WorldWideScience

Sample records for including molten jet

  1. Description of premixing with the MC3D code including molten jet behavior modeling. Comparison with FARO experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)

  2. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.

    1987-01-01

    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  3. Development of the VESUVIUS module. Molten jet breakup modeling and model verification

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, K. [Nuclear Power Engineering Corp., Tokyo (Japan); Nagano, Katsuhiro; Araki, Kazuhiro

    1998-01-01

    With the in-vessel vapor explosion issue ({alpha}-mode failure) now considered to pose an acceptably small risk to the safety of a light water reactor, ex-vessel vapor explosions are being given considerable attention. Attempts are being made to analytically model breakup of continuous-phase jets, however uncertainty exists regarding the basic phenomena. In addition, the conditions upon reactor vessel failure, which determine the starting point of the ex-vessel vapor explosion process, are difficult to quantify. Herein, molten jet ejection from the reactor pressure vessel is characterized. Next, the expected mode of jet breakup is determined and the current state of analytical modeling is reviewed. A jet breakup model for ex-vessel scenarios, with the primary breakup mechanism being the Kelvin-Helmholtz instability, is described. The model has been incorporated into the VESUVIUS module and comparisons of VESUVIUS calculations against FARO L-06 experimental data show differences, particularly in the pressure curve and amount of jet breakup. The need for additional development to resolve these differences is discussed. (author)

  4. Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum

    International Nuclear Information System (INIS)

    Saito, Ryusuke; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    To estimate the state of reactor pressure vessel of Fukushima Daiichi nuclear power plant, it is important to clarify the breakup and fragmentation of molten material jet in the lower plenum of boiling water reactor (BWR) by a numerical simulation. To clarify the effects of complicated structures on the jet behavior experimentally and validate the simulation code, we conduct the visualized experiments simulating the severe accident in the BWR lower plenum. In this study, jet breakup, fragmentation and surrounding velocity profiles of the jet were observed by the backlight method and the particle image velocimetry (PIV) method. From experimental results using the backlight method, it was clarified that jet tip velocity depends on the conditions whether complicated structures exist or not and also clarified that the structures prevent the core of the jet from expanding. From measurements by the PIV method, the surrounding velocity profiles of the jet in the complicated structures were relatively larger than the condition without structure. Finally, fragment diameters measured in the present study well agree with the theory suggested by Kataoka and Ishii by changing the coefficient term. Thus, it was suggested that the fragmentation mechanism was mainly controlled by shearing stress. (author)

  5. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  6. Linking accretion flow and particle acceleration in jets - I. New relativistic magnetohydrodynamical jet solutions including gravity

    NARCIS (Netherlands)

    Polko, P.; Meier, D.L.; Markoff, S.

    2013-01-01

    We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube.

  7. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  8. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    Science.gov (United States)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  9. TeV-scale jet energy calibration using multijet events including close-by jet effects at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    With the large number of proton-proton collisions delivered by the Large Hadron Collider at a centre-of-mass energy of $\\sqrt{s}=7$ TeV in 2011, it became possible to probe the jet transverse momentum (pT) scale beyond the TeV range in events with multijet production. The jet energy scale (JES) uncertainty, which is one of the most important sources of systematic uncertainties for new physics searches at high pT, is evaluated using in-situ techniques based on the pT balance in events with a photon or $Z$ boson as well as in dijet events. Exploiting the pT balance technique between a system of low-pT jets and a leading jet at high pT in multijet events, with the calibration (provided by the gamma-jet and Z+jet events) applied to the low-pT jets, allows the extension of the in-situ determination of JES calibration and uncertainty to the TeV-scale. Results are presented for the JES uncertainty using the multijet balance technique based on the ATLAS data collected in 2011 corresponding to an integrated luminosity...

  10. arXiv Multi-jet merged top-pair production including electroweak corrections

    CERN Document Server

    Gütschow, Christian; Schönherr, Marek

    We present theoretical predictions for the production of top-quark pairs in association with jets at the LHC including electroweak (EW) corrections. First, we present and compare differential predictions at the fixed-order level for $t \\bar t$ and $t \\bar t+$jet production at the LHC considering the dominant NLO EW corrections of order $\\mathcal{O}(\\alpha_S^2 \\alpha)$ and $\\mathcal{O}(\\alpha_S^3 \\alpha)$ respectively together with all additional subleading Born and one-loop contributions. The NLO EW corrections are enhanced at large energies and in particular alter the shape of the top transverse momentum distribution, whose reliable modelling is crucial for many searches for new physics at the energy frontier. Based on the fixed-order results we motivate an approximation of the EW corrections valid at the percent level, that allows us to readily incorporate the EW corrections in the MEPS@NLO framework of Sherpa combined with OpenLoops. Subsequently, we present multi-jet merged parton-level predictions for in...

  11. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  12. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  13. NLO QCD+EW predictions for HV and HV +jet production including parton-shower effects

    Science.gov (United States)

    Granata, F.; Lindert, J. M.; Oleari, C.; Pozzorini, S.

    2017-09-01

    We present the first NLO QCD+EW predictions for Higgs boson production in association with a ℓν ℓ or ℓ + ℓ - pair plus zero or one jets at the LHC. Fixed-order NLO QCD+EW calculations are combined with a QCD+QED parton shower using the recently developed resonance-aware method in the POWHEG framework. Moreover, applying the improved MiNLO technique to Hℓν ℓ +jet and Hℓ + ℓ - +jet production at NLO QCD+EW, we obtain predictions that are NLO accurate for observables with both zero or one resolved jet. This approach permits also to capture higher-order effects associated with the interplay of EW corrections and QCD radiation. The behavior of EW corrections is studied for various kinematic distributions, relevant for experimental analyses of Higgsstrahlung processes at the 13 TeV LHC. Exact NLO EW corrections are complemented with approximate analytic formulae that account for the leading and next-to-leading Sudakov logarithms in the high-energy regime. In the tails of transverse-momentum distributions, relevant for analyses in the boosted Higgs regime, the Sudakov approximation works well, and NLO EW effects can largely exceed the ten percent level. Our predictions are based on the POWHEG BOX RES+OpenLoops framework in combination with the Pythia 8.1 parton shower.

  14. Theoretical and experimental study of a reactive steam jet in molten sodium. Application to the wastage of steam generators of FBR power plants

    International Nuclear Information System (INIS)

    Lestrat, Patrice.

    1982-11-01

    This study aims to analyze and explain the structure of a reactive jet of water steam in liquid sodium, as from a ligh pressure tank and an orifice of very small section. The prior understanding of this reactive jet makes it possible to explain certain results of erosion-corrosion (Wastage) that can occur in the steam generators of breader reactor power stations. This study gave rise to an experimental simulation (plane jet of water steam on a bed of sodium), as well as to suggesting a reactive jet model according to the principle of an ''immersed Na-H 2 O diffusion flame'' [fr

  15. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1987-01-01

    This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals and gas bubble nucleation in molten metals are relevant problems which are addressed in this work. Models are developed for jet expansion, primary breakup of the jet and secondary fragmentation of melt droplets resulting from violent effervescence of dissolved gas. The jet expansion model is based on a general relation for bubble growth which includes both inertia-controlled and diffusion-controlled growth phases. The jet expansion model is able to predict the jet void fraction, jet radius as a function of axial distance from the pressure vessel, bubble size and bubble pressure. The number density of gas bubbles in the melt, which is a basic parameter in the model, was determined experimentally and is about 10 8 per m 3 of liquid. The primary breakup of the jet produces a spray of droplets, about 2-3 mm in diameter. Parametric calculations for a TMLB' reactor accident sequence show that the corium jet is disrupted within a few initial jet diameters from the reactor vessel and that the radius of corium spray at the level of the reactor cavity floor is in the range of 0.8 to 2.6 m. (orig./HP)

  16. Results on the EW gauge boson and jet production (including sensitivity to PDFs)

    CERN Document Server

    Richter-Was, Elzbieta; The ATLAS collaboration

    2017-01-01

    The production of jets in association with vector bosons is an important process to study perturbative QCD in a multi-scale environment. The LHC collaborations have performed measurements of vector boson+jets cross sections, differential in several kinematic variables, in proton-proton collision data taken at center-of-mass energies of 8TeV and 13TeV. Measurements explored also extreme phase-space: EW production and collinear W emissions. Discussed is also precise measurement of leptons angular correlations for Z+j production at high pT. The measurements are compared to state-of-the art theory predictions and can be used to constrain the proton structure. In this context discussed are also high precision measurement of the differential W and Z boson cross-sections.

  17. Modified Design of Hydroturbine Wicket Gates to Include Liquid Control Jets

    Science.gov (United States)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2013-11-01

    With the ever-increasing penetration of alternative electricity generation, it is becoming more common to operate hydroturbines under off-design conditions in order to maintain stability in the electric power grid. Improving the off-design performance of these turbines is therefore of significant importance. As the runner blades of a Francis hydroturbine pass though the wakes created by the upstream guide vanes (wicket gates and stay vanes), they experience significant changes in the instantaneous values of absolute velocity, flow angle, and pressure. The concept of adding water jets to the trailing edge of the guide vanes is proposed as a method for reducing the dynamic load on the hydroturbine runner blades, as well as modifying the flow angle of the water entering the runner to improve turbine efficiency during off-design operation. In order to add water jets that are capable of turning the flow, a modified beveled trailing edge design is presented. Computational experiments show that a +/-5° change in swirl angle is achievable with the new design, as well as up to 4% improvement in turbine efficiency during off-design operation. This correlates to an overall improvement in machine efficiency of up to 2%, when the losses through the jet channels are taken into account. Funding for this work was provided by the DOD, through the National Defense Science and Engineering Graduate (NDSEG) Fellowship, and the DOE, through the Penn State Hydropower Research Grant.

  18. Molten Fuel-Coolant Interactions induced by coolant injection into molten fuel

    International Nuclear Information System (INIS)

    Park, H.S.; Yamano, Norihiko; Maruyama, Yu; Moriyama, Kiyofumi; Yang, Y.; Sugimoto, Jun

    1999-01-01

    To investigate Molten Fuel-Coolant Interactions (MFCIs) in various contact geometries, an experimental program, called MUSE (MUlti-configurations in Steam Explosions), has been initiated under the ALPHA program at JAERI in Japan. The first series of MUSE test has been focused on the coolant injection (CI) and stratified modes of FCIs using water as coolant and molten thermite as molten fuel. The effects of water jet subcooling, jet dynamics, jet shape and system constraint on FCIs energetic in these modes were experimentally investigated by precisely measuring their mechanical energy release in the MUSE facility. It was observed that measured mechanical energy increased with increasing of jet subcooling in a weakly constraint system but decreased in a strongly constraint system. FCI energetic also increased with increasing of water jet velocity. These results suggested that the penetration and dispersion phenomena of a water jet inside a melt determined the mixing conditions of FCIs in these contact modes and consequently played important roles on FCI energetics. To understand fundamental physics of these phenomena and possible mixing conditions in the MUSE tests, a set of visualization tests with several pairs of jet-pool liquids in non-boiling and isothermal conditions were carried out. Numerical simulations of a water jet penetrating into a water pool at non-boiling conditions showed similar behaviors to those observed in the visualization tests. (author)

  19. Measurement of [Formula: see text] production with additional jet activity, including [Formula: see text] quark jets, in the dilepton decay channel using pp collisions at [Formula: see text].

    Science.gov (United States)

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Reis, T; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Strobbe, N; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Mora Herrera, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El Sawy, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Florent, A; Granier de Cassagnac, R; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D

    2016-01-01

    Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

  20. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  1. Molten salt safety study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The considerations concerning safety in using molten salt (40% potassium nitrate, 60% sodium nitrate) in a solar central receiver plant are addressed. The considerations are of a general nature and do not cover any details of equipment or plant operation. The study includes salt chemical reaction, experiments with molten salt, dry storage and handling constraints, and includes data from the National Fire Protection Association. The contents of this report were evaluated by two utility companies and they concluded that no major safety problems exist in using a molten salt solar system.

  2. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  3. Results of measurements of thermal interaction between molten metal and water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-10-01

    The report describes results of an experimental investigation into thermal interaction of molten metals with water. The experiments were performed in two stages: the aim of the first stage was to study the general character of thermal interaction between molten metal and water and to measure the Leidenfrost temperature of the inverse Leidenfrost phenomenon. The second stage was directed to the experimental study of the triggering mechanism of thermal explosion. The experimental material gathered in this study includes: 1) transient temperature measurements in the hot material and in water, 2) measurements of pressure and reactive force combined with thermal explosion, 3) high-speed films of thermal interaction, 4) investigation results of thermal explosion debris (microscopic, mechanical, metallographical and chemical). The most significant observation is, that small jets from the main particle mass occuring 1 to 10 msec before, precede thermal explosion. (orig.) [de

  4. Energy evolution of the moments of the hadron distribution in QCD jets including NNLL resummation and NLO running-coupling corrections

    CERN Document Server

    Perez-Ramos, Redamy

    2014-01-01

    The moments of the single inclusive momentum distribution of hadrons in QCD jets, are studied in the next-to-modified-leading-log approximation (NMLLA) including next-to-leading-order (NLO) corrections to the alpha_s strong coupling. The evolution equations are solved using a distorted Gaussian parametrisation, which successfully reproduces the spectrum of charged hadrons of jets measured in e+e- collisions. The energy dependencies of the maximum peak, multiplicity, width, kurtosis and skewness of the jet hadron distribution are computed analytically. Comparisons of all the existing jet data measured in e+e- collisions in the range sqrt(s)~2-200 GeV to the NMLLA+NLO* predictions allow one to extract a value of the QCD parameter Lambda_QCD, and associated two-loop coupling constant at the Z resonance alpha_s(m_Z^2)= 0.1195 +/- 0.0022, in excellent numerical agreement with the current world average obtained using other methods.

  5. Large molten pool heat transfer

    International Nuclear Information System (INIS)

    1994-01-01

    This workshop on large molten pool heat transfer is composed of 5 sessions which titles are: feasibility of in-vessel core debris cooling; experiments on molten pool heat transfer; calculational efforts on molten pool convection; heat transfer to the surrounding water, experimental techniques; future experiments and ex-vessel studies (RASPLAV, TOLBIAC, BALI, SULTAN, CORVIS, VULCANO, CORINE programs)

  6. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1998-01-01

    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  7. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  8. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  9. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  10. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  11. Molten carbonate fuel cell separator

    Science.gov (United States)

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  12. Measurement of toverline{t} production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at √{s} = 8 {TeV}

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Yonamine, R.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2016-07-01

    Jet multiplicity distributions in top quark pair ({t}{overline{t}}) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 {fb}^ {-1}. The measurement is performed in the dilepton decay channels (e^+e^-, μ^+ μ^-, and e^{±} μ^{∓}). The absolute and normalized differential cross sections for {t}overline{t} production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential {t overline{t} b} and {t overline{t} b overline{b}} cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

  13. Visualization study of molten metal-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.

    1999-01-01

    The purpose of this study is to visualize the behavior of molten metal dropped into water during the premixing process by means of neutron radiography which makes use of the difference in the attenuation characteristics of materials. For this purpose, a high-sensitive, high-frame-rate imaging system using neutron radiography was constructed and was applied to visualization of the behavior of molten metal dropped into water. The test rig consisted of a furnace and a test section. The furnace could heat the molten metal up to 650 C. The test section was a rectangular tank made of aluminum alloy. The tank was filled with heavy water and molten Wood's metal was dropped into heavy water. Visualization study was carried out with use of the high-frame-rate neutron radiography to see the breakup of molten metal jet or lump dropped into heavy water pool. In the images obtained, water, steam or air bubbles, molten metal jets or droplets, cloud of small particles of molten metal after atomization could be distinguished. The debris of Wood's metal was collected after the experiment, and the relation between the break-up behavior and the size and the shape of the debris particles was investigated. (orig.)

  14. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  15. FastJet user manual

    CERN Document Server

    Cacciari, Matteo; Soyez, Gregory

    2012-01-01

    FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

  16. Measurement of $\\mathrm{ t \\bar{t} } $ production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at $\\sqrt{s} =$ 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; El Sawy, Mai; El-khateeb, Esraa; Elkafrawy, Tamer; Mohamed, Amr

    2016-07-07

    Jet multiplicity distributions in top quark pair ($ \\mathrm{ t \\bar{t} } $) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The measurement is performed in the dilepton decay channels ($ \\mathrm{ e^{+} e^{-} }$, $\\mu^{+} \\mu^{-} $, and $\\mathrm{ e^{\\pm} } \\mu^{\\mp} $). The absolute and normalized differential cross sections for $ \\mathrm{ t \\bar{t} } $ production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential $ \\mathrm{ t \\bar{t} b} $ and $ \\mathrm{ t \\bar{t} b \\bar{b} } $ cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leadi...

  17. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  18. Heat transfer behavior of molten nitrate salt

    Science.gov (United States)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  19. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  20. Experimental study of hydrogen jet ignition and jet extinguishment

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1979-04-01

    Two phases are described of an experimental study that investigated: (1) the ignition characteristics of hydrogen--sodium jets, (2) the formation of hydrogen in sodium--humid air atmospheres, and (3) the extinguishment characteristics of burning hydrogen--sodium jets. Test conditions were similar to those postulated for highly-improbable breeder reactor core melt-through accidents and included: jet temperature, jet velocity, jet hydrogen concentration, jet sodium concentration, atmospheric oxygen concentration, and atmospheric water vapor concentration

  1. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  2. Experimental Studies on Breakup and Fragmentation Behavior of Molten Tin and Coolant Interaction

    OpenAIRE

    Li, Yankai; Wang, Zefeng; Lin, Meng; Zhong, Mingjun; Zhou, Yueshan; Yang, Yanhua

    2017-01-01

    Jet breakup and fragmentation behavior significantly affect the likelihood (and ultimate strength) of steam explosion, but it is very challenging to assess the potential damage to reactor cavity due to general lack of knowledge regarding jet breakup phenomena. In this study, the METRIC (mechanism study test apparatus for melt-coolant interaction) was launched at Shanghai Jiao Tong University to investigate FCI physics. The first five tests on molten tin and water interactions are analyzed in ...

  3. Molten material-containing vessel

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko

    1998-01-01

    The molten material-containing vessel of the present invention comprises a vessel main body having an entrance opened at the upper end, a lid for closing the entrance, an outer tube having an upper end disposed at the lower surface of the lid, extended downwardly and having an closed lower end and an inner tube disposed coaxially with the outer tube. When a molten material is charged from the entrance to the inside of the vessel main body of the molten material-containing vessel and the entrance is closed by the lid, the outer tube and the inner tube are buried in the molten material in the vessel main body, accordingly, a fluid having its temperature elevated by absorption of the heat of the molten material rises along the inner circumferential surface of the outer tube, abuts against the lower surface of the lid and cooled by exchanging heat with the lid and forms a circulating flow. Since the heat in the molten material is continuously absorbed by the fluid, transferred to the lid and released from the lid to the atmospheric air, heat releasing efficiency can be improved compared with conventional cases. (N.H.)

  4. Modelling of transitions between L- and H-mode in JET high plasma current plasmas and application to ITER scenarios including tungsten behaviour

    Science.gov (United States)

    Koechl, F.; Loarte, A.; Parail, V.; Belo, P.; Brix, M.; Corrigan, G.; Harting, D.; Koskela, T.; Kukushkin, A. S.; Polevoi, A. R.; Romanelli, M.; Saibene, G.; Sartori, R.; Eich, T.; Contributors, JET

    2017-08-01

    The dynamics for the transition from L-mode to a stationary high Q DT H-mode regime in ITER is expected to be qualitatively different to present experiments. Differences may be caused by a low fuelling efficiency of recycling neutrals, that influence the post transition plasma density evolution on the one hand. On the other hand, the effect of the plasma density evolution itself both on the alpha heating power and the edge power flow required to sustain the H-mode confinement itself needs to be considered. This paper presents results of modelling studies of the transition to stationary high Q DT H-mode regime in ITER with the JINTRAC suite of codes, which include optimisation of the plasma density evolution to ensure a robust achievement of high Q DT regimes in ITER on the one hand and the avoidance of tungsten accumulation in this transient phase on the other hand. As a first step, the JINTRAC integrated models have been validated in fully predictive simulations (excluding core momentum transport which is prescribed) against core, pedestal and divertor plasma measurements in JET C-wall experiments for the transition from L-mode to stationary H-mode in partially ITER relevant conditions (highest achievable current and power, H 98,y ~ 1.0, low collisionality, comparable evolution in P net/P L-H, but different ρ *, T i/T e, Mach number and plasma composition compared to ITER expectations). The selection of transport models (core: NCLASS  +  Bohm/gyroBohm in L-mode/GLF23 in H-mode) was determined by a trade-off between model complexity and efficiency. Good agreement between code predictions and measured plasma parameters is obtained if anomalous heat and particle transport in the edge transport barrier are assumed to be reduced at different rates with increasing edge power flow normalised to the H-mode threshold; in particular the increase in edge plasma density is dominated by this edge transport reduction as the calculated neutral influx across the

  5. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  6. Intermediate heat exchanger and steam generator designs for the HYLIFE-II fusion power plant using molten salts

    International Nuclear Information System (INIS)

    Lee, Y.T.; Hoffman, M.A.

    1992-01-01

    The HYLIFE-II fusion power plant employs the molten salt, Flibe, for the liquid jets which form the self-healing 'first wall' of the reactor. The molten salt, sodium fluoroborate then transports the heat from the IHX's to the steam generators. The design and optimization of the IHX's and the steam generators for use with molten salts has been done as part of the HYLIFE-II conceptual design study. The results of this study are described, and reference designs of these large heat exchangers are selected to minimize the cost of electricity while satisfying other important constraints

  7. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  8. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  9. Supported molten-metal catalysts

    Science.gov (United States)

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  10. Ceramics for Molten Materials Transfer

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  11. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  12. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  13. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  14. Electrochemical Transfer of S Between Molten Steel and Molten Slag

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Wook; Kang, Youn-Bae

    2018-02-01

    S transfer between molten steel and molten slag was investigated in view of the electrochemical character of S transfer. C-saturated molten steel containing S was allowed to react with CaO-SiO2-Al2O3-MgO slag at 1673 K (1400 °C) until the two phases arrive at a chemical equilibrium. The application of an electric field of constant current through graphite electrodes lowered the S content in the molten steel below its chemical equilibrium level, and the system arrived at a new equilibrium level (electrochemical equilibrium). However, subsequent shutting off of the electric field did not lead to the system reverting to the original chemical equilibrium: reversion of S was observed but to a limited extent. The application of an electric field of opposite direction or flowing of CO gas allowed significant reversion of S. Side reactions (decomposition of oxide components) were observed, and these were considered to be coupled to the transfer of S. An electrochemical reaction mechanism was proposed based on the experimental observations found in the present study.

  15. Supported Molten Metal Catalysis. A New Class of Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  16. Modelling thermal effects in the molten iron bath of the HIsmelt reduction vessel

    OpenAIRE

    Witt, Peter J.; Feng, Yuqing; Davis, Mark P.

    2015-01-01

    Over a thirty year period the HIsmelt process has been developed as an alternative to the traditional blast furnace for the production of pig iron. This process involves the injection of fine iron ore and non-coking coal particles into a molten iron bath though a number of wall lances. These jets induce substantial mixing and splashing of molten droplets into the top space of the vessel due to the substantial volume of gas generated within the bath. Control of heat transfer, reactions and the...

  17. Electrolysis of a molten semiconductor

    Science.gov (United States)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  18. Structure of molten iron chloride

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L.; Saboungi, M.L. (Argonne National Lab., IL (United States)); Hashimoto, Shinya; Moss, S.C. (Houston Univ., Houston, TX (United States). Dept. of Physics)

    1992-11-01

    The structure of molten FeCl[sub 3] at 320[sup degrees]C has been measured with neutron diffraction at the Intense Pulsed Neutron Source. Results indicate that melting in FeCl[sub 3]is accompanied by a change in local structure from the octahedral environment of the Fe[sup 3[plus

  19. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... [27] Zavoico, AB. Solar Power Tower Design Basis Document. Tech. rep, Sandia National. Laboratories, SAND2001-2100, 2001. How to cite this article: Boukelia T.E, Mecibah M.S and Laouafi A. Performance simulation of parabolic trough solar collector using two fluids (thermic oil and molten salt).

  20. Chemical Reactions of Simulated Producer Gas with Molten Tin-Bismuth Alloy

    Science.gov (United States)

    Keith J. Bourne

    2012-01-01

    A pyrolysis and gasification system utilizing molten metal as an energy carrier has been proposed and the initial stages of its design have been completed. However, there are several fundamental questions that need to be answered before the design of this system can be completed. These questions include: How will the molten metal interact with the products of biomass...

  1. Molten aluminum alloy fuel fragmentation experiments

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Cassulo, J.C.; Spencer, B.W.

    1992-01-01

    Experiments were conducted in which molten aluminum alloys were injected into a 1.2 m deep pool of water. The parameters varied were (i) injectant material (8001 aluminum alloy and 12.3 wt% U-87.7 wt% Al), (ii) melt superheat (O to 50 K), (iii) water temperature (313, 343 and 373 K) and (iv) size and geometry of the pour stream (5, 10 and 20 mm diameter circular and 57 mm annular). The pour stream fragmentation was dominated by surface tension with large particles (∼30 mm) being formed from varicose wave breakup of the 10-mm circular pours and from the annular flow off a 57 mm diameter tube. The fragments produced by the 5 mm circular et were smaller (∼ mm), and the 20 mm jet which underwent sinuous wave breakup produced ∼100 mm fragments. The fragments froze to form solid particles in 313 K water, and when the water was ≥343 K, the melt fragments did not freeze during their transit through 1.2 m of water

  2. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  3. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    Science.gov (United States)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  4. Ancient Jets of Fiery Rain

    Science.gov (United States)

    Taylor, G. J.

    2015-04-01

    Chondrules are intriguing millimeter-sized crystallized droplets that are abundant in chondrites, so named because of the presence of numerous chondrules. They have puzzled cosmochemists since they were described by English scientist H. C. Sorby in 1877. Everyone agrees that they formed as molten droplets of silicates, but nobody agrees on how the little things formed. Ideas range from impacts onto asteroids, primary condensation in the solar nebula, shock waves and/or lightening in the solar nebula, or by processes operating as planets began to form. A new twist on this last idea was investigated in a new way by Brandon Johnson (Massachusetts Institute of Technology, MIT) and co-authors David Minton and Jay Melosh (Purdue University), and Maria Zuber at MIT. Johnson and coworkers modeled the effects of impacts between planetesimals 100-1000 kilometers in diameter. When such objects hit each other, the first thing that happens is jetting of molten rock. Johnson and colleagues propose that the jets will subdivide into droplets as the jetted material is shot into space. They estimate that the chondrules would have the correct cooling rates (as determined from previous studies of chondrules) and the collision frequency would be high enough to produce abundant chondrules. Johnson and coworkers suggest that chondrules are a "byproduct of [planetary] accretion."

  5. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    Science.gov (United States)

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  6. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G.

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research

  7. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research.

  8. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  9. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  10. Transient simulation of molten salt central receiver

    Science.gov (United States)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  11. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  12. A Technical Perspective on Molten Aluminum Processing

    Science.gov (United States)

    Waite, Peter

    In today's context of global competitiveness, all factors related to molten metal treatment which directly or indirectly affect product quality, the environment and processing costs must be optimized. In this regard, technology and innovation play a decisive role for the development and implementation of the most appropriate molten metal treatment processes and practices. The following discussion will review the most recent significant developments in the field of molten aluminum processing and outline potential areas for improvement.

  13. Segmentation and fragmentation of melt jets due to generation of large-scale structures. Observation in low subcooling conditions

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro; Yamada, Tsuyoshi

    1999-01-01

    In order to clarify a mechanism of melt-jet breakup and fragmentation entirely different from the mechanism of stripping, a series of experiments were carried out by using molten tin jets of 100 grams with initial temperatures from 250degC to 900degC. Molten tin jets with a small kinematic viscosity and a large thermal diffusivity were used to observe breakup and fragmentation of melt jets enhanced thermally and hydrodynamically. We observed jet columns with second-stage large-scale structures generated by the coalescence of large-scale structures recognized in the field of fluid mechanics. At a greater depth, the segmentation of jet columns between second-stage large-scale structures and the fragmentation of the segmented jet columns were observed. It is reasonable to consider that the segmentation and the fragmentation of jet columns are caused by the boiling of water hydrodynamically entrained within second-stage large-scale structures. (author)

  14. Jet physics in ATLAS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  15. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  16. The molten glass sewing machine

    Science.gov (United States)

    Brun, P.-T.; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-04-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

  17. Structure of molten iron chloride

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L.; Saboungi, M.L. [Argonne National Lab., IL (United States); Hashimoto, Shinya; Moss, S.C. [Houston Univ., Houston, TX (United States). Dept. of Physics

    1992-11-01

    The structure of molten FeCl{sub 3} at 320{sup degrees}C has been measured with neutron diffraction at the Intense Pulsed Neutron Source. Results indicate that melting in FeCl{sub 3}is accompanied by a change in local structure from the octahedral environment of the Fe{sup 3{plus}} in the solid to an Fe{sub 2}Cl{sub 6} molecular liquid. This behavior is similar to that observed in AlCl{sub 3} and in contrast to that of YCl{sub 3} where an octahedral coordination is preserved on melting. 3 figs, 1 tab, 12 refs.

  18. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  19. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    Science.gov (United States)

    Praeg, Walter F.

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  20. Electrode reaction mechanisms in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J.R.; Nishina, T.; Lin, Y.P.; Yeager, E.B.; Tryk, D.A.

    1989-07-01

    This report describes the results of a joint research effort at Illinois Institute of Technology (IIT) and Case Western Reserve University (CWRU) to elucidate the reaction mechanism of oxygen reduction at the cathode of the molten carbonate fuel cell (MCFC). This research project was aimed at developing novel experimental approaches to the chemistry and electrode kinetics of oxygen reduction under MCFC conditions, and improving our fundamental understanding of the reaction mechanism as it applies to the MCFC. IIT's contribution was focused on developing and using rotating electrodes with well-defined mass-transfer properties, to characterize the electrode kinetics of oxygen reduction in molten carbonate. CWRU's contribution was focused on developing and using micro-electrodes for the same purpose, and also on developing spectroscopic cells and carrying out various types of spectroscopic measurements to characterize the oxygen species in molten carbonate under MCFC conditions. This report is divided into two main parts. Part 1 provides the technical background of the questions concerning oxygen reduction in molten carbonate as they apply to the MCFC system. The methodological approach and the objectives of the research are also presented. The second part describes the development of the rotating electrodes, micro-electrodes and spectroscopic cells and the results of measurements, as well as the interpretation of the data. Conclusions of this project, including some recommendations for further research, are also given in this part. 111 refs., 69 figs., 7 tabs.

  1. Multi-jet production and jet correlations at CMS

    CERN Document Server

    Veres, Gabor

    2016-01-01

    Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential components of QCD, necessary for the description of the experimental data on hadronic jets, are hard parton radiation and multiple parton interactions. The importance of these components increases for final states including multiple jets. We will show results on observables sensitive to the hard parton radiation, like the azimuthal (de)correlation between jets with small and large rapidity separation. Dijet events with a rapidity gap between them will also be presented and their fraction measured as a function of jet transverse momentum and collision energy.

  2. High-temperature molten-carbonate fuel cells. Technical progress report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Progress on the design, development, fabrication, performance testing, and modeling of molten carbonate fuel cells is reported. Component development including electrode structures, electrolyte powder, electrolyte tiles, and cell frame and current collectors is described. (WHK)

  3. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); mckellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most

  4. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  5. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  6. Status of the French research in the field of molten salt nuclear reactors

    International Nuclear Information System (INIS)

    Hery, M.; Israel, M.; Fauger, P.; Lecocq, A.

    1977-01-01

    The research program of the CEA in the field of molten salt nuclear reactors has been concerned with MSBR type reactors (Molten Salt Breeder Reactor). The papers written after having performed the theoretical analysis are entitled: core, circuits, chemistry and economy; they include some criticisms and suggestions. The experimental studies consisted in: graphite studies, chemical studies of the salt, metallic materials, the salt loop and the lead loop [fr

  7. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.

    2011-01-01

    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree......-level accuracy for multiplicities up to 4 jets. The resummation includes all-order hard corrections, which become important for increasing centre-of-mass energy of the hadronic collision. We discuss observables relevant for confronting the perturbative framework with 7 TeV data from the LHC, and the impact...

  8. Research and development of molten carbonate fuel cell power generation systems. ; Researches on a total system. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Total system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This paper reports conceptional designs for practical units for a molten carbonate fuel cell power generation system and coal gasification technologies. Before advancing the conceptional designs for practical units to be used in electric utility businesses, investigations have been given on literatures on about 60 cases of molten carbonate fuel cell power generation systems that had been published inside and outside Japan so far. Discussions have been given on profiles of these plants as seen from the design results. This paper summarizes the target specifications to the plants, which may be used as basics for conceptional designs of megawatt class plants. The target specifications cover operating conditions, fuel conditions, environmental conditions, and economies. Investigations made for coal gasification technologies include those on literatures such as the 'U.S. Coolwater Project' and the 'pressurized two-step jet bed gasification furnace developed by the Electric Utility Research Center', as well as the '200 t/d jet bed coal gasification furnace' to be developed by NEDO and a dry gas refining plant. Target specifications for MCFC power generation plants have been established by dividing the plants into 0.5 to 1 million kW class, 200 to 500 thousand kW class, and 10 to 50 thousand kW class. 1 tab.

  9. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  10. Molten salts processes and generic simulation

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo

    2001-01-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO 2 and PuO 2 in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  11. Molten salts processes and generic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toru; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO{sub 2} and PuO{sub 2} in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  12. The Structure Of Molten Nickel Chloride

    OpenAIRE

    Newport, Robert J.; Howe, R.A.; Wood, N.D.

    1985-01-01

    The structure of molten NiCl2 has been investigated by the scattering of neutrons from isotropically enriched samples. The three partial structure factors relating to Ni-Ni, Cl-Cl and Ni-Cl correlations and the three corresponding radial distribution functions have been determined from the experimental data. The results are compared with those obtained from earlier studies of 2:1 molten salts and are discussed in the context of polarisation and ion size effects.

  13. Controlling the discharge of molten material

    International Nuclear Information System (INIS)

    Geel, J. van; Dobbels, F.; Theunissen, W.

    1980-01-01

    A method and device are described for controlling the discharge of molten material from a melter or an intermediate vessel, in which a primary outflow is fed to an overflow system, the working level of which is regulated by means of pneumatic pressure on a communicating chamber pertaining to the overflow system. Molten material may be led into a primary overflow by means of a pneumatic lift. The material melted may be a glass used for disposing of radioactive liquid wastes. (author)

  14. Electrochemical ion separation in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  15. Molten Metal Explosions are Still Occurring

    Science.gov (United States)

    2009-02-01

    and cast by a variety of methods in the aluminum industry every day, safely and without incident. However, as with other molten substances, molten...Incidents in this operation are predominantly Force 1 with metal popping from unheated troughs, crucibles, ladles , etc. Exceptions are steel drain...thermiting dross into a water puddle and was fatally burned. Casting : Incidents continue to be reported for dc casting arising from bleed-outs

  16. An Operational Model for the Prediction of Jet Blast

    Science.gov (United States)

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  17. A numerical analysis of molten metal drop and coolant interaction

    International Nuclear Information System (INIS)

    Cao, X.; Hajima, Ryoichi; Furuta, Kazuo; Kondo, Shunsuke

    2000-01-01

    The interaction of molten metal drop and coolant is numerically analyzed to investigate the mechanism of fragmentation in vapor explosion. The numerical study is carried out by using a developed simulation code based on multi-phase thermal hydraulic model, which includes physical phenomena required for the analysis: heat transfer, mass change, liquid evaporation and treatment of surface. Several computational techniques are also implemented to improve the efficiency and stability of the numerical scheme. The obtained numerical results show that the growth of spikes on the molten metal drop surface is similar to that observed in Ciccarelli's experiment. The numerical study suggests that quick growth of spikes is the essential mechanism of fragmentation, which is caused by Taylor instability. (author)

  18. Cracking of crude oil in the molten metals

    Directory of Open Access Journals (Sweden)

    Marat A. Glikin

    2014-03-01

    Full Text Available In this paper is investigated the process of crude oil and its individual fractions cracking in the molten metals medium to produce light petroleum products. Thermodynamic calculations demonstrate the possibility of using lead and tin including alloys thereof as the melt. The cracking of West Siberian crude oil is studied at temperatures 400-600 °C. It is detected that as the temperature increases there is increase of aromatic hydrocarbons and olefins content in gasoline while naphthenes, n- and i-paraffins content reduces. Optimal temperature for cracking in molten metals is ~500 °C. The use of a submerged nozzle increases the yield of light petroleum products by ~2%. The research octane number of gasoline produced is 82-87 points. It is determined that the yield of light petroleum products depending on the experimental conditions is increased from 46.9 to 55.1-61.3% wt.   

  19. Viscosity of Molten Alkaline-Earth Fluorides

    Science.gov (United States)

    Takeda, Osamu; Hoshino, Yosuke; Anbo, Yusuke; Yanagase, Kei-ichi; Aono, Masahiro; Sato, Yuzuru

    2015-04-01

    The viscosities of molten alkaline-earth fluorides were measured using the oscillating crucible method, which is especially suitable for measuring molten salts with low viscosity. The results showed a good Arrhenius linearity over a wide temperature range. The measured viscosities and activation energies increased in the following order: . Judging by the charge density, the viscosity of alkaline-earth fluorides should increase from molten to . However, the results indicate a different tendency, which may be explained by a Coulomb force that is very strong. The low viscosity of can be attributed to a decreased cohesive force, due to a partial loss of the Coulomb force caused by a higher charge density of the material. The viscosities were also compared to those of molten alkali fluorides and alkaline-earth chlorides. The viscosities of molten alkaline-earth fluorides were higher than those of molten alkali fluorides and alkaline-earth chlorides. The viscosity determined in this study was compared to literature values and showed a reasonable value in the relatively low-viscosity region.

  20. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  1. Fission product ion exchange between zeolite and a molten salt

    Science.gov (United States)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  2. The mystery of molten metal

    Directory of Open Access Journals (Sweden)

    Natalia Sobczak

    2010-11-01

    Full Text Available Recent advances in scientific understanding of high-temperature materials processing using novel experimental methodologies have shed light on the complex role of surface and interface phenomena. New in-situ studies on molten metal/solid ceramic interactions using a unique experimental complex at the Foundry Research Institute, Krakow, have revealed a number of unusual observations in materials processing at high temperatures. We present some such unusual observations and their explanation with reference to liquid metal processing of Al, Ni, and Ti, and their alloys in contact with oxide ceramics. In particular, we focus on the following aspects: primary oxidation of Al from residual water vapor or oxygen, capillary purification to remove surface oxide, substrate protection by CVD carbon, roughening due to spinel whisker formation, inclusions in castings due to mechanical detachment, floatation due to buoyancy forces, and segregation due to directional solidification, modification of the solid surface morphology by metal vapor ahead of the liquid, and the complication due to multi-component alloys melted in crucibles made from complex oxide-based ceramics. In the case of Ti, rapid reactions with oxides result in undesirable volumetric changes that create difficulty in casting high-quality Ti parts, particularly by investment casting. Nanoscale (e.g., colloidal coatings based on Y2O3 protect crucibles and hold ladles against such attack. Practical insights and recommendations for materials processing emerging from the fundamental studies on high-temperature interfacial phenomena have been described.

  3. Design of a helium-cooled molten salt fusion breeder

    Science.gov (United States)

    Moir, R. W.; Lee, J. D.; Fulton, F. J.; Huegel, F.; Neef, W. S., Jr.; Sherwood, A. E.; Berwald, D. H.; Whitley, R. H.; Wong, C. P. C.; Devan, J. H.

    1985-02-01

    A new conceptual blanket design for a fusion reactor is discussed which produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF2 + TghF4) is circulated through the blanket and on to the online processing system where (233)U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS mirror is estimated to cost $4.9B or 2.35 time an LWR of the same power. The estimated present value cost of the (233)U produced is $40/g if utility financed or $16/g if government financed.

  4. Structure and thermodynamic properties of molten alkali chlorides

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-03-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten alkali chlorides in a non-polarizable-ion model. The theory starts from the hypernetted chain approximation and analyzes the role of bridge diagrams both for a two-component ionic plasma on a neutralizing background and for a binary ionic liquid of cations and anions. A simple account of excluded-volume effects suffices for a good description of the pair distribution functions in the two-component plasma, in analogy with earlier work on one-component fluids. The interplay of Coulomb attractions and repulsions in the molten salt requires, on the other hand, the inclusion of (i) excluded-volume effects for the various ion pairs as in a mixture of hard spheres with non-additive radii and (ii) medium-range Coulomb effects reflected mainly in the like-ion correlations. All these effects are included approximately in an empirical evaluation of the bridge functions, with numerical results which compare very well with computer simulation data. A detailed discussion of the results against experimental structural data is then given in the case of molten sodium chloride. (author)

  5. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  6. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer...... was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number...

  7. Jet quenching and γ-jet correlation in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    Medium modification of γ-tagged jets in high-energy heavy-ion collisions is investigated within a linearized Boltzmann transport model which includes both elastic parton scattering and induced gluon emission. In Pb + Pb collisions at √(s)=2.76 TeV, a γ-tagged jet is seen to lose 15% of its energy at 0–10% central collisions. Simulations also point to a sizable azimuthal angle broadening of γ-tagged jets at the tail of a distribution which should be measurable when experimental errors are significantly reduced. An enhancement at large z{sub jet}=p{sub L}/E{sub jet} in jet fragmentation function at the Large Hadron Collider (LHC) can be attributed to the dominance of leading particles in the reconstructed jet. A γ-tagged jet fragmentation function is shown to be more sensitive to jet quenching, therefore a better probe of the jet transport parameter.

  8. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  9. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  10. Molten salts and nuclear energy production

    Science.gov (United States)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  11. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  12. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  13. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  14. Visualization of interfacial behavior of liquid jet in pool

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Abe, Yutaka; Fujiwara, Akiko; Nariai, Hideki; Matsuo, Eiji; Chitose, Keiko; Koyama, Kazuya; Itoh, Kazuhiro

    2008-01-01

    For the safety design of the Fast Breeder Reactor (FBR), it is strongly required that the post accident heat removal (PAHR) is achieved after a postulated core disruptive accident (CDA). In the PAHR, it is important that the molten core material is quenched (breakup) in sodium coolant. In the previous studies, it is pointed out that the jet breakup behavior is significantly influenced by the fragmentation behavior on the jet surface in the coolant. However, the process from interfacial instability to fragmentation on the jet surface to jet breakup is not elucidated in detail yet. In the present study, the jet breakup behavior is observed to obtain the fragmentation behavior on the jet surface in coolant in detail. The transparent fluid is used as the core material and is injected into the water as the coolant. The velocity distribution of internal flow of the jet is measured by PIV technique and shear stress is calculated from PIV results. From experimental results, unstable interfacial wave is confirmed as upstream and grown up toward downstream. The fragments are torn apart at the end of developed wave. Shear stress is strongly acted on jet surface. From the results, the correlation between the interfacial behavior of the jet and the generation process of fragments are discussed. (author)

  15. Metal Oxide Solubility and Molten Salt Corrosion.

    Science.gov (United States)

    1982-03-29

    soluble oxides that relations like eq. (3) are significant. The oxides of several metal oxides have been found to be amphoteric , i.e., their solution...METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION.(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...METAL OXIDE SOLUBILITY AND MOLTEN SALT Interim report on a continuing CORROSION NRL problem. S. PERFORMING a4. REPORT NUMlER 7. AuTtwORr) S. CONTRACT OR

  16. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  17. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  18. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1986-03-01

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  19. Thorium fuel-cycle development through plutonium incineration by THORIMS-NES (Thorium Molten-Salt nuclear energy synergetics)

    International Nuclear Information System (INIS)

    Furukawa, K.; Furuhashi, A.; Chigrinov, S.E.

    1996-01-01

    Thorium fuel-cycle has benefit on not-only trans-U element reduction but also their incineration. The disadvantage of high gamma activity of fuel, which is useful for improving the resistance to nuclear proliferation and terrorism, can overcome by molten fluorides fuel, and practically by THORIMS-NES, symbiotically coupled with fission Molten-Salt Reactor (FUJI) and fissile-producing Accelerator Molten-Salt Breeder (AMSB). This will have wide excellent advantages in global application, and will be deployed by incinerating Pu and Producing 233 U. Some details of this strategy including time schedule are presented. 14 refs, 2 figs, 4 tabs

  20. Jet, Missing ET, Jet Substructure and Tagging Performance in ATLAS

    CERN Document Server

    Lacey, J; The ATLAS collaboration

    2013-01-01

    ATLAS has implemented and commissioned several new techniques to aid in the analysis and interpretation of the complex hadronic final states produced at the LHC. ATLAS’s high resolution longitudinally segmented calorimeters and inner detector allow for the development of advanced clustering and reconstruction algorithms, their validation and calibration in data is made possible with the large 2012 dataset. Included are event-by-event pile-up subtraction methods for jets and missing ET, along with jet tagging, quark-gluon discrimination, and jet substructure techniques for the identification of Lorentz boosted heavy particles. Presented here is a summary of the state of the art jet, missing ET, jet substructure and tagging techniques and tools developed in ATLAS, and their calibrations.

  1. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  2. Electrochemistry of zirconium in molten chlorides

    NARCIS (Netherlands)

    Xu, L.; Xiao, Y; Xu, Q; Song, Qiushi; Yang, Y.

    2017-01-01

    In this work, the electrochemical behavior of zirconium was studied on an inert molybdenum electrode at 550 °C in a LiCl-KCl-K2ZrF6 molten salt system, which is considered as an ideal electrolyte for the zirconium electrorefining process. Several transient electrochemical

  3. Recent electroanalytical studies in molten fluorides

    International Nuclear Information System (INIS)

    Manning, D.L.; Mamantov, G.

    1976-01-01

    This paper summarizes the voltametric and chronopotentiometric studies of Bi, Fe, Te, oxide and U(IV)/U(III) ratio determinations in molten LiF--BeF 2 --ThF 4 (72-16-12 mole percent) and LiF--BeF 2 --ZrF 4 (65.6-29.4-5.0 mole percent). 54 references, 11 figures

  4. On Electromagnetic Stirring of Molten Metals

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Šolín, Pavel; Zítka, M.; Ulrych, B.

    2005-01-01

    Roč. 50, č. 1 (2005), s. 35-51 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA102/03/0047; GA ČR(CZ) GA102/05/0629 Institutional research plan: CEZ:AV0Z20570509 Keywords : electromagnetic stirring * molten metal * induction heating Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  6. Molten salt/metal extractions for recovery of transuranic elements

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed

  7. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  8. Interation between a superheated uranium dioxide jet and cold concrete

    International Nuclear Information System (INIS)

    Howe, L.D.; Denham, M.K.; Turland, B.D.; Dop, L.M.G.; Humphreys, R.J.

    1992-01-01

    A scoping experiment has been carried out at the Winfrith Technology Centre using its Molten Fuel Test Facilities to examine the initial interaction between a fuel melt and concrete. A molten fuel simulant consisting of 81% UO 2 and 19% Mo with a large superheat (T≅3600 K) was poured onto a basaltic concrete target. Thermocouple data indicate that there was an initial high rate of ablation. The test demonstrated that in the case of such high superheats, a vigorous interaction between the jet and the target takes place, with much of the impinging material ejected within the first few seconds. There was a depression eroded into the target by the jet. The experiment has subsequently been modeled at Culham Laboratory using a version of the CORCON MCCI (molten core-concrete interaction) computer code. The calculations were able to produce a representation of this effect. The results of the experiment and the calculation have been compared with jetting correlations, and reasonable agreement has been found. We conclude by advising caution when applying the results of this isolated test to more prototypic interactions. (orig.)

  9. Experimental study of highly viscous impinging jets

    International Nuclear Information System (INIS)

    Gomon, M.

    1998-12-01

    The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established

  10. Jet in jet in M87

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  11. Method for determining molten metal pool level in twin-belt continuous casting machines

    Science.gov (United States)

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  12. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  13. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-01-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  14. Modified flapping jet for increased jet spreading using synthetic jets

    Energy Technology Data Exchange (ETDEWEB)

    Ben Chiekh, Maher, E-mail: maher.benchiekh@enim.rnu.tn [LESTE, ENIM, University of Monastir, 5000 Monastir (Tunisia); Ferchichi, Mohsen [Royal Military College of Canada, PO Box 17000, Kingston, Ontario (Canada); Bera, Jean-Christophe [Centre acoustique, Ecole Centrale de Lyon, 69134 Ecully Cedex (France)

    2011-10-15

    Highlights: > The interactions of a rectangular turbulent jet and a pair of co-flowing synthetic jets are examined. > One-sided actuation achieves jet vectoring while simultaneous actuations induce jet spreading. > Further spreading is achieved when the synthetic jets are alternately actuated. > The jet flapping improves mixing. > Optimal forcing conditions for jet spreading are discussed. - Abstract: The present paper is an experimental investigation, using a PIV system, on modified rectangular jet flow co-flowing with a pair of synthetic jets placed symmetrically with respect to the geometric centerline of the main flow. The objective was to determine the optimal forcing conditions that would result in jet spreading beyond what would be obtained in a simple flapped jet. The main jet had an exit Re{sub h} = 36,000, based on the slot height, h. The synthetic jets were operated in a periodic manner with a periodic momentum coefficient of about 3.3% and at a frequency of the main jet preferred mode. A short, wide angle diffuser of half angle of about 45{sup o} was attached to the main jet. Generally for the vectored jet, much of the flow features found here resembled those reported in the literature except that the deflection angle in this study increased with downstream distances inside the diffuser and then remained roughly unchanged thereafter. Larger jet spreading was achieved when the main jet was subjected to simultaneous actuation of the synthetic jets but the flow did not achieve the initial jet spreading that was observed in the vectored jet. Further jet spreading was achieved when the synthetic jets were alternately actuated in which each synthetic jet was actuated for a number of cycles before switching. This technique allowed the jet to flap across the flow between transverse positions larger than what would be obtained in a simple flip-flop jet. Under the present flow geometry and Reynolds number, it was found that when the ratio f{sub s}/f{sub al

  15. The anatomy of magnetosheath jets - MMS observations.

    Science.gov (United States)

    Karlsson, Tomas; Plaschke, Ferdinand; Hietala, Heli; Blanco-Cano, Xochitl; Kajdic, Primoz; Archer, Martin

    2017-04-01

    Recently it has been realized that magnetosheath jets, defined as transient and localized increases in dynamic pressure, are a common mode of solar wind-magnetosphere interaction, in particular behind the quasi-parallel bow shock. While some properties of magnetosheath jets are known, in particular their statistical properties, much is still unknown about their detailed properties. We here present detailed MMS multipoint observations of a few magnetosheath jets. These include particle properties of different parts of the jet, associated plasma waves, associated magnetic field topology and currents, and forces acting on the jet plasma.

  16. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  17. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  18. Inter ionic pair potentials for molten copper halides CuX (X=Br, I)

    International Nuclear Information System (INIS)

    Canan, C.

    2004-01-01

    In this work, the inter-ionic pair interactions of molten CuBr and Cu I are described with three different form of the rigid ion model potentials (RIM) using i) the functional form originally proposed by Vasishta and Rahman ii) the form used Madden and coworkers which is include the polarization contributions iii) the form parameterizied by Tatlipinar et al. The capability of these potentials have been discussed with each other by calculating the static liquid structure. We present the results of the partial pair distributions for molten CuBr at 810K and for molten Cul at 940K comparing with experimental data. The structural calculations are performed by solving the numerically the hypemetted chain approximate theory of liquids

  19. The charge of b-jet kinematics versus b-jet

    International Nuclear Information System (INIS)

    Astalos, R.

    2009-01-01

    One of the important goals of the ATLAS study of the properties are top-quark, which represent a sensitive area to search for the standard model of physics. A very important task for determination of the top-quark charge is determination of the b-jet charge. The work deals with the study of b-jet cartridge, depending on its kinematic parameters and their influence on weighting procedures parameters of b-jet charge. There is investigated an optimal value of weighting coefficient κ for the smaller and larger value of the solid angle around the axis of the b-jet, to which must be included trek b-jet to be counted in the total charge b-jet. In the second part is examined a dependence of b-jet charge on the maximum number of treks, which are one b-jet included in his charge, and this number is optimized. (author)

  20. Economic Optimization of a Concentrating Solar Power Plant with Molten-salt Thermocline Storage

    OpenAIRE

    Flueckiger, S. M.; Iverson, B. D.; Garimella, S V

    2014-01-01

    System-level simulation of a molten-salt thermocline tank is undertaken in response to year-long historical weather data and corresponding plant control. Such a simulation is enabled by combining a finite-volume model of the tank that includes a sufficiently faithful representation at low computation cost with a system-level power tower plant model. Annual plant performance of a 100 MWe molten-salt power tower plant is optimized as a function of the thermocline tank size and the plant solar m...

  1. Experimental Studies on Breakup and Fragmentation Behavior of Molten Tin and Coolant Interaction

    Directory of Open Access Journals (Sweden)

    Yankai Li

    2017-01-01

    Full Text Available Jet breakup and fragmentation behavior significantly affect the likelihood (and ultimate strength of steam explosion, but it is very challenging to assess the potential damage to reactor cavity due to general lack of knowledge regarding jet breakup phenomena. In this study, the METRIC (mechanism study test apparatus for melt-coolant interaction was launched at Shanghai Jiao Tong University to investigate FCI physics. The first five tests on molten tin and water interactions are analyzed in this paper. Significant breakup and fragmentation were observed without considerable pressure pulse, and intense expansion of droplets in local areas was observed at melt temperature higher than 600°C. The chain interactions of expansion all ceased, however, and there was no energetic steam explosion observed. Quantitative analysis on jet breakup length and debris was studied to investigate the effect of the melt temperature, initial diameter of the jet, and so on. Furthermore, the results of tests were compared with current theories. It is found that melt temperature has strong impact on fragmentation that need to be embodied in advanced fragmentation models.

  2. Welding deviation detection algorithm based on extremum of molten pool image contour

    Science.gov (United States)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  3. Jet Joint Undertaking. Vol. 2

    International Nuclear Information System (INIS)

    1989-06-01

    The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

  4. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  5. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  6. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  7. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  8. Molten-Salt Depleted-Uranium Reactor

    OpenAIRE

    Dong, Bao-Guo; Dong, Pei; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results...

  9. Electrochemical studies in molten sodium fluoroborate

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Wagner, J.F.

    1979-01-01

    Physical properties of sodium fluoroborate are recalled and first results obtained during experimental study of molten NaBF 4 are exposed. The system Cu/CuF is used as an indicator of fluoride ion activity and dissociation constant of the solvent is determined by adding NaF to NaBF 4 saturated with BF 3 at a pressure of 1 atm and found equal to 2.7x10 -3 [fr

  10. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  11. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  12. Molecular dynamics study on glass and molten state of AgI-AgPO3

    Science.gov (United States)

    Matsunaga, Shigeki

    2017-08-01

    Molecular dynamics (MD) simulation on molten and glass state of AgI-AgPO3 have been performed to investigate the structural features and transport properties. In MD, the screened Born-Mayer type potentials including the effect of polarizability of ions have been used. The structure, conductivity, shear viscosity, and Voronoi polyhedron are discussed in relation with the temperature change.

  13. Jet Dipolarity: Top Tagging with Color Flow

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Jankowiak, Martin; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC

    2011-08-12

    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high p{sub T}. The impressive resolution of the ATLAS and CMS detectors means that a typical QCD jet at the LHC deposits energy in {Omicron}(10-100) calorimeter cells. Such fine-grained calorimetry allows for jets to be studied in much greater detail than previously, with sophisticated versions of current techniques making it possible to measure more than just the bulk properties of jets (e.g. event jet multiplicities or jet masses). One goal of the LHC is to employ these techniques to extend the amount of information available from each jet, allowing for a broader probe of the properties of QCD. The past several years have seen significant progress in developing such jet substructure techniques. A number of general purpose tools have been developed, including: (i) top-tagging algorithms designed for use at both lower and higher p{sub T} as well as (ii) jet grooming techniques such as filtering, pruning, and trimming, which are designed to improve jet mass resolution. Jet substructure techniques have also been studied in the context of specific particle searches, where they have been shown to substantially extend the reach of traditional search techniques in a wide variety of scenarios, including for example boosted Higgses, neutral spin-one resonances, searches for supersymmetry, and many others. Despite these many successes, however, there is every reason to expect that there remains room for refinement of jet substructure techniques.

  14. Development of a safety analysis code for molten salt reactors

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui

    2009-01-01

    The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.

  15. Progress in modeling solidification in molten salt coolants

    Science.gov (United States)

    Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier

    2017-10-01

    Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.

  16. Beryllium research on FFHR molten salt blanket

    International Nuclear Information System (INIS)

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  17. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  18. Molten metal feed system controlled with a traveling magnetic field

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1991-01-01

    This patent describes a continuous metal casting system in which the feed of molten metal controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir

  19. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  20. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  1. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  2. Measurements of void fraction in a water-molten tin system by X-ray absorption

    International Nuclear Information System (INIS)

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  3. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  4. Jet joint undertaking progress report 1988 volume I

    International Nuclear Information System (INIS)

    1989-06-01

    The 1988 progress report of the Joint European Torus (JET) is presented. It covers the fifth year of JET's operation and provides an overview of the scientific and technical advances made on JET. The JET most important articles, published during 1988, are included. The background of JET project, the main objectives and design aspects of the machine are summarized. Most of 1988 was devoted to machine operations: the number of pulses was 4673. The introduction, commissioning and operation of the JET second beam injector is reported. Planned developments on enhancements in the machine for future operations are included

  5. Molten salt reactors and molten salt carriers for industrial heat supply

    International Nuclear Information System (INIS)

    Novikov, V.M.

    1987-01-01

    Structure of industrial heat needs has been analysed. It is shown that main part of heat consumers - 80% demands temperature level up to 600 0 C. Temperature rise from 600 0 C up to 950 0 C could add only about 3% of heat consumers. It is shown that molten salt reactors with out-let temperature 700 0 C meet these conditions optimally

  6. Multiscale Modeling of Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    James H. Beall

    2014-12-01

    Full Text Available We are developing the capability for a multi-scale code to model the energy deposition rate and momentum transfer rate of an astrophysical jet which generates strong plasma turbulence in its interaction with the ambient medium through which it propagates. We start with a highly parallelized version of the VH-1 Hydrodynamics Code (Coella and Wood 1984, and Saxton et al., 2005. We are also considering the PLUTO code (Mignone et al. 2007 to model the jet in the magnetohydrodynamic (MHD and relativistic, magnetohydrodynamic (RMHD regimes. Particle-in-Cell approaches are also being used to benchmark a wave-population models of the two-stream instability and associated plasma processes in order to determine energy deposition and momentum transfer rates for these modes of jet-ambient medium interactions. We show some elements of the modeling of these jets in this paper, including energy loss and heating via plasma processes, and large scale hydrodynamic and relativistic hydrodynamic simulations. A preliminary simulation of a jet from the galactic center region is used to lend credence to the jet as the source of the so-called the Fermi Bubble (see, e.g., Su, M. & Finkbeiner, D. P., 2012*It is with great sorrow that we acknowledge the loss of our colleague and friend of more than thirty years, Dr. John Ural Guillory, to his battle with cancer.

  7. Electrorecovery of tantalum in molten fluorides

    International Nuclear Information System (INIS)

    Espinola, A.; Dutra, A.J.B.; Silva, F.T. da

    1988-01-01

    Considering the privileged situation of Brazil as a productor of tantaliferous minerals, the authors have in view the development of a technology for production of metallic tantalum via molten salts electrolysis; this has the advantage of improving the aggregate value of exportation products, additionally to tantalum oxide and tantalum concentrates. Having in view the preliminary determintion of better conditions of temperature, electrolyte composition and current density for this process, electrolysis were conducted with a solvent composed of an eutetic mixture of lithium, sodium and potassium fluoride for dipotassium fluotantalate and occasionally for tantalum oxide. Current efficiencies as high as 83% were obtained in favoured conditions. (author) [pt

  8. Applications of molten salts in plutonium processing

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900 0 C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics

  9. Greenland plateau jets

    Directory of Open Access Journals (Sweden)

    George William Kent Moore

    2013-08-01

    Full Text Available The high ice-covered topography of Greenland represents a significant barrier to atmospheric flow and, as a direct and indirect result, it plays a crucial role in the coupled climate system. The wind field over Greenland is important in diagnosing regional weather and climate, thereby providing information on the mass balance of the ice sheet as well as assisting in the interpretation of ice core data. Here, we identify a number of hitherto unrecognised features of the three-dimensional wind field over Greenland; including a 2500-km-long jet along the central ice sheet's western margin that extends from the surface into the middle-troposphere, as well as a similar but smaller scale and less intense feature along its eastern margin. We refer to these features as Greenland Plateau Jets. The jets are coupled to the downslope katabatic flow and we argue that they are maintained by the zonal temperature gradients associated with the strong temperature inversion over the central ice sheet. Their importance for Greenland's regional climate is discussed.

  10. Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

    Science.gov (United States)

    Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.

    2014-04-01

    The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.

  11. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  12. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  13. A Parametric Sizing Model for Molten Regolith Electrolysis Reactors to Produce Oxygen from Lunar Regolith

    Science.gov (United States)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.

  14. Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.

    Science.gov (United States)

    Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo

    2015-05-30

    SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Destruction of high explosives and wastes containing high explosives using the molten salt destruction process

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.

    1992-01-01

    This paper reports the Molten Salt Destruction (MSD) Process which has been demonstrated for the destruction of HE and HE-containing wastes. MSD has been used by Rockwell International and by Anti-Pollution Systems to destroy hazardous wastes. MSD converts the organic constituents (including the HE) of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. In the case of HE-containing mixed wastes, any actinides in the waste are retained in the molten salt, thus converting the mixed wastes into low-level wastes. (Even though the MSD process is applicable to mixed wastes, this paper will emphasize HE-treatment.) The destruction of HE is accomplished by introducing it, together with oxidant gases, into a crucible containing a molten salt, such as sodium carbonate, or a suitable mixture of the carbonates of sodium, potassium, lithium and calcium. The temperature of the molten salt can be between 400 to 900 degrees C. The combustible organic components of the waste react with oxygen to produce carbon dioxide, nitrogen and steam

  16. FastJet user manual (for version 3.0.2)

    International Nuclear Information System (INIS)

    Cacciari, Matteo; Salam, Gavin P.; Soyez, Gregory

    2012-01-01

    FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e + e - collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets. (orig.)

  17. Analysis of the EJET boiling jet mixing experiments using the integrated fuel-coolant interaction code, IFCI

    International Nuclear Information System (INIS)

    Rightley, M.J.; Young, M.F.; Beck, D.F.

    1991-01-01

    In the event of a severe reactor accident leading to core melt, it is likely that molten fuel materials will come into contact with water, producing a molten fuel-coolant interaction (FCI). FCIs can occur for a variety of conditions in the core, the lower plenum, or in the reactor cavity. The nature of the FCIs that could occur ranges from benign static boiling, possibly including melt dispersion when the coherent melt mass is broken up on a time scale of 100's of milliseconds, to energetic steam explosions when the melt is finely fragmented on a time scale of milliseconds. Experimentation has revealed that scale-dependent processes occur in FCI's and that these dependencies are not understood. Attempts to model the process have generated several competing models. Unfortunately, the limited size and nature of the experimental database have made the choice of the correct model difficult. The integrated fuel-coolant interaction code, IFCI, was developed to provide a best estimate tool for FCIs, based on known physical laws and available experiments. The process of assessing the performance of IFCI involves comparing it to the different stages of FCI phenomena such as boiling jet breakup, detonation and products expansion. The NRC Program Molten Fuel-Coolant Interactions was initiated to perform this assessment against the current experimental data and other codes that have been developed to model FCIs. Upon completion of the assessment of the code, IFCI will be applied to reactor-scale simulations of lower plenum coarse mixing, steam and hydrogen production rates and steam explosion probabilities and their intensities

  18. Production of Oxygen from Lunar Regolith using Molten Oxide Electrolysis

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald R.; Sirk, Aislinn; Tripathy, Prabhat; Melendez, Orlando; Standish, Evan; Dominquez, Jesus A.; Stefanescu, Doru M.; Curreri, Peter A.; Poizeau, Sophie

    2009-01-01

    This slide presentation reviews the possible use of molten oxide electrolysis to extract oxygen from the Lunar Regolith. The presentation asserts that molten regolith electrolysis has advanced to be a useful method for production of oxygen and metals in situ on the Moon. The work has demonstrated an 8 hour batch of electrolysis at 5 amps using Iridium inert anodes.

  19. Method of making molten carbonate fuel cell ceramic matrix tape

    Science.gov (United States)

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  20. Advancing Molten Salts and Fuels at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  1. Jets, $E_T^{miss}$, and Jet Substructure and Tagging Performance in ATLAS

    CERN Document Server

    Swiatlowski, M; The ATLAS collaboration

    2013-01-01

    ATLAS has implemented and commissioned several new techniques for the analysis and interpretation of hadronic final states at the LHC. These include event-by-event pile-up subtraction algorithms for jets and $E_T^{miss}$, jet substructure, quark-gluon discrimination, and jet tagging tools for the identification of boosted heavy particles. The excellent ATLAS detector capabilities, in particular its high resolution longitudinally segmented calorimeter and inner detector, have enabled the development of complex clustering and calibration algorithms for the reconstruction of jets, $E_T^{miss}$, and jet substructure, and its validation and calibration in data using large datasets collected during 2012. A summary of the most modern jet, $E_T^{miss}$, and jet substructure and tagging tools developed in ATLAS, and their calibrations are presented.

  2. Studies of heavy flavored jets with CMS

    CERN Document Server

    Jung, Kurt

    2017-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with identified partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. We present recent results of heavy flavor jet spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions. New measurements to be presented include the dijet asymmetry of pairs of b-jets in PbPb collisions and a finalized c-jet measurement in pPb collisions based on new data collected during the 2015 heavy-ion run period at the LHC.

  3. Molten Materials Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu

    2008-01-01

    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  4. Filbe molten salt research for tritium breeder applications

    International Nuclear Information System (INIS)

    Anderl, R.A.; Petti, D.A.; Smolik, G.R.

    2004-01-01

    This paper presents an overview of Flibe (2Lif·BeF 2 ) molten salt research activities conducted at the INEEL as part of the Japan-US JUPITER-II joint research program. The research focuses on tritium/chemistry issues for self-cooled Flibe tritium breeder applications and includes the following activities: (1) Flibe preparation, purification, characterization and handling, (2) development and testing of REDOX strategies for containment material corrosion control, (3) tritium behavior and management in Flibe breeder systems, and (4) safety testing (e.g., mobilization of Flibe during accident scenarios). This paper describes the laboratory systems developed to support these research activities and summarizes key results of this work to date. (author)

  5. Redox reactions in rare earth chloride molten electrolytes

    International Nuclear Information System (INIS)

    Khokhlov, V.A.; Novoselova, A.V.; Nikolaeva, E.V.; Tkacheva, O.Yu.; Salyulev, A.B.

    2007-01-01

    Rare earth (REM, Ln) solutions in chloride melts including MCI+LnCl 3 mixtures, where M - alkali metals, were investigated by potentiometry, voltammetry, conductometry in wide concentration and temperature intervals. Findings present complete and trusty information on the valent state of rare earths, structure and composition of complex ions affecting essentially on properties of electrolytes. It is demonstrated that the coexistence of rare earth ions with different oxidation level formed as a result of possible redox reactions: 2Ln 3+ + Ln ↔3Ln 2+ , Ln 2+ + Ln↔2Ln + and nM + + Ln↔nM + Ln n+ appears sharply in thermodynamic and transport properties of molten Ln-LnCl 3 and Ln-LnCl 3 -MCl systems [ru

  6. Fabrication of micro/nano-structures by electrohydrodynamic jet technique

    Science.gov (United States)

    Wang, Dazhi; Zhao, Xiaojun; Lin, Yigao; Ren, Tongqun; Liang, Junsheng; Liu, Chong; Wang, Liding

    2017-12-01

    Electrohydrodynamic jet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication of micro/nano-structures for micro/nano-electromechanical system devices. This technique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.

  7. Recommendations for a restart of Molten Salt Reactor development

    International Nuclear Information System (INIS)

    Moir, R. W.

    2007-01-01

    The concept of the molten salt reactor (MSR) refuses to go away. The Generation-IV process lists the MSR as one of the six concepts to be considered for extending fuel resources. Good fuel utilization and good economics are required to meet the often cited goal of 10 TWe globally and 1 TWe for the US by non-carbon energy sources in this century by nuclear fission. A strong incentive for the molten salt reactor design is its good fuel utilization, good economics, amazing flexibility and promised large benefits. It can: - use thorium or uranium; o be designed with lots of graphite to have a fairly thermal neutron spectrum or without graphite moderator to have a fast neutron spectrum reactor; - fission uranium isotopes and plutonium isotopes; - operate with non-weapon grade fissile fuel, or in suitable sites it can operate with enrichment between reactor-grade and weapon-grade fissile fuel; - be a breeder or near breeder; - operate at temperature >1100 degree C if carbon composites are successfully employed. Enhancing 2 32U content in the uranium to over 500 pm makes the fuel undesirable for weapons, but it should not detract from its economic use in liquid fuel reactors: a big advantage in nonproliferation. Economics of the MSR is enhanced by operating at low pressure and high temperature and may even lead to the preferred route to hydrogen production. The cost of the electricity produced from low enriched fuel averaged over the life of the entire process, has been predicted to be about 10% lower than that from LWRs, and 20% lower for high enriched fuel, with uncertainties of about 10%. The development cost has been estimated at about 1 B$ (e.g., a 100 M$/y base program for ten years) not including construction of a series of reactors leading up to the deployment of multiple commercial units at an assumed cost of 9 B$ (450 M$/y over 20 years). A benefit of liquid fuel is that smaller power reactors can faithfully test features of larger reactors, thereby reducing the

  8. Vector boson tagged jets and jet substructure

    Directory of Open Access Journals (Sweden)

    Vitev Ivan

    2018-01-01

    Full Text Available In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.

  9. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  10. Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions.

    Science.gov (United States)

    Vradman, Leonid; Zana, Jonatan; Kirschner, Alon; Herskowitz, Moti

    2013-07-14

    LaMnO3 perovskite was successfully synthesized in molten chlorides. In order to explore the effect of the molten salt type, NaCl-KCl and LiCl-KCl eutectic mixtures were employed as a liquid medium for the perovskite formation process. The synthesis included heating the La-nitrate, Mn-nitrate and chlorides mixture to above the melting point of the corresponding chlorides. This procedure yielded a LaMnO3 phase integrated in the fused chloride matrix. Washing with water removed the salts completely, yielding pure LaMnO3 perovskite crystals. The synthesis without molten salt at 800 °C yielded several by-products in addition to the LaMnO3 phase, while with LiCl-KCl the pure perovskite phase was obtained at temperatures as low as 600 °C. Variation of temperature in the range 600-800 °C for LiCl-KCl and 700-800 °C for NaCl-KCl had no significant effect either on the morphology or on the particle size of the product. On the other hand, the effect of the molten salt type on the morphology and size of perovskite particles was remarkable. The synthesis in NaCl-KCl resulted in sub-micron LaMnO3 particles with shapes that range from truncated hexahedrons to spheres, while in LiCl-KCl mostly cubic particles of up to 2-microns were obtained. The effect of the molten salt type on LaMnO3 perovskite formation is explained based on the nucleation and crystal growth model and difference in the melting point of eutectic mixtures.

  11. Severe accident in pressurized water reactors: molten fuel-coolant interaction

    International Nuclear Information System (INIS)

    Battail-Claret, Sylvie

    1993-01-01

    In order to study the phenomenon of interaction between corium and water, the author of this research thesis proposes a scenario to describe the behaviour of a drop of molten iron oxide suddenly plunged into a bath of liquid at room temperature. First, she addresses the modelling of the evolution of the vapour film which surrounds the hot drop and comprises a phase of establishment of a steady film and the phase of destabilisation of this film when an external pressure wave passes by. Besides, she modelled the process of fragmentation of a hot body induced by the destabilisation of a process due to the impact of liquid water micro-jets with water trapping in the hot body. Finally, a model of 'bubble dynamics' is proposed to describe the evolution of the vapour bubble fed by fragments. Theoretical results are compared with experimental results [fr

  12. Experimental Investigation of Magnetohydrodynamics Effects in Molten Metals and Study of Homogeneity of Radioactive Mercury Amalgams

    CERN Document Server

    Astone, A

    2002-01-01

    The high neutrino output demanded for a neutri no factory requests a high power proton beam interacting with a static target. The additional circumstances of limited space and long term stability ask for development of novel concepts for such types of targets. In our working group, part of the Neutri no Factory Working Group (NFWG) of CERN, we are investigating on the proton interaction with the mercury target. This is called the study of proton induced shocks in molten metal. In the US scheme for a neutrino factory the interaction between proton beam and the mercury jet target takes place inside a 20 Tesla solenoidal magnetic field, which serv es as a focusing device for the produced particles. This field of study is refe rred to as Magneto Hydrodynamics (MHD). The high power proton beam deposits a large amount of energy in the small volume of the target, which results in disruption. The aim is to establi...

  13. Isothermal and Reactive Turbulent Jets in Cross-Flow

    Science.gov (United States)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  14. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Ramana G. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the

  15. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  16. Anodic and cathodic reactions in molten calcium chloride

    International Nuclear Information System (INIS)

    Fray, D.J.

    2002-01-01

    Calcium chloride is a very interesting electrolyte in that it is available, virtually free, in high purity form as a waste product from the chemical industry. It has a very large solubility for oxide ions, far greater than many alkali halides and other divalent halides and has the same toxicity as sodium chloride and also a very high solubility in water. Intuitively, on the passage of current, it is expected that calcium would be deposited at the cathode and chlorine would evolve at the anode. However, if calcium oxide is added to the melt, it is possible to deposit calcium and evolve oxygen containing gases at the anode, making the process far less polluting than when chlorine is evolved. This process is discussed in terms of the addition of calcium to molten lead. Furthermore, these reactions can be altered dramatically depending upon the electrode materials and the other ions dissolved in the calcium chloride. As calcium is only deposited at very negative cathodic potentials, there are several interesting cathodic reactions that can occur and these include the decomposition of the carbonate ion and the ionization of oxygen, sulphur, selenium and tellurium. For example, if an oxide is used as the cathode in molten calcium chloride, the favoured reaction is shown to be the ionization of oxygen O + 2e - → O 2- rather than Ca 2+ + 2 e- → Ca. The oxygen ions dissolve in the salt leaving the metal behind, and this leads to the interesting hypothesis that metal oxides can be reduced directly to the metal purely by the use of electrons. Examples are given for the reduction of titanium dioxide, zirconium dioxide, chromium oxide and niobium oxide and by mixing oxide powders together and reducing the mixed compact, alloys and intermetallic compounds are formed. Preliminary calculations indicate that this new process should be much cheaper than conventional metallothermic reduction for these elements. (author)

  17. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  18. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  19. Single ion dynamics in molten sodium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, O.; Trullas, J. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, 08034 Barcelona (Spain); Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  20. Sugar-induced molten-globule model.

    Science.gov (United States)

    Davis-Searles, P R; Morar, A S; Saunders, A J; Erie, D A; Pielak, G J

    1998-12-01

    Proteins denature at low pH because of intramolecular electrostatic repulsions. The addition of salt partially overcomes this repulsion for some proteins, yielding a collapsed conformation called the A-state. A-states have characteristics expected for the molten globule, a notional kinetic protein folding intermediate. Here we show that the addition of neutral sugars to solutions of acid-denatured equine ferricytochrome c induces formation of the A-state in the absence of added salt. We characterized the structure and stability of the sugar-induced A-state with circular dichroism spectropolarimetry (CD) and NMR-monitored hydrogen-deuterium exchange experiments. We also examined the stability of the sugar-induced A-state as a function of sugar size and concentration. The results are interpreted using several models and we conclude that the stabilizing effect is consistent with increased steric repulsion between the protein and the sugar solutions.

  1. Corrosion study in molten fluoride salt

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Rangarajan, S.; Gupta, V.K.; Maheshwari, N.K.; Vijayan, P.K.

    2013-01-01

    Corrosion behaviors of two alloys viz. Inconel 625 and Inconel 617 were tested in molten fluoride salts of lithium, sodium and potassium (FLiNaK) in the temperature range of 550-750 ℃ in a nickel lined Inconel vessel. Electrochemical polarization (Tafel plot) technique was used for this purpose. For both alloys, the corrosion rate was found to increase sharply beyond 650 ℃ . At 600 ℃ , Inconel 625 showed a decreasing trend in the corrosion rate over a period of 24 hours, probably due to changes in the surface conditions. After fifteen days, re-testing of Inconel 625 in the same melt showed an increase in the corrosion rate. Inconel 625 was found to be more corrosion resistant than Inconel 617. (author)

  2. Electrocrystallisation of tantalum in molten fluoride media

    Energy Technology Data Exchange (ETDEWEB)

    Massot, L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques et Materiaux, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France)]. E-mail: massot@chimie.ups-tlse.fr; Chamelot, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques et Materiaux, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France); Palau, P. [Pechiney CRV-UR GP, Parc Economique Centr' Alp, BP27, 38340 Voreppe (France); Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques et Materiaux, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France)

    2005-09-20

    The electrochemical nucleation of tantalum in molten alkaline fluoride media is investigated using chronoamperometry in the 670-750 deg C temperature range to optimize the operating conditions for preparing tantalum coatings for anode materials. Chronoamperometric results show that the electrodeposition process involves progressive nucleation with diffusion-controlled growth of the nuclei, which was confirmed by scanning electron microscopy. The influence of the temperature and the overpotential on the nucleation site densities is considered. Once the deposit has been obtained, plotting the roughness of the tantalum coatings as a function of the current densities reveals a minimum at about 80 mA/cm{sup 2}. This minimum is considered by the authors as a consequence of the progressive nucleation.

  3. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    Carilli & Dreher (Image courtesy of NRAO/AUI; http://images.nrao.edu/AGN/) showing the jet and a weaker counter-jet; (b) A Hubble. Space Telescope image of. HH34 showing the jet at op- tical wavelengths emanating from a protostar in Orion. (http://hubblesite.org/image/. 2870/gallery; image cour- tesy NASA, ESA, and P.

  4. Jet results from CDF

    International Nuclear Information System (INIS)

    Wainer, N.

    1991-05-01

    Recent results from CDF in jet physics are presented. Tests of leading order and next to leading order QCD are performed by measuring the dijet invariant mass spectrum, jet shapes and three jet events. Tests the leading logarithm, approximation in QCD are made by comparing the high energy events at CDF with the Herwig Monte Carlo. 10 refs., 7 figs

  5. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    Jets in active galaxies are signatures of energy supply via collimatedbeams of plasma from the galactic nucleus to the extendedregions of emission. These jets, which occur acrossthe electromagnetic spectrum, are powered by supermassiveblack holes in the centres of the host galaxies. Jets are seenon the scale of parsecs ...

  6. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  7. Experimental and analytical studies of melt jet-coolant interactions: a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.; Green, J.A.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-01-01

    Instability and fragmentation of a core melt jet in water have been actively studied during the past ten years. Several models, and a few computer codes, have been developed. However, there are, still, large uncertainties, both, in interpreting experimental results and in predicting reactor-scale processes. Steam explosion and debris coolability, as reactor safety issues, are related to the jet fragmentation process. A better understanding of the physics of jet instability and fragmentation is crucial for assessments of fuel-coolant interactions (FCIs). This paper presents research, conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning molten jet-coolant interactions, as a precursor for premixing. First, observations were obtained from scoping experiments with simulant fluids. Second, the linear perturbation method was extended and applied to analyze the interfacial-instability characteristics. Third, two innovative approachs to CFD modeling of jet fragmentation were developed and employed for analysis. The focus of the studies was placed on (a) identifying potential factors, which may affect the jet instability, (b) determining the scaling laws, and (c) predicting the jet behavior for severe accidents conditions. In particular, the effects of melt physical properties, and the thermal hydraulics of the mixing zone, on jet fragmentation were investigated. Finally, with the insights gained from a synthesis of the experimental results and analysis results, a new phenomenological concept, named `macrointeractions concept of jet fragmentation` is proposed. (author)

  8. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  9. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  10. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    Science.gov (United States)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  11. Sub- and supercritical jet disintegration

    Science.gov (United States)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  12. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  13. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    Science.gov (United States)

    Yost, F.G.; Frear, D.R.; Schmale, D.T.

    1999-01-05

    An apparatus and process are disclosed for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users. 7 figs.

  14. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  15. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  16. Boric ester-type molten salt via dehydrocoupling reaction.

    Science.gov (United States)

    Matsumi, Noriyoshi; Toyota, Yoshiyuki; Joshi, Prerna; Puneet, Puhup; Vedarajan, Raman; Takekawa, Toshihiro

    2014-11-14

    Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl)-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl)-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl) imide) (LiNTf2), the resulting 1-(2-hydroxyethyl)-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN) to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10⁻⁴-1.6 × 10⁻⁵ S cm⁻¹ at 51 °C. This was higher than other organoboron molten salts ever reported.

  17. Degassing of molten alloys with the assistance of ultrasonic vibration

    Science.gov (United States)

    Han, Qingyou; Xu, Hanbing; Meek, Thomas T.

    2010-03-23

    An apparatus and method are disclosed in which ultrasonic vibration is used to assist the degassing of molten metals or metal alloys thereby reducing gas content in the molten metals or alloys. High-intensity ultrasonic vibration is applied to a radiator that creates cavitation bubbles, induces acoustic streaming in the melt, and breaks up purge gas (e.g., argon or nitrogen) which is intentionally introduced in a small amount into the melt in order to collect the cavitation bubbles and to make the cavitation bubbles survive in the melt. The molten metal or alloy in one version of the invention is an aluminum alloy. The ultrasonic vibrations create cavitation bubbles and break up the large purge gas bubbles into small bubbles and disperse the bubbles in the molten metal or alloy more uniformly, resulting in a fast and clean degassing.

  18. System Requirements Document for the Molten Salt Reactor Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  19. Large Scale Inert Anode for Molten Oxide Electrolysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Molten oxide electrolysis is a demonstrated laboratory-scale process for producing oxygen from the JSC-1a lunar simulant; however, critical subsystems necessary for...

  20. Advanced Instrumentation for Molten Salt Flow Measurements at NEXT

    Science.gov (United States)

    Tuyishimire, Olive

    2017-09-01

    The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.

  1. High Surface Iridium Anodes for Molten Oxide Electrolysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith...

  2. High Surface Iridium Anodes for Molten Oxide Electrolysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith...

  3. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    Directory of Open Access Journals (Sweden)

    Noriyoshi Matsumi

    2014-11-01

    Full Text Available Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl imide (LiNTf2, the resulting 1-(2-hydroxyethyl-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10−4–1.6 × 10−5 S cm−1 at 51 °C. This was higher than other organoboron molten salts ever reported.

  4. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  5. Advanced Additive Manufacturing Feedstock from Molten Regolith Electrolysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate the feasibility of Molten Regolith Electrolysis (MRE) Reactor start by initiating resistive-heating of the regolith past its melting point using...

  6. Dynamics and control of molten-salt breeder reactor

    Directory of Open Access Journals (Sweden)

    Vikram Singh

    2017-08-01

    Full Text Available Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  7. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  8. Molten fluoride mixtures as possible fission reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, W.R.

    1978-01-01

    Molten mixtures of fluorides with UF/sub 4/ as a component have been used as combined fuel and primary heat transfer agent in experimental high-temperature reactors and have been proposed for use in breeders or converters of /sup 233/U from thorium. Such use places stringent and diverse demands upon the fluid fuel. A brief review of chemical behavior of molten fluorides is given to show some of their strengths and weaknesses for such service.

  9. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Zink, Peter A.; Jue, Jan-Fong; Serrano, Brenda E.; Fredrickson, Guy L.; Cowan, Ben F.; Herrmann, Steven D.; Li, Shelly X.

    2010-01-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(double p rime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(double p rime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  10. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  11. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  12. High-safety and economical small molten-salt fission power stations and their developmental program

    International Nuclear Information System (INIS)

    Furukawa, K.; Mitachi, K.; Minami, K.; Kato, Y.

    1988-01-01

    The nuclear energy industry is not settled yet as one of the sound economical industries. Its establishment should obviously depend on the solution of the following problems: ''natural'' safety (depending on inherent natures), nuclear proliferation resistance - nearly non-production and effective incineration of Pu, Am and Om, universal resource, flexible power-size and excellent economy - wide applicability including Developing Countries. Therefore, some essentially new principles have to introduce in the nuclear energy system design. These are thorium utilization, fluid-fuel concepts, especially molten-fluoride technology, and separation of fissile-breeding and power-generation. This philosophy is named Thorium Molten-Salt Nuclear Energy Synergetics [THOMSNES]. Its practical development program is presented

  13. Sn/MWCNT Nanocomposites Fabricated by Ultrasonic Dispersion of Ni-Coated MWCNTs in Molten Tin

    Science.gov (United States)

    Billah, Md Muktadir; Chen, Quanfang

    2018-04-01

    Carbon nanotubes (CNTs) are regarded as a desirable filler to develop advanced composites including advanced solders due to their exceptional mechanical properties. However, some issues remain unsolved for metallic composites owing to "wetting" and nonuniform dispersion of CNTs. In this study, electroless nickel coating onto CNTs was used to overcome these issues. Multiwalled carbon nanotubes (MWCNTs) were used for this study, and Ni-coated MWCNTs were dispersed in molten Sn assisted by sonication and compared with MWCNTs without Ni coating. Adding 3 wt.% Ni-coated MWCNTs, which corresponds to 0.6 wt.% pure CNTs, resulted in an increase in tensile strength by 95% and hardness by 123%. Nickel coating also prevented separation of the CNTs from the molten metal due to buoyancy effects, leading to more uniform dispersion.

  14. Steady MHD flow for molten metal coolants in advanced nuclear systems

    International Nuclear Information System (INIS)

    Koreshi, Z.U.

    2004-01-01

    The flow of a molten metal coolant, incorporating viscosity and a magnetic force in a channel typical of a nuclear fusion reactor is formulated. This is based on the flow conservation equations (continuity and momentum), along with Maxwell's equations and Ohm's law. These equations are solved with assumptions of steady fully-developed flow for Newtonian fluids. Exact solutions are compared with a Direct Numerical Simulation (DNS) to compute important engineering design parameters such as velocity distribution and pressure drop in a coolant channel. The analysis can be used for several candidate coolants including, molten lithium, sodium, lead, and compounds. The difference in velocity profile, and hence pressure drop, is strongly dependent on the magnetic field. In fact, it is shown that a flat (almost-turbulent) profile is obtained for the flow. (author)

  15. Sn/MWCNT Nanocomposites Fabricated by Ultrasonic Dispersion of Ni-Coated MWCNTs in Molten Tin

    Science.gov (United States)

    Billah, Md Muktadir; Chen, Quanfang

    2018-01-01

    Carbon nanotubes (CNTs) are regarded as a desirable filler to develop advanced composites including advanced solders due to their exceptional mechanical properties. However, some issues remain unsolved for metallic composites owing to "wetting" and nonuniform dispersion of CNTs. In this study, electroless nickel coating onto CNTs was used to overcome these issues. Multiwalled carbon nanotubes (MWCNTs) were used for this study, and Ni-coated MWCNTs were dispersed in molten Sn assisted by sonication and compared with MWCNTs without Ni coating. Adding 3 wt.% Ni-coated MWCNTs, which corresponds to 0.6 wt.% pure CNTs, resulted in an increase in tensile strength by 95% and hardness by 123%. Nickel coating also prevented separation of the CNTs from the molten metal due to buoyancy effects, leading to more uniform dispersion.

  16. Design considerations for concentrating solar power tower systems employing molten salt.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  17. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  18. Molten Salt: Concept Definition and Capital Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Larry [Black & Veatch, Kansas City, MO (United States); Andrew, Daniel [Black & Veatch, Kansas City, MO (United States); Adams, Shannon [Black & Veatch, Kansas City, MO (United States); Galluzzo, Geoff [Black & Veatch, Kansas City, MO (United States)

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2

  19. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  20. Purification and Chemical Control of Molten Li2BeF 4 for a Fluoride Salt Cooled Reactor

    Science.gov (United States)

    Kelleher, Brian Christopher

    Out of the many proposed generation IV, high-temperature reactors, the molten salt reactor (MSR) is one of the most promising. The first large scale MSR, the molten salt reactor experiment (MSRE), operated from 1965 to 1969 using Li2BeF4, or flibe, as a coolant and solvent for uranium fluoride fuel, at maximum temperatures of 654°C, for over 15000 hours. The MSRE experienced no concept breaking surprises and was considered a success. Newly proposed designs of molten salt reactors use solid fuels, making them less exotic compared to the MSRE. However, any molten salt reactor will require a great deal of research pertaining to the chemical and mechanical mastery of molten salts in order to prepare it for commercialization. To supplement the development of new molten salt reactors, approximately 100 kg of flibe was purified using the standard hydrofluorination process. Roughly half of the purified salt was lithium-7 enriched salt from the secondary loop of the MSRE. Purification rids the salt of impurities and reduces its capacity for corrosion, also known as the redox potential. The redox potential of flibe was measured at various stages of purification for the first time using a dynamic beryllium reference electrode. These redox measurements have been superimposed with metal impurities measurements found by neutron activation analysis. Lastly, reductions of flibe with beryllium metal have been investigated. Over reductions have been performed, which have shown to decrease redox potential while seemingly creating a beryllium-beryllium halide system. Recommendations of the lowest advisable redox potential for corrosion tests are included along with suggestions for future work.

  1. JET contributions to the workshop on the new phase for JET: the pumped divertor proposal

    International Nuclear Information System (INIS)

    1989-09-01

    Contributions to the Workshop consist of 13 papers on the new phase of operation of JET, including an outline of the objectives of the study of impurity control and the operating domain relative to the next generation of tokamaks. Studies are presented on the pumped divertor proposed for JET, diagnostic measurements required, and the performance expectations in the new configuration. (U.K.)

  2. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karisen, C.E.

    1993-01-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components (1) The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degrees C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms, such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, developed by Rockwell International, consists of a one-stage unit, operated at 900-1000 degrees C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degrees C. The oxidation stage can be operated at a higher temperature, if necessary

  3. Fragmentation of molten core material by sodium

    International Nuclear Information System (INIS)

    Chu, T.Y.

    1982-01-01

    A series of scoping experiments was performed to study the fragmentation of prototypic high temperature melts in sodium. The quantity of melt involved was at least one order of magnitude larger than previous experiments. Two modes of contact were used: melt streaming into sodium and sodium into melt. The average bulk fragment size distribution was found to be in the range of previous data and the average size distribution was found to be insensitive to mode of contact. SEM studies showed that the metal component typically fragmented in the molten phase while the oxide component fragmented in the solid phase. For UO 2 -ZrO 2 /stainless steel melts no sigificant spatial separation of the metal and oxide was observed. The fragment size distribution was stratified vertically in the debris bed in all cases. While the bulk fragment size showed generally consistent trends, the individual experiments were sufficiently different to cause different degrees of stratification in the debris bed. For the highly stratified beds the permeability can decrease by as much as a factor of 20 from the bottom to the top of the bed

  4. Was the early Earth completely molten?

    Science.gov (United States)

    Turcotte, D. L.; Pflugrath, J. C.

    1984-01-01

    The nature of the interior of the primitive Earth was examined. The question is posted: was the Earth a cold solid or was it a hot liquid, much like a lava lakes seen in today's volcanic cauldrons. The various energy sources available to heat the primitive Earth to see if they are sufficient to cause melting were analyzed. The two largest contributors to the Earth's early heat appear to be the heat due to accretion and the heat of core formation. The Earth formed by the accretion of particles ranging in size from millimeters to hundreds of kilometers and each impact into the protoearth provided more energy to heat the body. It is found that early in the Earth's history, the sinking of iron to the center of the Earth to form the core released a substantial amount of energy; enough to heat the entire Earth an average 2000 deg C. Mechanisms for the removal of such a large amount of heat appear inadequate to prevent substantial melting, and it is assumed that the Earth was completely molten, i.e., a magma ocean at one time early in its history.

  5. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  6. Shear rheology of molten crumb chocolate.

    Science.gov (United States)

    Taylor, J E; Van Damme, I; Johns, M L; Routh, A F; Wilson, D I

    2009-03-01

    The shear rheology of fresh molten chocolate produced from crumb was studied over 5 decades of shear rate using controlled stress devices. The Carreau model was found to be a more accurate description than the traditional Casson model, especially at shear rates between 0.1 and 1 s(-1). At shear rates around 0.1 s(-1) (shear stress approximately 7 Pa) the material exhibited a transition to a solid regime, similar to the behavior reported by Coussot (2005) for other granular suspensions. The nature of the suspension was explored by investigating the effect of solids concentration (0.20 chocolate was then compared with the rheology of (1) a synthetic chocolate, which contained sunflower oil in place of cocoa butter, and (2) a suspension of sugar of a similar size distribution (volume mean 15 mum) in cocoa butter and emulsifier. The chocolate and synthetic chocolate showed very similar rheological profiles under both steady shear and oscillatory shear. The chocolate and the sugar suspension showed similar Krieger-Dougherty dependency on volume fraction, and a noticeable transition to a stiff state at solids volume fractions above approximately 0.5. Similar behavior has been reported by Citerne and others (2001) for a smooth peanut butter, which had a similar particle size distribution and solids loading to chocolate. The results indicate that the melt rheology of the chocolate is dominated by hydrodynamic interactions, although at high solids volume fractions the emulsifier may contribute to the departure of the apparent viscosity from the predicted trend.

  7. Molten salt reactor related research in Switzerland

    International Nuclear Information System (INIS)

    Krepel, Jiri; Hombourger, Boris; Fiorina, Carlo

    2015-01-01

    Switzerland represented by the Paul Scherrer Institute (PSI) is a member of the Generation IV International Forum (GIF). In the past, the research at PSI focused mainly on HTR, SFR, and GFR. Currently, a research program was established also for Molten Salt Reactors (MSR). Safety is the key point and main interest of the MSR research at the Nuclear Energy and Safety (NES) department of PSI. However, it cannot be evaluated without knowing the system design, fuel chemistry, salt thermal-hydraulics features, safety and fuel cycle approach, and the relevant material and chemical limits. Accordingly, sufficient knowledge should be acquired in the other individual fields before the safety can be evaluated. The MSR research at NES may be divided into four working packages (WP): WP1: MSR core design and fuel cycle, WP2: MSR fuel behavior at nominal and accidental conditions, WP3: MSR thermal-hydraulics and decay heat removal system, WP4: MSR safety, fuel stream, and relevant limits. The WPs are proposed so that there are research topics which can be independently studied within each of them. The work plan of the four WPs is based on several ongoing or past national and international projects relevant to MSR, where NES/PSI participates. At the current stage, the program focuses on several specific and design independent studies. The safety is the key point and main long-term interest of the MSR research at NES. (author)

  8. Jets with ALICE: from vacuum to high-temperature QCD

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    ALICE measures jets in pp, p-Pb and Pb-Pb collisions to study modifications of the jet fragmentation due to cold nuclear and hot QCD matter. In pp collisions ALICE has measured inclusive jet yields, the ratio of yields with different resolution R, a variety of jet shapes and the semi-inclusive rate of jets recoiling against a high transverse momentum hadron trigger. These measurements are compared to NLO calculations including hadronization corrections and to MC models. Jets in pp are primarily conceived as a vacuum reference for jet observables in p-Pb and Pb-Pb collisions. In p-Pb collisions ALICE explores cold nuclear matter effects on jet yields, jet fragmentation and dijet acoplanarity. The hot and dense medium created in heavy-ion collisions is expected to modify the fragmentation of high energy partonic projectiles leading to changes in the energy and structure of the reconstructed jets with respect to pp jets. The study of modified jets aims at understanding the detailed mechanisms of in-medium energy...

  9. The jet mass distribution after Soft Drop

    Science.gov (United States)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2018-02-01

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects.

  10. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1988-03-01

    The paper is a JET progress report 1987, and covers the fourth full year of JET's operation. The report contains an overview summary of the scientific and technical advances during the year, and is supplemented by appendices of detailed contributions of the more important JET articles published during 1987. The document is aimed at specialists and experts engaged in nuclear fusion and plasma physics, as well as the general scientific community. (U.K.)

  11. Progress in jet reconstruction and heavy ion collisions

    CERN Document Server

    Rojo, Juan

    2010-01-01

    We review recent developments related to jet clustering algorithms and jet reconstruction, with particular emphasis on their implications in heavy ion collisions. These developments include fast implementations of sequential recombination algorithms, new IRC safe algorithms, quantitative determination of jet areas and quality measures for jet finding, among many others. We also show how jet reconstruction provides a useful tool to probe the characteristics of the hot and dense medium created in heavy ion collisions, which allows one to distinguish between different models of parton-medium interaction.

  12. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  13. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    Science.gov (United States)

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.

  14. Jet Joint Undertaking. Annual report 1990

    International Nuclear Information System (INIS)

    1991-05-01

    The Joint European Torus is the largest project in the coordinated fusion programme of the European Atomic Energy Community (EURATOM). A brief general introduction provides an overview of the planning of the Report. This is followed by a description of JET and the Euratom and International Fusion Programmes, which summarize the main features of the JET apparatus and its experimental programme and explains the position of the Project in the overall Euratom programme. In addition, this relates and compares JET to other large fusion devices throughout the world. The following section reports on the technical status of the machine including: technical changes and achievements during 1989; details of the operational organization of experiments and pulse statistics; and progress on enhancements in machine systems for future operation. This is followed by the results of JET operations in 1990 under various operating conditions, including ohmic heating, radio-frequency (RF) heating, neutral beam (NB) heating and various combined scenarios in different magnetic field configurations; the overall global and local behaviour observed; and the progress towards reactor conditions. In particular, the comparative performance between JET and other tokamaks, in terms of the triple fusion product, shows the substantial achievements made by JET since the start of operations in 1983. The second part of the Report explains the organization and management of the Project and describes the administration of JET. In particular, it sets out the budget situation; contractual arrangements during 1990; and details of the staffing arrangements and complement

  15. Review on the current status of molten chloride reactor and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Shin, Yukyung; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    This paper has summarized and reviewed the current status of MCR as an online pyroprocessing reactor, and introduced the related works in UNIST. As the developments of the next generation nuclear energy systems require the fuel sustainability, passive operation safety, nuclear proliferation, and reduction of highly radioactive waste, only several types of nuclear reactor systems survive to the last. Among these, molten salt reactor (MSR) is one of the most promising concepts of next generation nuclear reactor system that deliver on these requirements. MSR have great advantages in the fuel cycle and reduction of nuclear waste, since MSR can serve the online reprocessing system for the reprocessing of spent fuel. Especially, MSR utilizing chloride-based fuel, called molten chloride reactor (MCR) has been recently highlighted in USA under the DOE’s Gateway for Accelerated Innovation in Nuclear (GAIN) program. Recently, the interests in the molten chloride salt have arisen. The use of chloride-based salt gives great advantages to the reactor operating in a fast spectrum. Then MCR can serve waste management functions or fuel cycle sustainability functions, which can solve the current issues in nuclear field. Thus, research plan was established in UNIST which includes the investigation of thermal-hydraulic characteristics of chloride salt and optimization of heat transport system of MCR, using both numerical method and experimental method.

  16. Turbulence in the Heliospheric Jets

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Opher, M.; Hassam, A.; Ohia, O.

    2016-12-01

    The conventional picture of the heliosphere is that of a comet-shaped structure with an extended tail produced by the relative motion of the sun through the local interstellar medium (LISM). Recent MHD simulations of the global heliosphere have revealed, however, that the heliosphere drives magnetized jets to the North and South similar to those driven by the Crab Nebula and other astrophysical objects. These simulations reveal that the jets become turbulent with scale lengths as large as 100AU [1,2]. An important question is what drives this large-scale turbulence, what are the implications for mixing of interstellar and heliospheric plasma and does this turbulence drive energetic particles? An analytic model of the heliospheric jets in the simple limit in which the interstellar flow and magnetic field are neglected yields an equilibrium state that can be analyzed to explore potential instabilities [3]. Calculations suggest that because the axial magnetic field within the jets is small, the dominant instability is the sausage mode, driven by the azimuthal solar magnetic field. Other drive mechanisms, including Kelvin Helmholtz, are also being explored. 3D MHD and Hall MHD simulations are being carried out to explore the development of this turbulence, its impact on the mixing of interstellar and heliosheath plasma and the production of energetic particles. [1] Opher et al ApJ Lett. 800, L28, 2015[2] Pogorelov et al ApJ Lett. 812,L6, 2015[3] Drake et al ApJ Lett. 808, L44, 2015

  17. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...... it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...

  18. Jet Joint Undertaking Progress Report 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The report sets out an overview of progress on JET during 1992 and with a survey of scientific and technical achievements during 1992 sets these advances in their general context. This summary is specifically cross-referenced to reports and articles prepared and presented by JET staff during 1992. The last section is devoted to future plans and certain developments which might enable enhancements of the machine to further improve its overall performance. The Appendices contain a list of work topics which have been carried out under Task Agreements with various Association Laboratories. In addition, a full list is included of all Articles, Reports and Conference papers published by JET authors in 1992

  19. A self-focusing mercury jet target

    CERN Document Server

    Johnson, C

    2002-01-01

    Mercury jet production targets have been studied in relation to antiproton production and, more recently, pion production for a neutrino factory. There has always been a temptation to include some self-focusing of the secondaries by passing a current through the mercury jet analogous to the already proven lithium lens. However, skin heating of the mercury causes fast vaporization leading to the development of a gliding discharge along the surface of the jet. This external discharge can, nevertheless, provide some useful focusing of the secondaries in the case of the neutrino factory. The technical complications must not be underestimated.

  20. Forward modeling of JET polarimetry diagnostic

    International Nuclear Information System (INIS)

    Ford, Oliver; Svensson, J.; Boboc, A.; McDonald, D. C.

    2008-01-01

    An analytical Bayesian inversion of the JET interferometry line integrated densities into density profiles and associated uncertainty information, is demonstrated. These are used, with a detailed model of plasma polarimetry, to predict the rotation and ellipticity for the JET polarimeter. This includes the lateral channels, for over 45,000 time points over 1313 JET pulses. Good agreement with measured values is shown for a number of channels. For the remaining channels, the requirement of a more detailed model of the diagnostic is demonstrated. A commonly used approximation for the Cotton-Mouton effect on the lateral channels is also evaluated.

  1. Jet mass spectra in Higgs+one jet at NNLL

    International Nuclear Information System (INIS)

    Jouttenus, Teppo T.; Stewart, Iain W.; Waalewijn, Wouter J.

    2013-02-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m 2 jet /p jet T scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  2. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  3. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  4. Application of lithium in molten-salt reduction processes

    International Nuclear Information System (INIS)

    Gourishankar, K. V.

    1998-01-01

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li 2 O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes

  5. Overview on CO2 valorisation: challenge of molten carbonates

    Directory of Open Access Journals (Sweden)

    Déborah eChery

    2015-10-01

    Full Text Available The capture and utilisation of CO2 is becoming progressively one of the significant challenges in the field of energetic resources. Whatever the energetic device, it is impossible to avoid completely the production of greenhouse gas, even parting from renewable energies. Transforming CO2 in a valuable fuel, such as alcohols, CO or even C, could constitute a conceptual revolution in the energetic bouquet offering a huge application domain. Although several routes have been tested for this purpose, on which a general panorama will be given here, molten carbonates are attracting a renewed interest aiming at dissolving and reducing carbon dioxide in such melts. Because of their unique properties, molten carbonates are already used as electrolytes in molten carbonate fuel cells; they can also provoke a breakthrough in a new economy considering CO2 as an energetic source rather than a waste. Molten carbonates science and technology is becoming a strategic field of research for energy and environmental issues. Our aim in this review is to put in evidence the benefits of molten carbonates to valorise CO2 and to show that it is one of the most interesting routes for such application.

  6. Heavy quark jets at the LHC

    CERN Document Server

    Voutilainen, Mikko

    2015-01-01

    We summarize measurements of b and c jet production at the LHC, which are an important signature and background for decays of massive particles such as H-to-b-bbar. These include measurements of the inclusive and dijet production of heavy quark jets, b and c jets produced in association with vector bosons Z and W, and decays of boosted Z bosons into pairs of b-bbar. The current status of b tagging and b jet energy scale is also reviewed. These measurements test perturbative QCD in the four and five-flavor number schemes, and provide insight into the relative importance of heavy flavor production through flavor creation, flavor excitation and gluon splitting channels. The W+c measurement provides additionally a powerful way to probe the strange quark and antiquark sea in the proton. The recent studies looking separately at production of one and two b jets find generally good agreement with theory predictions for two b-jet production, while some discrepancies are observed for singly produced b jets, particularl...

  7. General review of flashing jet studies.

    Science.gov (United States)

    Polanco, Geanette; Holdø, Arne Erik; Munday, George

    2010-01-15

    The major concern on the management of superheated liquids, in industrial environments, is the large potential hazards involved in cases of any accidental release. There is a possibility that a violent phase change could take place inside the fluid released generating a flashing jet. This violent phase change might produce catastrophic consequences, such as explosions, fires or toxic exposure, in the installations and in the surroundings. The knowledge and understanding of the mechanisms involved in those releases become an important issue in the prevention of these consequences and the minimization of their impact. This work presents a comprehensive review of information about flashing processes. The review begins with a description of the single phase jet followed by a description of the two-phase flashing jet. The concepts and implications of the thermodynamic and mechanical effects on the behaviour of the jets are considered at the beginning of the review. Following the review is devoted to the classification of the different study approaches used to understand flashing processes in the past, highlighting various critical parameters on the behaviour and the hazard consequences of flashing jets. The review also contains an extensive compilation of experimental, theoretical and numerical data relating to these phenomena, which includes information on the distinct characteristics of the jet, since type of jet, velocity distribution, expansion angle and mass phase change all require individual estimation.

  8. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    Science.gov (United States)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  9. In situ observation and analysis of ultrasonic capillary effect in molten aluminium.

    Science.gov (United States)

    Tzanakis, I; Xu, W W; Eskin, D G; Lee, P D; Kotsovinos, N

    2015-11-01

    An in situ synchrotron radiographic study of a molten Al-10 wt% Cu alloy under the influence of an external ultrasonic field was carried out using the Diamond-Manchester Branchline pink X-ray imaging at the Diamond Light Source in UK. A bespoke test rig was used, consisting of an acoustic transducer with a titanium sonotrode coupled with a PID-controlled resistance furnace. An ultrasonic frequency of 30 kHz, with a peak to peak amplitude at 140 microns, was used, producing a pressure output of 16.9 MPa at the radiation surface of the 1-mm diameter sonotrode. This allowed quantification of not only the cavitation bubble formation and collapse, but there was also evidence of the previously hypothesised ultrasonic capillary effect (UCE), providing the first direct observations of this phenomenon in a molten metallic alloy. This was achieved by quantifying the re-filling of a pre-existing groove in the shape of a tube (which acted as a micro-capillary channel) formed by the oxide envelope of the liquid sample. Analytical solutions of the flow suggest that the filling process, which took place in very small timescales, was related to micro-jetting from the collapsing cavitation bubbles. In addition, a secondary mechanism of liquid penetration through the groove, which is related with the density distribution of the oxides inside the groove, and practically to the filtration of aluminium melt from oxides, was revealed. The observation of the almost instantaneous re-filling of a micro-capillary channel with the metallic melt supports the hypothesised sono-capillary effect in technologically important liquids other than water, like metallic alloys with substantially higher surface tension and density. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Manual of water jet technology

    International Nuclear Information System (INIS)

    Momber, A.

    1993-01-01

    The manual is the first of its kind, presenting a systematic review of water jet applications for cutting or otherwise treating concrete. The basic principles of water jet techniques are explained in chapters entitled: Systematic survey of water jets/Generation and characteristics of water jets/Concrete behaviour under water jet treatment/Optimization potentials/Fundamentals of abrasive water jet techniques/Pulsed water jets/Addition of additives/Equipment and tools/Applications (cleaning, roughening, abrasion, cutting, drilling)/Submerged water jet applications/Safety aspects/Evaluation principles and standard tender documents/Costs/Legal provisions and technical codes. (orig.) [de

  11. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration

    2011-01-01

    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  12. Bouncy Fluid Jets

    Science.gov (United States)

    Wadhwa, Navish; Jung, Sunghwan; Vlachos, Pavlos

    2012-11-01

    Contrary to intuition, free fluid jets can sometimes ``bounce'' off each other upon collision, due to an entrained air film that keeps them separated. So far, there have only been a few descriptive studies of bouncing jets, since the first recorded observation by Rayleigh more than a century ago. We present a quantitative investigation of non-coalescence in jets of same fluid upon an oblique collision. Using a simple experimental set-up, we carried out a parametric study of the bouncing jets by varying the jet diameter, velocity, angle of inclination and fluid viscosity. Our results reveal a scaling law for the contact time of bouncing jets. We further investigate the transition of colliding jets from non-coalescence to coalescence, which seems to be caused by instability of the fluid interface. A dimensionless parameter, which is a function of the Normal Weber Number, Normal Reynolds Number and the angle of inclination of the jets, quantitatively dictates the transition. Presently at Department of Physics, Danish Technical University, Denmark.

  13. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1987-03-01

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  14. Jet Lag Disorder

    Science.gov (United States)

    ... but it can significantly reduce your vacation or business travel comfort. Fortunately, there are steps you can take ... to some symptoms of jet lag, regardless of travel across time zones. In ... attendants and business travelers are most likely to experience jet lag. ...

  15. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    referred to as a jet by. Maarten Schmidt in. 1963, who realized that the strong emission lines of 3C273 were the redshifted Balmer lines giving a redshift of 0.158. In the extragalactic context, while studying optical counterparts of radio sources Baade and Minkowski in 1954 noted a “straight jet, extending from the nucleus” of ...

  16. Jet Shapes at CMS

    CERN Document Server

    Kurt, Pelin

    2008-01-01

    The CMS (Compact Muon Solenoid) detector will observe high transverse momentum jets produced in the final state of proton-proton collisions at the center of mass energy of 14 TeV. These data will allow us to measure jet shapes, defined as the fractional transverse momentum distribution as a function of the distance from the jet axis. Since jet shapes are sensitive to parton showering processes they provide a good test of Monte Carlo event simulation programs. In this note we present a study of jet shapes reconstructed using calorimeter energies. We compare the predictions of the Monte Carlo generators PYTHIA and HERWIG++. Presented results are expected for $pp$ collisions at 14 TeV assuming an integrated luminosity of 10 pb$^{-1}$.

  17. Boson-Jet Correlations in a Hybrid Strong/Weak Coupling Model for Jet Quenching in Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2016-06-11

    We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.

  18. Presence of Li Clusters in Molten LiCl-Li

    Science.gov (United States)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  19. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  20. Critical survey on electrode aging in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K.

    1979-12-01

    To evaluate potential electrodes for molten carbonate fuel cells, we reviewed the literature pertaining to these cells and interviewed investigators working in fuel cell technology. In this critical survey, the effect of three electrode aging processes - corrosion or oxidation, sintering, and poisoning - on these potential fuel-cell electrodes is presented. It is concluded that anodes of stabilized nickel and cathodes of lithium-doped NiO are the most promising electrode materials for molten carbonate fuel cells, but that further research and development of these electrodes are needed. In particular, the effect of contaminants such as H/sub 2/S and HCl on the nickel anode must be investigated, and methods to improve the physical strength and to increase the conductivity of NiO cathodes must be explored. Recommendations are given on areas of applied electrode research that should accelerate the commercialization of the molten carbonate fuel cell. 153 references.

  1. First principles molecular dynamics of molten NaCl

    Science.gov (United States)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  2. Stability of Sodium Electrodeposited From a Series of Room Temperature Chloroaluminate Molten Salts

    National Research Council Canada - National Science Library

    Gray, Gary

    1996-01-01

    .... This work&involved the synthesis of room temperature molten salts and the examination of the electrochemical and transport properties of these salts with the goal of developing a room temperature molten salt...

  3. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Metallic materials file

    International Nuclear Information System (INIS)

    1983-03-01

    Metallic materials for molten salt reactors are studied. The corrosion of steels by the eutectic LiF-BeF 2 and molten lead is examined. Fabrication, aging and welding of molybdenum or TZM tubes are also examined. [fr

  4. Simulations of Solar Jets

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  5. Studies of jet cross-sections and production properties with the ATLAS and CMS detectors

    CERN Document Server

    Anjos, Nuno; The ATLAS collaboration

    2015-01-01

    Several aspects of jet production in pp collisions have been measured by the ATLAS and CMS collaborations. The jet production cross sections probe the dynamics of QCD and can constrain the parton proton structure. Double-differential cross sections for inclusive, di-, three- and four-jet final states are measured at different centre-of-mass energies of pp collisions with the ATLAS detector and are compared to expectations based on NLO QCD calculations. The distribution of the jet charge has been measured in dijet events using pp collision data at 8 TeV with the ATLAS detector. Jet-jet energy correlations are sensitive to the strong coupling constant. Measurements of multi-jet systems with a veto on additional jets, probe QCD radiation effects. These measurements constitute precision tests of QCD in a new energy regime. Studies of large-radius jet properties including N-subjettines, splitting scales and other jet substructure related quantities will be presented.

  6. Feasibility study of hydrogen generator with molten slag granulation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T.; Mizuochi, T. [Graduate School of Engineering, Osaka Pref. Univ., Sakai, Osaka (Japan); Yagi, J.I.; Nogami, H. [Inst. of Multidisciplinary Research for Advanced Materials, Tohoku Univ., Aobaku, Sendai (Japan)

    2004-02-01

    A huge amount of hot molten oxides, such as steelmaking slag and molten municipal waste, is discharged at present without heat recovery, in spite of its very high potential. For example, hot molten slag as a byproduct in the Japanese steelmaking industry, over 1723 K in temperature, reaches as much as 30 million tonnes annually. To recover heat of the viscous slag chemically, the strongly endothermic reaction CH{sub 4}+H{sub 2}O {yields} 3H{sub 2}+CO was selected and then the property of dry granulation of the molten slag by rotary cup atomizer (RCA) for expanding surface area of the slag was experimentally studied. The purpose of this paper was, therefore, to study slag granulation under various conditions for promoting heat exchange between slag and gas, in which the influence of the rotating speed and the shape of the cup on the slag drop size was mainly examined. The collected slag drops were correlated with operating conditions such as rotating speed, cup shape, etc. Most significantly, the molten slag was successfully granulated under the dry conditions without water impingement. The rotating speed of the cup influenced the diameter and shape of the slag drops very strongly. The higher rotating speed made the slag drops smaller, more spherical and uniform. Drops with 5 to 6 mm of average dimension were obtained at a rotating speed of 15 rps (900 rpm), and drops with about 1 mm at 50 rps (3000 rpm). In the former case, the shape of the obtained drops changed from spherical to ribbon-like. These results will be useful to establish new heat recovery processes with hydrogen generation from molten slag with many benefits. Energy analysis and cost evaluation were also conducted, to study the benefit of the proposed process. (orig.)

  7. Electrochemical Deposition of High Purity Silicon from Molten Salts

    Science.gov (United States)

    Haarberg, Geir Martin

    Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 oC were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.

  8. Electrochemical Deposition of High Purity Silicon in Molten Salts

    Science.gov (United States)

    Haarberg, Geir Martin

    Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 °C were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.

  9. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    OpenAIRE

    Noriyoshi Matsumi; Yoshiyuki Toyota; Prerna Joshi; Puhup Puneet; Raman Vedarajan; Toshihiro Takekawa

    2014-01-01

    Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl)-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl)-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl) imide) (LiNTf2), the resulting 1-(2-hydroxyethyl)-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN) to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molt...

  10. Study of an F center in molten KCl

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1984-01-15

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy, the magnetic susceptibility, and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid. The Feynman path of the electron dissolved in molten KCl is highly localized thus justifying the F center model. The effect of varying the e/sup -/-K/sup +/ pseudopotential is also reported.

  11. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  12. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active...

  13. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    OpenAIRE

    Eve Mullen; Ross Harris; Dave Graham; Chris Rhodes; Zara Hodgson

    2017-01-01

    Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500...

  14. [Kelvin-Helmholtz instability in protostellar jets

    Science.gov (United States)

    Stone, James; Hardee, Philip

    1996-01-01

    NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of

  15. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  16. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  17. A Review of Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    James H. Beall

    2014-12-01

    Full Text Available Astrophysical jets are ubiquitous: this simple statement has become a commonplace over the last three decades and more as a result of observing campaigns using detectors sensitive from radio to gamma-ray energies. During this epoch, theoretical models of these sources have become more complex, moving from assumptions of isotropy that made analytic calculations possible, to fully anisotropic models of emission from the jets and their interactions with the interstellar and intra-cluster medium. Such calculations are only possible because we have extensive computational resources. In addition, the degree of international cooperation required for observing campaigns of these sorts is remarkable, since the instruments include among others the Very Large Array (VLA, the Very Long Baseline Array (VLBA, and entire constellations of satellite instruments, often working in concert. In this paper, I discuss some relevant observations from these eorts and the theoretical interpretations they have occasioned.

  18. Jet Reconstruction and Spectroscopy at Hadron Colliders

    Science.gov (United States)

    Bellettini, Giorgio

    2011-11-01

    two processes cannot be made. The feeling of uneasiness becomes much worse by observing (figure 2) the invariant mass distribution of jet pairs produced in association with a W boson at dijet masses larger than the W, Z, recently studied by CDF [2]. Evidence is shown for a wide bump around 145 GeV/c2 which cannot be explained by known processes. Assuming that it is new physics, we do not know whether a single new state or a superposition of several processes is being observed. In an attempt to strengthen the significance of the result one would like to split this spectrum into jet flavour channels. Since the expected background is primarily composed by gluon jets, it ought to be different in different channels. The new process might stand up more prominently in some flavour-specific channel. However, at the present time this study can only be performed accurately for beauty-flavoured jets. Accurate flavour tagging for all jet flavours to include, in particular, gluon jets would be needed. Extending jet flavour studies much beyond the accuracy presently available is mandatory. Figure 2aFigure 2b Figure 2. Mass spectrum of dijets in W production events. The role of theory is extremely important for ensuring success to a renewed jet spectroscopy effort. Part of the theory effort would be in phenomenology. Tagging jet flavour requires an understanding of flavour-dependent jet fragmentation. This goal can be pursued by detailed measurements of jets of known flavour combined with their accurate phenomenological description. A probability tag for each flavour choice could become a standard 'observable' to be quoted as a jet parameter. Precise perturbative calculations can be made of the kinematical structure of the final state of multi-jets of heavy particle events. This is true for W, Z and top quark as well as for new exotic particles. Theoretical input will be vital in understanding the physics of such events. Such an input might be necessary for discovering new particles

  19. Detritiation studies for JET decommissioning

    International Nuclear Information System (INIS)

    Perevezentsev, A.N.; Bell, A.C.; Williams, J.; Brennan, P.D.

    2007-01-01

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T 2 ) in 1991, the Trace Tritium Experiment (5g T 2 ) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T 2 ) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, ''oxygen-free'' copper, aluminium bronze), carbon fibre composite tiles, ''carbon'' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  20. Jet lag prevention

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000719.htm Jet lag prevention To use the sharing features on this page, ... Headache Irritability Stomach upset Sore muscles Tips for Prevention Before your trip: Get plenty of rest, eat ...

  1. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  2. Measurements of Jets in ALICE

    CERN Document Server

    Nattrass, Christine

    2016-01-01

    The ALICE detector can be used for measurements of jets in pp , p Pb, and Pb–Pb collisions. Measurements of jets in pp collisions are consis- tent with expectations from perturbative calculations and jets in p Pb scale with the number of nucleon–nucleon collisions, indicating that cold nuclear matter effects are not observed for jets. Measurements in Pb–Pb collisions demonstrate suppression of jets relative to expectations from binary scaling to the equivalent number of nucleon–nucleon collisions

  3. [Bio-oil production from biomass pyrolysis in molten salt].

    Science.gov (United States)

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  4. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  5. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  6. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    reactor was found to be stable and self-regulating. 4.2 Molten-salt reactor experiment (MSRE) [6]. As ARE had .... Continuous monitoring of the atmo- sphere was carried out by Health Physics Group of ... (4) Breeding ratio should be such that a self-sustaining operation of the reactor is achieved after accounting for losses in ...

  7. The Twentieth International Symposium on Molten Salts and Ionic Liquids

    Science.gov (United States)

    2016-11-29

    Characteristics of Capacitors Based on Ionic Liquids: From Dielectric Polymers to Redox-Active Adsorbed Species E. Lust, L. Siinor, H. Kurig, T. Romann, V...Tungsten from Super Hard Alloys in Molten Sodium Hydroxide T. Oishi 633 Red-Ox Reactions in Ionic Liquids and Their Impact on Electrodeposition of

  8. X-Ray Investigations on Molten Cu-Sb Alloys

    Science.gov (United States)

    Halm, Th.; Neumann, H.; Hoyer, W.

    1994-05-01

    Using X-ray diffraction, structure factors and pair correlation functions of several molten Cu-Sb alloys and pure antimony were determined and compared with published structural, thermodynamic and electronic properties. The eutectic concentration Cu37Sb63 was investigated in dependence on temperature, and a model structure factor was calculated applying a segregation model.

  9. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  10. 30 CFR 56.16013 - Working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials Storage...

  11. 30 CFR 57.16013 - Working with molten metal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Materials...

  12. Metal halide reduction with molten sodium/potassium alloy

    International Nuclear Information System (INIS)

    Martin, W.

    1986-01-01

    A method of obtaining a desired metal, selected from the group consisting of titanium, aluminium, iron, manganese, hafnium, zirconium, tantalum, vanadium, uranium and tungsten, which comprises reacting a halide of the desired metal with an alkali metal reducing agent at temperature at which the reducing agent is molten, in order to produce the desired metal and halide of the metal reducing agent

  13. Nucleation of metals by redox processes in glass molten media

    International Nuclear Information System (INIS)

    Laurent, Y.; Turmel, J.M.; Verdier, P.

    1997-01-01

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N 3- ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO 2 and V 2 O 5 gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  14. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  15. Study of an F center in molten KCl

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1983-05-01

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid.

  16. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Berger, R.J.; Doesburg, E.B.M.; Doesburg, E.B.M.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In

  17. Fluid Mechanics Of Molten Metal Droplets In Additive Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2016-01-01

    Roč. 4, č. 4 (2016), s. 403-412 ISSN 2046-0546 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : additive manufacturing * droplets * molten metal Subject RIV: BK - Fluid Dynamics http://www.witpress.com/elibrary/cmem-volumes/4/4/1545

  18. Ion diffusion related to structure in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1996-08-01

    A model first developed by Zwanzig to derive transport coefficients in cold dense fluids directly from the Green-Kubo time correlation formulae allows one to relate macroscopic diffusion coefficients to the local fluid structure. Applications to various ionic diffusion processes in molten salts are reviewed. Consequences of partial structural quenching are also discussed. (author). 28 refs, 3 tabs

  19. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  20. Electromagnetic Stirring of Molten Metal in Induction Crucible Furnace

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    2002-01-01

    Roč. 47, č. 3 (2002), s. 229-242 ISSN 0001-7043 R&D Projects: GA MŠk LN00B084; GA MŠk ME 542 Grant - others:PSC(PL) BK/RM3/405/01 Keywords : Electromagnetic stirring * molten metal * induction heating Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Release properties of UC sub x and molten U targets

    CERN Document Server

    Roussière, B; Sauvage, J; Bajeat, O; Barre, N; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Lau, C; Lefort, H; Liang, C F; Le Blanc, F; Müller, A C; Obert, J; Pauwels, N; Potier, J C; Pougheon, F; Proust, J; Sorlin, O; Verney, D; Wojtasiewicz, A

    2002-01-01

    The release properties of UC sub x and molten U thick targets associated with a Nier-Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe.

  2. Jets in hadronic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Paige, F.E.

    1983-01-01

    Recent experimental data on the properties of jets in hadronic reactions are reviewed and compared with theoretical expectations. Jets are clearly established as the dominant process for high E/sub T/ events in hadronic reactions. The cross section and the other properties of these events are in qualitative and even semiquantitative agreement with expectations based on perturbative QCD. However, we can not yet make precise tests of QCD, primarily because there are substantial uncertainties in the theoretical calculations. 45 references. (WHK)

  3. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  4. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  5. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  6. The US Molten Carbonate Fuel-Cell development and commercialization effort

    Science.gov (United States)

    Williams, Mark C.; Parsons, Edward L., Jr.; Mayfield, M. J.

    The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the US, including the role of the US Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. The authors describe major fundamental stack research issues, as well as MCFC power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

  7. Molten Corium-Concrete Interaction Behavior Analyses for Severe Accident Management in CANDU Reactor

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, D. H.; Song, Y. M.

    2014-01-01

    After the last few severe accidents, the importance of accident management in nuclear power plants has increased. Many countries, including the United States (US) and Canada, have focused on understanding severe accidents in order to identify ways to further improve the safety of nuclear plants. It has been recognized that severe accident analyses of nuclear power plants will be beneficial in understanding plant-specific vulnerabilities during severe accidents. The objectives of this paper are to describe the molten corium behavior to identify a plant response with various concrete specific components. Accident analyses techniques using ISSAC can be useful tools for MCCI behavior in severe accident mitigation

  8. On-line reprocessing of a molten salt reactor: a simulation tool

    International Nuclear Information System (INIS)

    Simon, Nicole; Gastaldi, Olivier; Penit, Thomas; Cohin, Olivier; Campion, Pierre-Yves

    2008-01-01

    The molten salt reactor (MSR) is one of the concepts studied in the frame of GEN IV road-map. Due to the specific features of its liquid fuel, the reprocessing unit may be directly connected to the reactor. A modelling of this unit is presented. The final objective is to create a flexible computer reprocessing code which can use data from neutron calculations and can be coupled to a neutron code. Such a code allows the description of the whole behaviour of MSR, including, in a coupled manner, both the design of the core and the optimised reprocessing scheme effects. (authors)

  9. An overview of radiolysis studies for the molten salt reactor remediation project

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Williams, D.F.; Trowbridge, L.D.; Toth, L.M.; Del Cul, G.D.

    2001-01-01

    A number of radiolysis experiments have been performed in support of the remediation of the Molten Salt Reactor Experiment (MSRE)at the Oak Ridge National Laboratory.Materials studied included simulated MSRE fuel salt,fluorinated charcoal, NH 4 F,2NaFUF 6 ,UO 2 F 2 uranium oxides with a known residual fluoride content,and uranium oxides with a known moisture content.The results from these studies were used as part of the basis for the interim or long-term storage of materials removed from the MSRE. (author)

  10. JetStar in flight

    Science.gov (United States)

    1981-01-01

    This 18-second movie clip shows the NASA Dryden Lockheed C-140 JetStar in flight with its pylon-mounted air-turbine-drive system used to gather information on the acoustic characteristics of subscale advanced design propellers. Data was gathered through 28 flush-mounted microphones on the skin of the aircraft. From 1976 to 1987 the NASA Lewis Research Center, Cleveland, Ohio -- today known as the Glenn Research Center -- engaged in research and development of an advanced turboprop concept in partnership with Hamilton Standard, Windsor Locks, Connecticut, the largest manufacturer of propellers in the United States. The Advanced Turboprop Project took its impetus from the energy crisis of the early 1970's and sought to produce swept propeller blades that would increase efficiency and reduce noise. As the project progressed, Pratt & Whitney, Allison Gas Turbine Division of General Motors, General Electric, Gulfstream, Rohr Industries, Boeing, Lockheed, and McDonnell Douglas, among others, also took part. NASA Lewis did the much of the ground research and marshaled the resources of these and other members of the aeronautical community. The team came to include the NASA Ames Research Center, Langley Research Center, and the Ames-Dryden Flight Research Facility (before and after that time, the Dryden Flight Research Center). Together, they brought the propeller to the flight research stage, and the team that worked on the project won the coveted Collier Trophy for its efforts in 1987. To test the acoustics of the propeller the team developed, it mounted propeller models on a C-140 JetStar aircraft fuselage at NASA Dryden. The JetStar was modified with the installation of an air-turbine-drive system. The drive motor, with a test propeller, was mounted on a pylon atop the JetStar. The JetStar was equipped with an array of 28 microphones flush-mounted in the fuselage of the aircraft beneath the propeller. Microphones mounted on the wings and on an accompanying Learjet chase

  11. Physics of liquid jets

    International Nuclear Information System (INIS)

    Eggers, Jens; Villermaux, Emmanuel

    2008-01-01

    Jets, i.e. collimated streams of matter, occur from the microscale up to the large-scale structure of the universe. Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids. Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology. Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup. In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology. They also arise from the last but one topology change of liquid masses bursting into sprays. Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium. The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

  12. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Science.gov (United States)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  13. Supplying Fe from molten coal ash to revive kelp community

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yamamoto, M.; Sadakata, M. [University of Tokyo, Tokyo (Japan)

    2006-02-15

    The phenomenon of a kelp-dominated community changing to a crust-dominated community, which is called 'barren-ground', is progressing in the world, and causing serious social problems in coastal areas. Among several suggested causes of 'barren-ground', we focused on the lack of Fe in seawater. Kelp needs more than 200 nM of Fe to keep its community. However there are the areas where the concentration of Fe is less than 1 nM, and the lack of Fe leads to the 'barren-ground.' Coal ash is one of the appropriate materials to compensate the lack of Fe for the kelp growth, because the coal ash is a waste from the coal combustion process and contains more than 5 wt% of Fe. The rate of Fe elution from coal fly ash to water can be increased by 20 times after melting in Ar atmosphere, because 39 wt% of the Fe(III) of coal fly ash was reduced to Fe(II). Additionally molten ash from the IGCC (integrated coal gasification combined cycle) furnace in a reducing atmosphere and one from a melting furnace pilot plant in an oxidizing atmosphere were examined. Each molten ash was classified into two groups; cooled rapidly with water and cooled slowly without water. The flux of Fe elution from rapidly cooled IGCC molten ash was the highest; 9.4 x 10{sup -6} g m{sup -2} d{sup -1}. It was noted that the coal ash melted in a reducing atmosphere could elute Fe effectively, and the dissolution of the molten ash itself controlled the rate of Fe elution in the case of rapidly cooled molten ash.

  14. Propagation mechanisms of molten fuel/moderator interactions

    International Nuclear Information System (INIS)

    Frost, D.L.; Ciccarelli, G.

    1991-06-01

    It is well known that a vapor explosion can result when molten is suddenly brought into contact with a cold volatile liquid such as water. However, the rapid melt fragmentation and heat transfer processes that occur during a propagating melt-water interaction are poorly understood. Experiments were carried out in the present work to investigate the fragmentation processes for single molten metal drops in water. To determine the time scale for the fragmentation of a drop, liquid metal drops (in thermal equilibrium with the water) as well as hot molten drops surrounded by a vapor film were subjected to underwater shocks with overpressures of up to about 20 MPa. In the hot molten drop tests, the induction time for the initiation of the explosion is typically less than 100 μs; at a corresponding time in the cold drop tests, very little or no direct hydrodynamic fragmentation of the drop has occurred. Therefore, in the hot drop case the fragmentation of the drop is dominated by thermal effects; i.e., the heat transfer from the melt to the water leads to violent boiling, pressurization, and drop fragmentation. The melt-water interaction consists of several cycles involving bubble growth and collapse. The strength of the interaction was not found to be a strong function of initial shock pressure (for molten tin drops with trigger pressures of up to 20 MPa), but depends on the thermal energy in the melt: high-temperature thermite drops generated a larger first bubble than lower temperature melt drops. A model for the fine fragmentation process for a hot drop is proposed that is based on thermal effects. The fragmentation processes governed by thermal effects observed in the present experiments are expected to play an important role in the escalation of a local interaction to a large-scale coherent vapor explosion, and are not accounted for in current transient models for propagating vapor explosions

  15. Abatement of tetrafluoromethane by chemical absorption with molten aluminum.

    Science.gov (United States)

    Shi, Zhongning; Cao, Dao; Tang, Wei; Hu, Xianwei; Wang, Zhaowen

    2017-12-15

    Chemical absorption with molten aluminum to abate tetrafluoromethane (CF 4 ) was investigated in this paper. The experiments were conducted at a series of different temperatures of 973 K, 1003 K, 1103 K, and 1188 K and the abatement rate of CF 4 was calculated. It was found that CF 4 can be adsorbed firstly and then react with molten aluminum automatically. The initial abatement rate of CF 4 in molten aluminum was 3.10 × 10 -2  mol·m -3 ·s -1 at 973 K, while it reached its maximum value of 1.08 × 10 -1  mol·m -3 ·s -1 at the temperature of 1103 K. The highest abatement efficiency was 48.4%, reached at 1003 K. Higher temperatures up to 1188 K did not affect the abatement efficiency, however, they accelerated slightly the initial reaction rate. The products of the chemical absorption are white solid AlF 3 and black graphite powder identified by XRD and SEM-EDS analysis. Due to density differences, solid AlF 3 and graphite powder in the product tend to accumulate on the top of molten aluminum where they form two separate layers. This makes them recover more easily. The gas-liquid reaction process between CF 4 and molten aluminum is accorded with the two-film theory model, diffusion process is considered to be the control step of the whole process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  17. Overview of JET results

    International Nuclear Information System (INIS)

    Pamela, J.

    2003-01-01

    Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. The physics of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly: the extrapolation of ELM size to ITER has been re-evaluated; NTMs have been shown to be metastable in JET, and can be avoided via sawtooth destabilisation by ICRH; α-simulation experiments were carried out by accelerating 4 He beam ions by ICRH, providing a new tool for fast particle and MHD studies with up to 80-90% of plasma heating by fast 4 He ions. With or without impurity seeding, quasi-steady sate high confinement (H 98 =1), high density (n e /n GR = 0.9-1) and high β (β N =2) ELMy H-mode has been achieved by operating near the ITER triangularity (δ∼0.40-0.5) and safety factor (q 95 ∼3), at Z eff ∼1.5-2. In Advanced Tokamak scenarios, internal transport barriers are now characterised in real time with a new criterion ρ* T ; tailoring of the current profile with LHCD provides reliable access to a variety of q profiles, with significantly lowered access power for barrier formation; rational q surfaces appear to be associated with ITB formation; Alfven cascades are observed in RS plasmas, providing an identification of q profile evolution; plasmas with 'current holes' were observed and explained by modelling. Transient high confinement Advanced Tokamak regimes with H89=3.3, β N =2.4 and ITER relevant q<5 are achievable in reversed magnetic shear. Quasistationary internal transport barriers are developed with full non-inductive current drive, including ∼50% bootstrap current. Record duration of ITBs was achieved, up to 11 s, approaching the resistive time. Pressure and current profiles of Advanced Tokamak regimes are controlled by a real time feedback system, in separate experiments. The erosion and co-deposition data base progressed significantly, in particular with a new quartz microbalance diagnostic allowing shot by shot measurements of

  18. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  19. DT experiment on JET

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka

    1992-01-01

    In November, 1991, at the JET tokamak in Abingdon, the U.K., DT plasma combustion experiment was carried out for the first time in history. The output power by nuclear fusion of 1.7 MW at maximum and the total power output of 2 MJ were attained, and it was proved that the controlled nuclear fusion accompanied by considerable power output can be carried out on the ground as a real thing. One milestone of the dream and target of nuclear fusion reactors was attained. In this paper, the results of the experiment are reported, and their meaning for the research of hereafter is considered. In the experiment this time, 0.24 g of tritium in total was used, including conditioning. The last two shots became the power output experiment of MW class nuclear fusion reaction, in which about 13% of tritium fuel ratio was estimated. The preliminary tritium experiment was divided into six phases, and was carried out for three weeks, aiming at collecting the basic data for the full scale DT experiment. The examination of the research program, the preliminary tritium experiment and the success of the PTE and the new development are described. (K.I.)

  20. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Eve Mullen

    2017-12-01

    Full Text Available Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500°C. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

  1. Three gluon jets as a test of QCD

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.F.

    1977-10-01

    As a test of quantum chromodynamics (QCD), we suggest looking for gluon jets in the decay of a heavy quark-antiquark bound state produced in e + e - -annihilation, Q anti Q → 3 gluons → 3 gluon jets. In particular, we point out that these events form a jet Dalitz plot, and we calculate the gluon or jet distributions (including the effect of polarized e + e - -beams). This process affords a test of the gluon spin. It is the analogue of two-jet angular distributions in e + e - %→ q anti q → 2 quark jets. We also estimate multiplicities and momentum distributions of hadrons in Q anti Q → 3 gluons → hadrons, using the recently discovered UPSILON (9.4) as an example. (orig.) [de

  2. Measurement of the W + Jets Production Cross Section with ATLAS

    CERN Document Server

    Jen-La Plante, I; The ATLAS collaboration

    2011-01-01

    The associated production of jets with a W-boson provides a proving ground for perturbative QCD predictions and an important background to other interesting processes in the Standard Model and beyond. In both the electron and muon decay modes of the W-boson, measurements using the ATLAS detector are presented. These include cross sections as a function of jet multiplicity, jet transverse momentum, and the sum of transverse momenta of energetic jets and leptons in each event, as well as ratios of cross sections. The results are corrected to particle level and compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD calculations.

  3. Measurement of the W + Jets Production Cross Section with ATLAS

    CERN Document Server

    Jen-La Plante, I; The ATLAS collaboration

    2011-01-01

    The associated production of jets with a W-boson provides a proving ground for perturbative QCD predictions and a formidable background to other interesting processes in the Standard Model and beyond. In both the electron and muon decay modes of the W-boson, measurements using the ATLAS detector are presented. These include cross sections as a function of jet multiplicity, jet transverse momentum, and the sum of transverse momenta of energetic jets and leptons in each event, as well as ratios of cross sections. The results are corrected to particle level and compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD calculations.

  4. Jet propagation within a Linearized Boltzmann Transport model

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.

  5. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-26

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  6. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  7. Recent advances in the molten salt technology for the destruction of energetic materials

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.

    1995-11-01

    The DOE has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The authors have demonstrated the Molten Salt Destruction (MSD) Process for the treatment of explosives and explosive-containing wastes on a 1.5 kilogram of explosive per hour scale and are currently building a 5 kilogram per hour unit. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. The destruction of energetic material waste is accomplished by introducing it, together with air, into a crucible containing a molten salt, in this case a eutectic mixture of Na, K, and Li carbonates. The following pure component DOE and DoD explosives have been destroyed in LLNL's experimental unit at their High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K-6, NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following formulations were also destroyed: Comp B, LX-10, LX-16, LX-17, PBX-9404, and XM46, a US Army liquid gun propellant. In this 1.5 kg/hr unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NOx were found to be well below 1T. In addition to destroying explosive powders and molding powders the authors have also destroyed materials that are typical of real world wastes. These include shavings from machined pressed parts of plastic bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the information obtained on the smaller unit, the authors have constructed a 5 kg/hr MSD unit, incorporating LLNL's advanced chimney design. This unit is currently under shakedown tests and evaluation

  8. Understanding fluxes as media for directed synthesis: in situ local structure of molten potassium polysulfides.

    Science.gov (United States)

    Shoemaker, Daniel P; Chung, Duck Young; Mitchell, J F; Bray, Travis H; Soderholm, L; Chupas, Peter J; Kanatzidis, Mercouri G

    2012-06-06

    Rational exploratory synthesis of new materials requires routes to discover novel phases and systematic methods to tailor their structures and properties. Synthetic reactions in molten fluxes have proven to be an excellent route to new inorganic materials because they promote diffusion and can serve as an additional reactant, but little is known about the mechanisms of compound formation, crystal precipitation, or behavior of fluxes themselves at conditions relevant to synthesis. In this study we examine the properties of a salt flux system that has proven extremely fertile for growth of new materials: the potassium polysulfides spanning K(2)S(3) and K(2)S(5), which melt between 302 and 206 °C. We present in situ Raman spectroscopy of melts between K(2)S(3) and K(2)S(5) and find strong coupling between n in K(2)S(n) and the molten local structure, implying that the S(n)(2-) chains in the crystalline state are mirrored in the melt. In any reactive flux system, K(2)S(n) included, a signature of changing species in the melt implies that their evolution during a reaction can be characterized and eventually controlled for selective formation of compounds. We use in situ X-ray total scattering to obtain the pair distribution function of molten K(2)S(5) and model the length of S(n)(2-) chains in the melt using reverse Monte Carlo simulations. Combining in situ Raman and total scattering provides a path to understanding the behavior of reactive media and should be broadly applied for more informed, targeted synthesis of compounds in a wide variety of inorganic fluxes.

  9. Improving the Simulation of Quark and Gluon Jets with Herwig 7 arXiv

    CERN Document Server

    Reichelt, Daniel; Siodmok, Andrzej

    2017-12-16

    The properties of quark and gluon jets, and the differences between them, are increasingly important at the LHC. However, Monte Carlo event generators are normally tuned to data from $e^+e^-$ collisions which are primarily sensitive to quark-initiated jets. In order to improve the description of gluon jets we make improvements to the perturbative and the non-perturbative modelling of gluon jets and include data with gluon-initiated jets in the tuning for the first time. The resultant tunes significantly improve the description of gluon jets and are now the default in Herwig 7.1.

  10. Improving the simulation of quark and gluon jets with Herwig 7

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, Daniel [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Richardson, Peter [CERN, Theory Department, Geneva (Switzerland); Durham University, Department of Physics, IPPP, Durham (United Kingdom); Siodmok, Andrzej [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland)

    2017-12-15

    The properties of quark and gluon jets, and the differences between them, are increasingly important at the LHC. However, Monte Carlo event generators are normally tuned to data from e{sup +}e{sup -} collisions which are primarily sensitive to quark-initiated jets. In order to improve the description of gluon jets we make improvements to the perturbative and the non-perturbative modelling of gluon jets and include data with gluon-initiated jets in the tuning for the first time. The resultant tunes significantly improve the description of gluon jets and are now the default in Herwig 7.1. (orig.)

  11. Electrical Conductivities of Low-Temperature KCl-ZrCl4 and CsCl-ZrCl4 Molten Mixtures

    Science.gov (United States)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2018-02-01

    The electrical conductivities of molten KCl-ZrCl4 and CsCl-ZrCl4 mixtures, including their heterogeneous (melt+crystals) ranges, were measured for the first time. The concentration ranges were 65-72 and 66-75 mol.% of ZrCl4, and the temperature ranges were 482-711 and 548-735 K, respectively. The measurements were carried out in cells of an original design.

  12. Sweeping Jet Optimization Studies

    Science.gov (United States)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  13. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Kupschus, P.

    1984-09-01

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  14. Full jet evolution in quark-gluon plasma and nuclear modification of jet structure in Pb+Pb collisions at 2.76A TeV

    Science.gov (United States)

    Chang, Ning-Bo; Qin, Guang-You

    2017-08-01

    We study the evolution of full jet shower in quark-gluon plasma via solving a set of coupled differential transport equations for the three-dimensional momentum distributions of quarks and gluons contained in the full jets. The evolution equations include all partonic splitting processes as well as the collisional energy loss and transverse momentum broadening for both the leading and radiated partons of the full jets. Combining with realistic hydrodynamic simulation for the space-time evolution of the fireball created in Pb+Pb collisions at 2.76A TeV, we calculate the nuclear modification of single inclusive full jet spectra, the momentum imbalance of photon-jet and dijet pairs, and jet shape function (at partonic level). The roles of various jet-medium interaction mechanisms on the modification of full jet energy and internal structure are studied.

  15. Dissolution of alumina, copper oxide and nitrogen in molten slags: Thermodynamics and kinetics

    Science.gov (United States)

    Fan, Peng

    Three studies have been conducted concerning thermodynamics and kinetics of dissolution of alumina, copper oxides and nitrogen in various molten slags. In the first study, the dissolution rate of alumina particles in molten CaO-Al2O3-SiO2 slag was measured at 1500--1550°C by direct sampling method for the purpose of understanding the dissolution behavior of alumina inclusion in molten slags. It was found that the dissolution rate decreased with increasing SiO2 and Al2O3 contents in slag, but increased with increasing temperature. In the ladle type slags, alumina particles dissolved much faster than in the tundish type slags. In the second study, solubility of solid CuO in molten Na2O-B 2O3 slag and liquid Cu2O in molten CaO-B 2O3-SiO2 slag was measured at 1000°C and 1250°C, with attempts to find suitable slags for the fluxing stage of the proposed oxidizing-fluxing process to remove copper from steel scrap. Experimental results showed that the minimum solubility occurred at neutral slag compositions, demonstrating amphoteric nature of CuO and Cu2O A regular solution model was employed to interpret the solubility data of CuO in Na2O-B 2O3 slag to obtain the interaction energies of CuO-NaO 0.5 and CuO-BO1.5, and then solubility curve, iso-activity curves and isothermal section of phase diagram of CuO-Na2O-B 2O3 system at 1000°C were drawn from the model calculation. Basic Na2O-B2O3 slag is expected to be a suitable slag for the fluxing process. The objective of the third study is to investigate the feasibility of removing nitrogen from molten steel by two newly proposed slag systems, TiO slag and Ti2O3 slag. Nitrogen distribution ratios between slag and steel were measured at 1600°C, for CaO-Al2O3-TiO, CaO-Al2O3-Ti 2O, CaO-Al2O3-TiO2 and CaO-Al 2O3 by two new slag-metal equilibration techniques, i.e., liquid sealing method and static atmosphere method. Activity coefficients of AIN and TiN, as useful indexes of measuring ability of slag to remove nitrogen, were

  16. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  17. Aeroacoustic Experiments with Twin Jets

    Science.gov (United States)

    Bozak, Richard F.; Henderson, Brenda S.

    2012-01-01

    While the noise produced by a single jet is azimuthally symmetric, multiple jets produce azimuthally varying far-field noise. The ability of one jet to shield another reduces the noise radiated in the plane of the jets, while often increasing the noise radiated out of the plane containing the jets. The present study investigates the shielding potential of twin jet configurations over subsonic and over-expanded supersonic jet conditions with simulated forward flight. The experiments were conducted with 2 in. throat diameter nozzles at four jet spacings from 2.6d to 5.5d in center-to-center distance, where d is the nozzle throat diameter. The current study found a maximum of 3 dB reduction in overall sound pressure level relative to two incoherent jets in the peak jet noise direction in the plane containing the jets. However, an increase of 3 dB was found perpendicular to the plane containing the jets. In the sideline direction, shielding is observed for all jet spacings in this study.

  18. Status of the JET project and its supporting technological programme

    International Nuclear Information System (INIS)

    Bertolini, E.

    1976-01-01

    A brief review of the overall design of the JET facility is given. Particular JET components described include the vacuum system, toroidal field coils, poloidal system, power supplies, control and data acquisition, and status of the project towards the construction phase

  19. Studies of relativistic jets in active galactic nuclei with SKA

    NARCIS (Netherlands)

    Agudo, I.; Bottcher, M.; Falcke, H.; Georganopoulos, M.; Ghisellini, G.; Giovannini, G.; Giroletti, M.; Gomez, J.L.; Gurvits, L.; Laing, R.; Lister, M.; Marti, J.M.; Meyer, E.T.; Mizuno, Y.; O'Sullivan, S.; Padovani, P.; Paragi, Z.; Perucho, M.; Schleicher, D.; Stawarz, L.; Vlahakis, N.; Wardle, J.

    2014-01-01

    Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli &

  20. New Developments for Jet Substructure Reconstruction in CMS

    CERN Document Server

    CMS Collaboration

    2017-01-01

    We present Monte Carlo based studies showcasing several developments for jet substructure reconstruction in CMS. This include Quark/Gluon tagging algorithms using Boosted Decision Trees and Deep Neural Networks, the XCone jet clustering algorithm and the Boosted Event Shape Tagger (BEST).

  1. Remote participation at JET Task Force work: users' experience

    International Nuclear Information System (INIS)

    Suttrop, W.; Kinna, D.; Farthing, J.; Hemming, O.; How, J.; Schmidt, V.

    2002-01-01

    The Joint European Torus (JET) fusion experiment is now operated with strong involvement of physicists from outside research laboratories, which often requires remote participation in JET physics experiments. Users' experience with tools for remote collaborative work is reported, including remote computer and data access, remote meetings, shared documentation and various other communication channels

  2. Jet joint undertaking annual report 1988

    International Nuclear Information System (INIS)

    1989-07-01

    The 1988 activity report of the Joint European Torus (JET) project, is presented. The report provides an overview of the scientific, technical and administrative status of the program. The background of the project, the description of JET and Euratom and International Fusion Programs are explained. The technical status of the machine is given and it includes: technical changes and achievements during 1988; details of the operational organisation of experiments and pulse statistics; and progress on enhancements in machine systems for future operations. The results of JET operations in 1988, under various conditions of heating and combined scenarios in different magnetic field configurations, are provided. The project budget situation, contractual arrangements, in 1988, and staff complements, are included

  3. Tritium permeation and recovery for the helium-cooled molten salt fusion breeder

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1984-09-01

    Design concepts are presented to control tritium permeation from a molten salt/helium fusion breeder reactor. This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. The proposed permeation barrier for the reactor tubes is a 10 μm layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate. A research and development effort is needed to prove feasibility or to develop alternative barriers. A 1 mm aluminum sleeve is proposed to suppress permeation through the steam generator tubes. This gives a calculated reduction factor of more than 500 relative to bare steel, including a factor of 30 due to an assumed oxide layer. The permeation equations are developed in detail for a multi-layer tube wall including a frozen salt layer and with two fluid boundary-layer resistances. Conditions are discussed for which Sievert's or Henry's Law materials become flux limiters. An analytical model is developed to establish the tritium split between wall permeation and reactor-tube flow

  4. Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity

    International Nuclear Information System (INIS)

    Haas, P.A.; Rudolph, J.C.; Bell, J.T.

    1994-06-01

    Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 degrees C) at ≥ 900 degrees C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL's studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO x , emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO x , emissions are relatively low ( x , The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls

  5. A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts

    International Nuclear Information System (INIS)

    Dimitrov, Aleksandar T.; Chen, George Z.; Kinloch, Ian A.; Fray, Derek J.

    2002-01-01

    The feasibility of scaling-up the electrolytic production of carbon nanotubes in molten salts has been investigated with the aid of electron microscopy (TEM and SEM). Using molten LiCl as the electrolyte and commercial graphite as both cathode and anode materials, carbon nanomaterials, including nanotubes, were prepared by constant voltage electrolysis. The cell was more than 20 times as large as that used in previous work. The nanotube concentration in the final product increased with cell voltage (including iR drop) from 1 vol.% at 4.0 V to 35 vol.% at 8.4 V. Under desired conditions, the charge and energy consumption for the cathode erosion was 0.28 Ah/g and 4.1 Wh/g, of which 60-70 wt.% were for producing nanomaterials (nanotubes: >30 vol.%). When adding 1 wt.% SnCl 2 to the electrolyte, partial and fully filled nanotubes were obtained with the nanomaterials containing up to 20 wt.% Sn. Preliminary results from applying the product as the electrode in lithium ion batteries are reported

  6. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Guo, Shaoqiang

    2018-03-30

    Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels. During the electro-refining process, actinides and active fission products such rare earth (RE) elements are dissolved into the molten salt from the spent fuel at an anode basket. Then U and Pu are electro-deposited on the cathodes while REs with relatively negative reduction potentials are left in the molten salt bath. However, with the accumulation of lanthanides in the salt, the reduction potentials of REs will approach the values for U and Pu, affecting the recovery efficiency of U and Pu. Hence, RE drawdown is necessary to reduce salt waste after uranium and minor actinides recovery, which can also be performed by electrochemical separations. To separate various REs and optimize the drawdown process, physical properties of REs in LiCl-KCl salt and their concentration dependence are essential. Thus, the primary goal of present research is to provide fundamental data of REs and deduce phase diagrams of LiCl-KCl-RECl3 based complex molten salts. La, Nd and Gd are three representative REs that we are particularly interested in due to the high ratio of La and Nd in UNF, highest standard potential of Gd among all REs, and the existing literature data in dilute solution. Electrochemical measurements are performed to study the thermodynamics and transport properties of LaCl3, GdCl3, NdCl3, and NdCl2 in LiCl-KCl eutectic in the temperature range 723-823 K. Test are conducted in LiCl-KCl melt

  7. Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation

    NARCIS (Netherlands)

    Walg, S.; Achterberg, A.; Markoff, S.; Keppens, R.; Meliani, Z.

    2013-01-01

    Astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry

  8. Multichannel discharge between jet electrolyte cathode and jet electrolyte anode

    NARCIS (Netherlands)

    Shakirova, E. F.; Gaitsin, Al. F.; Son, E. E.

    We present the results of an experimental study of multichannel discharge between a jet electrolyte cathode and jet electrolyte anode within a wide range of parameters. We pioneer the reveal of the burning particularities and characteristics of multichannel discharge with jet electrolyte and droplet

  9. Discovery of a faint optical jet in 3C 120

    DEFF Research Database (Denmark)

    Hjorth, J.; Vestergaard, Marianne; Sorensen, A. N.

    1995-01-01

    We report the detection of an optical jet in the nearby Seyfert 1 radio galaxy 3C 120. The optical jet coincides with the well-known radio jet and emits continuum radiation (B,V',I) with a radio-to-optical spectral index of 0.65. There are no clear optical counterparts to the radio knots, although...... the optical condensation A of the galaxy, which includes the bright 4" radio knot, is found to be 12 % polarized with the electric field vectors perpendicular to the jet. These findings indicate that 3C 120 contains the 6th known extragalactic optical synchrotron jet, quite similar in its properties...... to the jet of PKS 0521-36. The outer parts of the jet is the faintest known optical jet and was discovered as the result of a dedicated effort to detect it. It is therefore possible that more optical jets can be discovered in systematic searches by combining deep imaging in the optical or near...

  10. Precise predictions for V + jets dark matter backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindert, J.M.; Glover, N.; Morgan, T.A. [University of Durham, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Pozzorini, S.; Gehrmann, T.; Schoenherr, M. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Boughezal, R. [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Campbell, J.M. [Fermilab, Batavia, IL (United States); Denner, A. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Dittmaier, S.; Maierhoefer, P. [Albert-Ludwigs-Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Gehrmann-De Ridder, A. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Institute for Theoretical Physics, ETH, Zurich (Switzerland); Huss, A. [Institute for Theoretical Physics, ETH, Zurich (Switzerland); Kallweit, S.; Mangano, M.L.; Salam, G.P. [CERN, Theoretical Physics Department, Geneva (Switzerland); Mueck, A. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Petriello, F. [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Williams, C. [University at Buffalo, The State University of New York, Department of Physics, Buffalo (United States)

    2017-12-15

    High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the Z(ν anti ν) + jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by Z(l{sup +}l{sup -}) + jet, W(lν) + jet and γ + jet production, and extrapolating to the Z(ν anti ν) + jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant V + jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different V + jet processes play a key role. The anticipated theoretical uncertainty in the Z(ν anti ν) + jet background is at the few percent level up to the TeV range. (orig.)

  11. Runaway beam studies during disruptions at JET-ILW

    International Nuclear Information System (INIS)

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Brezinsek, S.; Decker, J.; Devaux, S.; Vries, P. de; Fil, A.

    2015-01-01

    Highlights: • Runaway electrons (RE) have been obtained at JET-ILW using massive argon injection. • The runaway electron domain entry points are similar between JET-C and JET-ILW. • Inside the runaway electron domain, higher RE currents are observed with JET-ILW. • RE impact has been observed without material melting up to 100 kA RE current. • Heat deposition of 2 ± 1 mm is confirmed by measurements and simulations. - Abstract: Runaway electrons (RE) during disruptions are a concern for future tokamaks including ITER with its metallic wall. Although RE are rare in spontaneous disruptions with the JET ITER-like Wall (JET-ILW), RE beams up to 380 kA were obtained using massive injection (MGI) of argon in JET-ILW divertor discharges. Entry points into the RE domain defined by operational parameters (toroidal field, argon fraction in MGI) are unchanged but higher RE currents have been obtained inside the JET-ILW MGI-generated RE domain when compared to JET-C. This might be due to the influence of the metallic wall on the current quench plasma. Temperatures of 900 °C have been observed following RE impacts on beryllium tiles. Heat deposition depth of ∼2 mm has to be assumed to match the tile cooling time. 3D simulations of the RE energy deposition using the ENDEP/MEMOS codes show that material melting is unlikely with 100 kA RE beams

  12. Runaway beam studies during disruptions at JET-ILW

    Energy Technology Data Exchange (ETDEWEB)

    Reux, C., E-mail: cedric.reux@cea.fr [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Plyusnin, V. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa (Portugal); Alper, B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Alves, D. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisboa (Portugal); Bazylev, B. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institut für Hochleistungsimpuls und Mikrowellentechnik, Karlsruhe Institute of Technology, Campus Nord, 76021 Karlsruhe (Germany); Belonohy, E. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Brezinsek, S. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung-Plasmaphysik, 52425 Jülich (Germany); Decker, J. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Devaux, S. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Vries, P. de [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Fil, A. [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2015-08-15

    Highlights: • Runaway electrons (RE) have been obtained at JET-ILW using massive argon injection. • The runaway electron domain entry points are similar between JET-C and JET-ILW. • Inside the runaway electron domain, higher RE currents are observed with JET-ILW. • RE impact has been observed without material melting up to 100 kA RE current. • Heat deposition of 2 ± 1 mm is confirmed by measurements and simulations. - Abstract: Runaway electrons (RE) during disruptions are a concern for future tokamaks including ITER with its metallic wall. Although RE are rare in spontaneous disruptions with the JET ITER-like Wall (JET-ILW), RE beams up to 380 kA were obtained using massive injection (MGI) of argon in JET-ILW divertor discharges. Entry points into the RE domain defined by operational parameters (toroidal field, argon fraction in MGI) are unchanged but higher RE currents have been obtained inside the JET-ILW MGI-generated RE domain when compared to JET-C. This might be due to the influence of the metallic wall on the current quench plasma. Temperatures of 900 °C have been observed following RE impacts on beryllium tiles. Heat deposition depth of ∼2 mm has to be assumed to match the tile cooling time. 3D simulations of the RE energy deposition using the ENDEP/MEMOS codes show that material melting is unlikely with 100 kA RE beams.

  13. Precise predictions for V+jets dark matter backgrounds

    Science.gov (United States)

    Lindert, J. M.; Pozzorini, S.; Boughezal, R.; Campbell, J. M.; Denner, A.; Dittmaier, S.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, N.; Huss, A.; Kallweit, S.; Maierhöfer, P.; Mangano, M. L.; Morgan, T. A.; Mück, A.; Petriello, F.; Salam, G. P.; Schönherr, M.; Williams, C.

    2017-12-01

    High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the Z(ν {\\bar{ν }})+ jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by Z(ℓ ^+ℓ ^-)+ jet, W(ℓ ν )+ jet and γ + jet production, and extrapolating to the Z(ν {\\bar{ν }})+ jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant V+ jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different V+ jet processes play a key role. The anticipated theoretical uncertainty in the Z(ν {\\bar{ν }})+ jet background is at the few percent level up to the TeV range.

  14. A facile molten-salt route to graphene synthesis.

    Science.gov (United States)

    Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus

    2014-01-15

    Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Uranium (III) precipitation in molten chloride by wet argon sparging

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  16. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  17. Burning molten metallic spheres: One class of ball lightning?

    Science.gov (United States)

    Stephan, Karl D.; Massey, Nathan

    2008-08-01

    Abrahamson and Dinniss [2000. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403, 519-521] proposed a theory of ball lighting in which silicon nanoparticles undergo slow oxidation and emit light. Paiva et al. [2007. Production of ball-lightning-like luminous balls by electrical discharges in silicon. Physical Review Letters 98, 048501] reported that an electric arc to silicon produced long-lasting luminous white spheres showing many characteristics of ball lightning. We show experimentally that these consist of burning molten silicon spheres with diameters in the 0.1-1 mm range. The evidence of our experiments leads us to propose that a subset of ball lightning events may consist of macro-scale molten spheres of burning metallic materials likely to be ejected from a conventional lightning strike to earth.

  18. Wettability of TiAlN films by molten aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ping [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan) and Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun, 130025 (China)]. E-mail: shenping@jlu.edu.cn; Nose, Masateru [Department of Industrial Art and Craft, Takaoka National College, 180 Futagami-machi, Takaoka City, Toyama 933-8588 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan); Nogi, Kiyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan)

    2006-12-05

    In this study, we made an attempt to measure the wettability of the TiAlN films by molten Al at temperatures between 1073 K and 1273 K using an improved sessile drop method. The true contact angles cannot be obtained for the films deposited on the stainless steel and tungsten substrates due to considerable interdiffusion or reaction between molten Al and the substrate constituents. For the films deposited on the stable alumina single crystals and in contact with clean Al, the true contact angles are possible in the range of 80-100 deg. at 1173-1273 K and the work of adhesion is 0.77-1.08 J m{sup -2}. In the case of oxidized Al, typically at T < 1173 K, however, the wettability and the adhesion are significantly decreased.

  19. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  20. Electrodeposition of alloys or compounds in molten salts and applications

    Directory of Open Access Journals (Sweden)

    Taxil P.

    2003-01-01

    Full Text Available This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i electrocoating of the more reactive metal on a cathode made of the noble one and reaction between the two metals in contact, and (ii electrocoating on an inert cathode of the intermetallic compound by coreduction of the ions of each elements. The kinetic is controlled by the reaction at the electrolyte interface. A wide bibliographic survey on the preparation of various compounds (intermetallic compounds, borides, carbides… is given and a special attention is paid to the own experience of the authors in the preparation of these compounds and interpretation of their results.

  1. Molten salt treatment to minimize and optimize waste

    International Nuclear Information System (INIS)

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-01-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability

  2. Electromagnetic valve for controlling the flow of molten, magnetic material

    Science.gov (United States)

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  3. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  4. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  5. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  6. Effects of H2S on molten carbonate fuel cells. Literature review on the impact of SO2 in the oxidant supplied to molten carbonate fuel cells

    Science.gov (United States)

    Remick, R. J.

    1985-05-01

    The purpose is to identify available information regarding the impact upon fuel cell performance of sulfur dioxide at ppM levels in oxidant gases supplied to molten carbonate fuel cells (MCFC). The general conclusions are as follows: (1) the major source of sulfur dioxide in the oxidant is oxidized sulfur species coming from the fuel; (2) sulfur dioxide in the oxidant can react with oxygen and carbonate to produce sulfate in the electrolyte; (3) sulfate in the electrolyte is Faradaically transported to the anode where it is reduced to hydrogen sulfide; (4) the major and thus far only identifiable mechanism for performance loss in MCFC is caused by this hydrogen sulfide forming nickel sulfide on the anode; and (5) there are a number of other chemical reactions in which sulfur dioxide may participate which have not been investigated. Included in this group are the oxidation to sulfur trioxide and the corrosion of nickel and nickel oxide.

  7. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1981-11-01

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  8. Influence of the reprocessing on molten salt reactor behaviour

    OpenAIRE

    Merle-Lucotte, E.; Mathieu, L.; Heuer, D.; Billebaud, A.; Brissot, R.; Le Brun, C.; Liatard, E.; Loiseaux, J.M.; Méplan, O.; Nuttin, A.; Wilson, J.

    2005-01-01

    International audience; The Molten Salt Reactor is one of the systems studied as a Generation IV reactor. Its main characteristic is the strong coupling between neutronics and salt reprocessing. Such nuclear reactors use a liquid fuel which is also the coolant. Elements produced during the reactor's operation, like Fission Products (FP) or TransUranians, modify the neutronic balance of the reactor by capturing neutrons. As the fuel is liquid, samples can be extracted and reprocessed to remove...

  9. Renewable energy and the role of molten salts and carbon

    Directory of Open Access Journals (Sweden)

    Fray D.

    2013-01-01

    Full Text Available Molten carbonate fuel cells have been under development for a number of years and reliable units are successfully working at 250kW scale and demonstration units have produced up to 2 MW. Although these cells cannot be considered as renewable as the fuel, hydrogen or carbon monoxide is consumed and not regenerated, the excellent reliability of such a cell can act as a stimulus to innovative development of similar cells with different outcomes. Molten salt electrolytes based upon LiCl - Li2O can be used to convert carbon dioxide, either drawn from the output of a conventional thermal power station or from the atmosphere, to carbon monoxide or carbon. Recently, dimensionally stable anodes have been developed for molten salt electrolytes, based upon alkali or alkaline ruthenates which are highly electronically conducting and these may allow the concept of high temperature batteries to be developed in which an alkali or alkaline earth element reacts with air to form oxides when the battery is discharging and the oxide decomposes when the battery is being recharged. Batteries using these concepts may be based upon the Hall-Heroult cell, which is used worldwide for the production of aluminium on an industrial scale, and could be used for load levelling. Lithium ion batteries are, at present, the preferred energy source for cars in 2050 as there are sufficient lithium reserves to satisfy the world’s energy needs for this particular application. Graphite is used in lithium ion batteries as the anode but the capacity is relatively low. Silicon and tin have much higher capacities and the use of these materials, encapsulated in carbon nanotubes and nanoparticles will be described. This paper will review these interesting developments and demonstrate that a combination of carbon and molten salts can offer novel ways of storing energy and converting carbon dioxide into useful products.

  10. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  11. Electrodeposition of niobium and titanium in molten salts

    International Nuclear Information System (INIS)

    Sartori, A.F.; Chagas, H.C.

    1988-01-01

    The electrodeposition of niobium and titanium in molten fluorides from the additions of fluorine niobates and fluorine titanates of potassium is described in laboratory and pilot scale. The temperature influence, the current density and the time deposition over the current efficiency, the deposits structure and the deposits purity are studied. The conditions for niobium coating over copper and carbon steel and for titanium coating over carbon steel are also presented. (C.G.C.) [pt

  12. Lithium-Boron Alloy Anodes for Molten Salt Batteries (II)

    Science.gov (United States)

    1978-05-15

    Eagle - Picher Industries, Inc. Electronics Division, Couples Dept. Attn: D. R. Cottingham J. Dines D. L. Smith J. Wilson P. 0. Box 47 Joplin, MO 64801... Eagle - Picher Industries, Inc. Miami Research Laboratories Attn: P. E. Grayson 200 Ninth Avenue, N.E. Miami, OK 74354 ESB Research Center Attn: Library...777.. -~ -- NSWC/WOL TR 78-63 LITHIUM-BORON ALLOY ANODES FOR MOLTEN SALT BATTERIES (11) BY S.DALLEK, D. W. ERNST, 0 B. F. LARRICK Ott RESEARCH AND

  13. Prediction of current distribution in a molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, V.; Selman, J.R.; Sammells, A.F.

    1978-01-01

    A mathematical model has been developed to predict the performance of a molten carbonate fuel cell as a function of anode and cathode gas compositions, gas flow rates, and polarization characteristics. The effect of gas flow modes such as crossflow and coflow and the effect of higher pressures on the current distribution are studied. The predicted polarization curves agree well with the experimentally generated polarization curves. Conditions for incorporating a microscopic porous electrode model into the overall model development are briefly outlined.

  14. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  15. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  16. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  17. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  18. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  19. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  20. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    He, Xun

    2016-06-14

    one is about the demonstration of a new MSR concept using the mathematic tools. In particular, the aim of the first part is to demonstrate the suitability of the TRACE code for the similar MSR designs by using a modified version of the TRACE code to implement the simulations for the steady-state, transient and accidental conditions. The basic approach of this part is to couple the thermal-hydraulic model and the modified point-kinetic model. The equivalent thermal-hydraulic model of the MSRE was built in 1D with three loops including all the critical main components. The point-kinetic model was improved through considering the precursor drift in order to produce more practical results in terms of the delayed neutron behavior. Additionally, new working fluids, namely the molten salts, were embedded into the source code of TRACE. Most results of the simulations show good agreements with the ORNL's reports and with another recent study and the errors were predictable and in an acceptable range. Therefore, the necessary code modification of TRACE appears to be successful and the model will be refined and its functions will be extended further in order to investigate new MSR design. Another part of this thesis is to implement a preliminary study on a new concept of molten salt reactor, namely the Dual Fluid Reactor (DFR). The DFR belongs to the group of the molten salt fast reactors (MSFR) and it is recently considered to be an option of minimum-waste and inherently safe operation of the nuclear reactors in the future. The DFR is using two separately circulating fluids in the reactor core. One is the fuel salt based on the mixture of tri-chlorides of uranium and plutonium (UCl{sub 3}-PuCl{sub 3}), while another is the coolant composed of the pure lead (Pb). The current work focuses on the basic dynamic behavior of a scaled-down DFR with 500 MW thermal output (DFR-500) instead of its reference design with 3000 MW thermal output (DFR-3000). For this purpose 10 parallel

  1. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    However, in many engineering applications the jet does not issue into a quies- cent stream but interacts with an external stream. This interaction can be classified as co-flow, crossflow or counterflow depending on the direction of interaction between the jet and the exter- nal stream. Of these interactions, the jet in counterflow ...

  2. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    Abstract. The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct ...

  3. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  4. ATLAS Jet Reconstruction, Calibration, and Tagging of Lorentz-boosted Objects

    CERN Document Server

    Schramm, Steven; The ATLAS collaboration

    2017-01-01

    Jet reconstruction in the ATLAS detector takes multiple forms, as motivated by the intended usage of the jet. Different jet definitions are used in particular for the study of QCD jets and jets containing the hadronic decay of boosted massive particles. These different types of jets are calibrated through a series of mostly sequential steps, providing excellent uncertainties, including a first in situ calibration of the jet mass scale. Jet tagging is investigated, including both not-top-quark vs gluon discrimination as well as W/Z boson, H$\\to$bb, and top-quark identification. This includes a first look at the use of Boosted Decision Trees and Deep Neural Networks built from jet substructure variables, as well as Convolutional Neural Networks built from jet images. In all cases, these advanced techniques are seen to provide gains over the standard approaches, with the magnitude of the gain depending on the use case. Future methods for improving jet tagging are briefly discussed, including jet substructure-ori...

  5. Jet and Leading Hadron Production in High-energy Heavy-ionCollisions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian

    2005-11-01

    Jet tomography has become a powerful tool for the study ofproperties of dense matter in high-energy heavy-ion collisions. I willdiscuss recent progresses in the phenomenological study of jet quenching,including momentum, colliding energy and nuclear size dependence ofsingle hadron suppression, modification of dihadron correlations and thesoft hadron distribution associatedwith a quenched jet.

  6. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    Jet electrodeposition; NiFeW alloy coating; current efficiency; microstructure; microhardness. Abstract. In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the ...

  7. Improvements and validation of the transient analysis code MOREL for molten salt reactors

    International Nuclear Information System (INIS)

    Zhuang Kun; Zheng Youqi; Cao Liangzhi; Hu Tianliang; Wu Hongchun

    2017-01-01

    The liquid fuel salt used in the molten salt reactors (MSRs) serves as the fuel and coolant simultaneously. On the one hand, the delayed neutron precursors circulate in the whole primary loop and part of them decay outside the core. On the other hand, the fission heat is carried off directly by the fuel flow. These two features require new analysis method with the coupling of fluid flow, heat transfer and neutronics. In this paper, the recent update of MOREL code is presented. The update includes: (1) the improved quasi-static method for the kinetics equation with convection term is developed. (2) The multi-channel thermal hydraulic model is developed based on the geometric feature of MSR. (3) The Variational Nodal Method is used to solve the neutron diffusion equation instead of the original analytic basis functions expansion nodal method. The update brings significant improvement on the efficiency of MOREL code. And, the capability of MOREL code is extended for the real core simulation with feedback. The numerical results and experiment data gained from molten salt reactor experiment (MSRE) are used to verify and validate the updated MOREL code. The results agree well with the experimental data, which prove the new development of MOREL code is correct and effective. (author)

  8. Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association?

    Science.gov (United States)

    Harris, Kenneth R

    2016-12-01

    There have long been arguments supporting the concept of ion association in molten salts and ionic liquids, largely based on differences between the conductivity and that predicted from self-diffusion coefficients by the Nernst-Einstein equation for noninteracting ions. It is known from molecular dynamics simulations that even simple models based on charged hard spheres show such a difference due to the (anti)-correlation of ion motions. Formally this is expressed as a difference between the velocity cross-correlation coefficient of the oppositely charged ions and the mean of those for the two like-charged ions. This article examines molten salt and ionic liquid transport property data, comparing simple and model associated salts (ZnCl 2 , PbCl 2 , and TlCl) including weakly dissociated molecular liquids (H 2 O, HCOOH, H 2 SO 4 ). Analysis employing Laity resistance coefficients (r ij ) shows that the common ion-association rationalization is flawed, consistent with recent direct measurements of the degree of ionicity in ionic liquid chlorides and with theoretical studies. However, the protic ionic liquids [PyrOMe][BF 4 ] and [DBUH][CH 3 SO 3 ] have larger than usual NE deviation parameters (>0.5), and large negative like-ion r ii , analogous to those of ZnCl 2 . Structural, spectroscopic, and theoretical studies are suggested to determine whether these are indeed genuine examples of association.

  9. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  10. Thermodynamic characterization of salt components for the Molten Salt Reactor Fuel - 15573

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, A.

    2015-01-01

    Molten fluoride salts are considered as primary candidates for nuclear fuel in the Molten Salt Reactor (MSR), one of the 6 generation IV nuclear reactor designs. In order to determine the safety limits and to access the properties of the potential fuel mixtures, thermodynamic studies are very important. This study is a combination of experimental work and thermodynamic modelling and focusses on the fluoride systems with alkaline and alkaline earth fluorides as matrix and ThF 4 , UF 4 and PuF 3 as fertile and fissile materials. The purification of the single components was considered as essential first step for the study of more complex systems and ternary phase diagrams were described using Differential Scanning Calorimetry (DSC) and drop calorimetry, which are used to measure phase transitions, enthalpy of mixing and heat capacity. In addition to the calorimetric techniques, Knudsen Effusion Mass Spectrometry (KEMS) and X-ray Diffraction (XRD) were used to collect data on vapour pressure and crystal structure of fluorides. The results are then coupled with thermodynamic modelling using the Calphad method for the assessment of the phase diagrams. A thermodynamic database describing the most important systems for MSR application has been developed and it has been used to optimize the fuel composition in view of the relevant properties such as melting temperature. A reliable database of thermodynamic properties of fluoride salts has been generated. It includes the key systems for the MSR fuel and it is very useful to predict the properties of the fuel

  11. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  12. SAMOFAR - a paradigm shift in reactor safety with the molten salt fast reactor

    International Nuclear Information System (INIS)

    Krepel, J.

    2015-01-01

    SAMOFAR - Safety Assessment of the Molten Salt Fast Reactor - is a 5M€ project of the European Union research program Horizon 2020. The project consortium consists of 11 participants and the fundamental research part is mainly executed by universities and research laboratories, like CNRS, JRC, ClRTEN, TU Delft and PSI, thereby exploiting each other's unique expertise and infrastructure. The grand objective of SAMOFAR is to prove the innovative safety concepts of the Molten Salt Fast Reactor (MSFR) by advanced experimental and numerical techniques, to deliver a breakthrough in nuclear safety and optimal waste management, and to create a consortium of stakeholders to demonstrate the MSFR beyond SAMOFAR. Furthermore, we will build a software simulator to demonstrate the operational transients, and we will show the mild responses of the MSFR to transients and accident scenarios, using new leading-edge multi-physics simulation tools including uncertainty quantification. All experimental and numerical results will be incorporated into the new reactor design, which will be subjected to a new integral safety assessment method

  13. Physical and chemical feasibility of fueling molten salt reactors with TRU's trifluorides

    International Nuclear Information System (INIS)

    Ignatiev, V.; Feinberg, O.; Konakov, S.; Subbotine, S.; Surenkov, A.; Zakirov, R.

    2001-01-01

    The molten salt reactor (MSR) concept is very important for consideration as an element of future nuclear energy systems. These reactor systems are unique in many ways. Particularly, the MSRs appear to have substantial promise not only as advanced TRU free system operating in U-Th cycle, but also as transmuter of TRU. Physical and chemical feasibility of fueling MSR with TRU trifluorides is examined. Solvent compositions with and without U-Th as fissile / fertile addition are considered. The principle reactor and fuel cycle variables available for optimizing the performance of MSR as TRU transmuting system are discussed. These efforts led to the definition in minimal TRU mass flow rate, reduced total losses to waste and maximum possible burn up rate for the molten salt transmuter. The current status of technology and prospects for revisited interest are summarized. Significant chemical problems are remain to be resolved at the end of prior MSRs programs, notably, graphite life durability, tritium control, fate of noble metal fission products. Questions arising from plutonium and minor actinide fueling include: corrosion and container chemistry, new redox buffer for systems without uranium, analytical chemistry instrumentation, adequate constituent solubilities, suitable fuel processing and waste form development. However these problems appear to be soluble. (author)

  14. Effect of mold designs on molten metal behaviour in high-pressure die casting

    Science.gov (United States)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  15. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  16. Kuwornu-Adjaottor, JET

    African Journals Online (AJOL)

    Kuwornu-Adjaottor, JET. Vol 33, No 1 (2013) - Articles God and the Suffering of His People Abstract PDF. ISSN: 0855-0395. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News.

  17. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  18. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  19. JET joint undertaking

    International Nuclear Information System (INIS)

    1984-06-01

    JET began operations on 25 June 1983. This annual report contains administrative information and a general review of scientific and technical developments. Among them are vacuum systems, toroidal and poloidal field systems, power supplies, neutral beam heating, radiofrequency heating, remote handling, tritium handling, control and data acquisition systems and diagnostic systems

  20. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  1. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  2. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  3. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  4. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  5. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  6. Multiple Spectral Components in Large-Scale Jets

    Science.gov (United States)

    Meyer, Eileen; Georganopoulos, Markos; Petropoulou, Maria; Breiding, Peter

    2018-01-01

    One of the most striking discoveries of the Chandra X-ray Observatory is the population of bright X-ray emitting jets hosted by powerful quasars. Most of these jets show hard X-ray spectra which requires a separate spectral component compared with the radio-optical synchrotron emission, which usually peaks at or before the infrared. Though the origin of this high-energy spectral component has been a matter of debate for nearly two decades, it is still not understood, with major implications for our understanding of particle acceleration in jets, as well as the total energy carried by them. Until recently the prevailing interpretation for the second component has been inverse-Compont upscattering of the CMB by a still highly relativistic jet at kpc scales. I will briefly describe the recent work calling the IC/CMB model into serious question (including X-ray variability, UV polarization, gamma-ray upper limits, and proper motions), and present new results, based on new ALMA, HST, and Chandra observations, which suggest that more than two distinct spectral components may be present in some large-scale jets, and that these multiple components appear to arise in jets across the full range in jet power, and not just in the most powerful sources. These results are very difficult to reconcile with simple models of jet emission, and I will discuss these failures and some possible directions for the future, including hadronic models.

  7. On the chemical constitution of a molten oxide core of a fast breeder reactor

    International Nuclear Information System (INIS)

    Hodkin, D.J.; Potter, P.E.

    1980-01-01

    A knowledge of the chemical constitution of a molten oxide fast reactor core is of great importance in the assessment of heat transfer from a cooling molten pool of debris and in the selection of materials for the construction of sacrificial beds for core containment. In this paper we describe some thermodynamic assessments of the likely chemical constitution of a molten oxide core, and then support our assessments by experimental observations

  8. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  9. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  10. Chronopotentiometry of refractory metals, actinides and oxyanions in molten salts: A review

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The applications of chronopotentiometry to the study of electrochemical behavior of three technologically important areas of refractory metals, actinides, and oxyanions in molten salts are critically reviewed. Chronopotentiometry is a very versatile diagnostic tool to understand the reaction mechanism of the electrode processes for the electrochemical reduction/oxidation of these electroactive species in molten salt solutions. Well adherent, compact, and uniformly thick coatings of refractory metals may be electrodeposited from their solutions in molten salts.

  11. The molten salt reactor: R and D status and perspectives in Europe

    International Nuclear Information System (INIS)

    Renault, Claude; Delpech, Sylvie; Merle-Lucotte, Elsa; Konings, Rudy; Hron, Miloslav; Ignatiev, Victor

    2010-01-01

    The paper concentrates on molten salt fast reactor (MSFR) concepts which are receiving most attention in the EU context. It shows the main R and D achievements and some remaining issues to be addressed in such essential areas as (a) reactor conceptual design, (b) molten salt properties, (c) fuel salt clean-up scheme and (d) high temperature materials. The status and perspectives of molten salt reactor R and D efforts in Europe are then discussed

  12. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  13. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  14. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  15. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  16. Improving molten fluoride salt and Xe135 barrier property of nuclear graphite by phenolic resin impregnation process

    Science.gov (United States)

    He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui

    2018-02-01

    A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.

  17. Relativistic jets from active galactic nuclei

    CERN Document Server

    Harris, D E; Krawczynski

    2012-01-01

    Written by a carefully selected consortium of researchers working in the field, this book fills the gap for an up-to-date summary of the observational and theoretical status. As such, this monograph includes all used wavelengths, from radio to gamma, the FERMI telescope, a history and theory refresher, and jets from gamma ray bursts. For astronomers, nuclear physicists, and plasmaphysicists.

  18. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1-July 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. R.

    1980-09-04

    The major objective of this program for development of a molten carbonate fuel cell power plant is to establish and demonstrate readiness for fabrication and test of full-scale prototype stacks. This will be accomplished by a heavy emphasis upon resolution of remaining technology problems, including materials, processes and contaminant effects research, development and testing of cell components to 10,000 hours endurance life and scaleup of laboratory hardware to commercial size. A detailed design for a prototype stack will be defined and a tenth-size of full-scale cells will be tested. Component and manufacturing processes will be developed based upon commercial cost goals. Coal-fired utility central station and industrial cogeneration power plant requirements will be defined and plant options evaluated, leading to selection of a single reference design. Cell and stack design and development will be guided by requirements based upon the reference plant design. The specific program objectives derived from the contract work statement are as follows: (1) to define a reference power plant design for a coal-fired molten carbonate power plant; (2) to develop and verify cell and stack design based upon the requirements of the reference power plant design; (3) to establish and demonstrate readiness to fabricate and test full-length stacks of full-scale cells, hereafter called prototype stacks; and (4) to quantify contaminant effects and establish a program to verify performance of molten carbonate fuel cells operating on products of coal gasification. Progress is reported.

  19. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  20. The reconstruction of jets, missing ET and boosted heavy particles with ATLAS in Run II

    CERN Document Server

    Santoni, Claudio; The ATLAS collaboration

    2015-01-01

    The reconstruction of jets, missing ET and boosted heavy particles decaying hadronically has proved to be of extreme importance in Run 1 of the LHC, and has great potential to uncover new physics with Run 2 data. ATLAS has implemented and commissioned several new techniques for the analysis and interpretation of hadronic final states at the LHC. These include event-by-event pile-up subtraction algorithms for jets and missing ET, jet substructure, quark-gluon discrimination, and jet tagging tools for the identification of boosted heavy particles. The excellent ATLAS detector capabilities, in particular its high resolution longitudinally segmented calorimeter and inner detector, have enabled the development of complex clustering and calibration algorithms for the reconstruction of jets, missing ET, and jet substructure, and its validation and calibration in data using large datasets collected during 2012. A summary of the most modern jet, missing ET, and jet substructure and tagging tools developed in ATLAS, an...

  1. Editorial on Future Jet Technologies

    Science.gov (United States)

    Gal-Or, Benjamin

    2014-12-01

    competions and Awards. [Rule-13]. We also provide 26 references [17-43] to a different, unclassified technology that enhances TV-induced flight safety for passenger jets, turboprops and helicopters. It is based on patented stowed-away/emergency-deployed TV-kits added to fixed-configuration, subsonic exhaust nozzles of low thrust-to-weight ratio vehicles. Expected benefits include anti-terror recoveries from emergencies, like forced landing on unprepared runways or highways, or recoveries from all airframe-hydraulics-outs, asymmetric ice on wings, landing gear catastrophes, and recoveries from pilot errors and bad-whether incidents [Rule 9(7)]. Other TV technologies involve preventing catastrophes in speed and patrol boats, racing and regular cars/SUVs, buses and trucks. [Rule 9(8)] and faster helicopters [Rule 9(10)].

  2. DeepJet: a deep-learned multiclass jet-tagger for slim and fat jets

    CERN Document Server

    CERN. Geneva; Qu, Huilin; Stoye, Markus; Kieseler, Jan; Verzetti, Mauro

    2018-01-01

    We present a customized neural network architecture for both, slim and fat jet tagging. It is based on the idea to keep the concept of physics objects, like particle flow particles, as a core element of the network architecture. The deep learning algorithm works for most of the common jet classes, i.e. b, c, usd and gluon jets for slim jets and W, Z, H, QCD and top classes for fat jets. The developed architecture promising gains in performance as shown in simulation of the CMS collaboration. Currently the tagger is under test in real data in the CMS experiment.

  3. arXiv Generalized Fragmentation Functions for Fractal Jet Observables

    CERN Document Server

    Elder, Benjamin T.; Thaler, Jesse; Waalewijn, Wouter J.; Zhou, Kevin

    2017-06-15

    We introduce a broad class of fractal jet observables that recursively probe the collective properties of hadrons produced in jet fragmentation. To describe these collinear-unsafe observables, we generalize the formalism of fragmentation functions, which are important objects in QCD for calculating cross sections involving identified final-state hadrons. Fragmentation functions are fundamentally nonperturbative, but have a calculable renormalization group evolution. Unlike ordinary fragmentation functions, generalized fragmentation functions exhibit nonlinear evolution, since fractal observables involve correlated subsets of hadrons within a jet. Some special cases of generalized fragmentation functions are reviewed, including jet charge and track functions. We then consider fractal jet observables that are based on hierarchical clustering trees, where the nonlinear evolution equations also exhibit tree-like structure at leading order. We develop a numeric code for performing this evolution and study its phen...

  4. The jet energy profile: A BSM analysis tool

    Science.gov (United States)

    Chivukula, R. S.; Simmons, E. H.; Vignaroli, N.

    2017-12-01

    A new heavy di-jet resonance could be discovered at the 14 TeV LHC. In this talk we present a strategy to reveal the nature of such a particle; in particular to discern whether it is a quark-antiquark (qq¯), quark-gluon (qg), or gluon-gluon (gg) resonance. The strategy is based on the study of the energy profiles of the two leading jets in the di-jet channel. Including statistical uncertainties in the signal and the QCD backgrounds, we show that one can distinguish between gg, qg, and qq¯ resonances; an evaluation of systematic uncertainties in the measurement of the jet energy profile will require a detailed detector study once sufficient 14 TeV di-jet data is in hand.

  5. Stellar signatures of AGN-jet-triggered star formation

    International Nuclear Information System (INIS)

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-01-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ∼ 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  6. Subsonic Jet Pump Comparative Analysis

    Directory of Open Access Journals (Sweden)

    George Bogdan GHERMAN

    2018-03-01

    Full Text Available The paper presents the numerical and experimental studies carried out to optimize, from an aerodynamic point of view, a subsonic jet pump used on aircraft. The optimization of the subsonic jet pump will be done from the aerodynamic, aiming to re-design it such as to reduce as much as possible the emitted noise levels. For this, in a first stage, a parametric set of Reynolds Averaged Navier - Stokes numerical simulation was used on several possible designs, starting from an existing baseline, and including it. The goal was to identify the trends in the flow behavior when key baseline design parameters were varied. During the second stage, aerodynamic measurements were carried out on the two selected configurations and on the baseline configuration for the determination of the instantaneous flow velocity field. The measurements were carried out using cutting edge experimental measure techniques, namely Particle Image Velocimetry. The paper presents a comparison of the numerical and the experimental results and the conclusions of the analysis of the results.

  7. Preliminary safety examination on thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The new global fission industry for the next century should keep a strong public acceptance, which means to ensure an enough rational safety feature not only in the engineering issue but also in all issues of integral fuel-cycle system. In this sense, the safety characteristics of the Thorium Molten-Salt Nuclear Energy Synergetic System (THORIMS-NES) is widely examined relating with the several aspects of environmental (including resources, radio-waste, etc.) social (including anti-nuclear proliferation and terrorism, etc), basic technological, engineering, institutional, and economical aspects. From this examination it seems that this system is verified as one of the most promising measures of North-South problem, greenhouse effect, etc in the world. (author). 11 refs., 3 figs., 5 tabs

  8. Structure and dynamics of molten salts

    International Nuclear Information System (INIS)

    Rovere, M.; Tosi, M.P.

    1986-02-01

    Modern techniques of liquid state physics have been successfully used over the last decade to probe the microscopic structure and dynamics of a variety of multicomponent liquids in which relative ordering of the species is present near freezing. The alkali halides are prototypes for this specific type of short range order in relation to the nature of bonding, but the systems in question include also other monovalent and polyvalent metal-ion halides, alkali-based intermetallic compounds, and chalcogen-based alloys. A viewpoint is taken in this review which gives attention to relations between liquid and solid phase properties across melting for compound systems at stoichiometric composition. In addition, large deviations from stoichiometry can be realized in the liquid phase, to display trends of evolution of structure, bonding and electronic states with composition. (author)

  9. Fluid flow solidification simulation of molten alloys

    International Nuclear Information System (INIS)

    Kaschnitz, E.

    1997-01-01

    In an effort to minimize costs and to obtain optimum designs, computer simulation of shape casting processes is more and more used as a development tool. Accurate predictions are possible by means of three dimensional fluid flow and solidification modelling. The bases of the model are the transient laminar Navier-Stokes-equations for a Newtonian fluid including the tracking of the free surface. They are describing the melt flow pattern during the mold filling sequence. Simultaneously, the temperature development in the alloy and mold is calculated using Fourier's heat transfer equation. At OEGI, a commercial software package (MAGMAsoft) with a finite difference equation solver is used for improvement of casting processes. Different examples of industrial applications will be shown. (author)

  10. Jet photoproduction at HERA

    International Nuclear Information System (INIS)

    Frixione, S.

    1997-01-01

    We compute various kinematical distributions for one-jet and two-jet inclusive photoproduction at HERA. Our results are accurate to next-to-leading order in QCD. We use the subtraction method for the cancellation of infrared singularities. We perform a thorough study of the reliability of QCD predictions; in particular, we consider the scale dependence of our results and discuss the cases when the perturbative expansion might break down. We also deal with the problem of the experimental definition of the pointlike and hadronic components of the incident photon, and briefly discuss the sensitivity of QCD predictions upon the input parameters of the calculation, like α S and the parton densities. (orig.)

  11. SparkJet Efficiency

    Science.gov (United States)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  12. Plasma jet takes off.

    OpenAIRE

    Frazer, L

    1999-01-01

    Thanks to a series of joint research projects by Los Alamos National Laboratory, Beta Squared of Allen, Texas, and the University of California at Los Angeles, there is now a more environmentally sound method for cleaning semiconductor chips that may also be effective in cleaning up chemical, bacterial, and nuclear contaminants. The Atmospheric Pressure Plasma Jet uses a type of ionized gas called plasma to clean up contaminants by binding to them and lifting them away. In contrast to the cor...

  13. Active control of continuous air jet with bifurcated synthetic jets

    Directory of Open Access Journals (Sweden)

    Dančová Petra

    2017-01-01

    Full Text Available The synthetic jets (SJs have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.

  14. Sensitivity and Uncertainty Study for Thermal Molten Salt Reactors

    Science.gov (United States)

    Bidaud, Adrien; Ivanona, Tatiana; Mastrangelo, Victor; Kodeli, Ivo

    2006-04-01

    The Thermal Molten Salt Reactor (TMSR) using the thorium cycle can achieve the GEN IV objectives of economy, safety, non-proliferation and durability. Its low production of higher actinides, coupled with its breeding capabilities - even with a thermal spectrum - are very valuable characteristics for an innovative reactor. Furthermore, the thorium cycle is more flexible than the uranium cycle since only a small fissile inventory (Molten Salt Breeder Reactor (MSBR). The MSBR concept was developed at Oak Ridge National Laboratory (ORNL) in the 1970's based on the Molten Salt Reactor Experiment (MSRE). The main goals of our current studies are to achieve a reactor concept that enables breeding, improved safety and having chemical reprocessing needs reduced and simplified as much as reasonably possible. The neutronic properties of the new TMSR concept are presented in this paper. As the temperature coefficient is close to zero, we will see that the moderation ratio cannot be chosen to simultaneously achieve a high breeding ratio, long graphite lifetime and low uranium inventory. It is clear that any safety margin taken due to uncertainty in the nuclear data will significantly reduce the capability of this concept, thus a sensitivity analysis is vital to propose measurements which would allow to reduce at present high uncertainties in the design parameters of this reactor. Two methodologies, one based on OECD/NEA deterministic codes and one on IPPE (Obninsk) stochastic code, are compared for keff sensitivity analysis. The uncertainty analysis of keff using covariance matrices available in evaluated files has been performed. Furthermore, a comparison of temperature coefficient sensitivity profiles is presented for the most important reactions. These results are used to review the nuclear data needs for the TMSR thorium fuelled reactor.

  15. Metal-carbide multilayers for molten Pu containment

    International Nuclear Information System (INIS)

    Summers, T.S.E.; Curtis, P.G.; Juntz, R.S.; Krueger, R.L.

    1991-12-01

    Multilayers composed of nine or ten alternating layers of Ta or W and TaC were studied for the feasibility of their use in containing molten plutonium (Pu) at 1200 degrees C. Single layers of W and TaC were also investigated. A two-source electron beam evaporation process was developed to deposit these coatings onto the inside surface of hemispherical Ta cups about 38 mm in diameter. Pu testing was done by melting Pu in the coated hemispherical cups and holding them under vacuum at 1200 degrees C for two hours. Metallographic examination and microprobe analysis of cross sections showed that Pu had penetrated to the Ta substrate in all cases to some extent. Full penetration to the outer surface of the Ta substrate, however, occurred in only a few of the samples. The fact that full penetration occurred in any of the samples suggests that it would have occurred in uncoated Ta under these testing conditions which in turn suggests that the multilayer coatings do afford some protection against Pu attack. The TaC used for these specimens was wet by Pu under these testing conditions, and following testing, Pu was found uniformly distributed throughout the carbide layers which appeared to be rather porous. Pu was seen in the W and Ta layers only when exposed directly to molten Pu during testing or near defects suggesting that Pu penetrated the multilayers at defects in the coating and traveled parallel to the layers along the carbide layers. These results indicate that the use of alternating metal and ceramic layers for Pu containment should be possible through the use of nonporous ceramic that is not wet by molten Pu and defect-free films

  16. Molten salt reactors: A new beginning for an old idea

    International Nuclear Information System (INIS)

    LeBlanc, David

    2010-01-01

    Molten salt reactors have seen a marked resurgence of interest over the past decade, highlighted by their inclusion as one of six Generation IV reactor types. The most active development period however was between the mid 1950s and early 1970s at Oak Ridge National Laboratories (ORNL) and any new re-examination of this concept must bear in mind the far different priorities then in place. High breeding ratios and short doubling times were paramount and this guided the evolution of the Molten Salt Breeder Reactor (MSBR) program. As the inherent advantages of the molten salt concept have become apparent to an increasing number of researchers worldwide it is important to not simply look to continue where ORNL left off but to return to basics in order to offer the best design using updated goals and abilities. A major potential change to the traditional Single Fluid, MSBR design and a subject of this presentation is a return to the mode of operation that ORNL proposed for the majority of its MSR program. That being the Two Fluid design in which separate salts are used for fissile 233 UF 4 and fertile ThF 4 . Oak Ridge abandoned this promising route due to what was known as the 'plumbing problem'. It will be shown that a simple yet crucial modification to core geometry can solve this problem and enable the many advantages of the Two Fluid design. In addition, another very promising route laid out by ORNL was simplified Single Fluid converter reactors that could obtain far superior lifetime uranium utilization than LWR or CANDU without the need for any fuel processing beyond simple chemistry control. Updates and potential improvements to this very attractive concept will also be explored.

  17. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  18. In-line Treatment of Molten Aluminum

    Science.gov (United States)

    Blayden, L. C.; Brondyke, K. J.

    Most commercial methods of fluxing aluminum alloys to produce low H2, Na and inclusion content ingots rely upon furnace fluxing with gaseous mixtures that include chlorine or chloride salts resulting in copious fume generation. A considerable reduction in amount of chlorine required to achieve high quality metal was accomplished by use of a combination filter bed and argon gas scrubbing tower introduced eight years ago. The present paper describes a new, two step, in-line fluxing system which provides even greater reduction in air pollution while producing metal of the low H2, Na and inclusion content required for high quality wrought products. First unit in the new process contains relatively large refractory particles through which Ar-Cl2gas is passed countercurrent to metal flow. The second unit contains a filter bed of finer refractory particles and also has a countercurrent flow of Ar-Cl2gas. Neither Cl2nor chloride fumes are detectable in the atmospheric samples from either fluxing unit. In first plant operation overall chlorine consumption was reduced 90%.

  19. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1989-07-01

    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  20. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  1. Precipitation of lamellar gold nanocrystals in molten polymers

    Science.gov (United States)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  2. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  3. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  4. Concept of an electron accelerator driven molten salt subcritical reactor

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2005-01-01

    Concept and analysis of an electron accelerator driven molten salt subcritical system are presented. The analysis covers the neutron source optimization and burnup history with continuous feeding of TRU into the reactor. Effect of long time operation on TRU consumption and corresponding energy production is considered. It seems that with an electron accelerator of 150 MeV energy and with technically acceptable current it is possible to maintain a subcritical reactor on a reasonable power level while it consumes considerable amount of TRU coming from online chemical processing of spent fuels. (authors)

  5. Neutron scattering on molten Ge-Sn-Te alloys

    Science.gov (United States)

    Halm, Th; Hinz, W.; Hoyer, W.

    1995-01-01

    Three molten ternary Ge-Sn-Te alloys lying on the quasibinary line Ge-SnTe, and the binary equiatomic alloys SnTe and GeTe have been investigated by neutron "time-of-flight" experiments. Published thermodynamic results are interpreted in terms of the coexistence of SnTe and Ge microgroupings in the melt. Using the experimental obtained data of the binary liquid alloy Sn50Te50 and of liquid Ge the structure factors of the ternary melts are calculated on the base of a microheterogeneous model.

  6. Recovery of protactinium from molten fluoride nuclear fuel compositions

    Science.gov (United States)

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  7. SYNTHESIS OF ALUMINIUM BORATE WHISKERS THROUGH WET MOLTEN SALT METHOD

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-12-01

    Full Text Available Aluminium borate (Al₄B₂O₉ whiskers were successfully synthesized by the wet molten salt method at 800 oC through control the aluminum/boron atomic ratio and synthesis temperature. The as-received Al₄B₂O₉ whiskers were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and thermal analysis. A solution-liquid-solid (SLS mechanism was proposed for the growth mechanism of the whiskers on the basis of the experimental phenomena and the TG-DSC data of the mixed raw materials.

  8. Concentratin fluctuations and ionic core polarization in molten salt mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Senatore, G.; Tose, M.P.

    1980-09-01

    The activity coefficient and the heat of mixing of molten alkali-halide mixtures with a common ion are analyzed through the use of thermodynamic fluctuation theory and of a charged-hard-spheres model for the ionic interactions. A strain contribution is isolated and evaluated with the help of experimental data, and a Coulomb contribution is estimated within the mean spherical approximation. The difference between these contributions and experiment is attributed to electronic polarizability of the ionic cores by displaying its correlation with appropriate polarization parameters. (author)

  9. Molten LWR core material interactions with water and with concrete

    International Nuclear Information System (INIS)

    Dahlgren, D.A.; Buxton, L.D.; Muir, J.F.; Murfin, W.B.; Nelson, L.S.; Powers, D.A.

    1977-01-01

    Nuclear power reactors are designed and operated to minimize the possibility of fuel melting. Nevertheless, in order to assess the risks associated with reactor operation, a realistic assessment is required for postulated accident sequences in which melting occurs. To investigate the experimental basis of the fuel melt accident analyses, a comprehensive review was performed at Sandia Laboratories. The results of that study indicated several phenomenological areas where additional experimental data should be gathered to verify common assumptions made in risk studies. In particular, vapor explosions and molten core material/concrete interactions were identified for further study. Results of these studies are presented

  10. Strategic planning for molten carbonate fuel cell development and commercialization

    Science.gov (United States)

    Williams, M. C.; Mayfield, M. J.

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated Gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  11. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  12. Polymer Coated Electrodes in Ambient Temperature Molten Salts.

    Science.gov (United States)

    1983-08-01

    PERFORMING ORG. REPORT NUMBER ~7. AUTHOR(*) S. CONTRACT OR GRANT NuMBER(a) P.G. Pickup and Robert A. Osteryoung N00014-79-C-0682 9. PERFORMING ORGANIZATION...glassy carbon ..-r electrodes in various compositions of the am- blent temperature molten salt system aluminum 00 6 ov chloride:n-butylpyridinium...Or TrVT AJf A I I START SECO:REFERENCES N HERE. 1. R. W. Murray, ’Chemically Modified Elect- rodes", Chapter 3 in Electroanalytical Chemistry, Vol. 13

  13. Optical absorption of dilute solutions of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, G.; Parrinello, M.; Tosi, M.P. (Trieste Univ. (Italy). Ist. di Fisica Teorica; Gruppo Nazionale di Struttura dell material del CNR, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy))

    1978-12-23

    The theory of liquid structure for fluids of charged hard spheres is applied to an evaluation of the F-centre model for valence electrons in metal-molten salt solutions at high dilution. Minimization of the free energy yields the groundstate radius of the elctron bubble and hence the optical excitation energy in a Franck-Condon transition, the shift and broadening of the transition due to fluctuations in the bubble radius, the volume of mixing, and the activity of the salt in the solution.

  14. Transmutation and inventory analysis in an ATW molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sisolak, J.E.; Truebenbach, M.T.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-10-01

    As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, the authors infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and k{sub eff} both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

  15. Solid-electrolyte oxide-ion electrode for molten nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, D.A.

    1981-10-01

    An oxide ion sensitive electrode of the type Pb, PbO/ZrO/sub 2/(Y/sub 2/O/sub 3/)// was constructed and its performance tested in the binary, equimolar molten salt NaNO/sub 3/-KNO/sub 3/ over the temperature range 336 to 350/sup 0/C. The response of this electrode to oxide ion concentrations over the range 10/sup -6/ to 10/sup -10/ moles/kg is linearly dependent upon log (0/sup =/), and dE/dlog(0/sup =/) corresponds to a two-electron process.

  16. Molten material relocation into the lower plenum: a status report

    International Nuclear Information System (INIS)

    1998-09-01

    This report, prepared by the task group 'Degraded Core Cooling' (DCC) for the CSNI, summarizes the experimental and theoretical knowledge of molten material relocation from a degraded core to the lower plenum of the reactor vessel under the main severe accident scenarios envisaged for both PWRs and BWRs, and boundary conditions. Consequences of movement of material to the lower head are considered with respect to the potential for reactor pressure vessel failure. The following models are reviewed: SCDAP/RELAP5, ICARE/CATHARE, ATHLET-CD/KESS, MELCOR, MAAP4, ESCADRE, etc.

  17. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  18. Large longitude libration of Mercury reveals a molten core.

    Science.gov (United States)

    Margot, J L; Peale, S J; Jurgens, R F; Slade, M A; Holin, I V

    2007-05-04

    Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 +/- 0.1 arc minutes. The measurements show that the planet exhibits librations in longitude that are forced at the 88-day orbital period, as predicted by theory. The large amplitude of the oscillations, 35.8 +/- 2 arc seconds, together with the Mariner 10 determination of the gravitational harmonic coefficient C22, indicates that the mantle of Mercury is decoupled from a core that is at least partially molten.

  19. $\\Delta \\phi$ and multi-jet correlations with CMS

    CERN Document Server

    Bermudez Martinez, Armando

    2018-01-01

    We present angular correlations in multi-jet events at highest center-of-mass energies and compare the measurements to theoretical predictions including higher order parton radiation and coherence effects.

  20. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  1. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  2. Molten carbonate fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  3. The mechanics of pressed-pellet separators in molten salt batteries

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    We present a phenomenological constitutive model that describes the macroscopic behavior of pressed-pellet materials used in molten salt batteries. Such materials include separators, cathodes, and anodes. The purpose of this model is to describe the inelastic deformation associated with the melting of a key constituent, the electrolyte. At room temperature, all constituents of these materials are solid and do not transport cations so that the battery is inert. As the battery is heated, the electrolyte, a constituent typically present in the separator and cathode, melts and conducts charge by flowing through the solid skeletons of the anode, cathode, and separator. The electrochemical circuit is closed in this hot state of the battery. The focus of this report is on the thermal-mechanical behavior of the separator, which typically exhibits the most deformation of the three pellets during the process of activating a molten salt battery. Separator materials are composed of a compressed mixture of a powdered electrolyte, an inert binder phase, and void space. When the electrolyte melts, macroscopically one observes both a change in volume and shape of the separator that depends on the applied boundary conditions during the melt transition. Although porous flow plays a critical role in the battery mechanics and electrochemistry, the focus of this report is on separator behavior under flow-free conditions in which the total mass of electrolyte is static within the pellet. Specific poromechanics effects such as capillary pressure, pressure-saturation, and electrolyte transport between layers are not considered. Instead, a phenomenological model is presented to describe all such behaviors including the melting transition of the electrolyte, loss of void space, and isochoric plasticity associated with the binder phase rearrangement. The model is appropriate for use finite element analysis under finite deformation and finite temperature change conditions. The model

  4. X-ray diffraction study of multiphase reverse reaction with molten CuCl and oxygen

    International Nuclear Information System (INIS)

    Marin, G.D.; Wang, Z.; Naterer, G.F.; Gabriel, K.

    2011-01-01

    Highlights: → This paper examines the reverse reactions associated with copper oxychloride decomposition in the copper-chlorine cycle of hydrogen production. → Experiments are designed to disperse oxygen gas into a molten CuCl bath to study its reaction at 450-500 o C and the composition of the products is quantified with X-ray diffraction measurements. → It is found that the optimal operating parameters for minimizing the reverse reaction lie in the pressure range of 1-2 bar and a temperature range of 500-525 o C. - Abstract: The thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production includes three chemical reactions of hydrolysis, decomposition and electrolysis. The decomposition of copper oxychloride for oxygen production establishes the high-temperature limit of the cycle. At 450-530 o C, copper oxychloride (Cu 2 OCl 2 ) decomposes to produce a molten salt of cuprous chloride (CuCl, copper I chloride) and oxygen gas. Minimization of the reverse reaction and undesirable products is critical for the proper operation of the Cu-Cl cycle. This paper examines the operating conditions that disfavor the reverse reaction of the oxygen production, and the parameters that maximize the extent of the forward reaction. Experiments were designed to disperse oxygen gas into a molten CuCl bath to study its reaction at 450-500 o C. The composition of the products was quantified with X-ray diffraction measurements. Experimental results indicate that a high decomposition extent of copper oxychloride is obtained at equilibrium when the temperature is higher than 500 o C, and the oxygen pressure is below 2 bar. The thermochemistry data of the reactants and products were also determined and reported. These thermodynamic data provide a key missing gap in the understanding of the Cu-Cl cycle of thermochemical hydrogen production. The data includes the standard formation entropy, enthalpy and Gibbs free energy at different temperatures. Also, in this paper, a

  5. Pileup subtraction for jet shapes

    CERN Document Server

    Soyez, Gregory; Kim, Jihun; Dutta, Souvik; Cacciari, Matteo

    2013-01-01

    Jet shapes have the potential to play a role in many LHC analyses, for example in quark-gluon discrimination or jet substructure analyses for hadronic decays of boosted heavy objects. Most shapes, however, are significantly affected by pileup. We introduce a general method to correct for pileup effects in shapes, which acts event-by-event and jet-by-jet, and accounts also for hadron masses. It involves a numerical determination, for each jet, of a given shape's susceptibility to pileup. Together with existing techniques for determining the level of pileup, this then enables an extrapolation to zero pileup. The method can be used for a wide range of jet shapes and we show its successful application in the context of quark/gluon discrimination and top-tagging.

  6. Heavy Flavored Jets with CMS

    Science.gov (United States)

    Jung, Kurt

    2018-02-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with tagged partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. Furthermore, recent results that constrain the jet production mechanism will shed additional light on the contributions of leading and next-to-leading order heavy flavor jet production with regard to the global energy loss picture. To this end, we present recent results measuring spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions, as well as measurements of dijet asymmetry of pairs of b-jets in PbPb collisions.

  7. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water

  8. Identifying jet quantum numbers event by event

    International Nuclear Information System (INIS)

    Teper, M.J.

    1979-12-01

    A method is proposed to identify the parton that gives rise to any particular jet. The method improves with the number of particles in the jet, and should indicate which of the jets in a three jet event at PETRA is the gluon jet. (author)

  9. Transient induced tungsten melting at the Joint European Torus (JET)

    Science.gov (United States)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.

  10. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    NARCIS (Netherlands)

    Nabuurs, S.M.; Westphal, A.H.; Toorn, M. aan den; Lindhoud, S.; Mierlo, C.P. van

    2009-01-01

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing

  11. Topological switching between an a-ß parallel protein and a remarkably helical molten globule.

    NARCIS (Netherlands)

    Nabuurs, S.M.; Westphal, A.H.; Toorn, aan den M.; Lindhoud, S.; Mierlo, van C.P.M.

    2009-01-01

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing

  12. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...

  13. Synthetic Jet Flow Control in the Indoor Environment

    Science.gov (United States)

    McQuillan, Brett Wilfred

    Experimental flow visualization study was used to assess the ability of synthetic jets to be adapted for control of air flows and particulates in an indoor environment. Flow visualization was used to determine whether paired synthetic jet modules installed onto the surface of a supply diffuser could significantly impact room air distribution through changing the angle at which supply air left the diffuser when mixing into the room air. Control over the supply jet angle is directly related to how well the supply air mixes with the room air and the overall air quality of the room. A lab with a high air exchange rate (7 ACH) was selected to act as the environment to test the synthetic jets in. This lab space is representative of occupational indoor environments that may require ventilation strategies beyond typical systems to ensure the safe and efficient operation of the space. Three synthetic-jet modules were tested including two pairs of small one-inch diameter jets used in a previous small-scale ventilation study [1] and two larger two-inch diameter jet pairs constructed specifically for this study. Statistical methods were used to compare the visualized supply flow with active synthetic jet flow control versus a baseline case (no flow control). A significant increase in the angle of mixing of the supply air of up to 4° or 50% of the original supply jet angle was achieved. [1] Jennifer Ziegler, Active Control of Air Quality Using Synthetic Jet Actuators. Troy, New York: Rensselaer Polytechnic Institute, 2007.

  14. Electromagnetic counterparts to structured jets from gravitational wave detected mergers

    Science.gov (United States)

    Lamb, Gavin P.; Kobayashi, Shiho

    2017-12-01

    We show the peak magnitude for orphan afterglows from the jets of gravitational wave (GW) detected black hole/neutron star - neutron star (BH/NS-NS) mergers highly depend on the jet half-opening angle θj. Short γ-ray bursts (GRBs) with a homogeneous jet structure and θj > 10°, the orphan afterglow viewed at the typical inclination for a GW detected event, 38°, are brighter at optical frequencies than the comparable macronova emission. Structured jets, where the energetics and Lorentz factor Γ vary with angle from the central axis, may have low-Γ components where the prompt emission is suppressed; GW electromagnetic (EM) counterparts may reveal a population of failed-GRB orphan afterglows. Using a Monte Carlo method assuming an NS-NS detection limit we show the fraction of GW-EM counterparts from homogeneous, two-component, power-law structured and Gaussian jets where the variable structure models include a wide low energy and Γ component: for homogeneous jets, with a θj = 6° and typical short GRB parameters, we find r-band magnitude mr ≤ 21 counterparts for ∼13.6 per cent of GW detected mergers; where jet structure extends to a half-opening angle of 25°, two-component jets produce mr ≤ 21 counterparts in ∼30 per cent of GW detected mergers, power-law structured-jets result in ∼37 per cent and Gaussian jets with our parameters ∼13 per cent. We show the features in the light curves from orphan afterglows can be used to indicate the presence of extended structure.

  15. Jet initiation of PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, J.M.

    1987-07-01

    This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

  16. Jet Reconstruction with Pileup Subtraction

    CERN Document Server

    Gavrilov, V; Oulianov, A; Vardanian, I N

    2003-01-01

    At nominal design luminosity LHC is expected to deliver on average about 17 proton-proton interactions per beam crossing. Pileup of particles from different interactions will produce energy clusters in the calorimeters which can be misidentified as jets. In addition the energy scale of real jets will be affected in a luminosity dependent way. Methods to reduce pileup effects on the jet reconstruction are analysed in this note.

  17. Dynamics of Newtonian annular jets

    International Nuclear Information System (INIS)

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  18. Performance of Jet Substructure Techniques and Boosted Object Identification in ATLAS

    CERN Document Server

    Lacey, J; The ATLAS collaboration

    2014-01-01

    ATLAS has implemented and commissioned many new jet substructure techniques to aid in the identification and interpretation of hadronic final states originating from Lorentz-boosted heavy particles produced at the LHC. These techniques include quantum jets, jet charge, jet shapes, quark/gluon, boosted boson and top quark tagging, along with grooming methods such as pruning, trimming, and filtering. These techniques have been validated using the large 2012 ATLAS dataset. Presented here is a summary of the state of the art jet substructure and tagging techniques developed in ATLAS, their performance and recent results.

  19. Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method

    Directory of Open Access Journals (Sweden)

    Ge X.

    2015-01-01

    Full Text Available In this work, we successfully applied the Fray-Farthing-Chen Cambridge electro-reduction process on the preparation of chromium from chromium oxide, and for the first time, the synthesis of ferrochromium alloy from chromium oxide and iron oxide mixture and the chromite ore in molten calcium chloride. The present work systematically investigated the influences of sintered temperature of the solid precursor, electrochemical potential, electrolysis temperature and time on the products by using a set of advanced characterization techniques, including XRD and SEM/EDS analyses. In particular, our results show that this process is energy-friendly and technically-feasible for the direct extraction of ferrochromium alloy from chromite ore. Our findings thus provide useful insights for designing a novel green process to produce ferrochromium alloy from low-grade chromite ore or stainless steel slag.

  20. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E.; Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J.

    1993-01-01

    The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored