Foam rigidized inflatable structural assemblies
Tinker, Michael L. (Inventor); Schnell, Andrew R. (Inventor)
2010-01-01
An inflatable and rigidizable structure for use as a habitat or a load bearing structure is disclosed. The structure consists of an outer wall and an inner wall defining a containment member and a bladder. The bladder is pressurized to erect the structure from an initially collapsed state. The containment member is subsequently injected with rigidizable fluid through an arrangement of injection ports. Exhaust gases from the curing rigidizable fluid are vented through an arrangement of exhaust ports. The rate of erection can be controlled by frictional engagement with a container or by using a tether. A method for fabricating a tubular structure is disclosed.
International Nuclear Information System (INIS)
Fox, T.; Kotzian, M.; Roesch, N.
1992-01-01
The authors present an INDO/S Molecular-orbital investigation of organic molecules containing a barrelene moiety that provides a rigid link between an aromatic donor and a maleic ester acceptor group. Molecules of this type have recently been synthesized and characterized spectroscopically. The authors discuss the ground state and various excited states both in vacuo and in solution. Solvent effects are incorporated by use of an electrostatic cavity model which is not restricted to a spherical cavity, but allows for a cavity shape that is adapted to the solute molecule. The calculations indicate low-lying charge-transfer (CT) excitations in the region of the first aromatic transitions, even in the gas phase
Inflatable Tubular Structures Rigidized with Foams
Tinker, Michael L.; Schnell, Andrew R.
2010-01-01
Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.
Rigidity of invariant complex structures
International Nuclear Information System (INIS)
Miatello, I.D.
1991-03-01
A Kaehler solvmanifold is a connected Kaehler manifold (M,j, ) which admits a transition solvable group R of automorphisms. The problem considered in this paper is related to the number of isomorphism classes of Kaehler structures (j, ) on M turning it into a Kaehler solvmanifold. 8 refs
Lateral rigidity of cracked concrete structures
International Nuclear Information System (INIS)
Castellani, A.; Chesi, C.
1979-01-01
Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)
On real structures on rigid surfaces
International Nuclear Information System (INIS)
Kulikov, Vik S; Kharlamov, V M
2002-01-01
We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p g =q=0 and K 2 =9. These surfaces also provide new counterexamples to the 'Dif = Def' problem
On real structures on rigid surfaces
Energy Technology Data Exchange (ETDEWEB)
Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France)
2002-02-28
We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p{sub g}=q=0 and K{sup 2}=9. These surfaces also provide new counterexamples to the 'Dif = Def' problem.
APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS
Directory of Open Access Journals (Sweden)
Sergey Yu. Fialko
2017-09-01
Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.
Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays
Johnston, John D.; Thornton, Earl A.
1997-01-01
The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.
Rigid-plastic seismic design of reinforced concrete structures
DEFF Research Database (Denmark)
Costa, Joao Domingues; Bento, R.; Levtchitch, V.
2007-01-01
structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...
Dynamics of Rigid Bodies and Flexible Beam Structures
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre
of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...
Soil-structure interaction including nonlinear soil
Gicev, Vlado
2008-01-01
There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.
Handedness in shearing auxetics creates rigid and compliant structures
Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela
2018-05-01
In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.
Directory of Open Access Journals (Sweden)
Yakhlef O.
2017-06-01
Full Text Available A fixed point algorithmis proposed to solve a fluid-structure interaction problem with the supplementary constraint that the structure displacements are limited by a rigid obstacle. Fictitious domain approach with penalization is used for the fluid equations. The surface forces from the fluid acting on the structure are computed using the fluid solution in the structure domain. The continuity of the fluid and structure velocities is imposed through the penalization parameter. The constraint of non-penetration of the elastic structure into the rigid obstacle is treated weakly. A convex constrained optimization problem is solved in order to get the structure displacements. Numerical results are presented.
Homogenization models for thin rigid structured surfaces and films.
Marigo, Jean-Jacques; Maurel, Agnès
2016-07-01
A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.
Vision-based stress estimation model for steel frame structures with rigid links
Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan
2017-07-01
This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.
The motion of the rigid body in viscous fluid including collisions. Global solvability result
Czech Academy of Sciences Publication Activity Database
Chemetov, N.; Nečasová, Šárka
2017-01-01
Roč. 34, April (2017), s. 416-445 ISSN 1468-1218 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : rigid body * global weak solution * collisions in finite time Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S1468121816301146
Extracting a Purely Non-rigid Deformation Field of a Single Structure
Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir
During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.
Directory of Open Access Journals (Sweden)
Xiaocui Wu
2015-11-01
Full Text Available Fluid–structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid–structure interaction is noticeable and should be considered for non-rigid airships. Flow-induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximately 60% compared with that of the rigid model under a high angle of attack.
Rigidity percolation in dispersions with a structured viscoelastic matrix
Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.
2005-01-01
This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle
A soft-rigid contact model of MPM for granular flow impact on retaining structures
Li, Xinpo; Xie, Yanfang; Gutierrez, Marte
2018-02-01
Protective measures against hazards associated with rapid debris avalanches include a variety of retaining structures such as rock/boulder fences, gabions, earthfill barriers and retaining walls. However, the development of analytical and numerical methods for the rational assessment of impact force generated by granular flows is still a challenge. In this work, a soft-rigid contact model is built under the coding framework of MPM which is a hybrid method with Eulerian-Lagrangian description. The soft bodies are discretized into particles (material points), and the rigid bodies are presented by rigid node-based surfaces. Coulomb friction model is used to implement the modeled contact mechanics, and a velocity-dependent friction coefficient is coupled into the model. Simulations of a physical experiment show that the peak and residual value of impact forces are well captured by the MPM model. An idealized scenario of debris avalanche flow down a hillslope and impacting on a retaining wall are analyzed using the MPM model. The calculated forces can provide a quantitative estimate from which mound design could proceed for practical implementation in the field.
Rigidity of reinforced concrete structures in the presence of different cracks
Directory of Open Access Journals (Sweden)
Iakovenko Igor
2017-01-01
Full Text Available It is proposed a method for rigidity calculating of reinforced concrete structures in the presence of cracks, suitable for rod and flat-strained concrete composite structures. It is based on the operating conditions and includes a new, more complete classification of the various cracks, models of a special crack, the calculation of the two-console model; a special cantilever model to determine the parameters of the joint between the concrete; calculation model of the block with the working section at the beginning and end of the crack to determine the horizontal (vertical projections of various cracks with the involvement of analytical relationships. They are based on the extremum of a function of many variables and Lagrange multipliers, as well as attracting level model of multi-level development of the various cracks, which allow to find the distance between the cracks and width of their disclosure, with considering the effect of discontinuities. This effect can greatly simplify the process of determining the rigidity of reinforced concrete structures (including composite ones, despite the complexity and diversity of the crack pattern.
Market structure, price rigidity, and performance in the Indonesian food and beverages industry
Setiawan, M.
2012-01-01
Keywords: industrial concentration, price rigidity, technical efficiency, price-cost margin, Structure-Conduct-Performance (SCP), new empirical industrial organization (NEIO), Indonesian food and beverages industry, Data Envelopment Analysis (DEA), system of equations
Transverse multibunch modes for non-rigid bunches, including mode coupling
Energy Technology Data Exchange (ETDEWEB)
Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)
Aboumoussa, Walid
2014-01-01
Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....
A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.
Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang
2017-11-01
DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA
International Nuclear Information System (INIS)
Yevdokimov, Yu M; Salyanov, V I; Skuridin, S G; Shtykova, E V; Khlebtsov, N G; Kats, E I
2015-01-01
This review focuses on physicochemical and nanotechnological approaches to the design of 'rigid' particles based on double-stranded DNA molecules. The physicochemical methods imply cross-linking of adjacent DNA molecules ordered in quasinematic layers of liquid-crystalline dispersion particles by synthetic nanobridges consisting of alternating molecules of an antibiotic (daunomycin) and divalent copper ions, as well as cross-linking of these molecules as a result of their salting-out in quasinematic layers of liquid-crystalline dispersion particles under the action of lanthanide cations. The nanotechnological approach is based on the insertion of gold nanoparticles into the free space between double-stranded DNA molecules that form quasinematic layers of liquid-crystalline dispersion particles. This gives rise to extended clusters of gold nanoparticles and is accompanied by an enhancement of the interaction between the DNA molecules through gold nanoparticles and by a decrease in the solubility of dispersion particles. These approaches produce integrated 'rigid' DNA-containing spatial structures, which are incompatible with the initial aqueous polymeric solutions and have unique properties. The bibliography includes 116 references
Reliability evaluation of containments including soil-structure interaction
International Nuclear Information System (INIS)
Pires, J.; Hwang, H.; Reich, M.
1985-12-01
Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs
Turbulent structures of non-Newtonian solutions containing rigid polymers
Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.
2017-10-01
The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall
International Nuclear Information System (INIS)
Rosenfeldt, S.; Dingenouts, N.; Poetschke, D.; Ballauff, M.; Berresheim, A.J.; Muellen, K.; Lindner, P.; Saalwaechter, K.
2005-01-01
The analysis of the spatial structure of a rigid polyphenylene dendrimer G4-M of fourth generation by small-angle neutron scattering (SANS) is presented. This dendrimer is composed of phenyl units and is therefore devoid of any flexible unit. The scattering intensity of dilute solutions of the dendrimer was measured by SANS at different contrast which was adjusted by mixtures of protonated and deuterated toluene. Hence, the method of contrast variation could be applied and the data yield the scattering function extrapolated to infinite contrast. The comparison of this data with simulations demonstrates that the scaffold of the dendrimer is rigid as expected from its chemical structure. The positions of the various units setting up consecutive shells of the dendrimer are relatively well localized and the entire structure cannot be modeled in terms of spherically symmetric models. No backfolding of the terminal groups can occur and the model calculations demonstrate that higher generations of this dendritic scaffold must exhibit a dense shell and a congestion of the terminal groups. This finding is directly corroborated by recent solid-state NMR data. All results show that the rigid dendrimer investigated here presents the first example for a dendritic structure whose segment density does not have its maximum at the center. Rigid scaffolds are therefore the only way to achieve the goal of a 'dense-shell' dendrimer whereas flexible scaffolds leads invariably to the 'dense-core' case
Energy Technology Data Exchange (ETDEWEB)
Heinrich, U. (Bauakademie, IHLGB, Berlin (Germany))
1991-01-01
Actual parameters of the bearing capacity of traffic areas are in case of intensive use an indispensable necessity for the determination of the remaining use value with the aim to optimize reinforcing layers and reconstruction periods. Until now there is only one adequate measuring method for flexible layers. With the Rollig load test (RLT) initial data can be gained for the calculation of the load bearing capacity of rigid pavement structures. The method is described with the example of an airplane runway. (BWI).
Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.
2017-05-09
Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.
Analysis of Smart Composite Structures Including Debonding
Chattopadhyay, Aditi; Seeley, Charles E.
1997-01-01
Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite
Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus
International Nuclear Information System (INIS)
Hespenheide, B M; Jacobs, D J; Thorpe, M F
2004-01-01
The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations
Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus
Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.
2004-11-01
The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.
Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus
Energy Technology Data Exchange (ETDEWEB)
Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)
2004-11-10
The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.
Directory of Open Access Journals (Sweden)
Leandro Martínez
Full Text Available The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD and Root Mean Square Fluctuations (RMSF of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit.
Rigid missiles impact on reinforced concrete structures: analysis by discrete element method
International Nuclear Information System (INIS)
Shiu, W.J.
2008-10-01
The constructions likely to be subjected to some extreme loadings like reactor containment buildings have to be dimensioned accordingly. As a part of study of concrete structures, this thesis focuses on numerical modelling of rigid missile impacts against a rigid reinforced concrete slab. Based on some experiment tests data, an elasto-plastic-damaged constitutive law has been implanted into a discrete element numerical code. To calibrate certain parameters of the numerical model, some quasi static tests have been first simulated. Once the model calibration was done, some missile impact simulation tests have then been carried out. The numerical results are well agree with these provided by French Atomic Energy Agency (Cea) and the French Electrical power Company (EDF) in terms of the trajectory of the missile. We were able to show the need of a constitutive law taking into account the compaction behaviour of the concrete when the predictions of penetration and perforation of a thick slab was demanded. Finally, a parametric study confirmed that the numerical model can be used the way predictive as well as the empirical prediction law, while the first can provide additional significant mechanical description. (author)
Electrochemical cell structure including an ionomeric barrier
Lambert, Timothy N.; Hibbs, Michael
2017-06-20
An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.
Earthquake analysis of structures including structure-soil interaction by a substructure method
International Nuclear Information System (INIS)
Chopra, A.K.; Guttierrez, J.A.
1977-01-01
A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results
Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures
Directory of Open Access Journals (Sweden)
Novi Andria
2013-03-01
Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.
An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells.
Lorentzen, Anna; Bamber, Jeffrey; Sadok, Amine; Elson-Schwab, Ilan; Marshall, Christopher J
2011-04-15
Melanoma cells can switch between an elongated mesenchymal-type and a rounded amoeboid-type migration mode. The rounded 'amoeboid' form of cell movement is driven by actomyosin contractility resulting in membrane blebbing. Unlike elongated A375 melanoma cells, rounded A375 cells do not display any obvious morphological front-back polarisation, although polarisation is thought to be a prerequisite for cell movement. We show that blebbing A375 cells are polarised, with ezrin (a linker between the plasma membrane and actin cytoskeleton), F-actin, myosin light chain, plasma membrane, phosphatidylinositol (4,5)-bisphosphate and β1-integrin accumulating at the cell rear in a uropod-like structure. This structure does not have the typical protruding shape of classical leukocyte uropods, but, as for those structures, it is regulated by protein kinase C. We show that the ezrin-rich uropod-like structure (ERULS) is an inherent feature of polarised A375 cells and not a consequence of cell migration, and is necessary for cell invasion. Furthermore, we demonstrate that membrane blebbing is reduced at this site, leading to a model in which the rigid ezrin-containing structure determines the direction of a moving cell through localised inhibition of membrane blebbing.
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI
Fiber Optic Systems for Light Curing Rigidization of Inflatable Structures, Phase I
National Aeronautics and Space Administration — Light (UV and visible) curing composite matrix resins are being explored as an attractive means for rigidizing inflatable spacecraft for large space-deployed...
International Nuclear Information System (INIS)
Jia, Zhenyong; Zhou, Qun; Li, Xiaowei; Fu, Yu; Ming, Hai; Zheng, Junwei
2015-01-01
Highlights: • Rigid porous framework of Li 4 Ti 5 O 12 microspheres can be fabricated by mutual molten growth of primary particles. • Well-confined nanosized tortuous channels are formed inside Li 4 Ti 5 O 12 microspheres. • Li 4 Ti 5 O 12 microspheres with rigid porous structures exhibit greatly enhanced electrochemical performance. - Abstract: Highly controllable porous architecture is desirable to tailor the physical and chemical properties of functional materials in advanced lithium ion batteries. Here, porous microspheres of spinel lithium titanate (Li 4 Ti 5 O 12 ), a promising alternative anode material for lithium ion batteries, are fabricated by mutual molten growth method in a controllable manner. The key role of the rigidity of the porous structure on the performance of the electrode materials in lithium ion batteries is demonstrated. Rigid framework of the materials is formed by second growth of the primary particles that fused together to generate an interconnected nanopore system inside the spheres, leading to better electrolyte diffusion and lower interparticle contact resistance, relative to the non-porous counterpart. The pristine Li 4 Ti 5 O 12 microspheres with uniform pore distribution and continuous framework exhibit high tap density, remarkable reversible capacity and rate capability, as well as excellent cycling stability. The present method is scalable and may provide a new approach to fabricate other candidate electrode materials for applications that require both high power and high volumetric energy density
Earthquake analysis of structures including structure-soil interaction by a substructure method
International Nuclear Information System (INIS)
Chopra, A.K.; Guttierrez, J.A.
1977-01-01
A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)
Rigid finite element method in analysis of dynamics of offshore structures
Energy Technology Data Exchange (ETDEWEB)
Wittbrodt, Edmund [Gdansk Univ. of Technology (Poland); Szczotka, Marek; Maczynski, Andrzej; Wojciech, Stanislaw [Bielsko-Biala Univ. (Poland)
2013-07-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.
Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures
Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław
2013-01-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...
The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules
Cheremisin, F. G.
1972-01-01
Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.
Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger
2013-07-01
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.
Stability Analysis Of 3-d Conventional Pallet Rack Structures With Semi-rigid Connections
Directory of Open Access Journals (Sweden)
Kamal M. Bajoria
2009-12-01
Full Text Available This paper describe the three dimensional finite element modeling and buckling analysis of conventional pallet racking system with semi rigid connection. In this study three dimensional models of conventional pallet racking system were prepared using the finiteelement program ANSYS and finite element analysis carried out on conventional pallet racks with the 18 types of column sections developed along with semi-rigid connections. A parametric study was carried out to compare the effective length approach and the finiteelement method for accuracy and appropriateness for cold-formed steel frame design. Numerous frame elastic buckling analyses were carried out to evaluate the alignment chart and the AISI torsional-flexural buckling provisions. The parameters that influence the valueof Kx for column flexural buckling were examined in this study. The alignment chart and the AISI torsional-flexural buckling provisions, used to obtain the effective lengths and elastic buckling load of members were also evaluated. Results showed that the elastic buckling load obtained from the AISI torsional-flexural buckling provisions is generally conservative compared to the results obtained from performing frame elastic buckling analysis. Results also showed that, the effective length approach is more conservative than the finite element approach.
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, A I; Sukhanov, L P; Charkin, O P [AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem
1982-01-01
In approximation by the Hartree-Fock-Routine method using several Gauss type bases ionization potentials of complex hydrides LiBeH/sub 3/, NaBeH/sub 3/, LiMgH/sub 3/, LiBH/sub 4/, NaBH/sub 4/ and LiAlH/sub 4/ have been calculated. A problem of the show of structural non-rigidity of complex molecules L(MX/sub 4/) with tetrahedral anions (MX/sub 4/)/sup -/ in photoelectron spectra is considered.
Bending and splitting of spoof surface acoustic waves through structured rigid surface
Directory of Open Access Journals (Sweden)
Sujun Xie
2018-03-01
Full Text Available In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC, which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect, the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.
Energy Technology Data Exchange (ETDEWEB)
Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.
2009-05-22
BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.
International Nuclear Information System (INIS)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V.
2016-01-01
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental data obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees
Meta-structure and tunable optical device including the same
Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry
2017-12-26
A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.
Arterial relationships to the nerves and some rigid structures in the posterior cranial fossa.
Surchev, N
2008-09-01
The close relationships between the cranial nerves and the arterial vessels in the posterior cranial fossa are one of the predisposing factors for artery-nerve compression. The aim of this study was to examine the relationships of the vertebral and basilar arteries to some skull and dural structures and the nerves in the posterior cranial fossa. For this purpose, the skull bases and brains of 70 cadavers were studied. The topographic relationships of the vertebral and basilar arteries to the cranial nerves in the posterior cranial fossa were studied and the distances between the arteries and some osseous formations were measured. The most significant variations in arterial position were registered in the lower half of the basilar artery. Direct contact with an artery was established for the hypoglossal canal, jugular tubercle, and jugular foramen. The results reveal additional information about the relationships of the nerves and arteries to the skull and dural formations in the posterior cranial fossa. New quantitative information is given to illustrate them. The conditions for possible artery-nerve compression due to arterial dislocation are discussed and two groups (lines) of compression points are suggested. The medial line comprises of the brain stem points, usually the nerve root entry/exit zone. The lateral line includes the skull eminences, on which the nerves lie, or skull and dural foramina through which they exit the cranial cavity. (c) 2008 Wiley-Liss, Inc.
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M
2013-04-02
A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.
Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.
Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G
2015-09-08
This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures
Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina
2018-03-01
There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.
Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures
Directory of Open Access Journals (Sweden)
Bagautdinov Ruslan
2018-01-01
Full Text Available There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.
The study of elastio-plastic seismic analysis for rigid-frame structures
陳, 珉; 青木, 徹彦
2000-01-01
Elastic and elastio-plastic earthquake-resistant analysis of frame construction is mainly studied in this paper. In elastic stage, response and vibrated characteristics of symmetrical and unsymmetrical structure are investigated by comparing the results of plane and space analysis. The effect of approaching angle of seismic wave to vibrated characteristics of structure under different column/beam rate are discussed. In elastio-plastic stage, four kinds of plastic mode with different plastic p...
Mechanical behaviour of cracked welded structures including mismatch effect
International Nuclear Information System (INIS)
Hornet, P.
2002-01-01
The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of
Fluid-structure interaction in non-rigid pipeline systems - large scale validation experiments
International Nuclear Information System (INIS)
Heinsbroek, A.G.T.J.; Kruisbrink, A.C.H.
1993-01-01
The fluid-structure interaction computer code FLUSTRIN, developed by DELFT HYDRAULICS, enables the user to determine dynamic fluid pressures, structural stresses and displacements in a liquid-filled pipeline system under transient conditions. As such, the code is a useful tool to process and mechanical engineers in the safe design and operation of pipeline systems in nuclear power plants. To validate FLUSTRIN, experiments have been performed in a large scale 3D test facility. The test facility consists of a flexible pipeline system which is suspended by wires, bearings and anchors. Pressure surges, which excite the system, are generated by a fast acting shut-off valve. Dynamic pressures, structural displacements and strains (in total 70 signals) have been measured under well determined initial and boundary conditions. The experiments have been simulated with FLUSTRIN, which solves the acoustic equations using the method of characteristics (fluid) and the finite element method (structure). The agreement between experiments and simulations is shown to be good: frequencies, amplitudes and wave phenomena are well predicted by the numerical simulations. It is demonstrated that an uncoupled water hammer computation would render unreliable and useless results. (author)
Tile-based rigidization surface parametric design study
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of
A finite element model of rigid body structures actuated by dielectric elastomer actuators
Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.
2018-06-01
This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.
Simulating the fluid-structure interaction of a flexible tube in an array of rigid tubes
International Nuclear Information System (INIS)
Warnica, D.; Maleki, M.; Hariri, A.; Feldman, H.
2011-01-01
Two important single-phase mechanisms for flow-induced vibration of heat-exchanger tube bundles were used to demonstrate the capabilities of commercial software to simulate unsteady fluid-structure interactions (FSI). Reasonable agreement was obtained between the FSI simulations and experimental data for the onset of fluid elastic instability. There was also reasonable agreement between the FSI simulations and empirical correlations for the dynamic tube response to random turbulence excitation. Additional benefits of performing FSI simulations were the ability to characterize important features of the unsteady flow fields and hydrodynamic parameters such as viscous damping coefficients, which would otherwise require elaborate experimental measurements. (author)
A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.
Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok
2016-03-01
Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.
Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction
DEFF Research Database (Denmark)
Harte, M.; Basu, B.; Nielsen, Søren R.K.
2012-01-01
This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...
Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong
2014-01-01
Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near
Durable bistable auxetics made of rigid solids
Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano
2018-02-01
Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Structures that Include a Semi-Outdoor Space
DEFF Research Database (Denmark)
Papachristou, C.; Foteinaki, Kyriaki; Kazanci, Ongun Berk
2016-01-01
The thermal environment of buildings with a second "skin" and semi-outdoor space is examined in the present study. A literature review was conducted on similar structures and only a few studies were found focusing on the thermal environment. Two different building case studies were chosen with di...
... may include a pelvic exam, and possibly a rectal exam. The provider will ask questions about your ... Copyright 1997-2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing ...
Track structure for low energy ions including charge exchange processes
International Nuclear Information System (INIS)
Uehara, S.; Nikjoo, H.
2002-01-01
The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
Structural integrity of LMFBRs including leak before break
International Nuclear Information System (INIS)
Vinzens, K.; Laue, H.; Hosemann, B.
1990-01-01
Th German Basis Safety Concept is an approach which allows the possibility of catastrophic failures to be excluded. It was developed in Germany to render the probabilistic approach unnecessary for safety cases relating to nuclear power plants. The process of evaluation started in 1972, and in 1979 the Basis Safety Concept was officially published and thus became a legal requirement for LWR plants. With appropriate modifications in regard of the particular features of LMFBR, this concept has also been applied to SNR 300. The 'Structural Integrity Demonstration Concept' of SNR 300 is based on five principles: Principle of quality by design and fabrication, Principle of multiple examination, Principle of worst case consideration, Principle of operating surveillance and documentation, Principle of verification and continuous development. The same principles are taken over for SNR 2. The specific requirements on the components relevant to safety have to be defined at an early stage so that the components can be designed appropriately to the feasibility of the measures required by the concept. (orig.)
Nuclear matter descriptions including quark structure of the hadrons
International Nuclear Information System (INIS)
Huguet, R.
2008-07-01
It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)
Liu, Feng; Wu, Chuanhai; Xu, Xinquan; Li, Hao; Wang, Zhixiang
2018-01-01
In order to grasp the rule of the strain change of the semi-rigid asphalt pavement structure under the FWD load and provide a reliable theoretical and practical basis for the design of the pavement structure, based on the test section of Guangdong Yunluo expressway, taking FWD as the loading tool, by using the finite element analysis software ANSYS, the internal variation rules of each pavement structural layer were obtained. Based on the results of the theoretical analysis, the measured strain sensor was set up in the corresponding layer of the pavement structure, and the strain test plan was determined. Based on the analysis of the strain data obtained from several structural layers and field monitoring, the rationality of the type pavement structure and the strain test scheme were verified, so as to provide useful help for the design and the maintenance of the pavement structure.
Directory of Open Access Journals (Sweden)
Zolina Tat'yana Vladimirovna
2012-10-01
Full Text Available The number of accidents at construction facilities has increased dramatically over the recent years. The engineering analysis of the reasons of accidents in the Russian Federation has revealed that the majority of accidents are caused by the loss of stability of specific structural elements, and a substantial reduction of the bearing capacity of structures. At the same time, no proper methodologies of processing and analyzing the results of inspections of structures, or methodologies of assessing the residual service life of structures are available, although advanced diagnostic tools are at hand. Therefore, advanced methods of accident risk analysis assume importance. A quantitative assessment of the risk exposure of buildings and structures at any stage (design, construction and operation can only be made through the employment of probabilistic calculations, especially if extreme loads are in the focus. Probabilistic methods are more robust as they evaluate the safety as the possibility of failure. Parameters are treated as stochastic variables. Based on the research completed by the authors, a 3D computational model of a single-storey industrial building has been developed. The software programme developed by the authors is designated for the resolution of a wide range of problems of reliability, durability, stability and accident risk analysis in respect of buildings exposed to various internal and external loads. The software may be used to resolve both direct and inverse problems. This feature is highly relevant in assessing structural behaviour. Their structures may constitute defects that affect their rigidity, strength and stability. The behaviour pattern of a loaded structure may be identified by means of an experiment, and thereafter, its rigidity may be identified by resolving the inverse problem in order to assess the life span of the structure.
King, Justin T.; Kumar, Rajeev; Green, Melissa A.
2018-03-01
The effects of changing Strouhal number on the three-dimensional wake produced by a rigid, bioinspired trapezoidal pitching panel are analyzed through the use of stereoscopic particle image velocimetry over a Strouhal number range of 0.17-0.56. The results show that for all cases, at least some section of the wake comprises an alternating series of interacting vortex rings. The behavior of the flows induced by these vortex rings is consistent with the wake phenomena of spanwise compression and transverse expansion. Increases in Strouhal number correspond to an increased rate of spanwise compression, a greater amount of transverse expansion, and the movement of the location of wake breakdown onset upstream.
Rigidity of Glasses and Macromolecules
Thorpe, M. F.
1998-03-01
The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.
International Nuclear Information System (INIS)
Bauchy, M.; Kachmar, A.; Micoulaut, M.
2014-01-01
The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As x Se 1-x (0.10
Energy Technology Data Exchange (ETDEWEB)
Bauchy, M. [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593 (United States); Kachmar, A. [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France); Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Micoulaut, M., E-mail: mmi@lptl.jussieu.fr [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France)
2014-11-21
The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10
Van-Wierts, S.; Bernatchez, P.
2012-04-01
Coastal erosion is an important issue within the St-Lawrence estuary and gulf, especially in zones of unconsolidated material. Wide beaches are important coastal environments; they act as a buffer against breaking waves by absorbing and dissipating their energy, thus reducing the rate of coastal erosion. They also offer protection to humans and nearby ecosystems, providing habitat for plants, animals and lifeforms such as algae and microfauna. Conventional methods, such as aerial photograph analysis, fail to adequately quantify the morphosedimentary behavior of beaches at the scale of a hydrosedimentary cells. The lack of reliable and quantitative data leads to considerable errors of overestimation and underestimation of sediment budgets. To address these gaps and to minimize acquisition costs posed by airborne LiDAR survey, a mobile terrestrial LiDAR has been set up to acquire topographic data of the coastal zone. The acquisition system includes a LiDAR sensor, a high precision navigation system (GPS-INS) and a video camera. Comparison of LiDAR data with 1050 DGPS control points shows a vertical mean absolute error of 0.1 m in beach areas. The extracted data is used to calculate sediment volumes, widths, slopes, and a sediment budget index. A high accuracy coastal characterization is achieved through the integration of laser data and video. The main objective of this first project using this system is to quantify the impact of rigid coastal protective structures on sediment budget and beach morphology. Results show that the average sediment volume of beaches located before a rock armour barrier (12 m3/m) were three times narrower than for natural beaches (35,5 m3/m). Natural beaches were also found to have twice the width (25.4 m) of the beaches bordering inhabited areas (12.7 m). The development of sediment budget index for beach areas is an excellent proxy to quickly identify deficit areas and therefore the coastal segments most at risk of erosion. The obtained
The importance of including dynamic soil-structure interaction into wind turbine simulation codes
DEFF Research Database (Denmark)
Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2014-01-01
A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance of the founda......A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance...... of the foundation from a rigorous analysis can be formulated into a so-called lumped-parameter model consisting of a few springs, dashpots and point masses which are easily implemented into aeroelastic codes. In this paper, the quality of consistent lumped-parameter models of rigid surface footings and mono piles...... is examined. The optimal order of the models is determined and implemented into the aeroelastic code HAWC2, where the dynamic response of a 5.0 MW wind turbine is evaluated. In contrast to the fore-aft vibrations, the inclusion of soil-structure interaction is shown to be critical for the side-side vibrations...
Associative memory through rigid origami
Murugan, Arvind; Brenner, Michael
2015-03-01
Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.
International Nuclear Information System (INIS)
Gantayat, A.; Kamil, H.
1981-01-01
The dynamic soil-structure and structure-to-structure interaction effects may be determined in one of the two ways: by modeling the entire soil-structure system by a finite-element model, or by using a frequency-dependent (or frequency-independent) impedance function approach. In seismic design of nuclear power plant structures, the normal practice is to use the first approach because of its simplicity and easy availability of computer codes to perform such analyses. However, in the finite-element approach, because of the size and cost restrictions, the three-dimensional behavior of the entire soil-structure system and the radiation damping in soil are only approximately included by using a two-dimensional finite-element mesh. In using the impedance function approach, the soil-structure analyses can be performed in four steps: (a) determination of the dynamic properties of the fixed base superstructure, (b) determination of foundation and structure impedance matrices and input motions, (c) evaluation of foundation motion, (d) analysis of the fixed base superstructure using computed foundation motion. (orig./RW)
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2011-02-01
Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.
Nonlinear dynamic analysis of framed structures including soil-structure interaction effects
International Nuclear Information System (INIS)
Mahmood, M.N.; Ahmed, S.Y.
2008-01-01
The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)
Energy Technology Data Exchange (ETDEWEB)
Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Ma, Jian-Fang [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)
2012-12-15
Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit
Signature of Thermal Rigidity Percolation
International Nuclear Information System (INIS)
Huerta, Adrián
2013-01-01
To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter
Directory of Open Access Journals (Sweden)
Hermoso Prieto, E.
2007-12-01
Full Text Available The present study explores the possibility of using longitudinal ultrasound transmission to evaluate the bending strength and modulus of elasticity in structural timber made from the two species most commonly found in Spanish construction and rehabilitation works: Scots pine (Pinus sylvestris L. and Laricio pine (Pinus nigra Arn.. An analysis of 1305 Scots pine and 852 Laricio pine beams shows that ultrasound transmission velocity alone can predict neither the bending strength nor the modulus of elasticity and that other predictive variables are required.A series of models are proposed based on ultrasound transmission velocity measurements, the relative size of the largest face and edge knots, length and density. After running models for each species individually and for the two jointly, a single model is found to be suitable for both. The models proposed explain from 63 to 73 per cent of bending strength and modulus of elasticity variability.Se analiza la posibilidad de aplicar la técnica de transmisión longitudinal de ultrasonidos para la evaluación de la resistencia y módulo de elasticidad a flexión de la madera estructural de las dos especies de mayor interés constructivo y más amplia presencia en obras de rehabilitación: el pino silvestre (Pinus sylvestris L. y el pino laricio (Pinus nigra Arn.. Trabajando sobre un total de 1.305 vigas de pino silvestre y 852 de pino laricio se concluye que por sí sola la velocidad de transmisión de ultrasonidos no es un buen predictor ni de la resistencia ni del módulo de elasticidad en flexión, necesitando el complemento de otras variables predictoras. Se proponen diversos modelos basados en la medición de la velocidad de transmisión de ultrasonidos, de los diámetros relativos del nudo máximo de cara y de canto, de la longitud y de la densidad. Los modelos se proponen tanto a nivel especie como global, comprobándose que es posible emplear un modelo único para ambas especies. Los modelos
Soft soils reinforced by rigid vertical inclusions
Directory of Open Access Journals (Sweden)
Iulia-Victoria NEAGOE
2013-12-01
Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.
International Nuclear Information System (INIS)
Ha, Jungmin; Wang, Zhenbin; Novitskaya, Ekaterina; Hirata, Gustavo A.; Graeve, Olivia A.; Ong, Shyue Ping; McKittrick, Joanna
2016-01-01
We outline an integrated approach for exploring novel near-UV excited phosphors. To test the hypothesis of whether high host structural rigidity results in phosphors with high quantum efficiency (Φ), we calculated the Debye temperatures (Θ) for 27 host materials using density functional theory calculations. We identified Eu 2+ -activated Ca 7 Mg(SiO 4 ) 4 and CaMg(SiO 3 ) 2 as having a relatively high Θ=601 K and 665 K, respectively, and predicted excitation energies of 3.18 eV (337 nm) and 3.29 eV (377 nm), respectively, both of which are in good agreement with the results of photoluminescence spectroscopy. However, the measured Φ for these two phosphors was < 30%, which indicates that Θ alone is not a sufficient condition for a high Φ. This work demonstrates the potential of combined first-principles calculations and experiments in the discovery and design of novel near-UV excited phosphors.
International Nuclear Information System (INIS)
Ghose, S.; Schomaker, V.; McMullan, R.K.
1986-01-01
Synthetic enstatite, Mg 2 Si 2 O 6 , is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23 0 C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F 2 ) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent [SiO 4 ] tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ha, Jungmin [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Wang, Zhenbin [Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Novitskaya, Ekaterina [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hirata, Gustavo A. [Center for Nanoscience and Nanotechnology, Ensenada (Mexico); Graeve, Olivia A. [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Ong, Shyue Ping, E-mail: ongsp@eng.ucsd.edu [Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); McKittrick, Joanna, E-mail: jmckittrick@ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)
2016-11-15
We outline an integrated approach for exploring novel near-UV excited phosphors. To test the hypothesis of whether high host structural rigidity results in phosphors with high quantum efficiency (Φ), we calculated the Debye temperatures (Θ) for 27 host materials using density functional theory calculations. We identified Eu{sup 2+}-activated Ca{sub 7}Mg(SiO{sub 4}){sub 4} and CaMg(SiO{sub 3}){sub 2} as having a relatively high Θ=601 K and 665 K, respectively, and predicted excitation energies of 3.18 eV (337 nm) and 3.29 eV (377 nm), respectively, both of which are in good agreement with the results of photoluminescence spectroscopy. However, the measured Φ for these two phosphors was < 30%, which indicates that Θ alone is not a sufficient condition for a high Φ. This work demonstrates the potential of combined first-principles calculations and experiments in the discovery and design of novel near-UV excited phosphors.
Directory of Open Access Journals (Sweden)
Frédéric V Stanger
Full Text Available Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two subunits (GyrA, GyrB that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43 from E. coli comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of GyrB43 in complex with ADP⋅BeF3, ADP⋅Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12° domain rearrangement to accommodate the 1.5 Å increase in distance between the γ- and β-phosphate of the nucleotide within the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part of the domain interface couple the small structural change within the binding site with the rigid body motion. The domain reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.
Pukhlikov, Aleksandr
2013-01-01
Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest ...
Rigid body dynamics of mechanisms
Hahn, Hubert
2003-01-01
The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.
Systems and strippable coatings for decontaminating structures that include porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2011-12-06
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Energy Technology Data Exchange (ETDEWEB)
Xia, Liang; Dong, Wen-Wen, E-mail: dongww1@126.com; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng, E-mail: lidongsheng1@126.com
2016-10-15
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d{sup 10} coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt){sub 2}]{sub n} (1), [Cd{sub 3}(4-pzpt){sub 2}(suc){sub 2}]{sub n} (2), [Cd{sub 2}(4-Hpzpt)(nbc){sub 2}(H{sub 2}O)]{sub n} (3) and ([Cd{sub 2}(4-pzpt){sub 2}(tfbdc)(H{sub 2}O){sub 4}]·H{sub 2}O){sub n} (4) (H{sub 2}suc=1,2-ethanedicarboxylic acid, H{sub 2}nbc=hthalene-1,4-dicarboxylic acid, H{sub 2}tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 4{sup 4}-sql layer, which is extended to a 3D network via nonclassical C–H{sup …}N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4{sup 12}0.6{sup 3} net composed of trinuclear Cd{sup II}-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·5{sup 3}·7{sup 2})(5{sup 3}·6·7·9)(4{sup 2}·5{sup 5}·6·7{sup 2}). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 6{sup 3}-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O–H{sup …}N and O–H{sup …}O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated. - Graphical abstract: Four new Cd{sup II} coordination architectures constructed from the primary ligand 4-Hpzpt and flexible/rigid dicarboxylate coligands. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. And more, the thermal stability and luminescence are discussed. - Highlights:
Thermostability in rubredoxin and its relationship to mechanical rigidity
Rader, A. J.
2010-03-01
The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.
Thermostability in rubredoxin and its relationship to mechanical rigidity
International Nuclear Information System (INIS)
Rader, A J
2010-01-01
The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)
2016-01-01
Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.
Directory of Open Access Journals (Sweden)
Finn Hedefalk
2014-09-01
Full Text Available The Intermediate Data Structure (IDS is a standardised database structure for longitudinal historical databases. Such a common structure facilitates data sharing and comparative research. In this study, we propose an extended version of IDS, named IDS-Geo, that also includes geographic data. The geographic data that will be stored in IDS-Geo are primarily buildings and/or property units, and the purpose of these geographic data is mainly to link individuals to places in space. When we want to assign such detailed spatial locations to individuals (in times before there were any detailed house addresses available, we often have to create tailored geographic datasets. In those cases, there are benefits of storing geographic data in the same structure as the demographic data. Moreover, we propose the export of data from IDS-Geo using an eXtensible Markup Language (XML Schema. IDS-Geo is implemented in a case study using historical property units, for the period 1804 to 1913, stored in a geographically extended version of the Scanian Economic Demographic Database (SEDD. To fit into the IDS-Geo data structure, we included an object lifeline representation of all of the property units (based on the snapshot time representation of single historical maps and poll-tax registers. The case study verifies that the IDS-Geo model is capable of handling geographic data that can be linked to demographic data.
Wiebe, Nicholas J P; Meyer, Irmtraud M
2010-06-24
The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular
International Nuclear Information System (INIS)
Kabir, A.F.; Maryak, M.E.
1991-01-01
Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir
Lavrikov, SV; Mikenina, OA; Revuzhenko, AF
2018-03-01
A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.
An ArcGIS approach to include tectonic structures in point data regionalization.
Darsow, Andreas; Schafmeister, Maria-Theresia; Hofmann, Thilo
2009-01-01
Point data derived from drilling logs must often be regionalized. However, aquifers may show discontinuous surface structures, such as the offset of an aquitard caused by tectonic faults. One main challenge has been to incorporate these structures into the regionalization process of point data. We combined ordinary kriging and inverse distance weighted (IDW) interpolation to account for neotectonic structures in the regionalization process. The study area chosen to test this approach is the largest porous aquifer in Austria. It consists of three basins formed by neotectonic events and delimited by steep faults with a vertical offset of the aquitard up to 70 m within very short distances. First, ordinary kriging was used to incorporate the characteristic spatial variability of the aquitard location by means of a variogram. The tectonic faults could be included into the regionalization process by using breaklines with buffer zones. All data points inside the buffer were deleted. Last, IDW was performed, resulting in an aquitard map representing the discontinuous surface structures. This approach enables one to account for such surfaces using the standard software package ArcGIS; therefore, it could be adopted in many practical applications.
Directory of Open Access Journals (Sweden)
Vahid Reza Afkhami
2017-12-01
Full Text Available In the steel frames, beam-column connections are traditionally assumed to be rigid or pinned, but in the steel frames, most types of beam-column connections are semi-rigid. Recent studies and some new codes, especially EC3 and EC4, include methods and formulas to estimate the resistance and stiffness of the panel zone. Because of weaknesses of EC3 and EC4 in some cases, Bayo et al. proposed a new component-based method (cruciform element method to model internal and external semi-rigid connections that revived and modified EC methods. The nonlinear modelling of structures plays an important role in the analysis and design of structures and nonlinear static analysis is a rather simple and efficient technique for analysis of structures. This paper presents nonlinear static (pushover analysis technique by new nonlinearity factor and Bayo et al. model of two types of semi-rigid connections, end plate connection and top and seat angles connection. Two types of lateral loading, uniform and triangular distributions are considered. Results show that the frames with top and seat angles connection have fewer initial stiffness than frames with semi-rigid connection and P-Δ effect more decreases base shear capacity in the case of top and seat angles connection. P-Δ effect in decrease of base shear capacity increases with the increase of number of stories.
Quantum mechanics of a generalised rigid body
International Nuclear Information System (INIS)
Gripaios, Ben; Sutherland, Dave
2016-01-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)
Xia, Liang; Dong, Wen-Wen; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng
2016-10-01
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d10 coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt)2]n (1), [Cd3(4-pzpt)2(suc)2]n (2), [Cd2(4-Hpzpt)(nbc)2(H2O)]n (3) and {[Cd2(4-pzpt)2(tfbdc)(H2O)4]·H2O}n (4) (H2suc=1,2-ethanedicarboxylic acid, H2nbc=hthalene-1,4-dicarboxylic acid, H2tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 44-sql layer, which is extended to a 3D network via nonclassical C-H…N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4120.63 net composed of trinuclear CdII-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·53·72)(53·6·7·9)(42·55·6·72). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 63-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O-H…N and O-H…O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated.
Cracking of open traffic rigid pavement
Directory of Open Access Journals (Sweden)
Niken Chatarina
2017-01-01
Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
Kim, Sun Jung; Yoo, Il Young
2016-03-01
The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.
Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A
2017-04-01
In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Impact simulation of liquid-filled containers including fluid-structure interaction--Part 1: Theory
International Nuclear Information System (INIS)
Sauve, R.G.; Morandin, G.D.; Nadeau, E.
1993-01-01
In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validations of the theoretical approach. Excellent correlation between predicted and experimental results is obtained
Torsional Rigidity of Minimal Submanifolds
DEFF Research Database (Denmark)
Markvorsen, Steen; Palmer, Vicente
2006-01-01
We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...
Quantum charged rigid membrane
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2011-03-21
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Quantum charged rigid membrane
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2011-01-01
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Stresses in Circular Plates with Rigid Elements
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
A structural design and analysis of a piping system including seismic load
International Nuclear Information System (INIS)
Hsieh, B.J.; Kot, C.A.
1991-01-01
The structural design/analysis of a piping system at a nuclear fuel facility is used to investigate some aspects of current design procedures. Specifically the effect of using various stress measures including ASME Boiler ampersand Pressure Vessel (B ampersand PV) Code formulas is evaluated. It is found that large differences in local maximum stress values may be calculated depending on the stress criterion used. However, when the global stress maximum for the entire system are compared the differences are much smaller, being nevertheless, for some load combinations, of the order of 50 percent. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis with the modal responses combined by using the absolute summation (ABS), by using the square root of the squares (SRSS), and by using the 10 percent method (10PC). It is shown that for a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to an RSM analysis based on ABS. However, it appears that an adequate design would be obtained from the ESM approach even without the use of a spectrum amplification factor. 7 refs., 3 figs., 3 tabs
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure......-dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs...
Resin Infusion Rigidized Inflatable Concept Development and Demonstration
National Aeronautics and Space Administration — A novel concept utilizing resin infusion to rigidize inflatable structures was developed at JSC ES. This ICA project intends to complete manufacturing of a prototype...
Stabilization of Rigid Body Dynamics by Internal and External Torques
National Research Council Canada - National Science Library
Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G
1990-01-01
...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...
Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias
2010-01-15
In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.
Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN
2012-01-17
A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.
DEFF Research Database (Denmark)
Rijkhoff, Jan
2010-01-01
classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...
Voice, Post-Structural Representation and the Subjectivity of "Included" Students
Whitburn, Ben
2016-01-01
Aligned with the broader movement from structuralism to the post-structuralisms [Lather, P. 2013. "Methodology-21: What Do We Do in the Afterward?" "International Journal of Qualitative Studies in Education" 26 (6): 634-645; St. Pierre, E. A. 2009. "Afterword: Decentering Voice in Qualitative Inquiry." In "Voice…
Directory of Open Access Journals (Sweden)
Dandekar Thomas
2010-01-01
Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.
DEFF Research Database (Denmark)
Lund, Erik
2017-01-01
This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Energy Technology Data Exchange (ETDEWEB)
Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)
2015-10-15
Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.
A heuristic approach to optimization of structural topology including self-weight
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.
International Nuclear Information System (INIS)
Zaman, M.; Mamoon, S.M.
1989-01-01
Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures
Bakr, Osman; Peng, Wei; Wang, Lingfei
2017-01-01
Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making
Rigid Spine Syndrome among Children in Oman
Directory of Open Access Journals (Sweden)
Roshan Koul
2015-08-01
Full Text Available Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a maleto- female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5. On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type.
Tree decomposition based fast search of RNA structures including pseudoknots in genomes.
Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming
2005-01-01
Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.
Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs
Directory of Open Access Journals (Sweden)
Ruan Jishou
2007-04-01
Full Text Available Abstract Background Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP; the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction. Results The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are
Modeling the Flexural Rigidity of Rod Photoreceptors
Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite
2013-01-01
In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852
Energy Technology Data Exchange (ETDEWEB)
NONE
1977-07-01
The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.
International Nuclear Information System (INIS)
1977-01-01
The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials
Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)
2018-01-01
Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.
International Nuclear Information System (INIS)
Khatibinia, Mohsen; Javad Fadaee, Mohammad; Salajegheh, Javad; Salajegheh, Eysa
2013-01-01
An efficient metamodeling framework in conjunction with the Monte-Carlo Simulation (MCS) is introduced to reduce the computational cost in seismic reliability assessment of existing RC structures. In order to achieve this purpose, the metamodel is designed by combining weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, called wavelet weighted least squares support vector machine (WWLS-SVM). In this study, the seismic reliability assessment of existing RC structures with consideration of soil–structure interaction (SSI) effects is investigated in accordance with Performance-Based Design (PBD). This study aims to incorporate the acceptable performance levels of PBD into reliability theory for comparing the obtained annual probability of non-performance with the target values for each performance level. The MCS method as the most reliable method is utilized to estimate the annual probability of failure associated with a given performance level in this study. In WWLS-SVM-based MCS, the structural seismic responses are accurately predicted by WWLS-SVM for reducing the computational cost. To show the efficiency and robustness of the proposed metamodel, two RC structures are studied. Numerical results demonstrate the efficiency and computational advantages of the proposed metamodel for the seismic reliability assessment of structures. Furthermore, the consideration of the SSI effects in the seismic reliability assessment of existing RC structures is compared to the fixed base model. It shows which SSI has the significant influence on the seismic reliability assessment of structures.
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
Rigid multibody system dynamics with uncertain rigid bodies
Energy Technology Data Exchange (ETDEWEB)
Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)
2012-03-15
This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.
International Nuclear Information System (INIS)
Elkhoraibi, T.; Hashemi, A.; Ostadan, F.
2014-01-01
Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock
Energy Technology Data Exchange (ETDEWEB)
Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.
2014-04-01
Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock
Bakr, Osman M.
2017-03-02
Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.
Re-analysis of exponential rigid-rotor astron equilibria
International Nuclear Information System (INIS)
Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.
1978-01-01
Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived
International Nuclear Information System (INIS)
Ghiocel, Dan M.; Wilson, Paul R.; Thomas, Gary G.; Stevenson, John D.
1998-01-01
The paper discusses methodological aspects involved in a probabilistic seismic soil-structure interaction (SSI) analysis for a Seismic Probabilistic Risk Assessment (SPRA) review. An example of an Eastern US nuclear power plant (NPP) is presented. The approach presented herein follows the current practice of the Individual Plant Examination for External Events (IPEEE) program in the US. The NPP is founded on a relatively soft soil deposit, and thus the SSI effects on seismic responses are significant. Probabilistic models used for the idealization of the seismic excitation and the surrounding soil deposit are described. Using a lognormal format, computed random variability effects were combined with those proposed in the SPRA methodology guidelines. Probabilistic floor response spectra and structural fragilities for different NPP buildings were computed. Structural capacities were determined following the current practice which assumes independent median safety factors for strength and inelastic absorption. Limitations of the IPEEE practice for performing SPRA are discussed and alternate procedures, more rigorous and simple to implement, are suggested
Understanding geological processes: Visualization of rigid and non-rigid transformations
Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.
2012-12-01
Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid
Fold classification based on secondary structure – how much is gained by including loop topology?
Directory of Open Access Journals (Sweden)
Przytycka Teresa
2006-03-01
Full Text Available Abstract Background It has been proposed that secondary structure information can be used to classify (to some extend protein folds. Since this method utilizes very limited information about the protein structure, it is not surprising that it has a higher error rate than the approaches that use full 3D fold description. On the other hand, the comparing of 3D protein structures is computing intensive. This raises the question to what extend the error rate can be decreased with each new source of information, especially if the new information can still be used with simple alignment algorithms. We consider the question whether the information about closed loops can improve the accuracy of this approach. While the answer appears to be obvious, we had to overcome two challenges. First, how to code and to compare topological information in such a way that local alignment of strings will properly identify similar structures. Second, how to properly measure the effect of new information in a large data sample. We investigate alternative ways of computing and presenting this information. Results We used the set of beta proteins with at most 30% pairwise identity to test the approach; local alignment scores were used to build a tree of clusters which was evaluated using a new log-odd cluster scoring function. In particular, we derive a closed formula for the probability of obtaining a given score by chance.Parameters of local alignment function were optimized using a genetic algorithm. Of 81 folds that had more than one representative in our data set, log-odds scores registered significantly better clustering in 27 cases and significantly worse in 6 cases, and small differences in the remaining cases. Various notions of the significant change or average change were considered and tried, and the results were all pointing in the same direction. Conclusion We found that, on average, properly presented information about the loop topology improves noticeably
DEFF Research Database (Denmark)
Ohlrich, Mogens
2011-01-01
of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan......Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source...
Model - including thermal creep effects - for the analysis of three-dimensional concrete structures
International Nuclear Information System (INIS)
Rodriguez, C.; Rebora, B.; Favrod, J.D.
1979-01-01
This article presents the most recent developments and results of research carried out by IPEN to establish a mathematical model for the non-linear rheological three-dimensional analysis of massive prestressed concrete structures. The main point of these latest developments is the simulation of the creep of concrete submitted to high temperatures over a long period of time. This research, financed by the Swiss National Science Foundation, has taken an increased importance with the advent of nuclear reactor vessels of the HHT type and new conceptions concerning the cooling of their concrete (replacement of the thermal insulation by a zone of hot concrete). (orig.)
Microwave effective surface impedance of structures including a high-Tc superconducting film
International Nuclear Information System (INIS)
Hartemann, P.
1992-01-01
The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs
Cheng, Lei; Li, Yizeng; Grosh, Karl
2013-08-15
An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.
Rigidly foldable origami gadgets and tessellations
Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.
2015-01-01
Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037
International Nuclear Information System (INIS)
Lee, Ho Jin; Lee, B. S.; Kim, K. B.
2003-09-01
The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si 3 N 4 . Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation
Energy Technology Data Exchange (ETDEWEB)
Lee, Ho Jin; Lee, B. S.; Kim, K. B
2003-09-01
The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.
Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe
2014-06-01
The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities
DEFF Research Database (Denmark)
Troiano, Giovanni Maria
(1) a user study with a prototype of an elastic, deformable display, and (2) a user study of deformable interfaces for performing music. The first study reports a guessability study with an elastic, deformable display where 17 participants suggested fitting gestures for 29 tasks, including navigation......, Transformation, Adaptation and Physicalization. In synthesis, the work presented in this thesis shows (1) implications of usefulness for deformable interfaces and how their new input modalities can redefine the way users interact with computers, and (2) how a systematic understanding of conventional design...
Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris
2017-07-01
While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.
International Nuclear Information System (INIS)
Utsunomiya, Hidetsuna; Nakamura, Yasuhiro
2007-01-01
To describe the changes in the magnetic resonance (MR) signal of the perianterior horn structure (PAS) with increasing age, we studied 69 infants and children aged between 3 days and 9.4 years (average: 2.8 years) without any neurological deficits. T1- and T2-weighted images and FLAIR (fluid attenuation inversion recovery) images were obtained in the axial plane. Based on a comparison of the intensity of the PAS with that of the cortex in each sequence (T1-WI/FLAIR/T2-WI), we classified the signal-intensity patterns into four types: I, low/low/high; II, low/high/high; III, iso/high/high; IV, high/low/low. Signal-intensity types I, II, III and IV were seen in 22, 8, 17, and 22 subjects, respectively, with younger subjects showing type I or II intensity patterns and older subjects showing type III or IV. In addition, T1-weighted and FLAIR images of subjects with a type I intensity pattern showed a rim of an isointensity component around the PAS that histologically coincided with migrating glial cells. The low-intensity area on FLAIR and T2-WI images of subjects with a type IV intensity pattern may represent myelinated fibers of the subcallosal fasciculus (ScF). The intensity of the MR signals of the PAS changes with increasing age, and this change may reflect histological features. A better understanding of these characteristics may help us to clarify myelination abnormalities, particularly those related to the ScF in the frontal lobe in infants and children. (orig.)
DEFF Research Database (Denmark)
Baatrup, E
1991-01-01
metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment. 5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins. 6. The present Mini......1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals. 2. Fish depend on an intact nervous system......, including their sense organs, for mediating relevant behaviour such as food search, predator recognition, communication and orientation. 3. Unfortunately, the nervous system is most vulnerable and injuries to its elements may dramatically change the behaviour and consequently the survival of fish. 4. Heavy...
Rigidity-tuning conductive elastomer
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Rigidity-tuning conductive elastomer
International Nuclear Information System (INIS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-01-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE–PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE–PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE–PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation. (paper)
McClatchie, Sam; Cowen, Robert; Nieto, Karen; Greer, Adam; Luo, Jessica Y.; Guigand, Cedric; Demer, David; Griffith, David; Rudnick, Daniel
2012-04-01
We sampled a front detected by SST gradient, ocean color imagery, and a Spray glider south of San Nicolas Island in the Southern California Bight between 14 and 18 October 2010. We sampled the front with an unusually extensive array of instrumentation, including the Continuous Underway Fish Egg Sampler (CUFES), the undulating In Situ Ichthyoplankton Imaging System (ISIIS) (fitted with temperature, salinity, oxygen, and fluorescence sensors), multifrequency acoustics, a surface pelagic trawl, a bongo net, and a neuston net. We found higher fluorescence and greater cladoceran, decapod, and euphausiid densities in the front, indicating increased primary and secondary production. Mesopelagic fish were most abundant in oceanic waters to the west of the front, market squid were abundant in the front associated with higher krill and decapod densities, and jack mackerel were most common in the front and on the shoreward side of the front. Egg densities peaked to either side of the front, consistent with both offshore (for oceanic squid and mesopelagic fish) and shelf origins (for white croaker and California halibut). We discovered unusually high concentrations of predatory narcomedusae in the surface layer of the frontal zone. Potential ichthyoplankton predators were more abundant either in the front (decapods, euphausiids, and squid) or shoreward of the front (medusae, chaetognaths, and jack mackerel). For pelagic fish like sardine, which can thrive in less productive waters, the safest place to spawn would be offshore because there are fewer potential predators.
International Nuclear Information System (INIS)
Woesler, Richard
2007-01-01
The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future
Energy Technology Data Exchange (ETDEWEB)
Park, Sang Jin [UST Graduate School, Daejeon (Korea, Republic of); Rhee, Hui Nam [Division of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon (Korea, Republic of); Yoon, Doo Byung; Park, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-08-15
In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.
Directory of Open Access Journals (Sweden)
Miriam eFaust
2014-07-01
Full Text Available Neurotypical individuals cope flexibly with the full range of semantic relations expressed in human language, including metaphoric relations. This impressive semantic ability may be associated with distinct and flexible patterns of hemispheric interaction, including higher right hemisphere (RH involvement for processing novel metaphors. However, this ability may be impaired in specific clinical conditions, such as Asperger syndrome and schizophrenia. The impaired semantic processing is accompanied by different patterns of hemispheric interaction during semantic processing, showing either reduced (in Asperger or excessive (in schizophrenia RH involvement. This paper interprets these individual differences using the terms Rigidity, Chaos and Integration, which describe patterns of semantic memory network states that either lead to semantic well-being or are disruptive of it. We argue that these semantic network states lie on a rigidity-chaos semantic continuum. We define these terms via network science terminology and provide network, cognitive and neural evidence to support our claim. This continuum includes LH hyper-rigid semantic memory state on one end (e.g., in persons with Asperger syndrome, and RH chaotic and over-flexible semantic memory state on the other end (e.g., in persons with schizophrenia. In between these two extremes lie different states of semantic memory structure which are related to individual differences in semantic creativity. We suggest that efficient semantic processing is achieved by semantic integration, a balance between semantic rigidity and semantic chaos. Such integration is achieved via intra-hemispheric communication. However, impairments to this well-balanced and integrated pattern of hemispheric interaction, e.g., when one hemisphere dominates the other, may lead to either semantic rigidity or semantic chaos, moving away from semantic integration and thus impairing the processing of metaphoric language.
DEFF Research Database (Denmark)
Rijkhoff, Jan
2008-01-01
Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Functionally rigid bistable [2]rotaxanes
DEFF Research Database (Denmark)
Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan
2007-01-01
defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from...... better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer......Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted...
Rigidity spectrum of Forbush decrease
International Nuclear Information System (INIS)
Sakakibara, S.; Munakata, K.; Nagashima, K.
1985-01-01
Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd
Torsional rigidity, isospectrality and quantum graphs
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)
Directory of Open Access Journals (Sweden)
Robert W Tilghman
Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical
Rivas, Elena; Lang, Raymond; Eddy, Sean R
2012-02-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
Rigidity of monodromies for Appell's hypergeometric functions
Directory of Open Access Journals (Sweden)
Yoshishige Haraoka
2015-01-01
Full Text Available For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.
Energy Technology Data Exchange (ETDEWEB)
Ghose, S.; Schomaker, V.; McMullan, R.K.
1986-01-01
Synthetic enstatite, Mg/sub 2/Si/sub 2/O/sub 6/, is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23/sup 0/C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F/sup 2/) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent (SiO/sub 4/) tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature.
Deans, J. R.; Winkler, D. A.
2017-12-01
Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower
Evaluation for rigidity of box construction of nuclear reactor building
International Nuclear Information System (INIS)
Yamakawa, Tetsuo
1979-01-01
A huge box-shaped structure (hereafter, called box construction) of reinforced concrete is presently utilized as the reactor building structure in nuclear power plants. Evaluation of the rigidity of the huge box construction is required for making a vibration analysis model of nuclear reactor buildings. It is necessary to handle the box construction as the plates to which the force in plane is applied. This paper describes that the bending theory in elementary beam theory is equivalent to a peculiar, orthogonally anisotropic plate, the shearing rigidity and film rigidity in y direction of which are put to infinity and the Poisson's ratio is put to zero, viewed from the two-dimensional theory of elasticity. The form factor of 1.2 for shearing deformation in rectangular cross section was calculated from the parabolic distribution of shearing stress intensity, and it is the maximum value. The factor is equal to 1.2 for slender beams, but smaller than 1.2 for short and thick beams, having tendency to converge to 1.0. The non-conformity of boundary conditions regarding the shearing force at the both ends of cantilevers does not affect very seriously the evaluation of shearing rigidity. From the above results, it was found that the application of the theory to the box construction was able to give the rigidity evaluation with sufficient engineering accuracy. The theory can also be applied to the evaluation of tube type ultrahigh buildings. (Wakatsuki, Y.)
Geometry, rigidity, and group actions
Farb, Benson; Zimmer, Robert J
2011-01-01
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.The p
International Nuclear Information System (INIS)
Schulte, R T; Fritzen, C-P; Moll, J
2010-01-01
During the last decades, guided waves have shown great potential for Structural Health Monitoring (SHM) applications. These waves can be excited and sensed by piezoelectric elements that can be permanently attached onto a structure offering online monitoring capability. However, the setup of wave based SHM systems for complex structures may be very difficult and time consuming. For that reason there is a growing demand for efficient simulation tools providing the opportunity to design wave based SHM systems in a virtual environment. As usually high frequency waves are used, the associated short wavelength leads to the necessity of a very dense mesh, which makes conventional finite elements not well suited for this purpose. Therefore in this contribution a flat shell spectral element approach is presented. By including electromechanical coupling a SHM system can be simulated entirely from actuator voltage to sensor voltage. Besides a comparison to measured data for anisotropic materials including delamination, a numerical example of a more complex, stiffened shell structure with debonding is presented.
Analytic analysis of auxetic metamaterials through analogy with rigid link systems
Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.
2018-02-01
In recent years, many structural motifs have been designed with the aim of creating auxetic metamaterials. One area of particular interest in this subject is the creation of auxetic material properties through elastic instability. Such metamaterials switch from conventional behaviour to an auxetic response for loads greater than some threshold value. This paper develops a novel methodology in the analysis of auxetic metamaterials which exhibit elastic instability through analogy with rigid link lattice systems. The results of our analytic approach are confirmed by finite-element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson's ratio. The method gives insight into the relationships between mechanisms within lattices and their mechanical behaviour; as such, it has the potential to allow existing knowledge of rigid link lattices with auxetic paths to be used in the design of future buckling-induced auxetic metamaterials.
High-order conservative discretizations for some cases of the rigid body motion
International Nuclear Information System (INIS)
Kozlov, Roman
2008-01-01
Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases
Static friction between rigid fractal surfaces.
Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming
2015-09-01
Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.
Energy Technology Data Exchange (ETDEWEB)
Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering
1999-12-01
In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.
International Nuclear Information System (INIS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-01-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance
DEFF Research Database (Denmark)
Sessarego, Matias; Shen, Wen Zhong
2018-01-01
Modern wind turbine aero-structural blade design codes generally use a smaller fraction of the full design load base (DLB) or neglect turbulent inflow as defined by the International Electrotechnical Commission standards. The current article describes an automated blade design optimization method...... based on surrogate modeling that includes a very large number of design load cases (DLCs) including turbulence. In the present work, 325 DLCs representative of the full DLB are selected based on the message-passing-interface (MPI) limitations in Matlab. Other methods are currently being investigated, e.......g. a Python MPI implementation, to overcome the limitations in Matlab MPI and ultimately achieve a full DLB optimization framework. The reduced DLB and the annual energy production are computed using the state-of-the-art aero-servo-elastic tool HAWC2. Furthermore, some of the interior dimensions of the blade...
Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.
Energy Technology Data Exchange (ETDEWEB)
Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
Rigid multipodal platforms for metal surfaces
Directory of Open Access Journals (Sweden)
Michal Valášek
2016-03-01
Full Text Available In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors with respect to the surface of the substrate.
A concise introduction to mechanics of rigid bodies multidisciplinary engineering
Huang, L
2017-01-01
This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial rob...
Calculating ensemble averaged descriptions of protein rigidity without sampling.
Directory of Open Access Journals (Sweden)
Luis C González
Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Calculating ensemble averaged descriptions of protein rigidity without sampling.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2012-01-01
Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Hydrodynamics of a flexible plate between pitching rigid plates
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
Patient satisfaction related to rigid external distraction osteogenesis
van Eggermont, Bas; Jansma, J.; Bierman, M. W. J.; Stegenga, B.
2007-01-01
The aim of this study was to evaluate satisfaction with treatment among cleft lip and palate patients who underwent maxillary advancement using a rigid external distraction (RED) device. Nine patients (four boys, five girls), mean age 17.7 years (SD 4.0), were included in the study. Outcome measures
A survey on stability and rigidity results for Lie algebras
Crainic, Marius; Schätz, Florian; Struchiner, Ivan
2014-01-01
We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).
H infinity controller design to a rigid-flexible satellite with two vibration modes
International Nuclear Information System (INIS)
De Souza, A G; De Souza, L C G
2015-01-01
The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)
International Nuclear Information System (INIS)
Sauve, R.G.; Morandin, G.D.; Nadeau, E.
1993-01-01
In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validation of the theoretical approach. Excellent correlation between predicted and experimental results is obtained
Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers
Broer, Dirk
2011-01-01
With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu
Analysis of the Behaviour of Semi Rigid Steel End Plate Connections
Directory of Open Access Journals (Sweden)
Bahaz A.
2018-01-01
Full Text Available The analysis of steel-framed building structures with full strength beam to column joints is quite standard nowadays. Buildings utilizing such framing systems are widely used in design practice. However, there is a growing recognition of significant benefits in designing joints as partial strength/semi-rigid. The design of joints within this partial strength/semi-rigid approach is becoming more and more popular. This requires the knowledge of the full nonlinear moment-rotation behaviour of the joint, which is also a design parameter. The rotational behaviour of steel semi rigid connections can be studied using the finite element method for the following three reasons: i such models are inexpensive; ii they allow the understanding of local effects, which are difficult to measure accurately physically, and iii they can be used to generate extensive parametric studies. This paper presents a three-dimensional finite element model using ABAQUS software in order to identify the effect of different parameters on the behaviour of semi rigid steel beam to column end plate connections. Contact and sliding between different elements, bolt pretension and geometric and material non-linearity are included in this model. A parametric study is conducted using a model of two end-plate configurations: flush and extended end plates. The studied parameters were as follows: bolts type, end plate thickness and column web stiffener. Then, the model was calibrated and validated with experimental results taken from the literature and with the model proposed by Eurocode3. The procedure for determining the moment–rotation curve using finite element analysis is also given together with a brief explanation of how the design moment resistance and the initial rotational stiffness of the joint are obtained.
Determination of Weight Suspension Rigidity in the Transport-Erector Aggregates
Directory of Open Access Journals (Sweden)
V. A. Zverev
2016-01-01
Full Text Available The aim is to determine weight suspension rigidity in aggregates designed to perform technological transport-erector operations at the miscellaneous launch complexes.We consider the weight suspension comprising the following distinctive structural components: the executive weight-lowering mechanism, polyspast mechanism, rope, traverse, and rods. A created structural dynamic model of suspension allowed us to define weight suspension rigidity. Within the framework of design analysis of a dynamic model we determined the rigidity of its structural units, i.e. traverse, rope, and polyspast.Known analytical relationships were used to calculate the rope rigidity. To determine rigidity of polyspast and traverse have been created special models based on the finite element method. For each model deformation in the specific points under the test load have been defined. Data obtained were used to determine trigidity of traverses and polyspast, and also rigidity of suspension in total. The rigidity models of polispast mechanism and traverse have been developed and calculated using the software complex "Zenit-95".As the research results, the paper presents a dynamic model of the weight suspension of the transport-erector aggregate, the finite element models of the polispast mechanism and traverse, an algorithm for determining the weight suspension rigidity and relevant analytical relationships.Independent calculation of weight suspension rigidity enables us to simplify further dynamic calculation of the aggregate-weight system because it allows attaining a simpler model of the aggregate-weight system that uses the weight suspension model as an element of equivalent rigidity. Despite this simplification the model allows us to determine correctly weight movement parameters and overloads in the aggregate-weight system in the process of technical operations.
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
International Nuclear Information System (INIS)
Tanimoto, K.; Ito, T.; Fujita, K.; Kurihara, C.; Sawada, Y.; Sakurai, A.
1988-01-01
The paper presents the seismic response of reactor vessel of pool type LMFBR with fluid-structure interaction. The reactor vessel has bottom support arrangement, the same core support system as Super-Phenix in France. Due to the bottom support arrangement, the level of core support is lower than that of the side support arrangement. So, in this reactor vessel, the displacement of the core top tends to increase because of the core's rocking. In this study, we investigated the vibration and seismic response characteristics of the reactor vessel. Therefore, the seismic experiments were carried out using one-eighth scale model and the seismic response including FSI and sloshing were investigated. From this study, the effect of liquid on the vibration characteristics and the seismic response characteristics of reactor vessel were clarified and sloshing characteristics were also clarified. It was confirmed that FEM analysis with FSI can reproduce the seismic behavior of the reactor vessel and is applicable to seismic design of the pool type LMFBR with bottom support arrangement. (author). 5 refs, 14 figs, 2 tabs
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Initial Development of an Electronic Testis Rigidity Tester
Directory of Open Access Journals (Sweden)
Petros Mirilas
2011-01-01
Full Text Available We aimed to develop our previously presented mechanical device, the Testis Rigidity Tester (TRT, into an electronic system (Electronic Testis Rigidity Tester, ETRT by applying tactile imaging, which has been used successfully with other solid organs. A measuring device, located at the front end of the ETRT incorporates a tactile sensor comprising an array of microsensors. By application of a predetermined deformation of 2 mm, increased pressure alters linearly the resistance of each microsensor, producing changes of voltage. These signals were amplified, filtered, and digitized, and then processed by an electronic collector system, which presented them as a color-filled contour plot of the area of the testis coming into contact with the sensor. Testis models of different rigidity served for initial evaluation of ETRT; their evacuated central spaces contained different, increasing glue masses. An independent method of rigidity measurement, using an electric weight scale and a micrometer, showed that the more the glue injected, the greater the force needed for a 2-mm deformation. In a preliminary test, a single sensor connected to a multimeter showed similar force measurement for the same deformation in these phantoms. For each of the testis models compressed in the same manner, the ETRT system offered a map of pressures, represented by a color scale within the contour plot of the contact area with the sensor. ETRT found certain differences in rigidity between models that had escaped detection by a blind observer. ETRT is easy to use and provides a color-coded “insight“ of the testis internal structure. After experimental testing, it could be valuable in intraoperative evaluation of testes, so that the surgeon can decide about orchectomy or orcheopexy.
Analysis of Switched-Rigid Floating Oscillator
Directory of Open Access Journals (Sweden)
Prabhakar R. Marur
2009-01-01
Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: PRVOUK-P23 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Rees, Alice; Bott, Lewis
2017-01-01
Structural priming is a useful tool for investigating linguistics representations. We argue that structural priming can be extended to the investigation of pragmatic representations such as Gricean enrichments. That is not to say priming is without its limitations, however. Interpreting a failure to observe priming may not be as simple as Branigan & Pickering (B&P) imply.
Flexible and rigid cystoscopy in women.
Gee, Jason R; Waterman, Bradley J; Jarrard, David F; Hedican, Sean P; Bruskewitz, Reginald C; Nakada, Stephen Y
2009-01-01
Previous studies have evaluated the tolerability of rigid versus flexible cystoscopy in men. Similar studies, however, have not been performed in women. We sought to determine whether office-based flexible cystoscopy was better tolerated than rigid cystoscopy in women. Following full IRB approval, women were prospectively randomized in a single-blind manner. Patients were randomized to flexible or rigid cystoscopy and draped in the lithotomy position to maintain blinding of the study. Questionnaires evaluated discomfort before, during, and after cystoscopy. Thirty-six women were randomized to flexible (18) or rigid (18) cystoscopy. Indications were surveillance (16), hematuria (15), recurrent UTIs (2), voiding dysfunction (1), and other (2). All questionnaires were returned by 31/36 women. Using a 10-point visual analog scale (VAS), median discomfort during the procedure for flexible and rigid cystoscopy were 1.4 and 1.8, respectively, in patients perceiving pain. Median recalled pain 1 week later was similar at 0.8 and 1.15, respectively. None of these differences were statistically significant. Flexible and rigid cystoscopy are well tolerated in women. Discomfort during and after the procedure is minimal in both groups. Urologists should perform either procedure in women based on their preference and skill level.
Directory of Open Access Journals (Sweden)
Manickam Gurusaran
2014-01-01
Full Text Available The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e. to too many decimal places is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and α-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures, takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.
DEFF Research Database (Denmark)
Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi
In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...
Numerical analysis of the cylindrical rigidity of the vertical steel tank shell
Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr
2017-10-01
The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.
Kochemasov, G. G.
2008-09-01
Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets, satellites and Sun compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles (this is felt particularly when one launches rockets into space -preferable more cheap launches are from the equatorial regions - Kourou is better than Baikonur). One of remarkable changes occurs at tropics. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At tropical zones (bulged also due to the rotation ellipsoid) the outer shell - crust as a consequence tends to be destroyed, sunk, subsided and shrunk; a density of crust material changes; the atmosphere reacts changing chemistry and structure; in terrestrial anthroposphere man looses its mass and stature. But according to the Le Chatelier rule mechanisms with an opposing tendency also begin to act. At Earth the wide planetary long tropical zone is marked by destruction of the crust. It is demonstrated by development of numerous islands of the Malay Archipelago (the Sunda Isls., Maluku Isls, Philippines) between the Southeastern Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develops where the Archean crust is subsided to depths of more than 2 km. In the Pacific along the equator numerous islands of Micronesia occur. Subsidence of the basaltic oceanic crust is followed by an intensive folding and faulting of basalt and sedimentary layers (Fig. 1) as a larger mass must be held by a smaller space (a planetary radius is diminished). The central Atlantic is very demonstrative in this sense suffering huge transform fault
Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation
Directory of Open Access Journals (Sweden)
Xiaokun Wang
2017-01-01
Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.
Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity
Shimamoto, Yuta; Tamura, Sachiko; Masumoto, Hiroshi; Maeshima, Kazuhiro
2017-01-01
Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers. PMID:28428255
Green waste cooking oil-based rigid polyurethane foam
Enderus, N. F.; Tahir, S. M.
2017-11-01
Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.
High frequency permeameter with semi-rigid pick-up coil
International Nuclear Information System (INIS)
Shin, Sung-Yong; Shin, Kwang-Ho . E-mail : khshin@star.ks.ac.kr; Kim, Jong-sung; Kim, Young-Hak; Lim, Sang-Ho; Sa-gong, Geon
2006-01-01
In this study, we propose the application of semi-rigid cable loop as a single turn shielded loop pick-up coil for the high frequency permeameter. Since the semi-rigid cable pick-up coil has simple structure, it is very easy to make the pick-up coil with bending and conventional soldering. The permeability of cobalt base amorphous ribbon was investigated using the developed permeameter for demonstrating its performance. The permeability of the amorphous ribbon was driven from the S-parameters measured using a network analyzer and permameter having the semi-rigid pick-up coil
Wobbling motion: A γ-rigid or γ-soft mode?
International Nuclear Information System (INIS)
Casten, R.F.; McCutchan, E.A.; Beausang, C.W.; Zamfir, N.V.; Zhang Jingye
2003-01-01
For even-even nuclei, it is shown that the predicted B(E2) values from the odd spin states of the quasi-γ band in a γ-soft nucleus to the yrast band are quite similar to those predicted for the one-phonon wobbling mode of a rigidly triaxial nucleus. This suggests that the observation of wobbling points to axial asymmetry, but not necessarily to rigid triaxiality. However, another observable that does distinguish γ-soft from γ-rigid structure is identified
Directory of Open Access Journals (Sweden)
A. RAFIQUE, S. A. RANA, H. A. KHAN AND A. SOHAIL1
2009-07-01
Full Text Available The aim of the present study was to investigate prevalence of zoonotic helminths from human, Rattus rattus (R. rattus, Rattus norvegicus (R. norvegicus and Mus musculus of eight different structures, namely grain shops in grain market, departmental stores, railway godowns, food processing plants (bakeries, poultry farms, houses in kachi-abadies, houses in departmental colonies and posh residences and banglows in Faisalabad city. All the structures were sampled for 2 months each and completed in 16 months. Highest prevalence (70% of Vsmpirolepis spp. was observed in R. rattus sampled from poultry farms, which was significantly higher (P<0.05 than the prevalence of all the helminths recovered from other structures. Hymenolepis nana (H. nana was observed in 60% of the sampled Mus musculus collected from kachi-abadies, which was significantly higher (P<0.05 than all other structures studies for H. nana, except R. rattus from kachi-abadies (55% and R. norvegicus from grain shops in grain market (55%. The rodent’s endo-parasites viz., Hymenolepis nana, Teania taenaeformis, Entrobius spps and Trichuiris spps observed in R. rattus, R. norvegicus and M. musculus at different percentages were also recorded in human stool samples with an incidence of 48, 21, 76 and 10%, respectively.
Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.
2010-01-01
In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…
Basten, T.G.H.; Grooteman, F.P.
2000-01-01
The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means
Identifying Floppy and Rigid Regions in Proteins
Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.
1998-03-01
In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.
Luo, D.; Pradhan, A. K.
1990-01-01
The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.
Directory of Open Access Journals (Sweden)
Faheem Butt
2012-01-01
Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.
Multiscale multiphysics and multidomain models—Flexibility and rigidity
International Nuclear Information System (INIS)
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei
2013-01-01
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O
International Nuclear Information System (INIS)
Alania, M V; Wawrzynczak, A; Sdobnov, V E; Kravtsova, M V
2013-01-01
Forbush decreases (Fd) of the galactic cosmic ray (GCR) intensity and geomagnetic storms are observed almost at the same time. Geomagnetic storm is a reason of significant disturbances of the magnetic cut off rigidity causing the distortion of the time profile of the Fd of the GCR intensity. We show some differences in the temporal changes of the rigidity spectra of Fd calculated by neutron monitors experimental data corrected and uncorrected for the changes of the geomagnetic cut off rigidity. Nevertheless, the general features of the temporal changes of the rigidity spectrum of Fd maintain as it was found in our previous investigations. Namely, at the beginning phase of Fd rigidity spectrum is relatively soft and gradually becomes hard up to reaching the minimum level of the GCR intensity; then the rigidity spectrum gradually becomes soft during the recovery phase of Fd. We also confirm that for the established temporal profiles of the rigidity spectrum of Fd a structural changes of the interplanetary magnetic field turbulence in the range of frequencies, 10 −-6 ÷10 −-5 Hz are responsible.
A rigidity transition and glassy dynamics in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.
Pediatric mandibular fractures treated by rigid internal fixation.
Wong, G B
1993-09-01
Mandibular fractures in the pediatric patient population are relatively uncommon. These patients present with their own unique treatment requirements. Most fractures have been treated conservatively by dental splints. Closed reduction techniques with maxillomandibular fixation (MMF) in very young children can pose several concerns, including cooperation, compliance and adequate nutritional intake. Rigid internal fixation of unstable mandibular fractures using miniplates and screws circumvents the need for MMF and allows immediate jaw mobilization. At major pediatric trauma institutions, there has been an increasing trend toward the use of this treatment when open reduction is necessary. This article presents a report of a five-year-old child who presented with bilateral mandibular fractures and was treated by rigid internal fixation and immediate mandibular mobilization.
Directory of Open Access Journals (Sweden)
Klaus Oehr
2014-11-01
Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.
Kašparová, Irena
2015-01-01
There is a 240-year tradition of compulsory school attendance in the Czech Republic. To many, compulsory school attendance is synonymous with the right to be educated. After the collapse of communism in 1989, along with the democratization of the government, the education system was slowly opened to alternatives, including the right to educate…
Network rigidity and properties of SiO2 and GeO2 glasses under pressure.
Trachenko, Kostya; Dove, Martin T; Brazhkin, Vadim; El'kin, F S
2004-09-24
We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity percolation in glasses to other effects, including a large increase of crystallization temperature and logarithmic relaxation under pressure.
Effect of rigid inclusions on sintering
International Nuclear Information System (INIS)
Rahaman, M.N.; De Jonghe, L.C.
1988-01-01
The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed
Type number and rigidity of fibred surfaces
International Nuclear Information System (INIS)
Markov, P E
2001-01-01
Infinitesimal l-th order bendings, 1≤l≤∞, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for l=∞ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the (r,l)-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an (r,l)-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number ≥3 and the class of (r,l)-rigid fibred surfaces is distinguished
Rigid origami vertices: conditions and forcing sets
Directory of Open Access Journals (Sweden)
Zachary Abel
2016-04-01
Full Text Available We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.
Evaluating a method for automated rigid registration
DEFF Research Database (Denmark)
Darkner, Sune; Vester-Christensen, Martin; Larsen, Rasmus
2007-01-01
to point distance. T-test for common mean are used to determine the performance of the two methods (supported by a Wilcoxon signed rank test). The performance influence of sampling density, sampling quantity, and norms is analyzed using a similar method.......We evaluate a novel method for fully automated rigid registration of 2D manifolds in 3D space based on distance maps, the Gibbs sampler and Iterated Conditional Modes (ICM). The method is tested against the ICP considered as the gold standard for automated rigid registration. Furthermore...
DEFF Research Database (Denmark)
Christensen, Bent Jesper; van der Wel, Michel
of the risk premium is associated with the slope factor, and individual risk prices depend on own past values, factor realizations, and past values of other risk prices, and are significantly related to the output gap, consumption, and the equity risk price. The absence of arbitrage opportunities is strongly...... is tested, but in addition to the standard bilinear term in factor loadings and market prices of risk, the relevant mean restriction in the term structure case involves an additional nonlinear (quadratic) term in factor loadings. We estimate our general model using likelihood-based dynamic factor model...... techniques for a variety of volatility factors, and implement the relevant likelihood ratio tests. Our factor model estimates are similar across a general state space implementation and an alternative robust two-step principal components approach. The evidence favors time-varying market prices of risk. Most...
Rhazi, Dilal
In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt
Directory of Open Access Journals (Sweden)
F. Radicioni
2017-05-01
Full Text Available The Tempio della Consolazione in Todi (16th cent. has always been one of the most significant symbols of the Umbrian landscape. Since the first times after its completion (1606 the structure has exhibited evidences of instability, due to foundation subsiding and/or seismic activity. Structural and geotechnical countermeasures have been undertaken on the Tempio and its surroundings from the 17th century until recent times. Until now a truly satisfactory analysis of the overall deformation and attitude of the building has not been performed, since the existing surveys record the overhangs of the pillars, the crack pattern or the subsidence over limited time spans. Describing the attitude of the whole church is in fact a complex operation due to the architectural character of the building, consisting of four apses (three polygonal and one semicircular covered with half domes, which surround the central area with the large dome. The present research aims to fill the gap of knowledge with a global study based on geomatic techniques for an accurate 3D reconstruction of geometry and attitude, integrated with a historical research on damage and interventions and a geotechnical analysis. The geomatic survey results from the integration of different techniques: GPS-GNSS for global georeferencing, laser scanning and digital photogrammetry for an accurate 3D reconstruction, high precision total station and geometric leveling for a direct survey of deformations and cracks, and for the alignment of the laser scans. The above analysis allowed to assess the dynamics of the cracks occurred in the last 25 years by a comparison with a previous survey. From the photographic colour associated to the point cloud was also possible to map the damp patches showing on the domes intrados, mapping their evolution over the last years.
Electronic structure of YBa2Cu3O/sub 7-//sub δ/ including strong correlation effects
International Nuclear Information System (INIS)
Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.
1989-01-01
The occupied and unoccupied valence-band density of states of YBa 2 Cu 3 O/sub 7-//sub δ/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies
Stochastic response of rigid foundations
International Nuclear Information System (INIS)
Pais, A.L.; Kausel, E.
1986-01-01
While the study of Kinematic Interaction effects calls, in general, for advanced analytical and numerical techniques, an excellent approximation was proposed recently by Iguchi. This approximation was used by the authors to analyze embedded foundations subjected to spatially random SH-wave fields, i.e., motions that exhibit some degree of incoherence. The wave fields considered ranged from perfectly coherent motions (resulting from seismic waves arriving from a single direction) to chaotic motions resulting from waves arriving simultaneously from all directions. Additional parameters considered were the shape of the foundation (cylindrical, rectangular) and the degree of embedment. It was found that kinematic interaction usually reduces the severity of the motions transmitted to the structure, and that incoherent motions do not exhibit the frequency selectivity (i.e., narrow valleys in the foundation response spectra) that coherent motions do
Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas
2018-01-01
Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...
Directory of Open Access Journals (Sweden)
Said Elias
Full Text Available Abstract The effect of soil-structure interaction (SSI on the dynamic responses of seismically isolated three-span continuous reinforced concrete (RC bridge is investigated. Also, tuned mass damper(s (TMD/s is/are installed to control undesirable bearing displacement, even under the SSI effect. The TMDs are placed at the mid-span of the bridge and each tuned with a modal frequency, while controlling up to first few modes as desirable. The soil surrounding the foundation of pier is modeled by frequency independent coefficients. Dynamic analysis is carried out in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the non-isolated, isolated, and controlled isolated bridge are compared. It is observed that the soil surrounding the pier has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with installation of the TMDs.
Cherel, Y; Ridoux, V; Spitz, J; Richard, P
2009-06-23
Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in delta(13)C values (1.7 per thousand), indicating that they lived in closely related and overlapping habitats. delta(13)C values can be interpreted in terms of distribution with the more (13)C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more (13)C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had delta(15)N values ranging 4.6 per thousand, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species delta(15)N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) delta(15)N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.
Makki-Rmida, Faten; Kammoun, Arwa; Mahfoudh, Nadia; Ayadi, Adnene; Gibriel, Abdullah Ahmed; Mallek, Bakhta; Maalej, Leila; Hammami, Zouheir; Maatoug, Samir; Makni, Hafedh; Masmoudi, Saber
2015-12-01
Y chromosome STRs (Y-STRs) are being used frequently in forensic laboratories. Previous studies of Y-STR polymorphisms in different groups of the Tunisian population identified low levels of diversity and discrimination capacity (DC) using various commercial marker sets. This definitely limits the use of such systems for Y-STRs genotyping in Tunisia. In our investigation on South Tunisia, 200 unrelated males were typed for the 12 conventional Y-STRs included in the PowerPlex® Y System. Additional set of nine noncore Y-STRs including DYS446, DYS456, DYS458, DYS388, DYS444, DYS445, DYS449, DYS710, and DYS464 markers were genotyped and evaluated for their potential in improving DC. Allele frequency, gene diversity, haplotype diversity (HD), and DC calculation revealed that DYS464 was the most diverse marker followed by DYS710 and DYS449 markers. The standard panel of 12 Y-STRs (DC = 80.5%) and the nine markers were combined to obtain DC of 99%. Among the 198 different haplotypes observed, 196 haplotypes were unique (HD = 99.999). Out of the nine noncore set, six Y-STRs (DYS458, DYS456, DYS449, DYS710, DYS444, and DYS464) had the greatest impact on enhancing DC. Our data provided putative Y-STRs combination to be used for genetic and forensic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Connections rigidity effect on probability of fracture in steel moment frames
Directory of Open Access Journals (Sweden)
Gholamreza Abdollahzadeh
2017-08-01
Full Text Available Connections in steel moment frames are idealized in full pinned and full rigid conditions. Because with this assumption, in spite of real behavior of connection, real story drifts are less anticipated and maybe frame is designed without performance of bracing. There are several methods for modeling actual behavior of semi rigid connections. In this method a connection with certain rigidity is modeled by a rotational spring with corresponding stiffness. This stiffness is achieved by certain formula. In other words, each percent of rigidity corresponds to one rotational spring stiffness. In this research in order to evaluate the real behavior of connection in analysis and designing process and fracture probability one frame including four stories and one bay with three types of connection has been modeled and designed in ETABS. Each model has an individual rigidity which is equal to 10, 75 and 90 percent. With respect to maximum drift and different PGA in roof, probabilities of low, medium, high and complete fracture were calculated. For this purpose, with applying different PGA to modeled frames, amounts of drift in the roof are achieved. Then these values are compared with given values in American code. Finally, investigation showed that when rigidity in frame connections increases, the probability of frame fracture decreases. In other words, fully rigid assumption of connection in analysis process leads to decreasing in real probability of fracture in frames which is a noticeable risk in building designing processes.
Pani, Pier Paolo; Maremmani, Icro; Trogu, Emanuela; Gessa, Gian Luigi; Ruiz, Pedro; Akiskal, Hagop Souren
2010-05-01
Current "official" nosology (e.g. DSM IV) is largely limited to physical manifestations of addiction that can be objectively observed and are suited to the maintaining of an "atheoretical" perspective. However, addicted subjects display additional psychiatric symptoms that affect their well-being and social functioning and, in accordance with DSM IV, are typically relegated to the domain of psychiatric "comorbidity." We contend that the relationship of these psychiatric symptoms with addiction is very close, as demonstrated by the high frequency of association observed. We further assert that substance use may modify pre-existing psychic structures such as temperament and related subthreshold conditions and lead to addiction as a specific mental disorder, inclusive also of symptoms pertaining to mood/anxiety, or impulse-control dimensions. The present contribution addresses the weaknesses of the current DSM-based nosology of addiction-related mental comorbidity. We highlight the overlap of the biological substrates and the neurophysiology of addictive processes and psychiatric symptoms associated with addiction, and propose the inclusion of specific mood, anxiety, and impulse-control dimensions in the psychopathology of addictive processes. We postulate that addiction reaches beyond the mere result of drug-elicited effects on the brain and cannot be peremptorily equated only with the use of drugs despite the adverse consequences produced. We infer that mood, anxiety and impulse-control dysregulation is at the very core of both the origins and clinical manifestations of addiction and should be incorporated into the nosology of the same, emphasising how addiction is a relapsing chronic condition in which psychiatric manifestations play a crucial role. To conclude, addictionology cannot be severed from its psychopathological connotations, in view of the undeniable presence of symptoms, of their manifest contribution to the way addicted patients feel and behave, and to
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Combinatorial and Algorithmic Rigidity: Beyond Two Dimensions
2012-12-01
44]. Theorems of Maxwell- Laman type were ob- tained in [9, 15, 43]. 2 3. Counting and Enumeration. As anticipated in the project, we relied on methods...decompositions. Graphs and Combinatorics, 25:219–238, 2009. [43] I. Streinu and L. Theran. Slider-pinning rigidity: a Maxwell- Laman -type theorem. Discrete and
Birationally rigid varieties. I. Fano varieties
International Nuclear Information System (INIS)
Pukhlikov, A V
2007-01-01
The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lueroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.
Rigid polyurethane and kenaf core composite foams
Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Rigidity Sensing Explained by Active Matter Theory
Marcq, Philippe; Yoshinaga, Natsuhiko; Prost, Jacques
2011-01-01
The magnitude of traction forces exerted by living animal cells on their environment is a monotonically increasing and approximately sigmoidal function of the stiffness of the external medium. We rationalize this observation using active matter theory, and propose that adaptation to substrate rigidity results from an interplay between passive elasticity and active contractility.
About deformation and rigidity in relativity
International Nuclear Information System (INIS)
Coll, Bartolome
2007-01-01
The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
2010-01-01
Roč. 20, č. 2 (2010), s. 1-40 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : rational inattention * nominal rigidity Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp409.pdf
Rigid Body Energy Minimization on Manifolds for Molecular Docking.
Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima
2012-11-13
Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.
Finite-difference analysis of shells impacting rigid barriers
International Nuclear Information System (INIS)
Pirotin, S.D.; Witmer, E.A.
1977-01-01
Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Anderson, Amy C., E-mail: aca@dartmouth.edu [Dartmouth College, Department of Chemistry, Burke Laboratories, Hanover, NH 03755 (United States)
2005-03-01
An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.
Lee, Kangjun; Jeon, Gwanggil; Jeong, Jechang
2009-05-01
The H.264/AVC baseline profile is used in many applications, including digital multimedia broadcasting, Internet protocol television, and storage devices, while the MPEG-2 main profile is widely used in applications, such as high-definition television and digital versatile disks. The MPEG-2 main profile supports B pictures for bidirectional motion prediction. Therefore, transcoding the MPEG-2 main profile to the H.264/AVC baseline is necessary for universal multimedia access. In the cascaded pixel domain transcoder architecture, the calculation of the rate distortion cost as part of the mode decision process in the H.264/AVC encoder requires extremely complex computations. To reduce the complexity inherent in the implementation of a real-time transcoder, we propose a fast mode decision algorithm based on complexity information from the reference region that is used for motion compensation. In this study, an adaptive mode decision process was used based on the modes assigned to the reference regions. Simulation results indicated that a significant reduction in complexity was achieved without significant degradation of video quality.
Generation of 3D templates of active sites of proteins with rigid prosthetic groups.
Nebel, Jean-Christophe
2006-05-15
With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html
Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.
2013-12-01
The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than
International Nuclear Information System (INIS)
Tanabe, M; Wakui, H; Sogabe, M; Matsumoto, N; Tanabe, Y
2010-01-01
A combined multibody and finite element approach is given to solve the dynamic interaction of a Shinkansen train (high-speed train in Japan) and the railway structure including post-derailment during an earthquake effectively. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express interactions between wheel and track structure including post-derailment are given. Rail and track elements expressed in multibody dynamics and FEM are given to solve contact problems between wheel and long railway components effectively. The motion of a railway structure is modeled with various finite elements and rail and track elements. The computer program has been developed for the dynamic interaction analysis of a Shinkansen train and railway structure including post derailment during an earthquake. Numerical examples are demonstrated.
Nonlinear complex dynamics and Keynesian rigidity: A short introduction
Jovero, Edgardo
2005-09-01
The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.
Bang-Bang Practical Stabilization of Rigid Bodies
Serpelloni, Edoardo
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Constrained non-rigid registration for whole body image registration: method and validation
Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.
2007-03-01
3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.
Yang, Yang; Li, Xiukun
2016-06-01
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
Dynamics of parallel robots from rigid bodies to flexible elements
Briot, Sébastien
2015-01-01
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...
Marco Guerrazzi; Nicola Meccheri
2009-01-01
This paper offers a critical discussion of the concept of labour market rigidity relevant to explaining unemployment. Starting from Keynes’s own view, we discuss how the concept of labour market flexibility has changed over time, involving nominal or real wage flexibility, contract flexibility or labour market institution flexibility. We also provide a critical assessment of the factors that lead the search framework highlighting labour market rigidities (frictions) to challenge the more wide...
Financial Constraints and Nominal Price Rigidities
DEFF Research Database (Denmark)
Menno, Dominik Francesco; Balleer, Almut; Hristov, Nikolay
This paper investigates how financial market imperfections and the frequency of price adjustment interact. Based on new firm-level evidence for Germany, we document that financially constrained firms adjust prices more often than their unconstrained counterparts, both upwards and downwards. We show...... that these empirical patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint. We then use the model to show how the presence of financial frictions changes profits and the price distribution of firms compared to a model without financial frictions. Our results suggest...... that tighter financial constraints are associated with higher nominal rigidities, higher prices and lower output. Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of inflation is dampened, while output reacts more in the presence of financial frictions...
Rigidity of the magic pentagram game
Kalev, Amir; Miller, Carl A.
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigidity of the magic pentagram game.
Kalev, Amir; Miller, Carl A
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigid cohomology over Laurent series fields
Lazda, Christopher
2016-01-01
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields...
Blast wave interaction with a rigid surface
International Nuclear Information System (INIS)
Josey, T.; Whitehouse, D.R.; Ripley, R.C.; Dionne, J.P.
2004-01-01
A simple model used to investigate blast wave interactions with a rigid surface is presented. The model uses a constant volume energy source analogue to predict pressure histories at gauges located directly above the charge. A series of two-dimensional axi-symmetric CFD calculations were performed, varying the height of the charge relative to the ground. Pressure histories, along with isopycnic plots are presented to evaluate the effects of placing a charge in close proximity to a rigid surface. When a charge is placed near a solid surface the pressure histories experienced at gauges above the charge indicate the presence of two distinct pressure peaks. The first peak is caused by the primary shock and the second peak is a result of the wave reflections from the rigid surface. As the distance from the charge to the wall is increased the magnitude of the second pressure peak is reduced, provided that the distance between the charge and the gauge is maintained constant. The simple model presented is able to capture significant, predictable flow features. (author)
Directory of Open Access Journals (Sweden)
Maritza Uribe Vallejo
2009-01-01
Full Text Available Using prequalified connections during the structural design stage becomes increasingly necessary when developing structural en-gineering projects which include steel elements; this is so that the steel elements’ appropriate behavior can be ensured according to the structural system and seismic demand. Unfortunately, the international entities providing this type of information (i.e. FEMA only have a limit series of prequalified connections and such series do not include rigid connections between steel beams and concrete filled tubular (CFT columns having an extended end plate, which has become a very widespread building practice in Colombia. This paper describes the most important aspects of a study at the Universidad Nacional de Colombia concerning the behavior of a steel beam rigidly connected to a CFT-column, using six physical models having different width-thickness ratio (b/t columns. ANSYS v.10 software was used for studying theoretical models (finite elements analysis for comparative analysis of cyclic test theoretical and experimental results for each specimen presented for the qualification phase. The six tested specimens’ hysteretic curves are presented. Several conclusions are drawn concerning finite element validation for this type of connection and the influence of width-thickness ratio (b/t variation and design recommendations for suitable behavior under dynamic loads when this type of connection was used.
Tilting mode in rigidly rotating field-reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Milovich, J.L.
1983-01-01
The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant
49 CFR 587.18 - Dimensions of fixed rigid barrier.
2010-10-01
... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not... 49 Transportation 7 2010-10-01 2010-10-01 false Dimensions of fixed rigid barrier. 587.18 Section...
International Nuclear Information System (INIS)
Stancanello, J.; Loeckx, D.; Francescon, P.; Calvedon, C.; Avanzo, M.; Cora, S.; Scalchi, P.; Cerveri, P.; Ferrigno, G.
2004-01-01
This work aims at comparing rigid, affine and Local Non Rigid (LNR) CT-3D Rotational Angiography (CT-3DRA) registrations based on mutual information. 10 cranial and 1 spinal cases have been registered by rigid and affine transformations; while LNR has been applied to the cases where residual deformation must be corrected. An example of CT-3DRA registration without regularization term and an example of LNR using the similarity criterion and the regularization term as well as 3D superposition of the 3DRA before and after the registration without the regularization term are presented. All the registrations performed by rigid transformation converged to an acceptable solution. The results about the robustness test in axial direction are reported. Conclusions: For cranial cases, affine transformation endowed with threshold-segmentation pre-processing can be considered the most favourable solution for almost all registrations; for some cases, LNR provides more accurate results. For the spinal case rigid transformation is the most suitable when immobilizing patient during examinations; in this case the increase of accuracy by using LNR registrations seems to be not significant
Radiographic evaluation of fracture healing after rigid plate fixation
International Nuclear Information System (INIS)
Paavolainen, P.; Karaharju, E.; Slaetis, P.; Waris, P.
1981-01-01
Experimental osteotomies were made in 35 rabbit tibio-fibular bones and fixed with rigid stainless steel osteosynthesis plates (DCP/ASIF). The radiographic and histopathologic appearances in the healing osteotomies and adjacent bone were analysed at intervals from 3 up to 24 weeks postoperatively. Radiologically the osteotomy had closed at 9 weeks and microscopically this could be confirmed as longitudinal orientation of the cutter heads across the osteotomy gap with longitudinal orientation of the bone structure. The healing of the osteotomy was accompanied by gross structural changes in the adjacent cortical bone with loss of intracortical and subendosteal osteons, cementing lines and intermediate tissue between the osteons. This was characterized by decreasing attenuation of the cortical bone after healing of the osteotomy and should clinically be regarded as an indication for removal of the implant. (Auth.)
A geometrically controlled rigidity transition in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
2018-02-01
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.
Influence of flock coating on bending rigidity of woven fabrics
Ozdemir, O.; Kesimci, M. O.
2017-10-01
This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.
Cohomological rigidity of manifolds defined by 3-dimensional polytopes
Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.
2017-04-01
A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.
Synthesis of rigid polyurethane foams from phosphorylated biopolyols.
de Haro, Juan Carlos; López-Pedrajas, Daniel; Pérez, Ángel; Rodríguez, Juan Francisco; Carmona, Manuel
2017-08-18
Renewable resources are playing a key role on the synthesis of biodegradable polyols. Moreover, the incorporation of covalently linked additives is increasing in importance in the polyurethane (PU) market. In this work, previously epoxidized grape seed oil and methyl oleate were transformed into phosphorylated biopolyols through an acid-catalyzed ring-opening hydrolysis in the presence of H 3 PO 4 . The formation of phosphate polyesters was confirmed by FT-IR and 31 P-NMR. However, the synthesis of a high-quality PU rigid foam was not possible using exclusively these polyols attending to their low hydroxyl value. In that way, different rigid PU foams were prepared from the phosphorylated biopolyols and the commercial polyol Alcupol R4520. It was observed that phosphorylated biopolyols can be incorporated up to a 57 wt.% in the PU synthesis without significant structural changes with respect to the commercial foam. Finally, thermogravimetric and EDAX analyses revealed an improvement of thermal stability by the formation of a protective phosphorocarbonaceous char layer.
Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review
Directory of Open Access Journals (Sweden)
Laurie Putz
2016-01-01
Full Text Available The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min−1; however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures.
A rigid porous filter and filtration method
Energy Technology Data Exchange (ETDEWEB)
Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.
1998-12-01
The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.
Mechanical Characterization of Rigid Polyurethane Foams
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials
2014-12-01
Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.
Rigidity of complete generic shrinking Ricci solitons
Chu, Yawei; Zhou, Jundong; Wang, Xue
2018-01-01
Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.
Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials
International Nuclear Information System (INIS)
Bachurin, D.V.; Nazarov, A.A.; Shenderova, O.A.; Brenner, D.W.
2003-01-01
A model for the structural relaxation of grain boundaries (GBs) in nanostructured materials (NSMs) by diffusion-accommodated rigid body translations along GBs is proposed. The model is based on the results of recent computer simulations that have demonstrated that the GBs in NSMs retain a high-energy structure with random translational states due to severe geometrical constraints applied from neighboring grains (J. Appl. Phys. 78 (1995) 847; Scripta Metall. Mater. 33 (1995) 1245). The shear stresses within a GB caused by non-optimized rigid-body translations (RBTs) can be accommodated by diffusive flow of atoms along a GB. This mechanism is particularly important for low-angle and vicinal GBs, the energy of which noticeably depends on the rigid body translations. At moderate and high temperatures the model yields relaxation times that are very short and therefore GBs in NSMs can attain an equilibrium structure with optimized rigid body translations. In contrast, at room temperature the model predicts that in some metals non-equilibrium structures can be preserved for a long time, which may result in the observation of grain boundary structures different from those in coarse grained polycrystals
International Nuclear Information System (INIS)
Flueckiger, E.O.; Smart, D.F.; Shea, M.A.
1983-01-01
We have investigated the effect of local perturbations of the geomagnetic field on the vertical cosmic ray cutoff rigidities at Jungfraujoch and Kiel as representative mid-latitude neutron monitor stations. The main, effective, and Stoermer vertical cutoff rigidities and their changes were determined by utilizing the trajectory-tracing technique in a magnetic field which is modeled as a simple dipole field to which the disturbance field is superposed. It was found that the cosmic ray cutoff rigidities are most sensitive to variations of the z component of the geomagnetic field at geomagnetic latitudes -20 0 0 and at longitudes within 90 0 to the east of these northern hemisphere stations. Furthermore, cutoff rigidity variations at Kiel are predominantly due to changes of the geomagnetic field within geocentric distances 2.5R/sub E/< r<6R/sub E/, whereas at Jungfraujoch changes in cutoff rigidities are caused almost exclusively by magnetic disturbances within 1R/sub E/< r<4.5R/sub E/. For both locations the dependence of the main, effective, and Stoermer vertical cutoff rigidities on the radial, latitudinal and longitudinal structure of the magnetic perturbations is given explicitly. The results are discussed with respect to the theory by Treiman (1953) describing the effect of a ring current on cosmic ray cutoff rigidities. It is also shown that for the analysis of the characteristic properties of the correlation between cutoff rigidity variations and specific geomagnetic perturbations the rigidity corresponding to the first ''discontinuity band'' of the rigidity spectrum is an extremely useful parameter
International Nuclear Information System (INIS)
Hesse, M.; Birn, J.; Schindler, K.
1990-01-01
A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares
Percutaneous antegrade ureteric stent removal using a rigid alligator forceps.
LENUS (Irish Health Repository)
Given, M F
2008-12-01
To evaluate the safety and efficacy of percutaneous antegrade ureteric stent removal using a rigid alligator forceps. Twenty patients were included in our study. Indications for ureteric stent insertion included stone disease (n = 7), malignancy (n = 8) and transplant anastomotic strictures (n = 5). Stent retrieval was carried out for proximal stent placement\\/migration in seven patients and encrustation in the remaining 13. Twenty-two stents were successfully retrieved in 20 patients. There was one technical failure (5%). There were no major complications. We had four minor complications, which included nephrostomy site pain (n = 2), periprocedural sepsis (n = 1) and a small urinoma (n = 1). All patients settled with conservative management. Percutaneous radiologically guided antegrade ureteric stent removal with an alligator forceps is safe and effective, particularly when initial surgical removal has failed.
Public policies targeting labour market rigidities
Directory of Open Access Journals (Sweden)
Andreea Claudia ŞERBAN
2013-02-01
Full Text Available Labour market rigidity becomes an issue of increasing importance under conditions of shocks associated with the economic crisis due to the need to increase the adaptability and responsiveness to them. Thus, labour market policies must be directed towards mitigating rigidities caused by institutional or demographic factors or certain mismatch between demand and supply of education qualifications. This paper highlights the major role of the active labour market policies targeting the increase of labour flexibility, stressing the importance and impact on the ability to adapt quickly and effectively to macroeconomic shocks. Located on a declining trend in the years preceding the crisis, spending on labour market policies increased in 2009 in all the Member States of the European Union. Spending differences are significant between countries, Romania being at the lowest end of the European Union. This requires special attention because the increased adaptability of workers through training, as active measure, is of major importance considering the increased speed of changes in the labour market.
Vertebral Column Resection for Rigid Spinal Deformity.
Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G
2017-05-01
Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.
Optimized imaging using non-rigid registration
International Nuclear Information System (INIS)
Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas
2014-01-01
The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc
Kodak AMSD Concept Overview and Status (Semi-Rigid Mirror with Sparse Actuators)
Matthews, Gary; Maji, Arup K. (Technical Monitor)
2001-01-01
This talk will review Kodak's current AMSD technical and schedule status. For AMSD, Kodak is fabricating a semi-rigid closed-back egg-crate glass mirror, a graphite composite reaction structure, and 16 force actuators for figure control. The mirror is currently on schedule for cryotesting in early '02.
Dynamic response and stability of semi-rigid frames
Abu-Yasein, Omar Ali
This dissertation presents a method to determine the load capacity as well as end member forces and deformations of frames with partial rigid joint connections by using the direct stiffness method. The connections are modeled as rotational springs attached at the ends of framed members. The lumped mass method, which is an approximate method, and the distributed mass method, which is an exact method, are also presented to compute the natural frequency of frames. The effects of the axial forces and the flexibility of joint connections are both included. Furthermore, the time-dependent response of semi-rigid frames subjected to periodic axial forces is formulated. The harmonic function is approximated by dividing the periodic function into n intervals and the periodic axial forces are evaluated at each time interval as constant forces using 'piecewise approximation'. The regions of instability of frames with different joint stiffness were determined using the characteristic equation method. The time-dependent part of the differential equation for free vibration of a framed member subjected to a harmonic force can be written in the form of the Mathieu-Hill equation where all characteristics of the Mathieu-Hill equation solutions can be used to determine the boundaries of instability regions.
Collisions of Constrained Rigid Body Systems with Friction
Directory of Open Access Journals (Sweden)
Haijun Shen
1998-01-01
Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.
Ghalyan, Ibrahim Fahad Jasim
2016-01-01
This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry. .
Cieplak-Rotowska, Maja K.; Tarnowski, Krzysztof; Rubin, Marcin; Fabian, Marc R.; Sonenberg, Nahum; Dadlez, Michal; Niedzwiecka, Anna
2018-01-01
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. [Figure not available: see fulltext.
Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates
International Nuclear Information System (INIS)
Dove, Martin T; Pryde, Alexandra K A; Heine, Volker; Hammonds, Kenton D
2007-01-01
Until recently it was assumed that rigid unit modes, defined as the zero-frequency solutions to the dynamical equations for an infinite framework of rigid corner-linked tetrahedra, were confined to a small set of normal modes with wavevectors on lines or planes of special symmetry in reciprocal space. Using a search method that explores the full three-dimensional reciprocal space, we have located rigid unit modes with wavevectors on exotic curved surfaces in reciprocal space for a range of silicate minerals. This has led to the realization that the crystal structures of these minerals contain rather more topological floppiness than had previously been realized. The origin of the exotic RUM surfaces remains to be understood
Directory of Open Access Journals (Sweden)
Mefkur Bakan
2014-06-01
Full Text Available OBJECTIVE:Laryngoscopy and stimuli inside the trachea cause an intense sympatho-adrenal response. Remifentanil seems to be the optimal opioid for rigid bronchoscopy due to its potent and short-acting properties. The purpose of this study was to compare bolus propofol and ketamine as an adjuvant to remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy.MATERIALS AND METHODS:Forty children under 12 years of age who had been scheduled for a rigid bronchoscopy were included in this study. After midazolam premedication, a 1 µg/kg/min remifentanil infusion was started, and patients were randomly allocated to receive either propofol (Group P or ketamine (Group K as well as mivacurium for muscle relaxation. Anesthesia was maintained with a 1 µg/kg/min remifentanil infusion and bolus doses of propofol or ketamine. After the rigid bronchoscopy, 0.05 µg/kg/min of remifentanil was maintained until extubation. Hemodynamic parameters, emergence characteristics, and adverse events were evaluated.RESULTS:The demographic variables were comparable between the two groups. The decrease in mean arterial pressure from baseline values to the lowest values during rigid bronchoscopy was greater in Group P (p= 0.049, while the reduction in the other parameters and the incidence of adverse events were comparable between the two groups. The need for assisted or controlled mask ventilation after extubation was higher in Group K.CONCLUSION:Remifentanil-based total intravenous anesthesia with propofol or ketamine as an adjuvant drug along with controlled ventilation is a viable technique for pediatric rigid bronchoscopy. Ketamine does not provide a definite advantage over propofol with respect to hemodynamic stability during rigid bronchoscopy, while propofol seems more suitable during the recovery period.
Directory of Open Access Journals (Sweden)
Ayse T. Daloglu
2018-01-01
Full Text Available Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS and teaching-learning-based optimization (TLBO algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped bracing types are considered in the study. Optimum solutions of examples are carried out by a computer program coded in MATLAB interacting with SAP2000-OAPI for two-way data exchange. The stress constraints according to AISC-ASD (American Institute of Steel Construction-Allowable Stress Design, maximum lateral displacement constraints, interstorey drift constraints, and beam-to-column connection constraints are taken into consideration in the optimum design process. The parameters of the foundation model are calculated depending on soil surface displacements by using an iterative approach. The results obtained in the study show that bracing types and soil-structure interaction play very important roles in the optimum design of steel space frames. Finally, the techniques used in the optimum design seem to be quite suitable for practical applications.
On the dynamics of semi-rigid chains
International Nuclear Information System (INIS)
Rodriguez Talavera, R.; Alexander-Katz, R.
1993-01-01
The dynamics of a semi-rigid polymer chain is studied. The force structure of the chain is derived from the statistics generated through a Wiener measure whose end-to-end distance is that of a Kratky-Porod chain. Additionally, the dissipative terms in the equation of motion will contain, besides the usual Stokes' term, a non-local friction term (internal viscosity) which is quadratic in the normal mode q, in order to take into account the resistance to changes in curvature. The analytical shape of this term is the same as the one introduced by Edwards and Freed. We show that this model of stiff chain reproduces both asymptotic limits: the flexible and the rod limits for the elastic moduli. A form for the internal viscosity coefficient is deduced from a phenomenological approach, which has the right solvent viscosity dependency as obtained by MacInnes. (Author)
Liquid crystallinity in flexible and rigid rod polymers
International Nuclear Information System (INIS)
Pickett, Galen T.; Schweizer, Kenneth S.
2000-01-01
We apply an anisotropic version of the polymer reference interaction site model (PRISM) integral equation description of flexible polymers to analyze athermal liquid crystallinity. The polymers are characterized by a statistical segment length, σ o , and by a physical hard-core thickness, d, that prevents the overlap of monomers on different chains. At small segment densities, ρ, the microscopic length scale d is irrelevant (as it must be in the universal semidilute regime), but becomes important in concentrated solutions and melts. Under the influence of the excluded volume interactions alone, the chains undergo a lyotropic, first-order isotropic-nematic transition at a concentration dependent upon the dimensionless ''aspect ratio,'' σ o /d. The transition becomes weaker as d→0, becoming second order, as has been previously shown. We extend the theory to describe the transition of rigid, thin rods, and discuss the evolution of the anisotropic liquid structure in the ordered phase. (c) 2000 American Institute of Physics
Espinas, Jeff
2015-05-01
By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.
Espinas, Jeff; Rahal, Raed; Abou-Hamad, Edy; El Eter, Mohamad; Basset, Jean-Marie
2015-01-01
By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.
A virtual pebble game to ensemble average graph rigidity.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2015-01-01
The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations. At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has distance constraints globally distributed with perfect uniform density. The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm, where integers for counting "pebbles" placed on vertices or edges in the PG map to real numbers representing the probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG results well. The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most
Coherent distributions for the rigid rotator
Energy Technology Data Exchange (ETDEWEB)
Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)
2016-06-15
Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.
Observational properties of rigidly rotating dust configurations
Energy Technology Data Exchange (ETDEWEB)
Ilyas, Batyr; Malafarina, Daniele [Nazarbayev University, Department of Physics, Astana (Kazakhstan); Yang, Jinye [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)
2017-07-15
We study the observational properties of a class of exact solutions of Einstein's field equations describing stationary, axially symmetric, rigidly rotating dust (i.e. non-interacting particles). We ask the question whether such solutions can describe astrophysical rotating dark matter clouds near the center of galaxies and we probe the possibility that they may constitute an alternative to supermassive black holes at the center of galaxies. We show that light emission from accretion disks made of ordinary baryonic matter in this space-time has several differences with respect to the emission of light from similar accretion disks around black holes. The shape of the iron Kα line in the reflection spectrum of accretion disks can potentially distinguish this class of solutions from the Kerr metric, but this may not be possible with current X-ray missions. (orig.)
Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude
1996-09-24
A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.
Management of rigid post-traumatic kyphosis.
Wu, S S; Hwa, S Y; Lin, L C; Pai, W M; Chen, P Q; Au, M K
1996-10-01
Rigid post-traumatic kyphosis after fracture of the thoracolumbar and lumbar spine represents a failure of initial management of the injury. Kyphosis moves the center of gravity anterior. The kyphosis and instability may result in pain, deformity, and increased neurologic deficits. Management for symptomatic post-traumatic kyphosis always has presented a challenge to orthopedic surgeons. To evaluate the surgical results of one stage posterior correction for rigid symptomatic post-traumatic kyphosis of the thoracolumbar and lumbar spine. The management for post-traumatic kyphosis remains controversial. Anterior, posterior, or combined anterior and posterior procedures have been advocated by different authors and show various degrees of success. One vertebra immediately above and below the level of the deformity was instrumented posteriorly by a transpedicular system (internal fixator AO). Posterior decompression was performed by excision of the spinal process and bilateral laminectomy. With the deformed vertebra through the pedicle, the vertebral body carefully is removed around the pedicle level, approximating a wedge shape. The extent to which the deformed vertebral body should be removed is determined by the attempted correction. Correction of the deformity is achieved by manipulation of the operating table and compression of the adjacent Schanz screws above and below the lesion. Thirteen patients with post-traumatic kyphosis with symptoms of fatigue and pain caused by slow progression of kyphotic deformities received posterior decompression, correction, and stabilization as a definitive treatment. The precorrection kyphosis ranged from 30-60 degrees, with a mean of 40 degrees +/- 10.8 degrees. After correction, kyphosis was reduced to an average of 1.5 degrees +/- 3.8 degrees, with a range from -5 degrees to 5 degrees. The average angle of correction was 38.8 degrees +/- 10.4 degrees, with a range from 25 degrees to 60 degrees. Significant difference was found
Can deformation of a polymer film with a rigid coating model geophysical processes?
Volynskii, A. L.; Bazhenov, S. L.
2007-12-01
The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.
Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation
Xu, Jiafeng; Halse, Karl Henning
2016-01-01
In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...
Hayashi, Yukiko
2013-07-01
The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.
Hayashi, Yukiko; Szalda, David J.; Grills, David C.; Hanson, Jonathan C.; Huang, Kuo-Wei; Muckerman, James T.; Fujita, Etsuko
2013-01-01
The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.
Nonlinear mechanics of non-rigid origami: an efficient computational approach
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
Leonhard Euler and the mechanics of rigid bodies
Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.
2017-01-01
In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).
Damageable contact between an elastic body and a rigid foundation
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
Directory of Open Access Journals (Sweden)
Robert Kalescky
2016-04-01
Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.
Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R
2014-10-14
The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a
Inertial modes of rigidly rotating neutron stars in Cowling approximation
International Nuclear Information System (INIS)
Kastaun, Wolfgang
2008-01-01
In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes
Vesicle ﬂuctuation analysis of the effects of sterols on membrane bending rigidity
DEFF Research Database (Denmark)
Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.
2004-01-01
Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....
Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body
2011-01-01
rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the
Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner
2009-01-01
textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems
THE RIGIDITY OF THE EARTH'S INNER CORE
Directory of Open Access Journals (Sweden)
K. E. BULLEN
1953-06-01
Full Text Available The purpose of this paper is to examine and assess, in the
light of recent evidence, the theory lliat the Earth's inner core has
a significant rigidity.
The presenee of an inner core in the Earth is revealed from
observations of the seismie pliase PKP in the « sliadow zone » for
which the epicentral distance A lies in the range 105" < A < 143".
Miss I. Lehmann (r in 1936, followed by Gutenberg and Richter (2
in 1938, atlrihuted these observations to tlie presence of an inner
core; and Jeffreys (3 in 1939 applied Airy's theory of diffraetion
near a caustic to sliow that the alternative theory of diffraetion
round the outer boundary of the centrai core was not capable of
explaining tlie observations in the shadow zone. The existence of the
inner core has been fairly generallv accepted sinee tliis ealculation
of Jeffreys.
The theory of pseudo-rigid bodies
Cohen, Harley
1988-01-01
This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else where, much of the work is new. Our objective in writing this mono graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...
Spontaneous droplet trampolining on rigid superhydrophobic surfaces
Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos
2015-11-01
Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.
Directory of Open Access Journals (Sweden)
Martin-Lujan Francisco
2011-11-01
Full Text Available Abstract Background There is current controversy about the efficacy of smoking cessation interventions that are based on information obtained by spirometry. The objective of this study is to evaluate the effectiveness in the primary care setting of structured motivational intervention to achieve smoking cessation, compared with usual clinical practice. Methods Design Multicentre randomized clinical trial with an intervention and a control group. Setting 12 primary care centres in the province of Tarragona (Spain. Subjects of study 600 current smokers aged between 35 and 70 years with a cumulative habit of more than 10 packs of cigarettes per year, attended in primary care for any reason and who did not meet any of the exclusion criteria for the study, randomly assigned to structured intervention or standard clinical attention. Intervention Usual advice to quit smoking by a general practitioner as well as a 20-minute personalized visit to provide detailed information about spirometry results, during which FEV1, FVC, FEF 25-75% and PEF measurements were discussed and interpreted in terms of theoretical values. Additional information included the lung age index (defined as the average age of a non-smoker with the same FEV1 as the study participant, comparing this with the chronological age to illustrate the pulmonary deterioration that results from smoking. Measurements Spirometry during the initial visit. Structured interview questionnaire administered at the primary care centre at the initial visit and at 12-month follow-up. Telephone follow-up interview at 6 months. At 12-month follow-up, expired CO was measured in patients who claimed to have quit smoking. Main variables Smoking cessation at 12 months. Analysis Data will be analyzed on the basis of "intention to treat" and the unit of analysis will be the individual smoker. Expected results Among active smokers treated in primary care we anticipate significantly higher smoking cessation in the
Emotional rigidity negatively impacts remission from anxiety and recovery of well-being.
Wiltgen, Anika; Shepard, Christopher; Smith, Ryan; Fowler, J Christopher
2018-08-15
Emotional rigidity is described in clinical literature as a significant barrier to recovery; however, few there are few empirical measures of the construct. The current study had two aims: Study 1 aimed to identify latent factors that may bear on the construct of emotional rigidity while Study 2 assessed the potential impact of the latent factor(s) on anxiety remission rates and well-being. This study utilized data from 2472 adult inpatients (1176 females and 1296 males) with severe psychopathology. Study 1 utilized exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to identify latent factors of emotional rigidity. Study 2 utilized hierarchical logistic regression analyses to assess the relationships among emotional rigidity factors and anxiety remission and well-being recovery at discharge. Study 1 yielded a two-factor solution identified in EFA was confirmed with CFA. Factor 1 consisted of neuroticism, experiential avoidance, non-acceptance of emotions, impaired goal-directed behavior, impulse control difficulties and limited access to emotion regulation strategies when experiencing negative emotions. Factor 2 consisted of lack of emotional awareness and lack of emotional clarity when experiencing negative emotions. Results of Study 2 indicated higher scores on Factor 1 was associated with lower remission rates from anxiety and poorer well-being upon discharge. Factor 2 was not predictive of outcome. Emotional rigidity appears to be a latent construct that negatively impacts remission rates from anxiety. Limitations of the present study include its retrospective design, and inefficient methods of assessing emotional rigidity. Copyright © 2018. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Mirjam Ochsner
2010-03-01
Full Text Available Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D.Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell adhesions are confined to 2-D or occur in a 3-D space.
Rigid polyurethane foam – kenaf core composites for structural applications
Kenaf (Hibiscus cannabinus L.) is a fast growing summer annual crop with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). The stalks of the kenaf plants contain two distinct fiber types, bast and core fibers. The...
BUTCHER, PR; KALVERBOER, A; MINDERAA, RB; VANDOORMAAL, EF; TENWOLDE, Y
1993-01-01
The associations between a mother's rigidity, her sensitivity in early (3 month) interaction and the quality of her premature infant's attachment at 13 months were investigated. Rigidity as a personality characteristic was not found to be significantly associated with sensitivity or quality of
Multiscale weighted colored graphs for protein flexibility and rigidity analysis
Bramer, David; Wei, Guo-Wei
2018-02-01
Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.
Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles
International Nuclear Information System (INIS)
Herbst, K.; Kopp, A.; Heber, B.
2013-01-01
Studies of the propagation of charged energetic particles in the Earth's magnetic field go back to Carl Stoermer. In the end, his investigations finally lead to the definition of the so-called cutoff rigidity RC; that is, the minimum momentum per charge a particle must have in order to reach a certain geographical location. Employing Monte Carlo simulations with the PLANETOCOSMICS code we investigate the correlation between the geomagnetic field structure and the cutoff rigidity. We show that the geometry of the magnetic field has a considerable influence on the resulting cutoff rigidity distribution. Furthermore, we will present a simple geometry-based parameter, δB, which is able to reflect the location-dependent cutoff rigidity. We show that this correlation is also visible in the temporal evolution of the Earth's magnetic field, at least over the last 100 yr. Using latitude scans with neutron monitors, changes of the relative counting rates at different positions are calculated, showing small variations for, e.g., Kiel and Moscow, while large ones occur at Mexico City as well as on the British Virgin Islands.
Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.
Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi
2017-08-18
Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Directory of Open Access Journals (Sweden)
Dilip Sengupta
2013-01-01
Full Text Available Conventional posterior dynamic stabilization devices demonstrated a tendency towards highly rigid stabilization approximating that of titanium rods in flexion. In extension, they excessively offload the index segment, making the device as the sole load-bearing structure, with concerns of device failure. The goal of this study was to compare the kinematics and intradiscal pressure of monosegmental stabilization utilizing a new device that incorporates both a flexion and extension dampening spacer to that of rigid internal fixation and a conventional posterior dynamic stabilization device. The hypothesis was the new device would minimize the overloading of adjacent levels compared to rigid and conventional devices which can only bend but not stretch. The biomechanics were compared following injury in a human cadaveric lumbosacral spine under simulated physiological loading conditions. The stabilization with the new posterior dynamic stabilization device significantly reduced motion uniformly in all loading directions, but less so than rigid fixation. The evaluation of adjacent level motion and pressure showed some benefit of the new device when compared to rigid fixation. Posterior dynamic stabilization designs which both bend and stretch showed improved kinematic and load-sharing properties when compared to rigid fixation and when indirectly compared to existing conventional devices without a bumper.
Baker, Stephen B; Reid, Russell R; Burkey, Brooke; Bartlett, Scott P
2007-09-01
To shorten head frame wear time associated with external halo distraction (HD), we have adapted a protocol for maxillary distraction with the halo system that integrates plate fixation. All patients had a history of cleft lip and/or palate and maxillary retrusion > or = 8 mm. Five patients treated with this protocol and followed for at least 1 year were included in this study. The protocol included a 3-day latency period, variable maxillary distraction, and removal of the halo device with simultaneous rigid internal fixation. Two patients had a variable period of maxillomandibular fixation (MMF), which maintained the maxillary advancement and idealized intercuspal position while permitting further callus maturation. Cephalographs were obtained preoperatively, immediately following distractor removal, and 1 year after rigid internal fixation. The mean age at time of surgery was 18.7 years. The maxillary deficiency ranged from 8 to 15 mm (mean = 10.6 mm). All five patients demonstrated excellent occlusion. Cephalometric analysis 1-year post rigid internal fixation revealed minimal (maxillary distraction followed by MMF to maintain maxillary advancement may reduce halo device wear to 1 to 2 weeks. MMF optimizes occlusion by forcing the maxillary teeth into maximal intercuspal position. Rigid fixation is not only associated with less long-term relapse compared to nonrigid forms of fixation, but also minimizes the incidence of nonunion. This treatment protocol provides the advancement possible with distraction osteogenesis and the accuracy of orthognathic surgery, thereby minimizing external head frame wear.
Directory of Open Access Journals (Sweden)
Roman Pfister
Full Text Available Structured management programmes deliver optimized care in heart failure patients and improve outcome. We examined the feasibility of including patients with migration background speaking little or no German in a heart failure management programme.After adaption of script material and staff to Turkish language we aimed to recruit 300 Turkish and 300 German (control group patients within 18 months using the operational basis of a local heart failure management programme for screening, contact and inclusion. Of 488 and 1,055 eligible Turkish and German patients identified through screening, 165 Turkish (34% and 335 German (32% patients consented on participation (p = 0.46. General practitioners contributed significantly more of the Turkish (84% than of the German patients (16%, p<0.001. Contact attempts by programme staff were significantly less successful in Turkish (52% than in German patients (60%, p = 0.005 due to significantly higher rate of missing phone numbers (36% vs 25%, invalid address data (28% vs 7% and being unreachable by phone more frequently (39% vs 26%, all p<0.001. Consent rate was significantly higher in successfully contacted Turkish (63% compared to German patients (50%, p<0.001.The inclusion of Turkish minority patients into a heart failure management programme is feasible with higher consent rate than in Germans. However, effort is high due to inherent logistic adaptions and barriers in identification and contacting of patients.DRKS00007780.
Reversible Rigidity Control Using Low Melting Temperature Alloys
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks
Directory of Open Access Journals (Sweden)
Ghada Badri
2014-04-01
Full Text Available A crystallographic bar-joint framework, C in Rd, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM spectrum, Ω (C, is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z, on the d-torus, Td, determined by a full rank translation symmetry group and an associated motif of joints and bars.
Transferring the Cost of Wage Rigidity to Subcontracting Firms: The Case of Korea
Directory of Open Access Journals (Sweden)
Kwangho Woo
2016-08-01
Full Text Available We select a Korean case with ample subcontracting practices and a rigid wage system. Workplaces with subcontract transactions would have reason to impute the additional wage incremental costs associated with the seniority-based wage system (Hobong in Korea to subcontractors. Our empirical results identify the cost-transferring mechanism under which the cost of wage rigidity for contractors is transferred to subcontracting firms and aggravates the wage inequality among workers in contracting and subcontracting firms. We analyze the industrial difference in the intensity of this transferring mechanism and probe policy directions considering the improvement of both the subcontracting structure and pay system simultaneously. For the sustainability of firms, they need to reform a seniority-based wage system, an incentive-based wage system or a job-based wage system and the exploited subcontracting structure for creating share value.
Takahashi, Riku; Wu, Zi Liang; Arifuzzaman, Md; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping
2014-08-01
Biomacromolecules usually form complex superstructures in natural biotissues, such as different alignments of collagen fibres in articular cartilages, for multifunctionalities. Inspired by nature, there are efforts towards developing multiscale ordered structures in hydrogels (recognized as one of the best candidates of soft biotissues). However, creating complex superstructures in gels are hardly realized because of the absence of effective approaches to control the localized molecular orientation. Here we introduce a method to create various superstructures of rigid polyanions in polycationic hydrogels. The control of localized orientation of rigid molecules, which are sensitive to the internal stress field of the gel, is achieved by tuning the swelling mismatch between masked and unmasked regions of the photolithographic patterned gel. Furthermore, we develop a double network structure to toughen the hydrogels with programmed superstructures, which deform reversibly under large strain. This work presents a promising pathway to develop superstructures in hydrogels and should shed light on designing biomimetic materials with intricate molecular alignments.
International Nuclear Information System (INIS)
Eliyahu, Ian
2015-01-01
relative OA band HCP induced efficiencies as described in the following. The high fluence region has allowed the determination of the saturation concentration of the F band and 4.77 eV band using the Beer-Lambert and Smakula formulas. The results indicate order of magnitude enhanced concentrations of vii these centers following the proton and He irradiations relative to photon irradiation. 2. Kinetic Analysis: The second focus of investigation was the development of a kinetic model to describe charge carrier transport in the LiF:Mg,Ti system including three features delineated in the following. The primary motivation for the kinetic analysis was the intention to modify track structure theory by taking into account enhanced vacancy/F center creation in the low ionization density kinetic simulations but was expanded in order to simulate the unique features of dose response in LiF:Mg,Ti. The kinetic model includes: c) Estimated electron-hole (e-h) and e-only population of the spatially correlated trapping center/luminescent center responsible for composite glow peak 5 in the glow curve of LiF:Mg,Ti. d) Combined localized and delocalized recombination of the e-h and e-only centers in the recombination stage. These features are shown to be capable of simulating both the linear/supralinear dose response and the dependence of the supralinearity on photon energy as is observed for composite peak 5. Both of these characteristics have previously eluded the predictive powers of kinetic theory based exclusively on delocalized recombination. e) Vacancy/F center creation in the irradiation stage including vacancyinterstitial recombination. The kinetic model with the latter mechanisms attempts to resolve a central question concerning the mechanisms leading to the linear/exponentially saturating dose response of the F band even though Fluorine vacancies are being continuously created during the irradiation. The electron-trapping characteristics of the created vacancies are assumed to
1987-06-01
S), articulare (Ar), A point, B point, constructed gonion (CGo), and menton (Me). The points nasion and sella were transferred to each successive...radiograph by superimposing on anterior and posterior cranial base structures. The landmarks articulare , A point, B point, menton, and constructed gonion...reported 45% relapse in their cases determined to be attributed to condylar distraction at the time of surgery. The use of rigid fixation as described
International Nuclear Information System (INIS)
Zhang Xuping; Mills, James K.; Cleghorn, William L.
2009-01-01
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links
Bianco, Raffaello; Errea, Ion; Calandra, Matteo; Mauri, Francesco
2018-06-01
We study the structural and vibrational properties of the high-temperature superconducting sulfur trihydride and trideuteride in the high-pressure I m 3 ¯m and R 3 m phases by first-principles density-functional-theory calculations. On lowering pressure, the rhombohedral transition I m 3 ¯m →R 3 m is expected, with hydrogen-bond desymmetrization and occurrence of trigonal lattice distortion. With both Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional, in hydrostatic conditions we find that, contrary to what is suggested in some recent experiments, if the rhombohedral distortion exists it affects mainly the hydrogen bonds, whereas the resulting cell distortion is minimal. We estimate that the occurrence of a stress anisotropy of approximately 10 % could explain this discrepancy. Assuming hydrostatic conditions, we calculate the critical pressure at which the rhombohedral transition occurs. Quantum and anharmonic effects, which are relevant in this system, are included at nonperturbative level with the stochastic self-consistent harmonic approximation. Within this approach, we determine the transition pressure by calculating the free-energy Hessian, a method that allows to estimate the critical pressure with much higher precision (and much lower computational cost) compared with the free-energy "finite-difference" approach previously used. Using PBE and BLYP, we find that quantum anharmonic effects are responsible for a strong reduction of the critical pressure with respect to the one obtained with the classical harmonic approach. Interestingly, for the two functionals, even if the transition pressures at classical harmonic level differ by 83 GPa, the transition pressures including quantum anharmonic effects differ only by 23 GPa. Moreover, we observe a prominent isotope effect, as we estimate higher transition pressure for D3S than for H3S . Finally, within the stochastic self-consistent harmonic approximation, with PBE
Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks
Knowles, Kyler Reser
Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to
Verification of the Rigidity of the Coulomb Field in Motion
Blinov, S. V.; Bulyzhenkov, I. É.
2018-06-01
Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.
Oscillations of rigid bar in the special relativity
International Nuclear Information System (INIS)
Paiva, F.M.; Teixeira, A.F.F.
2011-12-01
In the special relativity, a rigid bar slides on herself, with a extreme oscillating harmonically. We have discovered at the movement amplitude and in the bar length, indispensable for the elimination of non physical solutions
Rigid body motion in stereo 3D simulation
International Nuclear Information System (INIS)
Zabunov, Svetoslav
2010-01-01
This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.
Genus Ranges of 4-Regular Rigid Vertex Graphs.
Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin
2015-01-01
A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.
Rigidity theorem for Willmore surfaces in a sphere
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 2. Rigidity ... Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China; College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China ...
Role of Rigid Endoscopic Detorsion in the Management of Sigmoid ...
African Journals Online (AJOL)
had emergency surgery, with gangrenous bowel noted in 43 (72%) ... of any stable patient with clinical and radiological features ... peritonitis, underwent repeat rigid sigmoidoscopy. ... endoscopic detorsion was successful in all six cases.
Magnetism and magnetostriction in a degenerate rigid band
International Nuclear Information System (INIS)
Kulakowski, K.; Barbara, B.
1990-09-01
We investigate the influence of the spin-orbit coupling on the magnetic and magnetoelastic phenomena in ferromagnetic band systems. The description is within the Stoner model of a degenerate rigid band, for temperature T = O. (author). 14 refs
Anti-synchronization of the rigid body exhibiting chaotic dynamics ...
African Journals Online (AJOL)
Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.
Koumans, R.G.M.P.; Roijen, van R.
1996-01-01
We present a theory for passive mode-locking in semiconductor laser structures using a semiconductor laser amplifier and absorber. The mode-locking system is described in terms of the different elements in the semiconductor laser structure. We derive mode-locking conditions and show how other
Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management.
Barbarella, Maurizio; D'Amico, Fabrizio; De Blasiis, Maria Rosaria; Di Benedetto, Alessandro; Fiani, Margherita
2017-12-26
The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.
Obstacles to developing sustainable cities: the real estate rigidity trap
Directory of Open Access Journals (Sweden)
V. Kelly Turner
2017-06-01
Full Text Available Sprawl patterns of urbanization have large environmental consequences, and sustainable alternatives to conventional urban patterns of development have been promoted by a subset of planners, design professionals, and municipalities. These alternatives have not been widely adopted among real estate developers, actors with large influence over urban form and function. Existing explanations for this failure enumerate market and regulatory barriers but do not sufficiently describe the institutional structures that allow conventional approaches to prevail. A failure of real estate developers to adopt alternative forms of development can best be described in terms of a rigidity trap. Specifically, norms of practice within the real estate development industry combine with market and regulatory factors to favor existing practices and limit innovation. Moreover, these institutional factors also buffer the real estate development industry from feedback mechanisms and external signals that might otherwise trigger adaptation. Addressing the environmental consequences of urbanization not only requires novel approaches to urban design, but will also necessitate addressing systemic pathologies in the design implementation process.
Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management
Directory of Open Access Journals (Sweden)
Maurizio Barbarella
2017-12-01
Full Text Available The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.
Dynamical analysis of an orbiting three-rigid-body system
Energy Technology Data Exchange (ETDEWEB)
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.
Energy Technology Data Exchange (ETDEWEB)
Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; McComas, Roy L.; Kim, Jina; Townsend, R. L.; Fu, Tao; Skalski, J. R.; Fischer, Eric S.
2010-02-12
Summarizes research conducted at Bonneville Dam in 2008 to evaluate a prototype Behavioral Guidance Structure, that was deployed by the US Army Corps of Engineers in an effort to increase survival of outmigrating smolts at Bonneville Dam.
Trempler, Ima; Binder, Ellen; El-Sourani, Nadiya; Schiffler, Patrick; Tenberge, Jan-Gerd; Schiffer, Anne-Marike; Fink, Gereon R; Schubotz, Ricarda I
2018-06-01
Parkinson's disease (PD), which is caused by degeneration of dopaminergic neurons in the midbrain, results in a heterogeneous clinical picture including cognitive decline. Since the phasic signal of dopamine neurons is proposed to guide learning by signifying mismatches between subjects' expectations and external events, we here investigated whether akinetic-rigid PD patients without mild cognitive impairment exhibit difficulties in dealing with either relevant (requiring flexibility) or irrelevant (requiring stability) prediction errors. Following our previous study on flexibility and stability in prediction (Trempler et al. J Cogn Neurosci 29(2):298-309, 2017), we then assessed whether deficits would correspond with specific structural alterations in dopaminergic regions as well as in inferior frontal cortex, medial prefrontal cortex, and the hippocampus. Twenty-one healthy controls and twenty-one akinetic-rigid PD patients on and off medication performed a task which required to serially predict upcoming items. Switches between predictable sequences had to be indicated via button press, whereas sequence omissions had to be ignored. Independent of the disease, midbrain volume was related to a general response bias to unexpected events, whereas right putamen volume correlated with the ability to discriminate between relevant and irrelevant prediction errors. However, patients compared with healthy participants showed deficits in stabilisation against irrelevant prediction errors, associated with thickness of right inferior frontal gyrus and left medial prefrontal cortex. Flexible updating due to relevant prediction errors was also affected in patients compared with controls and associated with right hippocampus volume. Dopaminergic medication influenced behavioural performance across, but not within the patients. Our exploratory study warrants further research on deficient prediction error processing and its structural correlates as a core of cognitive symptoms
Directory of Open Access Journals (Sweden)
Anna I Sulatskaya
Full Text Available In this work, the fluorescence of thioflavin T (ThT was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0. The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.
One-dimensional rigid film acoustic metamaterials
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-11-01
We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.
One-dimensional rigid film acoustic metamaterials
International Nuclear Information System (INIS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-01-01
We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves. (paper)
Soft-rigid interaction mechanism towards a lobster-inspired hybrid actuator
Chen, Yaohui; Wan, Fang; Wu, Tong; Song, Chaoyang
2018-01-01
Soft pneumatic actuators (SPAs) are intrinsically light-weight, compliant and therefore ideal to directly interact with humans and be implemented into wearable robotic devices. However, they also pose new challenges in describing and sensing their continuous deformation. In this paper, we propose a hybrid actuator design with bio-inspirations from the lobsters, which can generate reconfigurable bending movements through the internal soft chamber interacting with the external rigid shells. This design with joint and link structures enables us to exactly track its bending configurations that previously posed a significant challenge to soft robots. Analytic models are developed to illustrate the soft-rigid interaction mechanism with experimental validation. A robotic glove using hybrid actuators to assist grasping is assembled to illustrate their potentials in safe human-robot interactions. Considering all the design merits, our work presents a practical approach to the design of next-generation robots capable of achieving both good accuracy and compliance.
Ruble, Diane; Tamis-LeMonda, Catherine; Shrout, Patrick E.
2014-01-01
A key prediction of cognitive theories of gender development concerns developmental trajectories in the relative strength or rigidity of gender typing. To examine these trajectories in early childhood, 229 children (African American, Mexican, Dominican) were followed annually from age 3 to 5 and gender-stereotypical appearance, dress-up play, toy play, and sex segregation were examined. High gender-typing was found across ethnic group, and most behaviors increased in rigidity, especially from age 3 to 4. In addressing controversy surrounding the stability and structure of gender-typing it was found that from year to year, most behaviors showed moderately stable individual differences. Behaviors were uncorrelated within age, but showed more concordance in change across time, suggesting that aspects of gender-typing are multidimensional but still show coherence. PMID:23432471
Analytical Study of Common Rigid Steel Connections under the Effect of Heat
Directory of Open Access Journals (Sweden)
Rohola Rahnavard
2014-01-01
Full Text Available One of the most important members of steel structure’s connection region is beam-to-column connection. Rigid connection in steel moment frame has special role in the behavior of these structures and the fire resistance of these connections can be important. In this paper the behaviors of three common types of rigid connections in Iran under the effect of heat were studied by the use of numerical finite element methods through ABAQUS software. The models were verified by the use of an experimental model through elastic and plastic amplitudes up to collapse and during numerical results, and the effect of large deformation in the nonlinear region has also been considered. The results show that the connection with the end plate had a better performance against heat than other connections. Also reduced stiffness and lateral buckling in this connection were less than other connections.
Halim, May Ling; Ruble, Diane; Tamis-LeMonda, Catherine; Shrout, Patrick E
2013-01-01
A key prediction of cognitive theories of gender development concerns developmental trajectories in the relative strength or rigidity of gender typing. To examine these trajectories in early childhood, 229 children (African American, Mexican American, and Dominican American) were followed annually from age 3 to 5 years, and gender-stereotypical appearance, dress-up play, toy play, and sex segregation were examined. High gender-typing was found across ethnic groups, and most behaviors increased in rigidity, especially from age 3 to 4 years. In addressing controversy surrounding the stability and structure of gender-typing it was found that from year to year, most behaviors showed moderately stable individual differences. Behaviors were uncorrelated within age but showed more concordance in change across time, suggesting that aspects of gender-typing are multidimensional, but still show coherence. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
Topological classification of the Goryachev integrable case in rigid body dynamics
International Nuclear Information System (INIS)
Nikolaenko, S S
2016-01-01
A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles
Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement
Knoell, A. C.; Maxwell, H. G. (Inventor)
1977-01-01
A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.
Directory of Open Access Journals (Sweden)
Nicolas Aurélie
2012-07-01
Full Text Available Abstract Background Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in the deletion of one or several exons and cause Duchenne (DMD and Becker (BMD muscular dystrophies. The most common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations. Methods and results We developed a dedicated database for dystrophin, the eDystrophin database. It contains 209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies. Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats, which may be correlated with better function in muscle cells. Conclusion This new database focuses on the dystrophin protein and its modification due to in-frame deletions in BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is freely available: http://edystrophin.genouest.org/.
Caputo, Christopher B; Vukotic, V Nicholas; Sirizzotti, Natalie M; Loeb, Stephen J
2011-08-14
A new tetradentate, pyridine ligand with a rigid tetrahedral core can be prepared in good yield by a cross-coupling methodology. Two metal organic framework structures of Cu(II) with PtS-type topology having a carbon atom as the tetrahedral node have been characterized utilising this ligand. This journal is © The Royal Society of Chemistry 2011
Soft-matter composites with electrically tunable elastic rigidity
International Nuclear Information System (INIS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-01-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium–indium–tin (Galinstan ® ) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy. (paper)
Soft-matter composites with electrically tunable elastic rigidity
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-08-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.
International Nuclear Information System (INIS)
Varvell, K.; Wells, J.; Sansum, R.A.; Bullock, F.W.; Fitch, P.J.; Armenise, N.; Calicchio, M.; Erriquez, O.; Natali, S.; Nuzzo, S.; Ruggieri, F.; Baton, J.P.; Gerbier, G.; Kasper, P.; Kochowski, C.; Neveu, M.; Brisson, V.; Petiau, P.; Vallee, C.; Clayton, E.F.; Iaselli, G.; Mobayyen, M.M.; Petrides, A.; Jones, G.T.; Middleton, R.P.; O'Neale, S.W.; Mermikides, M.; Simopoulou, E.; Vayaki, A.
1987-01-01
The isoscalar nucleon structure functions F 2 (x,Q 2 ) and xF 3 (x,Q 2 ) are measured in the range 0 2 2 , 1.7 2 2 , x 2 values, it is found that a low Λsub(anti Manti S) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative. (orig.)
Rezaie-Dereshgi, Amir; Mohammad-Rafiee, Farshid
2018-04-01
The electrostatic interactions play a crucial role in biological systems. Here we consider an impermeable dielectric molecule in the solvent with a different dielectric constant. The electrostatic free energy in the problem is studied in the Debye-Hückel regime using the analytical Green function that is calculated in the paper. Using this electrostatic free energy, we study the electrostatic contribution to the twist rigidity of a double stranded helical molecule such as a DNA and an actin filament. The dependence of the electrostatic twist rigidity of the molecule to the dielectric inhomogeneity, structural parameters, and the salt concentration is studied. It is shown that, depending on the parameters, the electrostatic twist rigidity could be positive or negative.
Integrally rigidized acoustic interior spacecraft panel
1976-01-01
A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.
International Nuclear Information System (INIS)
Simon, G H; König, T; Heinke, L; Lichtenstein, L; Heyde, M; Freund, H-J
2011-01-01
We present an extensive atomic resolution frequency modulation dynamic force microscopy study of ultrathin aluminium oxide on a single crystalline NiAl(110) surface. One-dimensional surface defects produced by domain boundaries have been resolved. Images are presented for reflection domain boundaries (RDBs), four different types of antiphase domain boundaries, a nucleation-related translation domain boundary and also domain boundary junctions. New structures and aspects of the boundaries and their network are revealed and merged into a comprehensive picture of the defect arrangements. The alumina film also covers the substrate completely at the boundaries and their junctions and follows the structural building principles found in its unit cell. This encompasses square and rectangular groups of surface oxygen sites. The observed structural elements can be related to the electronic signature of the boundaries and therefore to the electronic defects associated with the boundaries. A coincidence site lattice predicted for the RDBs is in good agreement with experimental data. With Σ = 19 it can be considered to be of low-sigma type, which frequently coincides with special boundary properties. Images of asymmetric RDBs show points of good contact alternating with regions of nearly amorphous disorder in the oxygen sublattice. (paper)
Yang, Bingen
2005-01-01
Stress, Strain, and Structural Dynamics is a comprehensive and definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. This text integrates the development of fundamental theories, formulas and mathematical models with user-friendly interactive computer programs, written in the powerful and popular MATLAB. This unique merger of technical referencing and interactive computing allows instant solution of a variety of engineering problems
Dubinskiy, S.; Brailovski, Vladimir; Prokoshkin, S.; Pushin, V.; Inaekyan, K.; Sheremetyev, V.; Petrzhik, M.; Filonov, M.
2013-09-01
In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy's structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates' particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.
Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat
Directory of Open Access Journals (Sweden)
Kirpluks Mikelis
2014-12-01
Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.
Rigid thin windows for vacuum applications
Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George
1999-01-01
A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.
Rigid external maxillary distraction and rhinoplasty for pyknodysostosis.
Varol, Altan; Sabuncuoglu, Fidan Alakus; Sencimen, Metin; Akcam, Timur; Olmez, Hüseyin; Basa, Selçuk
2011-05-01
This article reports the treatment of an 33-year-old female patient with pyknodysostosis by rigid external distraction II midface distraction system. The patient with pyknodysostosis described in this report had severe midfacial hypoplasia. Correction of this by use of routine orthognathic surgery would require osteosynthesis and bone grafting. Risk of infection and/or nonunion after such a surgical procedure was considered too great, and therefore the possibility of treatment by distraction osteogenesis of the maxilla was evaluated. The rigid external distraction II midface distraction system was used to relocate the hypoplastic maxilla at anterior-inferior projection. Distraction osteogenesis should be considered as the primary reconstructive method for maxillofacial deformities in patients with sclerosing bone dysplasias, since this is the second reported case treated successfully with rigid external distraction.
Rigidity of outermost MOTS: the initial data version
Galloway, Gregory J.
2018-03-01
In the paper Commun Anal Geom 16(1):217-229, 2008, a rigidity result was obtained for outermost marginally outer trapped surfaces (MOTSs) that do not admit metrics of positive scalar curvature. This allowed one to treat the "borderline case" in the author's work with R. Schoen concerning the topology of higher dimensional black holes (Commun Math Phys 266(2):571-576, 2006). The proof of this rigidity result involved bending the initial data manifold in the vicinity of the MOTS within the ambient spacetime. In this note we show how to circumvent this step, and thereby obtain a pure initial data version of this rigidity result and its consequence concerning the topology of black holes.
Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.
Duncan, Lauren E; Peterson, Bill E
2014-01-01
Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.
Mitral stenosis due to pannus overgrowth after rigid ring annuloplasty.
Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki
2010-03-01
Although mitral stenosis (MS) due to pannus overgrowth after mitral valve repair for rheumatic mitral regurgitation (MR) is not uncommon, it is extremely rare in relation to non-rheumatic mitral regurgitation. Whilst it has been suggested that the rigid annuloplasty ring induces pannus overgrowth in the same manner as the flexible ring, to date only in cases using the flexible ring has pannus formation been confirmed by a pathological examination after redo surgery. The case is described of a woman who had undergone mitral valve repair using a 28 mm rigid ring three years previously because of non-rheumatic MR, and subsequently suffered from MS due to pannus formation over the annuloplasty ring. To the present authors' knowledge, this is the first report of MS due to pannus formation after mitral valve repair using a rigid annuloplasty ring to treat non-rheumatic MR documented at reoperation.
Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William
2018-06-04
The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
New integrable problems in a rigid body dynamics with cubic integral in velocities
Elmandouh, A. A.
2018-03-01
We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.
Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang
2017-02-16
Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.
Curtin, Carol; Bandini, Linda G.; Must, Aviva; Phillips, Sarah; Maslin, Melissa C. T.; Lo, Charmaine; Gleason, James M.; Fleming, Richard K.; Stanish, Heidi I.
2016-01-01
Background: The input of youth with intellectual disabilities in health promotion and health disparities research is essential for understanding their needs and preferences. Regular physical activity (PA) is vital for health and well-being, but levels are low in youth generally, including those with intellectual disabilities. Understanding the…
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.
Non-rigid image registration using bone growth model
DEFF Research Database (Denmark)
Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven
1997-01-01
Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...
Rigid particle revisited: Extrinsic curvature yields the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)
2014-03-01
We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.
Elastic properties of rigid fiber-reinforced composites
Chen, J.; Thorpe, M. F.; Davis, L. C.
1995-05-01
We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.
Extremal surfaces and the rigidity of null geodesic incompleteness
International Nuclear Information System (INIS)
Silva, I P Costa e; Flores, J L
2015-01-01
An important, if relatively less well known aspect of the singularity theorems in Lorentzian geometry, is to understand how their conclusions fare upon weakening or suppression of one or more of their hypotheses. Then, theorems with modified conclusion may arise, showing that those conclusions will fail only in special cases, at least some of which may be described. These are the so-called rigidity theorems, and have many important examples in the specialized literature. In this paper, we prove rigidity results for generalized plane waves and certain globally hyperbolic spacetimes in the presence of extremal compact surfaces. (paper)
International Nuclear Information System (INIS)
Cabeza, O.; Vila, J.; Rilo, E.; Domínguez-Pérez, M.; Otero-Cernadas, L.; López-Lago, E.; Méndez-Morales, T.; Varela, L.M.
2014-01-01
Graphical abstract: Phase diagram indicating three transitions temperatures: (liquid + gel) (dot symbols), (liquid + crystal) (square symbols) and (crystal + liquid) (triangle symbols) for the aqueous EMIM-OS mixtures. - Highlights: • We present the phase diagram of the system EMIM-octyl sulfate + water. • We show that a rigid gel phase appears for certain concentrations and temperatures. • That gel presents a smectic-like phase, being really a rigid gel crystal. • The gel is as electrical conductive as the liquid in spite of the viscosity change. • Density does not change at the (liquid + gel) transition. - Abstract: We report the existence of hydrophobically driven lyotropic rigid gel phase in aqueous mixtures of the ionic liquid (IL) 1-ethyl-3-methyl imidazolium octyl sulfate (EMIM-OS), and we characterize the physical properties of the gel phase by means of density, electrical conductivity and viscosity measurements. Also we include polarized microscopy images, showing the existence of a crystalline-like gel phase with the cations and anions (mainly the alkyl chain of this last ones) ordered in a fashion similar to a liquid crystal, which is induced by the presence of the water molecules. As was pointed out briefly in a previous paper, some of the mixtures of that system under goes a (liquid + gel) phase transition only in a quite narrow concentration interval: for ionic liquid molar fraction, x IL , from 0.09 to 0.5. Below x IL = 0.09 and above x IL = 0.5, the mixtures crystallize at low temperature becoming a hard solid crystal. Here we report the complete phase diagram of this binary system, as well as measurements of the temperature behavior of several physical properties around the (liquid + gel) and (liquid + crystal) transitions. Curiously enough, we did not detect any change in the temperature dependence of the measured magnitudes at the (liquid + gel) phase transition, but for viscosity, even in the case of the electrical conductivity
Varvell, K.; Cooper-Sarkar, A. M.; Parker, M. A.; Sansum, R. A.; Aderholz, M.; Armenise, N.; Baton, J. P.; Bullock, F. W.; Berggren, M.; Bertrand, D.; Brisson, V.; Burkot, W.; Calcchio, M.; Claytoh, E. F.; Coghen, T.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hulth, P. O.; Iaselli, G.; Jones, G. T.; Kasper, P.; Klein, H.; Kochowski, C.; Marage, P.; Mermikides, M.; Middleton, R. P.; Morrison, D. R. O.; Mobayyen, M. M.; Natali, S.; Neveu, M.; Nuzzo, S.; O'Neale, S. W.; Petiau, P.; Petrides, A.; Ruggieri, F.; Sacton, J.; Simopoulou, E.; Vallee, C.; Vayaki, A.; Venus, W. A.; Wachsmuth, H.; Wells, J.; Wittek, W.
1987-03-01
The isoscalar nucleon structure functions F 2( x, Q 2) and xF 3( x, Q 2) are measured in the range 0< Q 2<64 GeV2, 1.7< W 2<250 GeV2, x<0.7 using ν andbar v interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such low W 2 values, it is found that a lowΛ _{overline {MS} } value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.
Directory of Open Access Journals (Sweden)
Abdon Atangana
2013-01-01
Full Text Available A low velocity impact between a rigid sphere and transversely isotropic strain-hardening plate supported by a rigid substrate is generalized to the concept of noninteger derivatives order. A brief history of fractional derivatives order is presented. The fractional derivatives order adopted is in Caputo sense. The new equation is solved via the analytical technique, the Homotopy decomposition method (HDM. The technique is described and the numerical simulations are presented. Since it is very important to accurately predict the contact force and its time history, the three stages of the indentation process, including (1 the elastic indentation, (2 the plastic indentation, and (3 the elastic unloading stages, are investigated.
Compare local pocket and global protein structure models by small structure patterns
Cui, Xuefeng
2015-09-09
Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria include root mean squared deviation (RMSD), MaxSub score, TM-score, GDT-TS and GDT-HA scores. All these criteria require calculation of rigid transformations to superimpose the the predicted protein structure to the native protein structure. Yet, how to obtain the rigid transformations is unknown or with high time complexity, and, hence, heuristic algorithms were proposed. In this work, we carefully design various small structure patterns, including the ones specifically tuned for local pockets. Such structure patterns are biologically meaningful, and address the issue of relying on a sufficient number of backbone residue fragments for existing methods. We sample the rigid transformations from these small structure patterns; and the optimal superpositions yield by these small structures are refined and reported. As a result, among 11; 669 pairs of predicted and native local protein pocket models from the CASP10 dataset, the GDT-TS scores calculated by our method are significantly higher than those calculated by LGA. Moreover, our program is computationally much more efficient. Source codes and executables are publicly available at http://www.cbrc.kaust.edu.sa/prosta/
Survey of Non-Rigid Registration Tools in Medicine.
Keszei, András P; Berkels, Benjamin; Deserno, Thomas M
2017-02-01
We catalogue available software solutions for non-rigid image registration to support scientists in selecting suitable tools for specific medical registration purposes. Registration tools were identified using non-systematic search in Pubmed, Web of Science, IEEE Xplore® Digital Library, Google Scholar, and through references in identified sources (n = 22). Exclusions are due to unavailability or inappropriateness. The remaining (n = 18) tools were classified by (i) access and technology, (ii) interfaces and application, (iii) living community, (iv) supported file formats, and (v) types of registration methodologies emphasizing the similarity measures implemented. Out of the 18 tools, (i) 12 are open source, 8 are released under a permissive free license, which imposes the least restrictions on the use and further development of the tool, 8 provide graphical processing unit (GPU) support; (ii) 7 are built on software platforms, 5 were developed for brain image registration; (iii) 6 are under active development but only 3 have had their last update in 2015 or 2016; (iv) 16 support the Analyze format, while 7 file formats can be read with only one of the tools; and (v) 6 provide multiple registration methods and 6 provide landmark-based registration methods. Based on open source, licensing, GPU support, active community, several file formats, algorithms, and similarity measures, the tools Elastics and Plastimatch are chosen for the platform ITK and without platform requirements, respectively. Researchers in medical image analysis already have a large choice of registration tools freely available. However, the most recently published algorithms may not be included in the tools, yet.
International Nuclear Information System (INIS)
Lemonnier, St.
2006-02-01
Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am III YII Zriv)Or x is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)
Salihovic, Samira; Kärrman, Anna; Lind, Lars; Lind, P Monica; Lindström, Gunilla; van Bavel, Bert
2015-09-01
Per- and polyfluoroalkyl substances (PFASs) are a class of compounds with unique chemical properties that have been shown useful in a wide variety of applications because they provide materials with reduced surface tension and exceptional non-stick properties. PFASs are commonly found in impregnation materials, coatings of papers and textiles, fire-fighting foams, pesticides, and cleaning agents. The potential for human exposure to PFASs is high because of their widespread distribution. The aim of this study was to investigate levels of PFASs in men and women from Sweden and to assess the influence of gender and parity among women. Levels of 13 PFASs were determined in plasma samples collected during 2001-2004 from 1016 (507 women) 70year-old participants from the population-based Prospective Study of the Vasculature in Uppsala Seniors (PIVUS). The PFASs studied were nine perfluorinated carboxylic acids (PFCAs), four perfluorinated sulfonic acids (PFSAs) and perfluorooctane sulfonamide (PFOSA). In addition, structural isomers of perfluorooctane sulfonic acid (PFOS) were determined in a subset of 398 individuals. The detection rates were high and the majority of the studied compounds were detected in more than 75% of the participants. Levels of the selected analytes were found to be similar to other studies of non-occupationally exposed populations. Gender differences were observed in levels of PFHpA which was higher in men, while PFHxS was higher in women. Parity among women was shown to have a minor effect on PFAS concentrations and we found primi- and multiparous women to have slightly lower levels of PFUnDA when compared to nulliparous women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Namiot, V.A., E-mail: vnamiot@gmail.co [Institute of Nuclear Physics, Moscow State University, Vorobyovy Gory, 119992 Moscow (Russian Federation)
2009-07-20
We propose a new method to study the surface of small bio-objects, including macromolecules and their complexes. This method is based on interference of low-energy electrons. Theoretically, this type of interference may allow to construct a hologram of the biological object, but, unlike an optical hologram, with the spatial resolution of the order of inter-atomic distances. The method provides a possibility to construct a series of such holograms at various levels of electron energies. In theory, obtaining such information would be enough to identify the types of molecular groups existing on the surface of the studied object. This method could also be used for 'fast reading' of nucleotide chains. It has been shown how to depose a long linear molecule as a straight line on a substrate before carrying out such 'reading'.
Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior
Sagis, L.M.C.; Linden, van der E.
2001-01-01
In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly
Rigidity and bradykinesia reduce interlimb coordination in Parkinsonian gait
Winogrodzka, Ania; Wagenaar, Robert C.; Booij, Jan; Wolters, Eric C.
2005-01-01
Objective: To assess the influence of rigidity and bradykinesia and the extent of dopaminergic degeneration on interlimb coordination during walking in early, drug-naive patients with Parkinson's disease (PD). Design: The interlimb coordination was examined during a systematic manipulation of
Short Communication: Statistical determination of the rigidity in ...
African Journals Online (AJOL)
From the graph of load against displacement, the rigidity in flexion at different moisture levels was determined from which the Young modulus was calculated. Linear regression models were fitted to the data and the results showed significant correlation coefficients between the Young modulus and moisture content for each ...
Connect-disconnect coupling for preadjusted rigid shafts
Bajkowski, F. W.; Holmberg, A.
1969-01-01
Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.
Centrifuge modelling of rigid piles in soft clay
DEFF Research Database (Denmark)
Klinkvort, R.T.; Poder, M.; Truong, P.
2016-01-01
of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...
Customizable rigid head fixation for infants: technical note.
Udayakumaran, Suhas; Onyia, Chiazor U
2016-01-01
The need and advantages of rigid fixation of the head in cranial surgeries are well documented (Berryhill et al., Otolaryngol Head Neck Surg 121:269-273, 1999). Head fixation for neurosurgical procedures in infants and in early years has been a challenge and is fraught with risk. Despite the fact that pediatric pins are designed, rigid head fixation involving direct application of pins to the head of infants and slightly older children is still generally not safe (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). Yet, there are some surgeries in which some form of rigid fixation is required (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). We describe a simple technique to achieve rigid fixation of the head in infants for neurosurgical procedures. This involves applying a head band made of Plaster of Paris (POP) around the head and then applying the fixation pins of the fixation frame directly on to the POP. We have used this technique of head fixation successfully for infants with no complications.
Study of rigidity of semiconducting vanadate glasses and its ...
Indian Academy of Sciences (India)
These parameters along with the coordination number of the glasses affect the glass transition temperature. The correlation between the elastic moduli and thermal properties of these samples showed that 0.25MoO3–0.25PbO–0.5V2O5 glass is the most rigid and has an applicable glass transition temperature for coating.
Rigidity theorem for Willmore surfaces in a sphere
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 126, No. 2, May 2016, pp. 253–260. c Indian Academy of Sciences. Rigidity theorem for Willmore surfaces in a sphere. HONGWEI XU1 and DENGYUN YANG2,∗. 1Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027,. People's Republic of China. 2College of Mathematics and ...
Accuracy limit of rigid 3-point water models
Izadi, Saeed; Onufriev, Alexey V.
2016-08-01
Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.
Rigid rod spaced fullerene as building block for nanoclusters
Indian Academy of Sciences (India)
By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...
Flexible (Polyactive®) versus rigid (hydroxyapatite) dental implants
Meijer, G.J.; Heethaar, J.; Cune, M.S.; de Putter, C.; van Blitterswijk, Clemens
1997-01-01
In a beagle dog study, the peri-implant bone changes around flexible (Polyactive®) and rigid hydroxyapatite (HA) implants were investigated radiographically by quantitative digital subtraction analysis and by assessment of marginal bone height, with the aid of a computerized method. A loss of
"Mind the trap": mindfulness practice reduces cognitive rigidity.
Directory of Open Access Journals (Sweden)
Jonathan Greenberg
Full Text Available Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems ("critical" or "trap" problems solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be "blinded" by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting.
21 CFR 886.5916 - Rigid gas permeable contact lens.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section 886.5916 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... against the cornea of the eye to correct vision conditions. The device is made of various materials, such...
Knowledge-In-Action: An Example with Rigid Body Motion
Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio
2005-01-01
This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…
Non-rigid registration by geometry-constrained diffusion
DEFF Research Database (Denmark)
Andresen, Per Rønsholt; Nielsen, Mads
1999-01-01
Assume that only partial knowledge about a non-rigid registration is given so that certain point, curves, or surfaces in one 3D image map to certain points, curves, or surfaces in another 3D image. We are facing the aperture problem because along the curves and surfaces, point correspondences...
A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing
Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.;
2017-01-01
Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.
Surgical treatment of double thoracic adolescent idiopathic scoliosis with a rigid proximal thoracic curve.
Sudo, Hideki; Abe, Yuichiro; Abumi, Kuniyoshi; Iwasaki, Norimasa; Ito, Manabu
2016-02-01
There is limited consensus on the optimal surgical strategy for double thoracic adolescent idiopathic scoliosis (AIS). Recent studies have reported that pedicle screw constructs to maximize scoliosis correction cause further thoracic spine lordosis. The objective of this study was to apply a new surgical technique for double thoracic AIS with rigid proximal thoracic (PT) curves and assess its clinical outcomes. Twenty one consecutive patients with Lenke 2 AIS and a rigid PT curve (Cobb angle ≥30º on side-bending radiographs, flexibility ≤30 %) treated with the simultaneous double-rod rotation technique (SDRRT) were included. In this technique, a temporary rod is placed at the concave side of the PT curve. Then, distraction force is applied to correct the PT curve, which reforms a sigmoid double thoracic curve into an approximate single thoracic curve. As a result, the PT curve is typically converted from an apex left to an apex right curve before applying the correction rod for PT and main thoracic curve. All patients were followed for at least 2 years (average 2.7 years). The average main thoracic and PT Cobb angle correction rate at the final follow-up was 74.7 and 58.0 %, respectively. The average preoperative T5-T12 thoracic kyphosis was 9.3°, which improved significantly to 19.0° (p corrected using SDRRT for Lenke 2 AIS with a rigid PT curve.
Fitting an MSD (mini scleral design) rigid contact lens in advanced keratoconus with INTACS.
Dalton, Kristine; Sorbara, Luigina
2011-12-01
Keratoconus is a bilateral degenerative disease characterized by a non-inflammatory, progressive central corneal ectasia (typically asymmetric) and decreased vision. In its early stages it may be managed with spectacles and soft contact lenses but more commonly it is managed with rigid contact lenses. In advanced stages, when contact lenses can no longer be fit, have become intolerable, or corneal damage is severe, a penetrating keratoplasty is commonly performed. Alternative surgical techniques, such as the use of intra-stromal corneal ring segments (INTACS) have been developed to try and improve the fit of rigid contact lenses in keratoconic patients and avoid penetrating keratoplasties. This case report follows through the fitting of rigid contact lenses in an advanced keratoconic cornea after an INTACS procedure and discusses clinical findings, treatment options, and the use of mini-scleral and scleral lens designs as they relate to the challenges encountered in managing such a patient. Mini-scleral and scleral lenses are relatively easy to fit, and can be of benefit to many patients, including advanced keratoconic patients, post-INTAC patients and post-penetrating keratoplasty patients. 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing
Directory of Open Access Journals (Sweden)
Fei Hui
2017-03-01
Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.
CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor
International Nuclear Information System (INIS)
Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L.; Tijerina S, F.; Tapia M, R.
2016-09-01
In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)
Salami, S.; Rondeau-Mouro, C.; Barhoum, M.; Duynhoven, van J.P.M.; Mariette, F.
2014-01-01
The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ~ 10 g/100 g H2O), translational diffusion of the probe depended
Munch, F. D.; Grayver, A. V.; Kuvshinov, A.; Khan, A.
2018-01-01
In this paper we estimate and invert local electromagnetic (EM) sounding data for 1-D conductivity profiles in the presence of nonuniform oceans and continents to most rigorously account for the ocean induction effect that is known to strongly influence coastal observatories. We consider a new set of high-quality time series of geomagnetic observatory data, including hitherto unused data from island observatories installed over the last decade. The EM sounding data are inverted in the period range 3-85 days using stochastic optimization and model exploration techniques to provide estimates of model range and uncertainty. The inverted conductivity profiles are best constrained in the depth range 400-1,400 km and reveal significant lateral variations between 400 km and 1,000 km depth. To interpret the inverted conductivity anomalies in terms of water content and temperature, we combine laboratory-measured electrical conductivity of mantle minerals with phase equilibrium computations. Based on this procedure, relatively low temperatures (1200-1350°C) are observed in the transition zone (TZ) underneath stations located in Southern Australia, Southern Europe, Northern Africa, and North America. In contrast, higher temperatures (1400-1500°C) are inferred beneath observatories on islands, Northeast Asia, and central Australia. TZ water content beneath European and African stations is ˜0.05-0.1 wt %, whereas higher water contents (˜0.5-1 wt %) are inferred underneath North America, Asia, and Southern Australia. Comparison of the inverted water contents with laboratory-constrained water storage capacities suggests the presence of melt in or around the TZ underneath four geomagnetic observatories in North America and Northeast Asia.
Strategic rigidity and foresight for technology adoption among electric utilities
International Nuclear Information System (INIS)
Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe
2013-01-01
The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system
Matrix rigidity regulates cancer cell growth and cellular phenotype.
Directory of Open Access Journals (Sweden)
Robert W Tilghman
2010-09-01
Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.
Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype
Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas
2010-01-01
Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123
Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis
Energy Technology Data Exchange (ETDEWEB)
Opron, Kristopher [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States)
2014-06-21
Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely
Performance of drift chambers in a magnetic rigidity spectrometer for measuring the cosmic radiation
International Nuclear Information System (INIS)
Hof, M.; Bremerich, M.; Menn, W.; Pfeifer, C.; Reimer, O.; Simon, M.; Mitchell, J.W.; Barbier, L.M.; Christian, E.R.; Ormes, J.F.; Streitmatter, R.E.; Golden, R.L.; Stochaj, S.J.
1994-01-01
A drift chamber tracking system was developed and flown as part of the IMAX balloon-borne magnetic spectrometer. The drift chamber uses a hexagonal drift-cell structure and is filled with pure CO 2 gas. It operated with high efficiency in the strong and inhomogenous field of a superconducting magnet, demonstrating a spatial resolution of better than 100 μm over most of the drift path for singly charged particles, as well as for helium and lithium nuclei. The drift chamber portion of the spectrometer achieved a maximum detectable rigidity of 175 and 250 GV/c for protons and helium respectively. ((orig.))
International Nuclear Information System (INIS)
Seo, K.S.; Lee, J.C.; Bang, K.S.; Han, H.S.; Chung, S.H.; Choi, B.I.; Ha, J.H.
2004-01-01
The package design objectives for the drop condition are to maintain the integrity of the structural material by reducing the impact force. There are two kinds of the shock absorbing materials such as rigid polyurethane foam (PU) and Styrofoam (EPS: Expanded Poly Styrene). These materials are generally used in small transportation packages. The stress-strain curves were obtained by the compression tests until the PU and EPS reached their lock-up strain. This paper describes that, in the case of a small transportation package of a cylindrical shape, the shock absorbing effects were evaluated by utilizing the compression properties of the PU and EPS foam
Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity
International Nuclear Information System (INIS)
Shrestha, Utsab R.; Bhowmik, Debsindhu; Van Delinder, Kurt W.; Mamontov, Eugene; O’Neill, Hugh
2017-01-01
Here, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA. These results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biological activity.
Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery.
Hirose, K; Aoki, T; Furukawa, T; Fukushima, S; Niioka, H; Deguchi, S; Hashimoto, M
2018-02-01
Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 μm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.
Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity
Energy Technology Data Exchange (ETDEWEB)
Shrestha, Utsab R. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy; Bhowmik, Debsindhu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Science and Engineering Division; Van Delinder, Kurt W. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy; Mamontov, Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division; O’Neill, Hugh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biology and Soft Matter Division; Zhang, Qiu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biology and Soft Matter Division; Alatas, Ahmet [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Chu, Xiang-Qiang [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy
2017-01-12
Here, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA. These results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biological activity.
Jankowski, Aleksander; Szczurek, Ewa; Jauch, Ralf; Tiuryn, Jerzy; Prabhakar, Shyam
2013-01-01
The binding of transcription factors (TFs) to their specific motifs in genomic regulatory regions is commonly studied in isolation. However, in order to elucidate the mechanisms of transcriptional regulation, it is essential to determine which TFs bind DNA cooperatively as dimers and to infer the precise nature of these interactions. So far, only a small number of such dimeric complexes are known. Here, we present an algorithm for predicting cell-type–specific TF–TF dimerization on DNA on a large scale, using DNase I hypersensitivity data from 78 human cell lines. We represented the universe of possible TF complexes by their corresponding motif complexes, and analyzed their occurrence at cell-type–specific DNase I hypersensitive sites. Based on ∼1.4 billion tests for motif complex enrichment, we predicted 603 highly significant cell-type–specific TF dimers, the vast majority of which are novel. Our predictions included 76% (19/25) of the known dimeric complexes and showed significant overlap with an experimental database of protein–protein interactions. They were also independently supported by evolutionary conservation, as well as quantitative variation in DNase I digestion patterns. Notably, the known and predicted TF dimers were almost always highly compact and rigidly spaced, suggesting that TFs dimerize in close proximity to their partners, which results in strict constraints on the structure of the DNA-bound complex. Overall, our results indicate that chromatin openness profiles are highly predictive of cell-type–specific TF–TF interactions. Moreover, cooperative TF dimerization seems to be a widespread phenomenon, with multiple TF complexes predicted in most cell types. PMID:23554463
Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.
2016-01-01
Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708
Rigid inclusions-Comparison between analytical and numerical methods
International Nuclear Information System (INIS)
Gomez Perez, R.; Melentijevic, S.
2014-01-01
This paper compares different analytical methods for analysis of rigid inclusions with finite element modeling. First of all, the load transfer in the distribution layer is analyzed for its different thicknesses and different inclusion grids to define the range between results obtained by analytical and numerical methods. The interaction between the soft soil and the inclusion in the estimation of settlements is studied as well. Considering different stiffness of the soft soil, settlements obtained analytical and numerically are compared. The influence of the soft soil modulus of elasticity on the neutral point depth was also performed by finite elements. This depth has a great importance for the definition of the total length of rigid inclusion. (Author)
Rigidity of complete noncompact bach-flat n-manifolds
Chu, Yawei; Feng, Pinghua
2012-11-01
Let (Mn,g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L2-norm of the trace-free Riemannian curvature tensor R∘m is finite. In this paper, we prove that (Mn,g) is a constant curvature space if the L-norm of R∘m is sufficiently small. Moreover, we get a gap theorem for (Mn,g) with positive scalar curvature. This can be viewed as a generalization of our earlier results of 4-dimensional Bach-flat manifolds with constant scalar curvature R≥0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n>9, we derive a rigidity result for R<0.
Rigid-beam model of a high-efficiency magnicon
International Nuclear Information System (INIS)
Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.
1993-01-01
The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon
MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation
Pashkevich, V. V.
2017-03-01
The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.
Partial ring currents and cosmic ray magnetic cutoff rigidity variations
International Nuclear Information System (INIS)
Arens, M.
1978-01-01
A short introduction on cosmic ray modulation and a description of the magnetosphere, and of some physical processes occurring within its boundaries are presented. 20 geomagnetic storms are analysed together with the cosmic ray intensities during these storms as measured by Neutron Monitors. Using a semi-empirical method, the variations in the magnetic cutoff rigidity for the mountain stations Pic du Midi and Jungfraujoch are deduced. These stations are the most sensitive for measuring these variations. The analysis shows that all analyzed storms have an asymmetric development phase. Often the asymmetry even continues during part of the recovery phase. It is shown that variations in magnetic cutoff rigidity occur only during the asymmetric phase of the storm. The largest variations are found when the cosmic ray station is located in the late afternoon-midnight sector. (Auth.)
Rigid Basement and the Evolution of the Pakistani Convergent Margin
Haq, S. S.; Davis, D. M.
2007-12-01
In Pakistan, along the western edge of the Indian-Eurasian collision there are a series of fold-and-thrust belts that have highly variable strikes and shortening directions with respect to the local relative plate motion. Much of the complexity in the deformation of this margin can easily be explained by the shape, location, and long-term motion of a fragment of relatively rigid oceanic lithosphere that is believed to underlie the Katawaz Basin. In particular, the deformation that has formed the Sulaiman Range and Lobe is a direct consequence of the Katawaz Basin's over all higher strength. The presence of deformed sedimentary strata in the basin comparable to those presently found in the Indus delta are indicative of the basins long-term motion parallel to the Chaman fault zone. In Pakistan, the transition in the strike and shortening directions occurs over a short distance compared to the width of the fold-belts and the length of the margin. We present a series of analog models along with detailed quantitative analysis that we compare to the observed deformation as indicated by both geologic and geophysical data. By quantitatively distinguishing the style and magnitude of deformation in each of a variety of analog experiments we are able to evaluate the viability of various alternative models that have been proposed for fold- belt formation and evolution of the Pakistani margin, including our favored model. The model that best fits the geological and geophysical evidence suggests that the complexity of the Pakistani margin is a result of the long- term northeastward migration of the Katawaz basin along the curving trend of the Chaman fault zone. The vertically integrated mechanical strength of the Katawaz basin allows it to act as a strong 'backstop' that has relative motion to both stable India and stable Eurasia. This northeastward motion and the resulting clockwise rotation of the Katawaz 'block' during the margin's development can explain the location and
A rigid lamb syndrome in sheep in Rhodesia.
Rudert, C P; Lawrence, J A; Foggin, C; Barlow, R M
1978-04-29
A syndrome characterised by the birth of lambs with varying degrees of rigidity of the limbs and spine has been encountered on several occasions in Rhodesia. Outbreaks have occurred in autumn-born lambs from Dorper ewes grazing heavily fertilised Star grass cv No 2 (Cynodon aethiopicus) pastures. The condition appears to be exacerbated by the application of sulphur to the pasture and is partly prevented by the administration of selenium and vitamin E to the ewes before lambing. The aetiology is unknown.
Steady fall of a rigid body in viscous fluid
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka
2005-01-01
Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005
NOLB: Nonlinear Rigid Block Normal Mode Analysis Method
Hoffmann , Alexandre; Grudinin , Sergei
2017-01-01
International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...
Oscillations of manometric tubular springs with rigid end
Cherentsov, D. A.; Pirogov, S. P.; Dorofeev, S. M.; Ryabova, Y. S.
2018-05-01
The paper presents a mathematical model of attenuating oscillations of manometric tubular springs (MTS) taking into account the rigid tip. The dynamic MTS model is presented in the form of a thin-walled curved rod oscillating in the plane of curvature of the central axis. Equations for MTS oscillations are obtained in accordance with the d’Alembert principle in projections onto the normal and tangential. The Bubnov-Galerkin method is used to solve the equations obtained.
On Polya's inequality for torsional rigidity and first Dirichlet eigenvalue
Berg, M. van den; Ferone, V.; Nitsch, C.; Trombetti, C.
2016-01-01
Let $\\Omega$ be an open set in Euclidean space with finite Lebesgue measure $|\\Omega|$. We obtain some properties of the set function $F:\\Omega\\mapsto \\R^+$ defined by $$ F(\\Omega)=\\frac{T(\\Omega)\\lambda_1(\\Omega)}{|\\Omega|} ,$$ where $T(\\Omega)$ and $\\lambda_1(\\Omega)$ are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical P\\'olya bound $F(\\Omega)\\le 1,$ and show that $$F(\\Omega)\\le 1- \
Vortex statistics for turbulence in a container with rigid boundaries
DEFF Research Database (Denmark)
Clercx, H.J.H.; Nielsen, A.H.
2000-01-01
The evolution of vortex statistics for decaying two-dimensional turbulence in a square container with rigid no-slip walls is compared with a few available experimental results and with the scaling theory of two-dimensional turbulent decay as proposed by Carnevale et al. Power-law exponents......, computed from an ensemble average of several numerical runs, coincide with some experimentally obtained values, but not with data obtained from numerical simulations of decaying two-dimensional turbulence with periodic boundary conditions....
Gas-induced friction and diffusion of rigid rotors
Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.
2018-05-01
We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams
Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard
2003-01-01
This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...
Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams
Bogusław Czupryński; Joanna Liszkowska; Joanna Paciorek-Sadowska
2014-01-01
The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR) foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis...
Fluid-structure interaction of submerged structures
International Nuclear Information System (INIS)
Tang, H.T.; Becker, E.B.; Taylor, L.M.
1979-01-01
The purpose of the paper is to investigate fluid-structure interaction (FSI) of submerged structures in a confined fluid-structure system. Our particular interest is the load experienced by a rigid submerged structure subject to a pressure excitation in a fluid domain bounded by a structure which is either flexible or rigid. The objective is to see whether the load experienced by the submerged structure will be influenced by its confinement conditions. This investigation is intended to provide insight into the characteristics of FSI and answer the question as to whether one can obtain FSI independent data by constructing a small scale rigid submerged structure inside a flexible fluid-structure system. (orig.)
LENUS (Irish Health Repository)
Ahmad, Nasir Zaheer
2012-06-01
Rigid sigmoidoscopy is sometimes performed at first presentation in colorectal clinics. We assessed the feasibility of flexible sigmoidoscopy in similar situations by comparing it with rigid sigmoidoscopy as a first investigative tool.
Towards Sub-Microarsecond Rigid Earth Nutation Series in the Hamiltonian Theory
National Research Council Canada - National Science Library
Souchay, Jean; Folgueira, M
2000-01-01
...) are based on the works of Kinoshita (1977) and Wahr (1979). In Kinoshita's work, the rigid Earth nutation series were calculated by the application of the Hamiltonian canonical equations to the rotation of the rigid and elliptical Earth...
Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate
Directory of Open Access Journals (Sweden)
Ninghao Zhu
2017-06-01
Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.
Experimental consequences of predicted charge rigidity of superconductors
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)
2012-08-15
The theory of hole superconductivity predicts that in superconductors the charged superfluid is about a million times more rigid than the normal electron fluid. We point out that this physics should give rise to large changes in the bulk and surface plasmon dispersion relations of metals entering the superconducting state, that have not yet been experimentally detected and would be in stark contradiction with the expected behavior within conventional BCS-London theory. We also propose that this explains the puzzling experimental observations of Avramenko et al. on electron sound propagation in superconductors and the puzzling experiments of de Heer et al. detecting large electric dipole moments in small metal clusters, as well as the Tao effect on aggregation of superconducting microparticles in an electric field. Associated with the enhanced charge rigidity is a large increase in the electric screening length of superconductors at low temperatures that has not yet been experimentally detected. The physical origin of the enhanced charge rigidity and its relation to other aspects of the theory of hole superconductivity is discussed.
Field dependent cosmic ray streaming at high rigidities
International Nuclear Information System (INIS)
Swinson, D.B.
1976-01-01
Data from underground μ meson telescopes at depths of 25, 40, and 80 mwe covering the period 1965--1973 have been analyzed as a function of interplanetary magnetic field direction. Cosmic ray streaming both in and perpendicular to the ecliptic plane, with directions dependent on the sense of the interplanetary magnetic field, is observed throughout the period at all depths. The field dependent streaming in the ecliptic plane exhibits some variability in amplitude and phase but contains a component in the direction perpendicular to the interplanetary magnetic field direction which is consistent with B x delN streaming due to a perpendicular cosmic ray density gradient pointing southward (higher density below the ecliptic plane than above it). In the case of the field dependent streaming perpendicular to the ecliptic plane the direction of the streaming has remained remarkably consistent over the 9-year period. One possible source of this streaming is B x delN streaming due to a radial heliocentric cosmic ray density gradient; this possibility is discussed along with other possible sources. There does not appear to be an obvious variation in the amplitude of the field dependent streaming either in or perpendicular to the ecliptic plane with increasing rigidity; both effects are still apparent at rigidities well above the 52-GV threshold rigidity of the Socorro 80-mwe telescope. The amplitudes of both anisotropies appear larger at solar maximum than at solar minimum
Crack identification for rigid pavements using unmanned aerial vehicles
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
Metois, M.
2017-12-01
Convergence partitioning between subduction zones and crustal active structures has been widely evidenced. For instance, the convergence between the Indian and Sunda plates is accommodated both by the Sumatra subduction zone and the Great Sumatran strike-slip fault, that defines a narrow sliver. In Cascadia, small-scale rotating rigid blocks bounded by active faults have been proposed (e.g. McCaffrey et al. 2007). Recent advances in geodetic measurements along the South-American margin especially in Ecuador, Peru and Chile and the need for precise determination of the coupling amount on the megathrust interface in particular for seismic hazard assessment, led several authors to propose the existence of large-scale Andean slivers rotating clockwise and counter-clockwise South and North of the Arica bend, respectively (e.g. Chlieh et al. 2011, Nocquet et al. 2014, Métois et al. 2013). In Chile, one single large Andean sliver bounded to the west by the subduction thrust and to the east by the subandean fold-an-thrust belt active front is used to mimic the velocities observed in the middle to far field that are misfitted by elastic coupling models on the megathrust interface alone (Métois et al. 2016). This rigid sliver is supposed to rotate clockwise around a Euler pole located in the South Atlantic ocean, consistently with long-term observed rotations detected by paleomagnetism (e.g. Arriagada et al. 2008). However, recent GPS data acquired in the Taltal area ( 26°S, Klein et al. submitted) show higher than expected middle-field eastward velocities and question the first-order assumption of a rigid Andean sliver. Mis-modeling the fore-arc deformation has a direct impact on the inverted coupling amount and distribution, and could therefore bias significantly the megathrust rupture scenarios. Correctly estimating the current-day deformation of the Andes is therefore required to properly assess for coupling on the plate interface and is challenging since crustal
Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices
International Nuclear Information System (INIS)
Ahn, Yoon-Ho; Chen, W-M; Lee, Kwon-Yong; Park, Kyung-Woo; Lee, Sung-Jae
2008-01-01
Recently, numerous types of posterior dynamic stabilization (PDS) devices have been introduced as an alternative to the fusion devices for the surgical treatment of degenerative lumbar spine. It is hypothesized that the use of 'compliant' materials such as Nitinol (Ni-Ti alloy, elastic modulus = 75 GPa) or polyether-etherketone (PEEK, elastic modulus = 3.2 GPa) in PDS can restore stability of the lumbar spine without adverse stress-shielding effects that have often been found with 'rigid' fusion devices made of 'rigid' Ti alloys (elastic modulus = 114 GPa). Previous studies have shown that suitably designed PDS devices made of more compliant material may be able to help retain kinematic behavior of the normal spine with optimal load sharing between the anterior and posterior spinal elements. However, only a few studies on their biomechanical efficacies are available. In this study, we conducted a finite-element (FE) study to investigate changes in load-sharing characteristics of PDS devices. The implanted models were constructed after modifying the previously validated intact model of L3-4 spine. Posterior lumbar fusion with three different types of pedicle screw systems was simulated: a conventional rigid fixation system (Ti6Al4V, Φ = 6.0 mm) and two kinds of PDS devices (one with Nitinol rod with a three-coiled turn manner, Φ = 4.0 mm; the other with PEEK rod with a uniform cylindrical shape, Φ = 6.0 mm). To simulate the load on the lumbar spine in a neutral posture, an axial compressive load (400 N) was applied. Subsequently, the changes in load-sharing characteristics and stresses were investigated. When the compressive load was applied on the implanted models (Nitinol rod, PEEK rod, Ti-alloy rod), the predicted axial compressive loads transmitted through the devices were 141.8 N, 109.8 N and 266.8 N, respectively. Axial forces across the PDS devices (Nitinol rod, PEEK rod) and rigid system (Ti-alloy rod) with facet joints were predicted to take over 41%, 33
International Nuclear Information System (INIS)
Berkov, D.V.; Gorn, N.L.; Stock, D.
2007-01-01
For numerical studies of a ferrofluid dynamics we have developed a model which includes internal magnetic degrees of freedom of ferrofluid particles. Contrary to standard models, we take into account that the magnetocrystalline anisotropy of a ferrofluid particle material is finite, so that the particle moment is allowed to rotate with respect to the particle itself. Simulating magnetization relaxation of a ferrofluid after switching off the external field and comparing results with those obtained for rigid dipoles model, we demonstrate that for anisotropy typical for commonly used ferrofluid materials inclusion of 'magnetic' degrees of freedom is essential for a correct description of ferrofluid dynamics
The diagnostic role of thoracoscope in undiagnosed pleural effusion: Rigid versus flexible
Directory of Open Access Journals (Sweden)
Mostafa Mahmoud Abdel Mageid Shaheen
2014-07-01
Conclusions: Thoracoscopy using either fibreoptic bronchoscope or rigid thoracoscope is safe and well tolerated. Rigid thoracoscope has a higher diagnostic yield, easier handling, better orientation and is less expensive. Nevertheless, fibreoptic bronchoscope is an alternative technique if rigid thoracoscopy is not available.
Wurps, H; Schönfeld, N; Bauer, T T; Bock, M; Duve, C; Sauer, R; Mairinger, T; Griff, S
2016-07-07
There is only few data available on the use of cryotechnique during medical thoracoscopy. Medical thoracoscopy was performed in consecutive patients with pleural effusion. Prospectively, biopsies were taken by rigid forceps, flexible forceps and cryoprobe. Specimen size, depth and diagnostic yield were compared. 80 Patients were included. 408 biopsies were taken (205 rigid biopsies, 104 flexible biopsies, 99 cryobiopsies). Mean surface area of rigid biopsies was 22.6 ± 20.4 mm(2) (flexible biopsies: 7.1 ± 9.3 mm(2), cryobiopsies: 14.4 ± 12.8 mm(2)). Rigid biopsies were significantly larger than cryobiopsies (p < 0.001) and flexible biopsies (p < 0.001), crybiopsies were significantly larger than flexible biopsies (p < 0.01). A deep biopsy containing fatty tissue was harvested in 63 % of rigid biopsies (cryobiopsy: 49.5 % flexible biopsy: 39.5 %). In 79/80 cases (98.7 % 95 % CI cannot be calculated) a diagnosis was obtained by rigid biopsy (cryobiopsy: 73/80 cases (91.3 % 95 % CI 86.0 - 96.5 %), flexible biopsy: 74/80 cases (92.5 % 95 % CI 88.6 - 97.4 %)). Diagnostic yield achieved with cryobiopsies was inferior to the yield of rigid biopsies (Difference: 12.7 %), but non-inferior to flexible biopsies (Difference: 6.5 %). Cryobiopsies in medical thoracoscopy are safe with high diagnostic yield, non-inferior to flexible biopsies with increased tissue quantity and quality. Cryotechnique can develop an important role in medical thoracoscopy in the near future when rigid thoracoscopy is not available.
International Nuclear Information System (INIS)
Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J
2005-01-01
Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)
New classes of tough composite materials-Lessons from natural rigid biological systems
Energy Technology Data Exchange (ETDEWEB)
Mayer, G. [Department of Materials Science and Engineering, Box 352120, University of Washington, Seattle, WA 98195-2120 (United States)]. E-mail: gmayer@u.washington.edu
2006-09-15
The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based.
New classes of tough composite materials-Lessons from natural rigid biological systems
International Nuclear Information System (INIS)
Mayer, G.
2006-01-01
The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based
International Nuclear Information System (INIS)
Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan
2017-01-01
Highlights: • Shear wave elastography is a new method that can calculate tissue stiffness. • The structure of corpus cavernosum is mainly responsible for erectile function. • The corpus cavernosum rigidity can be used to evaluate tissue structure. • Shear wave elastography can provide information regarding penile structure. - Abstract: Objective: The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. Methods: SWE was performed in 60 healthy volunteers (age range 20–71, mean 47 ± 12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers’ ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. Results: The shear wave elastography values of CC penis increased with increasing age (p < 0,01). There was no significant difference between both sides of CC penis (p < 0,05). We calculated no significant difference between T and L sections of all parts of penis (p < 0,05). Conclusions: SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies.
Energy Technology Data Exchange (ETDEWEB)
Inci, Ercan, E-mail: ercan@inci.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Turkay, Rustu, E-mail: rustuturkay@hotmail.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Nalbant, Mustafa Orhan, E-mail: musnalbant88@hotmail.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Yenice, Mustafa Gurkan, E-mail: yenicegurkan@gmail.com [Urology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Tugcu, Volkan, E-mail: volkantugcu@yahoo.com [Urology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey)
2017-04-15
Highlights: • Shear wave elastography is a new method that can calculate tissue stiffness. • The structure of corpus cavernosum is mainly responsible for erectile function. • The corpus cavernosum rigidity can be used to evaluate tissue structure. • Shear wave elastography can provide information regarding penile structure. - Abstract: Objective: The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. Methods: SWE was performed in 60 healthy volunteers (age range 20–71, mean 47 ± 12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers’ ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. Results: The shear wave elastography values of CC penis increased with increasing age (p < 0,01). There was no significant difference between both sides of CC penis (p < 0,05). We calculated no significant difference between T and L sections of all parts of penis (p < 0,05). Conclusions: SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies.
Vertical dimensional stability and rigidity of occlusal registration materials.
Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas
2009-01-01
Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.
Free-fall dynamics of a pair of rigidly linked disks
Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum
2018-03-01
We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.
Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk
Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.
2018-03-01
An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.
Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.
Directory of Open Access Journals (Sweden)
Md Zahid Kamal
Full Text Available Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.
Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam
Directory of Open Access Journals (Sweden)
Marilia Sônego
2015-04-01
Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.
Rigid body formulation in a finite element context with contact interaction
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
A multibody motorcycle model with rigid-ring tyres: formulation and validation
Leonelli, Luca; Mancinelli, Nicolò
2015-06-01
The aim of this paper is the development and validation of a three-dimensional multibody motorcycle model including a rigid-ring tyre model, taking into account both the slopes and elevation of the road surface. In order to achieve accurate assessment of ride and handling performances of a road racing motorcycle, a tyre model capable of reproducing the dynamic response to actual road excitation is required. While a number of vehicle models with such feature are available for car application, the extension to the motorcycle modelling has not been addressed yet. To do so, a novel parametrisation for the general motorcycle kinematics is proposed, using a mixed reference point and relative coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to include the rigid-ring kinematics as well as road elevation and slopes, without affecting computational efficiency. The equations of motion for the whole multibody system are derived symbolically and the constraint equations arising from the dependent coordinate formulation are handled using the position and velocity vector projection technique. The resulting system of equations is integrated in time domain using a standard ordinary differential equation (ODE) algorithm. Finally, the model is validated with respect to experimentally measured data in both time and frequency domains.
Friction effects on lateral loading behavior of rigid piles
DEFF Research Database (Denmark)
Zania, Varvara; Hededal, Ole
2012-01-01
taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...
Cosmic ray fluctuations at rigidities 4 to 180 GV
International Nuclear Information System (INIS)
Benko, G.; Erdoes, G.; Stehlik, M.; Katz, M.E.; Nosov, S.F.
1986-07-01
The power spectral density of cosmic ray fluctuations observed at both underground and ground level during the years 1976-1980 was calculated. The spectral index is independent of the phase of solar cycle in the frequency range of 5x10 -7 - 5x10 -5 Hz and its value is equal to 2. The level of fluctuations shows a weak dependence on the rigidity (R) of the particles P∼R -2/3 . The obtained experimental results are in agreement with the theoretical predictions. (author)
Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers
Butler, Jason E.; Snook, Braden
2018-01-01
The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.
On the surprising rigidity of the Pauli exclusion principle
International Nuclear Information System (INIS)
Greenberg, O.W.
1989-01-01
I review recent attempts to construct a local quantum field theory of small violations of the Pauli exclusion principle and suggest a qualitative reason for the surprising rigidity of the Pauli principle. I suggest that small violations can occur in our four-dimensional world as a consequence of the compactification of a higher-dimensional theory in which the exclusion principle is exactly valid. I briefly mention a recent experiment which places a severe limit on possible violations of the exclusion principle. (orig.)
Rigidity of minimal submanifolds with flat normal bundle
Indian Academy of Sciences (India)
Rigidity of minimal submanifolds with flat normal bundle. 461. = a. ∫. M u2(1+q)+ 2 a f 2 − 2. ∫. M u2q+1f 〈∇f, ∇u〉. − (2q + 1). ∫. M u2qf 2|∇u|2, which gives a .... that depends on n, ϵ and q. We now try to transform (2.15) the right hand side only involved u in the power two. For that, we use Young's inequality: ab ≤ βsas.
Rigid supersymmetry from conformal supergravity in five dimensions
International Nuclear Information System (INIS)
Pini, Alessandro; Rodriguez-Gomez, Diego; Schmude, Johannes
2015-01-01
We study the rigid limit of 5d conformal supergravity with minimal supersymmetry on Riemannian manifolds. The necessary and sufficient condition for the existence of a solution is the existence of a conformal Killing vector. Whenever a certain SU(2) curvature becomes abelian the backgrounds define a transversally holomorphic foliation. Subsequently we turn to the question under which circumstances these backgrounds admit a kinetic Yang-Mills term in the action of a vector multiplet. Here we find that the conformal Killing vector has to be Killing. We supplement the discussion with various appendices.
Numerical rigid plastic modelling of shear capacity of keyed joints
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2015-01-01
Keyed shear joints are currently designed using simple and conservative design formulas, yet these formulas do not take the local mechanisms in the concrete core of the joint into account. To investigate this phenomenon a rigid, perfectly plastic finite element model of keyed joints is used....... The model is formulated for second-order conic optimisation as a lower bound problem, which yields a statically admissible stress field that satisfies the yield condition in every point. The dual solution to the problem can be interpreted as the collapse mode and will be used to analyse the properties...
Euler-Poincare Reduction of Externall Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Euler-Poincare Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2005-01-01
|If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....
Euler-Poincaré Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Design of semi-rigid type of flexible pavements
Directory of Open Access Journals (Sweden)
Pranshoo Solanki
2017-03-01
Full Text Available The primary objective of the study presented in this paper is to develop design curves for performance prediction of stabilized layers and to compare semi-rigid flexible pavement designs between the empirical AASHTO 1993 and the mechanistic-empirical pavement design methodologies. Specifically, comparisons were made for a range of different sections consisting of cementitious layers stabilized with different types and percentages of additives. It is found that the design thickness is influenced by the type of soil, additive, selection of material property and design method. Cost comparisons of sections stabilized with different percentage and type of additives showed that CKD-stabilization provides economically low cost sections as compared to lime- and CFA-stabilized sections. Knowledge gained from the parametric analysis of different sections using AASHTO 1993 and MEPDG is expected to be useful to pavement designers and others in implementation of the new MEPDG for future pavement design. Keywords: Semi-rigid, Mechanistic, Resilient modulus, Fatigue life, Reliability, Traffic
Normalized inverse characterization of sound absorbing rigid porous media.
Zieliński, Tomasz G
2015-06-01
This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.
A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.
Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang
2017-12-01
Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.
Non-rigid registration of tomographic images with Fourier transforms
International Nuclear Information System (INIS)
Osorio, Ar; Isoardi, Ra; Mato, G
2007-01-01
Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time
Biomimetic model systems of rigid hair beds: Part II - Experiment
Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.
Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams
Directory of Open Access Journals (Sweden)
Bogusław Czupryński
2014-01-01
Full Text Available The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis in diethylene glycol with the addition of ethanolamine and zinc stearate. Liquid brown products were obtained. Properties of the resulting products were defined in order to determine their suitability for synthesis of new foams. It was found that glycolysate 6 was the most suitable for reuse and its application in different amounts allowed us to prepare 4 new foams (nos. 25, 26, 27, and 28. Properties of foams prepared in this manner were determined and, on their basis, the suitability of glycolysates for production of rigid PUR-PIR foams was evaluated.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
Origami-Inspired Folding of Thick, Rigid Panels
Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert
2014-01-01
To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.
Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.
Morsy, Ahmed A; Ng, Wai Hoe
2015-11-01
We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.