3)mm(2)s(-1), 3.24±0.86 vs. rest 1.37±0.58, pmuscles and deltoid bundles respectively. After a Jobe test, increase in fD* was scattered within the rotator cuff muscles, but was selective for the lateral deltoid compared to the other deltoid bundles (anterior, pmuscle testing of the shoulder muscles with IVIM. This technique has the potential to non-invasively characterize perfusion-related musculoskeletal physiological as well as pathological processes. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Institute of Scientific and Technical Information of China (English)
Li-Bao Hu; Nan Hong; Wen-Zhen Zhu
2015-01-01
Background:Intravoxel incoherent motion (IVIM) has the potential to provide both diffusion and perfusion information without an exogenous contrast agent,its application for the brain is promising,however,feasibility studies on this are relatively scarce.The aim of this study is to assess the feasibility of IVIM perfusion in patients with acute ischemic stroke (AIS).Methods:Patients with suspected AIS were examined by magnetic resonance imaging within 24 h of symptom onset.Fifteen patients (mean age was 68.7 ± 8.0 years) who underwent arterial spin labeling (ASL) and diffusion-weighted imaging (DWI) were identified as having AIS with ischemic penumbra were enrolled,where ischemic penumbra referred to the mismatch areas of ASL and DWI.Eleven different b-values were applied in the biexponential model.Regions of interest were selected in ischemic penumbras and contralateral normal brain regions.Fast apparent diffusion coefficients (ADCs) and ASL cerebral blood flow (CBF) were measured.The paired t-test was applied to compare ASL CBF,fast ADC,and slow ADC measurements between ischemic penumbras and contralateral normal brain regions.Linear regression and Pearson's correlation were used to evaluate the correlations among quantitative results.Results:The fast ADCs and ASL CBFs of ischemic penumbras were significantly lower than those of the contralateral normal brain regions (1.93 ± 0.78 μm2/ms vs.3.97 ± 2.49 μm2/ms,P =0.007;13.5 ± 4.5 ml· 100 g-1 ·min-1 vs.29.1 ± 12.7 ml·100 g-1 ·min-1,P ＜ 0.001,respectively).No significant difference was observed in slow ADCs between ischemic penumbras and contralateral normal brain regions (0.203 ± 0.090 μm2/ms vs.0.198 ± 0.100 μm2/ms,P =0.451).Compared with contralateral normal brain regions,both CBFs and fast ADCs decreased in ischemic penumbras while slow ADCs remained the same.A significant correlation was detected between fast ADCs and ASL CBFs (r =0.416,P ＜ 0.05).No statistically significant correlation was
DEFF Research Database (Denmark)
Konakli, Katerina; Der Kiureghian, Armen
2012-01-01
A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....... In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response...
Cho, Gene Young; Moy, Linda; Zhang, Jeff L; Baete, Steven; Lattanzi, Riccardo; Moccaldi, Melanie; Babb, James S; Kim, Sungheon; Sodickson, Daniel K; Sigmund, Eric E
2015-10-01
To compare fitting methods and sampling strategies, including the implementation of an optimized b-value selection for improved estimation of intravoxel incoherent motion (IVIM) parameters in breast cancer. Fourteen patients (age, 48.4 ± 14.27 years) with cancerous lesions underwent 3 Tesla breast MRI examination for a HIPAA-compliant, institutional review board approved diffusion MR study. IVIM biomarkers were calculated using "free" versus "segmented" fitting for conventional or optimized (repetitions of key b-values) b-value selection. Monte Carlo simulations were performed over a range of IVIM parameters to evaluate methods of analysis. Relative bias values, relative error, and coefficients of variation (CV) were obtained for assessment of methods. Statistical paired t-tests were used for comparison of experimental mean values and errors from each fitting and sampling method. Comparison of the different analysis/sampling methods in simulations and experiments showed that the "segmented" analysis and the optimized method have higher precision and accuracy, in general, compared with "free" fitting of conventional sampling when considering all parameters. Regarding relative bias, IVIM parameters fp and Dt differed significantly between "segmented" and "free" fitting methods. IVIM analysis may improve using optimized selection and "segmented" analysis, potentially enabling better differentiation of breast cancer subtypes and monitoring of treatment. © 2014 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Seung-Man Yu
Full Text Available To prospectively evaluate the changes in fatty acid concentration after administrating a 60% high-fat diet to a non-alcoholic fatty liver disease rat model and to perform a correlation analysis between fatty acid with molecular diffusion (Dtrue, perfusion-related diffusion (Dfast, and perfusion fraction (Pfraction.This prospective study was approved by the appropriate ethics committee. Ten male Sprague-Dawley rats were fed a 60% high-fat diet until the study was finished. Point-resolved spectroscopy sequence 1H-MRS with TR = 1,500 msec, TE = 35 msec, NEX = 64, and 8×8×8 mm3 voxel was used to acquire magnetic resonance spectroscopy (MRS data. Diffusion-weighted imaging was performed on a two-dimensional multi-b value spin echo planar image with the following parameters: repetition time msec/echo time msec, 4500 /63; field of view, 120×120 msec2; matrix, 128×128; section thickness, 3 mm; number of repetition, 8; and multiple b value, 0, 25, 50, 75, 100, 200, 500, 1000 sec/mm2. Baseline magnetic resonance imaging and magnetic resonance spectroscopy data (control were acquired. 1H proton MRS and diffusion-weighted imaging were obtained every 2 weeks for 8 weeks. The individual contributions of the true molecular diffusion and the incoherent motions of water molecules in the capillary network to the apparent diffusion changes were estimated using a least-square nonlinear fitting in MatLab. A Wilcoxon signed-rank test with the Kruskal-Wallis test was used to compare each week's fatty acid mean quantification. Spearman's correlation coefficient was used to evaluate the correlation between each fatty acid (e.g., total lipid (TL, total saturated fatty acid (TSFA, total unsaturated fatty acid (TUSFA, total unsaturated bond (TUSB, and polyunsaturated bond (PUSB and intravoxel incoherent motion (IVIM mapping images (e.g., Dtrue, Dfast, and Pfraction.The highest mean TL value was at week 8 (0.278 ± 0.10 after the administration of the 60% high-fat diet
Energy Technology Data Exchange (ETDEWEB)
Fujima, Noriyuki; Yoshida, Daisuke; Tsukahara, Akiko; Shimizu, Yukie; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, Sapporo, Hokkaido (Japan); Sakashita, Tomohiro; Homma, Akihiro [Hokkaido University Graduate School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Sapporo (Japan); Tha, Khin Khin; Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Department of Radiation Medicine, Sapporo (Japan); Global Institution for Collaborative Research and Education, The Global Station for Quantum Medical Science and Engineering, Sapporo (Japan)
2017-03-15
To evaluate the diagnostic value of intravoxel incoherent motion (IVIM) and diffusional kurtosis imaging (DKI) parameters in nasal or sinonasal squamous cell carcinoma (SCC) patients to determine local control/failure. Twenty-eight patients were evaluated. MR acquisition used single-shot spin-echo EPI with 12 b-values. Quantitative parameters (mean value, 25th, 50th and 75th percentiles) of IVIM (perfusion fraction f, pseudo-diffusion coefficient D*, and true-diffusion coefficient D), DKI (kurtosis value K, kurtosis corrected diffusion coefficient D{sub k}) and apparent diffusion coefficient (ADC) were calculated. Parameter values at both the pretreatment and early-treatment period, and the percentage change between these two periods were obtained. Multivariate logistic regression analysis: the percentage changes of D (mean, 25th, 50th, 75th), K (mean, 50th, 75th), Dk (mean, 25th, 50th), and ADC (mean, 25th, 50th) were predictors of local control. ROC curve analysis: the parameter with the highest accuracy = the percentage change of D value with the histogram 25th percentile (0.93 diagnostic accuracy). Multivariate Cox regression analyses: the percentage changes of D (mean, 25th, 50th), K (mean, 50th, 75th), Dk (mean, 25th, 50th) and ADC (mean, 25th, 50th) are predictors. IVIM and DKI parameters, especially the D-value's histogram 25th percentile, are useful for predicting local control. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jia, Qian-Jun; Zhang, Shui-Xing; Chen, Wen-Bo; Liang, Long; Zhou, Zheng-Gen; Liu, Zai-Yi; Zeng, Qiong-Xin; Liang, Chang-Hong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Qiu, Qian-Hui [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Otolaryngology, Guangzhou, Guangdong Province (China)
2014-12-15
To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P < 0.001), with a strong correlation between f and MSI (r = 0.598, P = 0.001). No correlation was observed between f and ER (r = -0.162; P = 0.421) or D* and DCE parameters (r = 0.125-0.307; P > 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)
Institute of Scientific and Technical Information of China (English)
Chen Cuiyun; Wang Bin; Shi Dapeng; Fu Fangfang; Zhang Jiliang; Wen Zejun; Zhu Shaocheng
2014-01-01
Background The diagnosis of liver fibrosis is a difficult task at any time using conventional clinical imaging.Intravoxel incoherent motion (IVIM) can be used to investigate both diffusion and perfusion changes in tissues.This study was designed to determine the value of IVIM in the diagnosis and staging of liver fibrosis.Methods IVIM examinations were performed on a GE 3.0T MR scanner in 25 patients with liver fibrosis and 25 healthy volunteers as the control group.Patients with liver fibrosis diagnosis were confirmed by pathology and staged on a scale of F0-4.The standard ADC values and the values of a biexponential model (slow ADC (Dslow),fast ADC (Dfast) and fraction of fast ADC (FF)) were measured in three liver regions per person.The mean standard ADC values,Dslow values,Dfast values and FF values from the study group were compared among the right posterior hepatic lobe,right anterior hepatic lobe and medial segment of the left lobe.Receiver Operating Characteristic (ROC) curves and independent-samples t-tests were used to calculate the mean standard ADC values,Dslow values,Dfast values and FF values from the study group and the control group.Spearman rho correlation analysis was used for the stage of liver fibrosis.The liver fibrosis stages between the groups F0-1 and F2-4,the groups F0-2 and F3-4 were compared.Results Among the liver fibrosis,there was no significant difference in the mean standard ADC values,Dslow values,Dfast values,and FF values obtained from the right posterior hepatic lobe,right anterior hepatic lobe and medial segment of the left lobe.Using ROC analysis,the Area Under the Curve (AUC) values of standard ADC,Dslow,Dfast,FF were all between 0.7 to 0.9.The mean standard ADC values,Dslow values,Dfast values and FF values of the liver in the study group were significantly lower than the values in the control group (P ＜0.05).As the stage of the fibrosis increased,the values decreased by Spearman rho correlation analysis.The mean values
Energy Technology Data Exchange (ETDEWEB)
Graf, Markus; Simon, Dirk; Mang, Sarah [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Software Development for Integrated Therapy and Diagnostics; Lemke, Andreas [Heidelberg Univ., Mannheim (Germany). Dept. of Computer Assisted Clinical Medicine; Gruenberg, Katharina [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Dept. of Radiology
2013-03-01
Early recognition of and differential diagnosis between pancreatic cancer and chronic pancreatitis is an important step in successful therapy. Parameters of the IVIM (intra-voxel incoherent motion) theory can be used to differentiate between those lesions. The objective of this work is to evaluate the effects of rigid image registration on IVIM derived parameters for differentiation of pancreatic lesions such as pancreatic cancer and solid mass forming pancreatitis. The effects of linear image registration methods on reproducibility and accuracy of IVIM derived parameters were quantified on MR images of ten volunteers. For this purpose, they were evaluated statistically by comparison of registered and unregistered parameter data. Further, the perfusion fraction f was used to differentiate pancreatic lesions on eleven previously diagnosed patient data sets. Its diagnostic power with and without rigid registration was evaluated using receiver operating curves (ROC) analysis. The pancreas was segmented manually on MR data sets of healthy volunteers as well as the patients showing solid pancreatic lesions. Diffusion weighted imaging was performed in 10 blocks of breath-hold phases. Linear registration of the weighted image stack leads to a 3.7% decrease in variability of the IVIM derived parameter f due to an improved anatomical overlap of 5%. Consequently, after registration the area under the curve in the ROC-analysis for the differentiation approach increased by 2.7%. In conclusion, rigid registration improves the differentiation process based on f-values. (orig.)
Graf, Markus; Simon, Dirk; Lemke, Andreas; Grünberg, Katharina; Mang, Sarah
2013-02-01
Early recognition of and differential diagnosis between pancreatic cancer and chronic pancreatitis is an important step in successful therapy. Parameters of the IVIM (intra-voxel incoherent motion) theory can be used to differentiate between those lesions. The objective of this work is to evaluate the effects of rigid image registration on IVIM derived parameters for differentiation of pancreatic lesions such as pancreatic cancer and solid mass forming pancreatitis. The effects of linear image registration methods on reproducibility and accuracy of IVIM derived parameters were quantified on MR images of ten volunteers. For this purpose, they were evaluated statistically by comparison of registered and unregistered parameter data. Further, the perfusion fraction f was used to differentiate pancreatic lesions on eleven previously diagnosed patient data sets. Its diagnostic power with and without rigid registration was evaluated using receiver operating curves (ROC) analysis. The pancreas was segmented manually on MR data sets of healthy volunteers as well as the patients showing solid pancreatic lesions. Diffusion weighted imaging was performed in 10 blocks of breath-hold phases. Linear registration of the weighted image stack leads to a 3.7% decrease in variability of the IVIM derived parameter f due to an improved anatomical overlap of 5%. Consequently, after registration the area under the curve in the ROC-analysis for the differentiation approach increased by 2.7%. In conclusion, rigid registration improves the differentiation process based on f-values.
Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets
Akosa, Collins Ashu
2015-03-12
Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.
Motion Correction of Multi-b-value Diffusion-weighted Imaging in the Liver
Mazaheri, Yousef; Do, Richard K. G.; Shukla-Dave, Amita; Deasy, Joseph O.; Lu, Yonggang; Akin, Oguz
2016-01-01
Rationale and Objectives Motion artifacts are a significant source of error in the acquisition and quantification of parameters from multi-b-value diffusion-weighted imaging (DWI). The objective of this article is to present a reliable method to reduce motion-related artifacts during free-breathing at higher b-values when signal levels are low. Materials and Methods Twelve patients referred for magnetic resonance imaging of the liver underwent a clinical magnetic resonance imaging examination of the abdominal region that included DWI. Conventional single-shot spin-echo echo planar imaging acquisitions of the liver during free breathing were repeated in a “time-resolved” manner during a single acquisition to obtain data for multi-b-value analysis, alternating between low and high b-values. Image registration using a normalized mutual information similarity measure was used to correct for spatial misalignment of diffusion-weighted volumes caused by motion. Registration error was estimated indirectly by comparing the normalized root-mean-square error (NRMSE) values of data fitted to the biexponential intra-voxel incoherent motion model before and after motion correction. Regions of interest (ROIs) were selected in the liver close to the surface of the liver and close to internal structures such as large bile ducts and blood vessels. Results For the 12 patient datasets, the mean NRMSE value for the motion-corrected ROIs (0.38 ± 0.16) was significantly lower than the mean NRMSE values for the non–motion-corrected ROIs (0.41 ± 0.13) (P < .05). In cases where there was substantial respiratory motion during the acquisition, visual inspection verified that the algorithm markedly improved alignment of the liver contours between frames. Conclusions The proposed method addresses motion-related artifacts to increase robustness in multi-b-value acquisitions. PMID:22963726
van der Bel, René; Gurney-Champion, Oliver J; Froeling, Martijn; Stroes, Erik S G; Nederveen, Aart J; Krediet, C T Paul
2017-06-01
In the kidneys, there is both blood flow through the capillaries and flow of pre-urine through the tubuli and collecting ducts. We hypothesized that diffusion-weighted (DW) MRI measures both blood and pre-urine flow when using a tri-exponential intravoxel incoherent motion (IVIM) model. Our aim was to systematically investigate and optimize tri-exponential IVIM-analysis for the kidney and test its sensitivity to renal perfusion changes in humans. The tri-exponential fit probes the diffusion coefficient (D), the intermediate (D*i) and fast (D*f) pseudo-diffusion coefficients, and their signal fractions, fD, fi and ff. First, we studied the effects of fixing the D*-coefficients of the tri-exponential fit using in silico simulations. Then, using a 3T MRI scanner, DW images were acquired in healthy subjects (18-24 years) and we assessed the within-subject coefficient of variation (wsCV, n=6). Then, renal perfusion was modulated by Angiotensin II infusion during which DW imaging of the kidneys and phase contrast MRI of the renal artery was performed (n=8). Radioisotope clearing tests were used to assess the glomerular filtration rate. Simulations showed that fixing the D*-coefficients - which could potentially increase the fit stability - in fact decreased the precision of the model. Changes in D*-coefficients were translated into the f-parameters instead. Fixing D*-coefficients resulted in a stronger response of the fit parameters to the intervention. Using this model, the wsCVs for D, fD, fi and ff were 2.4%, 0.8%, 3.5%, 19.4% respectively. fi decreased by 14% (p=0.059) and ff increased by 32% (p=0.004) between baseline and maximal Angiotensin II dose. ff inversely correlated to renal plasma flow (R=-0.70, ptri-exponential model. The model is able to track renal perfusion changes induced by Angiotensin II. Copyright © 2017 Elsevier B.V. All rights reserved.
Relativistic diffusive motion in random electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)
2011-08-19
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.
2011-04-01
The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.
Rafelski, Susanne M; Keller, Lani C; Alberts, Jonathan B; Marshall, Wallace F
2011-04-01
The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.
Molecular Diffusive Motion in a Monolayer of a Model Lubricant
Diama, A.; Criswell, L.; Mo, H.; Taub, H.; Herwig, K. W.; Hansen, F. Y.; Volkmann, U. G.; Dimeo, R.; Neumann, D.
2003-03-01
Squalane (C_30H_62), a branched alkane of intermediate length consisting of a tetracosane backbone (n-C_24H_50 or C24) and six symmetrically placed methyl sidegroups, is frequently taken as a model lubricant. We have conducted quasielastic neutron scattering (QNS) experiments to investigate the diffusive motion on different time scales in a squalane monolayer adsorbed on the (0001) surfaces of an exfoliated graphite substrate. Unlike tetracosane, high-energy resolution spectra (time scale ˜0.1 - 4 ns) at temperatures of 215 K and 230 K show the energy width of the QNS to have a maximum near Q = 1.2 ÅThis nonmonotonic Q dependence suggests a more complicated diffusive motion than the simple rotation about the long molecular axis believed to occur in a C24 monolayer at this temperature. Lower-energy-resolution spectra (time scale ˜4 - 40 ps) show evidence of two types of diffusive motion whose rates have opposite temperature dependences. The rate of the faster motion decreases as the monolayer is heated, and we speculate that it is due to hindered rotation of the methyl groups. The rate of the slower motion increases with temperature and may involve both uniaxial rotation and translational diffusion. Our experimental results will be compared with molecular dynamics simulations.
Relating Brownian motion to diffusion with superparamagnetic colloids
Darras, A.; Fiscina, J.; Vandewalle, N.; Lumay, G.
2017-04-01
An original experiment is introduced that allows students to relate the Brownian motion of a set of superparamagnetic colloidal particles to their macroscopic diffusion. An external and constant magnetic field is first applied to the colloidal suspension so that the particles self-organize into chains. When the magnetic field is removed, the particles then freely diffuse from their positions in the chain, starting from the same coordinate on the axis perpendicular to the initial chain. This configuration thus enables an observer to study the one dimensional diffusion process, while also observing the underlying Brownian motion of the microscopic particles. Moreover, by studying the evolution of the particle distribution, a measurement of the diffusion coefficient can be obtained. In addition, by repeating this measurement with fluids of various viscosities, the Stokes-Einstein relation may be illustrated.
Diffusive Motion of Linear Microgel Assemblies in Solution
Directory of Open Access Journals (Sweden)
Marco-Philipp Schürings
2016-11-01
Full Text Available Due to the ability of microgels to rapidly contract and expand in response to external stimuli, assemblies of interconnected microgels are promising for actuation applications, e.g., as contracting fibers for artificial muscles. Among the properties determining the suitability of microgel assemblies for actuation are mechanical parameters such as bending stiffness and mobility. Here, we study the properties of linear, one-dimensional chains of poly(N-vinylcaprolactam microgels dispersed in water. They were fabricated by utilizing wrinkled surfaces as templates and UV-cross-linking the microgels. We image the shapes of the chains on surfaces and in solution using atomic force microscopy (AFM and fluorescence microscopy, respectively. In solution, the chains are observed to execute translational and rotational diffusive motions. Evaluation of the motions yields translational and rotational diffusion coefficients and, from the translational diffusion coefficient, the chain mobility. The microgel chains show no perceptible bending, which yields a lower limit on their bending stiffness.
Analytical correlation functions for motion through diffusivity landscapes.
Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis
2016-05-28
Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.
Diffusion of hydrocarbons in confined media: Translational and rotational motion
Indian Academy of Sciences (India)
S Y Bhide; A V Anil Kumar; S Yashonath
2001-10-01
Diffusion of monatomic guest species within confined media has been understood to a good degree due to investigations carried out during the past decade and a half. Most guest species that are of industrial relevance are actually polyatomics such as, for example, hydrocarbons in zeolites. We attempt to investigate the influence of non-spherical nature of guest species on diffusion. Recent molecular dynamics (MD) simulations of motion of methane in NaCaA and NaY, benzene in NaY and one-dimensional channels AlPO4-5, VPI-5 and carbon nanotube indicate interesting insights into the influence of the host on rotational degrees of freedom and rientational properties. It is shown that benzene in one-dimensional channels where the levitation parameter is near unity exhibits translational motion opposite to what is expected on the basis of molecular anisotropy. Rotational motion of benzene also possesses rotational diffusivities around 6 and 2 axes opposite to what is expected on the basis of molecular geometry. Methane shows orientational preference for 2 + 2 or 1 + 3 depending on the magnitude of the levitation parameter.
DIFFUSION CHARACTERS OF THE ORBITS IN THE ASTEROID MOTION
Institute of Scientific and Technical Information of China (English)
周礼勇; 孙义燧; 周济林
2001-01-01
A symplectic mapping is studied carefully. The exponential diffusion law in developed chaotic region and algebraic law in mixed region were observed. An area was found where the diffusion follows a logarithmic law. It is shown in the vicinity of an island,the logarithm of the escape time decreases linearily as the initial position moves away from the island. But when approaching close to the island, the escape time goes up very quickly,consistent with the superexponential stability of the invariant curve. When applied to the motion of asteroid, this mapping' s fixed points and their stabilities give an explanation of the distribution of asteroids. The diffusion velocities in 4: 3, 3: 2 and 2: 1 jovian resonances are also investigated.
Energy Technology Data Exchange (ETDEWEB)
Liu, Chunling; Liu, Zaiyi; Zhang, Jine; He, Hui; Zhang, Shuixing; Liang, Changhong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, GuangZhou (China); Wang, Kun [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Breast Cancer, Cancer Center, GuangZhou (China); Chan, Queenie [Philips Healthcare, 6/F, Core Building 1, 1 Science Park East Avenue, Hong Kong Science Park, Shatin, New Territories, Hong Kong (China)
2016-11-15
To compare diagnostic performance for breast lesions by quantitative parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and to explore whether correlations exist between these parameters. IVIM and DCE MRI were performed on a 1.5-T MRI scanner in patients with suspicious breast lesions. Thirty-six breast cancers and 23 benign lesions were included in the study. Quantitative parameters from IVIM (D, f and D*) and DCE MRI (K{sup trans}, K{sub ep}, V{sub e} and V{sub p}) were calculated and compared between malignant and benign lesions. Spearman correlation test was used to evaluate correlations between them. D, f, D* from IVIM and K{sup trans}, K{sub ep}, V{sub p} from DCE MRI were statistically different between breast cancers and benign lesions (p < 0.05, respectively) and D demonstrated the largest area under the receiver-operating characteristic curve (AUC = 0.917) and had the highest specificity (83 %). The f value was moderately statistically correlated with V{sub p} (r = 0.692) and had a poor correlation with K{sup trans} (r = 0.456). IVIM MRI is useful in the differentiation of breast lesions. Significant correlations were found between perfusion-related parameters from IVIM and DCE MRI. IVIM may be a useful adjunctive tool to standard MRI in diagnosing breast cancer. (orig.)
Fractional Brownian motions: memory, diffusion velocity, and correlation functions
Fuliński, A.
2017-02-01
Fractional Brownian motions (FBMs) have been observed recently in the measured trajectories of individual molecules or small particles in the cytoplasm of living cells and in other dense composite systems, among others. Various types of FBMs differ in a number of ways, including the strength, range and type of damping of the memory encoded in their definitions, but share several basic characteristics: distributions, non-ergodic properties, and scaling of the second moment, which makes it difficult to determine which type of Brownian motion (fractional or normal) the measured trajectory belongs to. Here, we show, by introducing FBMs with regulated range and strength of memory, that it is the structure of memory which determines their physical properties, including mean velocity of diffusion; therefore, the course and kinetics of several processes (including coagulation and some chemical reactions). We also show that autocorrelation functions possess characteristic features which enable identification of an observed FBM, and of the type of memory governing its trajectory. In memoriam Marian Smoluchowski, on the 100th anniversary of the publication of his seminal papers on Brownian motion and diffusion-limited kinetics.
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Beak, Jung Hwan; Lee, Jeong Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Yoon, Ra Gyoung [Dept. of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon (Korea, Republic of)
2016-09-15
To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.
Institute of Scientific and Technical Information of China (English)
Yanchun Wang; Daoyu Hu; Shan Hu; Xuemei Hu; Jianjun Li; Yaqi Shen; Xiaoyu Liu; Zhi Wang; Xiaoyan Meng; Zhen Li
2015-01-01
Objective The aim of this study was to investigate the ability of intravoxel incoherent motion (IVIM) dif usion-weighted magnetic resonance imaging (MRI) to diagnose cervical cancer and to evaluate the response of uterine cervical cancer to radiochemotherapy (CRT). Methods This prospective study was approved by the institutional review board, and informed consent was obtained from al patients. A total of 23 patients with primary cervical cancer who were undergoing CRT and 16 age-matched healthy subjects were prospectively recruited for IVIM (b = 0–800 s/mm2) and stan-dard pelvic MRI. Bi-exponential analysis was performed to derive f (perfusion fraction), D* (pseudo-dif usion coef icient), and D (true molecular dif usion coef icient) in cervical cancer (n = 23) and the normal cervix (n= 16). The apparent dif usion coef icient (standard ADC) was calculated. The independent-samples t-test and paired-samples t-test were used for comparisons. Results Pre-treatment cervical cancer had the lowest standard ADC (1.15 ± 0.13 × 10-3 mm2/s) and D (0.89 ± 0.10 × 10-3 mm2/s) values, and these were significantly dif erent from the normal cervix and post-treatment cervical cancer (P = 0.00). The f (16.67 ± 5.85%) was lowest in pre-treatment cervical cancer and was significantly dif erent from the normal cervix and post-treatment cervical cancer (p = 0.012 and 0.00, respectively). No dif erence was observed in D*. Conclusion IVIM is potential y promising for dif erentiating between the normal cervix and cervical can-cer because pre-treated cervical cancer has low perfusion and dif usion IVIM characteristics. Further, the standard ADC, D, and f of cervical cancer showed a tendency to normalize after CRT; thus, IVIM may be useful for monitoring the response to CRT in cervical cancer.
Diffusion in a Symplectic Map with Application to Asteroid Motion
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Yong; SUN Yi-Sui; ZHOU Ji-Lin
2000-01-01
In studying a 2-dimensional symplectic map, the exponential law and algebraic law are observed in the diffusion of orbits in the phase space. The diffusion time in the vicinity of an island is investigated carefully and a logarithm law is found for the first time. The distribution of asteroids in the main belt and the diffusion velocities in 3:2 nd 4:3 resonances are discussed using this map.
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
Characterizing N-dimensional anisotropic Brownian motion by the distribution of diffusivities
Heidernätsch, Mario; Radons, Günter
2013-01-01
Anisotropic diffusion processes emerge in various fields such as transport in biological tissue and diffusion in liquid crystals. In such systems, the motion is described by a diffusion tensor. For a proper characterization of processes with more than one diffusion coefficient an average description by the mean squared displacement is often not sufficient. Hence, in this paper, we use the distribution of diffusivities to study diffusion in a homogeneous anisotropic environment. We derive analytical expressions of the distribution and relate its properties to an anisotropy measure in order to distinguish between isotropic and anisotropic processes. We further discuss the influence on the analysis of projected trajectories, which are typically accessible in experiments. For the experimentally relevant cases of two- and three-dimensional anisotropic diffusion we derive the specific expressions, determine the diffusion tensor, characterize the anisotropy, and demonstrate the applicability for simulated trajectori...
Microstructural Evolution and interfacial motion in systems with diffusion barriers
Energy Technology Data Exchange (ETDEWEB)
Perry H. Leo
2009-03-05
This research program was designed to model and simulate phase transformations in systems containing diffusion barriers. The modeling work included mass flow, phase formation, and microstructural evolution in interdiffusing systems. Simulation work was done by developing Cahn-Hilliard and phase field equations governing both the temporal and spatial evolution of the composition and deformation fields and other important phase variables.
Morita, Akihiro; Kato, Shigeki
2001-11-01
In this Letter we discuss in the case of pyrazinyl radical the effect of the large amplitude motion on the charge polarization. The extra hydrogen of pyrazinyl radical is nonplanar at the equilibrium geometry, whereas it is delocalized in the vibrational ground state along the wagging direction. The large amplitude motion of the hydrogen triply enhances the effective out-of-plane polarizability of the ground state. This augmented charge polarization could play a considerable role in the diffusion dynamics in solutions.
Onset of anomalous diffusion from local motion rules
de Nigris, Sarah; Lambiotte, Renaud
2016-01-01
Anomalous diffusion processes, in particular superdiffusive ones, are known to be efficient strategies for searching and navigation by animals and also in human mobility. One way to create such regimes are L\\'evy flights, where the walkers are allowed to perform jumps, the "flights", that can eventually be very long as their length distribution is asymptotically power-law distributed. In our work, we present a model in which walkers are allowed to perform, on a 1D lattice, "cascades" of $n$ unitary steps instead of one jump of a randomly generated length, as in the L\\'evy case. Instead of imposing a length distribution, we thus define our process by its cascade distribution $p_n$. We first derive the connections between the two distributions and show that this local mechanism may give rise to superdiffusion or normal diffusion when $p_n$ is distributed as a power law. We also investigate the interplay of this process with the possibility to be stuck on a node, introducing waiting times that are power-law dist...
Thygesen, Uffe Høgsbro
2016-03-01
We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.
Localized diffusive motion on two different time scales in solid alkane nanoparticles
DEFF Research Database (Denmark)
Wang, S. K.; Mamontov, E.; Bai, M.
2010-01-01
High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are obse...
Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion
Chen, Yao; Wang, Xudong; Deng, Weihua
2017-10-01
This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.
DEFF Research Database (Denmark)
Thygesen, Uffe Høgsbro
2016-01-01
not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when......We consider organisms which use a renewal strategy such as run–tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has......, in limit of high chemotactic sensitivity, the chemotactic drift is 64 % of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation...
Energy Technology Data Exchange (ETDEWEB)
Liang, Long; Zhang, Bin [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Southern Medical University, Graduate College, Guangzhou (China); Chen, Wen-bo; Liang, Chang-hong; Zhang, Shui-xing [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Chan, Kannie W.Y.; Li, Yu-guo; Liu, Guan-shu [The Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Baltimore, MD (United States)
2016-06-15
To investigate the potential of intravoxel incoherent motion (IVIM) to assess the renal pathophysiological process in contrast-induced acute kidney injury (CIAKI). Twenty-seven rats were induced with CIAKI model, six rats were imaged longitudinally at 24 h prior to and 30 min, 12, 24, 48, 72 and 96 h after administration; three rats were randomly chosen from the rest for serum creatinine and histological studies. D, f, D* and ADC were calculated from IVIM, and renal blood flow (RBF) was obtained from arterial spin labelling (ASL). A progressive reduction in D and ADC was observed in cortex (CO) by 3.07 and 8.62 % at 30 min, and by 25.77 and 28.16 % at 48 h, respectively. A similar change in outer medulla (OM) and inner medulla (IM) was observed at a later time point (12-72 h). D values were strongly correlated with ADC (r = 0.885). As perfusion measurement, a significant decrease was shown for f in 12-48 h and an increase in 72-96 h. A slightly different trend was found for D*, which was decreased by 26.02, 21.78 and 10.19 % in CO, OM and IM, respectively, at 30 min. f and D* were strongly correlated with RBF in the cortex (r = 0.768, r = 0.67), but not in the medulla. IVIM is an effective imaging tool for monitoring progress in renal pathophysiology undergoing CIAKI. (orig.)
Discriminant Incoherent Component Analysis.
Georgakis, Christos; Panagakis, Yannis; Pantic, Maja
2016-05-01
Face images convey rich information which can be perceived as a superposition of low-complexity components associated with attributes, such as facial identity, expressions, and activation of facial action units (AUs). For instance, low-rank components characterizing neutral facial images are associated with identity, while sparse components capturing non-rigid deformations occurring in certain face regions reveal expressions and AU activations. In this paper, the discriminant incoherent component analysis (DICA) is proposed in order to extract low-complexity components, corresponding to facial attributes, which are mutually incoherent among different classes (e.g., identity, expression, and AU activation) from training data, even in the presence of gross sparse errors. To this end, a suitable optimization problem, involving the minimization of nuclear-and l1 -norm, is solved. Having found an ensemble of class-specific incoherent components by the DICA, an unseen (test) image is expressed as a group-sparse linear combination of these components, where the non-zero coefficients reveal the class(es) of the respective facial attribute(s) that it belongs to. The performance of the DICA is experimentally assessed on both synthetic and real-world data. Emphasis is placed on face analysis tasks, namely, joint face and expression recognition, face recognition under varying percentages of training data corruption, subject-independent expression recognition, and AU detection by conducting experiments on four data sets. The proposed method outperforms all the methods that are compared with all the tasks and experimental settings.
Energy Technology Data Exchange (ETDEWEB)
Urbina, A; Miguel, C [Departamento Electronica, Universidad Politecnica de Cartagena, Plaza Hospital 1, 30202 Cartagena (Spain); Delgado, J L; Langa, F [Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, 45071, Toledo (Spain); DIaz-Paniagua, C [Centro Espanol de MetrologIa, 28760 Madrid (Spain); Jimenez, M [Institut Laue-Langevin, 39042 Grenoble Cedex (France); Batallan, F [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain)], E-mail: antonio.urbina@upct.es
2008-03-12
We have studied, by incoherent neutron scattering experiments, the dynamics of a colloidal suspension of functionalized single wall carbon nanotubes (SWNTs). The nanotubes have been functionalized with pentyl ester groups attached at the ends and suspended in deuterated toluene with a concentration of 2.6 mg SWNT/1 ml of deuterated toluene. The experimental techniques were incoherent elastic neutron scattering (IENS) and incoherent quasielastic neutron scattering (IQNS). In the temperature range between 4 K and 300 K, three phases were observed by IENS measurements: a solid phase for T
Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
Bodrova, Anna S.; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Safdari, Hadiseh; Sokolov, Igor M.; Metzler, Ralf
2016-07-01
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.
2009-02-01
Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.
A kinetic model for the internal motions of proteins: diffusion between multiple harmonic wells.
Amadei, A; de Groot, B L; Ceruso, M A; Paci, M; Di Nola, A; Berendsen, H J
1999-05-15
The dynamics of collective protein motions derived from Molecular Dynamics simulations have been studied for two small model proteins: initiation factor I and the B1 domain of Protein G. First, we compared the structural fluctuations, obtained by local harmonic approximations in different energy minima, with the ones revealed by large scale molecular dynamics (MD) simulations. It was found that a limited set of harmonic wells can be used to approximate the configurational fluctuations of these proteins, although any single harmonic approximation cannot properly describe their dynamics. Subsequently, the kinetics of the main (essential) collective protein motions were characterized. A dual-diffusion behavior was observed in which a fast type of diffusion switches to a much slower type in a typical time of about 1-3 ps. From these results, the large backbone conformational fluctuations of a protein may be considered as "hopping" between multiple harmonic wells on a basically flat free energy surface.
Incoherent synchrotron emission of laser-driven plasma edge
Serebryakov, D A; Kostyukov, I Yu
2015-01-01
When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.
Incoherent synchrotron emission of laser-driven plasma edge
Energy Technology Data Exchange (ETDEWEB)
Serebryakov, D. A., E-mail: dmserebr@gmail.com; Nerush, E. N.; Kostyukov, I. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)
2015-12-15
When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.
Incoherent synchrotron emission of laser-driven plasma edge
Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.
2015-12-01
When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.
Accelerating incoherent dedispersion
Barsdell, Benjamin R; Barnes, David G; Fluke, Christopher J
2012-01-01
Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of 9x for the direct algorithm when compared to an optimised quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimi...
Quantum Radiation Reaction: From Interference to Incoherence.
Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger
2016-01-29
We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.
Quantum radiation reaction: from interference to incoherence
Dinu, Victor; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger
2015-01-01
We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.
Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J; Weik, Martin
2015-01-01
Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.
Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity
Manzo, Carlo; Massignan, Pietro; Lapeyre, Gerald J; Lewenstein, Maciej; Parajo, Maria F Garcia
2014-01-01
The recent discovery of transient immobilization as a cause of nonergodicity in the motion of some biological molecules has triggered great interest for its implications in statistical mechanics and cell biology. Is nonergodic subdiffusion a strategy shared by other biological systems? Can other physical mechanisms lead to similar behaviours? Is it beneficial? Answering to these questions is crucial to unravel the evolutionary strategy behind ergodicity breaking and its relevance for cellular function. Here we show that the motion of DC-SIGN, a transmembrane receptor with unique pathogen recognition capabilities, reveals nonergodic subdiffusion that cannot be explained by transient immobilization. Instead, its behaviour is compatible with inhomogeneity induced by spatiotemporal changes of diffusivity. The experiments are interpreted through a theoretical framework describing anomalous transport in complex media. By studying different DC-SIGN mutants, we establish a link between receptor structure and diffusiv...
Kurugol, Sila; Freiman, Moti; Afacan, Onur; Domachevsky, Liran; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K
2015-01-01
Non-invasive characterization of water molecule's mobility variations by quantitative analysis of diffusion-weighted MRI (DW-MRI) signal decay in the abdomen has the potential to serve as a biomarker in gastrointestinal and oncological applications. Accurate and reproducible estimation of the signal decay model parameters is challenging due to the presence of respiratory, cardiac, and peristalsis motion. Independent registration of each b-value image to the b-value=0 s/mm(2) image prior to parameter estimation might be sub-optimal because of the low SNR and contrast difference between images of varying b-value. In this work, we introduce a motion-compensated parameter estimation framework that simultaneously solves image registration and model estimation (SIR-ME) problems by utilizing the interdependence of acquired volumes along the diffusion weighting dimension. We evaluated the improvement in model parameters estimation accuracy using 16 in-vivo DW-MRI data sets of Crohn's disease patients by comparing parameter estimates obtained using the SIR-ME model to the parameter estimates obtained by fitting the signal decay model to the acquired DW-MRI images. The proposed SIR-ME model reduced the average root-mean-square error between the observed signal and the fitted model by more than 50%. Moreover, the SIR-ME model estimates discriminate between normal and abnormal bowel loops better than the standard parameter estimates.
Accelerating incoherent dedispersion
Barsdell, B. R.; Bailes, M.; Barnes, D. G.; Fluke, C. J.
2012-05-01
Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present an analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of nine times for the direct algorithm when compared to an optimized quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimization is unnecessary to achieve real-time processing. Where further speed-ups are desirable, we find that the tree and sub-band algorithms are able to provide three to seven times better performance at the cost of certain smearing, memory consumption and development time trade-offs. We finish with a discussion of the implications of these results for future transient surveys. Our GPU dedispersion code is publicly available as a C library at .
Dynamics of Incoherent Photovoltaic Spatial Solitons
Institute of Scientific and Technical Information of China (English)
ZHANG Yi-Qi; LU Ke-Qing; ZHANG Mei-Zhi; LI Ke-Hao; LIU Shuang; ZHANG Yan-Peng
2009-01-01
Propagation properties of bright and dark incoherent beams are numerically studied in photovoltaic-photorefractive crystal by using coherent density approach for the first time.Numerical simulations not only exhibit that bright incoherent photovoltaic quasi-soliton,grey-like incoherent photovoltaic soliton,incoherent soliton doublet and triplet can be established under proper conditions,but also display that the spatial coherence properties of these incoherent beams can be significantly affected during propagation by the photovoltaic field.
Dijkstra, Hildebrand; Oudkerk, Matthijs; Kappert, Peter; Sijens, Paul E.
Purpose: To investigate if intravoxel incoherent motion (IVIM) modeled diffusion-weighted imaging (DWI) can be linked to contrast-enhanced (CE-)MRI in liver parenchyma and liver lesions. Methods: Twenty-five patients underwent IVIM-DWI followed by multiphase CE-MRI using Gd-EOB-DTPA (n = 20) or
Steady motion of skyrmions and domains walls under diffusive spin torques
Elías, Ricardo Gabriel
2017-03-09
We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).
Tulzer, Gerhard; Heitzinger, Clemens
2016-04-22
In this work, we develop a 2D algorithm for stochastic reaction-diffusion systems describing the binding and unbinding of target molecules at the surfaces of affinity-based sensors. In particular, we simulate the detection of DNA oligomers using silicon-nanowire field-effect biosensors. Since these devices are uniform along the nanowire, two dimensions are sufficient to capture the kinetic effects features. The model combines a stochastic ordinary differential equation for the binding and unbinding of target molecules as well as a diffusion equation for their transport in the liquid. A Brownian-motion based algorithm simulates the diffusion process, which is linked to a stochastic-simulation algorithm for association at and dissociation from the surface. The simulation data show that the shape of the cross section of the sensor yields areas with significantly different target-molecule coverage. Different initial conditions are investigated as well in order to aid rational sensor design. A comparison of the association/hybridization behavior for different receptor densities allows optimization of the functionalization setup depending on the target-molecule density.
Turbulent Diffusion in the Photosphere as Derived from Photospheric Bright Point Motion
Abramenko, V I; Yurchyshyn, V; Goode, P R; Stein, R F; Lepreti, F; Capparelli, V; Vecchio, A
2011-01-01
On the basis of observations of solar granulation obtained with the New Solar Telescope (NST) of Big Bear Solar Observatory, we explored proper motion of bright points (BPs) in a quiet sun area, a coronal hole, and an active region plage. We automatically detected and traced bright points (BPs) and derived their mean-squared displacements as a function of time (starting from the appearance of each BP) for all available time intervals. In all three magnetic environments, we found the presence of a super-diffusion regime, which is the most pronounced inside the time interval of 10-300 seconds. Super-diffusion, measured via the spectral index, $\\gamma$, which is the slope of the mean-squared displacement spectrum, increases from the plage area ($\\gamma=1.48$) to the quiet sun area ($\\gamma=1.53$) to the coronal hole ($\\gamma=1.67$). We also found that the coefficient of turbulent diffusion changes in direct proportion to both temporal and spatial scales. For the minimum spatial scale (22 km) and minimum time sca...
Brownian-motion based simulation of stochastic reaction-diffusion systems for affinity based sensors
Tulzer, Gerhard; Heitzinger, Clemens
2016-04-01
In this work, we develop a 2D algorithm for stochastic reaction-diffusion systems describing the binding and unbinding of target molecules at the surfaces of affinity-based sensors. In particular, we simulate the detection of DNA oligomers using silicon-nanowire field-effect biosensors. Since these devices are uniform along the nanowire, two dimensions are sufficient to capture the kinetic effects features. The model combines a stochastic ordinary differential equation for the binding and unbinding of target molecules as well as a diffusion equation for their transport in the liquid. A Brownian-motion based algorithm simulates the diffusion process, which is linked to a stochastic-simulation algorithm for association at and dissociation from the surface. The simulation data show that the shape of the cross section of the sensor yields areas with significantly different target-molecule coverage. Different initial conditions are investigated as well in order to aid rational sensor design. A comparison of the association/hybridization behavior for different receptor densities allows optimization of the functionalization setup depending on the target-molecule density.
First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
Sanders, Lloyd P; Ambjörnsson, Tobias
2012-05-01
We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.
Habuchi, Satoshi
2016-09-26
We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used for the synthesis of the cyclic poly(tetrahydrofuran) (poly(THF)). The diffusive motion of individual cyclic polymer chains in a melt state is visualized using single molecule fluorescence imaging by incorporating a fluorophore unit in the cyclic chains. The diffusive motion of the chains is quantitatively characterized by means of a combination of mean-squared displacement (MSD) analysis and a cumulative distribution function (CDF) analysis. The cyclic polymer exhibits multiple-mode diffusion which is distinct from its linear counterpart. The results demonstrate that the diffusional heterogeneity of polymers that is often hidden behind ensemble averaging can be revealed by the efficient synthesis of the cyclic polymers using the ESA-CF process and the quantitative analysis of the diffusive motion at the single molecule level using the MSD and CDF analyses.
Silva, Antonio
2005-03-01
It is well-known that the mathematical theory of Brownian motion was first developed in the Ph. D. thesis of Louis Bachelier for the French stock market before Einstein [1]. In Ref. [2] we studied the so-called Heston model, where the stock-price dynamics is governed by multiplicative Brownian motion with stochastic diffusion coefficient. We solved the corresponding Fokker-Planck equation exactly and found an analytic formula for the time-dependent probability distribution of stock price changes (returns). The formula interpolates between the exponential (tent-shaped) distribution for short time lags and the Gaussian (parabolic) distribution for long time lags. The theoretical formula agrees very well with the actual stock-market data ranging from the Dow-Jones index [2] to individual companies [3], such as Microsoft, Intel, etc. [] [1] Louis Bachelier, ``Th'eorie de la sp'eculation,'' Annales Scientifiques de l''Ecole Normale Sup'erieure, III-17:21-86 (1900).[] [2] A. A. Dragulescu and V. M. Yakovenko, ``Probability distribution of returns in the Heston model with stochastic volatility,'' Quantitative Finance 2, 443--453 (2002); Erratum 3, C15 (2003). [cond-mat/0203046] [] [3] A. C. Silva, R. E. Prange, and V. M. Yakovenko, ``Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact,'' Physica A 344, 227--235 (2004). [cond-mat/0401225
Marshall, Wallace F.; Fung, Jennifer C.
2016-04-01
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.
Comparing nonrigid registration techniques for motion corrected MR prostate diffusion imaging
Energy Technology Data Exchange (ETDEWEB)
Buerger, C., E-mail: christian.buerger@philips.com; Sénégas, J.; Kabus, S.; Carolus, H.; Schulz, H.; Renisch, S. [Philips Research Hamburg, Hamburg 22335 (Germany); Agarwal, H. [Philips Research North America, Briarcliff Manor, New York 10510 and Molecular Imaging Program, NCI, National Institute of Health, Bethesda, Maryland 20892 (United States); Turkbey, B.; Choyke, P. L. [Molecular Imaging Program, NCI, National Institute of Health, Bethesda, Maryland 20892 (United States)
2015-01-15
Purpose: T{sub 2}-weighted magnetic resonance imaging (MRI) is commonly used for anatomical visualization in the pelvis area, such as the prostate, with high soft-tissue contrast. MRI can also provide functional information such as diffusion-weighted imaging (DWI) which depicts the molecular diffusion processes in biological tissues. The combination of anatomical and functional imaging techniques is widely used in oncology, e.g., for prostate cancer diagnosis and staging. However, acquisition-specific distortions as well as physiological motion lead to misalignments between T{sub 2} and DWI and consequently to a reduced diagnostic value. Image registration algorithms are commonly employed to correct for such misalignment. Methods: The authors compare the performance of five state-of-the-art nonrigid image registration techniques for accurate image fusion of DWI with T{sub 2}. Results: Image data of 20 prostate patients with cancerous lesions or cysts were acquired. All registration algorithms were validated using intensity-based as well as landmark-based techniques. Conclusions: The authors’ results show that the “fast elastic image registration” provides most accurate results with a target registration error of 1.07 ± 0.41 mm at minimum execution times of 11 ± 1 s.
Energy Technology Data Exchange (ETDEWEB)
Dietrich, O.; Heiland, S.; Benner, T.; Sartor, K. [Dept. of Neuroradiology, University of Heidelberg Medical School, Heidelberg (Germany)
2000-02-01
Diffusion-weighted MRI (DWI) is extremely sensitive to motion of the object being examined. Pulse triggering and navigator echo correction are methods for reducing motion artefacts which can be combined with conventional DWI sequences. Implementation of these methods in imaging sequences with a readout of one, three, or five echoes is presented and imaging results compared in a study of five healthy volunteers. As an objective measure for motion-induced image artefacts, the ''artefacticity'' of an image is defined. Pulse triggering and navigator echo correction significantly improve image quality and provide a technique for high-quality DWI on standard imagers without improved gradient hardware. (orig.)
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Criswell, L.; Fuhrmann, D;
2004-01-01
Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of similar to0.1-4 ns. We present evidence that these rel...
Incoherent boundary conditions and metastates
Enter, Aernout C.D. van; Netočný, Karel; Schaap, Hendrikjan G.
2006-01-01
In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferrom
Graybill, George
2007-01-01
Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str
Momentum dissipation and effective theories of coherent and incoherent transport
Davison, Richard A
2014-01-01
We study heat transport in two systems without momentum conservation: a hydrodynamic system, and a holographic system with spatially dependent, massless scalar fields. When momentum dissipates slowly, there is a well-defined, coherent collective excitation in the AC heat conductivity, and a crossover between sound-like and diffusive transport at small and large distance scales. When momentum dissipates quickly, there is no such excitation in the incoherent AC heat conductivity, and diffusion dominates at all distance scales. For a critical value of the momentum dissipation rate, we compute exact expressions for the Green's functions of our holographic system due to an emergent gravitational self-duality, similar to electric/magnetic duality, and SL(2,R) symmetries. We extend the coherent/incoherent classification to examples of charge transport in other holographic systems: probe brane theories and neutral theories with non-Maxwell actions.
Display of the complex degree of coherence due to quasi-monochromatic spatially incoherent sources.
Michalski, M; Sicre, E E; Rabal, H J
1985-12-01
A method for displaying the complex degree of coherence (CDC) of a quasi-monochromatic spatially incoherent source is proposed. The phase of the CDC is encoded in a method similar to that used in interferometric imaging with incoherent light. The method is based on Fourier analysis of the speckle pattern that appears when a diffuser is illuminated with the partially coherent field whose CDC is to be displayed. In addition, an intensity pattern that resembles the spatial distribution of the incoherent source can also be obtained.
Incoherence-Mediated Remote Synchronization
Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi
2017-04-01
In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.
Truong, Trong-Kha; Guidon, Arnaud
2014-01-01
Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457
Energy Technology Data Exchange (ETDEWEB)
Skripov, A.V., E-mail: skripov@imp.uran.ru; Soloninin, A.V.; Babanova, O.A.; Skoryunov, R.V.
2015-10-05
Highlights: • Solid solutions LiBH{sub 4}–LiI: extremely fast BH{sub 4} reorientations down to low T. • LiLa(BH{sub 4}){sub 3}Cl: Li-ion diffusive jumps and BH{sub 4} reorientations at the same frequency scale. • Dramatic acceleration of B{sub 12}H{sub 12} reorientations in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. • Fast Na-ion diffusion in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. - Abstract: Two basic types of thermally activated atomic jump motion are known to exist in solid borohydrides and the related systems: the reorientations of complex anions ([BH{sub 4}]{sup −}, [B{sub 12}H{sub 12}]{sup 2−}) and the translational diffusion of metal cations or complex anions. This paper reviews recent progress in nuclear magnetic resonance (NMR) studies of these jump processes in complex hydrides, such as solid solutions of halide anions in borohydrides, bimetallic borohydrides and borohydride–chlorides, borohydride–amides, and B{sub 12}H{sub 12}-based compounds. The emphasis is put on the systems showing fast-ion conductivity. For these systems, we discuss a possible relation between the reorientational motion of complex anions and the translational motion of metal cations.
Wu, Wenchuan; Fang, Sheng; Guo, Hua
2014-06-01
Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.
Calderon, Christopher P.
2016-05-01
Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010), 10.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be
Residence Times of Particles in Diffusive Protoplanetary Disk Environments I. Vertical Motions
Ciesla, Fred J
2010-01-01
The chemical and physical evolution of primitive materials in protoplanetary disks are determined by the types of environments they are exposed to and their residence times within each environment. Here a method for calculating representative paths of materials in diffusive protoplanetary disks is developed and applied to understanding how the vertical trajectories that particles take impact their overall evolution. The methods are general enough to be applied to disks with uniform diffusivity, the so-called "constant-$\\alpha$" cases, and disks with a spatially varying diffusivity, such as expected in "layered-disks." The average long-term dynamical evolution of small particles and gaseous molecules is independent of the specific form of the diffusivity in that they spend comparable fractions of their lifetimes at different heights in the disk. However, the paths that individual particles and molecules take depend strongly on the form of the diffusivity leading to a different range of behavior of particles in...
Slow Diffusive Motions in a Monolayer of Tetracosane Molecules Adsorbed on Graphite
DEFF Research Database (Denmark)
Taub, H.; Hansen, Flemming Yssing; Criswell, L.;
2004-01-01
Monolayers of intermediate-length alkane molecules such as tetracosane (n-C24H50 or C24) serve as prototypes for studying the interfacial dynamics of more complex polymers, including bilayer lipid membranes. Using high-resolution quasielastic neutron scattering (QNS) and exfoliated graphite...... to a temperature of similar to230 K, we observe the QNS energy width to be dispersionless, consistent with molecular dynamics simulations showing rotational motion of the molecules about their long axis. At 260 K, the QNS energy width begins to increase with wave vector transfer, suggesting onset of nonuniaxial...... rotational motion and bounded translational motion. We continue to observe QNS up to the monolayer melting temperature at similar to340 K where our simulations indicate that the only motion slow enough to be visible within our energy window results from the creation of gauche defects in the molecules....
Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet
DEFF Research Database (Denmark)
Jacobsen, Lis
A ventilation system with ambient air supply through diffuse ceiling used in pig production facilities is presented. The climatic conditions were examined both experimentally and numerically in an full scale experimental room and the inlet boundary conditions of the diffuse inlet were examined...... of thermal comfort in terms of the operative temperature of the occupational zone. A model of the boundary condition of the diffuse inlet is necessary because the inlet is a conglomeration of an inlet and a wall boundary condition. Two methods of modelling can be chosen, a model based on the determination...
Directory of Open Access Journals (Sweden)
Zhaoqiang Yang
2017-01-01
Full Text Available A new framework for pricing the American fractional lookback option is developed in the case where the stock price follows a mixed jump-diffusion fraction Brownian motion. By using Itô formula and Wick-Itô-Skorohod integral a new market pricing model is built. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given. Numerical simulation illustrates some notable features of American fractional lookback options.
Indian Academy of Sciences (India)
J Colmenero; A Arbe; F Alvarez; A Narros; D Richter; M Monkenbush; B Farago
2004-07-01
The combination of molecular dynamics simulations and neutron scattering measurements on three different glass-forming polymers (polyisoprene, poly(vinyl ethylene) and polybutadiene) has allowed to establish the existence of a crossover from Gaussian to non-Gaussian behavior for the incoherent scattering function in the -relaxation regime. The deviation from Gaussian behavior observed can be reproduced assuming the existence of a distribution of discrete jump lengths underlying the sublinear diffusion of the atomic motions during the structural relaxation.
Hierarchies of incoherent quantum operations
Streltsov, Alexander; Bera, Manabendra Nath; Lewenstein, Maciej
2015-01-01
The search for a simple description of fundamental physical processes is an important part of quantum theory. One example for such an abstraction can be found in the distance lab paradigm: if two separated parties are connected via a classical channel, it is notoriously difficult to characterize all possible operations these parties can perform. This class of operations is widely known as local operations and classical communication (LOCC). Surprisingly, the situation becomes comparably simple if the more general class of separable operations is considered, a finding which has been extensively used in quantum information theory for many years. Here, we propose a related approach for the resource theory of quantum coherence, where two distant parties can only perform measurements which do not create coherence and can communicate their outcomes via a classical channel. We call this class local incoherent operations and classical communication (LICC). While the characterization of this class is also difficult in...
Enhanced incoherent scatter plasma lines
Directory of Open Access Journals (Sweden)
H. Nilsson
Full Text Available Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.
Brownian motion in a field of force and the diffusion theory of chemical reactions. II
Brinkman, H.C.
1956-01-01
H. A. Kramers has studied the rate of chemical reactions in view of the Brownian forces caused by a surrounding medium in temperature equilibrium. In a previous paper 3) the author gave a solution of Kramers' diffusion equation in phase space by systematic development. In this paper the general prob
Activation of arsenic-implanted silicon using an incoherent light source
Powell, R. A.; Yep, T. O.; Fulks, R. T.
1981-07-01
We report that continuous, incoherent light from a xenon arc lamp can be used to completely activate implanted Si (100) samples (75As+:100 keV, 1×1015 cm-2) with negligible dopant redistribution and excellent uniformity (sheet resistivity variation less than ±2% over a 3-in.-diam wafer). An entire 3-in. wafer could be activated in only about 10 sec without relative motion of wafer and light beam. The extent to which implant damage was removed by the incoherent light anneal is qualitatively indicated by the carrier mobilities which were within 10% of single-crystal values.
Raghib, M; Levin, S A; Kevrekidis, I G
2010-06-01
We propose a (time) multiscale method for the coarse-grained analysis of collective motion and decision-making in self-propelled particle models of swarms comprising a mixture of 'naïve' and 'informed' individuals. The method is based on projecting the particle configuration onto a single 'meta-particle' that consists of the elongation of the flock together with the mean group velocity and position. We find that the collective states can be associated with the transient and asymptotic transport properties of the random walk followed by the meta-particle, which we assume follows a continuous time random walk (CTRW). These properties can be accurately predicted at the macroscopic level by an advection-diffusion equation with memory (ADEM) whose parameters are obtained from a mean group velocity time series obtained from a single simulation run of the individual-based model.
Inference on the hurst parameter and the variance of diffusions driven by fractional Brownian motion
Berzin, Corinne; León, José R
2014-01-01
This book is devoted to a number of stochastic models that display scale invariance. It primarily focuses on three issues: probabilistic properties, statistical estimation and simulation of the processes considered. It will be of interest to probability specialists, who will find here an uncomplicated presentation of statistics tools, and to those statisticians who wants to tackle the most recent theories in probability in order to develop Central Limit Theorems in this context; both groups will also benefit from the section on simulation. Algorithms are described in great detail, with a focus on procedures that is not usually found in mathematical treatises. The models studied are fractional Brownian motions and processes that derive from them through stochastic differential equations. Concerning the proofs of the limit theorems, the “Fourth Moment Theorem” is systematically used, as it produces rapid and helpful proofs that can serve as models for the future. Readers will also find elegant and new proof...
Directory of Open Access Journals (Sweden)
De-Lei Sheng
2014-01-01
Full Text Available This paper investigates the excess-of-loss reinsurance and investment problem for a compound Poisson jump-diffusion risk process, with the risk asset price modeled by a constant elasticity of variance (CEV model. It aims at obtaining the explicit optimal control strategy and the optimal value function. Applying stochastic control technique of jump diffusion, a Hamilton-Jacobi-Bellman (HJB equation is established. Moreover, we show that a closed-form solution for the HJB equation can be found by maximizing the insurer’s exponential utility of terminal wealth with the independence of two Brownian motions W(t and W1(t. A verification theorem is also proved to verify that the solution of HJB equation is indeed a solution of this optimal control problem. Then, we quantitatively analyze the effect of different parameter impacts on optimal control strategy and the optimal value function, which show that optimal control strategy is decreasing with the initial wealth x and decreasing with the volatility rate of risk asset price. However, the optimal value function V(t;x;s is increasing with the appreciation rate μ of risk asset.
Quasielastic neutron scattering study of large amplitude motions in molecular systems
Energy Technology Data Exchange (ETDEWEB)
Bee, M. [Univ. J. Fourier - Grenoble 1, Lab. de Spectrometrie Physique, Saint-Martin d`Heres (France)
1996-12-31
This lecture aims at giving some illustrations of the use of Incoherent Quasielastic Neutron Scattering in the investigation of motions of atoms or molecules in phases with dynamical disorder. The general incoherent scattering function is first recalled. Then the Elastic Incoherent Structure Factor is introduced. It is shown how its determination permits to deduce a particular dynamical model. Long-range translational diffusion is illustrated by some experiments carried out with liquids or with different chemical species intercalated in porous media. Examples of rotational motions are provided by solid phases where an orientational disorder of the molecules exists. The jump model is the most commonly used and yields simple scattering laws which can be easily handled. Highly disordered crystals require a description in terms of the isotropic rotational diffusion model. Many of the present studies are concerned with rather complicated systems. Considerable help is obtained either by using selectively deuterated samples or by carrying out measurements with semi-oriented samples. (author) 5 figs., 14 refs.
Possible quantum diffusion of polaronic muons in Dy(2)Ti(2)O(7) spin ice.
Quémerais, P; McClarty, P; Moessner, R
2012-09-21
We interpret recent measurements of the zero field muon relaxation rate in the magnetic pyrochlore Dy(2)Ti(2)O(7) as resulting from the quantum diffusion of muons in the material. In this scenario, the plateau observed at low temperature (muons through a spatially disordered spin state and not to any magnetic fluctuations persisting at low temperature. Two further regimes either side of a maximum relaxation rate at T* = 50 K correspond to a crossover between tunneling and incoherent activated hopping motion of the muon. Our fit of the experimental data is compared with the case of muonium diffusion in KCl.
Reeves, Mark
2014-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk
Diffusion-weighted imaging of pancreatic cancer
Institute of Scientific and Technical Information of China (English)
Riccardo; De; Robertis; Paolo; Tinazzi; Martini; Emanuele; Demozzi; Flavia; Dal; Corso; Claudio; Bassi; Paolo; Pederzoli; Mirko; D’Onofrio
2015-01-01
Magnetic resonance imaging(MRI) is a reliable and accurate imaging method for the evaluation of patients with pancreatic ductal adenocarcinoma(PDAC). Diffusion-weighted imaging(DWI) is a relatively recent technological improvement that expanded MRI capabilities, having brought functional aspects into conventional morphologic MRI evaluation. DWI can depict the random diffusion of water molecules within tissues(the so-called Brownian motions). Modifications of water diffusion induced by different factors acting on the extracellular and intracellular spaces, as increased cell density, edema, fibrosis, or altered functionality of cell membranes, can be detected using this MR sequence. The intravoxel incoherent motion(IVIM) model is an advanced DWI technique that consent a separate quantitative evaluation of all the microscopic random motions that contribute to DWI, which are essentially represented by molecular diffusion and blood microcirculation(perfusion). Technological improvements have made possible the routine use of DWI during abdominal MRI study. Several authors have reported that the addition of DWI sequence can be of value for the evaluation of patients with PDAC, especially improving the staging; nevertheless, it is still unclear whether and how DWI could be helpful for identification, characterization, prognostic stratification and follow-up during treatment. The aim of this paper is to review up-to-date literature data regarding the applications of DWI and IVIM to PDACs.
Incoherent rho^0 electroproduction off nuclei
Falter, T; Mosel, U
2003-01-01
In the present paper we investigate incoherent rho^0 electroproduction off complex nuclei. We derive a novel, simple expression for the incoherent electroproduction cross section in which one can clearly separate the final state interactions of the reaction products from the 'initial state interactions' of the photon that give rise to nuclear shadowing. In the special case of purely absorptive final state interactions we deduce from our expression the known Glauber result. A more realistic treatment of the final state interactions within a transport model is then used to compare our predictions with experimental data from the HERMES experiment.
Coherence and incoherence in an optical comb.
Viktorov, Evgeny A; Habruseva, Tatiana; Hegarty, Stephen P; Huyet, Guillaume; Kelleher, Bryan
2014-06-06
We demonstrate a coexistence of coherent and incoherent modes in the optical comb generated by a passively mode-locked quantum dot laser. This is experimentally achieved by means of optical linewidth, radio frequency spectrum, and optical spectrum measurements and confirmed numerically by a delay-differential equation model showing excellent agreement with the experiment. We interpret the state as a chimera state.
Internal mode of incoherent photovoltaic vector solitons
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Wang Hong-Cheng; She Wei-Long
2007-01-01
The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schr(o)dinger equations. It is found that there is a pair of internal modes corresponding to a bright-bright IVS. The propagation dynamics of the bright-bright IVS perturbed by the internal modes is simulated by numerical method.
Incoherently Coupled Grey Photovoltaic Spatial Soliton Families
Institute of Scientific and Technical Information of China (English)
WANG Hong-Cheng; SHE Wei-Long
2005-01-01
@@ A theory is developed for incoherently coupled grey photovoltaic soliton families in unbiased photovoltaic crystals.Both the properties and the forming conditions of these soliton families are discussed in detail The theory canalso be used to investigate the dark photovoltaic soliton families. Some relevant examples are presented, in which the photovoltaic-photorefractive crystal is of lithium niobate type.
Various diffusion magnetic resonance imaging techniques for pancreatic cancer
Institute of Scientific and Technical Information of China (English)
Meng-Yue Tang; Xiao-Ming Zhang; Tian-Wu Chen; Xiao-Hua Huang
2015-01-01
Pancreatic cancer is one of the most common malignanttumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging(MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging(DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed.
Technical advancements and protocol optimization of diffusion-weighted imaging (DWI) in liver.
Ni, Ping; Lin, Yuning; Zhong, Qun; Chen, Ziqian; Sandrasegaran, Kumar; Lin, Chen
2016-01-01
An area of rapid advancement in abdominal MRI is diffusion-weighted imaging (DWI). By measuring diffusion properties of water molecules, DWI is capable of non-invasively probing tissue properties and physiology at cellular and macromolecular level. The integration of DWI as part of abdominal MRI exam allows better lesion characterization and therefore more accurate initial diagnosis and treatment monitoring. One of the most technical challenging, but also most useful abdominal DWI applications is in liver and therefore requires special attention and careful optimization. In this article, the latest technical developments of DWI and its liver applications are reviewed with the explanations of the technical principles, recommendations of the imaging parameters, and examples of clinical applications. More advanced DWI techniques, including Intra-Voxel Incoherent Motion (IVIM) diffusion imaging, anomalous diffusion imaging, and Diffusion Kurtosis Imaging (DKI) are discussed.
Incoherent vertical ion losses during multiturn stacking cooling beam injection
Syresin, E. M.
2014-07-01
The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.
Full profile incoherent scatter analysis at Jicamarca
Directory of Open Access Journals (Sweden)
D. L. Hysell
2008-02-01
Full Text Available Incoherent scatter data from a hybrid long-pulse/double-pulse experiment at Jicamarca are analyzed using a full-profile analysis similar to the one implemented by Holt et al. (1992. In this case, plasma density, electron and ion temperatures, and light ion composition profiles in the topside are estimated simultaneously. Full-profile analysis is crucial at Jicamarca, since the long correlation time of the incoherent scatter signal at 50 MHz invalidates conventional gated analysis. Results for a 24 h interval in April of 2006 are presented, covering altitudes through 1600 km with 10 min time resolution, and compared with results from the NRL ionospheric model SAMI2. The analysis provides the first comprehensive assessment of ionospheric conditions over Jicamarca at sunrise as well as the first 24-h record of helium ion layers. Possible refinements to the experiment and the algorithm are discussed.
Incoherent neutral pion photoproduction on 12C.
Tarbert, C M; Watts, D P; Aguar, P; Ahrens, J; Annand, J R M; Arends, H J; Beck, R; Bekrenev, V; Boillat, B; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R; Downie, E J; Föhl, K; Glazier, D I; Grabmayr, P; Gregor, R; Heid, E; Hornidge, D; Jahn, O; Kashevarov, V L; Knezevic, A; Kondratiev, R; Korolija, M; Kotulla, M; Krambrich, D; Krusche, B; Lang, M; Lisin, V; Livingston, K; Lugert, S; Macgregor, I J D; Manley, D M; Martinez, M; McGeorge, J C; Mekterovic, D; Metag, V; Nefkens, B M K; Nikolaev, A; Novotny, R; Owens, R O; Pedroni, P; Polonski, A; Prakhov, S N; Price, J W; Rosner, G; Rost, M; Rostomyan, T; Schadmand, S; Schumann, S; Sober, D; Starostin, A; Supek, I; Thomas, A; Unverzagt, M; Walcher, Th; Zehr, F
2008-04-04
We present the first detailed measurement of incoherent photoproduction of neutral pions to a discrete state of a residual nucleus. The 12C(gamma,pi(0))(12)C*(4.4 MeV) reaction has been studied with the Glasgow photon tagger at MAMI employing a new technique which uses the large solid angle Crystal Ball detector both as a pi(0) spectrometer and to detect decay photons from the excited residual nucleus. The technique has potential applications to a broad range of future nuclear measurements with the Crystal Ball and similar detector systems elsewhere. Such data are sensitive to the propagation of the Delta in the nuclear medium and will give the first information on matter transition form factors from measurements with an electromagnetic probe. The incoherent cross sections are compared to two theoretical predictions including a Delta-hole model.
Incoherent frequency-to-time mapping: application to incoherent pulse shaping.
Torres-Company, Victor; Lancis, Jesús; Andrés, Pedro
2007-03-01
After temporal amplitude modulation of a spectrally incoherent optical source the averaged intensity profile at the so-called temporal far-zone regime coalesces with a magnified replica of the spectral density function of the source. This has provided the basis for the generalization of the frequency-to-time mapping technique in the partially coherent case. Based on this fact, temporal intensity waveform generation is demonstrated by spectral filtering the incoherent source before the temporal modulation stage. We refer to this technique as full incoherent pulse shaping. Although only the average intensity of the output signal is properly shaped, intensity fluctuations between the different realizations of the output shaped waveform are shown to be small in the practical situation. Finally, we provide some computer simulations concerning arbitrary picosecond pulse generation from an amplified spontaneous emission source.
Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E
2017-09-13
Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.
Ishizaki, Akihito; Fleming, Graham R
2009-06-21
A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Forster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Forster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores.
Incoherent subharmonic light scattering in isotropic media.
Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S
2005-02-01
Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.
Kartsovnik, M. V.; Grigoriev, P. D.; Biberacher, W.; Kushch, N. D.
2009-04-01
The angle-dependent interlayer magnetoresistance of the pressurized (to the normal metallic state) layered organic metal α-(BEDT-TTF)2KHg(SCN)4 is found to change from the conventional behavior at low magnetic fields to an anomalous one at high fields. The dependence of this field-induced crossover on the sample purity and temperature reveals parallel contribution of the classical Boltzmann and incoherent channels in the interlayer conductivity. The latter channel, having a metallic temperature dependence but being insensitive to an in-plane magnetic field, may be responsible for magnetoresistance anomalies observed in a number of layered metals. We propose a possible mechanism for the incoherent channel combining interlayer tunneling via local hopping centers and intralayer diffusion.
Incoherent-light processing of single- and poly-crystalline silicon solar cells
Nielsen, L. D.; Larsen, A. N.
Transient heating with incoherent continuous light from a xenon arc-lamp has been studied as a possible process step in the production of single- and poly-crystalline silicon solar cells. Annealing of phosphorus and arsenic ion implantations have been made, with phosphorus implantations leading to solar cell efficiences of 8.3 and 5.8 percent for 100 single crystal and Wacker-SILSO materials, respectively, both without AR-coating. Furthermore, incoherent-light induced diffusion of phosphorus from spin-on deposited doped oxide layer has been studied and has resulted in efficiencies of 7.9 and 6.6 percent, respectively, for the same two types of material. This latter process is concluded to be a promising technique for production of low-cost silicon solar cells with efficiencies of at least 10 percent without any vacuum or high-temperature furnace process steps.
Bright-dark incoherently coupled photovoltaic soliton pair
Institute of Scientific and Technical Information of China (English)
Hou Chun-Feng; Pei Yan-Bo; Zhou Zhong-Xiang; Sun Xiu-Dong
2005-01-01
The coupling between two mutually incoherent optical beams that propagate collinearly in open-circuit photovoltaic photorefractive media is investigated. It is shown that an incoherently coupled bright-dark spatial soliton pair can be formed due to photovoltaic effect. The physical properties of such a soliton pair are also discussed.
Byczkowski, Tomasz; Graczyk, Piotr; Malecki, Jacek
2011-01-01
The purpose of the paper is to provide integral representations of the Poisson kernel for a half-space and balls for hyperbolic Brownian motion and for the classical Ornstein-Uhlenbeck process. The method of proof is based on Girsanov's theorem and yields more complete results as those based on Feynmann-Kac technique.
Wiese, Kay Jörg
2016-04-01
We derive and study two different formalisms used for nonequilibrium processes: the coherent-state path integral, and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path integral and the corresponding field theory, using the annihilation process A+A→A as an example. The field theory contains counterintuitive quartic vertices. We show how they can be interpreted in terms of a first-passage problem. Reformulating the coherent-state path integral as a stochastic equation of motion, the noise generically becomes imaginary. This renders it not only difficult to interpret, but leads to convergence problems at finite times. We then show how alternatively an effective coarse-grained stochastic equation of motion with real noise can be constructed. The procedure is similar in spirit to the derivation of the mean-field approximation for the Ising model, and the ensuing construction of its effective field theory. We finally apply our findings to stochastic Manna sandpiles. We show that the coherent-state path integral is inappropriate, or at least inconvenient. As an alternative, we derive and solve its mean-field approximation, which we then use to construct a coarse-grained stochastic equation of motion with real noise.
Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation
Xu, G.; Garnier, J.; Rumpf, B.; Fusaro, A.; Suret, P.; Randoux, S.; Kudlinski, A.; Millot, G.; Picozzi, A.
2017-08-01
We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses.
Incoherent correlator system for satellite orientation control
Kouris, Aristodemos; Young, Rupert C. D.; Chatwin, Christopher R.; Birch, Philip M.
2002-03-01
An incoherent correlator configuration is proposed and experimentally demonstrated that is capable of recognizing star patterns. The device may thus be employed for the orientation and navigation of a satellite or spacecraft. The correlator employs starlight directly and requires no laser or input spatial light modulator for operation. The filter is constructed form an array of mirrors that may be individually appropriately tilted so as recognize a particular star arrangement. The only other components of the system are a converging lens and CCD array detector. The device is capable of determining the pointing direction and rotation of a satellite or space vehicle. Experimental results employing the mirror array device illuminated with a point source early to simulate starlight are presented.
Dephasing-assisted selective incoherent quantum transport.
Behzadi, Naghi; Ahansaz, Bahram; Kasani, Hadi
2015-10-01
Selective energy transport throughout a quantum network connected to more than one reaction center can play an important role in many natural and technological considerations in photosystems. In this work, we propose a method in which an excitation can be transported from the original site of the network to one of the reaction centers arbitrarily using independent sources of dephasing noises. We demonstrate that in the absence of dephasing noises, the coherent evolution of the system does not have any role in energy transport in the network. Therefore, incoherent evolution via application of dephasing noises throughout a selected path of the network leads to complete transferring of the excitation to a desired reaction center.
Coherent and incoherent processes in resonant photoemission
Energy Technology Data Exchange (ETDEWEB)
Magnuson, M.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others
1997-04-01
In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.
Incoherent twin boundary migration induced by ion irradiation in Cu
Energy Technology Data Exchange (ETDEWEB)
Li, N.; Misra, A. [Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Wang, J.; Wang, Y. Q. [Materials Science and Technology Division, MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Serruys, Y. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Nastasi, M. [Nebraska Center for Energy Sciences Research, University of Nebraska, Lincoln, Nebraska 68588 (United States)
2013-01-14
Grain boundaries can act as sinks for radiation-induced point defects. The sink capability is dependent on the atomic structures and varies with the type of point defects. Using high-resolution transmission electron microscopy, we observed that {Sigma}3{l_brace}112{r_brace} incoherent twin boundary (ITB) in Cu films migrates under Cu{sup 3+} ion irradiation. Using atomistic modeling, we found that {Sigma}3{l_brace}112{r_brace} ITB has the preferred sites for adsorbing interstitials and the preferential diffusion channels along the Shockley partial dislocations. Coupling with the high mobility of grain boundary Shockley dislocations within {Sigma}3{l_brace}112{r_brace} ITB, we infer that {Sigma}3{l_brace}112{r_brace} ITB migrates through the collective glide of grain boundary Shockley dislocations, driven by a concurrent reduction in the density of radiation-induced defects, which is demonstrated by the distribution of nearby radiation-induced defects.
Directory of Open Access Journals (Sweden)
Naoki Takada
2014-09-01
Full Text Available Applicability of two kinds of computational-fluid-dynamics method adopting Cahn-Hilliard (CH and Allen-Cahn (AC-type diffuse-interface advection equations based on a phase-field model (PFM is examined to simulation of motions of microscopic incompressible two-phase fluid on solid surface. A capillarity-driven gas-liquid motion in rectangular channel is simulated by use of a PFM method for solving Navier-Stokes (NS equations and a CH equation, whereas an immiscible liquid-liquid flow in a microchannel with T-junction and square cross section is simulated by use of another PFM method proposed in this study, which adopts a lattice-Boltzmann method based on fictitious particles kinematics as numerical scheme for solving NS equations and an AC equation that is modified to improve volume-of-fluid conservation. The major findings are as follows: (1 effect of capillary force on the dynamic two-phase fluid system with a high density ratio is well predicted for cross-sectional aspect ratio of the channel = 1 and 2; (2 mono-dispersed slug flow pattern transition is reproduced in good agreement with experimental observations in terms of variation in length and interval of droplets as increasing their volumetric flow rates at a constant flow rate ratio = 1. These results prove that the PFM methods can be used for analyzing two-phase fluid motions in various microfluidic devices and micro fabrication processes.
Kandrup, H E
2001-01-01
This paper explores the phenomenon of energy relaxation for stars in a galaxy embedded in a high density environment that is subjected continually to perturbations reflecting the presence of other nearby galaxies and/or incoherent internal pulsations. The analysis is similar to earlier analyses of energy relaxation induced by binary encounters between nearby stars and between stars and giant molecular clouds in that the perturbations are idealised as a sum of near-random events which can be modeled as diffusion and dynamical friction. However, the analysis differs in one important respect: because the time scale associated with these perturbations need not be short compared with the characteristic dynamical time t_D for stars in the original galaxy, the diffusion process cannot be modeled as resulting from a sequence of instantaneous kicks, i.e., white noise. Instead, the diffusion is modeled as resulting from random kicks of finite duration, i.e., coloured noise characterised by a nonzero autocorrelation tim...
Interaction of Nonlocal Incoherent White-Light Solitons
Institute of Scientific and Technical Information of China (English)
HUANG Chun-Fu; GUO Qi
2007-01-01
The propagation and interaction of nonlocal incoherent white-light solitons in strongly nonlocal kerr media is investigated. Numerical simulations show that the interaction properties of nonlocal incoherent white-light solitons are different from the case in local media. The interactions of nonlocal incoherent white-light solitons are always attractive independent of their relative phase, while the other parameters such as the extent of nonlocality and the input power have a great impact on the soliton interactions. Pertinent numerical examples are presented to show their propagation and interaction behaviour further.
Incidental experiences of affective coherence and incoherence influence persuasion.
Huntsinger, Jeffrey R
2013-06-01
When affective experiences are inconsistent with activated evaluative concepts, people experience what is called affective incoherence; when affective experiences are consistent with activated evaluative concepts, people experience affective coherence. The present research asked whether incidental feelings of affective coherence and incoherence would regulate persuasion. Experiences of affective coherence and incoherence were predicted and found to influence the processing of persuasive messages when evoked prior to receipt of such messages (Experiments 1 and 3), and to influence the confidence with which thoughts generated by persuasive messages were held when evoked after presentation of such messages (Experiments 2 and 3). These results extend research on affective coherence and incoherence by showing that they exert a broader impact on cognitive activity than originally assumed.
Incoherent Excitation of Thermally Equilibrated Open Quantum Systems
Pachon, Leonardo A
2012-01-01
Under natural conditions, excitation of biological molecules, which display non-unitary open system dynamics, occurs via incoherent processes such as temperature changes or irradiation by sunlight/moonlight. The dynamics of such processes is explored analytically in a non-Markovian generic model. Specifically, a system S in equilibrium with a thermal bath TB is subjected to an external incoherent perturbation BB (such as sunlight) or another thermal bath TB', which induces time evolution in (S+TB). Particular focus is on (i) the extent to which the resultant dynamics is coherent, and (ii) the role of "stationary coherences", established in the (S+TB) equilibration, in the response to the second incoherent perturbation. Results for systems with parameters analogous to those in light harvesting molecules in photosynthesis show that the resultant dynamical behaviour is incoherent beyond a very short response to the turn-on of the perturbation.
Processing oscillatory signals by incoherent feedforward loops
Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong
From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).
Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs
Institute of Scientific and Technical Information of China (English)
XU Feng-Dan; LIU Zeng-Rong; ZHANG Zhi-Yong; SHEN Jian-Wei
2009-01-01
We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.
Incoherent broadband optical pulse generation using an optical gate
Institute of Scientific and Technical Information of China (English)
Biao Chen; Qiong Jiang
2008-01-01
In two-dimensional (2D) time-spreading/wavelength-hopping optical code division multiple access (OCDMA) systems, employing less coherent broadband optical pulse sources allows lower electrical operating rate and better system performance. An optical gate based scheme for generating weakly coherent(approximately incoherent) broadband optical pulses was proposed and experimentally demonstrated. Inthis scheme, the terahertz optical asymmetric demultiplexer, together with a coherent narrowband controlpulse source, turns an incoherent broadband continuous-wave (CW) light source into the required pulse source.
Chang, Hing-Chiu; Chen, Nan-Kuei
2016-09-01
Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI.
Ciesla, Fred J
2011-01-01
The origin of crystalline grains in comets and the outer regions of protoplanetary disks remains a mystery. It has been suggested that such grains form via annealing of amorphous precursors in the hot, inner region of a protoplanetary disk, where the temperatures needed for such transformations were found, and were then transported outward by some dynamical means. Here we develop a means of tracking the paths that dust grains would have taken through a diffusive protoplanetary disk and examine the types and ranges of environments that particles would have seen over a 10$^{6}$ year time period in the dynamic disk. We then combine this model with three annealing laws to examine how the dynamic evolution of amorphous grains would have led to their physical restructuring and their delivery to various regions of the disk. It is found that "sibling particles"-- those particles that reside at the same location at a given period of time--take a wide range of unique and independent paths through the disk to arrive the...
Incoherent shock waves in long-range optical turbulence
Xu, G.; Garnier, J.; Faccio, D.; Trillo, S.; Picozzi, A.
2016-10-01
Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified presentation of different forms of incoherent shock waves that emerge in the long-range interaction regime of a turbulent optical wave system. These incoherent singularities can develop either in the temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop in the spectral dynamics of the random waves, despite the fact that the causality condition inherent to the response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin-Ono equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation, the regularization of such a collective incoherent shock does not require the formation of a DSW - the regularization is shown to occur by means of a different process of coherence degradation at the shock point. We show that the collective incoherent shock is responsible for an original mechanism of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact solutions are derived in the framework of the long-range Vlasov formalism.
Diffusion Weighted and Trace Images
Directory of Open Access Journals (Sweden)
Helen Nayeri
2009-01-01
Full Text Available "nThe signal intensity in MRI depends on the proton density, T1, T2, and T2* relaxation processes of any ensemble of the spins within each imaging element. Another important contrast mechanism in MRI is signal loss caused by proton dephasing in the presence of coherent and incoherent flow. Diffusion refers to the dispersion of molecules from a region of high concentration to one of low concentration by random molecular or “Brownian” motion. "nDWI is based on the microscopic movement (Brownian motion of water molecules. The motion of water molecules, under the influence of diffusion-sensitizing gradient pulses, causes irreversible signal attenuation (hypointensity on DWI. In restricted diffusion (like acute infarction the signal attenuation is decreased (hyperintensity on DWI. "nIn biological tissues, water diffusion is not truly random. Structural barriers such as membranes and cellular elements, as well as chemical interactions, restrict Brownian motion in 3-D space. Additionally, disturbances associated with tissue perfusion and respiration can alter the biological environment. So it is termed “apparent” because the measured value does not indicate pure diffusion, but reflects capillary perfusion and other processes. ADC (Apparent Diffusion Coefficient maps are typically created by combining at least two DWIs that are differently sensitized to diffusion (different b-values but which remain identical with respect to the other imaging parameters (TR and TE. Diffusion-weighted images are a combination of diffusion information and T2 signal intensity. In order to avoid the hyperintensity effect of T2 signal intensity (T2 shine-through, DW images should be compared with ADC images. ADC maps demonstrate contrast based purely on diffusion differences. "nThe apparent diffusion in tissue is slowed if the protons are “hindered” or slowed in their random motion by the presence of cell membranes, walls, and macromolecules but are not
Diffusion and butterfly velocity at finite density
Niu, Chao; Kim, Keun-Young
2017-06-01
We study diffusion and butterfly velocity ( v B ) in two holographic models, linear axion and axion-dilaton model, with a momentum relaxation parameter ( β) at finite density or chemical potential ( μ). Axion-dilaton model is particularly interesting since it shows linear- T -resistivity, which may have something to do with the universal bound of diffusion. At finite density, there are two diffusion constants D ± describing the coupled diffusion of charge and energy. By computing D ± exactly, we find that in the incoherent regime ( β/T ≫ 1 , β/μ ≫ 1) D + is identified with the charge diffusion constant ( D c ) and D - is identified with the energy diffusion constant ( D e ). In the coherent regime, at very small density, D ± are `maximally' mixed in the sense that D +( D -) is identified with D e ( D c ), which is opposite to the case in the incoherent regime. In the incoherent regime D e ˜ C - ℏv B 2 / k B T where C - = 1 /2 or 1 so it is universal independently of β and μ. However, {D}_c˜ {C}+\\hslash {v}{^B}^2/{k}_BT where C + = 1 or β 2 /16 π 2 T 2 so, in general, C + may not saturate to the lower bound in the incoherent regime, which suggests that the characteristic velocity for charge diffusion may not be the butterfly velocity. We find that the finite density does not affect the diffusion property at zero density in the incoherent regime.
Electromagnetically Induced Grating Without Absorption Using Incoherent Pump
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang
2017-10-01
We propose a scheme for creating electromagnetically induced grating in a four-level double- Λ atomic system driven by a coupling field and an incoherent pump field. Owing to the incoherent pumping process, large refractivity accompanied with vanishing absorption or even gain across the probe field can be built up in the atoms, thus phase grating or gain-phase grating, which diffracts a probe light into different directions, can be formed with the help of a standing-wave coupling field. The diffraction efficiency of the gratings can be tuned by the coupling field intensity and the incoherent pump rate, hence the proposed gratings should be suitable for beam splitter and optical switching in optical communication and networking.
Increased noise signal processing in incoherent radar systems
Directory of Open Access Journals (Sweden)
I. I. Chesanovskyi
2013-09-01
Full Text Available Introduction. The work is devoted to the method of increasing coherence and noise immunity pulse radar systems with incoherent sources probing signals. Problem. Incongruities between a resolution and a range of pulsed radar systems can not be resolved within the classical approaches of building incoherent radar systems, requiring new approaches in their construction. The main part. The paper presents a method of two-stage processing incoherent pulsed radar signals, allowing to compensate and use the information available to them and the angular amplitude of spurious modulation. Conclusions. Simulation results and research functions of these expressions of uncertainty indicate that use volatility as an additional transmitter modulation allows to significantly improve the resolution and robustness of the radar system.
Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays
Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim
2017-08-01
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
Incoherent x-ray scattering in single molecule imaging
Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin
2014-01-01
Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...
Tremblay, Benoit; Vincent, Alain
2017-01-01
We present a generalization of the resistive minimum-energy fit (MEF-R: Tremblay and Vincent, Solar Phys. 290, 437, 2015) for non-force-free (NFF) magnetic fields. In MEF-R, an extremum principle is used to infer two-dimensional maps of plasma motions [boldsymbol{v}(x,y)] and magnetic eddy diffusivity [η _{eddy}(x,y)] at the photosphere. These reconstructions could be used as boundary conditions in data-driven simulations or in data assimilation. The algorithm is validated using the analytical model of a resistive expanding spheromak by Rakowski, Laming, and Lyutikov ( Astrophys. J. 730, 30, 2011). We study the flaring Active Region AR 12158 using a series of magnetograms and Dopplergrams provided by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The results are discussed for a non-force-free magnetic-field reconstruction [boldsymbol{B}_{NFF}] (Hu and Dasgupta in Solar Phys. 247, 87, 2008). We found that the vertical plasma velocities [vz(x,y)] inferred using MEF-R are very similar to the observed Doppler velocities [vr(x,y)]. Finally, we study the potential spatial correlation between microturbulent velocities and significant values of η_{eddy}(x,y).
Measuring Incoherence in Description Logic-Based Ontologies
Qi, Guilin; Hunter, Anthony
Ontologies play a core role in the success of the Semantic Web as they provide a shared vocabulary for different resources and applications. Developing an error-free ontology is a difficult task. A common kind of error for an ontology is logical contradiction or incoherence. In this paper, we propose some approaches to measuring incoherence in DL-based ontologies. These measures give an ontology engineer important information for maintaining and evaluating ontologies. We implement the proposed approaches using the KAON2 reasoner and provide some preliminary but encouraging empirical results.
Spatially incoherent illumination interferometry: a PSF almost insensitive to aberrations
Xiao, Peng; Boccara, A Claude
2016-01-01
We show that with spatially incoherent illumination, the point spread function width of an imaging interferometer like that used in full-field optical coherence tomography (FFOCT) is almost insensitive to aberrations that mostly induce a reduction of the signal level without broadening. This is demonstrated by comparison with traditional scanning OCT and wide-field OCT with spatially coherent illuminations. Theoretical analysis, numerical calculation as well as experimental results are provided to show this specific merit of incoherent illumination in full-field OCT. To the best of our knowledge, this is the first time that such result has been demonstrated.
Semiclassical Theory of Superresolution for Two Incoherent Optical Point Sources
Tsang, Mankei; Lu, Xiao-Ming
2016-01-01
Using a semiclassical model of photodetection with Poissonian noise and insights from quantum metrology, we prove that linear optics and photon counting can optimally estimate the separation between two incoherent point sources without regard to Rayleigh's criterion. The model is applicable to weak thermal or fluorescent sources as well as lasers.
Coherent imaging with pseudo-thermal incoherent light
DEFF Research Database (Denmark)
Gatti, A.; Bache, Morten; Magatti, D.
2006-01-01
We investigate experimentally fundamental properties of coherent ghost imaging using spatially incoherent beams generated from a pseudo-thermal source. A complementarity between the coher- ence of the beams and the correlation between them is demonstrated by showing a complementarity between ghos...
Incoherent photoproduction of ϕ-meson from deuteron at low energies
Directory of Open Access Journals (Sweden)
Kiswandhi Alvin
2014-06-01
Full Text Available The LEPS and CLAS data of the incoherent photoproduction of ϕ meson from deuteron at low energies are studied with a model for ϕ meson photoproduction from nucleon consisting of Pomeron, π, and η meson exchanges in the t-channel, and a postulated resonance, with parameters fitted to recent LEPS data on ϕ production from proton near threshold. The resonance was introduced to explain an observed bump in the forward differential cross section. Within impulse approximation, we find that the Fermi motion, final state interaction, and the resonance excitation all give important contributions to improve the agreement with data. However, discrepancies remain. Contributions from ϕ production via spectator nucleon by other mesons like π,ρ, and ϕ produced from the first nucleon need to be calculated in order to gain insight on the medium effects as well as the existence of the postulated nucleon resonance.
Coherent and incoherent inference in phylogeography and human evolution.
Templeton, Alan R
2010-04-06
A hypothesis is nested within a more general hypothesis when it is a special case of the more general hypothesis. Composite hypotheses consist of more than one component, and in many cases different composite hypotheses can share some but not all of these components and hence are overlapping. In statistics, coherent measures of fit of nested and overlapping composite hypotheses are technically those measures that are consistent with the constraints of formal logic. For example, the probability of the nested special case must be less than or equal to the probability of the general model within which the special case is nested. Any statistic that assigns greater probability to the special case is said to be incoherent. An example of incoherence is shown in human evolution, for which the approximate Bayesian computation (ABC) method assigned a probability to a model of human evolution that was a thousand-fold larger than a more general model within which the first model was fully nested. Possible causes of this incoherence are identified, and corrections and restrictions are suggested to make ABC and similar methods coherent. Another coalescent-based method, nested clade phylogeographic analysis, is coherent and also allows the testing of individual components of composite hypotheses, another attribute lacking in ABC and other coalescent-simulation approaches. Incoherence is a highly undesirable property because it means that the inference is mathematically incorrect and formally illogical, and the published incoherent inferences on human evolution that favor the out-of-Africa replacement hypothesis have no statistical or logical validity.
Dynamic Glass Patterns Have Little Effect on Coherent Motion Detection Thresholds
Directory of Open Access Journals (Sweden)
Alex R Wade
2012-05-01
Full Text Available Dynamic Glass patterns (dGPs are fields of coherently oriented dipoles that are updated rapidly (>5 Hz. Although they have no oriented motion energy, individual Glass patterns yield a weak percept of coherent motion, and in the case of dGPs, this effect is so prominent that subjects can confuse them for real coherent motion fields at short presentation durations (Krekelberg et al 2003, Nature 424 674–677. It has even been suggested that dGPs processing involves some of the neural circuitry used for motion processing. The detection thresholds for fields of coherently moving dots increase significantly when they are superimposed on incoherent motion noise. Similarly, detecting coherent Glass patterns is more difficult in the presence of superimposed incoherent dipoles. Here, we asked if Glass patterns and coherent motion interfere with each other at or before the site mediating their detection. We measured detection coherence thresholds for dGPs and coherent motion stimuli alone or in the presence of incoherent noise patterns (randomly oriented dipoles or moving dots. dGPs and coherent motion stimuli were affected very differently by different noise fields. Remarkably, coherent motion threholds were largely unaffected by the presence of dense, randomly oriented dipole fields while dGP thresholds were elevated by both incoherent motion and random dipoles to an equal degree. These results are consistent with our recent neuroimaging data indicating different processing networks for coherent motion and dGPs.
Directory of Open Access Journals (Sweden)
Berrod Quentin
2015-01-01
Full Text Available We report on QuasiElastic Neutron Scattering (QENS investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.
Gardner, A. B.; Howard, S.; Waddington, T. C.; Richardson, R. M.; Tomkinson, J.
1981-05-01
Incoherent quasi-elastic neutron scattering has been used to study the reorientational motions of the cyclopentadienyl rings in ferrocene, nickelocene and ruthenocene. The results for ferrocene show that the activation energy for ring rotation drops above the 164 K phase transition to 4.4 ± 0.5 kJ mol-1 (which is approximately half its low temperature value) but the rings still appear to jump between only five orientations on the observable time scale. At room temperature, the rings in nickelocene appear to behave the same as in ferrocene but in ruthenocene they reorientate much less frequently and resemble those in ferrocene below 164 K.
Coherent and Incoherent Structural Dynamics in Laser-Excited Antimony
Waldecker, Lutz; Bertoni, Roman; Vasileiadis, Thomas; Garcia, Martin E; Zijlstra, Eeuwe S; Ernstorfer, Ralph
2016-01-01
We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric \\Ag\\ optical phonon mode via the shift of the minimum of the atomic potential energy surface. Molecular dynamics simulations are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. Applying a modified two-temperature model, the electron-phonon coupling is determined from the data as a function of electronic temperature.
Coherent and incoherent nonparaxial self-accelerating Weber beams
Zhang, Yiqi; Wen, Feng; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R
2016-01-01
We investigate the coherent and incoherent nonparaxial Weber beams, theoretically and numerically. We show that the superposition of coherent self-accelerating Weber beams with transverse displacement cannot display the nonparaxial accelerating Talbot effect. The reason is that their lobes do not accelerate in unison, which is a requirement for the appearance of the effect. While for the incoherent Weber beams, they naturally cannot display the accelerating Talbot effect but can display the nonparaxial accelerating properties, although the transverse coherence length is smaller than the beam width, based on the second-order coherence theory. Our research method directly applies to the nonparaxial Mathieu beams as well, and one will obtain similar conclusions as for the Weber beams, although this is not discussed in the paper. Our investigation identifies families of nonparaxial accelerating beams that do not exhibit the accelerating Talbot effect, and in addition broadens the understanding of coherence proper...
Incoherent-light-flash annealing of phosphorus-implanted silicon
Correra, L.; Pedulli, L.
1980-07-01
Incoherent light pulses emitted from a xenon flash lamp were used to anneal radiation damage in (100) silicon implanted with 2×1015 31P+/cm2 at 100 keV. Electrical carrier concentration has been determined by means of differential sheet resistivity and Hall effect together with the anodic oxidation stripping technique; the surface photovoltage technique has been used to evaluate bulk lifetime and Rutherford backscattering and transmission electron microscopy for analysis of radiation damage. Damage recovery appears to take place via a solid phase epitaxial process. Electrical activity and carrier mobility values of samples annealed by incoherent light are similar to those obtained by laser, electron beam, and furnace annealing. The bulk lifetime of minority carriers is not degraded.
Revealing proton shape fluctuations with incoherent diffraction at high energy
Mäntysaari, Heikki; Schenke, Björn
2016-08-01
The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J /Ψ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For ρ meson production, we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.
Revealing proton shape fluctuations with incoherent diffraction at high energy
Mäntysaari, Heikki
2016-01-01
The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of $J/\\Psi$ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For $\\rho$ meson production we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of g...
Quantum theory of superresolution for two incoherent optical point sources
Tsang, Mankei; Lu, Xiaoming
2015-01-01
We prove that Rayleigh's criterion is fundamentally irrelevant to the localization of two incoherent point sources in far-field optical imaging. This is done in two ways: (1) We derive the quantum Cram\\'er-Rao error bound for the problem under standard assumptions for thermal optical sources, and the bound shows little sign of the accuracy degradation that plagues conventional imaging when Rayleigh's criterion is violated. (2) We propose a linear optical measurement method called spatial-mode demultiplexing (SPADE) that can attain the quantum bound for separation estimation regardless of the distance between the sources, a task conventional methods perform poorly for close sources. These results demonstrate that Rayleigh's criterion is nothing but a technicality specific to conventional imaging, and cleverer quantum measurements can locate two incoherent sources with arbitrary separation almost as accurately as conventional methods do for isolated sources.
Cosmic microwave background anisotropies seeded by incoherent sources
Riazuelo, A; Riazuelo, Alain; Deruelle, Nathalie
2000-01-01
The cosmic microwave background anisotropies produced by active seeds, such as topological defects, have been computed recently for a variety of models by a number of authors. In this paper we show how the generic features of the anisotropies caused by active, incoherent, seeds (that is the absence of acoustic peaks at small scales) can be obtained semi-analytically, without entering into the model dependent details of their formation, structure and evolution.
Evidence of strong proton shape fluctuations from incoherent diffraction
Mäntysaari, Heikki
2016-01-01
We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction $x$.
Coherent imaging with incoherent light in digital holographic microscopy
Chmelik, Radim
2012-01-01
Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.
Interactions of incoherent localized beams in a photorefractive medium
Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Xu, Jianeng; Zhang, Yanpeng
2014-01-01
We investigate numerically interactions between two bright or dark incoherent localized beams in an strontium barium niobate photorefractive crystal in one dimension, using the coherent density method. For the case of bright beams, if the interacting beams are in-phase, they attract each other during propagation and form bound breathers; if out-of-phase, the beams repel each other and fly away. The bright incoherent beams do not radiate much and form long-lived well-defined breathers or quasi-stable solitons. If the phase difference is $\\pi/2$, the interacting beams may both attract or repel each other, depending on the interval between the two beams, the beam widths, and the degree of coherence. For the case of dark incoherent beams, in addition to the above the interactions also depend on the symmetry of the incident beams. As already known, an even-symmetric incident beam tends to split into a doublet, whereas an odd-symmetric incident beam tends to split into a triplet. When launched in pairs, the dark be...
An effective method for incoherent scattering radar's detecting ability evaluation
Lu, Ziqing; Yao, Ming; Deng, Xiaohua
2016-06-01
Ionospheric incoherent scatter radar (ISR), which is used to detect ionospheric electrons and ions, generally, has megawatt class transmission power and hundred meter level antenna aperture. The crucial purpose of this detecting technology is to get ionospheric parameters by acquiring the autocorrelation function and power spectrum of the target ionospheric plasma echoes. Whereas the ISR's echoes are very weak because of the small radar cross section of its target, estimating detecting ability will be significantly instructive and meaningful for ISR system design. In this paper, we evaluate the detecting ability through signal-to-noise ratio (SNR). The soft-target radar equation is deduced to be applicable to ISR, through which we use data from International Reference Ionosphere model to simulate signal-to-noise ratio (SNR) of echoes, and then comparing the measured SNR from European Incoherent Scatter Scientific Association and Advanced Modular Incoherent Scatter Radar with the simulation. The simulation results show good consistency with the measured SNR. For ISR, the topic of this paper is the first comparison between the calculated SNR and radar measurements; the detecting ability can be improved through increasing SNR. The effective method for ISR's detecting ability evaluation provides basis for design of radar system.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Fresnel incoherent correlation holography and its imaging properties
Wang, Zhipeng; Ma, Haotong; Ren, Ge; Xie, Zongliang; Yu, Huan
2016-09-01
The incoherent digital holography makes it possible to record holograms under incoherent illumination, which lowers requirement for the coherence of light sources and results in expanding its application to white-light and fluorescence illuminating circumstances. The Fresnel Incoherent Correlation Holography (FINCH) technology achieves diverging the incident beam and shifting phase by mounting phase masks on the phase modulator. Then it obtains holograms with phase difference and reconstructs the image. In this paper, we explain the principles of the FINCH technology, and introduce the n-step phase-shifting method which is utilized to eliminate the twin image and bias term in holograms. During the research, we studied what impact the term n may have on imaging performance, compared imaging performances when different phase masks are mounted on SLM, and established simulation system on imaging with which imaging performances are deeply inspected. At last, it is shown in the research that the FINCH technology could record holograms of objects, from which clear images could be reconstructed digitally.
Wave optics approach for incoherent imaging simulation through distributed turbulence
Underwood, Thomas A.; Voelz, David G.
2013-09-01
An approach is presented for numerically simulating incoherent imaging using coherent wave optics propagation methods. The approach employs averaging of irradiance from uncorrelated coherent waves to produce incoherent results. Novel aspects of the method include 1) the exploitation of a spatial windowing feature in the wave optics numerical propagator to limit the angular spread of the light and 2) a simple propagation scaling concept to avoid aliased field components after the focusing element. Classical linear systems theory is commonly used to simulate incoherent imaging when it is possible to incorporate aberrations and/or propagation medium characteristics into an optical transfer function (OTF). However, the technique presented here is useful for investigating situations such as "instantaneous" short-exposure imaging through distributed turbulence and phenomena like anisoplanatism that are not easily modeled with the typical linear systems theory. The relationships between simulation variables such as spatial sampling, source and aperture support, and intermediate focal plane are discussed and the requirement or benefits of choosing these in certain ways are demonstrated.
Blind separation of incoherent and spatially disjoint sound sources
Dong, Bin; Antoni, Jérôme; Pereira, Antonio; Kellermann, Walter
2016-11-01
Blind separation of sound sources aims at reconstructing the individual sources which contribute to the overall radiation of an acoustical field. The challenge is to reach this goal using distant measurements when all sources are operating concurrently. The working assumption is usually that the sources of interest are incoherent - i.e. statistically orthogonal - so that their separation can be approached by decorrelating a set of simultaneous measurements, which amounts to diagonalizing the cross-spectral matrix. Principal Component Analysis (PCA) is traditionally used to this end. This paper reports two new findings in this context. First, a sufficient condition is established under which "virtual" sources returned by PCA coincide with true sources; it stipulates that the sources of interest should be not only incoherent but also spatially orthogonal. A particular case of this instance is met by spatially disjoint sources - i.e. with non-overlapping support sets. Second, based on this finding, a criterion that enforces both statistical and spatial orthogonality is proposed to blindly separate incoherent sound sources which radiate from disjoint domains. This criterion can be easily incorporated into acoustic imaging algorithms such as beamforming or acoustical holography to identify sound sources of different origins. The proposed methodology is validated on laboratory experiments. In particular, the separation of aeroacoustic sources is demonstrated in a wind tunnel.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Cao, Anzhou; Guo, Zheng; Lv, Xianqing; Song, Jinbao; Zhang, Jicai
2017-08-01
Based on observations of the currents at six moorings from March 2010 to April 2011, the coherent and incoherent features, seasonal behaviors and spatial variations of internal tides (ITs) in the northern South China Sea (SCS) are investigated. Measurements of the currents indicate that both diurnal and semidiurnal ITs contain stronger coherent signals than incoherent ones at all moorings. In the measuring range, coherent internal tidal current variances explain 70% of the semidiurnal motion at most moorings. However, the proportion of coherent signals in the diurnal motion shows a non-monotonically decreasing trend with the westward propagation of diurnal ITs. Coherent signals of diurnal and semidiurnal ITs exhibit different seasonal variability at the six moorings: Diurnal ITs are stronger in winter (December to February) and summer (June to August) than in spring (March to May) and autumn (September to November), whereas stronger semidiurnal ITs always appear in spring and autumn. Combining these results with the temporal variation of barotropic tidal currents at the Luzon Strait (LS), it can be concluded that the seasonal variability of ITs at the six moorings are determined by the barotropic tides at the LS. In addition, this study shows that there are asymmetric features of ITs to the east and west of the LS.
Directory of Open Access Journals (Sweden)
Wang Wenxi
2012-01-01
Full Text Available In the study a simple model of coagulation for nanoparticles is developed to study the effect of diffusion on the particle coagulation in the one-dimensional domain using the Taylor-series expansion method of moments. The distributions of number concentration, mass concentration, and particle average volume induced by coagulation and diffusion are obtained.
Incoherent vs. coherent behavior in the normal state of copper oxide superconductors
Tesanovic, Zlatko
1991-01-01
The self-consistent quantum fluctuations around the mean-field Hartree-Fock state of the Hubbard model provide a very good description of the ground state and low temperature properties of a 2-D itinerant antiferromagnet. Very good agreement with numerical calculations and experimental data is obtained by including the one- and two-loop spin wave corrections to various physical quantities. In particular, the destruction of the long-range order above the Neel temperature can be understood as a spontaneous generation of a length-scale epsilon(T), which should be identified as the spin correlation length. For finite doping, the question of the Hartree-Fock starting point becomes a more complex one since an extra hole tends to self-trap in antiferromagnetic background. Such quantum defects in an underlying antiferromagnetic state can be spin-bags or vortex-like structures and tend to suppress the long-range order. If motion of the holes occurs on a time-scale shorter than the one associated with the motion of these quantum defects of a spin background, one obtains several important empirical features of the normal state of CuO superconductors like linear T-dependence of resistivity, the cusp in the tunneling density of states, etc. As opposed to a familiar Fermi-liquid behavior, the phenomenology of the above system is dominated by a large incoherent piece of a single hole propagator, resulting in many unusual normal state properties.
On the near-threshold incoherent $\\phi$ photoproduction on the deuteron: any trace of a resonance?
Kiswandhi, Alvin; Dong, Yu Bing
2016-01-01
We study the near-threshold incoherent $\\phi$ photoproduction on the deuteron based on a model of $\\gamma N \\to \\phi N$, consisting of Pomeron, $(\\pi, \\eta)$ exchanges, and a $J^P = 3/2^-$ resonance, which describes the low energy $\\gamma p \\to \\phi p$ LEPS data well, including the peak in the forward differential cross section. The calculation is done up to double rescatterings, with the spin dependence of the elementary $\\gamma N \\to \\phi N$ amplitude retained throughout the calculation. The Fermi motion and final-state interactions (FSI) are all properly treated as prescribed by realistic nucleon-nucleon interaction. The couplings of the resonance to $\\gamma n$ and $\\phi n$ channels are estimated with the help of a constituent quark model. The main features of the LEPS and CLAS data are described reasonably well except for some quantitative discrepancies at very low energies and low momentum transfers regions. It is found that contributions of Fermi motion, $pn$ FSI, and resonance are all indispensable in ...
Energy Technology Data Exchange (ETDEWEB)
Schramm, N.; D' Anastasi, M.; Reiser, M.F.; Zech, C.J. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany)
2012-08-15
Diffuse liver diseases show an increasing prevalence. The diagnostic gold standard of liver biopsy has several disadvantages. There is a clinical demand for non-invasive imaging-based techniques to qualitatively and quantitatively evaluate the entire liver. Ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used. Steatosis: chemical shift and frequency selective imaging, MR spectroscopy (MRS). Hemochromatosis: MR-based iron quantification. Fibrosis: MR elastography, diffusion, intravoxel incoherent motion (IVIM) and MR perfusion. T1-weighted in and opposed phase imaging is the clinically most frequently used MR technique to noninvasively detect and quantify steatosis. New methods for quantification that are not influenced by confounders like iron overload are under investigation. The most sensitive method to measure the fat content of the liver is MRS. As data acquisition and analysis remain complex and there is no whole organ coverage, MRS of the liver is not a routine method. With an optimized protocol incorporating T2* sequences, MRI is the modality of choice to quantify iron overload in hemochromatosis. Standard MR sequences cannot depict early stages of liver fibrosis. Advanced MR techniques (e.g. elastography, diffusion, IVIM and perfusion) for noninvasive assessment of liver fibrosis appear promising but their role has to be further investigated. (orig.) [German] Die Praevalenz diffuser Lebererkrankungen nimmt zu. Der klinische Goldstandard, die Leberbiopsie, hat zahlreiche Nachteile. Es besteht ein Bedarf an bildgebenden Verfahren zur nichtinvasiven qualitativen und quantitativen Beurteilung der gesamten Leber bei diesen Erkrankungen. Hier sind Ultraschall, CT und MRT zu nennen. Steatosis: Chemical-shift- und frequenzselektive Bildgebung, MR-Spektroskopie (MRS) zur Fettquantifizierung. Haemochromatose: MR-basierte Eisenquantifizierung. Fibrose: MR-Elastographie, Diffusion, ''intravoxel incoherent motion
Energy Technology Data Exchange (ETDEWEB)
Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Yang, Shun-Chung; Chen, Ya-Fang; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)
2017-01-15
To investigate the feasibility of simultaneously assessing cerebral blood volume and diffusion heterogeneity using hybrid diffusion-kurtosis (DK) and intravoxel-incoherent-motion (IVIM) MR imaging. Fifteen healthy volunteers and 30 patients with histologically proven brain tumours (25 WHO grade II-IV gliomas and five metastases) were recruited. On a 3-T system, diffusion-weighted imaging was performed with six b-values ranging from 0 to 1,700 s/mm{sup 2}. Nonlinear least-squares fitting was employed to extract diffusion coefficient (D), diffusion kurtosis coefficient (K, a measure of the degree of non-Gaussian and heterogeneous diffusion) and intravascular volume fraction (f, a measure proportional to cerebral blood volume). Repeated-measures multivariate analysis of variance and receiver operating characteristic analysis were performed to assess the ability of D/K/f in differentiating contrast-enhanced tumour from peritumoral oedema and normal-appearing white matter. Based on our imaging setting (baseline signal-to-noise ratio = 32-128), coefficient of variation was 14-20 % for K, ∝6 % for D and 26-44 % for f. The indexes were able to differentiate contrast-enhanced tumour (Wilks' λ = 0.026, p < 10{sup -3}), and performance was greatest with K, followed by f and D. Hybrid DK IVIM imaging is capable of simultaneously measuring cerebral perfusion and diffusion indexes that together may improve brain tumour diagnosis. (orig.)
Institute of Scientific and Technical Information of China (English)
Hebert; Alberto; Vargas; Edward; Malnor; Lawrence; Yousef; Mazaheri; Evis; Sala
2015-01-01
Diffusion-weighted magnetic resonance imaging(DWMRI) is considered part of the standard imaging protocol for the evaluation of patients with prostate cancer.It has been proven valuable as a functional tool for qualitative and quantitative analysis of prostate cancer beyond anatomical MRI sequences such as T2-weighted imaging. This review discusses ongoing controversies in DW-MRI acquisition, including the optimal number of b-values to be used for prostate DWI, and summarizes the current literature on the use of advanced DWMRI techniques. These include intravoxel incoherent motion imaging, which better accounts for the nonmono-exponential behavior of the apparent diffusion coefficient as a function of b-value and the influence of perfusion at low b-values. Another technique is diffusion kurtosis imaging(DKI). Metrics from DKI reflect excess kurtosis of tissues, representing its deviation from Gaussian diffusion behavior. Preliminary results suggest that DKI findings may have more value than findings from conventional DW-MRI for the assessment of prostate cancer.
Charge diffusion and the butterfly effect in striped holographic matter
Lucas, Andrew
2016-01-01
Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.
Charge diffusion and the butterfly effect in striped holographic matter
Energy Technology Data Exchange (ETDEWEB)
Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)
2016-10-26
Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.
Incoherent pulse Doppler lidar as the velocimeter system
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This note reports a new type of incoherent pulse laser Doppler lidar velocimeter with iodine molecular filter as a frequency discriminator. Its transmitter subsystem applies a Nd:YAG pulse laser which is injected with a single longitudinal-mode diode pumped continuous seeder laser.The field experiment proved that this velocimeter measurement results are consistent with those measured by photoelectric velocimeter. Measurements of eight different velocities show that the standard deviation is 0.56 m/s, the range resolution is 3.75 m.
Spin incoherent transport in density-modulated quantum wires
K.M. Liu; Lin, H. I.; Umansky, V.; S. Y. Hsu
2009-01-01
Density, temperature and magnetic field dependences on electron transport in a quantum wire were studied. Decrease of carrier density gives a negative conductance correction on the first plateau at low temperatures. The prominent and mysterious "0.7 structure" is more clearly resolved at low densities. The thermal behavior of the conductance follows the predictions of the spin-incoherent transport. The 0.7 structure at a low density drops to $e^2/h$ in a smaller in-plane magnetic field. The f...
Speed and efficiency limits of multilevel incoherent heat engines
Mukherjee, V.; Niedenzu, W.; Kofman, A. G.; Kurizki, G.
2016-12-01
We present a comprehensive theory of heat engines (HE) based on a quantum-mechanical "working fluid" (WF) with periodically modulated energy levels. The theory is valid for any periodicity of driving Hamiltonians that commute with themselves at all times and do not induce coherence in the WF. Continuous and stroke cycles arise in opposite limits of this theory, which encompasses hitherto unfamiliar cycle forms, dubbed here hybrid cycles. The theory allows us to discover the speed, power, and efficiency limits attainable by incoherently operating multilevel HE depending on the cycle form and the dynamical regimes.
Energy Technology Data Exchange (ETDEWEB)
Barbieri, Sebastiano; Broennimann, Michael; Vermathen, Peter; Thoeny, Harriet C. [Inselspital University Hospital, Institute of Diagnostic, Pediatric, and Interventional Radiology, Bern (Switzerland); Boxler, Silvan [Inselspital, Inselspital University Hospital, Department of Urology, Bern (Switzerland)
2017-04-15
To differentiate prostate cancer lesions with high and with low Gleason score by diffusion-weighted-MRI (DW-MRI). This prospective study was approved by the responsible ethics committee. DW-MRI of 84 consenting prostate and/or bladder cancer patients scheduled for radical prostatectomy were acquired and used to compute apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM: the pure diffusion coefficient D{sub t}, the pseudo-diffusion fraction F{sub p} and the pseudo-diffusion coefficient D{sub p}), and high b value (as acquired and Hessian filtered) parameters within the index lesion. These parameters (separately and combined in a logistic regression model) were used to differentiate lesions depending on whether whole-prostate histopathological analysis after prostatectomy determined a high (≥7) or low (6) Gleason score. Mean ADC and D{sub t} differed significantly (p of independent two-sample t test < 0.01) between high- and low-grade lesions. The highest classification accuracy was achieved by the mean ADC (AUC 0.74) and D{sub t} (AUC 0.70). A logistic regression model based on mean ADC, mean F{sub p} and mean high b value image led to an AUC of 0.74 following leave-one-out cross-validation. Classification by IVIM parameters was not superior to classification by ADC. DW-MRI parameters correlated with Gleason score but did not provide sufficient information to classify individual patients. (orig.)
Near-threshold incoherent ϕ photoproduction on the deuteron: Searching for traces of a resonance
Kiswandhi, Alvin; Yang, Shin Nan; Dong, Yu Bing
2016-07-01
We study the near-threshold incoherent ϕ photoproduction on the deuteron based on a model of γ N →ϕ N , consisting of Pomeron, (π ,η ) exchanges, and a JP=3 /2- resonance, which describes the low-energy γ p →ϕ p LEPS data well, including the peak in the forward differential cross section. The calculation is done up to double rescatterings, with the spin dependence of the elementary γ N →ϕ N amplitude retained throughout the calculation. The Fermi motion and final-state interactions (FSIs) are all properly treated as prescribed by realistic nucleon-nucleon interaction. The couplings of the resonance to γ n and ϕ n channels are estimated with the help of a constituent quark model. The main features of the LEPS and CLAS data are described reasonably well except for some quantitative discrepancies at very low energies and low-momentum-transfer regions. It is found that contributions of Fermi motion, p n FSI, and resonance are all indispensable in bridging the differences between the single-scattering results and the data. The off-shell rescattering is found to be important because it cancels out a large portion of the on-shell contribution. The discrepancies at low-momentum-transfer regions might be related to the binning size of the data. No peak is found to be associated with the weak resonance because it gets smeared out by the Fermi motion and FSI with the deuterium target. The problem at very-low-energy regions hints at the possible contributions from other mechanisms and should be investigated in depth with the use of recent high-statistics γ p →ϕ p data from CLAS.
Collective ion diffusion and localized single particle dynamics in pyridinium-based ionic liquids.
Burankova, Tatsiana; Hempelmann, Rolf; Wildes, Andrew; Embs, Jan P
2014-12-11
Quasielastic neutron scattering with polarized neutrons allows for an experimental separation of single-particle and collective processes, as contained in the incoherent and coherent scattering contributions. This technique was used to investigate the dynamical processes in the pyridinium-based ionic liquid 1-butylpyridinium bis(trifluoromethylsulfonyl)-imide. We observed two diffusion processes with different time scales. The slower diffusional process was present in both the coherent and the incoherent contribution, meaning that this process has at least a partial collective nature. The second faster localized process is only present in the incoherent scattering contribution. We conclude that it is a true single-particle process on a shorter time scale.
Off-axis self-interference incoherent digital holographic microscopy
Jeon, Philjun; Lee, Heejung; So, Byunghwy; Hwang, Wonsang; Bae, Yoonsung; Kim, Dugyoung
2017-03-01
3D imaging is demanding technology required in fluorescence microscopy. Even though holography is a powerful technique, it could not be used easily in fluorescence microscopy because of low coherence of fluorescence light. Lately, several incoherent holographic methods such as scanning holography, Fresnel in coherent correlation holography (FINCH), and self-interference incoherent digital holography (SIDH) have been proposed. However, these methods have many problems to be overcome for practical applications. For example, DC term removal, twin image ambiguity, and phase unwrapping problems need to be resolved. Off-axis holography is a straightforward solution which can solve most of these problems. We built an off-axis SIDH system for fluorescence imaging, and investigated various conditions and requirements for practical holographic fluorescence microscopy. Our system is based on a modified Michelson interferometer with a flat mirror at one arm and a curved mirror at the other arm of the interferometer. We made a phantom 3D fluorescence object made of 2 single-mode fibers coupled to a single red LED source to mimic 2 fluorescence point sources distributed by a few tens of micrometers apart. A cooled EM-CCD was used to take holograms of these fiber ends which emit only around 180 nW power.
Coherence and incoherence collective behavior in financial market
Zhao, Shangmei; Xie, Qiuchao; Lu, Qing; Jiang, Xin; Chen, Wei
2015-10-01
Financial markets have been extensively studied as highly complex evolving systems. In this paper, we quantify financial price fluctuations through a coupled dynamical system composed of phase oscillators. We find that a Financial Coherence and Incoherence (FCI) coexistence collective behavior emerges as the system evolves into the stable state, in which the stocks split into two groups: one is represented by coherent, phase-locked oscillators, the other is composed of incoherent, drifting oscillators. It is demonstrated that the size of the coherent stock groups fluctuates during the economic periods according to real-world financial instabilities or shocks. Further, we introduce the coherent characteristic matrix to characterize the involvement dynamics of stocks in the coherent groups. Clustering results on the matrix provides a novel manifestation of the correlations among stocks in the economic periods. Our analysis for components of the groups is consistent with the Global Industry Classification Standard (GICS) classification and can also figure out features for newly developed industries. These results can provide potentially implications on characterizing the inner dynamical structure of financial markets and making optimal investment into tragedies.
QR code optical encryption using spatially incoherent illumination
Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.; Starikov, R. S.
2017-02-01
Optical encryption is an actively developing field of science. The majority of encryption techniques use coherent illumination and suffer from speckle noise, which severely limits their applicability. The spatially incoherent encryption technique does not have this drawback, but its effectiveness is dependent on the Fourier spectrum properties of the image to be encrypted. The application of a quick response (QR) code in the capacity of a data container solves this problem, and the embedded error correction code also enables errorless decryption. The optical encryption of digital information in the form of QR codes using spatially incoherent illumination was implemented experimentally. The encryption is based on the optical convolution of the image to be encrypted with the kinoform point spread function, which serves as an encryption key. Two liquid crystal spatial light modulators were used in the experimental setup for the QR code and the kinoform imaging, respectively. The quality of the encryption and decryption was analyzed in relation to the QR code size. Decryption was conducted digitally. The successful decryption of encrypted QR codes of up to 129 × 129 pixels was demonstrated. A comparison with the coherent QR code encryption technique showed that the proposed technique has a signal-to-noise ratio that is at least two times higher.
Water diffusion in fully hydrated porcine stratum corneum
Energy Technology Data Exchange (ETDEWEB)
Pieper, J.; Charalambopoulou, G.; Steriotis, Th.; Vasenkov, S.; Desmedt, A.; Lechner, R.E
2003-08-01
The microscopic mechanisms of water diffusion in fully hydrated porcine stratum corneum (SC) have been studied by a combination of incoherent quasielastic neutron scattering (QENS) and pulsed field gradient-nuclear magnetic resonance (PFG-NMR) for two sample orientations. The presence of three types of water in fully hydrated SC is inferred on the basis of water sorption isotherm data, i.e., (a) bound and (b) weakly bound hydration water forming layers between adjacent lipid bilayers of SC, as well as (c) bulk water probably located in the corneocytes and in intercellular regions. Water self-diffusion coefficients for motions parallel and perpendicular to the membrane plane of D{sub parallel}=3.30x10{sup -10} m{sup 2}/s and D{sub perpendicular}=1.56x10{sup -10} m{sup 2}/s, respectively, were determined by PFG-NMR and assigned to the translational diffusion of weakly bound water. QENS measurements have been carried out using different samples hydrated with H{sub 2}O and D{sub 2}O, respectively, in order to separate the contribution of SC from that of the water. The QENS data for both sample orientations and two different energy resolutions can be fitted by a model which accounts for the microscopic dynamics of all three aforementioned types of water. This analysis establishes rotational diffusion coefficients for bound and weakly bound hydration water of 0.025 and 0.030 meV, respectively. Furthermore, the QENS data prove the presence of bulk water in fully hydrated SC samples.
IVIM–DWI of transplanted kidneys: Reduced diffusion and perfusion dependent on cold ischemia time
Energy Technology Data Exchange (ETDEWEB)
Rheinheimer, S., E-mail: Rheinheimer@stud.uni-heidelberg.de [Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Department of Radiology, Section for Quantitative Imaging-based Disease Characterization, German Cancer Research Center, INF 280, D-69120 Heidelberg (Germany); Schneider, F., E-mail: Florian.Schneider@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Stieltjes, B., E-mail: B.Stieltjes@dkfz-heidelberg.de [Department of Radiology, Section for Quantitative Imaging-based Disease Characterization, German Cancer Research Center, INF 280, D-69120 Heidelberg (Germany); Morath, C., E-mail: Christian.Morath@med.uni-heidelberg.de [Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120 Heidelberg (Germany); Zeier, M., E-mail: Martin.Zeier@med.uni-heidelberg.de [Section Chief Urogenital Diagnostics, Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg (Germany); Kauczor, H.U., E-mail: Hu.Kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Hallscheidt, P., E-mail: Peter.Hallscheidt@med.uni-heidelberg.de [Section Chief Urogenital Diagnostics, Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg (Germany)
2012-09-15
Purpose: To evaluate the effect of cold ischemia time (CIT) of renal allografts on diffusion and perfusion using intravoxel incoherent motion (IVIM) derived parameters. Material and methods: A total of 37 patients with renal allografts (CIT: 27 <15 h, 10 ≥15 h) and 30 individuals with healthy kidneys were examined at 1.5 T using a single-shot echo-planar diffusion-weighted pulse sequence with nine b-values ranging from 0 to 800 s/mm{sup 2}. ADC, perfusion fraction f, and the diffusion coefficient D were calculated using the IVIM model. Parameters of allografts stratified by CIT were compared with healthy kidney groups using the Mann–Whitney U test for unpaired data. We computed the Spearman correlation coefficient for correlation with creatinine values. Results: ADC, D, and f of transplanted kidneys were significantly lower than in the healthy controls. The long-CIT group showed significantly lower diffusion parameters compared with the short-CIT group [mean ± SD]: ADC: 1.63 ± 0.14 μm{sup 2}/ms, f: 11.90 ± 5.22%, D: 1.55 ± 0.25 μm{sup 2}/ms versus ADC: 1.79 ± 0.13 μm{sup 2}/ms, f: 16.12 ± 3.43%, D: 1.73 ± 0.14 μm{sup 2}/ms, P{sub ADC}, {sub f}, {sub D} < 0.05. Conclusion: Our results suggest that diffusion parameters, especially the ADC, depend on the CIT of the kidney allograft. Potentially, this stands for functional changes in renal allografts. Diffusion-weighted imaging could be used for follow-up examinations. Thus, diffusion parameters may help guide therapy in patients with delayed graft function.
Incoherently Coupled Bright-Dark Soliton Pairs in Biased Centrosymmetric Photorefractive Media
Institute of Scientific and Technical Information of China (English)
侯春风; 杜春光; 阿不都热苏力; 李师群
2001-01-01
It is shown theoretically that incoherently coupled bright-dark soliton pairs can exist in biased centrosymmetric photorefractive media under steady-state conditions. These soliton pairs can be established provided that the two optical beams have the same polarization, wavelength, and are mutually incoherent.
The Effect of Incoherent Population Pumping on Squeezing in Resonance Fluorescence
Institute of Scientific and Technical Information of China (English)
CHEN Zhaoyang; ZHANG Jingtao; XU Zhizhan
2000-01-01
The effect of incoherent population pumping on the steady-state population inversion and the quadrature squeezing spectra produced in the resonance fluorescence of a two-level atom is investigated. In the presence of incoherent population pumping, the steady-state population inversion is increased for small frequency detuning but is not changed for large frequency detuning. For resonant excitation at low intensities, the weak incoherent pumping degrades the degree of the squeezing and shifts the position of the maximum squeezing; for off-resonant excitation at strong intensities, the weak incoherent pumping hardly changes the squeezing spectra. But when the incoherent pumping is strong the squeezing may be completely destroyed for both cases.
First-principle calculation of solar cell efficiency under incoherent illumination
Sarrazin, Michael; Deparis, Olivier
2013-01-01
Because of the temporal incoherence of sunlight, solar cells efficiency should depend on the degree of coherence of the incident light. However, numerical computation methods, which are used to optimize these devices, fundamentally consider fully coherent light. Hereafter, we show that the incoherent efficiency of solar cells can be easily analytically calculated. The incoherent efficiency is simply derived from the coherent one thanks to a convolution product with a function characterizing the incoherent light. Our approach is neither heuristic nor empiric but is deduced from first-principle, i.e. Maxwell's equations. Usually, in order to reproduce the incoherent behavior, statistical methods requiring a high number of numerical simulations are used. With our method, such approaches are not required. Our results are compared with those from previous works and good agreement is found.
Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call
Energy Technology Data Exchange (ETDEWEB)
Le Bihan, D. [CEA Saclay, DSV, I2BM, F-91191 Gif Sur Yvette (France)
2008-07-01
This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)
Peters, J; Martinez, N; Lehofer, B; Prassl, R
2017-07-01
Human low-density lipoprotein (LDL) is a highly complex nano-particle built up of various lipid classes and a single large protein moiety (apoB-100) owning essential physiological functions in the human body. Besides its vital role as a supplier of cholesterol and fat for peripheral tissues and cells, it is also a known key player in the formation of atherosclerosis. Due to these important roles in physiology and pathology the elucidation of structural and dynamical details is of great interest. In the current study we drew a broader picture of LDL dynamics using elastic incoherent neutron scattering (EINS) as a function of specified temperature and pressure points. We not only investigated a normolipidemic LDL sample, but also a triglyceride-rich and an oxidized one to mimic pathologic conditions as found under hyperlipidemic conditions or in atherosclerotic plaques, respectively. We could show that pressure has a significant effect on atomic motions in modified forms of LDL, whereas the normolipidemic sample seems to cope much better with high-pressure conditions irrespective of temperature. These findings might be explained by the altered lipid composition, which is either caused through elevated triglyceride content or modifications through lipid peroxidation.
Long-lived quasi-stationary coherences in V-type system driven by incoherent light
Tscherbul, Timur V
2014-01-01
We present a theoretical study of noise-induced quantum coherences in a model three-level V-type system interacting with incoherent radiation, an important prototype for a wide range of physical systems ranging from trapped ions to biomolecules and quantum dots. By solving the quantum optical equations of motion for the V-type system, we obtain analytical expressions for the noise-induced coherences and show that they exhibit an oscillating behavior in the limit of large excited level spacing $\\Delta$ ($\\Delta /\\gamma \\gg 1$, where $\\gamma$ is the radiative decay rate). Most remarkably, we find that in the opposite limit of small level spacing $\\Delta/\\gamma \\ll 1$, appropriate for large molecules, (a) the coherences can survive for an arbitrarily long time $\\tau=(2/\\gamma) (\\Delta/\\gamma)^{-2}$ before eventually decaying to zero, and (b) coherences at short times can be substantial. We further show that the long-lived coherences can be robust against environmental relaxation and decoherence, and discuss impl...
Explosive or Continuous: Incoherent state determines the route to synchronization
Xu, Can; Gao, Jian; Sun, Yuting; Huang, Xia; Zheng, Zhigang
2015-07-01
Abrupt and continuous spontaneous emergence of collective synchronization of coupled oscillators have attracted much attention. In this paper, we propose a dynamical ensemble order parameter equation that enables us to grasp the essential low-dimensional dynamical mechanism of synchronization in networks of coupled oscillators. Different solutions of the dynamical ensemble order parameter equation build correspondences with diverse collective states, and different bifurcations reveal various transitions among these collective states. The structural relationship between the incoherent state and the synchronous state leads to different routes of transitions to synchronization, either continuous or discontinuous. The explosive synchronization is determined by the bistable state where the measure of each state and the critical points are obtained analytically by using the dynamical ensemble order parameter equation. Our method and results hold for heterogeneous networks with star graph motifs such as scale-free networks, and hence, provide an effective approach in understanding the routes to synchronization in more general complex networks.
Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing
DEFF Research Database (Denmark)
Karamehmedovic, Emir
2006-01-01
This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...... increasing frequency, after which the inverse Fourier transform is applied to the signal from the backscattered light. This technique is compared with the more conventional optical time domain reflectometry, where a short pulse is sent through the fibre, and the location of the scattering section...... is determined by the time difference from the emission to the detection of light. A temperature sensor with a range of 2-4km comprising a step-index multi-mode fibre and a high-power 980nm pump laser existed prior to the start of the PhD study. In this study, a sensor range of approximately 10km, and a spatial...
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Fast full resolution saliency detection based on incoherent imaging system
Lin, Guang; Zhao, Jufeng; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2016-08-01
Image saliency detection is widely applied in many tasks in the field of the computer vision. In this paper, we combine the saliency detection with the Fourier optics to achieve acceleration of saliency detection algorithm. An actual optical saliency detection system is constructed within the framework of incoherent imaging system. Additionally, the application of our system to implement the bottom-up rapid pre-saliency process of primate visual saliency is discussed with dual-resolution camera. A set of experiments over our system are conducted and discussed. We also demonstrate the comparisons between our method and pure computer methods. The results show our system can produce full resolution saliency maps faster and more effective.
Incoherent scatter radar spectrum distortions from intense auroral turbulence
Energy Technology Data Exchange (ETDEWEB)
Knudsen, D.J.; Haerendel, G. (Max-Planck-Institut fuer extraterrestrische Physik, Garching bei Muenchen (Germany)); Buchert, S. (EISCAT Scientific Association, Kiruna (Sweden)); Kelley, M.C. (Cornell Univ., Ithaca, NY (United States)); Steen, A.; Braendstroem, U. (Swedish Inst. of Space Physics, Kiruna (Sweden))
1993-06-01
The authors discuss two violations of the basic assumptions used in analyzing radar incoherent scatter data, (1) the assumption of homogeneity across the volume of space viewed by the radar, and (2) the assumption that there is no time variation of the parameters being probed by the radar during its averaging time. Violations of either of these assumptions can lead to strong bias in the interpreted plasma parameters. They present their arguments based on observations made by the EISCAT radar. Being able to understand the significance of such variations, or turbulence, is of value in correctly interpreting radar data, and also is of value in the study of such turbulent phenomena in the ionosphere. Other experiments have demonstrated the existence of large gradients in spatial structure within the ionosphere. In addition the ability to study time varying phenomena is of obvious value.
Analysis of beam plasma instability effects on incoherent scatter spectra
Directory of Open Access Journals (Sweden)
M. A. Diaz
2010-12-01
Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.
Are Ascriptions of Intentionality to the Brain Incoherent?
DEFF Research Database (Denmark)
Presskorn-Thygesen, Thomas
The ascriptions of ‘agency’ or ‘intentionality’ to the brain has long been regarded with suspicion from social scientists and philosophers. In the talk, I will argue that this suspicion is perfectly legitimate and that the standard response from the defenders of cognitive neuroscience is illegiti......The ascriptions of ‘agency’ or ‘intentionality’ to the brain has long been regarded with suspicion from social scientists and philosophers. In the talk, I will argue that this suspicion is perfectly legitimate and that the standard response from the defenders of cognitive neuroscience...... to the brain are conceptually incoherent because it commits a mereological fallacy (Bennett&Hacker 2001, 2007)....
Coherent/incoherent metal transition in a holographic model
Kim, Keun-Yong; Seo, Yunseok; Sin, Sang-Jin
2014-01-01
We study AC electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities in a holographic model, which is based on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation due to massless scalar fields linear to spatial coordinate. The model has three field theory parameters: temperature($T$), chemical potential($\\mu$), and effective impurity($\\beta$). At low frequencies, if $\\beta \\mu$ the shape of peak deviates from the Drude form(incoherent metal). At intermediate frequencies($T<\\omega<\\mu$), we have analysed numerical data of three conductivities($\\sigma, \\alpha, \\bar{\\kappa}$) for a wide variety of parameters, searching for scaling laws, which are expected from either experimental results on cuprates superconductors or some holographic models. In the model we study, we find no clear signs of scaling behaviour.
Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation
DEFF Research Database (Denmark)
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech
2013-01-01
The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump......,2]. Seeding the pulse break-up has likewise been used to control the generation of otherwise statistically rare large-amplitude rogue solitons [2-4]. In this work, we numerically investigate the influence of the MI gain spectrum on the pulse break-up and rogue wave generation. We find that the results can...... be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process and demonstrate that seeding can be used to generate coherent and incoherent rogue waves. Figure 1 shows simulation results of seeded SC generation in a fiber with a zero-dispersion wavelength...
Munira, Kamaram; Visscher, P. B.
2015-05-01
To make a useful spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device, it is necessary to be able to calculate switching rates, which determine the error rates of the device. In a single-macrospin model, one can use a Fokker-Planck equation to obtain a low-current thermally activated rate ∝exp(-Ee f f/kBT ) . Here, the effective energy barrier Eeff scales with the single-macrospin energy barrier KV, where K is the effective anisotropy energy density and V the volume. A long-standing paradox in this field is that the actual energy barrier appears to be much smaller than this. It has been suggested that incoherent motions may lower the barrier, but this has proved difficult to quantify. In the present paper, we show that the coherent precession has a magnetostatic instability, which allows quantitative estimation of the energy barrier and may resolve the paradox.
Duzen, Carl; And Others
1992-01-01
Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)
Auroral ionospheric and thermospheric measurements using the incoherent scatter technique
Energy Technology Data Exchange (ETDEWEB)
Kofman, W. (CEPHAG, St. Martin (France))
1992-11-01
The incoherent scatter technique has been applied since 1965 to study the ionosphere and thermosphere in different regions of the Earth. The analysis of the received signal gives access to several ionospheric parameters as a function of height: electron density, electron and ion temperatures and ion velocity. The derivation of these parameters is usually a complicated mathematical procedure that requires a non-linear regression program. A lot of research has been done in the ionospheric and atmospheric science using this technique. In this paper we describe how one derives the ion-neutral collision frequency and the ion composition parameters. It is usually difficult to retrieve these parameters with the incoherent scatter technique; as a result, in the standard data analysis procedure, an ionospheric model is used instead. However the numerical values chosen in the model have an influence on the other derived parameters. For instance the choice of a wrong ion composition leads to erroneous plasma temperatures. It is therefore important to assess by how much the standard procedure deviates from reality. For this reason we compare the ion composition and collision frequency retrieved from a sophisticated analysis scheme with the values that are derived from models under similar geophysical conditions. It is also possible to derive from the observed ionospheric parameters the neutral concentrations, temperatures and winds, by using the energy and momentum equations for the ions and the neutrals. In this paper the different methods and the corresponding assumptions involved in the data analysis are discussed. We describe the influence of the frictional heating, of the vertical neutral wind and of the ionospheric perturbations on the derivation of the neutral atmospheric parameters. Our discussion of the processes involved are drawn from results obtained by Chatanika, Sondrestrom and EISCAT radars.
Taheriyoun, Ali R.; Moghimbeygi, Meisam
2017-02-01
An approximation of the fractional Brownian motion based on the Ornstein-Uhlenbeck process is used to obtain an asymptotic likelihood function. Two estimators of the Hurst index are then presented in the likelihood approach. The first estimator is produced according to the observed values of the sample path; while the second one employs the likelihood function of the incremental process. We also employ visual roughness of realization to restrict the parameter space and to obtain prior information in Bayesian approach. The methods are then compared with three contemporary estimators and an experimental data set is studied.
Diffusion formalism and applications
Dattagupta, Sushanta
2013-01-01
Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion-physical and stochastic-introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and
Izacard, Olivier; Chandre, Cristel; Ciraolo, Guido; Vittot, Michel; Ghendrih, Philippe
2010-01-01
We consider the radial transport of test particles due to the ExB drift motion in the guiding center approximation. In a configuration where the magnetic field is constant and uniform in linear devices or with neglecting toroidal effects in tokamaks, the ExB instability is one of the main sources of deconfinement of magnetized plasmas. Using an explicit expression to modify the electrostatic potential, we show that it is possible to construct a transport barrier which suppresses the radial transport. We propose an algorithm and a simulation of test particles for the implementation of this local modification computed from an electrostatic potential known on a spatio-temporal grid. The number of particles which escape the inner region defined by the barrier measures the efficiency of the control.
Institute of Scientific and Technical Information of China (English)
杨朝强
2013-01-01
利用混合分数布朗运动的Itó公式和复合泊松过程驱动的随机微分方程,建立了一类混合跳-扩散分数布朗运动环境下的价格模型,在Merton假设条件下对其随机微分方程的Cauchy初值问题采用迭代法作了估计,得到了混合跳-扩散模型下的欧式看跌期权定价的Merton公式,从而给出了混合跳-扩散分数布朗运动欧式浮动履约价的看涨回望期权和看跌回望期权定价公式.%The mixed jump-diffusion fractional Brownian motion model under the Itó formula and fractional diffusion process with non-homogeneous Poisson process was proposed.By using the iterative method,the Cauchy initial problem of stochastic differential equations were estimated under the conditions of Merton assumptions.Then the pricing Merton-formula of European option that meets the pricing model for the European floating strike price of the lookback option was obtained.Finally the pricing formulas of floating strike lookback call option and lookback put option were proofed.
Incoherent control of electromagnetically induced transparency and Aulter-Townes splitting
Zou, Chang-Ling; Jiang, Liang; Zou, Xu-Bo; Guo, Guang-Can
2014-01-01
The absorption and dispersion of probe light is studied in an unified framework of three-level system, with coherent laser driving and incoherent pumping and relaxation. The electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) are studied in details. In the phase diagram of the unified three-level system, there are distinct parameter regimes corresponding to different lineshapes and mechanisms, and the incoherent transition could control the cross-over between EIT and ATS. The incoherent control of the three-level system enables the investigation of various phenomena in quantum optics, and is beneficial for experiments of light-matter interactions.
Control of transient gain absorption via tunneling and incoherent pumping in triple quantum dots
Tian, Si-Cong; Zhang, Xiao-Jun; Wan, Ren-Gang; Wang, Li-Jie; Shu, Shi-Li; Wang, Tao; Lu, Ze-Feng; Sun, Fang-Yuan; Tong, Cun-Zhu
2017-01-01
The transient gain-absorption properties of the probe field in vertical triple quantum dots assisted by double tunneling and incoherent pumping are investigated. With a proper intensity value and detuning of the second tunneling, the transient gain in triple quantum dots with incoherent pumping can be completely eliminated. In addition, the incoherent pumping affects both the amplitude of the transient absorption and the steady-state value. The dependence of transient behaviors on other parameters, such as the radiative decay rate and the pure dephasing decay rate of the quantum dots, is also discussed. The scheme may have important applications in quantum information networks and communication.
Incoherent vector mesons production in PbPb ultraperipheral collisions at the LHC
Xie, Ya-Ping; Chen, Xurong
2017-03-01
The incoherent rapidity distributions of vector mesons are computed in dipole model in PbPb ultraperipheral collisions at the CERN Large Hadron Collider (LHC). The IIM model fitted from newer data is employed in the dipole amplitude. The Boosted Gaussian and Gaus-LC wave functions for vector mesons are implemented in the calculations as well. Predictions for the J / ψ, ψ (2 s), ρ and ϕ incoherent rapidity distributions are evaluated and compared with experimental data and other theoretical predictions in this paper. We obtain closer predictions of the incoherent rapidity distributions for J / ψ than previous calculations in the IIM model.
Transform-limited-pulse representation of excitation with natural incoherent light.
Chenu, Aurélia; Brumer, Paul
2016-01-28
The excitation of molecular systems by natural incoherent light relevant, for example, to photosynthetic light-harvesting is examined. We show that the result of linear excitation with natural incoherent light can be obtained using incident light described in terms of transform limited pulses, as opposed to conventional classical representations with explicit random character. The derived expressions allow for computations to be done directly for any thermal light spectrum using a simple wave function formalism and provide a route to the experimental determination of natural incoherent excitation using pulsed laser techniques. Pulses associated with solar and cosmic microwave background radiation are provided as examples.
Grimm, Shu-Ya Lisa
We have developed a general method to calculate the incoherent scattering cross section for complex molecules for photon energy ranging from 1 keV to 130 keV. Within this energy range the binding energy of an electron in a biosystem is comparable to the energy of the incident photon, thus we need to take into account the effect of binding energy in calculations of the total scattering cross section. Also the energy acquired by the scattered electron is in the high energy range, and therefore we are required to use relativistic treatment in our calculations. In our Theory we show the derivation of incoherent scattering function. The calculation of the incoherent scattering function involves matrix elements between two molecular wave functions. With Sharma's analytical formula we are able to expand one of the wave functions to the center of the other wave function, enabling us to perform the calculation of incoherent scattering function for molecules which require multi-center integrals. We explain briefly how one obtains the wave function of a molecule in the Hartree-Fock self-consistent field approximation. Since there are no available molecular wave functions for large molecules such as glucose and Gly-Pro-Pro sequence protein (which are important molecules in biosystems) we develop and use the molecular wave functions using the overlap effect only for large molecules. We further apply the calculated incoherent scattering function to calculate the total incoherent scattering cross section for a molecule. We perform the calculations of incoherent scattering function and total incoherent scattering cross sections for H2O,/ HCN, Glucose, and Gly-Pro-Pro protein molecules. For H2O,/ HCN molecules we calculate the incoherent scattering function using both Hartree-Fock (HF) self-consistent field wave functions and overlap- effect-only wave functions. We further apply these two calculated incoherent scattering functions obtained by Hartree-Fock (HF) self-consistent field
Bellissent-Funel, Marie-Claire; Kaneko, Katsumi; Ohba, Tomonori; Appavou, Marie-Sousai; Soininen, Antti J; Wuttke, Joachim
2016-02-01
Incoherent neutron scattering by water confined in carbon nanohorns was measured with the backscattering spectrometer SPHERES and analyzed in exemplary breadth and depth. Quasielastic spectra admit δ-plus-Kohlrausch fits over a wide q and T range. From the q and T dependence of fitted amplitudes and relaxation times, however, it becomes clear that the fits do not represent a uniform physical process, but that there is a crossover from localized motion at low T to diffusive α relaxation at high T. The crossover temperature of about 210 to 230 K increases with decreasing wave number, which is incompatible with a thermodynamic strong-fragile transition. Extrapolated diffusion coefficients D(T) indicate that water motion is at room temperature about 2.5 times slower than in the bulk; in the supercooled state this factor becomes smaller. At even higher temperatures, where the α spectrum is essentially flat, a few percentages of the total scattering go into a Lorentzian with a width of about 1.6μeV, probably due to functional groups on the surface of the nanohorns.
Diffusion-weighted imaging of the pancreas; Diffusionsbildgebung des Pankreas
Energy Technology Data Exchange (ETDEWEB)
Gruenberg, K. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie, E010, Heidelberg (Germany); Grenacher, L.; Klauss, M. [Universitaetsklinikum Heidelberg, Abt. Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)
2011-03-15
Diffusion-weighted imaging (DWI) has increasingly gained in importance over the last 10 years especially in cancer imaging for differentiation of malignant and benign lesions. Through development of fast magnetic resonance imaging (MRI) sequences DWI is not only applicable in neuroradiology but also in abdominal imaging. As a diagnostic tool of the pancreas DWI enables a differentiation between normal tissue, cancer and chronic pancreatitis. The ADC values (apparent diffusion coefficient, the so-called effective diffusion coefficient) reported in the literature for healthy pancreatic tissue are in the range from 1.49 to 1.9 x 10{sup -3} mm{sup 2}/s, for pancreatic cancer in the range from 1.24 to 1.46 x 10{sup -3} mm{sup 2}/s and for autoimmune pancreatitis an average ADC value of 1.012 x 10{sup -3} mm{sup 2}/s. There are controversial data in the literature concerning the differentiation between chronic pancreatitis and pancreatic cancer. Using DWI-derived IVIM (intravoxel incoherent motion) the parameter f (perfusion fraction) seems to be advantageous but it is important to use several b values. In the literature the mean f value in chronic pancreatitis is around 16%, in pancreatic cancer 8% and in healthy pancreatic tissue around 25%. So far, DWI has not been helpful for differentiating cystic lesions of the pancreas. There are many references with other tumor entities and in animal models which indicate that there is a possible benefit of DWI in monitoring therapy of pancreatic cancer but so far no original work has been published. (orig.) [German] Die Diffusionsbildgebung (''diffusion-weighted imaging'', DWI) gewann in den letzten 10 Jahren insbesondere in der Tumorbildgebung zur Unterscheidung zwischen malignen und benignen Laesionen zunehmend an Bedeutung. Durch Entwicklung schnellerer MR-Sequenzen ist sie nicht nur in der Neuroradiologie, sondern auch in der Abdomenbildgebung einsetzbar. In der Pankreasdiagnostik ermoeglicht sie
Incoherent holography by a Michelson type interferometer with a lens for a radial shear
Watanabe, Kaho; Nomura, Takanori
2016-06-01
The modified Michelson type interferometer with lenses for a radial shear to record incoherent holograms is proposed. It enables us to record a hologram by self-interference without coherent illumination such as a laser. The interferometer has two wave plates which can realize phase-shifting incoherent holography. The feature can avoid a very large bias term and the twin image, which are the inherent problem of incoherent holography by self-interference. The advantages of the proposed method using lenses and wave plates are easy adjustment of the zone plate and simplification of the optical system. A preliminary experiment using an LED as an incoherent object was performed to confirm the four step phase-shifting by wave plates.
Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X
2014-09-10
Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.
Modified Bloch-Redfield Master Equation for Incoherent Excitation of Multilevel Quantum Systems
Tscherbul, Timur V
2014-01-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The modified Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis, and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a fi...
Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.
Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata
2014-01-01
Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.
Shetty, Anil N.; CHIANG, SHARON; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley
2014-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffu...
Concentration of hydrogen in titanium measured by neutron incoherent scattering
Energy Technology Data Exchange (ETDEWEB)
Chen-Mayer, H.H.; Mildner, D.F.R.; Lamaze, G.P.; Lindstrom, R.M.; Paul, R.L. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Kvardakov, V.V. [Russian Research Center Kurchatov Inst., Moscow (Russian Federation); Richards, W.J. [Air Force, McClellan AFB, CA (United States)
1998-12-31
Mass fractions of hydrogen in titanium matrices have been measured using neutron incoherent scattering (NIS) and compared with results from prompt gamma activation analysis (PGAA). Qualitatively, NIS is a more efficient technique than PGAA which involves neutron absorption, and the former may be suitable for on-line analysis. However, for NIS the scattering contribution comes from both the hydrogen and the matrix, whereas prompt gamma emission has minimal matrix effect. To isolate the signal due to hydrogen scattering, a set of polypropylene films is used to simulate the increasing amount of hydrogen, and the scattered intensity is monitored. From this response, an unknown amount of the hydrogen can be deduced empirically. The authors have further attempted a first principle calculation of the intensity of the scattered signal from the experimental systems, and have obtained good agreement between calculation and the measurements. The study can be used as a reference for future applications of the scattering method to other hydrogen-in-metal systems.
Coherent versus incoherent excitation energy transfer in molecular systems.
Chang, Hung-Tzu; Cheng, Yuan-Chung
2012-10-28
We investigate the Markovian limit of a polaronic quantum master equation for coherent resonance energy transfer proposed recently by Jang et al. [J. Chem. Phys. 129, 101104 (2008)]. An expression for the rate of excitation energy transfer (EET) is derived and shown to exhibit both coherent and incoherent contributions. We then apply this theory to calculated EET rates for model dimer systems, and demonstrate that the small-polaron approach predicts a variety of dynamical behaviors. Notably, the results indicate that the EET dynamical behaviors can be understood by the interplay between noise-assisted EET and dynamical localization, while both are well captured by the polaron theory. Finally, we investigate bath correlation effects on the rate of EET and show that bath correlations (or anti-correlations) can either enhance or suppress EET rate depending on the strength of individual system-bath couplings. In summary, we introduce the small-polaron approach as an intuitive physical framework to consolidate our understanding of EET dynamics in the condensed phase.
Sub- Angstrom microscopy through incoherent imaging and image reconstruction
Energy Technology Data Exchange (ETDEWEB)
Pennycook, S.J.; Jesson, D.E.; Chisholm, M.F. (Oak Ridge National Lab., TN (United States)); Ferridge, A.G.; Seddon, M.J. (Wellcome Research Lab., Beckenham (United Kingdom))
1992-03-01
Z-contrast scanning transmission electron microscopy (STEM) with a high-angle annular detector breaks the coherence of the imaging process, and provides an incoherent image of a crystal projection. Even in the presence of strong dynamical diffraction, the image can be accurately described as a convolution between an object function, sharply peaked at the projected atomic sites, and the probe intensity profile. Such an image can be inverted intuitively without the need for model structures, and therefore provides the important capability to reveal unanticipated interfacial arrangements. It represents a direct image of the crystal projection, revealing the location of the atomic columns and their relative high-angle scattering power. Since no phase is associated with a peak in the object function or the contrast transfer function, extension to higher resolution is also straightforward. Image restoration techniques such as maximum entropy, in conjunction with the 1.3 {Angstrom} probe anticipated for a 300 kV STEM, appear to provide a simple and robust route to the achievement of sub-{Angstrom} resolution electron microscopy.
Sub-{Angstrom} microscopy through incoherent imaging and image reconstruction
Energy Technology Data Exchange (ETDEWEB)
Pennycook, S.J.; Jesson, D.E.; Chisholm, M.F. [Oak Ridge National Lab., TN (United States); Ferridge, A.G.; Seddon, M.J. [Wellcome Research Lab., Beckenham (United Kingdom)
1992-03-01
Z-contrast scanning transmission electron microscopy (STEM) with a high-angle annular detector breaks the coherence of the imaging process, and provides an incoherent image of a crystal projection. Even in the presence of strong dynamical diffraction, the image can be accurately described as a convolution between an object function, sharply peaked at the projected atomic sites, and the probe intensity profile. Such an image can be inverted intuitively without the need for model structures, and therefore provides the important capability to reveal unanticipated interfacial arrangements. It represents a direct image of the crystal projection, revealing the location of the atomic columns and their relative high-angle scattering power. Since no phase is associated with a peak in the object function or the contrast transfer function, extension to higher resolution is also straightforward. Image restoration techniques such as maximum entropy, in conjunction with the 1.3 {Angstrom} probe anticipated for a 300 kV STEM, appear to provide a simple and robust route to the achievement of sub-{Angstrom} resolution electron microscopy.
Plasma wakefields driven by intense, broadband, incoherent electromagnetic radiation
Trines, R M G M; Mendonça, J T; Mori, W B; Norreys, P A; Bingham, R
2014-01-01
Non-linear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves an incoherent, random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. A particle-in-cell type code has been developed to perform numerical simulations of such interactions using the quasi-particle approach. This code allows for a comparatively easy description of both random phase and coherent pump pulses coupling to slow electrostatic plasma waves, while providing an extended range of powerful diagnostics leading to a deeper physical insight into the dynamics of the fast waves. As an example, the propagation of short, intense l...
Strategical incoherence regulates cooperation in social dilemmas on multiplex networks.
Matamalas, Joan T; Poncela-Casasnovas, Julia; Gómez, Sergio; Arenas, Alex
2015-01-01
Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner's Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T-S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don't (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.
Strategical incoherence regulates cooperation in social dilemmas on multiplex networks
Matamalas, Joan T.; Poncela-Casasnovas, Julia; Gómez, Sergio; Arenas, Alex
2015-04-01
Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner's Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the T - S plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy in all layers (coherent), and others that don't (incoherent). This second group of players is responsible for the surprising fact of a non full-cooperation in the Harmony Game on multiplex, never observed before, as well as a higher-than-expected cooperation rates in some regions of the other three social dilemmas.
Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation
DEFF Research Database (Denmark)
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech
2013-01-01
into solitons and dispersive waves. To control the spectral evolution and reduce the noise, it has been proposed to provide a seed, i.e. a weak pulse with a frequency offset relative to the pump, within the MI gain spectrum in order to ensure a deterministic rather than noise-seeded pulse break-up [1...... be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process and demonstrate that seeding can be used to generate coherent and incoherent rogue waves. Figure 1 shows simulation results of seeded SC generation in a fiber with a zero-dispersion wavelength......The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump...
Incoherent imaging in the presence of unwanted laser radiation: vortex and axicon wavefront coding
Watnik, Abbie T.; Ruane, Garreth J.; Swartzlander, Grover A.
2016-12-01
Vortex and axicon phase masks are introduced to the pupil plane of an imaging system, altering both the point spread function and optical transfer function for monochromatic and broadband coherent and incoherent light. Each phase mask results in the reduction of the maximum irradiance of a localized coherent laser source, while simultaneously allowing for the recovery of the incoherent background scene. We describe the optical system, image processing, and resulting recovered images obtained through this wavefront encoding approach for laser suppression.
Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2015-05-18
We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.
Institute of Scientific and Technical Information of China (English)
HOU CHUN-FENG; LI BIN; SUN XIU-DONG; JIANG YONG-YUAN; XU KE-BIN
2001-01-01
It is shown that the existence of incoherently coupled screening-photovoltaic soliton families is possible in biased photovoltaic photorefractive crystals under steady-state conditions. These screening-photovoltaic soliton families can be established provided the multiple incident beams have the same polarization and wavelength, and are mutually incoherent. Such soliton families reduce to screening-photovoltaic soliton pairs when they contain only two components. Relevant examples are presented where the photovoltaic photorefractive crystal is of the lithium niobate type.
On the proper motion of auroral arcs
Energy Technology Data Exchange (ETDEWEB)
Haerendel, G.; Raaf, B.; Rieger, E. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)); Buchert, S. (EISCAT Scientific Association, Kiruna (Sweden)); Hoz, C. la (Univ. of Tromso (Norway))
1993-04-01
The authors report on a series of measurements of the proper motion of auroral arcs, made using the EISCAT incoherent scatter radar. Radar measurements are correlated with auroral imaging from the ground to observe the arcs and sense their motion. The authors look at one to two broad classes of auroral arcs, namely the slow (approximately 100 m/s) class which are observed to move either poleward or equatorward. The other class is typically much faster, and observed to move poleward, and represents the class of events most studied in the past. They fit their observations to a previous model which provides a potential energy source for these events. The observations are consistent with the model, though no clear explanation for the actual cause of the motion can be reached from these limited measurements.
Brownian Motion Theory and Experiment
Basu, K; Basu, Kasturi; Baishya, Kopinjol
2003-01-01
Brownian motion is the perpetual irregular motion exhibited by small particles immersed in a fluid. Such random motion of the particles is produced by statistical fluctuations in the collisions they suffer with the molecules of the surrounding fluid. Brownian motion of particles in a fluid (like milk particles in water) can be observed under a microscope. Here we describe a simple experimental set-up to observe Brownian motion and a method of determining the diffusion coefficient of the Brownian particles, based on a theory due to Smoluchowski. While looking through the microscope we focus attention on a fixed small volume, and record the number of particles that are trapped in that volume, at regular intervals of time. This gives us a time-series data, which is enough to determine the diffusion coefficient of the particles to a good degree of accuracy.
Novel type of chimera spiral waves arising from decoupling of a diffusible component
Energy Technology Data Exchange (ETDEWEB)
Tang, Xiaodong; Yang, Tao; Liu, Yang; Zhao, Yuemin; Gao, Qingyu, E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)
2014-07-14
Spiral waves composed of coherent traveling waves surrounding a core containing stochastically distributed stationary areas are found in numerical simulations of a three-variable reaction-diffusion system with one diffusible species. In the spiral core, diffusion of this component (w) mediates transitions between dynamic states of the subsystem formed by the other two components, whose dynamics is more rapid than that of w. Diffusive coupling between adjacent sites can be “on” or “off” depending on the subsystem state. The incoherent structures in the spiral core are produced by this decoupling of the slow diffusive component from the fast non-diffusing subsystem. The phase diagram reveals that the region of incoherent behavior in chimera spirals grows drastically, leading to modulation and breakup of the spirals, in the transition zones between 1{sup n-1} and 1{sup n} local mixed-mode oscillations.
Nonmonotonic diffusion in crowded environments
Putzel, Gregory Garbès; Tagliazucchi, Mario; Szleifer, Igal
2015-01-01
We study the diffusive motion of particles among fixed spherical crowders. The diffusers interact with the crowders through a combination of a hard-core repulsion and a short-range attraction. The long-time effective diffusion coefficient of the diffusers is found to depend non-monotonically on the strength of their attraction to the crowders. That is, for a given concentration of crowders, a weak attraction to the crowders enhances diffusion. We show that this counterintuitive fact can be understood in terms of the mesoscopic excess chemical potential landscape experienced by the diffuser. The roughness of this excess chemical potential landscape quantitatively captures the nonmonotonic dependence of the diffusion rate on the strength of crowder-diffuser attraction; thus it is a purely static predictor of dynamic behavior. The mesoscopic view given here provides a unified explanation for enhanced diffusion effects that have been found in various systems of technological and biological interest. PMID:25302920
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)
2013-06-10
Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.
Energy Technology Data Exchange (ETDEWEB)
Karimi, R.; Asadpour, S.H.; Batebi, S., E-mail: S_Batebi@guilan.ac.ir; Rahimpour Soleimani, H.
2015-09-15
We investigated the propagation effect on gain without inversion (GWI) phenomena in an open four level quantum dot nanostructure in the presence and absence of incoherent pumping field. The simulation results show that, the ratio of the injection rates and strength of incoherent pumping field has remarkable effect on spatial evolution of GWI and output. We can obtain the optimal GWI and output by choosing appropriate values of parameters. The theoretical results show that, in the open system the value of gain (output) in the absence of incoherent pumping field is much larger than that in the presence of incoherent pumping field.
Tscherbul, Timur V; Brumer, Paul
2015-03-14
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The partial secular Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a first application, we consider the dynamics of excited state coherences arising under incoherent light excitation from a single ground state and observe population-to-coherence transfer and the formation of non-equilibrium quasisteady states in the regime of small excited state splitting. Analytical expressions derived earlier for the V-type system [T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014)] are found to provide a nearly quantitative description of multilevel excited-state populations and coherences in both the small- and large-molecule limits.
Research on Doppler frequency in incoherent FM/CW laser detection
Liu, Kai; Cui, Zhanzhong
2010-10-01
The principle of transmitted and received laser in incoherent FM/CW laser detection is different from the one in coherent FM/CW laser detection. The methods for distance solution in both detections are similar. Incoherent FM/CW laser detection uses subcarrier to modulate the intensity of laser, and the photodetector detects the intensity of received signal. The amplified photocurrent is mixed with local oscillator signal, and the intermediate frequency (IF) signal contains the information of distance from sensor to target. The Doppler frequency for this detection is related with the relative radial velocity between sensor and target. The optical frequency is directly modulated with electro-optic device in coherent FM/CW laser detection and the received laser signal is photomixed with transmitted laser signal. The Doppler frequency in the detection relates to the optical frequency. In distance-measuring lidar, the Doppler frequency affects the solution. The Doppler frequency in incoherent FM/CW laser detection is unrelated with optical frequency, and it is much less than the one in coherent FM/CW laser detection, correspondingly. The error in incoherent FM/CW laser detection is smaller. As a result, the incoherent FM/CW laser detection is more suitable for the use of distance-measuring lidar.
Energy flow, energy density of Timoshenko beam and wave mode incoherence
Zhou, Jun; Rao, Zhushi; Ta, Na
2015-10-01
Time-averaged energy flow and energy density are of significance in vibration analysis. The wave decomposition method is more fruitful and global in physical sense than the state variables depicted point by point. By wave approach, the Timoshenko beam vibration field is decomposed into two distinct modes: travelling and evanescent waves. Consequently, the power and energy functions defined on these waves' amplitude and phase need to be established. However, such formulas on Timoshenko beam are hardly found in literatures. Furthermore, the incoherence between these two modes is of theoretical and practical significance. This characteristic guarantees that the resultant power or energy of a superposed wave field is equal to the sum of the power or energy that each wave mode would generate individually. Unlike Euler-Bernoulli beam, such incoherence in the Timoshenko beam case has not been theoretically proved so far. Initially, the power and energy formulas based on wave approach and the corresponding incoherence proof are achieved by present work, both in theoretical and numerical ways. Fortunately, the theoretical and numerical results show that the travelling and evanescent wave modes are incoherent with each other both on power and energy functions. Notably, the energy function is unconventional and self-defined in order to obtain the incoherence. Some remarkable power transmission characteristics of the evanescent wave are also illustrated meanwhile.
Nakada, Masaru; Maruyama, Kenji; Yamamuro, Osamu; MISAWA, Masakatsu
2009-01-01
The dynamics of water molecules in the n-propyl alcohol-water mixtures is investigated by using quasielastic neutron scattering measurements. The dynamic structure factor S(Q,E) obtained from incoherent scattering of hydrogen atoms of water is fitted with jump diffusion and relaxing cage models. The diffusion constant obtained from the relaxing cage model, which gives better fitting with S(Q,E), shows better agreement to the experimental value than that of jump diffusion model. The dependence...
The ionosphere disturbances observation on the Kharkiv incoherent scatter radar
Cherniak, Iu.; Lysenko, V.
2009-04-01
he ionosphere plasma characteristics are responding on variations of solar and magnetic activity. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and for radiophysical problems solution. The method incoherent scatter (IS) of radio waves allows determining experimentally both regular variations of the basic parameters ionosphere, and their behavior during perturbation. The equipment and measurement technique, developed by authors, are allows obtaining certain data about behavior of an ionosphere during various origin and intensity ionosphere perturbations. The Institute of Ionsphere IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6oN, 36.3oE, geomagnetic coordinates: 45.7oN, 117.8oE) was used to observe the processes in the ionosphere. The radar is operate with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power of ~2.0 MW. The double-frequency measuring channel mode with compound sounding signal was employed for experiments. That provided ~ 20-km resolution in range ~100-400 km and ~100-km in range ~200-1100 km. Over a period of series of experiment are obtained data about variations of electron density simultaneous in the heights interval 100-1000 km, including three sun eclipses, two superstrong and a few moderate magnetic storms, as well as disturbance, is caused by powerful rockets starts. During strong geomagnetic storm on November 8-12, 2004 was observed night time increasing of electronic temperature up to 3000 Љ and ions temperature up to 2000K. Usually at this time temperature of ions is equal to temperature of electrons. During negative ionosphere storm was observed decreasing of electronic density at maximum F2 layer. The height of a F2 layer maximum was increased by 150 km and 70 km at daytime. The interesting phenomenon - high-power backscatter signal coherent backscatter was observed first time during geogeomagnetic storm 29-30 may 2003. A usually
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Purwar, Harsh; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Ménard, Thibault
2015-01-01
We present a quantitative comparison between the high-pressure fuel spray images obtained experimentally using classical imaging with coherent and incoherent ultrafast illuminations recorded using a compatible CMOS camera. The ultrafast, incoherent illumination source was extracted from the supercontinuum generated by tightly focusing the femtosecond laser pulses in water. The average velocity maps computed using time-correlated image-pairs and spray edge complexity computed using the average curvature scale space maps are compared for the spray images obtained with the two illumination techniques and also for the numerically simulated spray using the coupled volume of fluid and level set method for interface tracking (direct numerical simulation or DNS). The spray images obtained with supercontinuum-derived, incoherent, ultrafast illumination are clearer, since the artifacts arising due to laser speckles and multiple diffraction effects are largely reduced and show a better correlation with the DNS results.
Energy Technology Data Exchange (ETDEWEB)
Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)
2013-10-16
Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.
Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques
Energy Technology Data Exchange (ETDEWEB)
Häussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching, Germany and Physik-Department E21, Technische Universität München, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universität München, D-85748 Garching (Germany)
2014-05-15
We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.
Coherent ultrashort pulse generation from incoherent light by pulse trapping in birefringent fibers.
Shiraki, Eiji; Nishizawa, Norihiko
2012-05-07
We investigated the nonlinear fiber phenomena of pulse trapping and amplification between incoherent light and an ultrashort soliton pulse in birefringent fibers both experimentally and numerically. Using the phenomena in a 1.4 km-long low-birefringence fiber, a coherent, nearly transform-limited, sech2-shaped, ultrashort pulse was generated from incoherent light from a super-luminescent diode. The average pulse energy and pulse width were 121 pJ and 640 fs, respectively. The estimated gain of this system was as large as 62 dB.
Institute of Scientific and Technical Information of China (English)
MA Jun-shan; GU Wen-hua
2006-01-01
In this paper,we numerically study chaotic synchronization communication system based on incoherent optical feedback and incoherent optical injection.The characteristics of the system,such as synchronization time,synchronization error,chaos shift keying encoding/decoding and modulation rate are analyzed.The results of simulation show that the system has good synchronization quality and good abilities of robust secure.The synchronization time is 1ns and the chaos shift keying encoding can reach a high rate of 1 Gbit/s.The system has a good ability of robust secure.It proves the feasibility of the optical secure communication.
Self-interference polarization holographic imaging of a three-dimensional incoherent scene
Zhu, Ziyi; Shi, Zhimin
2016-08-01
We present a self-interference polarization holographic imaging (Si-Phi) technique to capture the three-dimensional information of an incoherent scene in a single shot. The light from the scene is modulated by a polarization-dependent lens, and a complex-valued polarization hologram is obtained by measuring directly the polarization profile of the light at the detection plane. Using a backward-propagating Green's function, we can numerically retrieve the transverse intensity profile of the scene at any desired focus plane. We demonstrate experimentally our Si-Phi technique by imaging, in real time, three-dimensional mimicked incoherent scenes created by a fast spatial light modulator.
Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung
2012-10-01
Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.
Watanabe, Kaho; Nomura, Takanori
2015-01-01
The method to record an incoherent Fourier hologram is proposed. The interference patterns in the dual channel rotational shearing interferometer are obtained as the figure of the cosine and the sine transformation in the vertical and the horizontal polarization, respectively. The proposed optical system is simple without spatial light modulators or mechanical phase shifting devices. The experiment, in which the letter "A" displayed on a liquid crystal display with a blue LED backlight was used as an object, confirms the proposed method to obtain an incoherent Fourier hologram.
Using an incoherent target-return to adaptively focus through atmospheric turbulence
Nelson, William; Wu, Chensheng; Davis, Christopher C
2015-01-01
A laser beam propagating to a remote target through atmospheric turbulence acquires intensity fluctuations. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics can, in principle, correct these fluctuations. Generally, however, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the reflected field at a detector. We simulate an adaptive optics system that utilizes this relation to focus a beam through atmospheric turbulence onto the incoherent surface.
Bon, Pierre; Aknoun, Shérazade; Savatier, Julien; Wattellier, Benoit; Monneret, Serge
2013-02-01
In this paper, we discuss the possibility of making tomographic reconstruction of the refractive index of a microscopic sample using a quadriwave lateral shearing interferometer, under incoherent illumination. A Z-stack is performed and the acquired incoherent elecromagnetic fields are deconvoluted before to retrieve in a quantitative manner the refractive index. The results are presented on polystyrene beads and can easily be expanded to biological samples. This technique is suitable to any white-light microscope equipped with nanometric Z-stack module.
Todd Berliner. Hollywood Incoherent. Narration in Seventies Cinema.
Directory of Open Access Journals (Sweden)
Pascal Lefèvre
2010-12-01
Full Text Available
Todd Berliner. Hollywood Incoherent. Narration in Seventies Cinema.
Austin: University of Texas Press, 2010.
ISBN-10: 0292722796
ISBN-13: 978-0292722798
Detection of F-region electron density irregularities using incoherent-scatter radar
Gudivada, Krishna Prasad
Incoherent-scatter radar data from Poker Flat, Alaska has been used to determine size distributions of electron density structures in the evening time sector of the auroral zone. At high latitudes ionospheric plasma typically moves east-west with speeds of several hundred meters per second. Density irregularities that rapidly move through the radar beam are therefore observed as time-varying power fluctuations. The new phased array radar used for this study has been operated with several antenna directions with successive pulses transmitted in each direction. It is therefore possible to observe plasma Doppler velocities in multiple directions and determine the vector direction of the plasma motion. This near-simultaneous observation of the plasma velocity in conjunction with the electron density height profile data enable a new technique to determine the scale sizes of electron density fluctuations that move horizontally through the radar beam. The study focuses on the collision-less F-region ionosphere where the plasma drift is approximately constant with altitude. The experimental technique limits the range of scale sizes that may be studied to relatively large-scale sizes (i.e. greater than few tens of km). Results show that during magnetically disturbed conditions (Kp ≥ 4) when westward plasma velocities are relatively high (500-1000 m/s) the scale sizes of irregularities (often called plasma blobs) are in the range of 100-300 km and predominantly originate from the polar cap and are transported over long distances (˜1000 km) due to the long chemical recombination times (30-90 minutes). Some irregularities are caused by local auroral particle precipitation and have been identified with associated electron temperature enhancements. For cases of low magnetic activity (Kp ≤ 1), when the radar is located in a region of low plasma velocities (100-500 m/s) well south of the auroral oval (essentially a mid-latitude type ionosphere), the density distribution is
Directory of Open Access Journals (Sweden)
Ester Chiessi
2011-10-01
Full Text Available Chemically cross-linked polymer networks of poly(vinyl alcohol/poly(methacrylate form monolitic hydrogels and microgels suitable for biomedical applications, such as in situ tissue replacement and drug delivery. In this work, molecular dynamics (MD simulation and incoherent neutron scattering methods are used to study the local polymer dynamics and the polymer induced modification of water properties in poly(vinyl alcohol/poly(methacrylate hydrogels. This information is particularly relevant when the diffusion of metabolites and drugs is a requirement for the polymer microgel functionality. MD simulations of an atomic detailed model of the junction domain at the experimental hydration degree were carried out at 283, 293 and 313 K. The polymer-water interaction, the polymer connectivity and the water dynamics were investigated as a function of temperature. Simulation results are compared with findings of elastic and quasi-elastic incoherent neutron scattering measurements, experimental approaches which sample the same space-time window of MD simulations. This combined analysis shows a supercooled water component and an increase of hydrophilicity and mobility with temperature of these amphiphilic polymer networks.
Energy Technology Data Exchange (ETDEWEB)
Munira, Kamaram [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35401 (United States); Visscher, P. B., E-mail: visscher@ua.edu [Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35401 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35401 (United States)
2015-05-07
To make a useful spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device, it is necessary to be able to calculate switching rates, which determine the error rates of the device. In a single-macrospin model, one can use a Fokker-Planck equation to obtain a low-current thermally activated rate ∝exp(−E{sub eff}/k{sub B}T). Here, the effective energy barrier E{sub eff} scales with the single-macrospin energy barrier KV, where K is the effective anisotropy energy density and V the volume. A long-standing paradox in this field is that the actual energy barrier appears to be much smaller than this. It has been suggested that incoherent motions may lower the barrier, but this has proved difficult to quantify. In the present paper, we show that the coherent precession has a magnetostatic instability, which allows quantitative estimation of the energy barrier and may resolve the paradox.
Van, Anh T; Karampinos, Dimitrios C; Georgiadis, John G; Sutton, Bradley P
2009-11-01
Motion during diffusion encodings leads to different phase errors in different shots of multishot diffusion-weighted acquisitions. Phase error incoherence among shots results in undesired signal cancellation when data from all shots are combined. Motion-induced phase error correction for multishot diffusion-weighted imaging (DWI) has been studied extensively and there exist multiple phase error correction algorithms. A commonly used correction method is the direct phase subtraction (DPS). DPS, however, can suffer from incomplete phase error correction due to the aliasing of the phase errors in the high spatial resolution phases. Furthermore, improper sampling density compensation is also a possible issue of DPS. Recently, motion-induced phase error correction was incorporated in the conjugate gradient (CG) image reconstruction procedure to get a nonlinear phase correction method that is also applicable to parallel DWI. Although the CG method overcomes the issues of DPS, its computational requirement is high. Further, CG restricts to sensitivity encoding (SENSE) for parallel reconstruction. In this paper, a new time-efficient and flexible k-space and image-space combination (KICT) algorithm for rigid body motion-induced phase error correction is introduced. KICT estimates the motion-induced phase errors in image space using the self-navigated capability of the variable density spiral trajectory. The correction is then performed in k -space. The algorithm is shown to overcome the problem of aliased phase errors. Further, the algorithm preserves the phase of the imaging object and receiver coils in the corrected k -space data, which is important for parallel imaging applications. After phase error correction, any parallel reconstruction method can be used. The KICT algorithm is tested with both simulated and in vivo data with both multishot single-coil and multishot multicoil acquisitions. We show that KICT correction results in diffusion-weighted images with higher
Chaotic ion motion in magnetosonic plasma waves
Varvoglis, H.
1984-01-01
The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.
Incoherent neutron-scattering determination of hydrogen content: Theory and modeling
Perego, R.C.; Blaauw, M.
2005-01-01
Hydrogen concentrations of 0 up to 350 mg/kg in a titanium alloy have been determined at National Institute of Standards and Technology (NIST) with neutron incoherent scattering (NIS) and with cold neutron prompt gamma activation analysis. The latter is a well-established technique, while the former
Perego, R.C.
2004-01-01
Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the isotopic-spe
Perego, R.C.
2004-01-01
Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the
Coherent versus incoherent dynamics in InAs quantum-dot active wave guides
DEFF Research Database (Denmark)
Borri, Paola; Langbein, W.; Hvam, Jørn Märcher;
2001-01-01
Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure...
Velocity-Autocorrelation Function in Liquids, Deduced from Neutron Incoherent Scattering Results
DEFF Research Database (Denmark)
Carneiro, Kim
1976-01-01
The Fourier transform p(ω) of the velocity-autocorrelation function is derived from neutron incoherent scattering results, obtained from the two liquids Ar and H2. The quality and significance of the results are discussed with special emphasis on the long-time t-3/2 tail, found in computer...
Doughnut laser beam as an incoherent superposition of two petal beams
CSIR Research Space (South Africa)
Litvin, IA
2014-02-01
Full Text Available evidence of the real electromagnetic field. In this Letter we revisit this question and show that an observed doughnut beam from a laser cavity may not be a pure Laguerre–Gaussian azimuthal mode but can be an incoherent sum of petal modes, which do...
Conceptual Incoherence as a Result of the Use of Multiple Historical Models in School Textbooks
Gericke, Niklas M.; Hagberg, Mariana
2010-01-01
This paper explores the occurrence of conceptual incoherence in upper secondary school textbooks resulting from the use of multiple historical models. Swedish biology and chemistry textbooks, as well as a selection of books from English speaking countries, were examined. The purpose of the study was to identify which models are used to represent…
Incoherent chimera and glassy states in coupled oscillators with frustrated interactions
Choe, Chol-Ung; Ri, Ji-Song; Kim, Ryong-Son
2016-09-01
We suggest a site disorder model that describes the population of identical oscillators with quenched random interactions for both the coupling strength and coupling phase. We obtain the reduced equations for the suborder parameters, on the basis of Ott-Antonsen ansatz theory, and present a complete bifurcation analysis of the reduced system. New effects include the appearance of the incoherent chimera and glassy state, both of which are caused by heterogeneity of the coupling phases. In the incoherent chimera state, the system displays an exotic symmetry-breaking behavior in spite of the apparent structural symmetry where the oscillators for both of the two subpopulations are in a frustrated state, while the phase distribution for each subpopulation approaches a steady state that differs from each other. When the incoherent chimera undergoes Hopf bifurcation, the system displays a breathing incoherent chimera. The glassy state that occurs on a surface of three-dimensional parameter space exhibits a continuum of metastable states with zero value of the global order parameter. Explicit formulas are derived for the system's Hopf, saddle-node, and transcritical bifurcation curves, as well as the codimension-2 crossing points, including the Takens-Bogdanov point.
Incoherent effect of space charge and electron cloud
Franchetti, G.; Hofmann, I.; Fischer, W.; Zimmermann, F.
2009-12-01
Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.
Incoherent Effect of Space Charge and Electron Cloud
Franchetti, G; Fischer, W; Zimmermann, F
2009-01-01
Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.
2017-06-06
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Diffusion effects in undulator radiation
Directory of Open Access Journals (Sweden)
Ilya Agapov
2014-11-01
Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.
Energy Technology Data Exchange (ETDEWEB)
Freitag, M.T.; Bickelhaupt, S.; Ziener, C.; Mosebach, J.; Schlemmer, H.P. [Deutsches Krebsforschungszentrum, Abteilung fuer Radiologie, Heidelberg (Germany); Meier-Hein, K. [Deutsches Krebsforschungszentrum, Abteilung fuer medizinische Informatik, Heidelberg (Germany); Radtke, J.P. [Deutsches Krebsforschungszentrum, Abteilung fuer Radiologie, Heidelberg (Germany); Universitaetsklinik Heidelberg, Abteilung fuer Urologie, Heidelberg (Germany); Kuder, T.A.; Laun, F.B. [Deutsches Krebsforschungszentrum, Abteilung fuer Medizinische Physik in der Radiologie, Heidelberg (Germany)
2016-02-15
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that was established in the clinical routine primarily for the detection of brain ischemia. In the past 15 years its clinical use has been extended to oncological radiology, as tumor and metastases can be depicted in DWI due to their hypercellular nature. The basis of DWI is the Stejskal-Tanner experiment. The diffusion properties of tissue can be visualized after acquisition of at least two diffusion-weighted series using echo planar imaging and a specific sequence of gradient pulses. The use of DWI in prostate MRI was reported to be one of the first established applications that found its way into internationally recognized clinical guidelines of the European Society of Urological Radiology (ESUR) and the prostate imaging reporting and data system (PI-RADS) scale. Due to recently reported high specificity and negative predictive values of 94 % and 92 %, respectively, its regular use for breast MRI is expected in the near future. Furthermore, DWI can also reliably be used for whole-body imaging in patients with multiple myeloma or for measuring the extent of bone metastases. New techniques in DWI, such as intravoxel incoherent motion imaging, diffusion kurtosis imaging and histogram-based analyses represent promising approaches to achieve a more quantitative evaluation for tumor detection and therapy response. (orig.) [German] Die diffusionsgewichtete Bildgebung (''diffusion-weighted imaging'', DWI), ein Verfahren aus der Magnetresonanztomographie (MRT), wurde in der klinischen Routine primaer fuer die Detektion von Schlaganfaellen etabliert. Der Einsatz dieser Methode hat in den letzten 15 Jahren auch fuer die onkologische Diagnostik stark zugenommen, da Tumoren und Metastasen aufgrund ihrer hochzellulaeren Zusammensetzung in der DWI sehr gut sichtbar gemacht werden koennen. Basis der diffusionsgewichteten Bildgebung ist das Experiment nach Stejskal-Tanner. Hier
Theory for Spin Diffusion in Disordered Organic Semiconductors
Bobbert, P. A.; Wagemans, W.; van Oost, F. W. A.; Koopmans, B.; Wohlgenannt, M.
2009-04-01
We present a theory for spin diffusion in disordered organic semiconductors, based on incoherent hopping of a charge carrier and coherent precession of its spin in an effective magnetic field, composed of the random hyperfine field of hydrogen nuclei and an applied magnetic field. From Monte Carlo simulations and an analysis of the waiting-time distribution of the carrier we predict a surprisingly weak temperature dependence, but a considerable magnetic-field dependence of the spin-diffusion length. We show that both predictions are in agreement with experiments on organic spin valves.
Molecular motion in restricted geometries
Indian Academy of Sciences (India)
Siddharth Gautam; S Mitra; R Mukhopadhyay
2008-10-01
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time scales involved in the motion and the geometry of motion can be studied using QENS. Molecular dynamics (MD) simulation not only provides insight into the details of the different types of motion possible but also does not suffer limitations of the experimental set-up. Here we report the effect of confinement on molecular dynamics in various restricted geometries as studied by QENS and MD simulations: An example where the QENS technique provided direct evidence of phase transition associated with change in the dynamical behaviour of the molecules is also discussed.
Directory of Open Access Journals (Sweden)
R.T. DeHoff
2002-09-01
Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete
Fukuyama, Hidenao
Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.
Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.
Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A
2015-04-01
The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.
Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain
Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A
2015-01-01
The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in
Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley
2014-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
Fractional-calculus diffusion equation
Ajlouni, Abdul-Wali MS; Al-Rabai'ah, Hussam A
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive...
Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid
Jen, H. H.; Yip, S.-K.
2016-09-01
We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.
Weng, Jiawen; Clark, David C.; Kim, Myung K.
2016-05-01
A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.
A Cascaded Incoherent Spectrum Sliced Transversal Photonic Microwave Filters-An Analysis
Directory of Open Access Journals (Sweden)
R. K. Jeyachitra
2010-05-01
Full Text Available An analysis of the performance of a simple, incoherent spectrum sliced microwave photonic filter is presented. This filter structure is based on cascading of two incoherent fiber Fabry -Pérot filters as a slicing element of a broadband optical source. The filter performance is studied by measuring the overall Free Spectral Range, 3dB Bandwidth, Quality factor and Main Lobe to Sidelobe Suppression level for different modes of connecting the filter in cascadedconfiguration. Also simulation results are presented. The Characteristics of cascaded FP filters with different configurations are tabulated. The estimated performances show that this cascaded filter combination can be tuned over the frequency from 4.6GHz to 18 GHz with very good sidelobe suppression level.
Coherent dynamics of V-type systems driven by time-dependent incoherent radiation
Dodin, Amro; Brumer, Paul
2016-01-01
Light induced processes in nature occur by irradiation with slowly turned-on incoherent light. The general case of time-dependent incoherent excitation is solved here analytically for V-type systems using a newly developed master equation method. Clear evidence emerges for the disappearance of radiatively induced coherence as turn-on times of the radiation exceed characteristic system times. The latter is the case, in nature, for all relevant dynamical time scales for other than nearly degenerate energy levels. We estimate that, in the absence of non-radiative relaxation and decoherence, turn-on times slower than 1 ms (still short by natural standards) induce Fano coherences between energy eigenstates that are separated by less than 0.9 cm$^{-1}$.
Chitambar, Eric; Gour, Gilad
2016-07-01
Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations.
Chitambar, Eric; Gour, Gilad
2016-07-15
Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations.
Han, Alex C; Brumer, Paul
2012-01-01
We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light, and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatio-temporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be qualitatively different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed in studies using ultrashort coherent pulses are not relevant to naturally occurring solar-induced processes such as photosynthesis and vision.
E- and F- region incoherent scatter radar spectral measurements at mid and low-latitudes
Kudeki, Erhan; Milla, Marco
2016-07-01
In this talk we will contrast and compare incoherent scatter radar spectral measurements conducted using the Arecibo, ALTAIR, and Jicamarca incoherent scatter radars at ionospheric heights ranging from E-region into the topside F-region. Arecibo measurements from mid-latitudes exemplify high SNR ISR techniques utilized with large magnetic aspect angles. Low-latitude measurements at ALTAIR and Jicamarca make use of and combine large and small magnetic aspect angle techniques. Examples presented will include both natural and naturally enhanced electron and ion lines detected in the lower F region near the geomagnetic equator as well as the results of search for proton gyro-resonance peaks in the Jicamarca topside spectra.
Shechtman, Yoav; Szameit, Alexander; Segev, Mordechai
2011-01-01
We demonstrate that sub-wavelength optical images borne on partially-spatially-incoherent light can be recovered, from their far-field or from the blurred image, given the prior knowledge that the image is sparse, and only that. The reconstruction method relies on the recently demonstrated sparsity-based sub-wavelength imaging. However, for partially-spatially-incoherent light, the relation between the measurements and the image is quadratic, yielding non-convex measurement equations that do not conform to previously used techniques. Consequently, we demonstrate new algorithmic methodology, referred to as quadratic compressed sensing, which can be applied to a range of other problems involving information recovery from partial correlation measurements, including when the correlation function has local dependencies. Specifically for microscopy, this method can be readily extended to white light microscopes with the additional knowledge of the light source spectrum.
Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.
Altıngöz, Ceren; Yalızay, Berna; Akturk, Selcuk
2015-08-01
We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources.
Transform-Limited-Pulse Representation of Excitation with Natural Incoherent Light
Chenu, Aurélia
2015-01-01
We study the natural excitation of molecular systems, applicable to, for example, photosynthetic light-harvesting complexes, by natural incoherent light. In contrast with the conventional classical models, we show that the light need not have random character to properly represent the resultant linear excitation. Rather, thermal excitation can be interpreted as a collection of individual events resulting from the system's interaction with individual, deterministic pulsed realizations that constitute the field. The derived expressions for the individual field realizations and excitation events allow for a wave function formalism, and therefore constitute a useful calculational tool to study dynamics following thermal-light excitation. Further, they provide a route to the experimental determination of natural incoherent excitation using pulsed laser techniques.
Measurement of an image jitter of an extended incoherent radiation source
Lukin, V. P.; Nosov, V. V.
2017-06-01
A scheme of an image jitter measuring device, which uses an extended incoherent source as a radiation source, is presented. The efficiency of the measuring device is analysed analytically and numerically in order to justify the operation of the adaptive optical system that does not require special creation or formation of a reference source. The features of the formed image of incoherent radiation are considered, in particular from the point of view of its possible application for measuring the phase fluctuations of optical waves propagating in a turbulent atmosphere (the adaptive system monitors the image of a self-luminous object illuminated by extraneous sources). The possibility of utilising a Shack-Hartmann wavefront sensor in adaptive systems using the image of an arbitrary object (or its fragment) as a reference source is shown.
Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian
2014-01-01
for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development......Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in noncollinear phase matching of a narrow range of wavelengths...... of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source...
Directory of Open Access Journals (Sweden)
Yong Song
2014-11-01
Full Text Available Recharging implantable electronics from the outside of the human body is very important for applications such as implantable biosensors and other implantable electronics. In this paper, a recharging method for implantable biosensors based on a wearable incoherent light source has been proposed and simulated. Firstly, we develop a model of the incoherent light source and a multi-layer model of skin tissue. Secondly, the recharging processes of the proposed method have been simulated and tested experimentally, whereby some important conclusions have been reached. Our results indicate that the proposed method will offer a convenient, safe and low-cost recharging method for implantable biosensors, which should promote the application of implantable electronics.
Excitations of incoherent spin-waves due to spin-transfer torque.
Lee, Kyung-Jin; Deac, Alina; Redon, Olivier; Nozières, Jean-Pierre; Dieny, Bernard
2004-12-01
The possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current, as predicted by Slonczewski and Berger, has recently been demonstrated. This observation opens important prospects of applications in radiofrequency components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics within the coherent spin-torque model. In some cases, the telegraph noise caused by spin-currents could not be quantitatively described by that model. This has led to controversy about the need for an effective magnetic temperature model. Here we interpret the experimental results of Kiselev et al. using micromagnetic simulations. We point out the key role played by incoherent spin-wave excitation due to spin-transfer torque. The incoherence is caused by spatial inhomogeneities in local fields generating distributions of local precession frequencies. We observe telegraph noise with gigahertz frequencies at zero temperature. This is a consequence of the chaotic dynamics and is associated with transitions between attraction wells in phase space.
Herman, Aline; Deparis, Olivier
2014-01-01
Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.
Toward a unified description of spin incoherent behavior at zero and finite temperatures
Soltanieh-Ha, Mohammad; Feiguin, Adrian
2013-03-01
While the basic theoretical understanding of spin-charge separation in one-dimension, known as ``Luttinger liquid theory'', has existed for some time, recently a previously unidentified regime of strongly interacting one-dimensional systems at finite temperature came to light: The ``spin-incoherent Luttinger liquid'' (SILL). This occurs when the temperature is larger than the characteristic spin energy scale. I will show that the spin-incoherent state can be written exactly as a generalization of Ogata and Shiba's factorized wave function in an enlarged Hilbert space, using the so-called ``thermo-field formalism.'' Interestingly, this wave-function can also describe the *ground-state* of other model Hamiltonians, such as t-J ladders, and the Kondo lattice. This allows us to develop a unified formalism to describe SILL physics both at zero, and finite temperatures.
Brasher, James D.; Johnson, Eric G.
1997-09-01
We show how phase-only filters can be used in incoherent optical correlators for security applications such as access control, identification, or authentication. As a specific example, a biometric signature, a fingerprint, is encoded in a phase-only representation. The phase encoding is accomplished with the method of generalized projections onto constraint sets implemented by an iterated Fourier transform algorithm. The operation of an incoherent optical security system using both a phase-only filter generated with the generalized projections algorithm and a phase-only matched filter is simulated. The results demonstrate that the selected access pattern was accepted while a false pattern was rejected by the security system and that better recognition and discrimination performance was attained with the phase-only filter produced by the generalized projections algorithm.
Takamizawa, Akifumi; Ikegami, Takeshi
2013-01-01
In this study, incoherent light with a spectral linewidth of 7 nm and 140 mW of power was generated from a laser diode into which incoherent light emitted from a superluminescent diode was injected with 2.7 mW of power. The spectral linewidth of the light from the laser diode was broadened to 12 nm when the diode's output power was reduced to 15 mW. In the process of transformation from single-mode laser light to incoherent light with a broad spectrum by increasing injection-light power, multimode laser oscillation and a noisy spectrum were found in the light from the laser diode. This optical system can be used not only for amplification of incoherent light but also as a coherence-convertible light source.
Grégoire, Pascal; Srimath Kandada, Ajay Ram; Vella, Eleonora; Tao, Chen; Leonelli, Richard; Silva, Carlos
2017-09-01
We present theoretical and experimental results showing the effects of incoherent population mixing on two-dimensional (2D) coherent excitation spectra that are measured via a time-integrated population and phase-sensitive detection. The technique uses four collinear ultrashort pulses and phase modulation to acquire two-dimensional spectra by isolating specific nonlinear contributions to the photoluminescence or photocurrent excitation signal. We demonstrate that an incoherent contribution to the measured line shape, arising from nonlinear population dynamics over the entire photoexcitation lifetime, generates a similar line shape to the expected 2D coherent spectra in condensed-phase systems. In those systems, photoexcitations are mobile such that inter-particle interactions are important on any time scale, including those long compared with the 2D coherent experiment. Measurements on a semicrystalline polymeric semiconductor film at low temperatures show that, in some conditions in which multi-exciton interactions are suppressed, the technique predominantly detects coherent signals and can be used, in our example, to extract homogeneous line widths. The same method used on a lead-halide perovskite photovoltaic cell shows that incoherent population mixing of mobile photocarriers can dominate the measured signal since carrier-carrier bimolecular scattering is active even at low excitation densities, which hides the coherent contribution to the spectral line shape. In this example, the intensity dependence of the signal matches the theoretical predictions over more than two orders of magnitude, confirming the incoherent nature of the signal. While these effects are typically not significant in dilute solution environments, we demonstrate the necessity to characterize, in condensed-phase materials systems, the extent of nonlinear population dynamics of photoexcitations (excitons, charge carriers, etc.) in the execution of this powerful population-detected coherent
2011-01-01
International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...
Energy Technology Data Exchange (ETDEWEB)
Anon.
1991-01-01
This paper shows the incoherencies existent in the brazilian national legislation in the section of electric power enterprises attributes. The regulation of the article number 175 of the Brazilian Federal Constitution, which related the private capitals participation in the public utilities concession was very controversial. This paper also shows the contents of the many Law Projects proposed by the brazilian parliaments in order to clear this aspect of the legislation 3 figs.
Muon motion in titanium hydride
Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.
1988-01-01
Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.
Harrison, P.; Indjin, D.; Savić, I.; Ikonić, Z.; Evans, C. A.; Vukmirović, N.; Kelsall, R. W.; McTavish, J.; Jovanović, V. D.; Milanović, V.
2008-02-01
This paper compares and contrasts different theoretical approaches based on incoherent electron scattering transport with experimental measurements of optoelectronic devices formed from semiconductor heterostructures. The Monte Carlo method which makes no a priori assumptions about the carrier distribution in momentum or phase space is compared with less computationally demanding energy-balance rate equation models which assume thermalised carrier distributions. It is shown that the two approaches produce qualitatively similar results for hole transport in p-type Si 1-xGe x/Si superlattices designed for terahertz emission. The good agreement of the predictions of rate equation calculations with experimental measurements of mid- and far-infrared quantum cascade lasers, quantum well infrared photodetectors and quantum dot infrared photodetectors substantiate the assumption of incoherent scattering dominating the transport in these quantum well based devices. However, the paper goes on to consider the possibility of coherent transport through the density matrix method and suggests an experiment that could allow coherent and incoherent transport to be distinguished from each other.
Dodin, Amro; Brumer, Paul
2015-01-01
We present closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter $\\zeta=\\frac{1}{2}(\\gamma_1+\\gamma_2)/\\Delta_p$, where $\\gamma_i$ are the radiative decay rates of the excited levels $i=1,2$, and $\\Delta_p=\\sqrt{\\Delta^2 + (1-p^2)\\gamma_1\\gamma_2}$ depends on the excited-state level splitting $\\Delta>0$ and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit ($\\zeta\\gg1$), approach a long-lived quasi-steady state in the overdamped limit ($\\zeta\\ll 1$), and display an intermediate behavior at critical damping ($\\zeta= 1$). The sudden incoherent turn-on generat...
Target recognition and phase acquisition by using incoherent digital holographic imaging
Lee, Munseob; Lee, Byung-Tak
2017-05-01
In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.
Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.
Pelzer, Kenley M; Can, Tankut; Gray, Stephen K; Morr, Dirk K; Engel, Gregory S
2014-03-13
Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.
Bahcivan, H.; Cosgrove, R. B.; Tsunoda, R. T.
2006-07-01
This article investigates the combined electron heating and streaming effects of low-frequency parallel electric fields on the incoherent scatter measurements of the high-latitude E region. The electric fields distort the electron distribution function, inducing changes on the amplitude and frequency of the ion-acoustic line in the measured incoherent scatter spectrum. If one assumes Maxwellian electrons, the measurements of electron and ion temperatures and electron density are subject to significant percentage errors during geomagnetically active conditions.
Asymmetric gear rectifies random robot motion
Li, He; Zhang, H. P.
2013-06-01
We experimentally study the dynamics of centimetric robots and their interactions with rotary gears through inelastic collisions. Under the impacts of self-propelled robots, a gear with symmetric teeth diffuses with no preferred direction of motion. An asymmetric gear, however, rectifies random motion of nearby robots which, in return, exert a torque on the gear and drive it into unidirectional motion. Rectification efficiency increases with the degree of gear asymmetry. Our work demonstrates that asymmetric environments can be used to rectify and extract energy from random motion of macroscopic self-propelled particles.
Fast diffusion of water nanodroplets on graphene
Ma, Ming; Michaelides, Angelos; Aeppli, Gabriel
2016-01-01
Diffusion across surfaces generally involves motion on a vibrating but otherwise stationary substrate. Here, using molecular dynamics, we show that a layered material such as graphene opens up a new mechanism for surface diffusion whereby adsorbates are carried by propagating ripples via a motion similar to surfing. For water nanodroplets, we demonstrate that the mechanism leads to exceedingly fast diffusion that is 2-3 orders of magnitude faster than the self-diffusion of water molecules in liquid water. We also reveal the underlying principles that regulate this new mechanism for diffusion and show how it also applies to adsorbates other than water, thus opening up the prospect of achieving fast and controllable motion of adsorbates across material surfaces more generally.
Allshouse, Michael; Barad, Mike; Peacock, Thomas
2009-11-01
When a density-stratified fluid encounters a sloping boundary, diffusion alters the fluid density adjacent to the boundary, producing spontaneous along-slope flow. Since stratified fluids are ubiquitous in nature, this phenomenon plays a vital role in environmental transport processes, including salt transport in rock fissures and ocean-boundary mixing. Here we show that diffusion-driven flow can be harnessed as a remarkable means of propulsion, acting as a diffusion-engine that extracts energy from microscale diffusive processes to propel macroscale objects. Like a sailboat tacking into the wind, forward motion results from fluid flow around an object, creating a region of low pressure at the front relative to the rear. In this case, however, the flow is driven by molecular diffusion and the pressure variations arise due to the resulting small changes in the fluid density. This mechanism has implications for a number of important systems, including environmental and biological transport processes at locations of strong stratification, such as pycnoclines in oceans and lakes. There is also a strong connection with other prevalent buoyancy-driven flows, such as valley and glacier winds, significantly broadening the scope of these results and opening up a new avenue for propulsion research.
Diffusion, quantum theory, and radically elementary mathematics (MN-47)
Faris, William G
2014-01-01
Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein''s work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book''s inspiration is Princeton University mathematics professor Edward Nelson''s influential work in
Coherent-Incoherent Transition of ɛ-Carbide in Steels Found with Mechanical Spectroscopy
Shimotomai, Michio
2016-03-01
Although a coherent-incoherent transition in the ɛ-carbide precipitated in steels is supposedly linked to hardening and microstructural changes, the existence of this transition has not yet been confirmed. In this paper, we investigate this subject using mechanical spectroscopy. By measuring mechanical loss spectra below room temperature of quench-aged Fe-C alloys, mild steel, and pearlitic steel, we reveal a new broad peak (NBP). This peak is related to thermal activation, and its line shape obeys the equation of the Debye peak with a distribution in relaxation time. The Arrhenius plot yielded a large activation energy and gigantic pre-exponential factor. Its intensity grew by aging at temperatures where precipitation of ɛ-carbide has been reported. However, it starts to decay at duration far too early for ɛ-carbide to transform to cementite. For isothermal aging at 393 K (120 °C), the intensity sharply decreased at durations over 3 hours. This decay was accompanied by appearance of another similar peak (NBP'), which had a peak frequency two orders higher than that of NBP. These peaks had comparable intensity. We attribute NBP and NBP' to coherent and incoherent ɛ-carbides, respectively. We produced a model that attributes the relaxation peaks to reorientations of extra carbon pairs in the ɛ-carbide. The extraordinary values of the Arrhenius parameters may be interpreted by using this model. Based on these results, we assert that mechanical spectroscopy can detect the coherent-incoherent transition in carbon steels. This method will be powerful in studying problems related to the coherency in carbon steels.
Spatially continuous approach to the description of incoherencies in fast reactor accident analysis
Energy Technology Data Exchange (ETDEWEB)
Luck, L B
1976-12-01
A generalized cell-type approach is developed in which individual subassemblies are represented as a unit. By appropriate characterization of the results of separate detailed investigations, spatial variations within a cell are represented as a superposition. The advantage of this approach is that costly detailed cell-type information is generated only once or a very few times. Spatial information obtained by the cell treatment is properly condensed in order to drastically reduce the transient computation time. Approximate treatments of transient phenomena are developed based on the use of distributions of volume and reactivity worth with temperature and other reactor parameters. Incoherencies during transient are physically dependent on the detailed variations in the initial state. Therefore, stationary volumetric distributions which contain in condensed form the detailed initial incoherency information provides a proper basis for the transient treatment. Approximate transient volumetric distributions are generated by a suitable transformation of the stationary distribution to reflect the changes in the transient temperature field. Evaluation of transient changes is based on results of conventional uniform channel calculations and a superposition of lateral variations as they are derived from prior cell investigations. Specific formulations are developed for the treatment of reactivity feedback. Doppler and sodium expansion reactivity feedback is related to condensed temperature-worth distributions. Transient evaluation of the worth distribution is based on the relation between stationary and transient volumetric distributions, which contains the condensed temperature field information. Coolant voiding is similarly treated with proper distribution information. Results show that the treatments developed for the transient phase up to and including sodium boiling constitute a fast and effective simulation of inter- and intra-subassembly incoherence effects.
A proposal for the holographic correction of incoherent aberrations by tilted reference waves
Energy Technology Data Exchange (ETDEWEB)
Röder, Falk, E-mail: Falk.Roeder@Triebenberg.de; Lubk, Axel
2015-05-15
The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast. In addition to the theoretical considerations outlined in detail, an experimental proof-of-principle is presented. A fully controlled tilt of the reference wave, however, remains as a promising task for the future. The use of a hologram series with varying reference wave tilt is considered for linearly synthesizing an effective aperture for the transfer into the sideband with broader bandwidth compared to conventional off-axis electron holography allowing us to correct the incoherent aberrations in transmission electron microscopy. Furthermore, tilting a reference wave with respect to a plane wave is expected to be an alternative way for measuring the coherent and incoherent aberrations of a transmission electron microscope. The capability of tilting the reference wave is expected to be beneficial for improving the signal-to-noise ratio in dark-field off-axis electron holography as well. - Highlights: • We examine the use of tilted reference waves in off-axis electron holography. • Generalized holographic transfer theory reveals a selective filtering effect. • We propose the correction of incoherent aberrations by series acquisitions. • For a proof-of-principle, we employ a crystal for tilting the reference wave.
1993-01-01
MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.
Incoherent scatter spectra from plasma of a 13-moment approximation distribution function
Institute of Scientific and Technical Information of China (English)
2008-01-01
The function and physical mechanism of heat flow and the viscous stress in the velocity distribution function expanded by Maxwellian distribution are presented. With the introduction of effective temperature Tf, incoherent scatter spectra from plasma for electromagnetic wave in arbitrary line of sight are given. The effect of asymmetry and anisotropy provided by heat flow and the viscous stress on power spectra is discussed. Radar spectra are calculated for different cases of electric field, direction, collision frequency and temperature. The effect of heat flow and the viscous stress on inversion results is analyzed. With a large electric field, the character of non-Maxwellian must be considered.
Microscopic theory of coherent and incoherent optical properties of semiconductor heterostructures
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Martin
2008-09-02
An important question is whether there is a regime in which lasing from indirect semiconductors is possible. Thus, we discuss this question in this thesis. It is shown that under incoherent emission conditions it is possible to create an exciton condensate in multiple-quantum-well (MQW) systems. The influence of a MQW structure on the exciton lifetime is investigated. For the description of the light-matter interaction of a QW in the coherent excitation regime, the semiconductor Bloch equation (SBE) are used. The incoherent regime is described by the semiconductor luminescence equations (SLE). In principle it is even possible to couple SBE and SLE. The resulting theory is able to describe interactions between coherent and incoherent processes we investigate both, the coherent and the incoherent light-emission regime. Thus we define the investigated system and introduce the many-body Hamiltonian that describes consistently the light-matter interaction in the classical and the quantum limit. We introduce the SBE that allow to compute the light-matter interaction in the coherent scenario. The extended scattering model is used to investigate the absorption of a Ge QW for different time delays after the excitations. In this context, we analyze whether there is a regime in which optical gain can be realized. Then we apply a transfer-matrix method to include into our calculations the influence of the dielectric environment on the optical response. Thereafter the SLE for a MQW system are introduced. We derive a scheme that allows for decoupling environmental effects from the pure PL-emission properties of the QW. The PL of the actual QW system is obtained by multiplying this filter function and the free-space PL that describes the quantum emission into a medium with spatially constant background-refractive index. It is studied how the MQW-Bragg structure influences the PL-emission properties compared to the emission of a single QW device. As a last feature, it is shown
Plastic Deformation of Copper-Based Alloy Reinforced with Incoherent Nanoparticles
Matvienko, O. V.; Daneiko, O. I.; Kovalevskaya, T. A.
2017-06-01
The paper deals with research carried out into plastic deformation of a heavy-wall pipe made of nanoparticle reinforced copper-based alloy. We present an original approach which combines methods of crystal plasticity and deformable solid mechanics, thereby allowing to study the stress-strain state of the heavy-wall pipe strengthened with incoherent nanoparticles using a homogeneous internal pressure. Dependences are constructed for the yielding area and the pressure, the limit of elasto-plastic resistance is obtained for the heavy-wall pipe and its deformation degree is described. It is shown that the particle size has an effect on strength properties of the material.
A method of beam combination of high-power incoherent fiber laser
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Diffraction efficiency of grating plays an important role in output power of incoherent fiber laser beam combination.Through theoretic analysis and numerical simulations it has been proved that the diffraction efficiency would increase with the decrease of grating frequency and wavelength bandwidth. On the condition that the width of a fiber array is fixed at W=10 cm, an optimum grating frequency were numerically simulated as f=230 mm-1. Also an unequal interval method was proposed to improve the system efficiency of diffraction into 0.4293, which is higher than 0.3824 under the equal interval condition.
Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Lennart; García-Morales, Vladimir [Physik-Department, Nonequilibrium Chemical Physics, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching (Germany); Schönleber, Konrad; Krischer, Katharina, E-mail: krischer@tum.de [Physik-Department, Nonequilibrium Chemical Physics, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)
2014-03-15
We report a novel mechanism for the formation of chimera states, a peculiar spatiotemporal pattern with coexisting synchronized and incoherent domains found in ensembles of identical oscillators. Considering Stuart-Landau oscillators, we demonstrate that a nonlinear global coupling can induce this symmetry breaking. We find chimera states also in a spatially extended system, a modified complex Ginzburg-Landau equation. This theoretical prediction is validated with an oscillatory electrochemical system, the electro-oxidation of silicon, where the spontaneous formation of chimeras is observed without any external feedback control.
Separation of coherent and incoherent scattering in liquid para-H{sub 2} by polarisation analysis
Energy Technology Data Exchange (ETDEWEB)
Garcia-Hernandez, M.; Mompean, F.J. [Madrid Univ. (Spain); Schaerpf, O.; Andersen, K.H. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Fak, B. [CEA Centre d`Etudes de Grenoble, 38 (France)
1997-04-01
In the 1960 IAEA Symposium on Neutron Scattering, Sarma presented his theoretical study on the scattering of cold neutrons by liquid hydrogen and demonstrated how the intimate coupling between nuclear and rotational degrees of freedom finally results in the possibility of observing collective modes from this material, which to many neutron scatterers is synonymous with `incoherent`. This problem is investigated with polarised neutrons to gain access to a limited region of the (Q,E) space where the collective response from this liquid is found. (author).
Nylandsted Larsen, A.; Borisenko, V. E.
1984-01-01
The behaviour of ion-implanted arsenic in -oriented silicon single crystals exposed to continuous incoherent light from a xenon arc lamp has been analyzed with sheet resistivity measurements, Rutherford backscattering spectrometry, and ion channeling including angular scans. Redistribution, substitutionality, and electrical activity of arsenic were followed as functions of exposure time (6 20s) and induced temperature (1000° 1100°C). Redistribution was observed for implanted concentrations exceeding ˜4×1020 at.%/cm3. High substitutional fractions, between 95% and 99%, and low sheet resistivities were found for all annealed samples. Formation mechanism of arsenic substitutional solid solutions during transient heating of implanted layers is discussed.
Misplaced Idealism and Incoherent Realism in the Philosophy of the Refugee Crisis
DEFF Research Database (Denmark)
Lægaard, Sune
2016-01-01
Many contributions to the philosophical debate about conceptual and normative issues raised by the refugee crisis fail to take properly account of the difference between ideal and nonideal theory. This makes several otherwise interesting and apparently plausible contributions to the philosophy...... of the refugee crisis problematic. They are problematic in the sense that they mix up ideal and nonideal aspirations and assumptions in an incoherent way undermining the proposed views. Two examples of this problem are discussed. The first example is David Miller’s contribution to the conceptual debate about how...
Synchronization of chaos in two microchip lasers by using incoherent feedback method
Uchida, A; Yoshimori, S
2003-01-01
We numerically demonstrated a new chaos-synchronization scheme using incoherent feedback to the pumping power of two microchip lasers. The feedback control is applied to the pumping power of the slave laser by using a difference signal between the peak heights of electrical fields of two lasers. Synchronization of chaos is achieved under certain values of the gain parameters. This synchronization is required for matching the laser parameters because the dynamics of population inversion need to be matched between the two lasers by controlling the pumping power.
Senoo, Y.
The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.
Tracer diffusion in active suspensions
Burkholder, Eric W.; Brady, John F.
2017-05-01
We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a , characteristic swim speed U0, reorientation time τR, and mechanical energy ksTs=ζaU02τR/6 , where ζa is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity DP=kBT /ζP , where kBT is the thermal energy of the solvent and ζP is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion. In competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength of swimming relative to thermal diffusion is set by Pes=U0a /DP . The active contribution to the diffusivity scales as Pes2 for weak swimming and Pes for strong swimming, but the transition between these two regimes is nonmonotonic. When fluctuations in the probe motion decay on the time scale τR, the active diffusivity scales as ksTs/ζP : the probe moves as if it were immersed in a solvent with energy ksTs rather than kBT .
Experiment of gas diffusion and its diffusion mechanism in coal
Institute of Scientific and Technical Information of China (English)
Li Xiangchun; Nie Baisheng; Zhang Ruming; Chi Leilei
2012-01-01
In coal,the gas mainly exists in a free or an adsorption state.When the coal containing gas is damaged,gas desorption and diffusion will occur which can result in gas disaster.This research on gas desorption and diffusion provides a theoretical basis for gas disaster mechanism and prevention.The influence of pressure and temperature on gas diffusion is studied by the experiment.And the mechanism of pressure and temperature on gas diffusion is also analysed.The research results indicate that gas diffusion capacity increases with increasing temperature under the same pressure for the same coal sample.This is mainly because the temperature increases,gas molecular hot motion is severer,kinetic energy of gas molecular increases,and gas desorption quickens,therefore gas diffusion capacity changes stronger.Under other unchanged conditions,the greater gas adsorption balance pressure,the more gas adsorption content,and the higher the initial gas concentration.When gas diffusion begins,the greater the gas concentration gradient,the faster the gas diffusion speeds.
Pelleg, Joshua
2016-01-01
This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...
Directory of Open Access Journals (Sweden)
Hildebrand Dijkstra
Full Text Available Diffusion-weighted imaging (DWI is an important diagnostic tool in the assessment of focal liver lesions and diffuse liver diseases such as cirrhosis and fibrosis. Quantitative DWI parameters such as molecular diffusion, microperfusion and their fractions, are known to be affected when hepatic fat fractions (HFF are higher than 5.5% (steatosis. However, less is known about the effect on DWI for HFF in the normal non-steatotic range below 5.5%, which can be found in a large part of the population. The aim of this study was therefore to evaluate the diagnostic implications of non-steatotic HFF on quantitative DWI parameters in eight liver segments. For this purpose, eleven healthy volunteers (2 men, mean-age 31.0 were prospectively examined with DWI and three series of in-/out-of-phase dual-echo spoiled gradient-recalled MRI sequences to obtain the HFF and T2*. DWI data were analyzed using the intravoxel incoherent motion (IVIM model. Four circular regions (ø22.3 mm were drawn in each of eight liver segments and averaged. Measurements were divided in group 1 (HFF ≤ 2.75%, group 2 (2.755.5%. DWI parameters and T2* were compared between the three groups and between the segments. It was observed that the molecular diffusion (0.85, 0.72 and 0.49 × 10(-3 mm(2/s and T2* (32.2, 27.2 and 21.0 ms differed significantly between the three groups of increasing HFF (2.18, 3.50 and 19.91%. Microperfusion and its fraction remained similar for different HFF. Correlations with HFF were observed for the molecular diffusion (r = -0.514, p<0.001 and T2* (-0.714, p<0.001. Similar results were obtained for the majority of individual liver segments. It was concluded that fat significantly decreases molecular diffusion in the liver, also in absence of steatosis (HFF ≤ 5.5%. Also, it was confirmed that fat influences T2*. Determination of HFF prior to quantitative DWI is therefore crucial.
Stability of Synchronized Motion in Complex Networks
Pereira, Tiago
2011-01-01
We give a succinct and self-contained description of the synchronized motion on networks of mutually coupled oscillators. Usually, the stability criterion for the stability of synchronized motion is obtained in terms of Lyapunov exponents. We consider the fully diffusive case which is amenable to treatment in terms of uniform contractions. This approach provides a rigorous, yet clear and concise, way to the important results.
Teichert, Gregory H.; Rudraraju, Shiva; Garikipati, Krishna
2017-02-01
We present a unified variational treatment of evolving configurations in crystalline solids with microstructure. The crux of our treatment lies in the introduction of a vector configurational field. This field lies in the material, or configurational, manifold, in contrast with the traditional displacement field, which we regard as lying in the spatial manifold. We identify two distinct cases which describe (a) problems in which the configurational field's evolution is localized to a mathematically sharp interface, and (b) those in which the configurational field's evolution can extend throughout the volume. The first case is suitable for describing incoherent phase interfaces in polycrystalline solids, and the latter is useful for describing smooth changes in crystal structure and naturally incorporates coherent (diffuse) phase interfaces. These descriptions also lead to parameterizations of the free energies for the two cases, from which variational treatments can be developed and equilibrium conditions obtained. For sharp interfaces that are out-of-equilibrium, the second law of thermodynamics furnishes restrictions on the kinetic law for the interface velocity. The class of problems in which the material undergoes configurational changes between distinct, stable crystal structures are characterized by free energy density functions that are non-convex with respect to configurational strain. For physically meaningful solutions and mathematical well-posedness, it becomes necessary to incorporate interfacial energy. This we have done by introducing a configurational strain gradient dependence in the free energy density function following ideas laid out by Toupin (1962, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 11, 385-414). The variational treatment leads to a system of partial differential equations governing the configuration that is coupled with the traditional equations of nonlinear elasticity. The coupled system of equations governs
Auditory Motion Elicits a Visual Motion Aftereffect
Directory of Open Access Journals (Sweden)
Christopher C. Berger
2016-12-01
Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.
Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie
2016-08-01
Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.
Kurzke, Henning; Kiethe, Jan; Heuer, Axel; Jechow, Andreas
2017-05-01
The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively broad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, {{g}(2)}(0)=1.9+/- 0.1 , indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find application in imaging, metrology and quantum optics experiments.
Benedetti, C; Esarey, E; Leemans, W P
2014-01-01
In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structures. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.
An ultra compact on-beam 3He polarizer for separation of incoherent background in high Q-range SANS
Babcock, Earl; Salhi, Zahir
2012-01-01
Incoherent background can create an intrinsic problem for standard small angle neutron scattering measurements. Biological samples contain hydrogen which is a strong incoherent scatterer thus creating an intrinsic source of background that makes determination of the coherent scattering parameters difficult in special situations. This can especially be true for the Q-range from around 0.1-0.5 {\\AA}-1 where improper knowledge of the background level can lead to ambiguity in determination of the samples structure parameters. Polarization analysis is a way of removing this ambiguity by allowing one to distinguish the coherent from incoherent scattering, even when the coherent scattering is only a small fraction of the total scattered intensity. 3He spin filters are ideal for accomplishing this task because they permit the analysis of large area and large divergence scattered neutron beams without adding to detector background or changing the prorogation of the scatter neutron beam. This rapid note describes a des...
Vicsek, Tamás; Zafeiris, Anna
2012-08-01
We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.
Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.
2016-11-01
Applications of optical methods for encryption purposes have been attracting interest of researchers for decades. The most popular are coherent techniques such as double random phase encoding. Its main advantage is high security due to transformation of spectrum of image to be encrypted into white spectrum via use of first phase random mask which allows for encrypted images with white spectra. Downsides are necessity of using holographic registration scheme and speckle noise occurring due to coherent illumination. Elimination of these disadvantages is possible via usage of incoherent illumination. In this case, phase registration no longer matters, which means that there is no need for holographic setup, and speckle noise is gone. Recently, encryption of digital information in form of binary images has become quite popular. Advantages of using quick response (QR) code in capacity of data container for optical encryption include: 1) any data represented as QR code will have close to white (excluding zero spatial frequency) Fourier spectrum which have good overlapping with encryption key spectrum; 2) built-in algorithm for image scale and orientation correction which simplifies decoding of decrypted QR codes; 3) embedded error correction code allows for successful decryption of information even in case of partial corruption of decrypted image. Optical encryption of digital data in form QR codes using spatially incoherent illumination was experimentally implemented. Two liquid crystal spatial light modulators were used in experimental setup for QR code and encrypting kinoform imaging respectively. Decryption was conducted digitally. Successful decryption of encrypted QR codes is demonstrated.
Numerical Investigation and Optimization of SBS-Based Slow-Light Using Filtered Incoherent Pump
Institute of Scientific and Technical Information of China (English)
ZHENG Di; PAN Wei; YAN Lian-Shan; LUO Bin; ZOU Xi-Hua; WEN Kun-Hua; JIANG Ning
2009-01-01
The performance of stimulated Brillouin scattering(SBS)-based slow light using a novel spectrally-sliced broad band incoherent pump source is numerically studied.The profile of the pump-power spectrum is determined by the transmission spectra of the optical filter followed by the polarized broadband incoherent pump source.We also investigate the performance of Gaussian-type and super-Gaussian-type filtering under different spectrally-sliced bandwidths and pump power levels for 2.5 Gbit/s return-to-zero pulse(50% duty-cycle).The pulse broadening is characterized by the full width of half maximum(FWHM)and the rms pulse width,respectively.However,the results obtained by the two kinds of measurement methods deviate from each other with increasing pump power.Compared with the regular Gaussian-type filtering,the pulse broadening can be significantly reduced using super-Gaussian-type filtering at the cost of a small reduction in delay time.Furthermore,the maximum improvement in pulse broadening of △B_(FWHM) = 28.4% and △B_(RMS)= 10.4% is achieved by using a five-order super-Gaussian-type filter and a pump power of 500mw.
Hartmann, Sébastien; Elsäßer, Wolfgang
2017-01-01
Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737
Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar
Directory of Open Access Journals (Sweden)
T. Turunen
Full Text Available Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997. The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR, which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120–150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.
Key words: Radio science (ionospheric physics; signal processing; instruments and techniques
Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar
Turunen, T.; Markkanen, J.; van Eyken, A. P.
2000-09-01
Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997). The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR), which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120-150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.
First E- and D-region incoherent scatter spectra observed over Jicamarca
Directory of Open Access Journals (Sweden)
J. L. Chau
2006-07-01
Full Text Available We present here the first Jicamarca observations of incoherent scatter radar (ISR spectra detected from E- and D-region altitudes. In the past such observations have not been possible at Jicamarca due a combined effect of strong equatorial electrojet (EEJ clutter and hardware limitations in the receiving system. The observations presented here were made during weak EEJ conditions (i.e., almost zero zonal electric field using an improved digital receiving system with a wide dynamic range and a high data throughput.
The observed ISR spectra from E- and D-region altitudes are, as expected, narrow and get even narrower with decreasing altitude due to increasing ion-neutral collision frequencies. Therefore, it was possible to obtain accurate spectral measurements using a pulse-to-pulse data analysis. At lower altitudes in the D-region where signal correlation times are relatively long we used coherent integration to improve the signal-to-noise ratio of the collected data samples. The spectral estimates were fitted using a standard incoherent scatter (IS spectral model between 87 and 120 km, and a Lorentzian function below 110 km. Our preliminary estimates of temperature and ion-neutral collisions frequencies above 87 km are in good agreement with the MSISE-90 model. Below 87 km, the measured spectral widths are larger than expected, causing an overestimation of the temperatures, most likely due to spectral distortions caused by atmospheric turbulence.
Incoherent Pathways of Charge Separation in Organic and Hybrid Solar Cells.
Grupp, Alexander; Ehrenreich, Philipp; Kalb, Julian; Budweg, Arne; Schmidt-Mende, Lukas; Brida, Daniele
2017-10-05
In this work, we investigate the exciton dissociation dynamics occurring at the donor:acceptor interface in organic and hybrid blends employed in the realization of photovoltaic cells. Fundamental differences in the charge separation process are studied with the organic semiconductor polymer poly(3-hexylthiophene) (P3HT) and either [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or titanium dioxide (TiO2) acting as the acceptor. By using ultrafast broad-band transient absorption spectroscopy with few-fs temporal resolution, we observe that in both cases the incoherent formation of free charges dominates the charge generation process. From the optical response of the polymer and by tracking the excited-state absorption, we extract pivotal similarities in the incoherent energy pathways that follow the impulsive excitation. On time scales shorter than 200 fs, we observe that the two acceptors display similar dynamics in the exciton delocalization. Significant differences arise only on longer time scales with only an impact on the overall photocarrier generation efficiency.
Lehmberg, Robert H.; Chan, Yung
2005-05-01
Induced spatial incoherence (ISI) has been proposed for KrF laser drivers to achieve the high degree of spatial beam uniformity required for direct-drive inertial confinement fusion. Although ISI provides ultrasmooth illumination at the far field of the laser, where the target is located, it can still allow the beams in the quasi-near field to develop a time-averaged spatial structure. This speckle, which arises primarily from random-phase aberration, builds up as the laser beams propagate away from the pupil plane located at the final amplifier stage; it is distinct from any structure imposed by gain nonuniformities in the amplifiers. Because of the spatial incoherence, the speckle is significantly smaller than that experienced by coherent beams. Nevertheless, it remains a damage issue, especially for the long beam delay paths required in angularly multiplexed KrF lasers. We develop a novel algorithm for calculating the time-integrated intensities; compare simulations and measurements of the near-field speckle in the Nike KrF laser; and explore options, such as aberration reduction and optical relaying, for controlling the problem in future angularly multiplexed KrF drivers. © Optical Society of America
Kundin, J.; Raabe, D.; Emmerich, H.
2011-10-01
If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.
Hartmann, Sébastien; Elsäßer, Wolfgang
2017-02-01
Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications.
IMPACT OF COHERENT AND INCOHERENT CROSSTALKS AND POWER PENALTY ON THE OPTICAL CROSSCONNECTS
Directory of Open Access Journals (Sweden)
Suvarna S. Patil
2011-12-01
Full Text Available Optical cross-connects are one of the most important components in the dense wavelength division multiplexer based optical networks. The crossconnects suffer from crosstalk due to the different wavelength light path channels during the switching process leading to the deterioration in bit error rate (BER and hence in the system performance. This paper presents the study of impact of coherent and incoherent crosstalk and power penalty on the optical cross-connects in WDM Networks. The effect of accumulation of coherent crosstalk at different stages of crossconnect has been also investigated and analyzed for the blocking probabilities. Results of coherent and incoherent crosstalk are compared to identify their impact on the working of the cross-connect. The results show that the crosstalk increases with increase in either the number of wavelengths per fiber or the number of input fibers. The result also illustrates decrease in the interference penalty by correlating the crosstalk contributions with each other at the appropriate phase angle. We show that an acceptable blocking probability due to crosstalk is achievable for active wavelengths in the WDM network. The present study can be used to model the possible number of routing stages in such networks.
Directory of Open Access Journals (Sweden)
J. Norberg
2015-09-01
Full Text Available We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters, and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient and statistically clear inversion algorithm for tomography. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT UHF incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the height distribution of electron density, and outperforms the alternative prior information sources. With an ionosonde at continuous disposal, the presented method enhances stand-alone near real-time ionospheric tomography for the given conditions significantly.
Parametric studies of adaptive optics by self-interference incoherent digital holography
Hong, Jisoo; Kim, Myung K.
2014-02-01
Adaptive optics (AO) in astronomical imaging is a technique to improve the quality of image by compensating aberrations induced by atmospheric turbulence. Digital holographic AO (DHAO) is one attractive option to implement AO scheme because it is capable of directly measuring the phase profile of aberration without complicated calculation or loss of resolution of CCD. Hence, if applicable, DHAO is expected to have advantages over traditional AO systems. Recent development of self-interference incoherent digital holography (SIDH) makes it possible to apply the concept of DHAO for an astronomical application where the illumination is incoherent and cannot be controlled. We have investigated the image characteristics according to various parameters of SIDH AO to derive optimum condition or design of the system. We observe not only well-known super-resolution property of SIDH but also interesting and significant improvement of noise behavior by aberration compensation. Because of many beneficial features, we expect that SIDH AO will be a useful tool for astronomical imaging.
Conceptual Incoherence as a Result of the use of Multiple Historical Models in School Textbooks
Gericke, Niklas M.; Hagberg, Mariana
2010-08-01
This paper explores the occurrence of conceptual incoherence in upper secondary school textbooks resulting from the use of multiple historical models. Swedish biology and chemistry textbooks, as well as a selection of books from English speaking countries, were examined. The purpose of the study was to identify which models are used to represent the phenomenon of gene function in textbooks and to investigate how these models relate to historical scientific models and subject matter contexts. Models constructed for specific use in textbooks were identified using concept mapping. The data were further analyzed by content analysis. The study shows that several different historical models are used in parallel in textbooks to describe gene function. Certain historical models were used more often then others and the most recent scientific views were rarely referred to in the textbooks. Hybrid models were used frequently, i.e. most of the models in the textbooks consisted of a number of components of several historical models. Since the various historical models were developed as part of different scientific frameworks, hybrid models exhibit conceptual incoherence, which may be a source of confusion for students. Furthermore, the use of different historical models was linked to particular subject contexts in the textbooks studied. The results from Swedish and international textbooks were similar, indicating the general applicability of our conclusions.
Liu, Y. L.; Kuramitsu, Y.; Moritaka, T.; Chen, S. H.
2017-03-01
Nonthermal acceleration of relativistic electrons due to the wakefield induced by an intense light pulse is investigated. The spectra of the cosmic rays are well represented by power-law. Wakefield acceleration has been considered as a candidate for the origins of cosmic rays. The wakefield can be excited by an intense laser pulse as large-amplitude precursor waves in collisionless shocks in the universe. National Central University (NCU) 100-TW laser facility in Taiwan is able to provide high-repetition rate and short intense laser. To experimentally study the wakefield acceleration for the spectrum of the cosmic rays, particle-in-cell simulations are performed to calculate the energy distribution functions of electrons in fixed laser conditions with various plasma densities. The transitions of wakefields from coherent to inherent are observed as the plasma density increases. The distribution functions indicate that the smooth nonthermal power-law spectra with an index of -2 appear when the incoherent wakefields are excited. In contrast, the mono-peak appear in the spectra when the coherent wakefields are excited. The incoherent wakefields yielding the power-law spectra imply the stochastic accelerating of electrons. To explain the universal nonthermal power-law spectra with an index of -2, we described and extended the stochastic acceleration model based on Fokker-Planck equation by assuming the transition rate as an exponential function.
2013-01-01
Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List
Self-diffusion in liquid gallium and hard sphere model
Directory of Open Access Journals (Sweden)
Blagoveshchenskii Nikolay
2015-01-01
Full Text Available Incoherent and coherent components of quasielastic neutron scattering have been studied in the temperature range of T = 313 K – 793 K aiming to explore the applicability limits of the hard-sphere approach for the microscopic dynamics of liquid gallium, which is usually considered as a non-hard-sphere system. It was found that the non-hard-sphere effects come into play at the distances shorter than the average interatomic distance. The longer range diffusive dynamics of liquid Ga is dominated by the repulsive forces between the atoms.
Basic principles of diffusion-weighted imaging
Energy Technology Data Exchange (ETDEWEB)
Bammer, Roland. E-mail: roland@s-word.stanford.edu
2003-03-01
In diffusion-weighted MRI (DWI), image contrast is determined by the random microscopic motion of water protons. During the last years, DWI has become an important modality in the diagnostic work-up of acute ischemia in the CNS. There are also a few promising reports about the application of DWI to other regions in the human body, such as the vertebral column or the abdomen. This manuscript provides an introduction into the basics of DWI and Diffusion Tensor imaging. The potential of various MR sequences in concert with diffusion preparation are discussed with respect to acquisition speed, spatial resolution, and sensitivity to bulk physiologic motion. More advanced diffusion measurement techniques, such as high angular resolution diffusion imaging, are also addressed.
Institute of Scientific and Technical Information of China (English)
H.R.Hamedi; Ali Sari; M.Sahrai; S.H.Asadpour
2013-01-01
Optical bistability (OB) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated.The effect of quantum interference arising from spontaneous emission and incoherent pumping on OB and OM is discussed.It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms.In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.
Naik, Dinesh N; Pedrini, Giancarlo; Osten, Wolfgang
2013-02-25
The ideas of incoherent holography were conceived after the invention of coherent-light holography and their concepts seems indirectly related to it. In this work, we adopt an approach based on statistical optics to describe the process of recording of an incoherent-object hologram as a complex spatial coherence function. A Sagnac radial shearing interferometer is used for the correlation of optical fields and a Pockels cell is used to phase shift the interfering fields with the objective to quantify and to retrieve the spatial coherence function.
Scrambling and thermalization in a diffusive quantum many-body system
Bohrdt, A.; Mendl, C. B.; Endres, M.; Knap, M.
2017-06-01
Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose-Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. The slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. Our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.
Some Aspects of Diffusion Theory
Pignedoli, A
2011-01-01
This title includes: V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere; P.C. Kendall: On the diffusion in the atmosphere and ionosphere; F. Henin: Kinetic equations and Brownian motion; T. Kahan: Theorie des reacteurs nucleaires: methodes de resolution perturbationnelles, interactives et variationnelles; C. Cattaneo: Sulla conduzione del calore; C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore; A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of t
Energy Technology Data Exchange (ETDEWEB)
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
On Kramers' general theory of Brownian motion
Brinkman, H.C.
1957-01-01
Kramer's general theory of Brownian motion 1) based on a diffusion equation in phase space is discussed from the standpoint of statistical thermodynamics. It is concluded that for particles moving in a medium in equilibrium the restrictions imposed by the second law of thermodynamics limit Kramer's
Tracer diffusion inside fibrinogen layers
Cieśla, Michał; Gudowska-Nowak, Ewa; Sagués, Francesc; Sokolov, Igor M.
2014-01-01
We investigate the obstructed motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens, and radius of a diffusing probe.
Tracer diffusion inside fibrinogen layers
Cieśla, Michał; Sagués, Francesc; Sokolov, Igor M
2013-01-01
We investigate the motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens and radius of a diffusing probe.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Guo-Liang Ma; Adam Bzdak
2014-01-01
We show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton-parton cross-section of $\\sigma=1.5 - 3$ mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton-proton and proton-nucleus collisions at the Large Hadron Collider.
DEFF Research Database (Denmark)
Company Torres, Victor; Tafur Monroy, Idelfonso; Lancis, Jesus
2008-01-01
We present a proof-of-principle experiment for achieving simultaneous distribution of baseband radio-frequency data and up-conversion with broadcasting support over a passive optical network. The technique is based on an incoherent frequency-to-time mapping method for pulse shaping. Specifically...
Detection of artificially created negative ion clouds with incoherent scatter radar
Sultan, Peter J.; Mendillo, Michael; Oliver, William L.; Holt, John M.
1992-01-01
The physical mechanisms by which negative ions change the shape of the incoherent scatter spectrum, and the way in which shape changes may be used to detect the presence of heavy positive and negative ions in an ambient ionosphere are investigated. In order to detect heavy negative ions, the temperature structure of the ionosphere is fixed to a prevent average measurement, and any changes in spectral shape during the experiment are interpreted as being caused by changes in composition, and not by changes in the temperature ratio Te/Ti. The spatial and temporal development of heavy negative ion plasma clouds created during four active chemical release experiments was observed. Concentrations of 10-40-percent SF6(-) were detected in SPINEX 1, SPINEX 2, and IMS data sets. An average uncertainty of +/-10-percent SF6(-) is present in all three experiments. Concentrations of 30-percent Br(-) were detected in the NICARE 1 release, with uncertainties of +/-4 percent.
Energy Technology Data Exchange (ETDEWEB)
Avakyan, A.R.; Vartapetyan, G.A.; Grigoryan, E.O.; Deme-dieresiskhina, N.A.
1986-08-01
We have investigated the cross sections for photodisintegration reactions in Al, Si, and S calculated by the regularization method proposed by A. N. Tikhonov for solution of the Fredholm integral equation of the first kind. The yields of photoproduction of /sup 24/Na, /sup 18/F, /sup 11/C, and /sup 7/Be were measured in bombardment of targets by coherent and incoherent photon beams obtained in a diamond crystal with bremsstrahlung of 3.57-GeV electrons. The excitation functions of the reactions studied were calculated from the threshold to the maximum energy of the bremsstrahlung spectrum. A characteristic property of the cross sections of all reactions is a clearly expressed resonance structure of the energy dependence.
Quantum limit for two-dimensional resolution of two incoherent optical point sources
Ang, Shan Zheng; Tsang, Mankei
2016-01-01
We obtain the multiple-parameter quantum Cram\\'er-Rao bound for estimating the Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well-below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method uses fiber coupling to attain the bound regardless of the distance between the two sources.
Dymond, K.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Coker, C.; Hei, M. A.; Groves, K. M.
2015-12-01
The Special Sensor Ultraviolet Limb Imager (SSULI) instruments are ultraviolet limb scanning sensors flying on the Defense Meteorological Satellite Program (DMSP) satellites. The SSULIs observe the 80-170 nanometer wavelength range covering emissions at 91 and 136 nm, which are produced by radiative recombination of the ionosphere. We invert these emissions tomographically using newly developed algorithms that include optical depth effects due to pure absorption and resonant scattering. We present the details of our approach including how the optimal altitude and along-track sampling were determined and the newly developed approach we are using for regularizing the SSULI tomographic inversions. Finally, we conclude with validations of the SSULI inversions against ALTAIR incoherent scatter radar measurements and demonstrate excellent agreement between the measurements.
Incoherent transient radio emission from stellar-mass compact objects in the SKA era
Corbel, S; Fender, R P; Gallo, E; Maccarone, T J; O'Brien, T J; Paragi, Z; Rupen, M P; Rushton, A P; Sabatini, S; Sivakoff, G R; Strader, J; Woud, P A
2015-01-01
The universal link between the processes of accretion and ejection leads to the formation of jets and outflows around accreting compact objects. Incoherent synchrotron emission from these outflows can be observed from a wide range of accreting binaries, including black holes, neutron stars, and white dwarfs. Monitoring the evolution of the radio emission during their sporadic outbursts provides important insights into the launching of jets, and, when coupled with the behaviour of the source at shorter wavelengths, probes the underlying connection with the accretion process. Radio observations can also probe the impact of jets/outflows (including other explosive events such as magnetar giant flares) on the ambient medium, quantifying their kinetic feedback. The high sensitivity of the SKA will open up new parameter space, enabling the monitoring of accreting stellar-mass compact objects from their bright, Eddington-limited outburst states down to the lowest-luminosity quiescent levels, whose intrinsic faintnes...
Change Detection of High Resolution SAR Images by the Fusion of Coherent/Incoherent Information
Directory of Open Access Journals (Sweden)
Yang Xiang-li
2015-10-01
Full Text Available Aiming at detecting the change regions of high resolution Synthetic Aperture Radar (SAR images, we propose to use the Dempster-Shafer (D-S evidence theory to fuse coherent/incoherent features from sensors that form an integral part of the system. First, we use the Simple Linear Iterative Clustering (SLIC segmentation algorithm to implement multi-scale joint segmentation for multi-temporal SAR images. Second, we extract multiple intensity and coherence difference features on each segment level by SLIC using mean operator to complete the fusion of multi-scale features to get the multi-feature difference mapped by a ratio operator. Finally, we fuse the multi-feature difference maps to get the final change detection result using the D-S evidence theory. The experimental results in our study prove the effectiveness of our proposed computational algorithm.
Measurement uncertainty analysis in incoherent Doppler lidars by a new scattering approach.
Belmonte, Aniceto; Lázaro, Antonio
2006-08-21
We need to examine the uncertainty added to the Doppler measurement process of atmospheric wind speeds of a practical incoherent detection lidar. For this application, the multibeam Fizeau wedge has the advantage over the Fabry-Perot interferometer of defining linear fringe patterns. Unfortunately, the convenience of using the transfer function for angular spectrum transmission has not been available because the nonparallel mirror geometry of Fizeau wedges. In this paper, we extent the spatial-frequency arguments used in Fabry-Perot etalons to the Fizeau geometry by using a generalized scattering matrix method based on the propagation of optical vortices. Our technique opens the door to consider complex, realistic configurations for any Fizeau-based instrument.
Optical information encryption based on incoherent superposition with the help of the QR code
Qin, Yi; Gong, Qiong
2014-01-01
In this paper, a novel optical information encryption approach is proposed with the help of QR code. This method is based on the concept of incoherent superposition which we introduce for the first time. The information to be encrypted is first transformed into the corresponding QR code, and thereafter the QR code is further encrypted into two phase only masks analytically by use of the intensity superposition of two diffraction wave fields. The proposed method has several advantages over the previous interference-based method, such as a higher security level, a better robustness against noise attack, a more relaxed work condition, and so on. Numerical simulation results and actual smartphone collected results are shown to validate our proposal.
Theoretical description of improving measurement accuracy for incoherence Mie Doppler wind lidar
Institute of Scientific and Technical Information of China (English)
Du Jun; Ren De-Ming; Zhao Wei-Jiang; Qu Yan-Chen; Chen Zhen-Lei; Geng Li-Jie
2013-01-01
For the nonlinearity of Fabry-Perot interferometer (FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering signal Doppler shift.A method of repeating the use of the approximate linear part of FPI transmission spectra for reducing the high uncertainty of a big Doppler shift is proposed.One of the ways of realizing this method is discussed in detail,in which the characteristics of FPI transmission spectrum changing with thickness and incident angle are utilized simultaneously.Under different atmosphere conditions,it has been proved theoretically that the range of measurement uncertainty drops to one-sixth while its minimum has no serious change.This method can be used not only to guide the new system design,but also as a new working way for the fabricated system.
Ray-optics cloaking devices for large objects in incoherent natural light
Chen, Hongsheng; Zheng, Bin; Shen, Lian; Wang, Huaping; Zhang, Xianmin; Zheludev, Nikolay I.; Zhang, Baile
2013-01-01
A cloak that can hide living creatures from sight is a common feature of mythology but still remains unrealized as a practical device. To preserve the wave phase, the previous cloaking solution proposed by Pendry and colleagues required transformation of the electromagnetic space around the hidden object in such a way that the rays bending around the object inside the cloak region have to travel faster than those passing it by. This difficult phase preservation requirement is the main obstacle for building a broadband polarization-insensitive cloak for large objects. Here we propose a simplified version of Pendry’s cloak by abolishing the requirement for phase preservation, as it is irrelevant for observation using incoherent natural light with human eyes, which are phase and polarization insensitive. This allows for a cloak design on large scales using commonly available materials. We successfully demonstrate the cloaking of living creatures, a cat and a fish, from the eye. PMID:24153410
Artificial incoherent speckles enable precision astrometry and photometry in high-contrast imaging
Jovanovic, Nemanja; Martinache, Frantz; Pathak, Prashant; Hagelberg, Janis; Kudo, Tomoyuki
2015-01-01
State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments, are constantly improving the contrast detection limit for companions at ever closer separations to the host star. In order to constrain their properties and ultimately compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system in SCExAO to generate a field of speckles for the purposes of calibration. Speckles can be placed up to $22.5~\\lambda/D$ from the star, with any position angle, brightness and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between $0$ and $\\pi$, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitativ...
Boudry, Maarten; Blancke, Stefaan; Braeckman, Johan
2010-12-01
The concept of Irreducible Complexity (IC) has played a pivotal role in the resurgence of the creationist movement over the past two decades. Evolutionary biologists and philosophers have unambiguously rejected the purported demonstration of "intelligent design" in nature, but there have been several, apparently contradictory, lines of criticism. We argue that this is in fact due to Michael Behe's own incoherent definition and use of IC. This paper offers an analysis of several equivocations inherent in the concept of Irreducible Complexity and discusses the way in which advocates of the Intelligent Design Creationism (IDC) have conveniently turned IC into a moving target. An analysis of these rhetorical strategies helps us to understand why IC has gained such prominence in the IDC movement, and why, despite its complete lack of scientific merits, it has even convinced some knowledgeable persons of the impending demise of evolutionary theory.
A simple model for 2D image upconversion of incoherent light
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a simple theoretical model for 2 dimensional (2-D) image up-conversion of incoherent light. While image upconversion has been known for more than 40 years, the technology has been hindered by very low conversion quantum efficiency (~10-7). We show that our implementation compared...... to previous work can result in a feasible system: Using intracavity upconversion and Quasi Phase Matching (QPM) nonlinear materials provide increased conversion efficiency. Using a QPM crystal and choosing the wavelengths so the first order term in the phasematch wavelength acceptance vanishes, results...... in very large wavelength acceptance. This work describes how the bandwidth acceptance can be predicted and designed. This gives promise of a new way to make infrared imaging devices with tunable spectral sensitivity....
Review of diffusion tensor imaging and its application in children
Energy Technology Data Exchange (ETDEWEB)
Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)
2015-09-15
Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)
Söderberg, Charlotta
2016-12-01
Contemporary processes of environmental policymaking in general span over several territorial tiers. This also holds for the EU Water Framework Directive system of environmental quality standards (EQS), which are part of a complex multi-level institutional landscape, embracing both EU, national and sub-national level. Recent evaluations show that many EU member states, including Sweden, have not reached the ecological goals for water in 2015. Departing from theories on policy coherence and multi-level governance, this paper therefore analyses Swedish water governance as a case to further our understanding of policy implementation in complex governance structures: how does policy coherence (or the lack thereof) affect policy implementation in complex governance structures? To answer this question, the paper maps out the formal structure of the water governance system, focusing on power directions within the system, analyses policy coherence in Swedish water governance through mapping out policy conflicts between the EQS for water and other goals/regulations and explore how they are handled by national and sub-national water bureaucrats. The study concludes that without clear central guidance, 'good ecological status' for Swedish water will be difficult to achieve since incoherent policies makes policy implementation inefficient due to constant power struggles between different authorities, and since environmental goals are often overridden by economic and other societal goals. Further research is needed in order to explore if similar policy conflicts between water quality and other objectives occur in other EU member states and how bureaucrats handle such conflicts in different institutional settings. This study of the Swedish case indicates that the role of the state as a navigator and rudder-holder is important in order to improve policy implementation in complex governance structures - otherwise; bureaucrats risk being lost in an incoherent archipelago of
Prum, Richard O; Cole, Jeff A; Torres, Rodolfo H
2004-10-01
For nearly 80 years, the non-iridescent, blue, integumentary structural colours of dragonflies and damselflies (Odonata) have been attributed to incoherent Tyndall or Rayleigh scattering. We investigated the production of the integumentary structural colours of a damselfly--the familiar bluet, Enallagma civile (Coenagrionidae)--and a dragonfly--the common green darner, Anax junius (Aeshnidae)--using fibre optic spectrophotometry and transmission electron microscopy (TEM). The reflectance spectra of both species showed discrete reflectance peaks of approximately 30% reflectance at 475 and 460 nm, respectively. These structural colours are produced by light scattering from closely packed arrays of spheres in the endoplasmic reticulum of box-shaped epidermal pigment cells underlying the cuticle. The observed reflectance spectra do not conform to the inverse fourth power relationship predicted for Tyndall/Rayleigh scattering. Two-dimensional (2-D) Fourier analysis of the TEM images of the colour-producing arrays reveals ring-shaped distributions of Fourier power at intermediate spatial frequencies, documenting a quasiordered nanostructure. The nanostructured Fourier power spectra falsify the assumption of spatial independence of scatterers that is required for incoherent scattering. Radial averages of the Fourier power spectrum indicate that the spheres are substantially nanostructured at the appropriate spatial scale to produce visible colours by coherent scattering. However, the spatial periodicity of the arrays is apparently too large to produce the observed colour by coherent scattering. The nanospheres could have expanded substantially (approximately 50%) during preparation for TEM. Alternatively, coherent light scattering could be occurring both from the surfaces and from structures at the centre of the spheres. These arrays of colour-producing spheres within pigment cells have convergently evolved at least 11-14 times independently within the Odonata. Structural
Enzymatically induced motion at nano- and micro-scales
Gáspár, Szilveszter
2014-06-01
In contrast to adenosine triphosphate (ATP)-dependent motor enzymes, other enzymes are little-known as ``motors'' or ``pumps'', that is, for their ability to induce motion. The enhanced diffusive movement of enzyme molecules, the self-propulsion of enzyme-based nanomotors, and liquid pumping with enzymatic micropumps were indeed only recently reported. Enzymatically induced motion can be achieved in mild conditions and without the use of external fields. It is thus better suited for use in living systems (from single-cell to whole-body) than most other ways to achieve motion at small scales. Enzymatically induced motion is thus not only new but also important. Therefore, the present work reviews the most significant discoveries in enzymatically induced motion. As we will learn, freely diffusing enzymes enhance their diffusive movement by nonreciprocal conformational changes which parallel their catalytic cycles. Meanwhile, enzyme-modified nano- and micro-objects turn chemical energy into kinetic energy through mechanisms such as bubble recoil propulsion, self-electrophoresis, and self-diffusiophoresis. Enzymatically induced motion of small objects ranges from enhanced diffusive movement to directed motion at speeds as high as 1 cm s-1. In spite of the progress made in understanding how the energy of enzyme reactions is turned into motion, most enzymatically powered devices remain inefficient and need improvements before we will witness their application in real world environments.
Diffusing diffusivity: a new derivation and comparison with simulations
Indian Academy of Sciences (India)
ROHIT JAIN; K L SEBASTIAN
2017-07-01
Many experiments are now available where it has been shown that the probability distribution function (pdf) for the position of a Brownian particle diffusing in a heterogeneous medium is not Gaussian. However, in spite of this non-Gaussianity, the mean square displacement (MSD) still remains Fickian, i.e., ⟨x²⟩ ∝ T . One possible explanation of this non-Gaussian yet Brownian behavior is that the diffusivity of the particle itself is “diffusing”. Chubynsky and Slater (Phys. Rev. Lett. 113 098302 2014) proposed a model of “diffusing diffusivity” which they were able to solve analytically at small time scales, but simulations were performed for intermediate to large time scales.We present here a class of diffusing diffusivity models and show that the problem of calculating pdf for the position of diffusing particle is equivalent to calculating the survival probability of a particle undergoing Brownian motion in the presence of a sink.We give exact analytical results for all time scales and show that the pdf is non-Gaussian at short times which crosses over to a Gaussian at longtimes. The MSD is also shown to vary linearly with time at all times. We find that our results reproduce the numerical results of Chubynsky and Slater quite well.
Mid infrared upconversion spectroscopy using diffuse reflectance
Sanders, Nicolai; Kehlet, Louis; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Beato, Pablo; Pedersen, Christian
2014-02-01
We present a novel approach for mid infrared (mid-IR) spectral analysis using upconversion technology applied in a diffuse reflectance setup. We demonstrate experimentally that mid-IR spectral features in the 2.6-4 μm range using different test samples (e.g. zeolites) can be obtained. The results are in good agreement with published data. We believe that the benefit of low noise upconversion methods combined with spectral analysis will provide an alternative approach to e.g. mid-IR Fourier Transform microscopy. We discuss in detail the experimental aspects of the proposed method. The upconversion unit consists of a PP:LN crystal situated as an intracavity component in a Nd:YVO4 laser. Mixing incoming spectrally and spatially incoherent light from the test sample with the high power intracavity beam of the Nd:YVO4 laser results in enhanced conversion efficiency. The upconverted light is spectrally located in the near infrared (NIR) wavelength region easily accessible for low noise Silicon CCD camera technology. Thus the room temperature upconversion unit and the Silicon CCD camera replaces noisy mid infrared detectors used in existing Fourier Transform Infrared Spectroscopy. We demonstrate specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly scattering or absorbing samples.
DEFF Research Database (Denmark)
Korreman, Stine Sofia
2012-01-01
This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPET...
Diffusion in porous crystalline materials.
Krishna, Rajamani
2012-04-21
The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.
Effects of atmospheric oscillations on the field-aligned ion motions in the polar F-region
Directory of Open Access Journals (Sweden)
S. Oyama
Full Text Available The field-aligned neutral oscillations in the F-region (altitudes between 165 and 275 km were compared using data obtained simultaneously with two independent instruments: the European Incoherent Scatter (EISCAT UHF radar and a scanning Fabry-Perot interferometer (FPI. During the night of February 8, 1997, simultaneous observations with these instruments were conducted at Tromsø, Norway. Theoretically, the field-aligned neutral wind velocity can be obtained from the field-aligned ion velocity and by diffusion and ambipolar diffusion velocities. We thus derived field-aligned neutral wind velocities from the plasma velocities in EISCAT radar data. They were compared with those observed with the FPI (λ=630.0 nm, which are assumed to be weighted height averages of the actual neutral wind. The weighting function is the normalized height dependent emission rate. We used two model weighting functions to derive the neutral wind from EISCAT data. One was that the neutral wind velocity observed with the FPI is velocity integrated over the entire emission layer and multiplied by the theoretical normalized emission rate. The other was that the neutral wind velocity observed with the FPI corresponds to the velocity only around an altitude where the emission rate has a peak. Differences between the two methods were identified, but not completely clarified. However, the neutral wind velocities from both instruments had peak-to-peak correspondences at oscillation periods of about 10–40 min, shorter than that for the momentum transfer from ions to neutrals, but longer than from neutrals to ions. The synchronizing motions in the neutral wind velocities suggest that the momentum transfer from neutrals to ions was thought to be dominant for the observed field-aligned oscillations rather than the transfer from ions to neutrals. It is concluded that during the observation, the plasma oscillations observed with the EISCAT radar at different altitudes
Energy Technology Data Exchange (ETDEWEB)
Handa, T.; Miyazato, Y.; Masuda, M.; Matsuo, K. [Kyushu University, Fukuoka (Japan)
2000-05-25
Mechanism of self-excited shock oscillation in two-dimensional transonic diffuser flow is investigated experimentally. The diffuser used in this work is composed of the fiat top wall and the curved bottom wall. Time-sequence of shock location is recorded by the high speed CCD camera combined with schlieren system, together with simultaneous measurements of static pressure fluctuations along the top wall. The pressure fluctuations at many locations on the side wall are also measured simultaneously. As a result, it is found that disturbances which induce shock oscillation are propagating upstream from downstream portion of the shock wave where the boundary layer behaves unsteadily and the most violently. Furthermore, vortices generated by the shock oscillation are observed to be convected downstream. The shock oscillation is explained to be sustained by the upstream-propagating disturbances and the downstream-convected vortices. (author)
Lappi, T; Mäntysaari, H; Venugopalan, R
2015-02-27
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
Nonstationary random acoustic and electromagnetic fields as wave diffusion processes
Arnaut, L R
2007-01-01
We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin--It\\^{o} and Fokker--Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general n...
Hereditary Diffuse Gastric Cancer
... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 11/2015 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is an inherited ...
Cooperative jump motions of jammed particles in a one-dimensional periodic potential.
Sakaguchi, Hidetsugu
2009-12-01
Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.
Cooperative jump motions of jammed particles in a one-dimensional periodic potential
Sakaguchi, Hidetsugu
2009-01-01
Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.
DIFFUSION BACKGROUND MODEL FOR MOVING OBJECTS DETECTION
Directory of Open Access Journals (Sweden)
B. V. Vishnyakov
2015-05-01
Full Text Available In this paper, we propose a new approach for moving objects detection in video surveillance systems. It is based on construction of the regression diffusion maps for the image sequence. This approach is completely different from the state of the art approaches. We show that the motion analysis method, based on diffusion maps, allows objects that move with different speed or even stop for a short while to be uniformly detected. We show that proposed model is comparable to the most popular modern background models. We also show several ways of speeding up diffusion maps algorithm itself.
Energy Technology Data Exchange (ETDEWEB)
Grinev, Timur; Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2015-12-28
Molecular excitation with incoherent light is examined using realistic turn-on time scales, and results are compared to those obtained via commonly used sudden turn-on, or pulses. Two significant results are obtained. First, in contrast to prior studies involving sudden turn-on, realistic turn-on is shown to lead to stationary coherences for natural turn-on time scales. Second, the time to reach the final stationary mixed state, known to result from incoherent excitation, is shown to depend directly on the inverse of the molecular energy level spacings, in both sudden and realistic turn-on cases. The S{sub 0} → S{sub 2}/S{sub 1} internal conversion process in pyrazine is used as an example throughout. Implications for studies of natural light harvesting systems are noted.
Nichols, Shane; Arteaga, Oriol; Martin, Alexander; Kahr, Bart
2015-11-01
Formulas for modeling ellipsometric measurements of bianisotropic crystals assume perfectly coherent plane wave illumination. As such, the finite coherence of typical spectroscopic ellipsometers renders such formulas invalid for crystals thicker than a few micrometers. Reflection measurements of thick crystalline slabs show depolarization. Researchers have proposed strategies for the full accounting for multiply reflected incoherent waves in anisotropic, arbitrarily oriented crystals [Appl. Opt.41, 2521 (2002).APOPAI0003-693510.1364/AO.41.002521], but to the best of our knowledge these methods have not been tested by explicit measurements. It is shown that by a summation of multiply reflected incoherent waves, transmission and reflection measurements of thick quartz slabs can be interpreted in terms of the constitutive material parameters.
Grinev, Timur; Brumer, Paul
2015-12-28
Molecular excitation with incoherent light is examined using realistic turn-on time scales, and results are compared to those obtained via commonly used sudden turn-on, or pulses. Two significant results are obtained. First, in contrast to prior studies involving sudden turn-on, realistic turn-on is shown to lead to stationary coherences for natural turn-on time scales. Second, the time to reach the final stationary mixed state, known to result from incoherent excitation, is shown to depend directly on the inverse of the molecular energy level spacings, in both sudden and realistic turn-on cases. The S0 → S2/S1 internal conversion process in pyrazine is used as an example throughout. Implications for studies of natural light harvesting systems are noted.
Institute of Scientific and Technical Information of China (English)
Shaolin Chen; Xiangming Liu; Bo Fu; Guoquan Zhang
2009-01-01
Nonvolatile two-color holographic recording gated by incoherent ultraviolet (UV) light centered at 365 nm is investigated in near-stoichiometric lithium niobate crystals. The influence of thermal treatment on the two-color recording is studied. The results show that thermal reduction tends to improve the two-color recording performance, whereas thermal oxidation degrades the two-color recording. With an incoherent 0.2-W/cm2 UV gating light and a 0.25-W/cm2 semiconductor recording laser at 780 nm, a two-color recording sensitivity of 4 x 10-3 cm/J and a recording dynamic range characterized by M/# of 0.12 are achieved in a 2.2-mm thermally reduced near-stoichiometric lithium niobate crystal. We attribute the improvement to the prolonged lifetime of small polarons and the increased absorption at the gating wavelength due to thermal reduction.
... ENTCareers Marketplace Find an ENT Doctor Near You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient ... vision or speech, or hearing loss. What is dizziness? Dizziness can be described in many ways, such ...
Diffusion coefficient in photon diffusion theory
Graaff, R; Ten Bosch, JJ
2000-01-01
The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to
Diffusion coefficient in photon diffusion theory
Graaff, R; Ten Bosch, JJ
2000-01-01
The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to
Directory of Open Access Journals (Sweden)
Guo-Liang Ma
2014-12-01
Full Text Available We show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT, with a modest parton–parton cross-section of σ=1.5–3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.
Xiao, Peng; Fink, Mathias; Gandjbakhche, Amir H.; Claude Boccara, A.
2017-05-01
This contribution is another opportunity to acknowledge the influence of Roger Maynard on our research work when he pushed one of us (ACB) to explore the field of waves propagating in complex media rather than limiting ourselves to the wavelength scale of thermal waves or near field phenomena. Optical tomography is used for imaging in-depth scattering media such as biological tissues. Optical coherence tomography (OCT) plays an important role in imaging biological samples. Coupling OCT with adaptive optics (AO) in order to correct eye aberrations has led to cellular imaging of the retina. By using our approach called Full-Field OCT (FFOCT) we show that, with spatially incoherent illumination, the width of the point-spread function (PSF) that governs the resolution is not affected by aberrations that induce only a reduction of the signal level. We will describe our approach by starting with the PSF experimental data followed by a simple theoretical analysis, and numerical calculations. Finally full images obtained through or inside scattering and aberrating media will be shown.
Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries
Gericke, Niklas M.; Hagberg, Mariana; dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel N.
2012-06-01
The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is transformed via the didactic transposition into school science textbooks. The results indicate that a common textbook discourse on genes and their function exist in textbooks from the different countries. The structure of science as represented by conceptual variation and the use of multiple models was present in all the textbooks. However, the existence of conceptual variation and multiple models is implicit in these textbooks, i.e., the phenomenon of conceptual variation and multiple models are not addressed explicitly, nor its consequences and, thus, it ends up introducing conceptual incoherence about the gene concept and its function within the textbooks. We conclude that within the found textbook-discourse ontological aspects of the academic disciplines of genetics and molecular biology were retained, but without their epistemological underpinnings; these are lost in the didactic transposition. These results are of interest since students might have problems reconstructing the correct scientific understanding from the transformed school science knowledge as depicted within the high school textbooks. Implications for textbook writing as well as teaching are discussed in the paper.
Energy Technology Data Exchange (ETDEWEB)
Kalmykov, S. Y., E-mail: skalmykov2@unl.edu; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lehe, R.; Lifschitz, A. F. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau F-91761 (France)
2015-05-15
It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.
Noise processing by microRNA-mediated circuits: The Incoherent Feed-Forward Loop, revisited
Directory of Open Access Journals (Sweden)
Silvia Grigolon
2016-04-01
Full Text Available The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL, a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements.
Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data
Cherniak, Iurii; Zakharenkova, Irina
The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the
Malhotra, Akshay; Mathews, John D.
2011-04-01
There has been much interest in the meteor physics community recently regarding the detailed processes by which the meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in interpretation of the meteor events observed by the high-power large-aperture (HPLA) radars. An understanding of the relative roles of these mechanisms is necessary to determine whether the considerable meteor mass flux arriving in the upper atmosphere arrives mostly in nanometer dust/smoke (via fragmentation) or atomic form (via ablation), which in turn has important consequences in understanding not only the aeronomy of the region but also the formation and evolution of various upper atmospheric phenomenon such as Polar Mesospheric Summer Echoes. Using meteor observations from the newly operational Resolute Bay Incoherent Scatter Radar (RISR), we present the first statistical study showing the relative contribution of these mechanisms. We find that RISR head echoes exhibited ˜48% fragmentation, ˜32% simple ablation, and ˜20% differential ablation. We also report existence of compound meteor events exhibiting signatures of more than one mass loss mechanism. These results emphasize that the processes by which the meteoroid mass is deposited into the upper atmosphere are complex and involve all three mechanisms described here. This conclusion is unlike the previously reported results that stress the importance of one or the other of these mechanisms. These results will also contribute in improving current meteoroid disintegration/ablation models.
Directory of Open Access Journals (Sweden)
HongZhong Tang
2016-01-01
Full Text Available Optimizing the mutual coherence of a learned dictionary plays an important role in sparse representation and compressed sensing. In this paper, a efficient framework is developed to learn an incoherent dictionary for sparse representation. In particular, the coherence of a previous dictionary (or Gram matrix is reduced sequentially by finding a new dictionary (or Gram matrix, which is closest to the reference unit norm tight frame of the previous dictionary (or Gram matrix. The optimization problem can be solved by restricting the tightness and coherence alternately at each iteration of the algorithm. The significant and different aspect of our proposed framework is that the learned dictionary can approximate an equiangular tight frame. Furthermore, manifold optimization is used to avoid the degeneracy of sparse representation while only reducing the coherence of the learned dictionary. This can be performed after the dictionary update process rather than during the dictionary update process. Experiments on synthetic and real audio data show that our proposed methods give notable improvements in lower coherence, have faster running times, and are extremely robust compared to several existing methods.
Il Yong Chun; Adcock, Ben; Talavage, Thomas M
2014-01-01
Magnetic resonance imaging (MRI) is considered a key modality for the future as it offers several advantages, including the use of non-ionizing radiation and having no known side effects on the human body, and has recently begun to serve as a key component of multi-modal neuroimaging. However, two major intrinsic problems exist: slow acquisition and intrusive acoustic noise. Parallel MRI (pMRI) techniques accelerate acquisition by reducing the duration and coverage of conventional gradient encoding. The under-sampled k-space data is detected with several receiver coils surrounding the object, using distinct spatial encoding information for each coil element to reconstruct the image. However, this scanning remains slow compared to typical clinical imaging (e.g. X-ray CT). Compressed Sensing (CS), a sampling theory based on random sub-sampling, has potential to further reduce the sampling used in pMRI, accelerating acquisition further. In this work, we propose a new CS SENSE pMRI reconstruction model promoting joint sparsity across channels and enhancing mutual incoherence to improve reconstruction accuracy from limited k-space data. For fast image reconstruction and fair comparisons, all reconstructions are computed with split-Bregman and variable splitting techniques. Numerical results show that, with the introduced methods, reconstruction performance can be crucially improved with limited amount of k-space data.
Incoherent ellipsometry below energy gap of TlInS{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Shim, Yonggu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)]. E-mail: shim@pe.osakafu-u.ac.jp; Okada, Wataru [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Mamedov, Nazim [Institute of Physics, National Academy of Sciences of Azerbaijan, Javid ave. 33, Baku, AZ-1143 (Azerbaijan)
2006-06-19
The layered material TlInS{sub 2} was studied by spectroscopic phase modulated ellipsometry in the energy range 0.75-2.00 eV at room temperature. By using an incoherent reflection model and assuming that optic axis (c*) of TlInS{sub 2} is normal to the layer plane, the refractive indices in E // c* and E -perpendicular c* orientations of the electrical vector, E , of the incident light were obtained for a region of photon energies below the energy gap of this material. A remarkable increase of the birefringence at photon energies approaching energy gap (2.4 eV) was observed to be a good illustration of the fact that band gap exciton transitions in TlInS{sub 2} at room temperature are allowed in E // c* and forbidden in E -perpendicular c* orientation, respectively. It is shown that biaxial effects in TlInS{sub 2} are small and sample-dependent.
Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer
Directory of Open Access Journals (Sweden)
R. A. Washenfelder
2008-12-01
Full Text Available We describe an instrument for simultaneous measurements of glyoxal (CHOCHO and nitrogen dioxide (NO_{2} using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N_{2}+O_{2}. Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO_{2}, O_{4}, and H_{2}O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ on signal for measurements of CHOCHO and NO_{2} is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO_{2} at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO_{2}.
Rozova, Vlada S; Khaydukov, Eugenyi V; Zvyagin, Andrei V
2016-07-20
A retroemission device (REM) is an incoherent holographic device that represents a lenslet array situated on a substrate containing fluorescent material. Each lenslet focuses each wavelet of an optical wavefront incident on the REM device into a diffraction-limited volume (voxel) in the fluorescent material, so that the voxel coordinates encode the angle of incidence and curvature of the wavelet. The back-propagating fraction of the excited fluorescence is collected by the lenslet and quasi-collimated into a back-propagating wavelet. All wavelets are combined to reconstruct the incident wavefront propagating in the backward direction. We present a theoretical model of REM based on Fresnel-Kirchhoff approximation describing the reconstructed 3D image characteristics versus the thickness of the fluorescence film at the focal plane of the lenslets. Results of the computer simulations of the REM-based images of a point source, two axially separated point sources and an extended object (a circular rim) situated in the sagittal plane are presented. These results speak in favor of using a fluorescence film of minimum diffraction-limited thickness at the lenslet back focal plane. This REM structure minimizes the fluorescence background and improves the 3D imaging resolution in virtue of the exclusion of out-of-voxel fluorescence contributions to the reconstructed wavefront.
Damonte, Kathleen
2004-01-01
One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…
Directory of Open Access Journals (Sweden)
R. S. Dhillon
2009-01-01
Full Text Available Previous studies of the aspect sensitivity of heater-enhanced incoherent radar backscatter in the high-latitude ionosphere have demonstrated the directional dependence of incoherent scatter signatures corresponding to artificially excited electrostatic waves, together with consistent field-aligned signatures that may be related to the presence of artificial field-aligned irregularities. These earlier high-latitude results have provided motivation for repeating the investigation in the different geophysical conditions that obtain in the polar cap ionosphere. The Space Plasma Exploration by Active Radar (SPEAR facility is located within the polar cap and has provided observations of RF-enhanced ion and plasma line spectra recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR, which is collocated with SPEAR. In this paper, we present observations of aspect sensitive E- and F-region SPEAR-induced ion and plasma line enhancements that indicate excitation of both the purely growing mode and the parametric decay instability, together with sporadic E-layer results that may indicate the presence of cavitons. We note consistent enhancements from field-aligned, vertical and also from 5° south of field-aligned. We attribute the prevalence of vertical scatter to the importance of the Spitze region, and of that from field-aligned to possible wave/irregularity coupling.
In-situ STM and XRD studies on Nb–H films: Coherent and incoherent phase transitions
Energy Technology Data Exchange (ETDEWEB)
Burlaka, Vladimir, E-mail: vburlaka@material.physik.uni-goettingen.de; Wagner, Stefan; Pundt, Astrid
2015-10-05
Highlights: • Hydride formation found in 25 nm Nb–H films. • Critical film thickness for coherent-to-incoherent phase transition confirmed. • Size and spatial distribution of hydrides controlled by the coherency state. • Invisibility of small coherent hydrides in XRD pattern. - Abstract: Hydride precipitation in 25 nm and 40 nm epitaxial Nb-films was studied by Scanning Tunnelling Microscopy (STM) supported by X-ray diffraction (XRD) measurements. In combination, these methods yield information about the phase transition, the coherency state, the hydride precipitates’ density and size as well as their lateral distribution, at 293 K. For both film thicknesses, hydride formation was detected with STM; it can be easily missed by XRD. While the 25 nm film showed a coherent phase transition, the phase transition was incoherent for the 40 nm film. This is in good accordance with theory. The phase transition features are found to strongly depend on the coherency state: a large number of small hydrides appear in the coherent regime while a small number of large hydrides evolve in the incoherent regime.
On diffusion in narrow random channels
Freidlin, Mark
2013-01-01
We consider in this paper a solvable model for the motion of molecular motors. Based on the averaging principle, we reduce the problem to a diffusion process on a graph. We then calculate the effective speed of transportation of these motors.
Molecular diffusion in monolayer and submonolayer nitrogen
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Bruch, Ludwig Walter
2001-01-01
The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal pla...... where the ballistic approximation to the translational molecular self-correlation function is accurate....
Surveying Diffusion in Complex Geometries. An Essay
Grebenkov, Denis
2009-01-01
The surrounding world surprises us by the beauty and variety of complex shapes that emerge from nanometric to macroscopic scales. Natural or manufactured materials (sandstones, sedimentary rocks and cement), colloidal solutions (proteins and DNA), biological cells, tissues and organs (lungs, kidneys and placenta), they all present irregularly shaped "scenes" for a fundamental transport "performance", that is, diffusion. Here, the geometrical complexity, entangled with the stochastic character of diffusive motion, results in numerous fascinating and sometimes unexpected effects like diffusion screening or localization. These effects control many diffusion-mediated processes that play an important role in heterogeneous catalysis, biochemical mechanisms, electrochemistry, growth phenomena, oil recovery, or building industry. In spite of a long and rich history of academic and industrial research in this field, it is striking to see how little we know about diffusion in complex geometries, especially the one whic...
Smoothing Motion Estimates for Radar Motion Compensation.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.
Rolling Shutter Motion Deblurring
Su, Shuochen
2015-06-07
Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.
Active Teaching of Diffusion through History of Science, Computer Animation and Role Playing
Krajsek, Simona Strgulc; Vilhar, Barbara
2010-01-01
We developed and tested a lesson plan for active teaching of diffusion in secondary schools (grades 10-13), which stimulates understanding of the thermal (Brownian) motion of particles as the principle underlying diffusion. During the lesson, students actively explore the Brownian motion through microscope observations of irregularly moving small…
Active Teaching of Diffusion through History of Science, Computer Animation and Role Playing
Krajsek, Simona Strgulc; Vilhar, Barbara
2010-01-01
We developed and tested a lesson plan for active teaching of diffusion in secondary schools (grades 10-13), which stimulates understanding of the thermal (Brownian) motion of particles as the principle underlying diffusion. During the lesson, students actively explore the Brownian motion through microscope observations of irregularly moving small…
Erd\\'elyi-Kober Fractional Diffusion
Pagnini, Gianni
2011-01-01
The aim of this Short Note is to highlight that the {\\it generalized grey Brownian motion} (ggBm) is an anomalous diffusion process driven by a fractional integral equation in the sense of Erd\\'elyi-Kober, and for this reason here it is proposed to call such family of diffusive processes as {\\it Erd\\'elyi-Kober fractional diffusion}. The ggBm is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion. This class is made up of self-similar processes with stationary increments and it depends on two real parameters: $0 < \\alpha \\le 2$ and $0 < \\beta \\le 1$. It includes the fractional Brownian motion when $0 < \\alpha \\le 2$ and $\\beta=1$, the time-fractional diffusion stochastic processes when $0 < \\alpha=\\beta <1$, and the standard Brownian motion when $\\alpha=\\beta=1$. In the ggBm framework, the Mainardi function emerges as a natural generalization of the Gaussian distribution recovering the same key role of the Gaussian density for the standard ...
Friction and diffusion dynamics of adsorbates at surfaces
Fusco, C.
2005-01-01
A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it unav
Connor, Jerome
2014-01-01
This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: · Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design · Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...
Robust diffusion imaging framework for clinical studies
Maximov, Ivan I; Neuner, Irene; Shah, N Jon
2015-01-01
Clinical diffusion imaging requires short acquisition times and good image quality to permit its use in various medical applications. In turn, these demands require the development of a robust and efficient post-processing framework in order to guarantee useful and reliable results. However, multiple artefacts abound in in vivo measurements; from either subject such as cardiac pulsation, bulk head motion, respiratory motion and involuntary tics and tremor, or imaging hardware related problems, such as table vibrations, etc. These artefacts can severely degrade the resulting images and render diffusion analysis difficult or impossible. In order to overcome these problems, we developed a robust and efficient framework enabling the use of initially corrupted images from a clinical study. At the heart of this framework is an improved least trimmed squares diffusion tensor estimation algorithm that works well with severely degraded datasets with low signal-to-noise ratio. This approach has been compared with other...
Araruna, F. D.; Braz e Silva, P.; Carvalho, R. R.; Rojas-Medar, M. A.
2015-06-01
We consider the motion of a viscous incompressible fluid consisting of two components with a diffusion effect obeying Fick's law in ℝ3. We prove that there exists a small time interval where the fluid variables converge uniformly as the viscosity and the diffusion coefficient tend to zero. In the limit, we find a non-homogeneous, non-viscous, incompressible fluid governed by an Euler-like system.
Edgeworth expansion for functionals of continuous diffusion processes
DEFF Research Database (Denmark)
Podolskij, Mark; Yoshida, Nakahiro
2016-01-01
This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the second order Edgeworth expansion for power variation of diffus...... of diffusion processes. Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for studentized statistics of power variations....
Energy Technology Data Exchange (ETDEWEB)
Colognesi, D., E-mail: daniele.colognesi@fi.isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Ulivi, L.; Zoppi, M. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Ramirez-Cuesta, A.J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Orecchini, A. [Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Karkamkar, A.J. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Fichtner, M.; Gil Bardaji, E.; Zhao-Karger, Z. [Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76347 Eggenstein-Leopoldshafen (Germany)
2012-10-15
Highlights: Black-Right-Pointing-Pointer Densities of phonon states in some infiltrated H-storage materials are measured. Black-Right-Pointing-Pointer Signatures induced by the infiltration process on NaAlH{sub 4} phonon bands are detected. Black-Right-Pointing-Pointer Weaker modifications are found in MgH{sub 2} and NH{sub 3}BH{sub 3}, mainly in the low-energy region. Black-Right-Pointing-Pointer No relevant effect has been observed in LiBH{sub 4} + Mg(BH{sub 4}){sub 2}. - Abstract: Incoherent inelastic neutron scattering measurements on four impregnated/infiltrated composites of hydrides (namely, NaAlH{sub 4}, NH{sub 3}BH{sub 3}, LiBH{sub 4} + Mg(BH{sub 4}){sub 2}, and MgH{sub 2}) plus nanoporous scaffolds (active carbon fibers or silica-based MCM41) have been performed at low temperature. After a careful data analysis, the present experimental results have been compared to the corresponding spectroscopic data of bulk hydrides. Evident signatures induced by infiltration process on the NaAlH{sub 4} phonon bands have been detected, showing up as a strong peak broadening and smoothing together with, in some cases, an energy shift. Less pronounced phonon spectrum modifications have been found in MgH{sub 2} and NH{sub 3}BH{sub 3}, mainly concentrated in the low-energy acoustic region. Finally, no relevant effect has been observed for LiBH{sub 4} + Mg(BH{sub 4}){sub 2}.
Lou, Shan; Pan, Xiaoxin; Huang, Tianwen; Duan, Bo; Yang, Fu-Chia; Yang, Juan; Xiong, Mulin; Liu, Yang; Ma, Qiufu
2015-04-01
Mammalian skin is innervated by diverse, unmyelinated C fibers that are associated with senses of pain, itch, temperature, or touch. A key developmental question is how this neuronal cell diversity is generated during development. We reported previously that the runt domain transcription factor Runx1 is required to coordinate the development of these unmyelinated cutaneous sensory neurons, including VGLUT3(+) low-threshold c-mechanoreceptors (CLTMs), MrgprD(+) polymodal nociceptors, MrgprA3(+) pruriceptors, MrgprB4(+) c-mechanoreceptors, and others. However, how these Runx1-dependent cutaneous sensory neurons are further segregated is poorly illustrated. Here, we find that the Runx1-dependent transcription factor gene Zfp521 is expressed in, and required for establishing molecular features that define, VGLUT3(+) CLTMs. Furthermore, Runx1 and Zfp521 form a classic incoherent feedforward loop (I-FFL) in controlling molecular identities that normally belong to MrgprD(+) neurons, with Runx1 and Zfp51 playing activator and repressor roles, respectively (in genetic terms). A knock-out of Zfp521 allows prospective VGLUT3 lineage neurons to acquire MrgprD(+) neuron identities. Furthermore, Runx1 might form other I-FFLs to regulate the expression of MrgprA3 and MrgprB4, a mechanism preventing these genes from being expressed in Runx1-persistent VGLUT3(+) and MrgprD(+) neurons. The evolvement of these I-FFLs provides an explanation for how modality-selective sensory subtypes are formed during development and may also have intriguing implications for sensory neuron evolution and sensory coding.
Recovering of Precipitating Electrons Spectra on the Incoherent Scattering Radar Data.
Lyakhov, A.; Smirnova, N.; Osepian, A.
2001-12-01
Precipitating electrons are the main ionization source in the polar ionosphere. They determine practically all important electrodynamical properties of an ionosphere. So, the form of the spectrum and its time history allows to identify the zone of the precipitating particles source in magnitosphere in different substorm phases. It's worthwhile to note that quantitative estimations of the full energy flow is important for estimation of energy balance in atmosphere, and effects, caused by invasions of the high-energy particles must be taken into account in the study of the middle atmosphere chemistry. Incoherent radars are unique and powerful source for the observation and measurements of an ionosphere electrodynamic parameters. In principle, it is possible to determine the energy spectrum of precipitating electrons on their data. From mathematical point of view the problem of spectrum recovering is a linear integral Fredholm equation of the 1st kind, which is the classical ill-posed problem. The kernel of this integral equation defines the function of the electron energy losses in the atmosphere. Up to date a number of methods have been developed for the reconstruction of spectrum with energies Erestore effectively the precipitating spectra even when altitude electron density profile is noisy. The comparison of least-squares, Tikhonov regularization and adaptive optimal algorithms is presented for model problems and for satellite data as well. New model is given for α eff(h) determination in various geophysical conditions. The possibility of real-time spectra recovering, which, in turn, is based on the concept of dynamical regularization, is discussed.
Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer
Directory of Open Access Journals (Sweden)
R. A. Washenfelder
2008-08-01
Full Text Available We describe an instrument for simultaneous measurements of glyoxal (CHOCHO and nitrogen dioxide (NO_{2} using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N_{2}+O_{2}. Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO_{2}, O_{4}, and H_{2}O in the 441 to 469 nm spectral range. For a 1-min sampling time, the minimum detectable absorption is 4×10^{−10} cm^{−1}, and the precision (±1σ on signal for measurements of CHOCHO and NO_{2} is 29 pptv and 20 pptv, respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO_{2} detection, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO_{2}.
First Detection of Meteoric Smoke using the Poker Flat Incoherent Scatter Radar (PFISR)
Hsu, V. W.; Fentzke, J. T.; Brum, C. G.; Strelnikova, I.; Nicolls, M. J.
2011-12-01
In this work we present the first results of meteor smoke particles (MSPs) detected in the D-region plasma above the 449 MHz Poker Flat Incoherent Scatter Radar (PFISR) in Alaska (67°N, 149°W). MSPs are believed to be the major source of condensation nuclei for the formation of ice particles, the precursor for Polar Mesospheric Clouds (PMCs) and Polar Mesospheric Summer Echoes (PMSE). In addition, they are thought to contribute to D-region chemistry by providing a surface on which heterogeneous chemistry occurs (Summers and Siskand, 1999). Our results are obtained by utilizing a similar fitting method derived for use at other High Power Large Aperture Radar (HPLA) sites that treats the measured radar signal as the sum of two Lorentzian functions [Strelnikova et al., 2007]. This method allows us to determine particle size distributions and smoke densities (when calibrated electron density data is available) in the range of approximately 70 to 90 km altitude depending on background atmospheric composition. We present results from a period of strong D-Region ionization when the detected signal-to-noise (SNR) from the D-region is strongest (12 - 19 UT). Our results provide insight into the presence and distribution of charged meteoric dust in the polar mesopause region resulting from the condensation of ablated material of meteoric origin. Furthermore, we compare our results to other HPLA radar sites at high latitude (EISCAT) as well as low latitude (Arecibo) to verify our results and investigate any latitudinal variation that may exist.
Diffusion archeology for diffusion progression history reconstruction.
Sefer, Emre; Kingsford, Carl
2016-11-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.
Diffusive dynamics on paper matrix
Chaudhury, Kaustav; Kar, Shantimoy; Chakraborty, Suman
2016-11-01
Writing with ink on a paper and the rapid diagnostics of diseases using paper cartridge, despite their remarkable diversities from application perspective, both involve the motion of a liquid from a source on a porous hydrophilic substrate. Here we bring out a generalization in the pertinent dynamics by appealing to the concerned ensemble-averaged transport with reference to the underlying molecular picture. Our results reveal that notwithstanding the associated complexities and diversities, the resultant liquid transport characteristics on a paper matrix, in a wide variety of applications, resemble universal diffusive dynamics. Agreement with experimental results from diversified applications is generic and validates our unified theory.
Mechanism and kinetics of hydrated electron diffusion
Tay, Kafui A; Boutin, Anne; 10.1063/1.2964101
2012-01-01
Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps^{-1} at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ/mol. Through analysis of Arrhenius plots and the application of a simple random walk...
Protein diffusion in mammalian cell cytoplasm.
Kühn, Thomas; Ihalainen, Teemu O; Hyväluoma, Jari; Dross, Nicolas; Willman, Sami F; Langowski, Jörg; Vihinen-Ranta, Maija; Timonen, Jussi
2011-01-01
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.
Protein diffusion in mammalian cell cytoplasm.
Directory of Open Access Journals (Sweden)
Thomas Kühn
Full Text Available We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS. A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.
Localised Plate Motion on Venus
Ghail, R. C.
1996-03-01
The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.
Sensing based on the motion of enzyme-modified nanorods
DEFF Research Database (Denmark)
Bunea, Ada-Ioana; Pavel, Ileana-Alexandra; David, Sorin;
2015-01-01
Asymmetric modification with an enzyme confers nanorods an enhanced diffusive motion that is dependent on the concentration of the enzyme substrate. In turn, such a motion opens the possibility of determining the concentration of the enzyme substrate by measuring the diffusion coefficient...... of nanorods modified with the appropriate enzyme. Nanorods, with a Pt and a polypyrrole (PPy) segment, were fabricated. The PPy segment of such nanorods was then modified with glucose oxidase (GOx), glutamate oxidase (GluOx), or xanthine oxidase (XOD). Calibration curves, linking the diffusion coefficient...... media. Based on the obtained results we are confident that our motion-based approach to sensing can be developed to the point where different nanorods in a mixture simultaneously report on the concentration of different compounds with good temporal and spatial resolution....
Reaction diffusion in Ni–Al diffusion couples in steady magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Li, Chuanjun, E-mail: cjli21@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Yuan, Zhaojing; Guo, Rui; Xuan, Weidong; Ren, Zhongming; Zhong, Yunbo; Li, Xi [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Hui; Wang, Qiuliang [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)
2015-08-25
Highlights: • The Ni–Al diffusion couples were prepared by the electrodeposition technique. • The magnetic field reduced the growth rates of product layers in diffusion couples. • The effect of the magnetic field on diffusion depends on its intensity and direction. • The spiral motion of an atom in the magnetic field reduces diffusivity. - Abstract: The effect of a steady magnetic field on reactive diffusion in Ni–Al diffusion couples was investigated. The diffusion couples prepared by the electrodeposition technique were annealed in the temperature range of 530–590 °C with and without the magnetic field of 6 T. Regardless of the magnetic field, two intermetallic compounds, i.e., Ni{sub 2}Al{sub 3} and NiAl{sub 3}, were present in the product layers of diffusion couples. NiAl{sub 3} phase shows island-like structures at relatively lower temperatures while the Ni{sub 2}Al{sub 3} phase forms a typical layered structure. The growth of Ni{sub 2}Al{sub 3} layer was found to be parabolic. When the diffusion direction was perpendicular to the direction of the magnetic field, the external magnetic field reduced the growth rate of the Ni{sub 2}Al{sub 3} phase. Whereas the magnetic field had no obvious effect on the growth rate of Ni{sub 2}Al{sub 3} layers in the diffusion configuration of mutually parallel directions. The magnetic field intensity and direction dependence of growth rate of Ni{sub 2}Al{sub 3} intermetallic layers can be attributed to the change in number of collision of an atom with neighbors during diffusion due to spiral motion under the action of the Lorentz force, which leads to change the frequency factor, not activation energy, for layer growth.
Lecture Notes on Quantum Brownian Motion
Erdos, Laszlo
2010-01-01
Einstein's kinetic theory of the Brownian motion, based upon light water molecules continuously bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. Since the discovery of quantum mechanics it has been a challenge to verify the emergence of diffusion from the Schr\\"odinger equation. The first step in this program is to verify the linear Boltzmann equation as a certain scaling limit of a Schr\\"odinger equation with random potential. In the second step, one considers a longer time scale that corresponds to infinitely many Boltzmann collisions. The intuition is that the Boltzmann equation then converges to a diffusive equation similarly to the central limit theorem for Markov processes with sufficient mixing. In these lecture notes (prepared for the Les Houches summer school in 2010 August) we present the mathematical tools to rigorously justify this intuition. The new material relies on joint papers with H.-T. Yau and M. Salmhofer.
Energy Technology Data Exchange (ETDEWEB)
Hildreth, E.C.
1984-01-01
This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.
DEFF Research Database (Denmark)
Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus
2015-01-01
The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...
Institute of Scientific and Technical Information of China (English)
Huan-Huan Wu; Hui-Ru Jia; Yi Zhang; Le Liu; Dong-Bo Xu; Hao-Ran Sun
2015-01-01
Background:Diffusion weighted imaging (DWI),with the applying of intravoxel incoherent motion model,has showed promising results in obtaining additional information about microperfusion and tubular flow associated with morphologic changes in chronic kidney diseases.The study aims to evaluate the potential of T2-weighted signal intensity (SI) and DWI with mono-and bi-exponential models to reflect the serial changes on cisplatin (CP) induced rat renal fibrosis models.Methods:Magnetic resonance exams were performed prior to and 2nd day,4th day,6th day,8th day,2nd week,3rd week and 4th week after CP injection at a 3.0T with an animal coil.Besides T2-weighted images (T2WI),DWI of 13 b values from 0 to 1500 s/mm2 was acquired.Apparent diffusion coefficient (ADC),fluid fraction f,pure diffusivity D and pseudodiffusivity D* values were calculated.The regions of interest were placed on cortex (CO),outer stripe of the outer medulla (OM) and inner stripe of the outer medulla (OM),parameters were measured and compared among different time points.Five rats were scarified at each time point for pathological examination.Results:OM revealed remarkable hyperintense and broadened before it became an obscure thread,while CO demonstrated moderate hyperintense and IM didn't show significant change on T2WI.On all three stripes,ADC values decreased firstly then kept increasing since the 4th day;f values decreased on all stripes; D values had a tendency to increase with fluctuations but the changes didn't achieve statistical significance; D* values increased at the 2nd day then tended to be steady thereafter.Pathological findings revealed tubules epitheliums swelling followed by inflammation cells infiltration,interstitial fibrosis was observed since the 2nd week.Conclusions:All of T2-weighted SI,ADC,and biexponential models parameters vary during fibrotic process; biexponential model is superior to monoexponential model in separating changes of microperfusion together with tubular flow
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
Increased brain water self-diffusion in patients with idiopathic intracranial hypertension
DEFF Research Database (Denmark)
Gideon, P; Sørensen, P S; Thomsen, C;
1995-01-01
PURPOSE: To investigate changes in brain water diffusion in patients with idiopathic intracranial hypertension. METHODS: A motion-compensated MR pulse sequence was used to create diffusion maps of the apparent diffusion coefficient (ADC) in 12 patients fulfilling conventional diagnostic criteria ...
Jerome, N. P.; d'Arcy, J. A.; Feiweier, T.; Koh, D.-M.; Leach, M. O.; Collins, D. J.; Orton, M. R.
2016-12-01
The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n = 5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE = 62-102 ms, b = 0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE = 62 ms, with 3 additional b-values 0-50 mm-2s at TE = 80, 100 ms scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4 ± 7% (TE = 62 ms) to 30.7 ± 11% (TE = 102 ms) T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9 ± 6%, T2-IVIM: 18.3 ± 7%), as well as T 2 = 42.1 ± 7 ms, 77.6 ± 30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model.
Sibirtsev, A A; Elster, C; Haidenbauer, J; Krewald, S; Speth, J; Elster, Ch.
2002-01-01
An analysis of incoherent photoproduction of $\\eta$ mesons off the deuteron for photon energies from threshold to 800 MeV is presented. The dominant contribution, the $\\gamma$N-$\\eta$N amplitude, is described within an isobar model. Effects of the final state interactions in the $NN$ as well as the ${\\eta}N$ systems are included employing models derived within the meson-exchange approach. It is found that their consideration is important. Specifically, due to an interference effect the influence of the $\\eta N$ final state interaction is enhanced in the reaction $\\gamma d \\to np \\eta$ close to threshold.
Energy Technology Data Exchange (ETDEWEB)
Collis, P.N.; Turunen, T.; Turunen, E.
1988-02-01
A confined layer characterized by narrow incoherent scatter spectra has been observed between 86 and 88 km altitude in the high latitude summertime D-region with the EISCAT radar. Properties of the background plasma inferred from spectral measurements outside the layer are in close agreement with model predictions, but the localized minima in spectral width imply much heavier positive ions within the layer. This feature is interpreted as being due to the presence of large clustered ions with mass of the order of 500 amu, which are possibly hydrated protons with a mean hydration index of almost 30. copyright American Geophysical Union 1988
Energy Technology Data Exchange (ETDEWEB)
R.L. Paul; H.H. Cheu-Maya; G.R. Myneni
2002-11-01
The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.
Odinokov, Sergey; Zlokazov, Evgenii; Donchenko, Sergey; Verenikina, Nina
2017-09-01
The present article highlights the development results of archive memory holographic system based on application of computer generated Fourier holograms. The proposed idea allows realization of holographic principles of digital data record using simple and compact optical devices. Special interest is paid to synthesis and multiplexed record of one-dimensional Fourier transform holograms. The principal schemes of constructed prototypes of incoherent data recorder and coherent data reader are described in the present paper. The results of experimental implementation of the constructed devices are presented.
Motion compensator for holographic motion picture camera
Kurtz, R. L.
1973-01-01
When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.
Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy
1998-01-01
Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…
Summers, M. K.
1977-01-01
Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)
Speckle-free digital holographic recording of a diffusely reflecting object.
Kim, You Seok; Kim, Taegeun; Woo, Sung Soo; Kang, Hoonjong; Poon, Ting-Chung; Zhou, Changhe
2013-04-08
We demonstrate holographic recording without speckle noise using the digital holographic technique called optical scanning holography (OSH). First, we record a complex hologram of a diffusely reflecting (DR) object using OSH. The incoherent mode of OSH makes it possible to record the complex hologram without speckle noise. Second, we convert the complex hologram to an off-axis real hologram digitally and finally we reconstruct the real hologram using an amplitude-only spatial light modulator (SLM) without twin-image noise and speckle noise. To the best of our knowledge, this is the first time demonstrating digital holographic recording of a DR object without speckle noise.
Sabanovic, Asif
2011-01-01
"Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media
Bydlon, Samuel A.; Dunham, Eric M.
2015-03-01
We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ˜20 km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ˜3 km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length.
Anisotropic diffusion of spherical particles in closely confining microchannels
Dettmer, Simon L; Misiunas, Karolis; Keyser, Ulrich F
2014-01-01
We present here the measurement of the diffusivity of spherical particles closely confined by narrow microchannels. Our experiments yield a 2D map of the position-dependent diffusion coefficients parallel and perpendicular to the channel axis with a resolution down to 129 nm. The diffusivity was measured simultaneously in the channel interior, the bulk reservoirs as well as the channel entrance region. In the channel interior we found strongly anisotropic diffusion. While the perpendicular diffusion coefficient close to the confining walls decreased down to approximately 25 % of the value on the channel axis, the parallel diffusion coefficient remained constant throughout the entire channel width. In addition to the experiment, we performed finite element simulations for the diffusivity in the channel interior and found good agreement with the measurements. Our results reveal the distinctive influence of strong confinement on Brownian motion which is of significance to microfluidics as well as quantitative mo...
Diffuse Backscattering Mueller Matrices Patterns from Turbid Media
Institute of Scientific and Technical Information of China (English)
ZHANG Lian-Shun; ZHU Chen; WANG Zhi-Ping; ZHANG Jing
2006-01-01
We present experimental measurements and theory of the diffusely backscattered Mueller matrix patterns that arise from illuminating a turbid medium with a polarized laser beam. Our technique employs polarized light from a He-Ne laser (λ= 632.8 nm) focused onto the surface of the scattering medium. A surface area of approximately 2×2 cm2 centred on the light input point is imaged through polarization analysis optics onto a CCD camera. The Mueller matrix is reconstructed by 49 intensity measurements with various orientations of polarizer and analyser. The measured Mueller matrix of polystyrene spheres is compared with the theory result of incoherent scattering of light by spheres. It shows that the azimuthal patterns of the Mueller matrix are determined by the symmetry of the turbid media and the shape of scattering particles. The result is further proved by experiments with polystyrene spheres of different concentrations in de-ionized water.
Chaotic Motion of Relativistic Electrons Driven by Whistler Waves
Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.
2007-01-01
Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.
Directory of Open Access Journals (Sweden)
Gianni Pagnini
2012-01-01
inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdélyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.
Energy Technology Data Exchange (ETDEWEB)
Park, So Yeong; Hong, Chung Ki [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Lim, Jun, E-mail: limjun@postech.ac.kr [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)
2014-04-15
We measured the spatial coherence length and incoherent source size of a hard x-ray undulator beamline at Pohang Light Source-II, the stored electron energy of which has been increased from 2.5 GeV to 3 GeV. The coherence length was determined by single-slit measurement of the visibility of the Fresnel diffraction pattern. The correlated incoherent source size was cross-checked for three different optics: the single slit, beryllium parabolic compound refractive lenses, and the Fresnel zone plate. We concluded that the undulator beamline has an effective incoherent source size (FWHM) of 540 μm (horizontal) × 50 μm (vertical)
Park, So Yeong; Hong, Chung Ki; Lim, Jun
2014-04-01
We measured the spatial coherence length and incoherent source size of a hard x-ray undulator beamline at Pohang Light Source-II, the stored electron energy of which has been increased from 2.5 GeV to 3 GeV. The coherence length was determined by single-slit measurement of the visibility of the Fresnel diffraction pattern. The correlated incoherent source size was cross-checked for three different optics: the single slit, beryllium parabolic compound refractive lenses, and the Fresnel zone plate. We concluded that the undulator beamline has an effective incoherent source size (FWHM) of 540 μm (horizontal) × 50 μm (vertical).
Diffusive chaos in navigation satellites orbits
Daquin, J; Tsiganis, K
2016-01-01
The navigation satellite constellations in medium-Earth orbit exist in a background of third-body secular resonances stemming from the perturbing gravitational effects of the Moon and the Sun. The resulting chaotic motions, emanating from the overlapping of neighboring resonant harmonics, induce especially strong perturbations on the orbital eccentricity, which can be transported to large values, thereby increasing the collision risk to the constellations and possibly leading to a proliferation of space debris. We show here that this transport is of a diffusive nature and we present representative diffusion maps that are useful in obtaining a global comprehension of the dynamical structure of the navigation satellite orbits.
Allé, M C; Gandolphe, M-C; Doba, K; Köber, C; Potheegadoo, J; Coutelle, R; Habermas, T; Nandrino, J-L; Danion, J-M; Berna, F
2016-08-01
Life narratives of patients with schizophrenia are characterized by impaired coherence so that the listener has often difficulties to grasp the life trajectory of the patients. In order to better understand what causes this reduced temporal coherence, we investigated the temporal structure of patients' life narratives through different temporal narrative elements (elaboration of beginnings and endings, local temporal indicators and temporal deviations from a linear order), across two complementary studies. Life narratives were collected by means of two different methods; a free recall in study 1 and a more structured protocol, aiming at reducing the cognitive task demands in study 2. All narratives from the two studies were analyzed using the same validated method. Both studies showed that global temporal coherence is significantly reduced in patients with schizophrenia (ps.02). This is mainly due to their stronger tendency to temporally deviate from a linear temporal order without marking the deviation as such. We also observed significant correlations in the patient groups between global temporal coherence and executive dysfunction (p=.008) or their higher tendency to temporally deviate from a linear temporal order in their life narratives (p<.001). These results shed light on narrative correlates of temporal narrative incoherence in schizophrenia and highlight the central role of executive dysfunction in this incoherence. Copyright © 2016 Elsevier Inc. All rights reserved.