WorldWideScience

Sample records for included small angle

  1. Evaluation of multiple small-angle neutron scattering including magnetic interactions

    Czech Academy of Sciences Publication Activity Database

    Šaroun, Jan

    2007-01-01

    Roč. 40, s1 (2007), s701-s705 ISSN 0021-8898. [XIII International Conference on Small - Angle Scattering . Kyoto, 09.07.2006-13.07.2006] Institutional research plan: CEZ:AV0Z10480505 Keywords : multiple small - angle scattering * neutron scattering * ferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.629, year: 2007

  2. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    1982-01-01

    The technique of small angle neutron scattering was first used in Germany less than two decades ago. Since then it has developed very rapidly, and today it is regarded as one of the most powerful techniques in materials, chemical and biological research. During the last decade the combination of high flux reactors and sophisticated instrumentation has revolutionized the technique. This paper endeavours to present a brief but comprehensive review of small angle scattering of neutrons and its applications in solid state research. The domain in which small angle neutron scattering is particularly useful is delineated and some of the methods used in the analysis of data are discussed with special emphasis on recent developments. Typical small angle neutron scattering cameras are described. Finally some experimental results on heterogeneities in metallic systems (both static and dynamic studies), radiation damage in materials, superconductivity, magnetic materials and the technologically very important area of non-destructive testing are reviewed in order to illustrate the wide range of applicability of this technique to problems in solid state research. (author)

  3. Neutron small angle scattering

    International Nuclear Information System (INIS)

    Ibel, K.

    1975-01-01

    The neutron small-angle scattering system at the High-Flux Reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The length of the collimator before the fixed sample position can be reduced by movable neutron guides; the secondary flight path of 40 m full length contains detector sites in various positions. Thus, a large domain of momentum transfers can be exploited. Scattering angles between 5.10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available with the same instrument and the same relative resolution. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered into different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. Future development comprises an increase of the limit in the count rate due to the electronic interface between the detector and on-line computer, actually at 5.10 4 per sec. by one order of magnitude

  4. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Dasannacharya, B.A.; Goyal, P.S.

    1997-01-01

    Small angle neutron scattering (SANS) is one of the most popular neutron scattering technique both for the basic research and as a tool in the hands of applied scientist. SANS is used for studying the structure of a material on a length scale of 10 - 1000 A. SANS is a diffraction experiment that involves scattering of a monocromatic beam of neutrons in order to obtain structural information about macromolecules and heterogeneities. This paper will discuss the design of SANS spectrometers with a special emphasis on the instruments which are better suited for medium flux reactors. The design of several different types of SANS spectrometers will be given. The optimization procedures and appropriate modifications to suit the budget and the space will be discussed. As an example, the design of a SANS spectrometer at CIRUS reactor Trombay will be given. (author)

  5. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  6. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  7. Experimental technique of small angle neutron scattering

    International Nuclear Information System (INIS)

    Xia Qingzhong; Chen Bo

    2006-03-01

    The main parts of Small Angle Neutron Scattering (SANS) spectrometer, and their function and different parameters are introduced from experimental aspect. Detailed information is also introduced for SANS spectrometer 'Membrana-2'. Based on practical experiments, the fundamental requirements and working condition for SANS experiments, including sample preparation, detector calibration, standard sample selection and data preliminary process are described. (authors)

  8. Small-angle scattering, topography and radiography

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    A table is given showing scattering and imaging methods for X-rays and neutrons, followed, by a discussion of such topics as 1. Radiography 2. Topography 3. Small-angle scattering 3.1. The differential cross section 3.2. Comparison of X-ray and neutron small-angle scattering 3.3. Examples of small-angle scattering. (orig.) [de

  9. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  10. The small angle diffractometer SANS at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With the start-up of SINQ an instrument for small angle neutron scattering will be operational which compares well with the world`s largest and most powerful facilities of this kind. Following the classical principle of the D11-instrument of ILL, it is equipped with state-of-the-art components as are nowadays available, including options for further upgrading. Great emphasis was laid upon providing a flexible, universal multi-user facility which guarantees a comfortable and reliable operation. In the present paper, the principle layout of the instrument is presented, and the individual components are described in detail. The paper concludes with model application of small angle scattering to a system of dilute CuCo alloys which undergo a phase separation under thermal treatment, forming spherical Co-precipitates dispersed in a Cu-rich matrix. (author) 3 figs., 1 tab., 14 refs.

  11. Small-angle scattering on soft materials

    International Nuclear Information System (INIS)

    Mortensen, K.

    1994-01-01

    Small angle x-ray and neutron scattering provides tools for investigation of structures on the length scale 10 to 1000 A. This is the length scale which is relevant for many topics within soft materials, like biological macromolecules, polymers, colloids, etc. The very large difference between the scattering amplitude of neutrons by regular hydrogen and deuterium makes neutron scattering a very important technique within soft condensed matter. The basic theory for small angle scattering is reviewed. Experimental results obtained by small angle scattering are shown, with emphasis on soft materials. (author). 33 refs, 6 figs, 1 tab

  12. Small-angle neutron-scattering experiments

    International Nuclear Information System (INIS)

    Hardy, A.D.; Thomas, M.W.; Rouse, K.D.

    1981-04-01

    A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)

  13. Fractal approach in petrology: Combining ultra small angle (USANS), and small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Lo Celso, F.; Triolo, R.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.

    2000-01-01

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves

  14. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANS) and Small Angle Neutron Scattering (SANS)

    International Nuclear Information System (INIS)

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-01-01

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves

  15. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  16. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. *Corresponding author ... ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray ... for scattering from rough pore–mass interfaces, α > 3 and the (surface) fractal dimension Ds = 6 ...

  17. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Small angle neutron scattering and small angle X-ray scattering studies of platinum-loaded carbon foams. P U Sastry V K Aswal A G Wagh ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November ...

  18. Small Angle Light Scattering by Biological Objects

    International Nuclear Information System (INIS)

    Berdzenishvili, L.; Melikishvili, Z.

    2005-01-01

    In this paper the small angle laser radiation scattering by the particles of different shape and size is analyzed. Experimental results and theoretical calculations show that after ejection from bacteriophage DNA forms the scattering medium consisted of quasi-spherical elements with radius of R⁓10λ 0 . (author)

  19. A small angle neutron scattering study

    Indian Academy of Sciences (India)

    Nanocrystalline nickel oxide powders were calcined at 300, 600 and 900°C and pore structure evolution was followed by small angle neutron scattering (SANS). Pore size distributions at two widely separated size ranges have been revealed. Shrinkage of larger-sized pore with reduction in polydispersity has been observed ...

  20. SANS-1: Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    André Heinemann

    2015-08-01

    Full Text Available The new small angle scattering instrument SANS-1, jointly operated by the Technische Universität München and GEMS, Helmholtz-Zentrum Geesthacht, has completed commissioning and is in regular user service (Gilles et al., 2006. SANS-1 is located at the end of neutron guide NL4a in the Neutron Guide Hall West.

  1. SANS-1: Small angle neutron scattering

    OpenAIRE

    Heinemann, André; Mühlbauer, Sebastian

    2015-01-01

    The new small angle scattering instrument SANS-1, jointly operated by the Technische Universität München and GEMS, Helmholtz-Zentrum Geesthacht, has completed commissioning and is in regular user service (Gilles et al., 2006). SANS-1 is located at the end of neutron guide NL4a in the Neutron Guide Hall West.

  2. A small-angle neutron scattering investigation

    Indian Academy of Sciences (India)

    Hence, the steel is used in aircraft, nuclear reactor, petrochemical plants and many other industries. However, presence of carbide formers such as Mo and Cr war- rants the possibility of carbide precipitates in the structure and in turn affects the mechanical properties. Small-angle neutron scattering (SANS) is an important ...

  3. Introduction to small-angle scattering

    International Nuclear Information System (INIS)

    Gilbert, E.

    2003-01-01

    Full text: Small angle neutron and X-ray scattering (SANS and SAXS) are ideal tools for studying the structure of materials in the size range between 10 and 1000 Angstrom. While imaging methods such as transmission electron microscopy (TEM) also have this capability, they provide images in real space, for instance individual grains in a nanocrystalline material. SANS and SAXS, on the other hand, provide (generally) a non-destructive method yielding structural information averaged over all grains with high statistical accuracy due to averaging over the whole sample volume. The use of neutrons and X-rays is also implicitly complementary due to their sensitivity to either nuclear or electron density respectively. This provides several further advantages over real-space techniques such as isotopic sensitivity and contrast variation. In this talk, I will provide an introduction to the technique with a minimum number of equations, emphasising what structural information may be obtained from small-angle scattering

  4. Hadron elastic scattering at small angles

    CERN Multimedia

    2002-01-01

    This experiment is an extension of the measurements of the WA9 experiment up to the highest energies available in the North Area. It will measure the differential cross-section for hadron elastic scattering in the t-range 0.002-0.05 (GeV/c)$^{2}$ using an ionization chamber for the measurement of the energy and the angle of the recoil and a magnet-WC spectrometer to measure the momentum and direction of the forward particle. From these measurements will be obtained the ratio $\\rho$ of the real to imaginary parts of the forward elastic amplitude and the exponential slope parameter b of the hadronic amplitude at small t. The precision expected in these measurements is $\\Delta \\rho \\approx \\pm 0.01$ and $\\Delta$b $\\approx \\pm 0.2$ (GeV/c)$^{-2}$. \\\\ \\\\ The experimental programme includes: \\\\\\\\ i) measurements of $\\rho$ and b for $\\pi$p elastic scattering at incident momenta between 150 GeV/c and 300 GeV/c; \\\\ ii) measurements of $\\rho$ and b for $\\pi^{+}$p and pp elastic scattering at incident momenta between 5...

  5. Small-Angle Scattering on Magnetoferritin Nanoparticles

    Science.gov (United States)

    Balejčíková Petrenko, L., VI; Avdeev, MV; Garamus, VM; Almásy, L.; Kopčanský, P.

    2017-05-01

    Magnetoferritin is a synthetically prepared magnetic bio-complex, consisting of apoferritin shell and iron-based nanoparticles. Superparamagnetic behaviour, nanoscale size (about 12 nm) and biological origin allow to use magnetoferritin in various applications. In this report, we present a general overview about basic physicochemical properties of magnetoferritin, as determined by small-angle X-ray and neutron scattering experiments and some interesting references on their potential bio-applications.

  6. Ultra small angle scattering versus diffraction

    Science.gov (United States)

    Ebrahimi, O.; Treimer, W.; Strobl, M.; Feye-Treimer, U.; Beul, N.; Jericha, E.; Seidel, S. O.

    2010-11-01

    In the case of ultra small angle (neutron or x-ray) scattering (USANS, USAXS) it may happen that structures under investigations are not fully coherently illuminated by the incident wave. Despite this fact interference effects are observed similar to SAS data. In this case the measured scattering patterns must be different interpreted. We propose a procedure to calculate and adapt such scattering patterns to experimental data.

  7. Ultra small angle scattering versus diffraction

    International Nuclear Information System (INIS)

    Ebrahimi, O; Treimer, W; Strobl, M; Feye-Treimer, U; Beul, N; Jericha, E; Seidel, S O

    2010-01-01

    In the case of ultra small angle (neutron or x-ray) scattering (USANS, USAXS) it may happen that structures under investigations are not fully coherently illuminated by the incident wave. Despite this fact interference effects are observed similar to SAS data. In this case the measured scattering patterns must be different interpreted. We propose a procedure to calculate and adapt such scattering patterns to experimental data.

  8. Studies in small angle scattering techniques

    International Nuclear Information System (INIS)

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  9. Pair production in small angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  10. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  11. Anomalous and resonance small angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs

  12. Small-angle neutron scattering in materials science

    International Nuclear Information System (INIS)

    Fratzl, P.

    1999-01-01

    Small-angle scattering (SAS) in an ideal tool for studying the structure of materials in the mesoscopic size range between 1 and about 100 nanometers. The basic principles of the method are reviewed, with particular emphasis on data evaluation and interpretation for isotropic as well as oriented or single-crystalline materials. Examples include metal alloys, composites and porous materials. The last section gives a comparison between the use of neutrons and (synchrotron) x-rays for small-angle scattering in materials physics. (author)

  13. Small angle neutron scattering from glassy SiO2

    International Nuclear Information System (INIS)

    Spooner, S.; Hastings, J.B.

    1976-01-01

    The present investigation of neutron scattering from glassy silica was undertaken to resolve whether the small angle scattering observed by Renninger and Uhlmann could also be seen in the bulk samples typically used in neutron-scattering experiments. Within the rather large error bars of this experiment no small angle scattering increase at small angles could be seen. (Auth.)

  14. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  15. Phase sensitive small angle neutron scattering

    Science.gov (United States)

    Brok, Erik; Majkrzak, Charles F.; Krycka, Kathryn

    It is a well-known problem that information about the scattered wave is lost in scattering experiments because the measured quantity is the modulus squared of the complex wave function. This ''phase problem'' leads to ambiguity in determining the physical properties of the scattering sample. Small angle neutron scattering (SANS) is a useful technique for determining the structure of biomolecules, in particular proteins that cannot be crystallized and studied with x-ray crystallography. However, because the biomolecules are usually suspended in a liquid the observed scattering is an average of all possible orientations, making it difficult to obtain three dimensional structural information. In a proposed method polarized SANS and magnetic nanoparticle references attached to the sample molecules is used to obtain phase sensitive structural information and simultaneously circumvent the problem of orientational averaging (Majkrzak et al. J. Appl. Cryst. 47, 2014) If realized and perfected the technique is very promising for unambiguous determination of the three dimensional structure of biomolecules. We demonstrate the principles of our method and show the first experimental data obtained on a simple test system consisting of core shell magnetic nanoparticles.

  16. SANS [small-angle neutron scattering] from polymers and colloids

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1987-01-01

    Small-angle neutron scattering (SANS) has been remarkably successful in providing detailed quantitative structural information on complex everyday materials, such as polymers and colloids, which are often of considerable industrial as well as academic interest. This paper reviews some recent SANS experiments on polymers and colloids, including ferrofluids, and discusses the use of these apparently complex systems as general physical models of the liquid or solid state

  17. Small-angle neutron scattering technique in liquid crystal studies

    International Nuclear Information System (INIS)

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  18. A small-angle neutron scattering study

    Indian Academy of Sciences (India)

    400Da [9]. Low-angle X-ray scattering [10] and neutron scattering [11] also in- dicated serum albumin to be a prolate ellipsoid. However, studies using 1H NMR indicated that a prolate structure was unlikely; rather a heart-shaped structure was proposed [12]. The shape of albumin reveals a heart-shaped molecule that can.

  19. Small angle neutron scattering from nanometer grain sized materials

    Science.gov (United States)

    Epperson, J. E.; Siegel, R. W.

    1991-11-01

    Small angle neutron scattering has been utilized, along with a number of complementary characterization methods suitable to the nanometer size scale, to investigate the structures of cluster-assembled nanophase materials. Results of these investigations are described and problems and opportunities in using small angle scattering for elucidating nanostructures are discussed.

  20. Small angle polarised neutron scattering investigation of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Bergenti, I.; Deriu, A.; Savini, L.; Bonetti, E.; Spizzo, F.; Hoell, H.

    2003-01-01

    Small angle scattering of polarised neutron (SANSPOL) is a powerful technique for the determination of magnetisation, density and compositional profiles of nanostructured particles. We present here some examples of the magnetic profile determination using the SANSPOL technique and we discuss in detail its advantage with respect to the conventional small angle neutron scattering approach

  1. Modernizing Agrifood Markets : Including Small Producers in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Against this baseline data, they will endeavor to identify success stories or examples of interventions that ensure small farmers' access to modernizing agrifood markets. The research will inform a set of policy recommendations to be promoted through policy platforms in a large number of developing countries, including but ...

  2. Resolution of pulsed-source small-angle neutron scattering

    International Nuclear Information System (INIS)

    Seeger, P.A.; Pynn, R.

    1986-01-01

    An analytic form is found for resolution of small-angle scattering in a plane, at a pulsed source with a white neutron spectrum. The function is found to be asymmetric at low values of Q and to have broad tails if data recorded over the entire wavelength range are combined. Monte Carlo calculations in three dimensions and including realistic spectra and collimator geometry confirm these features and provide ''data'' for studying the question of what regions of scattering angle and wavelength should be retained in data reduction. Comparisons are made with a spectrometer at a reactor, based on the accuracy, statistical precision, and time required to collect data for (simulated) monodisperse hard spheres of various radii. (orig.)

  3. Neutron small angle scattering of irradiated aluminium-silicon alloys

    International Nuclear Information System (INIS)

    Kostorz, G.

    1976-01-01

    Technically pure aluminium and aluminium-silicon alloys (0.43, 0.83 and 1.2% Si, also containing 0.11 to 0.14 at. % Fe) were investigated by slow neutron small angle scattering after irradiation with fast neutrons at low temperatures. Different irradiation levels, ageing at room temperature and at 60/70 0 C had no measurable effect upon small angle scattering cross-sections. From the experimental precision upper limit for the amount of Si involved in clustering after irradiation can be given. The observed small angle scattering shows a strong dependence on scattering angles and is attributed to large precipitates of Al 12 Fe 3 Si. A surface layer on the as-received samples is identified as another source of low-intensity small angle scattering. (orig.) [de

  4. Investigation of ferromagnetic domain structures by neutron small angle scattering

    International Nuclear Information System (INIS)

    Schild, L.

    1984-01-01

    The magnetic small angle scattering of thermal neutrons caused by magnetic refraction at domain walls of ferromagnetic materials without texture has been investigated. Experiments on Fe-Si alloys with a twin crystal diffractometer were carried out. It is shown that the mean extension of magnetic basic units (domains as well as parallel wall systems) can be determined. A comparison of grain sizes determined metallographically with domain sizes obtained by neutron small-angle scattering has shown that neither mean grain size nor domain size can be assessed by small-angle scattering experiments

  5. Biological Small Angle Scattering: Techniques, Strategies and Tips

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Barnali [University at Buffalo (SUNY); Muñoz, Inés G. [Centro Nacional de Investigaciones Oncológicas Madrid, Madrid, Spain; Urban, Volker S. [ORNL; Qian, Shuo [ORNL

    2017-12-01

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for

  6. Small-angle neutron scattering studies of sodium butyl benzene

    Indian Academy of Sciences (India)

    Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...

  7. Small-angle neutron scattering studies of sodium butyl benzene ...

    Indian Academy of Sciences (India)

    Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...

  8. Ultra small angle neutron scattering from superconducting filament structures

    International Nuclear Information System (INIS)

    Amenitsch, H.

    1999-01-01

    With a perfect crystal camera, ultra small-angle scattering measurements were performed to investigate the internal diffusion process of tin inside a superconducting multi-filament wire caused by a temperature treatment. Commercially available Nb 3 Sn superconducting multi-filament wires were treated at 700 C with varying ageing times up to 144 h. A theoretical model taking into account the geometrical form, the size distribution, the interference term and the multiple scattering has been developed to understand and to describe the small angle diffraction pattern. Additionally, the diffusion of H and D into the filament wires was used to vary the scattering length density inside the wires. The results show a direct relationship between the different technological treatments and the characteristic small-angle scattering parameters, like Guinier radius and small-angle scattering probability. (orig.) [de

  9. Small angle neutron scattering from high impact polystyrene

    International Nuclear Information System (INIS)

    Pringle, O.A.

    1981-01-01

    High impact polystyrene (HIPS) is a toughened plastic composed of a polystyrene matrix containing a few percent rubber in the form of dispersed 0.1 to 10 micron diameter rubber particles. Some commercial formulations of HIPS include the addition of a few percent mineral oil, which improves the toughness of the plastic. Little is known about the mechanism by which the mineral oil helps toughen the plastic. It is hypothesized that the oil is distributed only in the rubber particles, but whether this hypothesis is correct was not known prior to this work. The size of the rubber particles in HIPS and their neutron scattering length density contrast with the polystyrene matrix cause HIPS samples to scatter neutrons at small angles. The variation of this small angle neutron scattering (SANS) signal with mineral oil content has been used to determine the location of the oil in HIPS. The SANS spectrometer at the University of Missouri Research Reactor Facility (MURR) was used to study plastic samples similar in composition to commercial HIPS. The MURR SANS spectrometer is used to study the small angle scattering of a vertical beam of 4.75 A neutrons from solid and liquid samples. The scattered neutrons are detected in a 54 x 60 cm 2 position sensitive detector designed and built at MURR. A series of plastic samples of varying rubber and oil content and different rubber domain sizes and shapes were examined on the MURR SANS spectrometer. Analysis of the scattering patterns showed that the mineral oil is about eight to ten times more likely to be found in the rubber particles than in the polystyrene matrix. This result confirmed the hypothesis that the mineral oil is distributed primarily in the rubber particles

  10. Small angle x-ray scattering and its applications

    International Nuclear Information System (INIS)

    Buckely, C.E.

    2002-01-01

    Full text: Small angle X-ray scattering is an excellent technique to characterise inhomogeneities in materials in the size range from 1 nm - several hundred nm. Ultra small angle X-ray scattering has extended this size range out to 20 μm. SAXS is due to the electron density difference between the matrix and the inhomogeneity. SAXS and small angle neutron scattering have been successfully used to characterise colloidal particles in solution, colloidal powders, macromolecules, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such as transmission and scanning electron microscopy are a powerful combination for the investigation of submicron particles. This talk will introduce the small angle scattering technique and its applications, and will also describe the new Nanostar SAXS instrument in the Department of Applied Physics at Curtin University that has been purchased through a 2001 Australian Research Council research infrastructure and equipment fund (2001 ARC RIEF) grant. Copyright (2002) Australian X-ray Analytical Association Inc

  11. Small-angle scattering applications to materials science

    International Nuclear Information System (INIS)

    Gerold, V.

    1978-01-01

    The review describes results of the last three or four years from the application of both X-ray and neutron small-angle scattering (SAS) to problems in the general field of materials science. A wide range of topics has been covered including phase separation in binary and ternary systems (early stages as well as the determination of the metastable miscibility gap), density and concentration fluctuations in single-phase systems, and studies of various structural defects such as voids, radiation damage, dislocations, and surfaces and interfaces. The interaction between magnetic moments and neutrons has made possible SAS research on the long-range interaction of spins in complicated magnetic systems and flux-line studies in type-II superconductors, and this work is also reviewed. (Auth.)

  12. User's guide for the small-angle neutron scattering facility

    International Nuclear Information System (INIS)

    Vlak, W.A.H.M.; Werkhoven, E.J.

    1989-04-01

    This report serves as a manual for the users of the small-angle neutron scattering instrument located at beamport HB3 of the High Flux Reactor in Petten. The main part of the text is devoted to the control of the facility and the data handling by means of a μVAX computer. Also, the various possibilities to access the facility across computer networks are discussed. A collection of menu-driven and command-driven programs, which utilize the flexibility of the VMS operating system without requiring detailed knowledge of the user about the computer environment, enables to control the instrument. For the convenience of the experienced user, who might wish to update or extend the software, a technical supplement is included. 15 figs.; 8 refs

  13. The small angle neutron scattering study on the segmented polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Sudirman; Gunawan; Prasetyo, S.M.; Karo Karo, A.; Lahagu, I.M.; Darwinto, Tri [Materials Science Research Center, National Nuclear Energy Agency, Serpong, Tangerang (Indonesia)

    1999-10-01

    The distance between hard segment (HS) and soft segment (SS) of segmented polyurethane have been determined using the Small Angle Neutron Scattering (SANS) technique. The segmented Polyurethanes (SPU) are linear multiblock copolymers, which include elastomer thermoplastic. SPU consist of hard segment and soft segment, each has tendency to make a group with similar type to form a domain. The soft segments used were polypropylene glycol (PPG) and 4,4 diphenylmethane diisocyanate (MDI), while l,4 butanediol (BD) was used as hard segment. The characteristic of SPU depends on its phase structure which is affected by several factors, such as type of chemical formula and the composition of the HS and SS, solvent as well as the synthesizing process. The samples used in this study were SPU56 and SPU68. Based on the appearance of SANS profile, it was obtained that domain distances are 12.32 nm for the SPU56 and 19 nm for the SPU68. (author)

  14. The National Facility for Small-Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Koehler, W.C.

    1986-01-01

    On this occasion honoring Professor C.G.Shull, the 30-m small-angle neutron scattering (SANS) instrument of the National Center for Small-Angle Scattering Research (NCSASR) will have been in routine user-mode operation for five years. Professor Shull served the Center as chairman of its first Advisory Committee and in that capacity contributed his expertise to the construction phase of the 30-m machine and to the formulation of operating policy. He has had a long and varied interest in the scientific application of small-angle scattering of X-rays and of neutrons. It is a pleasure for me to dedicate this review to him on his 70th birthday. (orig.)

  15. Small Angle Scattering in Neutron Imaging—A Review

    Directory of Open Access Journals (Sweden)

    Markus Strobl

    2017-12-01

    Full Text Available Conventional neutron imaging utilizes the beam attenuation caused by scattering and absorption through the materials constituting an object in order to investigate its macroscopic inner structure. Small angle scattering has basically no impact on such images under the geometrical conditions applied. Nevertheless, in recent years different experimental methods have been developed in neutron imaging, which enable to not only generate contrast based on neutrons scattered to very small angles, but to map and quantify small angle scattering with the spatial resolution of neutron imaging. This enables neutron imaging to access length scales which are not directly resolved in real space and to investigate bulk structures and processes spanning multiple length scales from centimeters to tens of nanometers.

  16. An introduction to small-angle neutron scattering

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1988-01-01

    Neutron and X-ray small-angle scattering provide, along with electron microscopy and diffraction, the principal techniques for the microscopic characterization of materials. Neutron, X-ray and electron beams each have quite different properties. In fact, each has unique advantages. The penetration of neutrons through most materials is responsible for many applications. The ever-increasing intensity of available X-ray beams is opening new fields. The advantage of electron beams is their ability to work in both real and reciprocal space. The problems of transforming the results of an experiment in reciprocal space to give an interpretation in real space are central to small-angle scattering, and are discussed. Several examples will be given of the successful use of small-angle neutron scattering applied to problems where other techniques have failed to make a decisive contribution. (orig.)

  17. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  18. Small-angle neutron-scattering experiment, (2)

    International Nuclear Information System (INIS)

    Niimura, Nobuo; Kaji, Harumi.

    1983-01-01

    Elementary explanation is given to the experiment on the small angle scattering using neutrons having long wave-length (3-12A), continued from the previous report. Two types of the apparatus for small angle neutron scattering experiment are described. The first is angle dispersion type, which uses the neutron beam from research reactors, and the second is wavelength dispersion type, which uses pulsed cold neutron sources. The principles of these experiments are explained. Especially the wavelength dispersion is described in detail. The apparatus in the booster facility at the Institute for High Energy Physics is shown as an example for the latter type. The two-dimensional position sensitive detector, which is essential for angle dispersion type, is also used for the wavelength dispersion type, and its data processing is also described. In the small angle neutron scattering experiment for the studies on the structure of living body substances, the techniques that should be taken into account in common are discussed; the proportion of D 2 O-H 2 O in solvent, the measurable range of Q, the size of specimens, the correction of incident neutron spectra, and the analysis of measured data. (Asami, T.)

  19. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. E-mail: smazu@apsara.barc.ernet.in. Abstract. Characterization of porous materials by small-angle scattering has been ex- tensively pursued for several years now as the pores are often of mesoscopic size and compatible with the ...

  20. Gluon transport equations with condensate in the small angle approximation

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Institut de Physique Théorique (IPhT), CNRS/URA2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-15

    We derive the set of kinetic equations that control the evolution of gluons in the presence of a condensate. We show that the dominant singularities remain logarithmic when the scattering involves particles in the condensate. This allows us to define a consistent small angle approximation.

  1. Small angle neutron scattering study of mixed micelles of oppositely ...

    Indian Academy of Sciences (India)

    - methylammonium bromide (DTAB) and sodium dodecyl sulphate (SDS) have been studied using small angle neutron scattering. The concentration of one of the components was kept fixed (0.3 M) and that of another varied in the range 0 to ...

  2. A national facility for small angle neutron scattering

    International Nuclear Information System (INIS)

    Buyers, W.J.L.; Katsaras, J.; Mellors, W.; Potter, M.M.; Powell, B.M.; Rogge, R.B.; Root, J.H.; Tennant, D.C.; Tun, Z.

    1995-01-01

    A world-class small angle neutron scattering (SANS) facility is proposed for Canada. It will provide users from the fields of biology, chemistry, physics, materials science and engineering with a uniquely powerful tool for investigating microstructural properties whose length scales lie in the optical to atomic range. (author). 7 refs

  3. Small angle neutron scattering study of two nonionic surfactants in ...

    Indian Academy of Sciences (India)

    cO Indian Academy of Sciences. Vol. 71, No. 5. — journal of. November 2008 physics pp. 1079–1083. Small angle neutron scattering study of two nonionic surfactants in water micellar solutions. RAJEWSKA ALDONA. Institute of Atomic Energy, 05-400 Swierk-Otwock, Poland. E-mail: aldonar@cyf.gov.pl. Abstract.

  4. Small angle neutron scattering studies on the interaction of cationic ...

    Indian Academy of Sciences (India)

    in a wide variety of industrial, biological, pharmaceutical and cosmetic systems. The mechanism of unfolding of proteins on addition of the surfactant has been studied by several techniques such as circular dichroism (CD), nuclear magnetic resonance (NMR), microcalorimetry, light scattering and small angle scattering.

  5. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  6. Small angle neutron scattering study on the aggregation behaviour ...

    Indian Academy of Sciences (India)

    Small angle neutron scattering (SANS) measurements on aqueous solutions of four polyethylene oxide–polypropylene oxide–polyethylene oxide block copolymers (commercially known as Pluronic®)F88, P85, F127 and P123 in the presence of hydrophobic C14Diol (also known as Surfynol® 104) reveal information on ...

  7. Small angle neutron scattering studies of mixed micelles of sodium

    Indian Academy of Sciences (India)

    The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with ...

  8. Small Angle Scattering in Neutron Imaging : A Review

    NARCIS (Netherlands)

    Strobl, Markus; Harti, Ralph P.; Grünzweig, Christian; Woracek, Robin; Plomp, J.

    2017-01-01

    Conventional neutron imaging utilizes the beam attenuation caused by scattering and absorption through the materials constituting an object in order to investigate its macroscopic inner structure. Small angle scattering has basically no impact on such images under the geometrical conditions applied.

  9. Small-angle neutron scattering from colloidal dispersions

    International Nuclear Information System (INIS)

    Ottewill, R.H.

    1991-01-01

    A survey is given of recent work on the use of small-angle neutron scattering to examine colloidal dispersions. Particular attention is given to the determination of particle size and polydispersity, the determination of particle morphology and the behaviour of concentrated colloidal dispersions, both at rest and under the influence of an applied shear field. (orig.)

  10. Small-angle neutron scattering from micellar solutions

    Indian Academy of Sciences (India)

    The structure (shape and size) and the interaction of these aggregates, referred to as micelles, depend on the molecular architecture of the surfactant molecule, presence of additives and the solution conditions such as temperature, concentration etc. This paper gives the usefulness of small-angle neutron scattering to the ...

  11. Multiple small-angle neutron scattering studies of anisotropic materials

    CERN Document Server

    Allen, A J; Long, G G; Ilavsky, J

    2002-01-01

    Building on previous work that considered spherical scatterers and randomly oriented spheroidal scatterers, we describe a multiple small-angle neutron scattering (MSANS) analysis for nonrandomly oriented spheroids. We illustrate this with studies of the multi-component void morphologies found in plasma-spray thermal barrier coatings. (orig.)

  12. Temperature dependent small-angle neutron scattering of CTABr ...

    Indian Academy of Sciences (India)

    Atomic Research Centre, Mumbai 400 085, India. cDepartment of Physics, Bhavnagar University, Bhavnagar 364 002, India. E-mail: ruv@bhavuni.edu. Abstract. Small-angle neutron scattering studies have been carried out to check the structural integrity of ... the surface of the micelle. Micellar solution of CTABr is isotropic ...

  13. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    With the availability of ultra small-angle scattering instru- ments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail. The.

  14. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail.

  15. Small-angle neutron scattering studies on water soluble complexes ...

    Indian Academy of Sciences (India)

    ... by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCP-SDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were ...

  16. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  17. Neutron imaging and small angle neutron scattering instruments at KUR

    International Nuclear Information System (INIS)

    Saito, Yasushi; Oba, Yojiro; Hino, Masahiro

    2015-01-01

    We review the neutron imaging (NI) and small-angle neutron scattering (SANS) instruments at KUR, Kumatori, Osaka, Japan. There are two NI and one SANS instruments. The both instruments are compact and used flexibly. Some challenging experiments taking advantage of low neutron fluence are described. The feature of KUR is also described briefly. (author)

  18. Temperature dependent small-angle neutron scattering of CTABr ...

    Indian Academy of Sciences (India)

    Micelles are aggregates of surfactant molecules and these aggregates are usually formed in different shapes of spherical, cylindrical, ellipsoidal, disc-like etc. The size and shapes of these micelles are studied using small-angle neutron scattering (SANS) [2]. A preparation of stable emulsion of magnetic fluid with micelles ...

  19. Small-angle neutron scattering studies of nonionic surfactant: Effect

    Indian Academy of Sciences (India)

    Micellar solution of nonionic surfactant -dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60°C) both in the presence and absence of ...

  20. Small angle neutron scattering studies on the interaction of cationic

    Indian Academy of Sciences (India)

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant ...

  1. Ultra-small angle X-ray diffraction from muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nave, C.; Diakun, G.P.; Bordas, J.

    1986-05-15

    An ultra-small angle X-ray scattering instrument is described. It uses two channel cut crystals, one to monochromatise and collimate the beam and the other to analyse the scattered radiation. It has been used to collect diffraction data from muscle, in which the physiological unit cell, the sarcomere, has a repeat of 2000 nm or more.

  2. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  3. Ultra Small-Angle Neutron Scattering Study of Porous Glass

    International Nuclear Information System (INIS)

    Desai, Reshma R.; Desa, J. A. Erwin; Sen, D.; Mazumder, S.

    2011-01-01

    Compacts of silica micro-spheres prepared for different times at sintering temperatures of 640 deg. C and 740 deg. C have been studied by Ultra Small-Angle Neutron Scattering (USANS) and Scanning Electron Microscopy (SEM). Stress versus strain measurements display several breakage points related to a range of nearest neighbour coordination around each microsphere.

  4. Small Angle Neutron Scattering instrument at Malaysian TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shukri Mohd; Razali Kassim; Zal Uyun Mahmood [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia); Shahidan Radiman

    1998-10-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One of the project involved the Small Angle Neutron Scattering (SANS). (author)

  5. Small angle neutron scattering in surface-active agents mixtures

    Science.gov (United States)

    Bulavin, L. A.; Garamus, V. M.; Ostanevich, Yu. M.

    The method of study of micelle structure by small angle neutron scattering is studied. The determination of maximum size, radius of gyration, average scattering density of micelles is presented. The way of study of distribution of scattering density in micelle is described. The problem of micelles interaction is discussed.

  6. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  7. Small-angle neutron scattering study of structural evolution of ...

    Indian Academy of Sciences (India)

    Small-angle neutron scattering; biological macromolecules; protein solution. PACS Nos 61.12.Ex; 87.14.Ee; 87.15.Nn. Biological macromolecules such as proteins possess a specific shape and charge, which regulate and ... Figure 1a shows the phase diagram of crystallization of 1 wt% lysozyme protein solution as a ...

  8. Everything SAXS: small-angle scattering pattern collection and correction

    International Nuclear Information System (INIS)

    Pauw, Brian Richard

    2013-01-01

    For obtaining reliable nanostructural details of large amounts of sample—and if it is applicable—small-angle scattering (SAS) is a prime technique to use. It promises to obtain bulk-scale, statistically sound information on the morphological details of the nanostructure, and has thus led to many a researcher investing their time in it over the last eight decades of development. Due to pressure from scientists requesting more details on increasingly complex nanostructures, as well as the ever improving instrumentation leaving less margin for ambiguity, small-angle scattering methodologies have been evolving at a high pace over the past few decades. As the quality of any results can only be as good as the data that go into these methodologies, the improvements in data collection and all imaginable data correction steps are reviewed here. This work is intended to provide a comprehensive overview of all data corrections, to aid the small-angle scatterer to decide which are relevant for their measurement and how these corrections are performed. Clear mathematical descriptions of the corrections are provided where feasible. Furthermore, as no quality data exist without a decent estimate of their precision, the error estimation and propagation through all these steps are provided alongside the corrections. With these data corrections, the collected small-angle scattering pattern can be made of the highest standard, allowing for authoritative nanostructural characterization through its analysis. A brief background of small-angle scattering, the instrumentation developments over the years, and pitfalls that may be encountered upon data interpretation are provided as well. (topical review)

  9. Ultra-small angle neutron scattering on structured materials

    International Nuclear Information System (INIS)

    Hainbuchner, M.

    2000-12-01

    In this work investigations of the inner macroscopic structure of various materials using the ultra small angle neutron scattering (USANS) technique are presented. First, the silicon double crystal and pinhole instruments used for the experiments are described. Then the basics of small angle neutron scattering theory are discussed. The treatment of the experimental scattering measurement data and the fitting of theoretical scattering models are thoroughly discussed, in particular the specific effects of the double crystal instrument geometry are considered. The used numerical procedures of the automatic data treatment and model fitting are presented. The quality and the reliability of these procedures and of the ultra small angle scattering experiments, performed on the neutron optical bench instrument S18 at the high flux reactor of the Institute Laue-Langevin, are illustrated by various measurements. The ultra small angle scattering measurements connect seamlessly or overlap with conventional pinhole measurements. For the determination the inner structure of the investigated materials a combination of ultra small and small angle scattering patterns can be used, which cover more than three orders of magnitude in momentum transfer and ten orders of magnitude in macroscopic differential scattering cross section. The specimens were carefully selected in order to represent a wide range of different materials. Artificial periodic silicon gratings were examined in order to prove high order interference effects. Measuring this kind of samples the performance of an USANS instrument can simply be determined. This allows the comparison of different instruments. For the calibration of the instrument and testing of the data treatment routines suspensions of latex spheres of various diameters were examined. In order to demonstrate that the evaluation of samples showing strong multiple scattering can produce meaningful results, measurements on sintered alumina using various

  10. Development of spin echo small angle neutron scattering

    International Nuclear Information System (INIS)

    Bouwman, W.G.; Uca, O.; Van Oossanen, M.; Kraan, W.H.; Rekveldt, M.T.

    1999-01-01

    A novel kind of small angle neutron scattering (SANS) instrument is being built, based on the Larmor precession of polarised neutrons in a magnetic field. A spin echo of the polarised neutrons is used to detect the scattering. The basis of this instrument is a symmetric set-up with a spin flipper in the centre, which creates a spin echo, even with a divergent beam. The precession regions on either side of the spin flipper are shaped such to produce a very sensitive relation between the vertical angle of the neutron path and the total precession angle on one side. Any SANS of a sample placed in the instrument changes the symmetry of the neutron path and therefore decreases the echo. This amounts to measuring only the difference of the incoming and outgoing angle. This gives a huge increase in intensity of the signal with respect to conventional SANS in which both incoming and outgoing angle are defined. Magnetised foils, which rotate the neutron spin between being parallel to the magnetic field and perpendicular to the field are used to start or terminate the precession. With a preliminary set-up the first spin echo SANS signal have been measured. A full correlation function in samples over distances from 5 to 1000 nm is expected to be measured in some minutes. (author)

  11. Performance of the upgraded small angle tile calorimeter at LEP

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).

  12. Magnetic nanostructures studied by polarized small angle neutron scattering

    International Nuclear Information System (INIS)

    Wiedenmann, Albrecht; Kammel, Martin; Heinemann, Andre

    2005-01-01

    Small Angle Neutron Scattering using polarised neutrons is introduced as a contrast variation technique for magnetic systems. The potential of this technique is illustrated on diluted Ferrofluids. Composition, magnetization and size distributions of magnetic core-shell composite particles and magnetic aggregates could be precisely evaluated beside non-magnetic micelles and free surfactants of similar sizes. Structure factors have been extracted which revealed a local pseudo-crystalline ordering of the magnetic particles induced by magnetic fields

  13. KWS-3: Very small angle scattering diffractometer with focusing mirror

    Directory of Open Access Journals (Sweden)

    Vitaliy Pipich

    2015-08-01

    Full Text Available KWS-3, which is operated by JCNS, Forschungszentrum Jülich, is a very small angle neutron scattering (VSANS instrument running on the focussing mirror principle. KWS-3 is designed to bridge the gap between Bonse-Hart and pinhole cameras. Owing to its extended Q range, optimized flux, and good wavelength resolution, KWS-3 has shown good performance and has become scientifically productive to the user community.

  14. Ultra-small-angle neutron scattering. History, developments and applications

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Yamaguchi, Daisuke

    2011-01-01

    Ultra-small-angle neutron scattering (USANS), which is a scattering method observing in a q-region of q=10 -3 nm -1 , was initiated by double crystal (Bonse-Hart) method. Recently, a focusing USANS method was developed by combining a pin-hole type spectrometer and focusing lenses. These two methods, which are complementary to each other, were employed to achieve wide q-observations on microbial cellulose, actin cytoskeleton, tire, and membrane-electrolyte assembly of fuel cell. (author)

  15. Small-angle neutron scattering analyses of nanoemulsion

    International Nuclear Information System (INIS)

    Kume, Takuji

    2010-01-01

    A stable nanoemulsion consisting of nanometer-sized oil droplets in water having a self-standing capability was prepared by high-pressure emulsification. Rheological measurements show that the nanoemulsion has a yield stress. Small-angle neutron scattering (SANS) revealed the presence of an ordered crystal-like lattice structure in addition to spherical domains with a radius of 17 nm. A mixed solution of 2-hydroxyethyl cellulose and dilution of the nanoemulsion has shear-thickening behavior (shear-induced gelation). Real-time SANS measurements with a Couette geometry as a function of shear rate showed an increase in the scattering intensity exclusively at low scattering angle region. However, neither aggregation nor deformation of droplet was detected and the SANS patterns remained isotropic irrespective of shear rate. A possible mechanism of gelation is proposed from the viewpoint of shear-induced percolation transition. (author)

  16. Small-angle scattering studies on clathrin-coated vesicles

    International Nuclear Information System (INIS)

    Bauer, R.; Hansen, S.; Oegendal, L.; Behan, M.; Jones, G.; Mortensen, K.; Saermark, T.

    1991-01-01

    Structural information of clathrin-coated vesicles has been achieved by small-angle X-ray, neutron and dynamic light scattering studies. A characteristic peak in the X-ray and neutron scattering profile (in D 2 O) from intact coated vesicles is consistent with the polygonic structure of the clathrin coat. Neutron as well as dynamic light scattering gives a coated vesicle size close to 1000A. Dynamic light scattering detects a distribution of sizes for the coated vesicles demonstrating polydispersity of the samples. Quick freezing and slow thawing cause breakdown of the polygonic coat and production of large aggregates, as observed by dynamic light scattering and the reduction of the peak in the X-ray scattering profile as well as an increase in the scattering intensity at the lowest angles in the neutron scattering profile. (orig.)

  17. Small angle neutron scattering study of Linde 80 RPV welds

    International Nuclear Information System (INIS)

    Wirth, B.D.; Odette, G.R.; Lucas, G.E.; Spooner, S.E.

    1999-01-01

    Small angle neutron scattering (SANS) results are presented for Linde 80 welds irradiated, as part of the B and W Owners Group Integrated Surveillance Program, at low fluxes ( 15 n/m 2 -s) to fluences from 0.29 to 3.5 x 10 23 n/m 2 (E > 1 MeV) at irradiation temperatures from 276 to 292 C. The welds all contain about 0.6 Ni (all composition units are in wt.%), 0.009 to 0.18 P and 0.05 to 0.28 Cu. In the welds with significant amounts of copper (>0.2 Cu) the measured defect scattering cross sections were consistent with either: (a) copper rich precipitates (CRPs) alloyed with manganese and nickel; or (b) dominant CRP scattering, plus a weak contribution from so-called matrix defect features. Similar weak scattering was observed in a low copper (0.06 Cu) weld. The identity of matrix defect features cannot be determined from the SANS data alone, but the scattering is consistent with the presence of subnanometer vacancy cluster-solute complexes. The general character of the CRPs, and the trends in their number density, volume fraction and average radius as a function of fluence and irradiation temperature, are very similar to those observed in a wide range of pressure vessel-type steels irradiated in test reactors at intermediate to high flux. The SANS data in the surveillance welds is also in unity with: (a) thermodynamic-kinetic radiation enhanced diffusion models of CRP evolution; (b) mechanical property changes, including predictions of the correlations of the surveillance data base; and (c) an atomic scale, atom probe field ion microscopy study into the nanostructure-chemistry of a CRP

  18. The Small angle TIle Calorimeter project in DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The new Small Angle TIle Calorimeter (STIC) covers the forward regions in DELPHI. The main motivation for its construction was to achieve a systematic error of 0.1% on the luminosity determination. This detector consists of a ''shashlik'' type calorimeter, equipped with two planes of silicon pad detectors placed respectively after 4 and 7.4 radiation lengths. A veto counter, composed of two scintillator planes, covers the front of the calorimeter to allow e-γ separation and to provide a neutral energy trigger.The physics motivations for this project, results from extensive testbeam measurements and the performance during the 1994 LEP run are reported here. (orig.)

  19. The small angle tile calorimeter in the DELPHI experiment

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Bari, M.; Barreira, G.; Benvenuti, A.C.; Bigi, M.; Bonesini, M.; Bozzo, M.; Camporesi, T.; Carling, H.; Cassio, V.; Castellani, L.; Cereseto, R.; Chignoli, F.; Della Ricca, G.; Dharmasiri, D.R.; Santo, M.C. Espirito; Falk, E.; Fenyuk, A.; Ferrari, P.; Gamba, D.; Giordano, V.; Gouz, Yu.; Guerzoni, M.; Gumenyuk, S.; Hedberg, V.; Jarlskog, G.; Karyukhin, A.; Klovning, A.; Konoplyannikov, A.; Kronkvist, I.; Lanceri, L.; Leoni, R.; Maeland, O.A.; Maio, A.; Mazza, R.; Migliore, E.; Navarria, F.L.; Negri, P.; Nossum, B.; Obraztsov, V.; Onofre, A.; Paganoni, M.; Pegoraro, M.; Peralta, L.; Petrovykh, L.; Pimenta, M.; Poropat, P.; Prest, M.; Read, A.L.; Romero, A.; Shalanda, N.; Simonetti, L.; Skaali, T.B.; Stugu, B.; Terranova, F.; Tome, B.; Torassa, E.; Trapani, P.P.; Verardi, M.G.; Vallazza, E.; Vlasov, E.; Zaitsev, A.

    1999-01-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called 'shashlik' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-γ separation. Results are presented from the extensive studies of these detectors in the CERN testbeams prior of installation and of the detector performance at LEP

  20. Small angle neutron scattering of micro- and nanostructured materials

    International Nuclear Information System (INIS)

    Trinker, M.

    2006-05-01

    In this work studies of micro- and nanostructured materials by means of neutron scattering techniques are presented. The first part contains the theory of neutron scattering by structures in condensed matter necessary for the understanding of the experimental results. The method of small angle neutron scattering (SANS) is applied to a sample of highly irradiated SiC/SiCf composite. These materials play an important role in concepts for future fusion reactors. Radiation induced structural changes after high-dose irradiation in the spallation target of the SINQ neutron source, Switzerland, are analyzed. For testing instruments and methods used in ultra-small angle neutron scattering (USANS) artificial microstructured samples fabricated from silicon are particularly suitable. Because of the known structure parameters and the model-like character of such samples the performance of the instruments involved and the models used for interpretation of the scattering data can be tested. The development and fabrication of a series of such silicon gratings at the Center for Micro- and Nanostructures (ZMNS) of the Vienna University of Technology are described. The following USANS measurements at the instrument S18 of the Institute Laue-Langevin, Grenoble, which is run by the Atomic Institute of the Austrian Universities, and the instrument itself are presented. Subsequently the results are compared to those of the newly developed spinecho small angle neutron scattering technique (SESANS) at the Delft University of Technology. The complementarity of both techniques is demonstrated by means of the scattering data obtained from the silicon gratings. A method for the direct reconstruction of one-dimensional scattering length density distributions is applied to the USANS scattering data of the silicon microstructures. The results are compared to those obtained from scanning electron microscopy and the applicability of the method to USANS scattering data for the reconstruction of one

  1. Introduction to nanostructural analyses by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Shibayama, Mitsuhiro

    2010-01-01

    It has already passed more than 30 years since small-angle neutron scattering (SANS) technique was applied in structural analyses. SANS is now one of common tools in structure investigations and SANS instruments can be found in any neutron scattering facilities. In particular, SANS plays an important role in the field of soft matter, such as polymer, micelles, gels, vesicles, as well as biological systems and metallurgy. Here, I give a brief survey on (1) the utility of SANS in structural studies, (2) experimental aspects of SANS, and (3) some results obtained so far. (author)

  2. Quokka: The Small-Angle Neutron Scattering Instrument at OPAL

    International Nuclear Information System (INIS)

    Gilbert, Elliot; Noakes, Terry; Schulz, Jamie; Baxter, Peter; Darmann, Frank; Hauser, Nick; Abbeywick, Peter; Brule, Alain; Imamovic, Eno; Christoforidis, Jason

    2005-01-01

    Full text: A small-angle neutron scattering (SANS) instrument is being designed as part of the initial instrument suite for the 20-MW OPAL Reactor. The new instrument, receiving neutrons from a large liquid-D2 cold source, will be in the spirit of the worlds best facilities and will greatly build upon the Australian Nuclear Science and Technology Organisations existing expertise and facilities. Scheduled for completion in July 2006, it will provide Australian and international researchers with opportunities to access state-of-the-art SANS instrumentation. The details of the new SANS will be presented. (author)

  3. Small angle x-ray scattering from proteins in solution

    International Nuclear Information System (INIS)

    de Souza, C.F.; Torriani, I.L.; Bonafe, C.F.S.; Merrelles, N.C.; Vachette, P.

    1989-01-01

    In this work the authors report experiments performed with giant respiratory proteins from annelids (erythrocruorins), known to have a molecular weight in the order of four million Daltons. Preliminary x-ray scattering data was obtained using a conventional rotating anode source. High resolution small angle scattering curves were obtained with synchrotron radiation from the DCI storage ring at LURE. Data from solutions with several protein concentrations were analyzed in order to determine low resolution dimensional parameters, using Guinier plots from the smeared scattering curves and the inverse transformation method

  4. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  5. Small-Angle Scattering from Nanoscale Fat Fractals.

    Science.gov (United States)

    Anitas, E M; Slyamov, A; Todoran, R; Szakacs, Z

    2017-12-01

    Small-angle scattering (of neutrons, x-ray, or light; SAS) is considered to describe the structural characteristics of deterministic nanoscale fat fractals. We show that in the case of a polydisperse fractal system, with equal probability for any orientation, one obtains the fractal dimensions and scaling factors at each structural level. This is in agreement with general results deduced in the context of small-angle scattering analysis of a system of randomly oriented, non-interacting, nano-/micro-fractals. We apply our results to a two-dimensional fat Cantor-like fractal, calculating analytic expressions for the scattering intensities and structure factors. We explain how the structural properties can be computed from experimental data and show their correlation to the variation of the scaling factor with the iteration number. The model can be used to interpret recorded experimental SAS data in the framework of fat fractals and can reveal structural properties of materials characterized by a regular law of changing of the fractal dimensions. It can describe successions of power-law decays, with arbitrary decreasing values of the scattering exponents, and interleaved by regions of constant intensity.

  6. Slow neutron scattering with small angle. 5-6

    International Nuclear Information System (INIS)

    Komura, Shigehiro

    1976-01-01

    The principle, experimental apparatus, and applications of small angle neutron scattering are briefly reviewed. As for the principle, the mathematical expressions for the nuclear and magnetic scattering cross sections of neutrons are given. The advantages of utilizing cold neutrons are also discussed. As for the experimental apparatus, the one at ILL, Grenoble, is introduced with a bird-eye view, a schematic diagram, and the fundamental parameters of the apparatus. The calculated and measured spectra of neutron flux at the exit of a guide tube are also presented. The first example of the small angle neutron scattering is the measurement of void distribution within aluminum single-crystals irradiated with fast neutrons, which was carried out at Juelich. The second problem is the magnetic unevenness in the single crystal of Fe-Ni invar alloy. The third application is the observation of the helical structure of the tobacco mosaic virus in D 2 O. It is suggested that significant informations are expected to be obtained about the conformation of RNA in virus from the results of this observation. (Aoki, K.)

  7. Tailoring beams for small-angle neutron diffractometers

    International Nuclear Information System (INIS)

    Crawford, R.K.; Carpenter, J.M.

    1988-01-01

    Small-angle neutron scattering instruments can be built to use either steady-state or time-of-flight techniques, although only the latter are practical at pulsed neutron sources. The techniques used to provide beams of suitable quality, wavelength range and angular collimation are considered in detail for steady-state and time-of-flight instruments at reactor neutron sources, and for time-of-flight instruments at pulsed neutron sources. For both instrument types a cold neutron source provides a definite advantage. Most, but not all, steady-state instruments use long flight paths, which can be shown to provide conditions which are optimum in many ways. However, frame-overlap considerations force the use of a short flight path for time-of-flight instruments, and this in turn forces these instruments to use different collimation and beam-quality techniques from those that are usually used for steady-state instruments. Although adequate techniques now exist for building short-flight-path small-angle neutron scattering instruments, some of these short-path techniques are still developing, and can be expected to improve in the future. At present the time-of-flight instruments are more difficult to build and use, but for many experiments this difficulty is more than compensated by the large wave-vector range covered in a single measurement with such instruments. (orig.)

  8. Characterization of porous materials by small-angle scattering

    International Nuclear Information System (INIS)

    Mazumder, S.; Sen, D.; Patra, A.K.

    2004-01-01

    Characterization of porous materials by small-angle scattering has been extensively pursued for several years now as the pores are often of mesoscopic size and compatible with the length scale accessible by the technique using both neutrons and X-rays as probing radiation. With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail. The limitation of conventional data analysis procedures is also pronounced in the case of thick samples and long wavelength of the probing radiation. Effect of multiple scattering is manifested by broadening the scattering profile. Sample thickness for some technologically important materials is often significantly high, as the experimental samples have to replicate all its essential properties in the bulk material. Larger wavelength of the probing radiation is used in some cases to access large length scale and also to minimize the effect of double Bragg reflections. (author)

  9. The application of ultra-small-angle neutron scattering in material research

    International Nuclear Information System (INIS)

    Peng Mei; Chen Liang; Sun Liangwei

    2011-01-01

    Material researches by use of Ultra-small-angle neutron scattering (USANS) have to be introduced, including experiments have to be carried in polymer science, fractal geometry of rocks, multiplex, complex fluids, hydrogels, artificial lattices, metal materials and high energy materials etc. It is show that, in addition to traditional small-angle-neutron scattering (SANS) techniques and so on, more comprehensive information of inner structure of materials can be acquired when combined with USANS, and this offer important help to resolve some material science problems. (authors)

  10. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  11. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  12. Radiation damage study using small-angle neutron scattering

    Science.gov (United States)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  13. Small angle neutron scattering experiment and raw data reduction

    International Nuclear Information System (INIS)

    Wei Guohai; Li Tianfu; Zhang Li; Wang Yu; Wang Hongli; Liu Xiangfeng

    2010-01-01

    Small angle neutron scattering (SANS) technique is a powerful tool for nanometer structural analysis of materials. The process of SANS measurement, and the raw data reduction, is relatively complicated. In order to obtain the absolute SANS intensity, one needs to measure intensities of the incident and scattered beams, the sample transmission, the background, the scattering and transmission of the empty cell etc. If a wide scattering vector range is needed, one has to measure the same sample under different instrument configurations. Also, a large number of data treatments are needed before one obtains the SANS data for further analysis. In this paper, after a short introduction to the SANS basic theory and the experimental system, we focus on the raw data reduction method, in which the averaging and the combination of the isotropically scattered data are discussed in detail. (authors)

  14. Small-angle neutron scattering instrument at MINT

    International Nuclear Information System (INIS)

    Mohd Ali Sufi; Yusof Abdullah; Razali Kassim; Hamid; Shahidan Radiman; Mohammad Deraman; Abdul Ghaffar Ramli

    1996-01-01

    The Small Angle Neutron Scattering (SANS) Instrument has been developed at Malaysian Institute for Nuclear Technology Research (MINT) for studying structural properties of materials on the length scale 1 nm to 100 nm. This is the length scale which is relevant for many topics within soft condensed matter, like polymers, colloids, biological macromolecules, etc. The SANS is a complementary technique to X-ray and electron scattering. However, while these later techniques give information on structures near surface, SANS concerns the structure of the bulk. Samples studied by SANS technique are typically bulk materials of the sizes mm's to cm's, or materials dissolved in a liquid. This paper described the general characteristics of SANS instrument as well as the experimental formulation in neutron scattering. The preliminary results obtained by this instrument are shown

  15. A novel small-angle neutron scattering detector geometry.

    Science.gov (United States)

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H

    2013-08-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3 He, the new concept utilizes gaseous detectors with 10 B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument.

  16. Field study of nanoparticles by small angle neutron scattering

    International Nuclear Information System (INIS)

    Mirebeau, I.; Hennion, M.; Bellouard, C.

    1994-01-01

    In nanometric iron particles, magnetic correlations are determined by small angle neutron scattering and compared to their values calculated in a simple superparamagnetic model. The introduction of a Lorentzian shape for the magnetic form factor is necessary to obtain a good fit of the data. This reveals two extra features: a spin disorder at the surface of the particles which persists in applied field, and a distribution in the particle sizes not probed by X-rays. The field alignment becomes easier with decreasing temperature. This is no longer true for samples with bigger and closer-packed particles, where strong dipolar interactions develop at low temperatures and oppose to the external field. 4 figs., 3 refs

  17. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    International Nuclear Information System (INIS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å

  18. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  19. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  20. The small angle tile calorimeter in the DELPHI experiment

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Negri, P; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1999-01-01

    The {\\bf S}mall angle {\\bf TI}le {\\bf C}alorimeter ({\\bf STIC}) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called ``shashlik'' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e-$\\gamma$ separat ion. Results are presented from the extensive studies of these detectors in the CERN testbeams prior to installation and of the detector performance at LEP.

  1. Small angle scattering from protein/sugar conjugates

    Science.gov (United States)

    Jackson, Andrew; White, John

    2006-11-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5 mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75 A˚ for beta casein in solution and around 80 A˚ for the sucrose conjugate.

  2. Small angle scattering from protein/sugar conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Andrew [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: ajj@nist.gov; White, John [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)

    2006-11-15

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75A-bar for beta casein in solution and around 80A-bar for the sucrose conjugate.

  3. Small angle scattering from protein/sugar conjugates

    International Nuclear Information System (INIS)

    Jackson, Andrew; White, John

    2006-01-01

    The Maillard reaction between free amine groups on proteins and sugars is well known. We have examined the effect of the reaction of the casein group of milk proteins with sugars on their nanoscale structure and aggregation. The small angle neutron scattering from beta casein and sodium caseinate and their sugar conjugates have been studied as a function of solution concentration. At high conjugate concentration (greater than ca. 5mg/ml) the addition of sugar reduces supra-micellar aggregation of the protein whilst at lower concentration, where the protein is expected to be deaggregated already, little effect is seen. Guinier analysis of the scattering data show a radius of gyration of around 75A-bar for beta casein in solution and around 80A-bar for the sucrose conjugate

  4. A small angle neutron scattering study of thermoplastic elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sutiarso; Edy Giri, R. Putra; Andon, Insani; Sudirman; Sudaryanto [Materials Science Research Centre, National Atomic Energy Agency, Jakarta (Indonesia)

    1998-10-01

    A bilateral scientific cooperation, in the small angle neutron scattering has been agreed upon between CIAE, China and BATAN, Indonesia as well as MINT Malaysia. As stated in the agreed proposal that the objective of this cooperation, in the initial stage (stage-1), was to have a regional intercomparison measurements of SANS instruments in order to determine their characteristic/performance. Therefore, this report is supposed to describe the progress in the SANS instrument development of each country involved during the period of 1996/97 and some activities related to the SANS instrument. Since, up to now, we have not yet received any progresses reported from either China or Malaysia, this report will describe the progress of SANS`s activities in BATAN only. (author)

  5. Topological investigation of nuclear graphite using small angle scattering

    Science.gov (United States)

    Rai, Durgesh K.; Khaykovich, Boris; Campbell, Anne A.; Ilvasky, Jan; Katoh, Yutai; Snead, Lance L.

    Nuclear power reactors require high performance materials that withstand high temperatures and neutron damage over long period of times. Graphite is widely used for high temperature fission reactor applications. It has a complex multiphase microstructure, which is affected by neutron irradiation. The irradiation-induced microstructures result in significant thermophysical property changes, affecting service lifetimes. It is important to understand these life-limiting phenomena at many different length scales. We present the results from small angle scattering (SAS) studies on graphite samples, which vary in doses and irradiation temperatures. The neutron and synchrotron SAS measurement data indicates that the graphite morphology consists of surface fractal structures. The samples were found to be uniform across several decades of length scale, while exhibiting different surface fractal dimensions, for different irradiation doses and temperature conditions. The surface fractal dimension changes at HFIR at ORNL, DOE User Facility; APS at ANL, DOE User Facility; Office of Nuclear Energy NSUF.

  6. Small-angle neutron scattering study of natural aquatic nanocolloids.

    Science.gov (United States)

    Jarvie, Helen P; King, Stephen M

    2007-04-15

    We examine the potential of small-angle neutron scattering (SANS) as a quantitative tool for studying nanostructure and length scales in natural freshwater aquatic colloidal dispersions (river water, river bed sediments, agricultural field drainage and slurry). Our results show that natural aquatic colloids are generally fractal with 3D network-type structures. None of these structures are consistent with diffusion-limited (DLCA) or reaction-limited (RLCA) particleparticle aggregation processes. The results also suggest three characteristic length scales: one ca. 3-10 nm, which we identify with "primary particle" sizes, another of ca. 20-50 nm suggestive of small aggregates, and the last ca. 50-200 nm which we postulate arises from transient networks of the aggregates. The role of organic matter in mediating colloid structure in aquatic dispersions was examined by neutron contrast variation and by measuring samples both before and after treatment with hydrogen peroxide. The results suggest that the aggregate network structure is mediated by organic matter.

  7. Analysis of artificial silicon microstructures by ultra-small-angle and spin-echo small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trinker, M. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria)], E-mail: mtrinker@ati.ac.at; Jericha, E. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria); Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft (Netherlands); Loidl, R. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria); Institute Laue-Langevin, F-38042 Grenoble (France); Rauch, H. [Atominstitut, Vienna University of Technology, A-1020 Vienna (Austria)

    2007-09-11

    Ultra-Small-Angle Neutron Scattering (USANS) is currently becoming an effective technique for the analysis of structures in the micrometer range. The new Spin-Echo SANS (SESANS) method measures a signal in real space. In both cases microfabricated silicon gratings provide unique test procedures for the related devices and interpretations of the experimental data. A series of one-dimensional gratings was fabricated using a highly anisotropic ion etching technique (RIE) and measured at the USANS instrument S18 at ILL, Grenoble. Grating parameters derived from the experimental data are in agreement with the nominal values. Scattering length density correlation functions calculated from the USANS data are compared to SESANS correlation functions measured at the Delft University of Technology, demonstrating the reciprocity of the two scattering methods. Reconstruction techniques for one-dimensional scattering length density distributions are applied to the USANS data. The results are in good agreement with SEM micrographs of the samples.

  8. Project study of a small-angle neutron scattering apparatus

    International Nuclear Information System (INIS)

    Schedler, E.; Pollet, J.L.

    1979-03-01

    This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de

  9. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  10. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators

  11. X-ray small angle scattering of polymer solutions

    International Nuclear Information System (INIS)

    Koyama, Ryuzo

    1975-01-01

    In recent papers, the calculated results were reported on the angular dependence of the intensity of scattered light or X-ray by chain polymers, on the basis of a stiff chain model. As the results, the curves of S 2 P (theta) corresponding to Kratky plot, for different molecular expansion, showed a plateau, and the height of the plateau was proportional to the inverse of molecular expansion coefficient α 2 . But as seen later, there is some possibility that the assumption made in the calculation overestimated the expansion of small segments which theoretically determines scattering curves at large scattering angles, such as the plateau. Accordingly, modified calculation was carried out by adopting the stiff chain polymer model as the previous case. When the contour length of a chain segment is very long, it can be treated approximately as a Gaussian coil, thus the equation for a chain segment expansion coefficient α (t) was obtained. Then the mean square distance of chain segments of polymer molecules was able to be determined, and the equation for a particle scattering factor P(theta) was obtained. The numerical calculation of P(theta) showed that this modified assumption considerably decreased the effect of molecular expansion on P(theta), and the curves of S 2 P(theta) increased monotonously without showing the plateau. The result of this calculation was compared with the experimental curves of polystyrene-toluene solution, and the agreement better than before was obtained. (Kako, I.)

  12. Small angle elastic scattering of protons off of spinless nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ling, A.G.

    1988-07-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on /sup 12/C, /sup 40/Ca, and /sup 208/Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay-line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude ..cap alpha../sub n/(0) = Ref/sub n/(0)/Imf/sub n/(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed. 130 refs., 60 figs., 12 tabs.

  13. New Very Small Angle Neutron Scattering (VSANS) Instrument

    International Nuclear Information System (INIS)

    Van Every, E; Kulesza, J; Deyhim, A

    2016-01-01

    The design of a new Very Small Angle Neutron Scattering (VSANS) Instrument for use in National Institute of Standards And Technology (NIST) will be discussed. This instrument is similar to a shorter instrument we designed and delivered to ANSTO in Australia called the Bilby SANS instrument. The NIST VSANS and the ANSTO Bilby SANS instruments have very similar dimensions for length and diameter and have similar requirements for internal detector motion, top access port, walkway supports, and ports; however, the Bilby SANS instrument vacuum requirement was lower (7.5×10-5 Torr) and the entire (60,000 pound) vessel was required to move 1.5 meters on external rails with a repeatability of 100 um, which ADC achieved. The NIST VSANS length is 24 meter, internal diameter 2.3 meter with three internal carriages. The NIST VSANS instrument, which covers the usual SANS range will also allow configuration to cover the range between q ∼| 10 -4 A -1 to 10 -3 A -1 with a sample beam current of (10 4 neutrons/s). The key requirements are a second position-sensitive detector system having a 1 mm pixel size and a longer sample-detector flight path of 20 m (i.e., a 40 m instrument). (paper)

  14. Small-angle neutron scattering measurement of silicon nanoparticle size

    International Nuclear Information System (INIS)

    Choi, Jonghoon; Tung, Shih-Huang; Wang, Nam Sun; Reipa, Vytas

    2008-01-01

    We have determined the particle size distribution profiles of octane-terminated silicon nanoparticle suspensions, produced using the sonication of electrochemically etched Si wafers. Small-angle neutron scattering data was analyzed separately in high (0.4 nm -1 -1 ) and low (q -1 ) scattering vector ranges. Data in the high q range is consistent with the log-normal distribution of isolated spherical particles with median diameter d = 3 ± 0.2 nm. Particle sizes were also indirectly assessed from photoluminescence and optical transmission spectroscopy using the size/bandgap relation: E g = 3.44d -0.5 , where E g is in eV and d in nm. Both measurements were consistent with the particle size distribution profiles, estimated from ANS data fitting and TEM image analysis. A subpopulation of larger, irregular shape structures in the size range 10-50 nm was also indicated by neutron scattering in the low q range and HRTEM images. However, further studies are warranted to explain a relationship between the slope of scattering intensity versus scattering vector dependence in the intermediate scattering vector range (0.4 nm -1 -1 ) and the role of non-geometrical Si nanoparticle characteristics (mutual interaction forces, surface termination, etc)

  15. Small angle scatter imaging from wide beam diffraction patterns

    International Nuclear Information System (INIS)

    Wilkinson, Steven J; Rogers, Keith D; Hall, Chris J; Round, Adam R

    2007-01-01

    In this paper we report on the extension of the technique of mapping small angle x-ray scatter (SAXS) across a soft material specimen several millimetres square. In the conventional SAXS mapping technique a pencil beam of x-rays is raster scanned over the specimen with the scatter pattern recorded from each point in the raster. In our technique a wide, parallel beam is used, speeding up the data collection time considerably. An image processing algorithm is used to separate the scatter pattern features from individual points along the line of the beam. To test the efficacy of the technique a phantom was constructed using gelatin and rat tail tendon collagen. Collagen fibres in the phantom were arranged in quarters horizontally, diagonally and vertically leaving one quarter with just gelatin. The phantom was used to collect both raster scanned sets of SAXS patterns spaced at 0.25 mm horizontally and vertically and also a wide beam data set. The width of the beam in this case was approximately 7 mm. Using the third-order diffraction of rat tail tendon intensity data were gathered from each SAXS pattern and used to construct a map. Data from the raster scan image and that from the wide beam are compared. Finally using a phantom made from dehydrated rat tail tendon and paraffin wax a tomographic slice constructed using data from SAXS patterns is shown

  16. Ultra-small-angle neutron scattering with azimuthal asymmetry.

    Science.gov (United States)

    Gu, X; Mildner, D F R

    2016-06-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.

  17. Heparin's solution structure determined by small-angle neutron scattering.

    Science.gov (United States)

    Rubinson, Kenneth A; Chen, Yin; Cress, Brady F; Zhang, Fuming; Linhardt, Robert J

    2016-12-01

    Heparin is a linear, anionic polysaccharide that is widely used as a clinical anticoagulant. Despite its discovery 100 years ago in 1916, the solution structure of heparin remains unknown. The solution shape of heparin has not previously been examined in water under a range of concentrations, and here is done so in D2 O solution using small-angle neutron scattering (SANS). Solutions of 10 kDa heparin-in the millimolar concentration range-were probed with SANS. Our results show that when sodium concentrations are equivalent to the polyelectrolyte's charge or up to a few hundred millimoles higher, the molecular structure of heparin is compact and the shape could be well modeled by a cylinder with a length three to four times its diameter. In the presence of molar concentrations of sodium, the molecule becomes extended to nearly its full length estimated from reported X-ray measurements on stretched fibers. This stretched form is not found in the presence of molar concentrations of potassium ions. In this high-potassium environment, the heparin molecules have the same shape as when its charges were mostly protonated at pD ≈ 0.5, that is, they are compact and approximately half the length of the extended molecules. © 2016 Wiley Periodicals, Inc.

  18. Characterization of Polystyrene Soft Nanoparticles Using Small Angle Neutron Scattering

    Science.gov (United States)

    Martin, Halie; White, Tyler; Saito, Tomonori; Dadmun, Mark

    Polymer nanocomposites have become a prominent area of research recently. With a growing variety of nanoparticles available, research probing the influence of particle morphology on the overall nanocomposite properties is also increasing. Nanoparticle dispersion is controlled by both the chemical nature and morphology of the nanoparticle where a crosslinked, fuzzy organic nanoparticle is anticipated to enhance the overall miscibility and create a homogenous dispersion within a like-polymer matrix. A semi-batch microemulsion polymerization forms organic, soft nanoparticles where the precise structure of the nanoparticle is controlled by monomer rate of addition and crosslinking density. We will report small angle neutron scattering results that correlate synthetic conditions to the structural characteristics of soft nanoparticles. This analysis provides characterization of the individual nanoparticle molecular weight, the radius of the crosslinked core, the thickness of the fuzzy interfacial layer, and provides insight into the overall topography of the soft nanoparticle. This research provides a pathway to investigate the effect of nanoscale structural features of the nanoparticle on their individual properties and those of nanocomposites that contain these soft nanoparticles. DOE-BES, Division of Materials Sciences and Engineering.

  19. Ultra-small-angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Jericha, E.; Badurek, G.; Trinker, M.

    2007-01-01

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble

  20. Ultra-small-angle scattering with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, E. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)]. E-mail: jericha@ati.ac.at; Badurek, G. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Trinker, M. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2007-07-15

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble.

  1. Small-angle neutron scattering investigations of nanocrystalline alloy chips obtained by machining

    Directory of Open Access Journals (Sweden)

    Elwyn Rebello

    2014-12-01

    Full Text Available Ultrafine-grained (UFG materials exhibit significantly enhanced mechanical properties. This has brought renewed attention on the use of large strain or severe plastic deformation as a means for achieving microstructural refinement in metals and alloys. Large plastic strains imposed in a machine chip result in significant microstructural refinement, including the creation of UFG and nanocrystalline materials. It looks to be an economical route for realizing nanocrystalline materials. In the present study, small-angle neutron scattering (SANS was employed to investigate the modifications in the microstructure of the chips produced via machining. Double crystal-based medium resolution SANS instrument has been used for this purpose. Significant scattering intensity at small enough angles reveals the presence of mesoscopic density fluctuations produced because of the machining. Atomic force microscopy images also corroborate the existence of such small length scale density fluctuations.

  2. Using small angle solution scattering data in Xplor-NIH structure calculations.

    Science.gov (United States)

    Schwieters, Charles D; Clore, G Marius

    2014-07-01

    This contribution describes the use of small and wide angle X-ray and small angle neutron scattering for biomolecular structure calculation using the program Xplor-NIH, both with and without NMR data. The current algorithms used for calculating scattering curves are described, and the use of scattering data as a structural restraint is given concrete form as a fragment of an Xplor-NIH structure calculation script. We review five examples of the use of scattering data in structure calculation, including the treatment of single domain proteins, nucleic acids, structure determination of large proteins, and the use of ensemble representations to characterize small and large amplitude motions. Published by Elsevier B.V.

  3. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs

  4. A review on the study of polymer properties by Small Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Baek Seok; Lee, Chang Hee; Sim, Hae Seop; Lee, Jung Sool [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Kim, Hong Doo [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Eu Gene [Hongik Univ., Seoul (Korea, Republic of); Cha, Kuk Heon [Seoul National Univ., Seoul (Korea, Republic of)

    1998-05-01

    This report contains concept of small angle neutron scattering , various design features and considerations of the small angle neutron spectrometer at HANARO, and recent trends of polymer studies by using this SANS technique with the installation of the spectrometer in near future. We, therefore, wish to review feasibility of small angle studies for polymer field at this spectrometer and to help possible beam time users for their experimental consideration. (author). 23 refs., 7 tabs., 23 figs

  5. Characterization of materials of industrial importance using small-angle scattering techniques

    International Nuclear Information System (INIS)

    Thiyagarajan, P.

    2003-01-01

    Small angle scattering (SAS) techniques using either X-rays or neutrons are versatile tools for deriving information on the size, morphology and dispersion of colloidal systems in complex materials of industrial importance. The processes such as self-assembly, aggregation, crystallization and phase separation can be studied using SAS techniques at relevant conditions. The difference in the interaction of X-rays and neutrons with matter enables complementary contrast variation studies using SANS and anomalous SAXS (in the presence of metals) on multi-component materials with hierarchical structures. In this paper we present results from small angle scattering studies on a number of systems of industrial importance including, temperature/pressure/shear dependent phase behaviour of pluronics in aqueous media, solution structures of aggregates/polymers of metal-extractant complexes, third phase formation of metal-extractant complexes in organic phase, encapsulation of lanthanides and actinides in porous silica and phase separation and nanocrystallization in bulk metallic glasses. (orig.)

  6. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  7. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    International Nuclear Information System (INIS)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W.

    2012-01-01

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 μm was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  8. Diffraction limit of the theory of multiple small-angle neutron scattering by a dense system of scatterers

    Science.gov (United States)

    Dzheparov, F. S.; Lvov, D. V.

    2016-02-01

    Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.

  9. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  10. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Oliveira, Cristiano Luis Pinto; Antonel, Soledad; Negri, Martin

    2011-01-01

    because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  11. Probing mesoscopic structures in hierarchically structured materials and porous media by small-angle scattering

    International Nuclear Information System (INIS)

    Sen, D.

    2010-01-01

    Small-angle neutron (SANS) and X-ray scattering (SAXS) are powerful techniques to investigate structural features of inhomogeneities i.e., the density fluctuations in condensed matter, on a length scale ranging from one nanometer up to one micron. 'Structural features' include size or size distribution, shape, dimensionality, inter-particle spatial correlation etc. Mesoscopic structure in hierarchically structured materials, where density fluctuations exist over a wide length scale, may be probed by combined usage of small-angle and ultra small-angle neutron or X-ray scattering. Such hierarchically structured micrometric grains may be synthesized by evaporation induced self assembly of nanoparticles. Rate of drying and physico-chemical properties of the virgin colloidal suspension are important aspects in determining the morphology of the grains as well as the inter-particle interactions within grains. Meso/macro pores can be templated in such grains by adding soft template materials and followed by calcinations. In this lecture, applications of SANS/SAXS on such hierarchically structured grains, synthesized by spray drying technique, will be discussed. In addition, a few applications of SANS/SAXS to probe porous materials and non-Euclidean systems will also be elaborated. In some cases, Monte Carlo based simulations have been performed in order to understand the observations from the scattering experiments and these will also be talked about. (author)

  12. small signal analysis of load angle governing and excitation control

    African Journals Online (AJOL)

    Dr Obe

    optimal value of regulator gain for damping as far as this study is concerned will be some value above 0.25. This is similar to the findings of Aldred and Shackshaft [2] using frequency response methods. Following as above for the same machine with excitation control only, but this time around, utilizing the load angle.

  13. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    NARCIS (Netherlands)

    Sales, Morten; Plomp, J.; Habicht, Klaus; Tremsin, Anton; Bouwman, W.G.; Strobl, Markus

    2016-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution.

  14. Small Angle X-ray Scattering: Going Beyond the Bragg Peaks -24 ...

    Indian Academy of Sciences (India)

    This article gives an introduction to the princi- ples of small angle scattering. Some applications of this technique are also briefly discussed. Introduction. Small angle X-ray scattering (SAXS) is a widely used technique to study large scale inhomogeneities in a med- ium, at length scales much larger than the wavelength.

  15. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  16. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  17. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  18. Grazing-incidence small-angle neutron scattering from structures below an interface.

    Science.gov (United States)

    Nouhi, Shirin; Hellsing, Maja S; Kapaklis, Vassilios; Rennie, Adrian R

    2017-08-01

    Changes of scattering are observed as the grazing angle of incidence of an incoming beam increases and probes different depths in samples. A model has been developed to describe the observed intensity in grazing-incidence small-angle neutron scattering (GISANS) experiments. This includes the significant effects of instrument resolution, the sample transmission, which depends on both absorption and scattering, and the sample structure. The calculations are tested with self-organized structures of two colloidal samples with different size particles that were measured on two different instruments. The model allows calculations for various instruments with defined resolution and can be used to design future improved experiments. The possibilities and limits of GISANS for different studies are discussed using the model calculations.

  19. A holder to rotate sample cells to avoid sedimentation in small-angle neutron scattering and ultra small-angle neutron scattering experiments

    International Nuclear Information System (INIS)

    Olsson, Anders; Hellsing, Maja S; Rennie, Adrian R

    2013-01-01

    Sedimentation, or creaming, of samples can significantly alter the amount of material in the beam during small-angle scattering experiments. Simple rotating mounts that ameliorate this effect are described and the design criteria are carefully discussed. A modular design permits simple adaptation to various instruments and different sample cells. Temperature control in the range 10 °C below ambient to about +40 °C has been implemented using air flow and a Peltier device. Example ultra small-angle neutron scattering data are shown that exploit the simplicity of the mounts and the capability to position several samples close together on a translation stage. (paper)

  20. High-frequency impedance of small-angle tapers and collimators

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2010-10-01

    Full Text Available Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s formula (for axisymmetric geometry, much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  1. Grazing incident small angle neutron scattering. Analysis of self-assembly of softmatters in thin films

    International Nuclear Information System (INIS)

    Yokoyama, Hideaki

    2009-01-01

    Grazing incident small angle scattering has been used for the analysis of surface and thin film structures. X-ray in particular is widely used for such analysis and called grazing incident small angle X-ray scattering (GISAXS). However, a very limited number of studied has been done using grazing incident small angle neutron scattering (GISANS) primarily due to low intensity of neutron beam. The arising JPARC neutron source will enable us to use GISANS to analyze thin film structures of softmatter. This report provides a basic concept of GISAS using an example of the analysis of nanocellular thin films fabricated by block copolymer template with supercritical carbon dioxide (BSTSC). (author)

  2. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    as carriers of membrane proteins. Together they form monodisperse soluble aggregates of about 10 nm in size. Chapter 2 introduces the method of small-angle scattering. Small-angle X-ray and neutron scattering are well suited for studying particles in solution on length scales from 1 to 100 nm. This makes...... describes a protein system that has successfully been measured with small-angle scattering methods and subsequently analysed using the hybrid approach. Paper I governs the transmembrane protein bacteriorhodopsin embedded into a phospholipid nanodisc. The modelling is based on a crystal structure...

  3. Spherical sector model for describing the experimental small-angle neutron scattering data for dendrimers

    International Nuclear Information System (INIS)

    Rogachev, A. V.; Cherny, A. Yu.; Ozerin, A. N.; Gordeliy, V. I.; Kuklin, A. I.

    2007-01-01

    A new model for interpreting the results of small-angle neutron scattering from dendrimer solutions is proposed. The mathematical description is given and the theoretical small-angle scattering curves for spherical sectors with different parameters are presented. It is shown that the model proposed is in good agreement with the experimental results. Comparison of the experimental small-angle neutron scattering curves for polyallylcarbosilane dendrimers of the ninth generation with model scattering curves suggests that the inner dendrimer sphere is permeable to a solvent whose density is lower than the density of the solvent beyond the dendrimer by a factor of at least 2

  4. Small angle neutron scattering study of two nonionic surfactants in ...

    Indian Academy of Sciences (India)

    nonionic surfactants in water micellar solutions. RAJEWSKA ALDONA. Institute of ... water solution for concentration c = 0.17% (dilute regime) at different temperatures in the range t = 10–35°C by small .... which yields the pair distance distribution function p(r), where r is the distance in real space. The point, at which the p(r) ...

  5. Small-angle neutron scattering study of structural evolution of ...

    Indian Academy of Sciences (India)

    and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concen- tration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the ...

  6. Structural Formation of Huntingtin Exon 1 Aggregates Probed by Small-Angle Neutron Scattering

    Science.gov (United States)

    Stanley, Christopher B.; Perevozchikova, Tatiana; Berthelier, Valerie

    2011-01-01

    In several neurodegenerative disorders, including Huntington's disease, aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention because these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration of 16.1 ± 5.9 Å and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our small-angle neutron scattering results on the internal structure of the mature fibrils demonstrate loose packing with ∼1 peptide per 4.75 Å β-sheet repeat distance, which is shown to be quantitatively consistent with a β-helix model. This research provides what we believe to be new insights into the structures forming along the pathway of huntingtin exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity. PMID:21575585

  7. Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.

    Science.gov (United States)

    Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita

    2018-03-12

    Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.

  8. Measurements of the electron energy spectrum by using small-angle Thomson scattering

    International Nuclear Information System (INIS)

    Popov, S. S.; Burdakov, A. V.; Vyacheslavov, L. N.; Ivantsivskii, M. V.; Ovchar, V. K.; Polosatkin, S. V.; Rovenskikh, A. F.; Fedotov, M. G.

    2008-01-01

    A novel diagnostic method is developed for studying the high-energy plasma electron component in the GOL-3 facility by using small-angle Thomson scattering. The method is based on the enhancement of the spectral density of scattered radiation as compared to the conventional large-angle scattering technique.

  9. Measurements of the electron energy spectrum by using small-angle Thomson scattering

    Science.gov (United States)

    Popov, S. S.; Burdakov, A. V.; Vyacheslavov, L. N.; Ivantsivskii, M. V.; Ovchar, V. K.; Polosatkin, S. V.; Rovenskikh, A. F.; Fedotov, M. G.

    2008-03-01

    A novel diagnostic method is developed for studying the high-energy plasma electron component in the GOL-3 facility by using small-angle Thomson scattering. The method is based on the enhancement of the spectral density of scattered radiation as compared to the conventional large-angle scattering technique.

  10. Using a grating analyser for SEMSANS investigations in the very small angle range

    International Nuclear Information System (INIS)

    Strobl, M.; Wieder, F.; Duif, C.P.; Hilger, A.; Kardjilov, N.; Manke, I.; Bouwman, W.G.

    2012-01-01

    Spin-echo modulation small-angle neutron scattering (SEMSANS) is based on the detection of spatial beam modulation, which is induced by triangular spin echo precession regions and subsequent spin analyses. In order to detect such signal and exploit it for small angle scattering investigations neutron detection with sub-millimeter spatial resolution is required. Here an approach is reported where instead of a position sensitive detector an absorption grating is used to analyze the beam modulation stepwise. The spin-echo length scan in this case is performed by varying the sample-to-detector distance. The real space correlation functions of reference sample structures in the range 10 2 nm, i.e. giving rise to small-angle scattering in the very small-angle range, are recorded and analyzed successfully.

  11. Neutron and x-ray small angle scattering of biological molecules

    International Nuclear Information System (INIS)

    Borso, C.S.; Danyluk, S.S.; Williamson, F.S.; Holmblad, G.L.; DeJong, S.; Pohl, J.

    1981-01-01

    The objectives of this project are to develop instrumentation for small angle x-ray and neutron scattering, and to utilize small angle techniques for study of the structures of the intracellular molecules interacting with the secondary messengers involved in cellular regulation. A unique self-scanning photodiode array has been developed as a linear position sensitive detector for studies of biological structures. A time-of-flight (TOF) small angle neutron instrument was developed and successfully tested at the prototype pulsed neutron facility, ZING-P'. Considerable hardware and software developments were necessary to successfully demonstrate the prototype small angle neutron scattering instrument. A dedicated data acquisition system based on a microprocessor was developed and tested within the short period of approximately 6 months and was interfaced to a biological sample changer and environmental controller. The resolution of the tapered collimation system proved to be adequate

  12. Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis

    DEFF Research Database (Denmark)

    Tian, Xinsheng; Langkilde, Annette Eva; Thorolfsson, Matthias

    2014-01-01

    introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report...

  13. Investigation of digestion Kinetics in commercial starches using in-situ small-angle neutron scattering

    International Nuclear Information System (INIS)

    Blazek, Jaroslav; Gilbert, Elliot Paul

    2009-01-01

    Full text: The digestion of starch has been the subject of many investigations, mostly involving in vitro measurement of the susceptibility of starches to attack by different enzymes, rather than measuring actual digestibility in vivo. The rate and extent of amylolytic hydrolysis of granular starches is known to vary according to botanical origin. Granule characteristics considered to influence susceptibility to attack by alpha-amylase include crystallinity, granule size and available specific surface, amylose content, porosity, structural inhomogeneities and degree of integrity. Most in-vitro studies of granular starch digestion have been limited to samples for which aliquots have been removed from the reaction mixture at various time intervals and freeze-dried to be subsequently characterized using a range of techniques. It remains unclear whether sample preparation creates artefacts in the samples. In this study, we have studied the kinetics of starch digestion of several commercial granular starches by time-resolved small-angle neutron scattering using an in-situ digestion chamber allowing, for the first time, to follow structural changes of starch in the course of digestion directly in the digestion mixture. Additionally, samples before and after digestion were studied by x-ray diffraction, small-angle x-ray scattering, differential scanning calorimetry and microscopy. Microscopy revealed that studied starches, which varied in their amylose content and digestion kinetics, followed different modes of attack The multidisciplinary approach allowed the nanostructural changes detected by small-angle scattering in the course of enzymic breakdown to be correlated with changes in crystallinity and functional properties.

  14. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions.

    Science.gov (United States)

    Breßler, Ingo; Kohlbrecher, Joachim; Thünemann, Andreas F

    2015-10-01

    SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102).

  15. The National Facility for Small-Angle Neutron Scattering - five years' operating experience

    International Nuclear Information System (INIS)

    Koehler, W.C.; Bunick, G.J.; Child, H.R.; Hayter, J.B.; Lin, J.S.; Maddox, L.; Spooner, S.; Wignall, G.D.

    1986-01-01

    At the time of this Conference on Neutron Scattering, the ORNL-NSF-DOE National Facility for Small-Angle Neutron Scattering will have been operating routinely in a full-time user mode for nearly five years. The Facility, located at the High Flux Isotope Reactor at ORNL, is part of the National Center for Small-Angle Scattering Research. Operating experience and scientific highlights for the past five years are surveyed. (orig.)

  16. The resolution function of triple-axis neutron spectometers in the limit of small scattering angles

    International Nuclear Information System (INIS)

    Mitchell, P.W.; Cowley, R.A.; Higgins, S.A.

    1984-01-01

    The Copper-Nathans formulation of the resolution function of a triple-axis crystal spectrometer for neutron-scattering experiments gives a singular resolution matrix when the scattering angle is small. The origin of this singularity is discussed and an alternative derivation of the resolution matrix given which avoids this difficulty. The results are illustrated by numerical calculations for several typical experiments showing that resolution corrections may be large and very significant for experiments at small scattering angles. (Auth.)

  17. Small angle neutron scattering study of disordered and crystalline iron nanoparticle assemblies

    International Nuclear Information System (INIS)

    Farrell, D.F.; Ijiri, Y.; Kelly, C.V.; Borchers, J.A.; Rhyne, J.J.; Ding, Y.; Majetich, S.A.

    2006-01-01

    Monodisperse surfactant-coated iron nanoparticles are used to form both disordered nanoparticle assemblies and ordered face-centered cubic nanoparticle crystals. The structural order is probed by small angle X-ray scattering, and the magnetic scattering is studied using small angle neutron scattering. The magnetic scattering corresponding to different length scales is interpreted in terms of collective correlations among the particles within the assemblies

  18. Small-Angle Neutron Scattering and Magnetization Study of HoNi2B2C

    OpenAIRE

    Ramazanoglu, M.; Laver, M.; Yagmurcu, A.; Choi, E. -M.; Lee, S. -I.; Knigavko, A.; Gaulin, B. D.

    2014-01-01

    The superconducting and magnetic properties of HoNi2B2C single crystals are investigated through transport, magnetometry and small-angle neutron scattering measurements. In the magnetic phases that enter below the superconducting critical temperature, the small-angle neutron scattering data uncover networks of magnetic surfaces. These likely originate from uncompensated moments e.g. at domain walls pinned to crystallographic grain boundaries. The field and temperature dependent behaviour appe...

  19. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    International Nuclear Information System (INIS)

    Motokawa, Ryuhei; Koizumi, Satoshi; Hashimoto, Takeji; Nakahira, Takayuki; Annaka, Masahiko

    2006-01-01

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process

  20. SEC-SANS: size exclusion chromatography combined in situ with small-angle neutron scattering.

    Science.gov (United States)

    Jordan, Ashley; Jacques, Mark; Merrick, Catherine; Devos, Juliette; Forsyth, V Trevor; Porcar, Lionel; Martel, Anne

    2016-12-01

    The first implementation and use of an in situ size exclusion chromatography (SEC) system on a small-angle neutron scattering instrument (SANS) is described. The possibility of deploying such a system for biological solution scattering at the Institut Laue-Langevin (ILL) has arisen from the fact that current day SANS instruments at ILL now allow datasets to be acquired using small sample volumes with exposure times that are often shorter than a minute. This capability is of particular importance for the study of unstable biological macromolecules where aggregation or denaturation issues are a major problem. The first use of SEC-SANS on ILL's instrument D22 is described for a variety of proteins including one particularly aggregation-prone system.

  1. Characterization of nano-structure by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato

    2017-01-01

    This paper outlines the cases when small-angle X-ray scattering method and small-angle neutron scattering method in transmission arrangement were applied to heterogeneity with low-volume rate (10% or below), such as nano-sized deposits and trace defects. In particular, it explains not only general analysis, but also the possibility of use of the small angle scattering method as a simple inspection method in nanostructure evaluation, as well as correspondence of small-angle scattering method with powder diffraction method in crystal structure evaluation. From the small-angle scattering profiles of a series of sample groups, we can judge which sample has the smallest nanostructure, by only comparing profiles without analysis. The object to be measured is a heterogeneous structure (void, second phase, crack, etc.) having a diameter of about 1 to several hundred nm present in a material. This paper also outlines the usual small-angle scattering analysis method, as well as further analysis using the difference between X-ray and neutron on scattering length contrast. (A.O.)

  2. Small-angle modification of the radiative transfer equation for a pseudo-spherical atmosphere

    International Nuclear Information System (INIS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2013-01-01

    The conventional pseudo-spherical technique relies on the separation of the total radiance into the direct solar beam and the diffuse radiance; the direct solar radiance is treated in a spherical geometry, while the diffuse radiance is computed in a plane-parallel geometry. In the small-angle modification of the radiative transfer equation, the total radiance is separated into an anisotropic part and a regular part. In this paper, we pOresent two formulations of the small-angle modification of the radiative transfer equation for a pseudo-spherical atmosphere. In the first formulation, we solve the radiative transfer equation for the diffuse radiance in a pseudo-spherical atmosphere with an additional anisotropic source term computed in a plane-parallel atmosphere, while in the second formulation we solve the radiative transfer equation for the regular solution in a plane-parallel atmosphere with an additional pseudo-spherical correction term. The numerical analysis revealed that the accuracy of the small-angle models is acceptable. -- Highlights: ► The small-angle modification of DOM for a pseudo-spherical atmosphere is formulated. ► The small-angle modification is tested for atmospheric remote sensing. ► The accuracy of small-angle modification is higher than delta-M approximation.

  3. Studies on polymer thin film structure by X-ray and neutron reflectivity and grazing incidence small angle scattering

    International Nuclear Information System (INIS)

    Ogawa, Hiroki; Kanaya, Toshiji

    2011-01-01

    We have reviewed structure studies of polymer thin films using synchrotron radiation X-ray and neutron reflectivity as well as recently developed grazing incidence small-angle X-ray and neutron scattering, including studies on polymer thin films with embedded ordered nanometer cells, distribution of glass transition temperature Tg in thin polystyrene films, and dewetting process of polymer blend thin films. (author)

  4. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling [Stanford Univ., CA (United States)

    1996-04-01

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  5. Small-angle scattering of neutrons from normal and superfluid liquid helium

    International Nuclear Information System (INIS)

    Tsipenyuk, Yu.M.; Kirichek, O.; Petrenko, O.

    2013-01-01

    The results of experiments on small-angle neutron scattering in liquid helium in the range of temperatures of 1-5 K, performed on a neutron pulse source ISIS (England), are presented. The detailed measurements of angular distribution of scattered neutrons allowed one to observe an essential change in temperature dependence of the second moment of pair correlation function (the first derivative of angular distribution at small angles of scattering). At high temperatures the angular distribution of scattered neutrons follows the classical description of small-angle scattering, but at temperatures below the l-point a quantum behavior is observed neutron-scattering by quantum fluctuations. It is experimentally confirmed that in the whole temperature range the cross-section of neutron scattering at a zero angle is determined by the classical thermodynamic fluctuations of density.

  6. Nucleon-nucleon scattering studies at small angles at COSY-ANKE

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2015-07-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The SAID database and analysis program comprise various experimental observables at different energies over the full angular range and express them in the partial waves. The goal of the experiments held at COSY-Juelich is to provide SAID with new valuable measurements. Scattering data was taken at small angles for six beam energies between 0.8 and 2.4 GeV with polarized proton beam incident on both proton and deuteron unpolarized targets using the ANKE spectrometer. First, the results of the proton-proton (pp) scattering analyzing power and cross section are presented. While pp data closes a very important gap at small angles in the database, proton-neutron (pn) data is a crucial contribution to the almost non-explored pn database above 800 MeV. Therefore, the talk will mainly concentrate on the proton-deuteron (pd) scattering studies, which includes the overview of the older COSY experiments with polarized deuteron beam, and the abovementioned new experiment with polarized proton beam and unpolarized deuteron target. The presentation will show the most recent results of the analyzing powers of pd elastic and pn scattering.

  7. Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Adam J. Brooks

    2017-12-01

    Full Text Available A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316 test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μ m, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity.

  8. The current status of small-angle x-ray scattering beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Inoue, Katsuaki; Doutch, James; Terrill, Nick

    2013-01-01

    The small-angle X-ray scattering (SAXS) covers the major disciplines of biology, chemistry and physics delivering structural and dynamic information in nanoscience, mesoscopic architectures, supramolecular structures, and nucleation/growth of crystals. SAXS is also proving to be important in archaeological, environmental, and conservation sciences, and has further indicated its ability to span wide-ranging scientific disciplines. Thus, strong needs for SAXS studies are increasing significantly in a broad range of scientific fields year by year. Based on such a background, the demand for high throughput SAXS experiments is increasing. At the synchrotron facility, Diamond Light Source, one SAXS beamline, Non-crystalline diffraction I22 is now operational and highly automated throughput small-angle X-ray scattering (HATSAXS) beamline B21 is now under construction. I22 is the Undulator beamline and wide varieties of experiments, including time-resolved experiments are attempted. Based on the concept of HATSAXS, the key feature of B21 will focuses on the automation of end-station equipment. A automated sample changer has been purchased for solution SAXS measurements on biomolecules. A robotic-arm-type automated sample changer that is capable of handling several kinds of samples in material science is also being constructed. B21 is expected to successfully provide all users highly automated throughput measurements with the highest possible reliability and accuracy. Construction of this beamline will end in the second half of 2012, and will be open for users in the early summer of 2013 after commissioning. (author)

  9. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, He, E-mail: hecheng@iccas.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Guangcui [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Han, Charles C., E-mail: c.c.han@iccas.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng [China Institute of Atomic Energy, PO Box-275-30, Beijing 102413 (China)

    2014-01-21

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional {sup 3}He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å{sup −1} to 0.5 Å{sup −1} in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript. -- Highlights: • The first small angle neutron scattering instrument in China is developed. • It is equipped with a pinhole, multi-pinhole and focusing lenses. • It provides flexible variations of source-sample and sample-detector distances. • A wide Q ranges from 0.001 Å{sup −1} to 0.5 Å{sup −1} in reciprocal space.

  10. Small angle neutron scattering study on a phase separation in a 3-component microemulsion system

    DEFF Research Database (Denmark)

    Seto, H.; Yokoi, E.; Komura, S.

    1993-01-01

    observed a small change of the water droplet size approaching a phase separation point. In this work, further small angle neutron scattering results are presented obtained at the new SANS equipment in JAERI. The evidences described above were confirmed and a detailed phase diagram has been obtained...

  11. Ultra small angle neutron scattering from amorphous Ni-Pd-P-alloys

    International Nuclear Information System (INIS)

    Hagenmayer, R.M.; Zeyen, C.M.E.; Lamparter, P.; Steeb, S.

    1993-01-01

    Using a neutron double crystal spectrometer, thin amorphous Ni-Pd-P-samples were investigated at very small Q-values (10 -5 A -1 ≤ Q ≤ 10 -3 A -1 ). The immersion method shows that the small angle scattering effect is mainly caused by surface scattering. (orig.)

  12. The small and wide angle neutron scattering instrument TAIKAN at J-PARC

    International Nuclear Information System (INIS)

    Takata, Shin-ichi; Shinohara, Takenao; Oku, Takayuki; Inamura, Yasuhiro; Nakatani, Takeshi; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; Suzuki, Jun-ichi; Ohishi, Kazuki; Iwase, Hiroki; Tominaga, Taiki; Ito, Takayoshi; Otomo, Toshiya; Sugiyama, Masaaki

    2014-01-01

    The small and wide angle neutron scattering instrument (TAIKAN) is designed to cover the wide q range of 0.0005small-, middle-, high-, ultra-small-angle, and backward detector banks. In this paper, the status of detector installation and data reduction method are presented. In addition, the instrument performance on the wide q-range measurement with high q-resolution is discussed with experimental results of two standard samples, a glassy carbon and a silver behenate. (author)

  13. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  14. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... are particularly interesting to study because they are common targets for pharmaceutical drugs. At the same time they are unfortunately unstable in solution which make them challenging to study. Phospholipid nanodiscs are small patches of lipid membrane stabilised by a belt of amphipathic helices. They can act...... as carriers of membrane proteins. Together they form monodisperse soluble aggregates of about 10 nm in size. Chapter 2 introduces the method of small-angle scattering. Small-angle X-ray and neutron scattering are well suited for studying particles in solution on length scales from 1 to 100 nm. This makes...

  15. Reflection of X-rays from a rough surface at extremely small grazing angles.

    Science.gov (United States)

    Wen, Mingwu; Kozhevnikov, Igor V; Wang, Zhanshan

    2015-09-21

    Peculiarities of X-ray diffraction from a rough surface at an extremely small grazing angle of an incident beam are theoretically studied. The interrelation of four diffraction channels (coherent reflectance, coherent transmittance, diffuse scattering in vacuum, and scattering into the matter depth) is analyzed for different limiting cases (large and small correlation length of roughness and large and extremely small grazing angle of incident radiation). Both the Debye-Waller and the Nevot-Croce factors are demonstrated to describe improperly the features of X-ray diffraction at extremely small grazing angles. More appropriate simple analytic expressions for the specular reflectivity and total integrated scattering in vacuum are obtained instead. Transformation of one limiting diffraction regime into another one with variation in the correlation length of roughness is discussed.

  16. Measurement of two-dimensional small angle deviation with a prism interferometer

    International Nuclear Information System (INIS)

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-01-01

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented

  17. Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas

    Science.gov (United States)

    Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S.

    2017-11-01

    Mesoporous ordered silica nanostructures show strong interaction with X-ray radiation in the range of small-angles. Small-angle X-ray scattering (SAXS) measurements based on the elastically scattered X-rays are important in analysis of condensed matter. In the case of mesoporous silica materials SAXS technique provides information on the distribution of electron density in the mesoporous material, in particular describing their structure and size of the unit cell as well as type of ordered structure and finally their parameters. The characterization of nanopowder materials, nanocomposites and porous materials by Small-Angle X-ray Scattering seems to be valuable and useful. In presented work, the SAXS investigation of structures from the group of mesoporous ordered silicates was performed. This work has an objective to prepare functional materials modified by noble metal ions and nanoparticles and using the small-angle X-ray scattering to illustrate their properties. We report the new procedure for describing mesoporous materials belonging to SBA-15 and MCM-41 family modified by platinum, palladium and silver nanoparticles, based on detailed analysis of characteristic peaks in the small-angle range of X-ray scattering. This procedure allows to obtained the most useful parameters for mesoporous materials characterization and their successfully compare with experimental measurements reducing the time and material consumption with good precision for particles and pores with a size below 10 nm.

  18. Small-angle scattering from neutron-irradiated amorphous Pd80Si20

    International Nuclear Information System (INIS)

    Doi, K.; Kayano, H.; Masumoto, T.

    1978-01-01

    Small-angle scattering intensities were observed for amorphous Pd 80 Si 20 which was irradiated by fast neutrons to a fluence of 5 X 10 20 neutrons cm -2 . A broad hump was observed at 2 sin theta/lambda = 0.05 A -1 . The structure inhomogeneities produced by the neutron irradiation are discussed with the aid of the results of wide-angle scattering measurements. (Auth.)

  19. Structure of clathrin-coated vesicles from small-angle scattering experiments

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    Previously published small-angle neutron and X-ray scattering data from coated vesicles, reassembled coats, and stripped vesicles have been analyzed in terms of one common model. The neutron data sets include contrast variation measurements at three different D2O solvent concentrations. The model....... Thus, the membrane and the high-density protein shell overlap in space, which shows that the lipid membrane contains protein. The molecular mass of the average particle is 27 x 10(6) Da. The coated vesicles consist, on average, of approximately 85% protein and 15% lipids. About 40% of the protein mass...... particles with the barrel structure shows that the accessory polypeptides are incorporated in the lipid membrane. The results from the neutron data for the reassembled coats show that the structure of these particles is very similar to the structure of the native coats. The main difference is a higher...

  20. Small-Angle Neutron Scattering for Molecular Biology: Basics and Instrumentation

    Science.gov (United States)

    Heller, William T.; Littrell, Kenneth C.

    As researchers strive to understand the interplay between the complex molecular systems that make up living cells, tools for characterizing the interactions between the various players involved have developed. Small-angle neutron scattering (SANS) plays an important role in building a molecular-level understanding of the structures of macromolecular systems that make up cells. SANS is widely applicable to the study of biological structures including, but by no means limited to, protein-protein or protein-nucleic acid complexes, lipid membranes, cellular scaffolding, and amyloid plaques. Here, we present a brief description of the technique as it is commonly applied to the study of biological systems and an overview instrumentation that is available at the various facilities around the world.

  1. Anomalous small-angle X-ray scattering from charged soft matter

    Science.gov (United States)

    Sztucki, M.; Di Cola, E.; Narayanan, T.

    2012-06-01

    A review of recent applications of Anomalous Small-Angle X-ray Scattering (ASAXS) to charged soft matter systems is presented. Although the potential of ASAXS was realized in the eighties [1], applications to soft matter systems became feasible in recent years thanks to the technical developments at the synchrotron sources. Examples include both stiff chain and flexible polyelectrolytes, colloidal brush-like polyelectrolytes, DNA, RNA, and polysaccharides where the counterion profile could be determined with high precision and compared with theoretical models. In addition, ASAXS has also been found useful for microstructure characterization in soft materials. Finally, the present capability for ASAXS studies is illustrated by an example involving a surfactant micellar system.

  2. Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems.

    Science.gov (United States)

    Alford, Aaron; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2017-01-01

    The sub-nanometer scale provided by small angle neutron and X-ray scattering is of special importance to pharmaceutical and biomedical investigators. As drug delivery devices become more functionalized and continue decreasing in size, the ability to elucidate details on size scales smaller than those available from optical techniques becomes extremely pertinent. Information gathered from small angle scattering therefore aids the endeavor of optimizing pharmaceutical efficacy at its most fundamental level. This chapter will provide some relevant examples of drug carrier technology and how small angle scattering (SAS) can be used to solve their mysteries. An emphasis on common first-step data treatments is provided which should help clarify the contents of scattering data to new researchers. Specific examples of pharmaceutically relevant research on novel systems and the role SAS plays in these studies will be discussed. This chapter provides an overview of the current applications of SAS in drug research and some practical considerations for selecting scattering techniques.

  3. Proceedings of the International school and symposium on small angle scattering

    International Nuclear Information System (INIS)

    Borbely, S.; Rosta, L.

    1999-04-01

    The meeting was devoted to small angle neutron and X-ray scattering with regard to the wide interest for this method in various fields of basic and applied research. Scientists from European laboratories gave introductory talks to various subject fields related to small angle scattering (SAS) techniques or data analysis methods as well as topical research area e.g. soft condensed matter, biology or materials science. An important number of contributed talks were presented on neutron or X-ray scattering and even on combining both of them, demonstrating the very useful complementarity of these methods. Some other papers give nice examples of SAS experiments completed by results of other techniques such as NMRE of light scattering. The variety of presented contributions is a nice demonstration for the interdisciplinary use of small angle scattering from physics through biology, chemistry, materials science to engineering. 18 items are indexed separately for the INIS database. (K.A.)

  4. Justification and implementation of the coordinate method among potentially possible precise methods for measuring angles between axes of small-angle beams

    Science.gov (United States)

    Kudryavtsev, M. D.

    2017-08-01

    A series of studies devoted to the theoretical justification and development of methods and tools for angular measurements based on the use of multiple sources of optical beams with a small angular aperture is continued. The source used in this study is a holographic prism: a fluorite single crystal with a system of superimposed holograms recorded in its bulk, which generates a series of diffracted small-angle beams in the form of a flat fan under illumination by a reference laser. This fan has a high spatial stability, including constancy of angles between any pair of fan beams in a wide range of external conditions. Based on the previously introduced notion of an effective beam axis, potential exact methods for measuring angles between fan beams are considered, and a coordinate method using a coordinate measuring machine and a CCD recorder is substantiated and implemented. The accuracy of the proposed method is analyzed. It is shown that its errors can potentially be reduced to a level of 1″ or even less.

  5. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  6. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Science.gov (United States)

    Zhang-Haagen, Bo; Biehl, Ralf; Nagel-Steger, Luitgard; Radulescu, Aurel; Richter, Dieter; Willbold, Dieter

    2016-01-01

    Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  7. Evaluation of solution stability for two-component polydisperse systems by small-angle scattering

    Science.gov (United States)

    Kryukova, A. E.; Konarev, P. V.; Volkov, V. V.

    2017-12-01

    The article is devoted to the modelling of small-angle scattering data using the program MIXTURE designed for the study of polydisperse multicomponent mixtures. In this work we present the results of solution stability studies for theoretical small-angle scattering data sets from two-component models. It was demonstrated that the addition of the noise to the data influences the stability range of the restored structural parameters. The recommendations for the optimal minimization schemes that permit to restore the volume size distributions for polydisperse systems are suggested.

  8. Small angle scattering of X radiation and slow neutrons in structural analyses of amorphous solids

    International Nuclear Information System (INIS)

    Kostorz, G.

    1980-01-01

    Small angle scattering of x radiation and slow neutrons allows to detect inhomogeneities of the dimension of ten to some thousands of Angstroem by the difference in the scattering length density. The progress made during recent years in the development of apparatusses has created the possibility of solving very complicated problems. A first outline shows that in separation processes as well as in investigating extended defects the method of small angle scattering may provide valuable contributions to the analysis of the non-crystalline state

  9. Application of a double reflection multilayer monochromator to small-angle cold neutron scattering

    International Nuclear Information System (INIS)

    Sugiyama, Masaaki; Kawai, Takeshi; Ebisawa, Toru; Tasaki, Seiji; Maeda, Yutaka.

    1994-01-01

    The flux profile and the spectra of the neutron beam from the cold neutron guide tube, CN-2, which is installed at the cold neutron source of Kyoto University Reactor were measured with Au foil activation and time-of-flight methods. By using the cold neutron beam, the characteristics of a double reflection multilayer monochromator were studied for a small angle neutron scattering spectrometer. The reflectivity of the monochromator and the wavelength resolution were found to be 78% and 15% at the wavelength of 5.5 A respectively. These values indicate that the monochromator gives quite a good performance for small-angle cold neutron scattering experiments. (author)

  10. The use of multichannel collimation in small-angle neutron scattering a computer-simulation study

    CERN Document Server

    Falcao, A N; Carvalho, F G

    2002-01-01

    A Monte Carlo computer simulation was performed to evaluate the use of converging multichannel collimation in a small-angle neutron-scattering arrangement, giving guidelines for the construction of a first prototype. The neutron-absorbing efficiency as well as the divergence of the incoming beam were taken as parameters. Results show that the use of converging multichannel collimation in a small-angle neutron-scattering instrument leads, for the same experimental resolution, to very high count-rate gains over the typical single-channel-collimator instrument. (orig.)

  11. The use of multichannel collimation in small-angle neutron scattering: a computer-simulation study

    International Nuclear Information System (INIS)

    Falcao, A.N.; Margaca, F.M.A.; Carvalho, F.G.

    2002-01-01

    A Monte Carlo computer simulation was performed to evaluate the use of converging multichannel collimation in a small-angle neutron-scattering arrangement, giving guidelines for the construction of a first prototype. The neutron-absorbing efficiency as well as the divergence of the incoming beam were taken as parameters. Results show that the use of converging multichannel collimation in a small-angle neutron-scattering instrument leads, for the same experimental resolution, to very high count-rate gains over the typical single-channel-collimator instrument. (orig.)

  12. A more informative approach for characterization of polymer monolithic phases: small angle neutron scattering/ultrasmall angle neutron scattering.

    Science.gov (United States)

    Ford, Kathleen M; Konzman, Brian G; Rubinson, Judith F

    2011-12-15

    Neutron scattering techniques have been used frequently to characterize geological specimens and to determine the structures of glasses and of polymers as solutions, suspensions, or melts. Little work has been reported on their application in determining polymers' structural properties relevant to separations. Here, we present a comparison of characterization results from nitrogen porosimetry and from combined small angle neutron scattering (SANS) and ultrasmall angle neutron scattering (USANS) experiments. We show that SANS is extremely sensitive to the pore characteristics. Both approaches can provide information about porosity and pore characteristics, but the neutron scattering techniques provide additional information in the form of the surface characteristics of the pores and their length scales. Fits of the scattering data show that cylindrical pores are present with diameters down to 0.6 μm and that, for length scales down to approxmately 20 Å, the material shows self-similar (fractal) slopes of -3.4 to -3.6. Comparison of these characteristics with other examples from the scattering literature indicate that further investigation of their meaning for chromatographic media is required.

  13. Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    NARCIS (Netherlands)

    Grigoriev, S.V.; Napolskii, K.S.; Grigoryeva, N.A.; Vasilieva, A.V.; Mistonov, A.A.; Chernyshov, D.Y.; Petukhov, A.V.; Belov, D.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Sinitskii, A.S.; Eckerlebe, H.

    2009-01-01

    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by

  14. Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State.

    Science.gov (United States)

    Liu, Tingyi Leo; Kim, Chang-Jin Cj

    2017-04-07

    The difficulty of measuring very large contact angles (>150 degrees) has become more relevant with the increased popularity of super-repellent surfaces. Measurement is more difficult for dynamic contact angles, for which theoretical profiles do not fit well, and small capillary length liquids, whose sessile droplets sag by gravity. Here, we expand the issue to the limit by investigating dynamic contact angles of liquids with an extremely small capillary length (contact angles can be measured with a consistent accuracy despite their vastly different capillary lengths if one keeps the lens magnification inversely proportional to the capillary length. Verifying the droplet equator height is a key parameter, we propose a new Bond number defined by the equator height and optical resolution to represent the measurement accuracy of large contact angles. Despite negligible improvement for most liquids today, the proposed approach teaches how to measure very large contact angles with consistent accuracy when any of the liquids in consideration has a capillary length below 1.0 mm.

  15. Stability Analysis of Hypersonic Boundary Layer over a Cone at Small Angle of Attack

    Directory of Open Access Journals (Sweden)

    Feng Ji

    2014-04-01

    Full Text Available An investigation on the stability of hypersonic boundary layer over a cone at small angle of attack has been performed. After obtaining the steady base flow, linear stability theory (LST analysis has been made with local parallel assumption. The growth rates of the first mode and second mode waves at different streamwise locations and different azimuthal angles are obtained. The results show that the boundary layer stability was greatly influenced by small angles of attack. The maximum growth rate of the most unstable wave on the leeward is larger than that on the windward. Moreover, dominating second mode wave starts earlier on the leeward than that on the windward. The LST result also shows that there is a “valley” region around 120°~150° meridian in the maximum growth rates curve.

  16. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Posselt, Dorthe; Kovacs, Laszlo

    2011-01-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique rev...

  17. Small-angle neutron and dynamic light scattering study of gelatin ...

    Indian Academy of Sciences (India)

    The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering ... School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India; Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 ...

  18. What DELPHI can get with an upgraded position for the very small angle tagger

    International Nuclear Information System (INIS)

    Almehed, S.; Jarlskog, G.; Mjornmark, U.; Kapusta, F.; Tyapkin, I.A.; Zimin, N.I.

    1997-01-01

    A rather large profit can be obtained for two-photon physics studies with an upgrade of the DELPHI very small angle tagger position. Results have been obtained by using FASTSIM simulation both for double tagged and single tagged modes of γγ interactions, and for Bhabha events used for the luminosity measurements

  19. Small angles X-ray diffraction and Mössbauer characterization of ...

    Indian Academy of Sciences (India)

    The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron Mössbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing temperature.

  20. Informing the improvement of forest products durability using small angle neutron scattering

    Science.gov (United States)

    Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  1. Characterization of nano-size heterogeneities by small-angle-scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato

    2012-01-01

    Techniques of Small-Angle Neutron and X-ray Scattering (SANS and SAXS) are overviewed from principle to applications. Importance of characterizing composition of nano-size heterogeneity is explained based on the results obtained by combination of SANS and SAXS. (author)

  2. A small angle neutron scattering study on the mixtures of pluronic ...

    Indian Academy of Sciences (India)

    cO Indian Academy of Sciences. Vol. 71, No. 5. — journal of. November 2008 physics pp. 1063–1067. A small angle neutron scattering study on the mixtures of pluronic L121 and anionic surfactant AOT. G GHOSH1,∗, V K ASWAL2 and D VARADE3. 1UGC-DAE Consortium for Scientific Research, Mumbai 400 085, India.

  3. Small-Angle Neutron Scattering Study of Structural Changes in Temperature-Sensitive Microgel Colloids

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.; Pedersen, J.S.; Lindner, P.

    2004-01-01

    The structure of temperature-sensitive poly(N-isopropylacrylamide) microgels in dilute suspension was investigated by means of small-angle neutron scattering. A direct modeling expression for the scattering intensity distribution was derived which describes very well the experimental data at all

  4. Bacteriophage T7 structure according to the data of small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Rol'bin, Yu.A.; Svergun, D.I.; Fejgin, L.A.; Gashpar, Sh.; Ronto, D.

    1980-01-01

    An attempt is made to obtain complete data on the form, sizes, weight and hydration of the T7 bacteriophage cultivated on E.coli cells and the peculiarities of phage DNA structure using the method of small-angle scattering

  5. Small-angle neutron scattering study of sodium cholate and sodium ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Small angle neutron scattering (SANS) measurements of D2O solutions. (0⋅1 M) of sodium cholate (NaC) and sodium deoxycholate (NaDC) were carried out at T = 298 K. Under compositions very much above the critical micelle concentration. (CMC), the bile salt micelle size growths were monitored by adopting ...

  6. Proceedings of the workshop on small angle scattering data analysis. Micelle related topics

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Toshio [Fukuoka Univ. (Japan). Faculty of Science; Furusaka, Michihiro; Ohtomo, Toshiya [eds.

    1996-02-01

    This workshop was held on December 13 and 14, 1995 at National Laboratory for High Energy Physics. At the workshop, the purpose of the workshop was explained, and lectures were given on the research on superhigh molecular structure by small angle neutron scattering, the verification of the reliability of WINK data (absolute intensity), the analysis of WINK data, the new data program of SAN, small angle X-ray scattering data analysis program (SAXS), the basis of the analysis of micelle system, analysis software manual and practice program Q-I(Q) ver 1.0, various analysis methods for small angle scattering and contrast modulation method and others, the ordering of and the countermeasures to the problems of WINK, and the hereafter of KENS small angle scattering facility. How to treat the analysis related to micelle, how to save WINK and how to install the SAN/reflectometer are the matters to be discussed at the workshop. In this book, the summaries of the lectures are collected. (K.I.)

  7. Studies on pore morphology of titanium and its oxide by small angle ...

    Indian Academy of Sciences (India)

    and its oxide by small angle neutron scattering. P K TRIPATHY1 ... Titanium metal bodies have been prepared from the sintered powder com- pacts of TiO2 ... XRD of the sintered pellet was first recorded prior to the reduction. Again XRD of the as-reduced metal was recorded after the reduction was over. Then, the sintered.

  8. V4: The Small Angle Scattering Instrument (SANS at BER II

    Directory of Open Access Journals (Sweden)

    Uwe Keiderling

    2016-11-01

    Full Text Available V4 is a small-angle neutron scatting instrument with an accessible range of scattering vector 0.01 nm-1 < Q < 8.5 nm-1. Outstanding features of the instrument are the polarized neutron option and the list mode data acquisition, allowing for time-resolved measurements with µs time resolution.

  9. Structure of Co–Zn ferrite ferrofluid: A small angle neutron scattering

    Indian Academy of Sciences (India)

    A hydrothermal synthesis route is used to synthesize nanomagnetic particles of Co0.3Zn0.7Fe2O4 ferrite ferrofluids with particle diameter ranging from 5.5–9 nm. XRD analysis shows the formation of a single phase spinel structure. EDX results confirm the stoichiometric composition of the cations. Small angle neutron ...

  10. Structure in cohesive powder studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, Stefan; de Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  11. Structure in cohesive powders studied with spin-echo small angle neutron scattering

    NARCIS (Netherlands)

    Andersson, R.; Bouwman, W.G.; Luding, S.; De Schepper, I.M.

    2008-01-01

    Extracting structure and ordering information from the bulk of granular materials is a challenging task. Here we present Spin-Echo Small Angle Neutron Scattering Measurements in combination with computer simulations on a fine powder of silica, before and after uniaxial compression. The cohesive

  12. Intercalibration of small-angle X-ray and neutron scattering data

    International Nuclear Information System (INIS)

    Russell, T.P.; Lin, J.S.; Spooner, S.; Wignall, G.D.

    1988-01-01

    Absolute calibration forms a valuable diagnostic tool in small-angle scattering experiments and allows the parameters of a given model to be restricted to the set which reproduces the observed intensity. General methods which are available for absolute scaling of small-angle X-ray scattering (SAXS) data are reviewed along with estimates of the degree of internal consistency which may be achieved between the various standards. In order to minimize the time devoted to calibration in a given experimental program, emphasis is placed on developing a set of precalibrated strongly scattering standards for the SAXS facilities of the National Center for Small-Angle Scattering Research (Oak Ridge). Similar standards have been developed previously for calibration of small-angle neutron scattering (SANS) data. Particular attention is given to standards which can be used for either SAXS or SANS experiments where each sample has been independently calibrated for both types of radiation. These calibrations have been tested via the theoretical relationships between the two cross sections. It has been found that specimens best suited for such intercalibration purposes are a glassy carbon specimen where the scattering arises from voids in a carbon matrix and a perdeuterated polyethylene where the scattering arises from periodic arrangement of the crystalline lamellae. In only these two cases could the identical specimen be used for both the neutron and X-ray scattering experiments. (orig.)

  13. Porosity determination in doped graphites using small-angle neutron scattering measurements

    Czech Academy of Sciences Publication Activity Database

    Mergia, K.; Stefanopoulos, K. L.; Martinez-Escandell, M.; Strunz, Pavel

    2012-01-01

    Roč. 340, č. 012102 (2012), s. 1-7 ISSN 1742-6588. [5th European Conference on Neutron Scattering . Praha, 17.07.2011-21.07.2011] Grant - others:European Commission(XE) 505925 Program:FP6 Institutional support: RVO:61389005 Keywords : doped graphites * porosity * small - angle neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Small-angle neutron-scattering studies of the magnetic phase diagram of MnSi

    DEFF Research Database (Denmark)

    Harris, P.; Lebech, B.; Hae Seop Shim

    1995-01-01

    The antiferromagnetic order of MnSi has been studied as function of temperature and applied magnetic field using small-angle neutron scattering. The results were analyzed using the three-dimensional resolution function and the scattering cross-section to model the diffraction data. Physical...

  15. Small-angle thermal neutron scattering of hen egg-white lysozyme in aqueous solution

    International Nuclear Information System (INIS)

    Sangawa, U.; Niimura, N.

    1992-01-01

    A small-angle neutron scattering measurement was done for a lysozyme sample in aqueous solutions with different D 2 O/H 2 O ratios. Structure parameters such as R gc , α and β and the scattering functions such as I c (Q), I s (Q) and I cs (Q) were obtained. (orig.)

  16. A high-temperature furnace for small-angle neutron scattering

    International Nuclear Information System (INIS)

    Jal, J.F.; Guiraud, G.; Chieux, P.; Dupuy, J.

    1977-01-01

    A high temperature furnace (T 0 C) has been developed for small-angle neutron scattering experiments in the range of momentum transfer above 0.2 nm -1 . It is especially suited for the study of highly corrosive liquids such as alkali-alkali-halide mixtures. It allows critical fluctuations near liquid-liquid miscibility gaps to be investigated. (author)

  17. A simple model for dynamic small-angle X-ray diffraction in colloidal crystals

    NARCIS (Netherlands)

    de Beer, A.G.F.; Petukhov, A.V.

    2007-01-01

    A simple model is presented that allows calculation of the small-angle X-ray diffraction patterns of perfect colloidal crystals. The model is based on the Wentzel–Kramers–Brillouin approximation and permits a straightforward evaluation of multibeam interactions. Results are illustrated by several

  18. Data Analysis Of Small Angle X-Ray Solution Scattering And Its ...

    African Journals Online (AJOL)

    Small Angle X-ray Scattering analysis was used for the study of the protein, Human Tumour Necrosis Factor (TNF) homogeneously dispersed in solution. The experiment consisted in sending a well collimated beam of synchrotron radiation of wavelength, λ through the sample and measuring the variation of the intensity as a ...

  19. Small-angle scattering from GP zones in Al–Cu alloy

    Indian Academy of Sciences (India)

    ... and smallangle scattering experiments were carried on the powdered samples as a function of time during artificial aging. Small-angle scattering data were analysed, and evidence has been obtained for the occurrence of spinodal decomposition as the mechanism responsible in the early stages of formation of GP zones.

  20. Resolution effects and analysis of small-angle neutron scattering data

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A discussion of the instrumental smearing effects for small-angle neutron scattering (SANS) data sets is given. It is shown that these effects can be described by a resolution function, which describes the distribution of scattering vectors probed for the nominal values of the scattering vector...

  1. Analysis of small-angle scattering data from micelles and microemulsions

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1999-01-01

    The free-form methods for analyzing small-angle scattering data have, during the last years, found more widespread use for micelles and microemulsions. Recent developments have made them applicable also to systems with size polydispersity and particle correlations, however, model fitting still...

  2. Small-angle neutron scattering: a tool for microstructural investigation of high-temperature materials

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Mukherji, D.; Gilles, R.; Rösler, J.; Wiedenmann, A.

    2003-01-01

    Roč. 426, č. 4 (2003), s. 755-760 ISSN 0255-5476 R&D Projects: GA AV ČR KSK1010104 Keywords : small-angle neutron scattering * superalloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2003

  3. Numerical solution of the inverse problem in the analysis of neutron small angle scattering experiments

    International Nuclear Information System (INIS)

    Magnani, M.; Stefanon, M.; Puliti, P.

    1988-01-01

    A simple numerical procedure is presented to face particular problems encountered in the data analysis of small angle scattering studies of precipitation in complicated alloys. A suitable method for solving a least-squares problem with inequality constraints is suggested. (orig.)

  4. Studying fractal geometry on submicron length scales by small-angle scattering

    International Nuclear Information System (INIS)

    Wong, P.; Lin, J.

    1988-01-01

    Recent studies have shown that internal surfaces of porous geological materials, such as rocks and lignite coals, can be described by fractals down to atomic length scales. In this paper, the basic properties of self-similar and self-affine fractals are reviewed and how fractal dimensions can be measured by small-angle scattering experiments are discussed

  5. Investigation of metallic and ceramic materials by small-angle neutron scattering

    NARCIS (Netherlands)

    Smirnov, YI; Elyutin, NO

    Small-angle neutron scattering measurements on a double-crystal spectrometer with perfect monochromator and analyzer crystals were used to follow microstructural changes in the aluminum alloy VD-17. refractory alloy ZhS-6, and dispersion-hardened zirconia-based ceramics with yttria additions. The

  6. Simulated small-angle scattering patterns for a plastically deformed model composite material

    NARCIS (Netherlands)

    Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.

    2000-01-01

    The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to

  7. Small angles X-ray diffraction and Mössbauer characterization of ...

    Indian Academy of Sciences (India)

    Abstract. The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron Mössbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing ...

  8. A compensating quartz fibre calorimeter for small angle calorimetry at the LHC

    International Nuclear Information System (INIS)

    Ferrando, A.; Josa, M.I.; Salicio, J.M.

    1997-01-01

    We present the design of a compensating quartz fibre calorimeter, made of a unique active section, for the specific physics requirements of the small angle calorimetry for the LHC experiments. The proposed calorimeter is exemplified for the case of the CMS experiment. (orig.)

  9. Analysis of slit-distored small-angle X-ray scattering intensities without desmearing

    Energy Technology Data Exchange (ETDEWEB)

    Goodisman, J.; Delaglio, F.; Brumberger, H.

    1986-08-01

    Experimental small-angle X-ray scattering intensities, generated from a primary beam of known intensity profile, are often ''desmeared'' to obtain point-collimated intensities. A much simpler way is shown of using the known beam intensity profile to derive, from the experimental scattering intensity, the quantities required for calculation of surface areas.

  10. Influence of multiple small-angle neutron scattering on diffraction peak broadening in ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Woo, W.; Em, V.; Shin, E.; Mikula, Pavol; Ryukhtin, Vasyl

    2015-01-01

    Roč. 48, APR (2015), s. 350-356 ISSN 0021-8898 R&D Projects: GA ČR GB14-36566G; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : peak broadening * small-angle neutron scattering * neutron diffraction * magnetic domain Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.720, year: 2014

  11. An Assessment of Critical Dimension Small Angle X-ray Scattering Metrology for Advanced Semiconductor Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Settens, Charles M. [State Univ. of New York (SUNY), Albany, NY (United States)

    2015-01-01

    Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron critical dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.

  12. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Perevozchikova, Tatiana [ORNL; Berthelier-Jung, Valerie M [ORNL

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.

  13. Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements

    Science.gov (United States)

    Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T.

    2014-04-01

    We have investigated the behaviour of light scattering by particulates of various sizes (0.1 μm to 100 μm) at a small scattering angle (below 20°). It has been previously shown that, for a small angle, the scattered intensities are weakly dependent upon the particulates' composition (Renard et al., 2010). Particles found in the atmosphere exhibit roughness that leads to large discrepancies with the classical Mie solution in terms of scattered intensities in the low angular set-up. This article focuses on building an effective theoretical tool to predict the behaviour of light scattering by real particulates at a small scattering angle. We present both the classical Mie theory and its adaptation to the case of rough particulates with a fairly simple roughness parameterisation. An experimental device was built, corresponding to the angular set-up of interest (low scattering angle and therefore low angular aperture). Measurements are presented that confirm the theoretical results with good agreement. It was found that differences between the classical Mie solution and actual measurements - especially for large particulates - can be attributed to the particulate roughness. It was also found that, in this low angular set-up, saturation of the scattered intensities occurs for relatively small values of the roughness parameter. This confirms the low variability in the scattered intensities observed for atmospheric particulates of different kinds. A direct interest of this study is a broadening of the dynamic range of optical counters: using a small angle of aperture for measurements allows greater dynamics in terms of particle size. Thus it allows a single device to observe a broad range of particle sizes whilst utilising the same electronics.

  14. Small-angle neutron scattering study of Fe-B and Fe-Ni-B metallic glasses

    International Nuclear Information System (INIS)

    Cser, L.; Kovacs, I.; Lovas, A.; Svab, E.; Zsigmond, G.

    1982-01-01

    Small-angle scattering of neutron (SANS) was analysed on Fe-B and Fe-Ni-B metallic glass ribbons by means of a double crystal small angle device and a neutron diffractometer. The dimensions of magnetic domains and small clusters were determined. An appreciable anisotropy of SANS intensity and surface scattering was observed. (orig.)

  15. Small-angle neutron scattering study of Fe-B and Fe-Ni-B metallic glasses

    International Nuclear Information System (INIS)

    Cser, L.; Kovacs, I.; Lovas, A.; Svab, E.; Zsigmond, Gy.

    1981-01-01

    Small-angle neutron scattering (SANS) on Fe-B and Fe-Ni-B metallic glass ribbons was analysed by means of a double-crystal small-angle device and a neutron diffractometer. The sizes of magnetic domains and small clusters were determined. An appreciable anisotropy of SANS intensity and surface scattering was observed. (author)

  16. Insights into the interactions among Surfactin, betaines, and PAM: surface tension, small-angle neutron scattering, and small-angle X-ray scattering study.

    Science.gov (United States)

    Xiao, Jingwen; Liu, Fang; Garamus, Vasil M; Almásy, László; Handge, Ulrich A; Willumeit, Regine; Mu, Bozhong; Zou, Aihua

    2014-04-01

    The interactions among neutral polymer polyacrylamide (PAM) and the biosurfactant Surfactin and four betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SDDAB), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (STDAB), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SHDAB), and N-dodecyl-N,N-dimethyl-2-ammonio-acetate (C12BE), in phosphate buffer solution (PBS) have been studied by surface tension measurements, small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and rheological experiments. It has been confirmed that the length of alkyl chain is a key parameter of interaction between betaines and PAM. Differences in scattering contrast between X-ray and neutrons for surfactants and PAM molecules provide the opportunity to separately follow the changes of structure of PAM and surfactant aggregates. At concentrations of betaines higher than CMC (critical micelle concentration) and C2 (CMC of surfactant with the presence of polymer), spherical micelles are formed in betaines and betaines/PAM solutions. Transition from spherical to rod-like aggregates (micelles) has been observed in solutions of Surfactin and Surfactin/SDDAB (αSurfactin = 0.67 (molar fraction)) with addition of 0.8 wt % of PAM. The conformation change of PAM molecules only can be observed for Surfactin/SDDAB/PAM system. Viscosity values follow the structural changes suggested from scattering measurements i.e., gradually increases for mixtures PAM → Surfactin/PAM → Surfactin/SDDAB/PAM in PBS.

  17. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    International Nuclear Information System (INIS)

    Round, A R; Wilkinson, S J; Hall, C J; Rogers, K D; Glatter, O; Wess, T; Ellis, I O

    2005-01-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique

  18. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Science.gov (United States)

    Round, A. R.; Wilkinson, S. J.; Hall, C. J.; Rogers, K. D.; Glatter, O.; Wess, T.; Ellis, I. O.

    2005-09-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  19. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Round, A R [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Wilkinson, S J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Hall, C J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Rogers, K D [Department of Materials and Medical Sciences, Cranfield University, Swindon, SN6 8LA (United Kingdom); Glatter, O [Department of Chemistry, University of Graz (Austria); Wess, T [School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales (United Kingdom); Ellis, I O [Nottingham City Hospital, Nottingham (United Kingdom)

    2005-09-07

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  20. Radioactivity measurement of α-nuclides by small solid angle method

    International Nuclear Information System (INIS)

    Wang Jianqing; Li Xiaodi; Chen Xilin; Wang Guojun

    1998-06-01

    Counting under a precise small solid angle is one of the oldest methods developed for the radioactivities measurement of α-nuclides. The principle of solid angle counting is very simple and the accuracy is much better. The advantages of an equipment developed by the authors, in which a large area Au-Si surface barrier detector (450 mm 2 ) is used, are introduced. Some comparisons on measurement results have been obtained with the gridded ionization chamber, and a national comparison result of 241 Am which deviated from the average result is less than 0.2% are presented in detail

  1. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  2. Measurement of CO2 laser small angle Thomson scattering on a magnetically confined plasma

    Science.gov (United States)

    Richards, R. K.; Hutchinson, D. P.; Bennett, C. A.; Hunter, H. T.; Ma, C. H.

    1993-01-01

    We report the first successful small-angle (less than 1°) Thomson scattering measurement of 10 μm radiation from a magnetically confined toroidal plasma. This represents a proof-of-principle demonstration of a new diagnostic technique for confined deuterium-tritium fusion-product alpha particles in future fusion reactors. This result was achieved by detecting scattered CO2 laser light from the plasma of the ATF torsatron at an angle of 0.86° using a novel heterodyne receiver scheme. A predicted resonance in the scattered power as a function of plasma electron density is clearly resolved in the measurements.

  3. Superplastic Constitutive Equation Including Percentage of High-Angle Grain Boundaries as a Microstructural Parameter

    Science.gov (United States)

    Wang, K.; Liu, F. C.; Xue, P.; Wang, D.; Xiao, B. L.; Ma, Z. Y.

    2016-01-01

    Fifteen Al-Mg-Sc samples with subgrain/grain sizes in the range of 1.8 to 4.9 μm were prepared through the processing methods of friction stir processing (FSP), equal-channel-angular pressing (ECAP), rolling, annealing, and combinations of the above. The percentages of high-angle grain boundaries (HAGBs) of these fine-grained alloys were distributed from 39 to 97 pct. The samples processed through FSP had a higher percentage of HAGBs compared to other samples. Superplasticity was achieved in all fifteen samples, but the FSP samples exhibited better superplasticity than other samples because their fine equiaxed grains, which were mostly surrounded by HAGBs, were conducive to the occurrence of grain boundary sliding (GBS) during superplastic deformation. The dominant deformation mechanism was the same for all fifteen samples, i.e., GBS controlled by grain boundary diffusion. However, the subgrains were the GBS units for the rolled or ECAP samples, which contained high percentages of unrecrystallized grains, whereas the fine grains were the GBS units for the FSP samples. Superplastic data analysis revealed that the dimensionless A in the classical constitutive equation for superplasticity of fine-grained Al alloys was not a constant, but increased with an increase in the percentage of HAGBs, demonstrating that the enhanced superplastic deformation kinetics can be ascribed to the high percentage of HAGBs. A modified superplastic constitutive equation with the percentage of HAGBs as a new microstructural parameter was established.

  4. Collimation effects in small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Schmidt, P.W.

    1988-01-01

    To obtain adequate intensity in small-angle X-ray and neutron scattering measurements, the apertures that define the incident and scattered beams often must be made so large that the measured intensity is an average over an appreciable interval of scattering angles. Allowance must frequently be made for the resulting distortion of the measured scattering curve. A technique previously developed by Hendricks and Schmidt for describing collimation effects is outlined. This method makes use of a function called the ''weighting function'', which specifies the width of the interval over which the intensity is averaged and indicates the emphasis given to scattering angles within this interval. A new calculation of the weighting function for pinhole collimating systems, which employ circularly symmetric apertures instead of long narrow slits, is presented. Several techniques for performing collimation corrections are described, and a review is given of results that several workers have recently obtained in studies of collimation effects in pinhole systems. (orig.)

  5. High temperature furnaces for small and large angle neutron scattering of disordered materials

    International Nuclear Information System (INIS)

    Bletry, J.; Taverniere, P.; Senillou, C.; Desre, P.; Maret, M.; Chieux, P.

    1984-01-01

    Two similar high temperature furnaces (up to 2000 0 C) have been developed for large angle and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin tungsten foil heating element supplied by two tantalum leads, and shielded by thin tungsten foils maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without any Bragg peaks) due to the openings in the heating element, the shields and the tantalum box for the incident, unscattered beam and the scattered beam at low angles. Thus the furnace absorption correction is also much easier. A platinum thermocouple controls temperature, very high temperatures are measured optically. A vacuum chamber has been especially designed for SANS experiments with two windows in polished sapphire. The furnaces have been successfully used for the study of liquid alloys on the D4, D11 and D17 spectrometers at the ILL

  6. Interferometry of a reflective axicon surface with a small cone angle using an optical inner surface

    Science.gov (United States)

    Gao, Huimin; Zhang, Xiaodong; Fang, Fengzhou

    2017-09-01

    Reflective axicons, widely used in optical alignment and Bessel-Gauss beam generation, require a highly accurate cone angle and surface metrology. However, current methods focus on the cone angle measurement and it is still difficult to measure the surface of a reflective axicon with a small cone angle. An interferometer measurement method using an optical inner surface is proposed to obtain the surface and cone angle simultaneously. The optical axis of the axicon and the optical inner surface should align together and be parallel to the beam light from the interferometer. The interference fringe would be obtained by the optical system consisting of the axicon and the optical inner surface. The theoretical model is established and analyzed through ray tracing theory, and is verified by optical simulation software. Fabrication errors in the axicon and the inner surface, and misalignment of the measurement setup are investigated systematically and separated in the measurement process. In the experiments, the reflective axicon with a cone angle of about 90° was measured by the proposed method, the results of which show good agreement with a stylus profiler (Taylor-Hobson PGI 3D) in cone angle trend and generatrix error. Experimental results prove the feasibility of the proposed method. This economical and effective method can be widely used with all types of reflective axicons, and it can obtain the surface error map of the axicon as well as the inner cylinder at the same time. The uncertainty and resolution of the proposed method is based on the performance of the interferometer. The uncertainty of alignment angle errors is less than 10-10 rad; the lateral resolution is 53.8 µm.

  7. Interferometry of a reflective axicon surface with a small cone angle using an optical inner surface

    International Nuclear Information System (INIS)

    Gao, Huimin; Zhang, Xiaodong; Fang, Fengzhou

    2017-01-01

    Reflective axicons, widely used in optical alignment and Bessel–Gauss beam generation, require a highly accurate cone angle and surface metrology. However, current methods focus on the cone angle measurement and it is still difficult to measure the surface of a reflective axicon with a small cone angle. An interferometer measurement method using an optical inner surface is proposed to obtain the surface and cone angle simultaneously. The optical axis of the axicon and the optical inner surface should align together and be parallel to the beam light from the interferometer. The interference fringe would be obtained by the optical system consisting of the axicon and the optical inner surface. The theoretical model is established and analyzed through ray tracing theory, and is verified by optical simulation software. Fabrication errors in the axicon and the inner surface, and misalignment of the measurement setup are investigated systematically and separated in the measurement process. In the experiments, the reflective axicon with a cone angle of about 90° was measured by the proposed method, the results of which show good agreement with a stylus profiler (Taylor-Hobson PGI 3D) in cone angle trend and generatrix error. Experimental results prove the feasibility of the proposed method. This economical and effective method can be widely used with all types of reflective axicons, and it can obtain the surface error map of the axicon as well as the inner cylinder at the same time. The uncertainty and resolution of the proposed method is based on the performance of the interferometer. The uncertainty of alignment angle errors is less than 10 −10 rad; the lateral resolution is 53.8 µ m. (paper)

  8. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu [HEPL, Stanford University, Palo Alto, CA 94305 (United States)

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.

  9. Neutron focusing optics for low-resolution small-angle scattering

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1994-01-01

    Small-angle neutron scattering instruments use large source and sample areas with long flight paths to obtain the necessary resolution. Increased count rates may be obtained using collimators that converge to a point on the detector. Further increases may be obtained by converging guides in the form of a focusing lens. A low-resolution small-angle scattering instrument that uses converging capillary fibers as a focusing lens is proposed. Such a device requires the use of a detector that has a fine spatial resolution, perhaps less than 0.1 mm. Expressions are derived for the resolution and the intensity optimized for such an instrument. The relationship is determined between the guide dimensions, the focal length and the critical angle of the internal coating of the individual fiber channels. The critical angle of the focusing lens dominates the resolution, and such an instrument is useful only for low-resolution measurements. However, the greatly reduced length is only valuable if there is a high-resolution detector to match the dimensions of the guide. Despite its low resolution, such an instrument might eventually be useful for survey or characterization measurements. (orig.)

  10. The neutron small-angle camera D11 at the high-flux reactor, Grenoble

    International Nuclear Information System (INIS)

    Ibel, K.

    1976-01-01

    The neutron small-angle scattering system at the high-flux reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small-angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The full length of the collimator before the fixed sample position can be reduced by movable neutron guides; the second flight path of 40 m full length contains detector sites in various positions. Thus a large range of momentum transfers can be used with the same relative resolution. Scattering angles between 5 x 10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered at different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. (Auth.)

  11. Progresses in the measurement and evaluation of small-angle x-ray scattering data

    International Nuclear Information System (INIS)

    Bergmann, A.

    2000-08-01

    Scattering methods are a widely used technique for determining size and shape of particles in the mesoscopic size range. This work deals on the one hand with the development of instruments in the field of Small Angle x-ray Scattering (SAXS) and on the other hand with methodical contributions concerning the interpretation of small angle scattering data. After a short introduction about Small Angle Scattering (SAS) and its application in chapter one, follows in chapter two a derivation of the theory of Small Angle x-ray scattering. Thereafter indirect transformations (Generalized Indirect Fourier Transformation [GIFT], Indirect Fourier Transformation [IFT]) are discussed and in this connection the optimization of multidimensional hyper surfaces is described. There are different possibilities for optimizing such multidimensional surfaces. The pros and contras of the different optimization methods with respect to the evaluation of small angle scattering data from interacting systems are discussed in detail. Global optimization methods are mainly used, if the hypersurface, which has to be optimized, shows many local minima. The goal of the optimization is it to find the global minimum. It is essential, that the parameters of the hyper surface are independent of each other, as it is the case in the GIFT. If someone deals with problems in only few dimensions or with many boundary conditions, mostly local optimization routines are sufficient. Therefore a number of starting parameters for the optimization is chosen, which can be obtained systematically or randomly. The best solution obtained represents the result of the optimization procedure. Chapter 3 deals with the description of instruments used in the field of Small Angle x-ray Scattering. After a description of the components (x-ray sources, monochromators, detectors) of these instruments, the different beam geometries are discussed. In chapter 4 improvements of SAXS measurements on Kratky slit systems by Goebel

  12. Particle and particle systems characterization small-angle scattering (sas) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  13. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  14. Measurement of the analysing power in proton–proton elastic scattering at small angles

    Directory of Open Access Journals (Sweden)

    Z. Bagdasarian

    2014-12-01

    Full Text Available The proton analysing power in p→p elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.

  15. Complementary uses of small angle X-ray scattering and X-ray crystallography.

    Science.gov (United States)

    Pillon, Monica C; Guarné, Alba

    2017-11-01

    Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    International Nuclear Information System (INIS)

    Kuklin, A I; Rogachev, A V; Soloviov, D V; Ivankov, O I; Kovalev, Yu S; Kutuzov, S A; Soloviev, A G; Rulev, M I; Gordeliy, V I; Utrobin, P K

    2017-01-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures. (paper)

  17. Small-angle scattering investigation of silica xerogels and sonogels prepared with ionic liquid pyridinium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    László Almásy

    2017-09-01

    Full Text Available Silica matrices were prepared via acid catalysed sol-gel processing augmented with sonocatalysis. As silica precursors, a mixture of tetra-functionalized alkoxide (TMOS and three-functionalized alkoxide methyl-trimethoxysilane (MTMS were employed. Ionic liquid N-butyl-3-methylpyridinium tetrafluoroborate ([bmPy][BF4], was used in various proportions, aiming to catalyse the sol-gel reactions, and to influence the mesoporous silica materials properties, serving as pore template. Small-angle neutron (SANS and small-angle X-ray scattering (SAXS techniques were used to explore the xerogels and sonogels microstructure evolution as a function of the IL/Si molar ratio. The results show a strong increase of the primary particle size under the influence of the ionic liquid. Ultrasonic agitation leads to further size increase by ca. 10%.

  18. Small angle neutron scattering on the matters radiated by impulse plasma flows

    International Nuclear Information System (INIS)

    Ibraev, B.; Baimbetov, F.; Treimer, W.

    1999-01-01

    Complete text of publication follows. By methods of small angle neutron scattering (neutron wavelength ∼ 0.478 nm) on two-crystal diffractometer the structural inhomogenities (defects, clusters, pores, etc.) were investigated. The inhomogenities were produced by the impulse hydrogen and nitride plasma flows on the surface of steel 12X18H10T, aluminum alloy Al-Cu-Mg and graphite. The energy density of plasma was varied from 0 to 120 J/cm 2 . The values of total macroscopic scattering cross-section in dependence of radiation dose significantly change. It reveals the structural transformations on the samples' surface due to plasma influence. The critical doses for the given types of samples, that determine start of the change of physical and mechanical properties, were calculated. Theoretical calculations and the small angle neutron scattering data are in good agreement as well as the experimental data obtained by electron microscopy and metallography measurements. (author)

  19. Interpretation of small-angle scattering of block copolymer/nanoparticle blends using random phase approximation.

    Science.gov (United States)

    Hakem, I F; Benmouna, A; Benmouna, R; Ferebee, R; Benmouna, M; Bockstaller, M R

    2014-06-01

    The scattering characteristics of block copolymer (BCP)/nanoparticle (NP) blend systems are analyzed in the weak segregation limit using random phase approximation (RPA). The scattering function is established and shown to adequately capture reported data of small-angle neutron scattering in poly(norbornene-b -d-norbornene dicarboxylic acid)/ Fe3O4 nanoparticle blend systems over the entire small-angle range for a variety of BCP and NP compositions. Besides predicting the relevant length scales of microstructure formation, the RPA analysis reveals the increase of segregation in the BCP system upon NP addition. The insight into the thermodynamics of microstructure formation in BCP/NP blend systems that is provided by the RPA analysis should be a valuable asset for the design of BCP-based microstructured hybrid materials with predetermined structure and properties.

  20. Structural analysis of Fe-Mn-O nanoparticles in glass ceramics by small angle scattering

    Science.gov (United States)

    Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian

    2015-02-01

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na2O-62.9SiO2-8.5MnO-15.0Fe2O3-x (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core-shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO2. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region.

  1. Small-angle neutron scattering in materials science: Recent practical applications

    Science.gov (United States)

    Melnichenko, Yuri B.; Wignall, George D.

    2007-07-01

    Modern materials science and engineering relies increasingly on detailed knowledge of the structure and interactions in "soft" and "hard" materials, but there have been surprisingly few microscopic techniques for probing the structures of bulk samples of these substances. Small-angle neutron scattering (SANS) was first recognized in Europe as a major technique for this purpose and, over the past several decades, has been a growth area in both academic and industrial materials research to provide structural information on length scales ˜10-1000Å (or 1-100nm). The technique of ultrahigh resolution small-angle neutron scattering (USANS) raises the upper resolution limit for structural studies by more than two orders of magnitude and (up to ˜30μm) and hence overlaps with light scattering and microscopy. This review illustrates the ongoing vitality of SANS and USANS in materials research via a range of current practical applications from both soft and hard matter nanostructured systems.

  2. Structural characterizaton of deep-submicron lithographic structures using small-angle neutron scattering

    Science.gov (United States)

    Lin, Eric K.; Jones, Ronald L.; Wu, Wen-li; Barker, John G.; Bolton, Patrick J.; Barclay, George G.

    2002-07-01

    As critical dimensions continue to decrease with each technology node, the precise characterization of line width and profile becomes an increasingly challenging task. Small angle neutron scattering (SANS) offers several advantages for the characterization of sub-100 nm structures, particularly as a calibrating measurement method. In this work, SANS is used to characterize three samples prepared with the same mask and focus conditions, but different photoresist formulations. The mask pattern consists of parallel lines with a nominal line width of 180 nm and a 1:2 line to space ratio. Scattering data are taken using both a focused neutron beam instrument (two-dimensional data) and a perfect crystal diffraction ultra-high resolution small angle neutron scattering (USANS) instrument. From the location and intensity of observed diffraction peaks, both the periodicity of each grating pattern and the average line widths are determined from simple analytic expressions with nanometer resolution.

  3. Construction of a two-dimensional ultra-small-angle X-ray scattering apparatus

    International Nuclear Information System (INIS)

    Konishi, T.; Yamahara, E.; Furuta, T.; Ise, N.

    1997-01-01

    A two-dimensional ultra-small-angle X-ray scattering (USAXS) apparatus was constructed using a rotating-anode X-ray generator and a Bonse-Hart camera. In this camera, two sets of two channel-cut single crystals were used to collimate the X-ray beam in both the horizontal and the vertical planes. The measured intensity profile of the direct beam showed a high small-angle resolution in all directions on the detector plane. The full width at half-maximum was 17 '' , indicating that the apparatus can be applied to structural analysis in the range up to 2 μm, even for directionally oriented samples. One- and two-dimensional USAXS profiles from colloidal silica powder agreed well with each other, showing that the desmearing procedure adopted in the previous one-dimensional USAXS experiments were justified. (orig.)

  4. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Dept. and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Dept., Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)

    2014-11-15

    To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study.

  5. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry

    2014-01-01

    To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study

  6. Survey of background scattering from materials found in small-angle neutron scattering.

    Science.gov (United States)

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  7. Automated acquisition and analysis of small angle X-ray scattering data

    International Nuclear Information System (INIS)

    Franke, Daniel; Kikhney, Alexey G.; Svergun, Dmitri I.

    2012-01-01

    Small Angle X-ray Scattering (SAXS) is a powerful tool in the study of biological macromolecules providing information about the shape, conformation, assembly and folding states in solution. Recent advances in robotic fluid handling make it possible to perform automated high throughput experiments including fast screening of solution conditions, measurement of structural responses to ligand binding, changes in temperature or chemical modifications. Here, an approach to full automation of SAXS data acquisition and data analysis is presented, which advances automated experiments to the level of a routine tool suitable for large scale structural studies. The approach links automated sample loading, primary data reduction and further processing, facilitating queuing of multiple samples for subsequent measurement and analysis and providing means of remote experiment control. The system was implemented and comprehensively tested in user operation at the BioSAXS beamlines X33 and P12 of EMBL at the DORIS and PETRA storage rings of DESY, Hamburg, respectively, but is also easily applicable to other SAXS stations due to its modular design.

  8. Exciting Science being done on the CG-2 Small Angle Neutron Scattering beam line at HFIR

    Science.gov (United States)

    Debeer-Schmitt, Lisa; Bailey, Kathy; Melnichenko, Yuri; Wignall, George; Littrell, Ken

    2010-03-01

    The small-angle neutron scattering (SANS) beam line, CG-2, has been in operation since 2007. CG-2 has been optimized so that structures from 0.5 to 200 nm can be thoroughly investigated. HFIR's cold source places the flux at CG-2 among the best in the world. Along with high flux, many varied sample environments can easily be integrated into the beam line which gives the user a versatile temperature range from 1.5 K to 1000K. In addition there are two cryomagents (horizontal 4.5 T and vertical 7 T), pressure cells and load frames available to users allowing for the availability of multiple configurations of experimental setups. Due to all the above equipment and the flux at CG-2, there have been many diverse and intriguing scientific developments. One such outcome is the study of flux- line lattices found in Type-II superconductors including the highly touted iron pnictides. Besides superconductors, other science studied on CG2 ranges from molecular self-assembly and interactions in complex fluids to phase separation, grain growth and orientation in metallurgical alloys.

  9. Have some large structures? Try small-angle neutron scattering (SANS)

    Science.gov (United States)

    Debeer-Schmitt, Lisa; Bailey, Kathy; He, Lilin; Wignall, George; Melnichenkov, Yuri; Littrell, Ken

    2011-03-01

    The small-angle neutron scattering (SANS) beam line, CG-2, has been in operation since 2007. CG-2 has been optimized so that structures from 0.5 to 200 nm can be thoroughly investigated. HFIR's cold source places the flux at CG-2 among the best in the world. Along with high flux, many varied sample environments can easily be integrated into the beam line which gives the user a versatile temperature range from 1.5 K to 1000 K. In addition there are two cryomagnets (horizontal 4.5 T and vertical 7 T), pressure cells and load frames available to users allowing for the availability of multiple configurations of experimental setups. Due to all the above equipment and the flux at CG-2, there have been many diverse and intriguing scientific developments. One such outcome is the study of flux-line lattices found in Type-II superconductors including the highly touted iron pnictides. Besides superconductors, other science studied on CG-2 ranges from molecular self-assembly and interactions in complex fluids to phase separation to grain growth and orientation in metallurgical alloys.

  10. Small-angle stability analysis of a linear control system for a high power communication satellite

    Science.gov (United States)

    Omalley, T. A.

    1972-01-01

    A small angle stability analysis is presented for one particular configuration of a high power communication satellite having a linear control system. Both the central body and the solar array are treated as rigid bodies. The control system studied consists of three-axis control of the central body and one-axis control of the solar array rotation relative to the central body. The results yield preliminary indications of the relation of stability to satellite inertias and control gains.

  11. Magnetic nanostructures in FeNbB studied by small-angle neutron scattering

    Science.gov (United States)

    Marcin, J.; Wiedenmann, A.; Škorvánek, I.

    2000-03-01

    The evolution of nuclear and magnetic microstructure during crystallization of amorphous FeNbB alloys at temperatures between 450°C and 510°C is investigated by a small-angle neutron scattering (SANS). From the nuclear and magnetic scattering the corresponding size distributions of BCC-Fe nanocrystals are determined. The average radius of the magnetized core of BCC-Fe grains has been found to be smaller in comparison with the size of nanograins itself.

  12. Small-angle neutron scattering by water-based ferrofluid mixed with polyethylene glycol

    International Nuclear Information System (INIS)

    Feoktystov, A.V.; Avdeev, M.V.; Feoktystov, A.V.; Garamus, V.M.; Feoktystov, A.V.; Bulavin, L.A.; Kopcansky, P.; Timko, M.; Koneracka, M.; Zavisova, V.

    2009-01-01

    A new approach in the contrast variation experiments (small-angle neutron scattering) is demonstrated with a complex water-based magnetic fluid, where magnetite nanoparticles (size about 10 nm) coated with sodium oleate are mixed with poly(ethylene glycol), PEG. The contrast variations is performed basing on the substitution of hydrogen with deuterium in the liquid carrier (water). Modified basic functions defined for the polydisperse multicomponent superparamagnetic system are analyzed

  13. Small angle neutron scattering study of isolated single wall carbon nano tubes in water

    International Nuclear Information System (INIS)

    Doe, Chang-Woo; Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    As an effort to provide more practical approaches to a wide range of potential applications of carbon nano tubes, we report a new type of noncovalently functionalized isolated single-walled carbon nano tube(SWNT) which is easily dispersible in water by only ten minutes of mild vortex mixing. The structure and quality of dispersion have been investigated using small angle neutron scattering (SANS) technique

  14. Dispersion forces and small-angle neutron scattering from liquid noble metals

    International Nuclear Information System (INIS)

    March, N.H.

    1988-01-01

    Maggs and Ashcroft [Phys. Rev. letts., 59,113 (1987)] have re-opened the question of the analogy between the cohesion of a molecular crystal, in which dispersion forces play a major role, and that in a metal crystal with polarizable ion cores. It is pointed out that small-angle neutron scattering from liquid noble metals could be used to test their predictions. (author)

  15. Small-angle neutron scattering instrumentation at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Gilbert, E.

    2003-01-01

    Full text: A small-angle neutron scattering instrument is being designed as part of the initial instrument suite for the 20 MW Australian Replacement Research Reactor. The proposed 40 m long instrument will receive neutrons from a large liquid-D 2 cold source, use a 1 m 2 detector, have incident beam polarisation and will have provision for polarisation analysis. Scheduled for completion in January 2006, the conceptual details of the new SANS instrument are presented

  16. Magnetic design of a spin-echo small-angle neutron-scattering instrument

    CERN Document Server

    Uca, O; Rekveldt, M T

    2003-01-01

    In a spin-echo small-angle neutron scattering instrument dipole magnets and guide field coils are used. The homogeneity of the fields should be sufficient to have linear labeling of the height with precession. Furthermore, the instrument must have a homogenous line integral over the beam cross-section. It is shown that line integral inhomogeneities are directly connected to field components perpendicular to the main field. The design parameters of these magnetic units of the setup are calculated.

  17. Multiple magnetic scattering in small-angle neutron scattering of Nd?Fe?B nanocrystalline magnet

    OpenAIRE

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd?Fe?B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd?Fe?B nanocrystalline magnet. It is considered that th...

  18. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering.

    Science.gov (United States)

    Nagy, Gergely; Posselt, Dorthe; Kovács, László; Holm, Jens K; Szabó, Milán; Ughy, Bettina; Rosta, László; Peters, Judith; Timmins, Peter; Garab, Gyozo

    2011-06-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique reveals light-induced reversible reorganizations in the seconds-to-minutes time scale, which appear to be associated with functional changes in vivo.

  19. Study of humic acids by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Timchenko, A.; Trubetskaya, O.; Kihara, H.

    1999-01-01

    Humic acids are an important component of natural ecological system and represent a polydisperse complex of natural biopolymers with molecular masses from several to hundreds kilodaltons. They are both a source of organic compounds and a protector against anthropogenic pollutions of biosphere. The aim of the report is to underline some possibilities of small-angle X-ray and neutron scattering to study HA and their fractions. (author)

  20. Small angle scattering investigation of nanostructured binary Au-Fe alloys

    International Nuclear Information System (INIS)

    Bergenti, I.; Deriu, A.; Spizzo, F.; Ronconi, F.; Bosco, E.; Baricco, M.

    2004-01-01

    Small Angle Neutron Scattering measurements have been performed on granular materials with composition Au 100-x Fe x (x=20, 27, 30, 38) obtained in the form of melt spun ribbons and of co-sputtered thin films. The as cast melt spun ribbons, show only the presence of nearly atomic iron precipitates, subsequent thermal treatments induce the formation of lamellar-shaped iron precipitates. In the co-sputtered films the iron nanoparticles are non-uniformly distributed in the Au matrix

  1. Small-angle neutron scattering investigations of Co-doped iron oxide nanoparticles. Preliminary results

    Science.gov (United States)

    Creanga, Dorina; Balasoiu, Maria; Soloviov, Dmitro; Balasoiu-Gaina, Alexandra-Maria; Puscasu, Emil; Lupu, Nicoleta; Stan, Cristina

    2018-03-01

    Preliminary small-angle neutron scattering investigations on aqueous suspensions of several cobalt doped ferrites (CoxFe3-xO4, x=0; 0.5; 1) nanoparticles prepared by chemical co-precipitation method, are reported. The measurements were accomplished at the YuMO instrument in function at the IBR-2 reactor. Results of intermediary data treatment are presented and discussed.

  2. Depth-sensitive time-of-flight small-angle neutron scattering

    OpenAIRE

    Herbel, Jörg

    2013-01-01

    Block copolymers are quiet imported in industry. A detailed knowledge of the solid-liquid boundary conditions for surface effects in their aqueous solutions supports the development of smart coatings or the understanding of the folding of proteins in the vicinity of cell membranes. In this work, data collected from small-angle neutron scattering (SANS) experiments will be evaluated. The probed material is a 20\\% (in weight) solution of the polymer Pluronic F127, which forms micelles inside th...

  3. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (industry.

  4. Small-angle neutron scattering study of onion-type micelles

    Czech Academy of Sciences Publication Activity Database

    Pleštil, Josef; Kříž, Jaroslav; Tuzar, Zdeněk; Procházka, K.; Melnichenko, Yu. B.; Wignall, G. D.; Talingting, M. R.; Munk, P.; Webber, S. E.

    2001-01-01

    Roč. 202, č. 4 (2001), s. 553-563 ISSN 1022-1352 R&D Projects: GA ČR GA203/97/0249; GA ČR GA203/96/1387; GA MŠk VS97103; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : onion -type micelles * small-angle neutron scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.629, year: 2001

  5. Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets

    International Nuclear Information System (INIS)

    Vecchini, C.; Moze, O.; Suzuki, K.; Cadogan, J.M.; Pranzas, K.; Michels, A.; Weissmueller, J.

    2006-01-01

    The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ferromagnets. Such information is not presently available using any other microscopic technique. The basic principles and results of the technique will be presented with regard to a unique and unexpected observation of a dipole field controlled spin disorder in a prototypical soft nanocomposite ferromagnet of the Nanoperm type

  6. Small angle neutron scattering study of ageing process in an Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Abis, S.; Fiorini, P.; Boeuf, A.; Caciuffo, R.; Crico, S.

    1984-01-01

    Small angle neutron scattering (SANS) measurements were performed on polycrystalline samples of high purity Al-Mg (0.72%)-Si (0.34%) alloy. The effect of different ageing temperature was observed and the results compared with information obtained using differen technique such as resistivity measurements and transmission electron microscopy. The results give useful information on the validity of SANS for the study of complex Al alloy

  7. Small angle neutron scattering form polymer melts: structural investigation and phase behaviour

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2004-01-01

    The Small-Angle Neutron Scattering (SANS) techniques have been used to study the structural properties and phase behavior of polymer melts. A model based on Random Phase Approximation (RPA) is proposed to predict the experimental data. By fitting the model to data we could be able to obtain radius of gyration (a measure of size of a polymer) and phase transition for the sample. (author)

  8. Kinetics of structural reorganizations in multilamellarphotosynthetic membranes monitored by small-angle neutronscattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Kovacs, Laszlo; Unnep, Renata

    2013-01-01

    We demonstrate the power of time-resolved small-angle neutron scattering experiments for the investigation of the structure and structural reorganizations of multilamellar photosynthetic membranes. In addition to briefly summarizing our results on thylakoid membranes isolated from higher plants...... and in unicellular organisms, we discuss the advantages and technical and methodological limitations of timeresolved SANS. We present a detailed and more systematical investigation of the kinetics of light-induced structural reorganizations in isolated spinach thylakoid membranes, which show how changes...

  9. Small Angle Neutron Scattering (SANS) Characterization of Electrically Conducting Polyaniline Nanofiber/Polyimide Nanocomposites

    Science.gov (United States)

    2011-10-25

    Electrically Conducting 5b. GRANT NUMBER Polyaniline Nanofiber/Polyimide Nanocomposites 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alan R. Hopkins, Sandra J...Thin Solid Films 14. ABSTRACT Nanocomposites of polyaniline nanofibers and polyimide were fabricated and studied using small angle neutron...scattering (SANS). The immiscible nature of the conformationally dissimilar polyaniline nanofiber and polyimide host is established by a series of

  10. Small angle x-ray and neutron scattering for materials characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C.E. [Curtin University of Technology, Perth, WA (Australia). Department of Applied Physics

    1999-12-01

    Full text: Small angle X-ray and neutron scattering (SAXS and SANS) are excellent techniques to characterise inhomogeneities in materials in the size range from 10 Angstroms to several thousand Angstroms. Ultra small angle neutron and X-ray scattering (USANS and USAXS) have extended this size range out to 20 {mu}m. SAXS is due to the electron density difference between the matrix and the inhomogeneity, whereas SANS is due to the scattering length density difference. SANS and SAXS have been used successfully to characterise colloidal particles in solution, colloidal powders, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such transmission and scanning electron microscopy (TEM and SEM) are a powerful combination for the investigation of submicron particles. This paper will introduce the reader to the small angle scattering techniques and will use the aluminium hydrogen (Al-H) system as an example to demonstrate the applicability of each method. Aluminium foils (99.99% purity) and single crystals (99.999% purity) were charged with hydrogen using a gas plasma method (voltage range of 1.0 - 1.2 keV). The results from the SANS, USANS, TEM, SEM, X-ray diffraction and inelastic neutron scattering experiments showed a wide range of H{sub 2} bubbles on the surface and in the bulk of the Al-H sample (< 10 Angstroms up to several microns in size). The volume of the H{sub 2} bubbles was formed by the diffusion of H-vacancy complexes into the bulk. The volume concentration of vacant sites determined from precision density measurements was within experimental error to that calculated from the SANS and USANS experiments. Copyright (1999) Australian X-ray Analytical Association Inc. 5 refs.

  11. Small angle x-ray and neutron scattering for materials characterisation

    International Nuclear Information System (INIS)

    Buckley, C.E.

    1999-01-01

    Full text: Small angle X-ray and neutron scattering (SAXS and SANS) are excellent techniques to characterise inhomogeneities in materials in the size range from 10 Angstroms to several thousand Angstroms. Ultra small angle neutron and X-ray scattering (USANS and USAXS) have extended this size range out to 20 μm. SAXS is due to the electron density difference between the matrix and the inhomogeneity, whereas SANS is due to the scattering length density difference. SANS and SAXS have been used successfully to characterise colloidal particles in solution, colloidal powders, glasses and a wide range of solids such as metals, alloys, and natural and synthetic high polymers. Small angle scattering and complementary techniques, such transmission and scanning electron microscopy (TEM and SEM) are a powerful combination for the investigation of submicron particles. This paper will introduce the reader to the small angle scattering techniques and will use the aluminium hydrogen (Al-H) system as an example to demonstrate the applicability of each method. Aluminium foils (99.99% purity) and single crystals (99.999% purity) were charged with hydrogen using a gas plasma method (voltage range of 1.0 - 1.2 keV). The results from the SANS, USANS, TEM, SEM, X-ray diffraction and inelastic neutron scattering experiments showed a wide range of H 2 bubbles on the surface and in the bulk of the Al-H sample ( 2 bubbles was formed by the diffusion of H-vacancy complexes into the bulk. The volume concentration of vacant sites determined from precision density measurements was within experimental error to that calculated from the SANS and USANS experiments. Copyright (1999) Australian X-ray Analytical Association Inc

  12. Small-angle neutron scattering from solutions of diblock copolymers in partially miscible solvents

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Tuzar, Zdeněk; Nallet, F.; Noirez, L.

    2005-01-01

    Roč. 38, č. 8 (2005), s. 3426-3431 ISSN 0024-9297 R&D Projects: GA ČR GA203/04/0490; GA ČR GA203/02/1262; GA ČR GESON/03/E001 Institutional research plan: CEZ:AV0Z4050913 Keywords : diblock copolymers * small angle neutron scattering * solvents Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.024, year: 2005

  13. Experimental apparatus for the study of small angle neutron-proton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Vorobyov, A.A.; Korolev, G.A.; Dobrovolsky, A.V.; Khanzadeev, A.V.; Petrov, G.E.; Spiridenkov, E.M.; Terrien, Y.; Lugol, J.C.; Saudinos, J.; Silverman, B.H.; Wellers, F.

    1988-01-01

    An experimental setup for measurements of absolute differential cross sections and analyzing powers in small angle elastic np scattering is described. The main part of the apparatus consists of a multielectrode ionization chamber IKAR filled with methane, serving as both a gas target and a recoil detector. The apparatus was used in measurements with a polarized neutron beam from the Saturne synchrotron (Saclay, France) in the energy range from 378 to 1135 MeV. (orig.)

  14. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  15. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  16. Multiple small-angle neutron scattering for an arbitrary value of the Born parameter

    International Nuclear Information System (INIS)

    Bogdanov, S.G.; Men'shikov, A. Z.

    2000-01-01

    Computer calculations are made of the intensity of multiple small-angle neutron scattering using the general Moliere formula over a wide range of variation of the Born parameter, embracing the diffraction and refraction regimes, and a transition region between diffraction and reflection. A comparison is made with approximate formulas obtained earlier by Maleev et al. in the limiting cases of the Born parameter α > 1 for the diffraction and refraction regimes, respectively. It is shown that over a wide range of values of α the results of the calculations using the approximate and general formulas are the same. The theoretical conclusions were checked experimentally using data from measurements of small-angle neutron scattering for the domain structure of ferromagnets. Measurements were made of the neutron beam broadening for samples of different thickness and these were used to determine the effective domain sizes in pure iron and nickel exposed to thermal treatment and plastic deformation, and also in the Invar alloys Fe 65 Ni 35 and Fe 3 Pt. An analysis is made of the angular dependence of magnetic small-angle neutron scattering at the asymptote

  17. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.

    Science.gov (United States)

    Clark, Nicholas J; Zhang, Hailiang; Krueger, Susan; Lee, Hyo Jin; Ketchem, Randal R; Kerwin, Bruce; Kanapuram, Sekhar R; Treuheit, Michael J; McAuley, Arnold; Curtis, Joseph E

    2013-11-14

    Monoclonal antibodies (mAbs) contain hinge-like regions that enable structural flexibility of globular domains that have a direct effect on biological function. A subclass of mAbs, IgG2, have several interchain disulfide bonds in the hinge region that could potentially limit structural flexibility of the globular domains and affect the overall configuration space available to the mAb. We have characterized human IgG2 mAb in solution via small-angle neutron scattering (SANS) and interpreted the scattering data using atomistic models. Molecular Monte Carlo combined with molecular dynamics simulations of a model mAb indicate that a wide range of structural configurations are plausible, spanning radius of gyration values from ∼39 to ∼55 Å. Structural ensembles and representative single structure solutions were derived by comparison of theoretical SANS profiles of mAb models to experimental SANS data. Additionally, molecular mechanical and solvation free-energy calculations were carried out on the ensemble of best-fitting mAb structures. The results of this study indicate that low-resolution techniques like small-angle scattering combined with atomistic molecular simulations with free-energy analysis may be helpful to determine the types of intramolecular interactions that influence function and could lead to deleterious changes to mAb structure. This methodology will be useful to analyze small-angle scattering data of many macromolecular systems.

  18. Small-angle light scattering studies of dense AOT-water-decane microemulsions

    International Nuclear Information System (INIS)

    Micali, N.; Trusso, S.; Mallamace, F.; Chen, S.H.

    1996-01-01

    It is performed extensive studies of a three-component microemulsion system composed of AOT-water-decane using small-angle light scattering (SALS). The small-angle scattering intensities are measured in the angular interval 0.001-0.1 radians, corresponding to a Bragg wave number range of 0.14 μm -1 -1 . The measurements were made by changing temperature and volume fraction φ of the dispersed phase in the range 0.65< φ < 0.75. All samples have a fixed water-to-AOT molar ratio, w [water[/[AOT[ = 40.8, in order to keep the same average droplet size in the stable one-phase region. With the SALS technique it is observed all the phase boundaries of a very complex phase diagram with a percolation line and many structural organizations within it. It is observed at the percolation transition threshold, a scaling behavior of the intensity data. In addition it is described in detail a structural transition from a droplet microemulsion to a bi continuous one a suggested by a recent small-angle neutron scattering experiment. From the data analysis it is show that both the percolation phenomenon and this novel structural transition are described from a large-scale aggregation between microemulsion droplets

  19. Ultra-small-angle x-ray scattering by single-crystal Al deformed in situ

    Science.gov (United States)

    Long, Gabrielle; Levine, Lyle

    1997-03-01

    Among the earliest small-angle x-ray scattering and small-angle neutron scattering experiments were attempts to study dislocation structures. These structures have proven to be very difficult to measure because of the intrinsically low contrast of the microstructure, and the requirement that multiple Bragg diffraction be strictly avoided. Thus, many attempts to measure dislocation structures have been compromised by these difficulties. We present results from ultra-small-angle x-ray scattering measurements on single-crystal Al, deformed in situ on beam line X23A3 at the National Synchrotron Light Source. Radiographic images, which are in the O-beam position for diffraction, were taken of the scattering volume. The Al crystal was also rotated to ensure that the scattering data would be accumulated in a region sufficiently distant from accidental Bragg diffractions. Stress-strain data were obtained simultaneously with the x-ray scattering data. We report on the evolution of dislocation structures from 0% strain to 18% strain.

  20. SCT: a suite of programs for comparing atomistic models with small-angle scattering data.

    Science.gov (United States)

    Wright, David W; Perkins, Stephen J

    2015-06-01

    Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.

  1. Small angle neutron scattering measurements of magnetic cluster sizes in magnetic recorging disks

    CERN Document Server

    Toney, M

    2003-01-01

    We describe Small Angle Neutron Scattering measurements of the magnetic cluster size distributions for several longitudinal magnetic recording media. We find that the average magnetic cluster size is slightly larger than the average physical grain size, that there is a broad distribution of cluster sizes, and that the cluster size is inversely correlated to the media signal-to-noise ratio. These results show that intergranular magnetic coupling in these media is small and they provide empirical data for the cluster-size distribution that can be incorporated into models of magnetic recording.

  2. Capillary-scale interferometry at high angles of scattering for refractive index measurements of small volumes

    Science.gov (United States)

    Świrniak, Grzegorz

    2016-04-01

    This paper focuses on the problem of elastic scattering of a collimated beam of light on an unmodified glass capillary to perform a non-destructive small volume refractive index characterization. An interaction between the beam of light and the capillary causes that a series of dark and bright fringes is formed in the far field observed at high angles of scattering. By analyzing the spatial profile of the scattered light, the absolute value of the refractive index of a small volume may be measured unambiguously.

  3. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  4. Observation of magnetic flux line structures in superconductors by small-angle neutron diffraction

    International Nuclear Information System (INIS)

    Forgan, E.M.; Cubitt, R.; Lee, S.L.; Paul, D.McK.; Mook, H.A.; Yethiraj, McK.; Bishop, D.A.; Gammel, P.L.; Kleiman, R.N.

    1993-01-01

    We describe the recent uses of the technique of small-angle neutron diffraction to investigate flux-line structures within the bulk of superconductors in the mixed state. Despite the small signal in superconductors with a long penetration depth, useful results have been obtained in both High-T c and heavy-fermion superconductors. These can give information about the perfection of the flux lattice, the values of characteristics lengths, the influence of crystal anisotropy and defects on the flux lattice structure and orientation, and on temperature and flux lattice melting effects. (orig.)

  5. PREFACE Proceedings of the XIV International Conference on Small-Angle Scattering, SAS-2009

    Science.gov (United States)

    King, Stephen; Terrill, Nicholas

    2010-10-01

    scientific heart of the conference comprised 10 plenary sessions, interspersed by 39 'themed' parallel sessions, 2 poster sessions, an afternoon tour of Diamond and ISIS, and a week-long exhibition. There were 144 contributed oral presentations and 308 poster presentations across a total of 21 themes. Over half of all presentations fell under 6 themes: biological systems, colloids and solutions, instrumentation, kinetic and time-resolved measurements, polymers, and surfaces and interfaces. The importance of SAS techniques to the study of biology, materials science and soft matter/nanoscience is clear. The plenary presentations, which covered topics as diverse as advanced analysis techniques, biology, green chemistry, materials science and surfaces, were delivered by Frank Bates, Minnesota, USA, Peter Fratzl, MPI Golm, Germany, Buxing Han, Bejing, China, Julia Kornfield, CIT, USA, Jan Skov Pedersen, Aarhus, Denmark, Moonhor Ree, Pohang, Korea, Mitsuhiro Shibayama, Tokyo, Japan, Robert Thomas, Oxford, UK, Jill Trewhella, Sydney, Australia, and Thomas Zemb, ICSM Bagnols, France. Instigated by representatives of the Belgian and Dutch SAS communities one parallel session was dedicated to a tribute for Michel Koch, the pioneer of so many novel applications of SAXS, who retired after 30 years at the EMBL Hamburg in late 2006. With a supporting cast that included Wim Bras, ESRF, France, Tony Ryan, Sheffield, UK and Joe Zaccai, ILL,France, and watched by former colleague André Gabriel, Michel treated the audience to a fascinating - and at times light-hearted - retrospective of the evolution of synchrotron SAXS. Another parallel session was devoted to the work of the canSAS (Collective Action for Nomadic Small-Angle Scatterers) network of large-facility representatives and instrument scientists in areas such as data file formats, intensity calibration and software development. For further information see http://www.smallangles.net/wgwiki/index.php/canSAS_Working_Groups. A total of

  6. Investigation of polydisperse, disordered, and fractal systems by small-angle x-ray and neutron scattering

    International Nuclear Information System (INIS)

    Schmidt, P.W.; Tang, Y.; Roell, A.; Steiner, M.; Hoehr, A.; Neumann, H.B.

    1990-01-01

    Small-angle x-ray and neutron scattering are useful methods for investigating the structure of materials on a scale from about 10 to 2000 A. Some experimental procedures and methods of data analysis for small-angle scattering are outlined, and the use of small-angle scattering for studies of polydisperse systems (i.e., systems of particles of different size) of independently scattering particles is reviewed. Some general properties of the small-angle scattering from mass and surface fractals are discussed, and some applications of these concepts in recent experimental studies are presented. Results obtained in calculations of the small-angle scattering from a model of a surface are summarized. (author) 3 figs., 18 refs

  7. Phase separation and ordering process in Al-Li alloys studied by small-angle neutron scattering and neutron diffraction

    International Nuclear Information System (INIS)

    Furusaka, M.; Fujikawa, S.I.

    1993-01-01

    To study phase separation kinetics of Al-9.5at.%Li polycrystalline alloys in which precipitates have ordered Al 3 Li (δ') structure, profile analysis of small-angle neutron scattering and superlattice reflections (100) and (110) were done. A small-angle scattering instrument and a triple-axis spectrometer in elastic mode were used in the measurements. Strong texture was observed in the reflections. Therefore, measurements were done using the crystal orientation where the intensity of the reflection was at the maximum. Profiles of small-angle scattering and superlattice reflections were almost identical at higher momentum transfer side. At lower momentum transfer side, small-angle scattering showed interference effects, but superlattice reflection did not show any sign of interference. Integrated intensities of superlattice reflections were obtained and compared with small-angle scattering intensity. The order parameter was not saturated in the δ' precipitates at the early stage of the phase separation process

  8. Graded Marginal Recession: A Surgical Technique to Correct Small Angle Vertical Deviations.

    Science.gov (United States)

    Brooks, Steven E; Habib, Larissa

    2016-01-01

    To describe a novel muscle recession technique to surgically correct small angle vertical deviations in symptomatic adults with fusion potential. A novel technique involving a graded recession of the medial and lateral poles of a vertical rectus muscle, combined with graded medial and lateral tenotomy of the muscle, was used to treat small vertical deviations. A surgical nomogram was developed based on the configuration of the procedure and its predicted effects. Four patients with small angle hypertropia ranging from 1 to 5 prism diopters (PD) underwent the graded marginal recession procedure and were observed for up to 3 years. Three of the four patients had successful correction of their strabismus and resolution of diplopia, with no complications or induced incomitance. One patient was initially orthotropic but showed a 2 PD regression 1 month postoperatively, eventually requiring additional surgery to achieve stable orthotropia. The graded marginal recession can be safely and effectively used to correct very small vertical deviations in adults with fusion potential. A surgical nomogram can be created to guide predicted corrections in increments of less than 0.5 PD. Copyright 2016, SLACK Incorporated.

  9. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  10. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  11. Characterization of Monoclonal Antibody–Protein Antigen Complexes Using Small-Angle Scattering and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Maria Monica Castellanos

    2017-12-01

    Full Text Available The determination of monoclonal antibody interactions with protein antigens in solution can lead to important insights guiding physical characterization and molecular engineering of therapeutic targets. We used small-angle scattering (SAS combined with size-exclusion multi-angle light scattering high-performance liquid chromatography to obtain monodisperse samples with defined stoichiometry to study an anti-streptavidin monoclonal antibody interacting with tetrameric streptavidin. Ensembles of structures with both monodentate and bidentate antibody–antigen complexes were generated using molecular docking protocols and molecular simulations. By comparing theoretical SAS profiles to the experimental data it was determined that the primary component(s were compact monodentate and/or bidentate complexes. SAS profiles of extended monodentate complexes were not consistent with the experimental data. These results highlight the capability for determining the shape of monoclonal antibody–antigen complexes in solution using SAS data and physics-based molecular modeling.

  12. Measurement of small-angle elastic scattering cross sections of fast neutron

    International Nuclear Information System (INIS)

    Wan Dairong; Dai Yunsheng; Liang Xuecai; Cao Jianhua

    1993-11-01

    A position-sensitive detector has been developed for studying small angle scattering of fast neutrons. The detector mainly consists of two photomultiplier tubes to monitor the liquid scintillator. The time difference between two signals from two photomultiplier tubes is used to determine the position of light emitted. The 14.7 MeV neutron elastic scattering differential cross section of Zr, Nb, Ti and Pb were measured by position-sensitive detector and associated particle time-of-flight method at the angles from 3 deg to 15 deg. The corrections for neutron fluence attenuation, multiple scattering and finite geometry are performed by using Monte-Carlo method. The experimental results provide data needed in nuclear engineering design

  13. Vibrating phase echo concept for small-angle inelastic neutron scattering

    International Nuclear Information System (INIS)

    Michalec, R.

    1989-01-01

    Small-angle inelastic neutron scattering measurements are based on the vibrating phase echo concept. The double neutron diffraction is carried out by two thin vibrating single crystals, for example Si or Ge. The neutron beam diffracted at the monochromator crystal M is modulated with a frequency 2 Ω, where Ω is the circular frequency of the ultrasonic transducer. The second crystal A (analyser) vibrates at a frequency Ω with a phase shift φ. A neutron spectrometer on the basis of two vibrating single crystals is suitable within the scattering angle range 0.5' ≤ θ ≤ 50' and within the range of magnitude of the scattering vector Q = (2 to 500) x 10 -3 nm -1 . The described equipment covers the Q values of major part of the classical optical spectroscopy as well as Q values of part of the spin echo spectroscopy

  14. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P. [Technische Universitaet Muenchen, Physik-Department, Lehrstuhl fuer Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching (Germany); Perlich, J.; Roth, S. V.; Gehrke, R. [HASYLAB, DESY, Notkestr. 85, 22607, Hamburg (Germany)

    2012-07-15

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  15. The design of a constant wavelength ultra small angle neutron scattering spectrometer

    International Nuclear Information System (INIS)

    Peng Mei; Chen Liang; Chen Yanzhou; Sun Liangwei

    2012-01-01

    In order to carry out the research of constant wavelength ultra small angle neutron scattering spectrometer (USANS), the design principle is studied in this paper base on relevant information from international laboratories. The main components are designed and calculated by using the Simres and NOP codes, and analytic method. The channel-cut crystal for monochromator and analyzer, and the pre-monochromator are designed, and minimum Q of spectrometer is calculated. The results indicate that width of Darwin plat affects the minimum Q of spectrometer, the angle resolution of reflectivity planes selected in the design can ensure a Q resolution in 10 -5 order. After the monochromatic neutron guide, a vertical focus monochromator does not seem to increase neutron flux at the sample stage, to simplify the monochromator structure and its manufacturing process, we propose to use un-focus pre-monochromator after the monochromatic neutron guide. (authors)

  16. Intracellular organisation of polyhydroxyalkanoate inclusion bodies: a role for small angle neutron scattering?

    International Nuclear Information System (INIS)

    Foster, L.J.R.; Holden, P.J.; Garvey, C.J.; Russell, R.A.; Stone, D.J.M.

    2003-01-01

    Full text: Polyhydroxyalkanoates (PHAs) are a diverse family of bacterially produced biopolyesters. Their biodegradability, and in some cases biocompatibility, suggest applications ranging from bioplastics to biomedical implantation devices. Despite extensive interest in their production and potential applications, little is known about their intracellular organisation. Microbial PHAs are synthesised by microorganisms under conditions of nutrient stress and can comprise up to 90% of the dry cell mass. The formation and organisation of these PHA inclusion bodies requires clarification. Such investigations have important implications for the biotechnological production of PHAs in microbes and other organisms, for downstream processing and in vitro precision polymerisation. Morphological and biochemical evidence supports two different models for the intracellular organisation of PHAs. Steinbuchel and coworkers propose a simple model of amorphous PHA enclosed by a single protein membrane consisting of structural proteins (PHAsins) and enzymes responsible for synthesis and degradation. In contrast, Fuller and coworkers have theorised a more complex system of PHA encompassed by a PHAsin bilayer separated by phospholipid. The polymerase and depolymerase enzymes are proposed to be associated with an incomplete inner PHAsin layer. It may be that such models are genera or species specific, since both proposals were derived from research on different species producing different types of PHA. Our initial investigations have focussed on in vivo deuteration of polyhydroxyoctanoate, produced by Pseudomonas oleovorans, both in fermentation on natural and deuterated substrates and during Small Angle Neutron Scattering by whole cells using AUSANS. The nature of the structural questions and our preliminary findings including contrast variation data will be discussed

  17. Ultra-small-angle neutron scattering: large-scale structure determination from a bird's eye view

    International Nuclear Information System (INIS)

    Rehma, A.; Brûlé, A.; Freund, A.; Kennedy, S.

    2012-01-01

    Both natural and synthetic materials science and engineering rely increasingly on detailed knowledge of the microstructure and interactions in soft and hard materials. Contemporary research areas in biology and the life sciences, e.g., include membrane biophysics, drug-delivery systems and pharmacology, denial and medical composites, biomaterials, fillings and implants in each of these areas large length scale measurements become necessary as model biological systems begin to approach the complexity of natural systems Porosity (void structure) and particle size need to be understood so that the processes of agglomeration and water transport can be quantified in materials such as cements, oil bearing rooks, and pewit pigments Complex fluids, containing structures and complexes in the nanometre and much larger length scales, have widely varying physical properties and are extensively used in food, cosmetic/personal care, pharmaceuticals and drug-delivery, and mining industries. In these length-scales are some of the organisational features that dictate the bulk rheological and stability properties of solutions. At ANSTO a new ultra-small-angle neutron scattering (USANS) instrument, Kookaburra (currently) under construction with an expected transition to operation in mid-2013), will advance large-scale structure determination in the size range of 0.1-10 µm. Based on the well-established Bonse-Hart method. Kookaburra will individually operate at two different wavelengths to optimally accommodate weakly and strongly scattering samples at one sample position. This contribution will present specifics of Kookaburra and also discuss a practical application of the USANS technique in polymer science. Both its versatility and estimated neutron flux suggest that this state-.of-the-art instrument will generate a major impact in the field of large-scale structure determination.

  18. Model fitting in two dimensions to small angle diffraction patterns from soft tissue

    International Nuclear Information System (INIS)

    Wilkinson, S J; Rogers, K D; Hall, C J

    2006-01-01

    In our research programme small angle x-ray scattering (SAXS) is used to provide information on the axial arrangement of collagen molecules as well as data about the state of other components of the extra cellular matrix (ECM) in human tissues. Derivation of parameters to describe and simplify the data is required for much of the SAXS patterns analysis. A method is presented here to achieve function fitting to collagen diffraction peaks along with a representation of the underlying diffuse scatter. A simple model was used which proved reliable in fitting a variety of 2D diffraction patterns. The logarithm of the scatter intensity over the area of the scatter image was taken to reduce the range and improve fitting accuracy. Our model was then used to fit the log data. The model consisted of a radial exponential diffuse scatter component added to a specified number of Gaussian peaks. In 2D the peak model is toroidal, each component being rotated about a common specified centre. Initial search parameters from a 1D averaged sector were supplied to the iterative 2D fitting routine. With the aid of data weighting and basic wavelet filtering, successful and reliable fitting of a specified 2D model to real data is achievable. The process is easily automated. Multiple SAXS patterns can be fitted without operator intervention. As described the model is simple enough to converge rapidly and yet allows image data to be parameterized to a form suitable for extracting the requisite information. The fitting method is flexible enough to be extended to achieve a more comprehensive and complex pattern fitting in two dimensions if this turns out to be necessary. It is our intention to implement orientation distribution functions in the near future by including an angular scaling factor

  19. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, L.; Appavou, M.-S.

    2017-01-01

    Roč. 33, č. 4 (2017), s. 402-417 ISSN 0109-5641 R&D Projects: GA MŠk(CZ) LO1219 Keywords : zinc phosphate cements * small angle neutron scattering * X-ray micro-computed tomography * X-ray powder diffraction * zinc oxide * acid-base cements Subject RIV: JJ - Other Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 4.070, year: 2016 https://www.sciencedirect.com/science/article/pii/S0109564116305127

  20. Small-angle scattering studies of the fully hydrated phospholipid DPPC

    Energy Technology Data Exchange (ETDEWEB)

    Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1999-01-01

    Small-angle neutron and x-ray scattering studies have been carried out on fully hydrated dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles. This system is known to exhibit two distinct ripple (P{sub {beta}{sup {prime}}}) phases, which depend on sample history, at temperatures intermediate to its high-temperature liquid crystalline (L{sub {alpha}}), phase, and its low-temperature gel (L{sub {beta}{sup {prime}}}), phase. On cooling from the L{sub {alpha}} phase, the P{sub {beta}{sup {prime}}} phase displays a complex multipeak diffraction pattern that differs significantly from the diffraction pattern seen in the P{sub {beta}{sup {prime}}} phase obtained on warming from the L{sub {beta}{sup {prime}}} phase. Examining the P{sub {beta}{sup {prime}}} phase on cooling using small-angle neutron scattering and x-ray diffraction techniques leads to the conclusion that this phase is characterized by a long wavelength ripple ({lambda}{sub r}{approximately}330thinsp{Angstrom}) and a highly monoclinic unit cell ({gamma}{approximately}125{degree}). As the P{sub {beta}{sup {prime}}} phase is traversed in temperature, the ripple wavelength changes significantly while the monoclinicity remains unchanged. Ripples from the P{sub {beta}{sup {prime}}} phase are seen to persist into the L{sub {beta}{sup {prime}}} phase on cooling, leading to increased small-angle scattering characteristic of a disordered stacking of the lamellae. {copyright} {ital 1999} {ital The American Physical Society}

  1. Ultra small angle neutron scattering : a tool to study packing of relatively monodisperse small polymer spheres and their binary mixtures

    International Nuclear Information System (INIS)

    Reynolds, Philip A.; McGillivray, Duncan J.; White, John W.; Jackson, Andrew J.; University of Maryland, College Paerk, Maryland, USA

    2009-01-01

    Full text: We measured ultra small angle neutron scattering (USANS) from polymethylmethacrylate spheres tamped down in air. Two slightly polydisperse pure sphere sizes (1.5/-lm and 7.5/-lm diameter) and five mixtures of these were used. All were loose packed (packing fractions 0.3 to 0.6) with nongravitational forces (e.g., friction) important, preventing close packing. The USANS data is rich in information on powder packing. A modified Percus-Yevick fluid model was used to parametrise the data - adequately but not well. The modifications required introduction of small voids, less than the sphere size, and a parameter reflecting substantial deviation from the Percus-Yevick prediction of the sphere-sphere correlation function. The mixed samples fitted less well, and two further modifying factors were necessary. These were local inhomogeneities, where the concentration of same-size spheres, both large and small, deviated from the mean packing, and a factor accounting for the presence within these 'clusters' of self avoidance of the large spheres (that is large spheres coated with more small spheres than Percus-Yevick would predict). The overall deviations from the hardsphere Percus-Yevick model that we find here suggests fluid models of loose packed powders are unlikely to be successful, but lay the groundwork for future theoretical and computational work.

  2. The challenge of observation on livings things by employing an ultra small-angle neutron scattering method

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Motokawa, Ryuhei; Iwase, Hiroki; Miyamoto, Nobuyoshi; Tanaka, Kazuhiro; Masui, Tomomi; Iida, You; Yue, Zhao; Chiba, Kaori; Kumada, Takayuki; Yamaguchi, Daisuke; Hashimoto, Takeji

    2007-01-01

    To address the question as to how small-angle scattering is effectively applied to the cell, i.e., a hierarchically ordered system comprising multi-components of macro and small molecules, the size of which ranges from 100 μm to several μm, we reconstructed SANS-J (pinhole small-angle neutron scattering spectrometer at research reactor JRR3, Tokai) to focusing and polarized neutron small-angle spectrometer (SANS-J-II), by employing focusing neutron lenses and high resolution photomultiplier. Consequently, an accessible minimum wave number q min was improved from 3x10 -3 A -1 to medium ultra-small angle scattering of 3x10 -4 A -1 . The focusing USANS method, thus developed, is crucial to fill the gap in wave number q between those covered by a double crystal method and by a conventional pin-hole method. (author)

  3. Small-Angle neutron scattering at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Gilbert, E.P.

    2002-01-01

    Full text: A small-angle neutron scattering (SANS) instrument is being designed as part of the initial instrument suite for the 20 MW Australian Replacement Research Reactor. The new instrument, receiving neutrons from a large liquid-D2 cold source, will be in the spirit of the world's best facilities and will greatly build upon ANSTO's existing expertise and facilities. Scheduled for completion in January 2006, it will provide Australian and international researchers with opportunities to access state-of-the-art SANS instrumentation. The conceptual details of the new SANS will be presented

  4. Neutron analyses for nuclear materials: texture, residual stresses and small angle scattering

    International Nuclear Information System (INIS)

    Bechade, J.L.; Carlan, Y. de; Mathon, M.H.

    2015-01-01

    Neutron techniques are very useful for metallurgical investigations of nuclear materials, bringing complementary results compared to others analysis techniques like XRD, TEM, APT. Especially, statistical information representative of the bulk material are obtained. In the first part of this article we recall the theoretical principles of neutron diffraction techniques and of the small angle neutron scattering technique (SANS). In the second part we review examples of neutron applications for texture measurements, stress determination and the microstructural characterisation by SANS, particularly for 2 main components of nuclear reactors: the pressure vessel (welding and base metal) and the fuel cladding

  5. Simulation of small-angle scattering patterns using a CPU-efficient algorithm

    Science.gov (United States)

    Anitas, E. M.

    2017-12-01

    Small-angle scattering (of neutrons, x-ray or light; SAS) is a well-established experimental technique for structural analysis of disordered systems at nano and micro scales. For complex systems, such as super-molecular assemblies or protein molecules, analytic solutions of SAS intensity are generally not available. Thus, a frequent approach to simulate the corresponding patterns is to use a CPU-efficient version of the Debye formula. For this purpose, in this paper we implement the well-known DALAI algorithm in Mathematica software. We present calculations for a series of 2D Sierpinski gaskets and respectively of pentaflakes, obtained from chaos game representation.

  6. Performance of a new small-angle neutron scattering instrument at the Malaysian TRIGA reactor

    International Nuclear Information System (INIS)

    Sufi, M.A.M.; Radiman, S.; Wiedenmann, A.; Mortensen, K.

    1997-01-01

    The set-up and alignment of a new small-angle neutron scattering (SANS) instrument, installed at the 1 MW light-water-moderated MINT TRIGA research reactor, are described. The wavelength distribution and the flux at the sample position have been determined. First neutron scattering measurements were made on two reference samples with strong scattering power; the results prove that the SANS signal is well reproduced on the instrument when samples of typical size are used, despite the high level of the background of fast and epithermal neutrons. (orig.)

  7. Magnetic and Crystalline Nanostructures in Ferrofluids as Probed by Small Angle Neutron Scattering

    Science.gov (United States)

    Wiedenmann, A.

    We present a newly developed technique of nuclear and magnetic contrast variation by using polarised neutrons in Small Angle Neutron Scattering (SANSPOL) which allows density, concentration and magnetisation fluctuations in magnetic liquids to be analysed simultaneously. Diluted Ferrofluids based on different magnetic materials (Co, Magnetite, Ba-ferrite) and stabilized by charges or surfactants in different carrier liquids have been investigated. In such polydisperse systems several constituents of similar sizes have been identified by this technique: Magnetic core-shell composites, magnetic aggregates and free surfactants. The corresponding size distributions, compositions and magnetic moments have been determined. In more concentrated Co-FF the nature of field induced particle arrangements has been determined.

  8. Small-angle neutron scattering investigations of magnetic nanostructures and interfaces using polarized neutrons

    Science.gov (United States)

    Wiedenmann, Albrecht

    2001-03-01

    Using polarized neutrons, the relative contrasts for small-angle scattering are strongly modified which allows a precise evaluation of magnetization, density and composition profiles at surfaces and interfaces of nanoscaled materials. In Co ferrofluids, the magnetic core behaves as a non-interacting single domain. The core is encapsulated by a shell of surfactant molecules which was found to be impenetrable for the solvent. In soft magnetic Fe-Si-B-(Nb,Cu) and Fe-Nb-B alloys, the presence of a weak magnetic interface between ferromagnetic nanocrystals and amorphous matrix has been demonstrated which breaks the exchange interactions.

  9. Improved performances of 36 m small-angle neutron scattering spectrometer BATAN in Serpong Indonesia

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Bharoto; Santoso, Eddy; Ikram, Abarrul

    2009-01-01

    SMARTer, a 36 m small-angle neutron scattering (SANS) spectrometer owned by the National Nuclear Energy Agency of Indonesia (BATAN) was installed at the Neutron Scattering Laboratory (NSL) in Serpong, Indonesia. Lots of works on replacing, upgrading and improving the control system, experimental methods, data collection and reduction in the last two years have been carried out to optimize the performance of SMARTer. Some standard samples such as silver behenate, monodisperse polystyrene nanoparticle, porous silica and block copolymer PS-PEP film were measured for the inter-laboratory comparison.

  10. Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites

    International Nuclear Information System (INIS)

    Michels, Andreas; Erokhin, Sergey; Berkov, Dmitry; Gorn, Nataliya

    2014-01-01

    The recent development of a micromagnetic simulation methodology—suitable for multiphase magnetic nanocomposites—permits the computation of the magnetic microstructure and of the associated magnetic small-angle neutron scattering (SANS) cross section of these materials. In this review we summarize results on the micromagnetic simulation of magnetic SANS from two-phase nanocomposites. The decisive advantage of this approach resides in the possibility to scrutinize the individual magnetization Fourier contributions to the total magnetic SANS cross section, rather than their sum, which is generally obtained from the experiment. The procedure furnishes unique and fundamental information regarding magnetic neutron scattering from nanomagnets

  11. Investigating the Nanoporous Structure of Aluminosilicate Geopolymers with Small Angle Scattering and Imaging Techniques

    International Nuclear Information System (INIS)

    Maitland, C.F.; Buckley, C.E.; O'Connor, B.H.; Rowles, M.R.; Hart, R.D.; Gilbert, E.P.; Connolly, J.

    2005-01-01

    Full text: Rowles and O'Connor optimised the compressive strength of a geopolymer produced by sodium silicate-activation of metakaolinite, and found that this material may have a greater compressive strength than ordinary Portland cement. It has been observed that similar metakaolin-based geopolymers have a multiscale structure that consists of partially dissolved metakaolinite embedded in a nanoporous matrix. The characteristics of the nanostructure within this matrix influence the physical properties of the geopolymer. An investigation, using small-angle neutron scattering and imaging techniques, into how the matrix nanostructure varies with chemical composition of the starting material has been undertaken. The results of this investigation will be reported. (authors)

  12. Small-angle neutron scattering measurements for the characterization of lithographically prepared structures

    International Nuclear Information System (INIS)

    Wu Wenli; Lin, Eric K.; Lin Qinghuang; Angelopolous, Marie

    2001-01-01

    The continuing decrease in feature sizes in the semiconductor and other nanofabrication industries has placed increasingly stringent demands on current microscopy-based techniques to precisely measure both the critical dimensions and the quality (i.e. line-edge roughness) of these structures. Small-angle neutron scattering (SANS) experiments provide a quick, non-destructive, and quantitative measurement of the three-dimensional shape and quality of lithographically prepared structures as fabricated on a silicon substrate. We demonstrate the application of SANS for the characterization of nanoscale structures using periodic 150 nm parallel lines prepared using standard 248 nm photolithographic processes

  13. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    International Nuclear Information System (INIS)

    Kidalov, S. V.; Shakhov, F. M.; Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S.

    2011-01-01

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200–1700°C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  14. Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Andreas, E-mail: andreas.michels@uni.lu [Physics and Materials Science Research Unit, University of Luxembourg, 162A Avenue de la Faïencerie, L-1511 Luxembourg (Luxembourg); Erokhin, Sergey; Berkov, Dmitry; Gorn, Nataliya [INNOVENT Technology Development, Prüssingstraße 27B, D-07745 Jena (Germany)

    2014-01-15

    The recent development of a micromagnetic simulation methodology—suitable for multiphase magnetic nanocomposites—permits the computation of the magnetic microstructure and of the associated magnetic small-angle neutron scattering (SANS) cross section of these materials. In this review we summarize results on the micromagnetic simulation of magnetic SANS from two-phase nanocomposites. The decisive advantage of this approach resides in the possibility to scrutinize the individual magnetization Fourier contributions to the total magnetic SANS cross section, rather than their sum, which is generally obtained from the experiment. The procedure furnishes unique and fundamental information regarding magnetic neutron scattering from nanomagnets.

  15. Characterization of Pt/C catalyst by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Xia Qingzhong; Fan Zhijian; Chen Bo

    2007-12-01

    Pt/C catalyst plays an important role in hydrogen-water isotopic exchange reaction. Small Angle X-ray scattering (SAXS) is applied to investigate the structure of three kinds of Pt nanoparticles which were produced by three processes, Glycol synthesis, Soakage-reducing and Microwave heating. The SAXS analysis of size, shape, surface and the aggregates of primary Pt particles is reported here. Additionally, Transmission Electron Microscope (TEM) measurements also carried out, the results of TEM are in agreement with SAXS conclusions. It is shown that three processes produced different sizes and surface area of Pt aggregations. (authors)

  16. On spherical symmetry modelling of DNA packing within bacteriophage heads according to small angle scattering data

    International Nuclear Information System (INIS)

    Dembo, A.T.; Tikhonychev, V.V.

    1983-01-01

    Spherical symmetry models were used for interpretation of X-ray small angle scattering curves of bacteriophage solutions. These models were built of concentric spherical layers of finite thickness with various scattering densities. The attention was attached to the ripple intensity of DNA packing maximum. In model calculations such parameters as external radius, scattering densities, number of DNA-imitating layers and internal radii were changed. The results show that the fine structure of DNA packing maximum depends on the overall shape and size of the region occupied by DNA inside the bacteriophage head. (author)

  17. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2016-06-01

    Full Text Available In this article, we show the small-angle neutron scattering (SANS data obtained from the polymer electrolyte membranes (PEMs equilibrated at a given relative humidity. We apply Hard-Sphere (HS structure model with Percus–Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. “Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells” [1].

  18. Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water.

    Science.gov (United States)

    Zhao, Yue; Yoshida, Miru; Oshima, Tatsuya; Koizumi, Satoshi; Rikukawa, Masahiro; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter

    2016-06-01

    In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus-Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. "Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells" [1].

  19. Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.

    2010-12-01

    Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.

  20. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    Science.gov (United States)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  1. Use of Small Angle Neutron Scattering to Study Various Properties of Wool and Mohair Fibres

    Science.gov (United States)

    Franklyn, C. B.; Török, Gy.

    2011-12-01

    To maintain a competitive edge in the wool and mohair industry, a detailed knowledge and understanding of the properties of wool fibres is essential. Standard techniques are used to determine fibre diameter, length and strength; however, properties such as hydroscopicity, lustre and changes in fibre structure following chemical or mechanical treatment are not so well understood. The unique capabilities of small angle neutron scattering to study changes in the supermolecular structure of wool fibres, particularly at the level of the microfibril-matrix complex, have been used to provide previously unknown features of the fibres. The results of these studies are presented.

  2. Microstructural Investigations by Small Angle Scattering of Neutrons and X-rays

    Science.gov (United States)

    Fiori, F.; Spinozzi, F.

    Small angle scattering techniques [77, 103, 106, 156, 242, 254] (SANS when using neutron beams or SAXS when using conventional X-ray radiation sources or synchrotron radiation) are experimental methods allowing the determination of structural features, such as size and volume fraction, of matrix inhomogeneities in a huge variety of materials, covering studies from biochemistry and biophysics to applied and industrial research. The order of magnitude of the size of objects that can be detected is in the approximate range 1-103 nm, but with special methods (Ultra-SANS) also objects up to tens of micrometerscan be investigated.

  3. Small angle neutron scattering at very high time resolution: Principle and simulations of 'TISANE'

    International Nuclear Information System (INIS)

    Kipping, D.; Gaehler, R.; Habicht, K.

    2008-01-01

    The time resolution of SANS experiments is generally limited by frame overlap to some ms. We report on a new time-resolved stroboscopic SANS method, called TISANE, offering μs time resolution without a major sacrifice in intensity by making use of very large frame overlap. We may explore a new field in neutron scattering and complement the emerging field of time resolved small angle X-ray scattering. Here we discuss the principle of TISANE, its mathematical treatment and its limitations

  4. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Kidalov, S. V.; Shakhov, F. M., E-mail: fedor.shakhov@mail.ioffe.ru [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation); Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S. [Russian Academy of Sciences, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-12-15

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200-1700 Degree-Sign C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  5. Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering

    Directory of Open Access Journals (Sweden)

    L. A. Bulavin

    2015-07-01

    Full Text Available The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3 - 1.8 % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter.

  6. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    Science.gov (United States)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  7. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth

    1996-01-01

    Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions...... where the lamellar layers are coupled and fluctuating. This theory provides structural information in the region of the solid-fluid bilayer phase transition without invoking the usual decoupling of the scattering intensity function into form and structure factors. Results are presented as a function...

  8. Structure investigations on Portland cement paste by small angle neutron scattering

    International Nuclear Information System (INIS)

    Dragolici, C.A.; Lin, A.

    2004-01-01

    Hydrated Portland cement is a very complex material. Cement paste consists of many crystalline and non-crystalline phases in various ranges of sizes (μm and nm scale). The crystalline phases are embedded in amorphous phases of hydration products. We investigated the structural changes of hydrating phases in a time interval up to 18 days, at Budapest Neutron Center's SANS spectrometer. The small angle neutron scattering of Portland cements prepared with a various water-to-cement ratios, gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. Some comments regarding the opportunity of using the most common models are pointed out. (authors)

  9. Precise study of vortex structures in Nb by small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Seiki; Osamura, Kozo [Department of Materials Science and Engineering, Kyoto Univ., Kyoto (Japan); Suzuki, Jun-ichi [Advanced Science Reserch Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-07-01

    The microscopic magnetic structure of a vortex in a Nb single crystal was investigated using small-angle neutron scattering by measuring higher order reflections. By fitting the experimental scattering intensities, the magnetic structure of a vortex can be represented by the London equation with an additional Gaussian factor due to the thermal displacement of vortices. The radius of a vortex (20.3 nm at 3.3 K) is somewhat smaller than the London penetration depth ({lambda}{sub L}(0) = 31.5-39.0 nm). (author)

  10. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    DEFF Research Database (Denmark)

    Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper

    2010-01-01

    Background: Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS......) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function...

  11. Density model for medium range order in amorphous materials: application to small angle scattering

    International Nuclear Information System (INIS)

    Boucher, B.; Tournarie, M.; Chieux, P.; Convert, P.

    1983-06-01

    We consider a family of randomly spaced parallel planes, each plane dressed with a density function, h(x), where x is the distance from the plane. An expression for the volume scattering power from a system of N such families with random orientations in space is derived from Fourier transform of h(x), which can subsequently be determined from experimental observations. This density model is used to interpret the small angle neutron scattering (SANS) results for the amorphous alloy TbCusub(3.54)

  12. Small angle neutron scattering comparative investigation of Inconel 738 samples submitted to different ageing treatments

    International Nuclear Information System (INIS)

    Rogante, M.; Lebedev, V.T.

    2008-01-01

    Inconel 738 samples submitted to different annealing temperatures and ageing times have been investigated by small angle neutron scattering (SANS), with the aim to study precipitates phases microstructural evolution and material behaviour. The same material is a γ' (Ni 3 Al, Ti) precipitation hardened nickel base superalloy adopted at high temperatures in aggressive environments, and it has found applications over a very wide range of temperature. Information on the thermal treatment effects have been obtained, in particular concerning precipitate size and volume fraction distributions. The results contribute to confirm the adopted method to a level of industrial applicability in the considered sector

  13. Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering

    International Nuclear Information System (INIS)

    Badurek, G; Jericha, E; Groessinger, R; Sato-Turtelli, R

    2010-01-01

    When we investigated the magnetic structure of a variety of soft-magnetic amorphous ribbons by means of ultra-small-angle neutron scattering (USANSPOL) we were confronted with one particularly interesting Fe 65.7 Co 18 Si 0.8 B 15.5 ribbon, provided by VAC Hanau. Due to a special thermal treatment during production a field- and stress-induced transverse domain texture was expected. Although the USANSPOL technique encountered its resolution limits during the investigation of this specific sample ribbon, such a texture could indeed be verified.

  14. Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Tomchuk, O.V.; Avdeev, M.V.

    2015-01-01

    The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3/1.8) % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter

  15. Small-angle and surface scattering from porous and fractal materials.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  16. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin (Germany); Haas, S; Hoell, A, E-mail: gudrun.gleber@ptb.d [Helmholtz-Zentrum-Berlin fuer Materialien und Energie (HZB), Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below {+-} 0.3 %. The determined number-weighted mean diameters of (109.0 {+-} 0.7) nm and (188.0 {+-} 1.3) nm, respectively, are close to the nominal values.

  17. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Science.gov (United States)

    Gleber, G.; Cibik, L.; Haas, S.; Hoell, A.; Müller, P.; Krumrey, M.

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  18. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    International Nuclear Information System (INIS)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M; Haas, S; Hoell, A

    2010-01-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  19. A double area detector system for simultaneous small and wide-angle X-ray scattering

    CERN Document Server

    Pokric, B; Ryan, A J; Fairclough, P; Dobson, B R; Derbyshire, G E; Helsby, W; Long, G; Moon, K

    2002-01-01

    A novel area detector has been designed for material science SR studies, capable of simultaneously collecting the diffraction data in two angular regimes. The detector for collecting wide-angle X-ray scattering (WAXS) data consists of four taper-coupled CCDs arranged as a 2x2 mosaic with a central aperture about 40 mm in diameter, so permitting the inclusion of a distant on-axis CCD detector for small-angle X-ray scattering (SAXS). The distance of the SAXS detector from the sample can be varied over the range 0.27 m to about 2 m. The overall aperture of WAXS detector is approximately 200x200 mm sup 2 allowing the measurement of the diffraction patterns from 5 deg. to 45 deg. with an average angular resolution of 0.05 deg. The parallax error for large angles is substantially reduced as the individual WAXS CCDs are tilted towards the specimen location. Both WAXS and SAXS diffraction data are simultaneously collected at 30 MB/s data rate, which is equivalent to 6 complete frames per second. Each pixel value is d...

  20. Small-incision cataract extraction combined trabeculectomy for primary angle-closure glaucoma with cataract

    Directory of Open Access Journals (Sweden)

    Yu-Feng Wu

    2014-09-01

    Full Text Available AIM: To observe the curative effect of treating small-incision cataract extraction by intraocular lens implantation combined with trabeculectomy for primary angle-closure glaucoma with cataract. METHODS: Totally 44 cases(52 eyesof primary angle-closure glaucoma combined with cataract were selected to undergo the combined surgery, in order to observe the patients' pre- and postoperative eyesights, intraocular pressures and the postoperative complications.RESULTS: The postoperative eyesight was improved significantly as compared with the preoperative eyesight. The intraocular pressure was declined dramatically. The result was of statistical significance(P0.05. All the 52 cases' surgeries were performed by the same surgeon. The surgeries were processed smoothly, with 6 postoperative eyes of anterior chamber inflammation cell response, 3 eyes of anterior chamber fibrinoid exudate, 2 eyes of shallow anterior chamber through mydriasis and treatment with glucocorticoids and non-steroidal eyedrops before absorption, and no complications like malignant glaucoma, cyclodialysis, etc. were reported through mydriasis and pressure bandaging before recovery.CONCLUSION: Treating the primary angle-closure glaucoma combined with cataract through the combined surgery has high reliability and desirable curative effect. The surgical method is simple to learn and applicable for promotion on the basic level.

  1. A small angle neutron study of irradiation induced microstructures in Cr-Mo-V WWER steels

    International Nuclear Information System (INIS)

    Levit, Vladimir I.; Santos, Ari S.; Louzada, Ana R.R.; Silveira, Cristina M.; Vaniel, Ana Paula H.; Odette, George R.; Mader, Eric

    2000-01-01

    Small angle neutron scattering (SANS) has proven to be a very effective technique for characterizing the ultrafine (∼1 nm) irradiation induced microstructures which are responsible for hardening and the concomitant embrittlement of reactor pressure vessel steels. SANS measurement were carried out on three irradiated and unirradiated weld materials of WWER- type on 8 m instrument at the National Institute of Standards and Technology, Washington, USA. Small (r m < 1 nm) irradiation induced features were found for all three materials. Were found volume fractions, number densities and ratios of magnetic to nuclear scattering. Some analyses of the irradiation induced precipitation nature and possible chemical composition were made by comparison of the results with other reactor materials SANS and Atom Probe Field Ion Microscopy data. (author)

  2. Small angle neutron scattering study of martensitic/ferritic ODS alloys

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Zhong, S.Y.; Carlan, Y. de

    2012-01-01

    Small Angle Neutron Scattering (SANS) is a key tool in material study at the nanoscale. This method allows characterization, in a non-destructive way, of small particles (precipitates, cavities, etc.) ranging in size between 1 and 100 nm. This technique, giving statistical data representative of the whole sample, is particularly adapted to the study of steels. We will present an overview of the SANS possibilities applied to the ODS ferritic/martensitic steels. The main objective is to study the evolution of the oxide dispersion during the different stages of the fabrication, that is, after mechanical alloying, consolidation process (extrusion or HIP) and after thermal treatments. The treatments of SANS data obtained on different ODS Fe9–14%Cr alloys are detailed by discussing the strengths and limitations of the technique. Various Fe–Cr–W–Ti experimental alloys have been characterized.

  3. Small angle neutron scattering study of martensitic/ferritic ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: mhmathon@cea.fr [Laboratoire Leon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [DMSM, ONERA, 29 Avenue de la Division Leclerc, F-92322 Chatillon (France); Zhong, S.Y., E-mail: shengyi.zhong@cea.fr [Laboratoire Leon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [Nuclear Materials Department, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2012-09-15

    Small Angle Neutron Scattering (SANS) is a key tool in material study at the nanoscale. This method allows characterization, in a non-destructive way, of small particles (precipitates, cavities, etc.) ranging in size between 1 and 100 nm. This technique, giving statistical data representative of the whole sample, is particularly adapted to the study of steels. We will present an overview of the SANS possibilities applied to the ODS ferritic/martensitic steels. The main objective is to study the evolution of the oxide dispersion during the different stages of the fabrication, that is, after mechanical alloying, consolidation process (extrusion or HIP) and after thermal treatments. The treatments of SANS data obtained on different ODS Fe9-14%Cr alloys are detailed by discussing the strengths and limitations of the technique. Various Fe-Cr-W-Ti experimental alloys have been characterized.

  4. The aggregation behavior of zinc-free insulin studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Hansen, S.; Bauer, R.

    1994-01-01

    The aggregation behavior of zinc-free insulin has been studied by small-angle neutron scattering as a function of pH and ionic strength of the solution. The pair distance distribution functions for the 12 samples have been obtained by indirect Fourier transformation. The results show......-particle correlation effects, were obtained by an indirect Fourier transformation, omitting the data at small scattering vectors, which are influenced by these effects. By this procedure the weight-averaged molecular mass and the average radius of gyration were determined. These parameters vary from 1.3 times...... to an equilibrium model recently introduced by Kadima et al. (1993). The neutron scattering results agree well with the predictions of this model except that broader mass distributions are suggested by neutron scattering....

  5. Neutron small-angle scattering by dislocations in homogeneously oriented nematic liquid crystals

    International Nuclear Information System (INIS)

    Olivei, A.

    1976-01-01

    A complete examination of the shape of the neutron-scattering cross-section curves at very small scattering vectors, of the order of 0.05 to approximately 0.1 nm -1 , has been made for homogeneously oriented nematic liquid crystals. It is shown that the shape of the scattering curves at small angles is mainly determined by the kind of dislocation configuration exhibited by homogeneously oriented nematic liquid crystals. This study will furnish a partial guide to the construction of scattering relations for any kind of possible dislocation configuration in homogeneously oriented nematic liquid crystals, e.g. for stationary straight edge dislocations, moving edge dislocations, oscillating edge dislocations, curved dislocations and dislocation networks. (Auth.)

  6. Cholesterol solubility limit in lipid membranes probed by small angle neutron scattering and MD simulations.

    Science.gov (United States)

    Garg, Sumit; Castro-Roman, Francisco; Porcar, Lionel; Butler, Paul; Bautista, Pedro Jesus; Krzyzanowski, Natalie; Perez-Salas, Ursula

    2014-12-14

    The solubility limits of cholesterol in small unilamellar vesicles made of POPS and POPC were probed using Small Angle Neutron Scattering (SANS) and coarse grained (CG) molecular dynamics (MD) simulations. SANS, being non-invasive, allowed the direct and quantitative measurement of cholesterol in intact vesicles. Our experimental measurements reveal a 61% mole fraction solubility limit of cholesterol in POPC, consistent with previous studies. However, in POPS the solubility limit of cholesterol is found to be 73% mole fraction. Previous work reports solubility limits of cholesterol in POPS varying significantly, ranging from 36% up to 66%. The CG MD simulations are in remarkable quantitative agreement with our experimental results showing similar solubility limits. Further, neither experiments nor simulations show evidence of stable nanodomains of cholesterol in POPS membranes as suggested in some previous reports.

  7. Small-angle X-ray scattering on extracellular oxygen binding proteins and on one phosphorylase

    International Nuclear Information System (INIS)

    Krebs, A.

    1996-02-01

    The extracellular hemoglobins (Hbs) and Chlorocruorins (Chls) of annelids are giant multisubunit proteins of up to ∼ 200 polypeptide chains with molecular masses of about 3.500 kDa. They differ from all other Hbs in having both O 2 -binding chains and 'linker' chains. The latter are required for assembly and structural integrity of the proteins and are deficient in or lack heme. In this work the influence of O 2 binding on the overall structure of Lumbricus terrestris hemoglobin, Eudistylia vancouverii Chlorocruorin and Lumbricus terrestris hemoglobin dodecamer (assembly of 12 polypeptide chains) was investigated using the method of small-angle X-ray scattering. No dramatic effects were observed, although a tendency to smaller values of the radius of gyration, maximal intraparticle distance and volume upon deoxygenation of the samples was observed. Models of the three dimensional structures of the above mentioned proteins and of Macrobdella decora hemoglobin are proposed. Furthermore a detailed model of Lumbricus terrestris hemoglobin is proposed, wherein 12 models of the dodecamer subunit and additional linker chains build up the whole model, thus supporting the 'bracelet-model'. Small-angle X-ray scattering experiments of the α-glucan phosphorylase of Corynebacterium callunae led to a model of its quartenary structure with an axial ratio of about 1:0.95:0.41. (author)

  8. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Harizanova, Ruzha [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd, 1756 Sofia (Bulgaria); Tatchev, Dragomir [Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 11, 1113 Sofia (Bulgaria); Hoell, Armin [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Rüssel, Christian [Friedrich Schiller University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.

  9. Small-angle scattering from generalized self-similar Vicsek fractals

    International Nuclear Information System (INIS)

    Cherny, Alexander Yu; Anitas, Eugen M; Osipov, Vladimir A; Kuklin, Alexander I

    2012-01-01

    An analytical approach for calculating the small-angle X-ray or neutron scattering (SAXS/SANS) from generalized self-similar Vicsek fractals (GSSVF) is presented; each fractal consists of spherical subunits. The system considered is a mass-fractal, generated iteratively from a regular 3D Vicsek fractal structure. Its fractal dimension is controllable and increases with increasing the value of the scaling factor. Small-angle scattering (SAS) intensity is determined from a set of non-interacting, randomly oriented and uniformly distributed GSSVF fractals. It is shown that in the fractal region, the curve I(q)q D is approximately log-periodic with the period equal to the scaling factor of fractal; here D and I(q) are the fractal dimension and the SAS intensity, respectively. In particular, the positions of deepest minima and highest maxima are log-periodic, and their number coincides with the number of fractal iterations. The log-periodicity of the scattering curves is a consequence of the self-similarity of GSSVF.

  10. Small-angle neutron and dynamic light scattering study of gelatin coacervates

    International Nuclear Information System (INIS)

    Mohanty, B; Bohidar, H.B.; Aswal, V.K.; Goyal, P.S.

    2004-01-01

    The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of ∼50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of ∼400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates). Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, ξ = 10.6 A of the network and the other is the size of inhomogeneities = 21.4 A. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60 degC (ξ = 50 A, ζ = 113 A) and 5% (w/v) gel at 28 degC (ξ = 47 A, ζ = 115 A) in aqueous phase indicating smaller length scales in coacervate as compared to sol and gel. (author)

  11. Small angle-rotated detector emission tomography for measuring holdup in spherical container

    International Nuclear Information System (INIS)

    Deng Jingshan; Li Ze; Gan Lin; Lu Wenguang; Dong Mingli

    2007-01-01

    Some special nuclear material (SNM) is inevitably deposited in the facilities (mixer, reactor) of nuclear material process line. Exactly knowing the quantity of nuclear material holdup is very important for nuclear material accountability and critical safety. The small angle-rotated emission tomography method was presented for SNM holdup measurement of spherical container. Because of other equipments exist at the left, right and back side of the container, so that the detectors can be put only in front of container for measurement. The nuclear material deposited in the spherical container can be looked as spherical shell source, which is divided into many voxels. The detectors scanning spherical shell source are rotated around the container at small angle at each layer to obtain projection data, with which deposited material distribution can be reconstructed by using least square (LS) method or maximum likelihood (ML) method. Based on these methods accurate total holdup can be obtained by summing up all the voxel values reconstructed. The measurement method for holdup in the spherical container was verified with Monte-Carlo simulation calculation. (authors)

  12. 3 DOF Spherical Pendulum Oscillations with a Uniform Slewing Pivot Center and a Small Angle Assumption

    Directory of Open Access Journals (Sweden)

    Alexander V. Perig

    2014-01-01

    Full Text Available The present paper addresses the derivation of a 3 DOF mathematical model of a spherical pendulum attached to a crane boom tip for uniform slewing motion of the crane. The governing nonlinear DAE-based system for crane boom uniform slewing has been proposed, numerically solved, and experimentally verified. The proposed nonlinear and linearized models have been derived with an introduction of Cartesian coordinates. The linearized model with small angle assumption has an analytical solution. The relative and absolute payload trajectories have been derived. The amplitudes of load oscillations, which depend on computed initial conditions, have been estimated. The dependence of natural frequencies on the transport inertia forces and gravity forces has been computed. The conservative system, which contains first time derivatives of coordinates without oscillation damping, has been derived. The dynamic analogy between crane boom-driven payload swaying motion and Foucault’s pendulum motion has been grounded and outlined. For a small swaying angle, good agreement between theoretical and averaged experimental results was obtained.

  13. Design Principle of A Small Angle Neutron Scattering Spectrometer. Vol. 2

    International Nuclear Information System (INIS)

    Ashry, A.

    1996-01-01

    The design principle of a small angle neutron scattering (SANS) spectrometer is based on producing monochromatic neutron bursts using two phased rotors. The rotors have a number of slots to achieve the highly available intensity of monoenergetic neutrons at the required resolution. The design principle was applied to improve the performance of the pulsed monochromatic double rotor system at ET-RR-1 to operate as SANS spectrometer. It is shown that for rotors having 19 slots each with radius of curvature 96.8 cm, the intensity gain factor is 13. The proposed SANS spectrometer could cover the neutron wavelength range from 2 A ο up to 6 A ο through small angles of scattering from 5 x 10 -3 rad. to 0.1 rad. i.e, the scattering wavevector transfer between 0.6 A ο-1 and 0.01 A ο-1 . The maximum neutron flux density on the specimen is 5 x 10 5 n cm -2 s -1 . 8 figs

  14. Wavelength-independent constant period spin-echo modulated small angle neutron scattering.

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Habicht, Klaus; Tremsin, Anton; Bouwman, Wim; Strobl, Markus

    2016-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved by ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.

  15. Small-Angle Neutron Scattering for Structural Biology of Protein-RNA Complexes.

    Science.gov (United States)

    Gabel, Frank

    2015-01-01

    This chapter deals with the applications of small-angle neutron scattering (SANS) for the structural study of protein-RNA complexes in solution. After a brief historical introduction, the basic theory and practical requirements (e.g., sample state) for SANS experiments will be treated. Next, model-free parameters, such as the molecular mass and the radius of gyration, which can be obtained without a priori structural information, will be introduced. A more detailed section on the specific properties of SANS (with respect to its sister technique, small-angle X-ray scattering), and their implications on possibilities and limits of model building and interpretation will be discussed with a focus on protein-RNA systems. A practical illustration of the information content of SANS data will be given by applying ab initio modeling to a tRNA-synthetase system of known high-resolution structure. Finally, two present state-of-the-art examples that combine SANS data with complementary structural biology techniques (NMR and crystallography) will be presented and possible future developments and applications will be discussed. © 2015 Elsevier Inc. All rights reserved.

  16. Bilayer thickness in unilamellar phosphatidylcholine vesicles: small-angle neutron scattering using contrast variation

    International Nuclear Information System (INIS)

    Kucerka, N.; Uhrikova, D.; Teixeira, J.; Balgavy, P.

    2004-01-01

    The thickness of the lipid bilayer in extruded unilamellar vesicles prepared from synthetic 1,2-diacyl-sn-glycero-3-phosphorylcholines with monounsaturated acyl chains (diCn:1PC, n=14-22) was studied at 30 deg. C in the small-angle neutron scattering (SANS) experiment. Several contrasts of the neutron scattering length density between the aqueous phase and phospholipid bilayer of vesicles were used. The experimental data were evaluated using the small-angle form of the Kratky-Porod approximation ln[I(q)q 2 ] vs. q 2 of the SANS intensity I(q) in the appropriate range of scattering vector values q to obtain the bilayer radius of gyration R g and its extrapolated value at infinite scattering contrast R g inf . The bilayer thickness parameter evaluated from a linear approximation of dependence of gyration radius on the inverse contrast was then obtained without using any bilayer structure model. The dependence of the thickness parameter d g congruent with 12 0.5 R g inf on the number n of acyl chain carbons was found to be linear with a slope of 1.8±0.2 A per one acyl chain carbon. This slope can be used in bilayer-protein interaction studies

  17. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    International Nuclear Information System (INIS)

    Raghuwanshi, Vikram Singh; Harizanova, Ruzha; Tatchev, Dragomir; Hoell, Armin; Rüssel, Christian

    2015-01-01

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na 2 O–62.9SiO 2 –8.5MnO–15.0Fe 2 O 3−x (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO 2 . SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region

  18. A medium resolution double crystal based small-angle neutron scattering at Trombay

    International Nuclear Information System (INIS)

    Mazumder, S.; Sen, D.; Saravanan, T.; Vijayaraghavan, P.R.

    2000-10-01

    A double crystal based moderate resolution small-angle neutron scattering instrument has been built and commissioned at the guide tube laboratory of Dhruva reactor, Bhabha Atomic Research Centre, Trombay, India. The instrument consists of a non-dispersive (1, -1) setting of 111 reflections of silicon single crystals with sample between the two crystals. The used neutron wavelength is 0.312 nm. The analyser crystal rotates with smallest step size of 0.0012 deg. At 65 MW of reactor power, the peak count rate of the blank rocking curve is about 55 counts per second at the detector position and the signal to noise ratio is 450 for a typical experiment with sintered alumina. Experiments with sintered alumina specimens reveal that the accessible range of wave vector transfer q is 0.003-0.173 nm -1 . A typical measurement time is about three days. The instrument is calibrated with respect to new high resolution ultra small-angle neutron scattering instrument S18 at the Institute Laue-Langevin in Grenhole, France. (author)

  19. A medium resolution double crystal based small-angle neutron scattering instrument at Trombay

    International Nuclear Information System (INIS)

    Mazumder, S.; Sen, D.; Saravanan, T.; Vijayaraghavan, P.R.

    2001-01-01

    A double crystal-based moderate resolution small-angle neutron scattering instrument has been built and commissioned at the guide laboratory of Dhruva reactor, Bhabha Atomic Research Centre, Trombay, India. The instrument consists of a non-dispersive (1,-1) setting of 111 reflections of silicon single crystals with the sample between the two crystals. The neutron wavelength used is 0.312 nm. At 65 MW of reactor power, the peak count rate of the blank rocking curve is about 55 counts per second at the detector position and the ratio of integrated signal to integrated noise is ∼450 for a typical experiment with sintered aluminia. The accessible range of wave vector transfer q is found to be 0.003-0.173 nm -1 , which corresponds to a range of resolvable real-space dimension of 2000-40 nm, for these specimens. The instrument is calibrated with respect to the high resolution ultra small-angle neutron scattering instrument S18 at the Institute Laue-Langevin in Grenoble, France. (author)

  20. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.

    Science.gov (United States)

    Mao, Yimin; Liu, Kai; Zhan, Chengbo; Geng, Lihong; Chu, Benjamin; Hsiao, Benjamin S

    2017-02-16

    Nanocellulose extracted from wood pulps using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and sulfuric acid hydrolysis methods was characterized by small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) techniques. The dimensions of this nanocellulose (TEMPO-oxidized cellulose nanofiber (TOCN) and sulfuric acid hydrolyzed cellulose nanocrystal (SACN)) revealed by the different scattering methods were compared with those characterized by transmission electron microscopy (TEM). The SANS and SAXS data were analyzed using a parallelepiped-based form factor. The width and thickness of the nanocellulose cross section were ∼8 and ∼2 nm for TOCN and ∼20 and ∼3 nm for SACN, respectively, where the fitting results from SANS and SAXS profiles were consistent with each other. DLS was carried out under both the V V mode with the polarizer and analyzer parallel to each other and the H V mode having them perpendicular to each other. Using rotational and translational diffusion coefficients obtained under the H V mode yielded a nanocellulose length qualitatively consistent with that observed by TEM, whereas the length derived by the translational diffusion coefficient under the V V mode appeared to be overestimated.

  1. A gradient method for anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jemian, P.R. [Argonne National Lab., IL (United States); Weertman, J.R. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Long, G.G. [National Institute of Standards and Technology, Gaithersburg, MD (United States). Ceramics Div.

    1992-09-15

    A new method of general applicability for analyzing data from anomalous dispersion small-angle X-ray scattering (ASAXS) measurements is described. ASAXS is used as a contrast variation method to label the scattering from a single element in a complex material containing several types of scatterers. The contrast variation is achieved through the anomalous dispersion of X-rays. Thus only one sample is required for a complete analysis. To label a scatterer by ASAXS, the atomic scattering factor of an element in the sample is varied by the selection of photon energies near the absorption edge of the element. Careful selection of the photon energies allows the contrast of only the labeled scatterer to change. Data from several small-angle scattering measurements, each conducted at a fixed energy, are combined in a single analysis. The gradient method, used as an extension to a standard SAXS data analysis method, is demonstrated by isolating the volume fraction size distribution of Cr{sub 23}C{sub 6} in 9Cr-1 MoVNb steel.

  2. In situ small angle x-ray studies of coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K F

    1983-01-01

    This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

  3. Insights into molecular architecture of terpenes using small angle neutron scattering

    Science.gov (United States)

    Rai, Durgesh K.; Annamraju, Aparna; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Mewalal, Ritesh; Gunter, Lee E.; Tuskan, Gerald A.

    Understanding macromolecular architectures is vital to engineering prospective terpene candidates for advanced biofuels. Eucalyptus plants store terpenes in specialized cavity-like structures in the leaves called oil glands, which comprises of volatile (VTs) and non-volatile (NVTs) terpenes. Using small-angle neutron scattering, we have investigated the structure and phase behavior of the supramolecular assembly formed by Geranyl beta-D-glucoside (GDG), a NVT and compare the results with that of beta-octyl glucoside (BOG). The formation of micellar structures was observed in the concentration range of 0.5-5 v/v% in water using small angle neutron scattering (SANS) where Schultz sphere model was used in quantifying structural parameters of micelles. SANS studies determine that GDG and BOG behave like amphiphiles forming micellar structures in aqueous solution. The micelles swell upon addition of alpha-Pinene (AP) indicating partition to the core region of the micelles. The general behavior of the micellar growth after partitioning of AP to form thermodynamically stable sizes varies with the NVT concentration. Our studies reveal that the presence of steric hindrance in the GDG via the unsaturated bonds could help stabilize VTs inside the oil glands. LDRD project LOIS ID 7428, SNS, CSMB, HFIR, ORNL, DOE Office of Science User Facilities.

  4. Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins.

    Science.gov (United States)

    Scott, David J

    2016-12-01

    Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments.

  5. Membrane Structure Studies by Means of Small-Angle Neutron Scattering (SANS)

    International Nuclear Information System (INIS)

    Knott, R. B.

    2008-01-01

    summary of membrane structure will be followed by an outline of the neutron scattering techniques used to understand membrane structure and dynamics. The emphasis will be on the small angle neutron scattering technique since there is a very powerful instrument at Serpong, however brief mention of other techniques will be included to demonstrate how a multidisciplinary approach is usually required

  6. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments.

    Science.gov (United States)

    Jeffries, Cy M; Graewert, Melissa A; Blanchet, Clément E; Langley, David B; Whitten, Andrew E; Svergun, Dmitri I

    2016-11-01

    Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.

  7. Light-Induced Structural Flexibility of Thylakoid Membranes - Investigated using Small-Angle X-ray and Neutron Scattering

    OpenAIRE

    Aagaard, Thomas Helverskov

    2005-01-01

    Using small-angle x-ray and neutron scattering the light-induced structural changes in pea thylakoids have been investigated. It is shown that light-induced shinkage in the thylakoids is connected to photosynthetic electron transduction. Using small-angle x-ray and neutron scattering the light-induced structural changes in pea thylakoids have been investigated. It is shown that light-induced shinkage in the thylakoids is connected to photosynthetic electron transduction.

  8. Small-Angle Neutron Scattering investigations of ferrofluids with different carrier liquids

    International Nuclear Information System (INIS)

    Balasoiu, M.; Avdeev, M. V.; Hasegan, D.; Ghenescu, V.; Ghenescu, M.; Bica, D.; Vekas, L.

    2004-01-01

    The aim of this paper is to present a method to investigate the properties of magnetic fluids by means of small angle neutron scattering (SANS). Ferrofluids are dispersions of small, single-domain magnetic particles suspended in a fluid carrier. The neutron scattering methods have been largely used the last two decades for the determination of structural properties of magnetic liquids at microscopic level. There can be investigated the structure of the particle, the aggregation phenomena, the magnetic liquid dynamics, particle-surfactant interaction, surfactant liquid-base interaction and structure and magnetic behavior of the samples. SANS is often used in structural studies of ferrofluids exploring two specific features of neutrons, the possibility of wide contrast variation using protonated/deuterated components and high magnetic scattering from ferromagnetics. This method can be effectively used for determination of the structural parameters of ferrofluids at the scale interval of 1-100 nm. In previous SANS experiments with ferrofluids of the same type it was shown that the nuclear scattering is described well by the spherical core-shell model (magnetite core plus surfactant shell) in a wide interval of momentum transfer (0.05 - 5 nm -1 ) and no significant effects of aggregation and interparticle interaction were observed in this interval for the magnetite concentration up to 5 vol. %. Experiments on small angle neutron scattering were carried out on SANS instrument YuMO in function at IBR-2 high pulsed reactor at the Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, Dubna, Russia. (authors)

  9. Probing the conformation of FhaC with small-angle neutron scattering and molecular modeling.

    Science.gov (United States)

    Gabel, Frank; Lensink, Marc F; Clantin, Bernard; Jacob-Dubuisson, Françoise; Villeret, Vincent; Ebel, Christine

    2014-07-01

    Probing the solution structure of membrane proteins represents a formidable challenge, particularly when using small-angle scattering. Detergent molecules often present residual scattering contributions even at their match point in small-angle neutron scattering (SANS) measurements. Here, we studied the conformation of FhaC, the outer-membrane, β-barrel transporter of the Bordetella pertussis filamentous hemagglutinin adhesin. SANS measurements were performed on homogeneous solutions of FhaC solubilized in n-octyl-d17-βD-glucoside and on a variant devoid of the α helix H1, which critically obstructs the FhaC pore, in two solvent conditions corresponding to the match points of the protein and the detergent, respectively. Protein-bound detergent amounted to 142 ± 10 mol/mol as determined by analytical ultracentrifugation. By using molecular modeling and starting from three distinct conformations of FhaC and its variant embedded in lipid bilayers, we generated ensembles of protein-detergent arrangement models with 120-160 detergent molecules. The scattered curves were back-calculated for each model and compared with experimental data. Good fits were obtained for relatively compact, connected detergent belts, which occasionally displayed small detergent-free patches on the outer surface of the β barrel. The combination of SANS and modeling clearly enabled us to infer the solution structure of FhaC, with H1 inside the pore as in the crystal structure. We believe that our strategy of combining explicit atomic detergent modeling with SANS measurements has significant potential for structural studies of other detergent-solubilized membrane proteins. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites

    International Nuclear Information System (INIS)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine; Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot

    2010-01-01

    Geological carbon sequestration relies on the principle that CO 2 injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO 2 sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to ∼40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network

  11. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    Energy Technology Data Exchange (ETDEWEB)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-11-01

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of

  12. Characterization of anisotropic poly(vinyl alcohol) hydrogel by small- and ultra-small-angle neutron scattering.

    Science.gov (United States)

    Hudson, Stephen D; Hutter, Jeffrey L; Nieh, Mu-Ping; Pencer, Jeremy; Millon, Leonardo E; Wan, Wankei

    2009-01-21

    Poly(vinyl alcohol) (PVA) hydrogels are formed from PVA solution when physical cross-links form during freeze/thaw cycling. By applying a stress during the freeze/thaw process, PVA hydrogels with anisotropic mechanical properties are produced. We have used small- and ultra-small-angle neutron scattering to study the structure at length scales of 2 nm to 10 mum. By supplementing the neutron data with data from atomic force microscopy, we have probed a large range of length scales within which structural changes responsible for bulk anisotropy occur. We model the gel as interconnected PVA blobs of size 20-50 nm arranged in fractal aggregates extending to micrometers or tens of micrometers. Bulk mechanical anisotropy appears to be due to the alignment of blobs and connections between blobs. This information is essential for tailoring mechanical properties for applications where anisotropy is desirable such as to match the properties of natural tissue in coronary grafts and to control diffusive properties in active wound dressings.

  13. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong

    2015-01-01

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO 4 . For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases

  14. Characterization of Nano Sized Microstructures in Fe and Ni Base ODS Alloys Using Small Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Soo; Jang, Jin-Sung; Mao, Xiaodong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Ferritic ODS(Oxide-dispersion-strengthened) alloy is known as a primary candidate material of the cladding tubes of a sodium fast reactor (SFR) in the Generation IV research program. In ODS alloy, the major contribution to the enhanced high-temperature mechanical property comes from the existence of nano-sized oxide precipitates, which act as obstacles to the movement of dislocations. In addition for the extremely high temperature application(>950 .deg. C) of future nuclear system, Ni base ODS alloys are considered as candidate materials. Therefore the characterization of nano-sized microstructures is important for determining the mechanical properties of the material. Small angle neutron scattering (SANS) technique non-destructively probes structures in materials at the nano-meter length of scale (1 - 1000 nm) and has been a very powerful tool in a variety of scientific/engineering research areas. In this study, nano-sized microstructures were quantitatively analyzed by small angle neutron scattering. Quantitative microstructural information on nanosized oxide in ODS alloys was obtained from SANS data. The effects of the thermo mechanical treatment on the size and volume fraction of nano-sized oxides were analyzed. For 12Cr ODS alloy, the experimental A-ratio is two-times larger than the theoretical A-ratio., and this result is considered to be due to the imperfections included in YTaO{sub 4}. For Ni base ODS alloy, the volume fraction of the mid-sized particles (- 30 nm) increases rapidly as hot extrusion temperature decreases.

  15. Small-angle X-ray scattering (SAXS) for metrological size determination of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, Gudrun; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie; Mueller, Peter [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Hoell, Armin [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2011-07-01

    To measure the size of nanoparticles, different measurement methods are available but their results are often not compatible. In the framework of an European metrology project we use Small-Angle X-ray Scattering (SAXS) to determine the size and size distribution of nanoparticles in aqueous solution, where the special challange is the traceability of the results. The experiments were performed at the Four-Crystal Monochromator (FCM) beamline in the laboratory of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II using the SAXS setup of the Helmholtz-Zentrum Berlin (HZB). We measured different particles made of PMMA and gold in a diameter range of 200 nm down to about 10 nm. The aspects of traceability can be classified in two parts: the first is the experimental part with the uncertainties of distances, angles, and wavelength, the second is the part of analysis, with the uncertainty of the choice of the model used for fitting the data. In this talk we want to show the degree of uncertainty, which we reached in this work yet.

  16. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering.

    Science.gov (United States)

    Wilson, Kristen S; Allen, Andrew J; Washburn, Newell R; Antonucci, Joseph M

    2007-04-01

    Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding, and n-octyltrimethoxysilane (OTMS), a silane that interacts through weak dispersion forces. Interphases with high OTMS mass fractions were found to be fractally rough with fractal dimensions, D(s), between 2.19 and 2.49. This roughness was associated with poor interfacial adhesion and inferior mechanical properties. Mean interparticle distances calculated for composites containing 10 mass % and 25 mass % silica suggest that the nanoparticles treated with more MPTMS than OTMS may be better dispersed than OTMS-rich nanoparticles. The results indicate that the covalent bonding and H-bonding of MPTMS-rich nanoparticles with the matrix are necessary for preparing well-dispersed nanocomposites. In addition, interphases containing equal masses of MPTMS and OTMS may yield composites with overall optimal properties. Finally, the combined SANS/USANS data could distinguish the differences, as a function of silane chemistry, in the nanoparticle/silane and silane/matrix interfaces that affect the overall mechanical properties of the composites. (c) 2006 Wiley Periodicals, Inc.

  17. On the small angle twist sub-grain boundaries in Ti3AlC2

    Science.gov (United States)

    Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun

    2016-04-01

    Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al-Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.

  18. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Carli, Larissa N., E-mail: lncarli@ucs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil); Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Bianchi, Otavio, E-mail: obianchi@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Machado, Giovanna, E-mail: giovannamachado@uol.com.br [Centro de Tecnologias Estrategicas do Nordeste, Av. Prof. Luiz Freire, 01, Cidade Universitaria, Recife, 50740-540, PE (Brazil); Programa de Pos-Graduacao de Materiais, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, PE (Brazil); Crespo, Janaina S., E-mail: jscrespo@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Mauler, Raquel S., E-mail: raquel.mauler@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil)

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite Registered-Sign 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor ({beta}) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. Highlights: Black-Right-Pointing-Pointer SAXS was used for morphological and crystalline studies of PHBV/OMMT nanocomposites. Black-Right-Pointing-Pointer The crystalline structure was influenced by the presence of clay. Black-Right-Pointing-Pointer The degree of clay dispersion in a polymer matrix was quantified. Black-Right-Pointing-Pointer The morphology comprised exfoliated particles, nanoscale and microscale clusters. Black-Right-Pointing-Pointer The results obtained by SAXS agreed well with TEM and WAXD results.

  19. Magnetization processes in nanostructured metals and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Loeffler, J.F.; Braun, H.B.; Wagner, W.; Kostorz, G.; Wiedenmann, A.

    2005-01-01

    The magnetization process in nanostructured (n-) Fe and Co was investigated via small-angle neutron scattering (SANS). In a zero field, the magnetization exhibits correlations extending over several grains. In intermediate applied magnetic fields around 1 kOe, n-Fe and n-Co samples with small grain sizes exhibit an anisotropic scattering profile with an unusual intensity enhancement for scattering vectors parallel to the field direction. Comparing the experimental data with a modeled granular microstructure containing magnetic domains of arbitrary size and orientation, we conclude that magnetic domains extending over several grains are tilted considerably out of the external field direction in intermediate fields. Since the domain size does not change significantly with the magnitude of the external field, we conclude that the magnetization process does not proceed via domain-wall motion. Together with theoretical arguments showing the existence of marginally stable domains within the random-anisotropy model, our SANS data suggests that the magnetization process proceeds by simultaneous reversal of a few adjacent domains, presumably in the form of small avalanches. This resembles the magnetization process predicted for random-field Ising magnets. Our theoretical analysis of SANS data is general and applies to other systems consisting of magnetic nanoclusters embedded in a nonmagnetic matrix

  20. Magnetization processes in nanostructured metals and small-angle neutron scattering

    Science.gov (United States)

    Löffler, J. F.; Braun, H. B.; Wagner, W.; Kostorz, G.; Wiedenmann, A.

    2005-04-01

    The magnetization process in nanostructured (n-) Fe and Co was investigated via small-angle neutron scattering (SANS). In a zero field, the magnetization exhibits correlations extending over several grains. In intermediate applied magnetic fields around 1kOe , n-Fe and n-Co samples with small grain sizes exhibit an anisotropic scattering profile with an unusual intensity enhancement for scattering vectors parallel to the field direction. Comparing the experimental data with a modeled granular microstructure containing magnetic domains of arbitrary size and orientation, we conclude that magnetic domains extending over several grains are tilted considerably out of the external field direction in intermediate fields. Since the domain size does not change significantly with the magnitude of the external field, we conclude that the magnetization process does not proceed via domain-wall motion. Together with theoretical arguments showing the existence of marginally stable domains within the random-anisotropy model, our SANS data suggests that the magnetization process proceeds by simultaneous reversal of a few adjacent domains, presumably in the form of small avalanches. This resembles the magnetization process predicted for random-field Ising magnets. Our theoretical analysis of SANS data is general and applies to other systems consisting of magnetic nanoclusters embedded in a nonmagnetic matrix.

  1. Anomalous small-angle x-ray scattering of a femtosecond irradiated germano silicate fibre preform.

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, F.; Fertein, E.; Seifert, S.; Przygodski, C.S.; Bocquet, R.; Douay, M.; Bychkov, E.; Experimental Facilities Division (APS); LPCA, CNRS; PhLAM; Univ. des Sciences et Tech. de Lille

    2005-01-01

    RADIATION is shown to induce significant mesoscopic structure. The scattering intensity for irradiated glasses is close to two orders of magnitude greater than that of unexposed material. Anomalous small-angle X-ray scattering (ASAXS) around the germanium K-edge for the silica and germanium doped silica regions of a fiber preform is used to demonstrate that identical structures are induced in both glass materials, with germanium displaying a capacity to isomorphically replace silicon in the case of the germanium doped silica. Analysis of measured scattering indicates that photo-inscribed features are produced at two distinct scales with typical radii of R {approx} 20 Angstroms and R{sub min} {approx} 200 Angstroms.

  2. Small-angle neutron scattering in a high-temperature furnace

    International Nuclear Information System (INIS)

    Long, G.G.; Krueger, S.; Allen, A.J.; Burdette, H.; Kerch, H.M.

    1995-01-01

    Small-angle neutron scattering (SANS) is increasingly used to obtain statistically-representative data on particle or pore sizes, number and volume fractions, morphology and total surface areas in technological materials. Until recently, however, it had not been possible to perform in-situ microstructural investigations during thermal treatment. This paper reports on a new high-temperature (up to 1,700 C) SANS furnace for materials research. Two interchangeable inner furnaces were built for a single outer atmosphere chamber so that either an oxidizing, a reducing, or a neutral environment can be used. Results derived during sintering of a controlled-porosity silica gel will be presented. The new furnace has made it possible for the first time to measure total porous surface areas and the evolution of pore sizes in situ during densification without interruption. Such measurements are expected to lead to improved process models offering quantitative predictability of product microstructures from the processing history of real materials

  3. Structural characterization of chaos game fractals using small-angle scattering analysis.

    Science.gov (United States)

    Anitas, Eugen Mircea; Slyamov, Azat

    2017-01-01

    Small-angle scattering (SAS) technique is applied to study the nano and microstructural properties of spatial patterns generated from chaos game representation (CGR). Using a simplified version of Debye formula, we calculate and analyze in momentum space, the monodisperse scattering structure factor from a system of randomly oriented and non-interacting 2D Sierpinski gaskets (SG). We show that within CGR approach, the main geometrical and fractal properties, such as the overall size, scaling factor, minimal distance between scattering units, fractal dimension and the number of units composing the SG, can be recovered. We confirm the numerical results, by developing a theoretical model which describes analytically the structure factor of SG. We apply our findings to scattering from single scale mass fractals, and respectively to a multiscale fractal representing DNA sequences, and for which an analytic description of the structure factor is not known a priori.

  4. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Castanon, J.; Bomboi, F. [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); Rovigatti, L. [Rudolf Peierls C.T.P., University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Zanatta, M. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy); Paciaroni, A. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Comez, L. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); IOM-CNR, UOS Perugia c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Porcar, L. [Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9 (France); Jafta, C. J. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fadda, G. C. [Laboratoire Léon Brillouin, LLB, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Bellini, T. [Department of Medical Biotechnology and Translational Medicine, Università di Milano, I-20133 Milano (Italy); Sciortino, F., E-mail: francesco.sciortino@uniroma1.it [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy)

    2016-08-28

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  5. Kookaburra - the ultra-small-angle neutron scattering instrument at OPAL

    International Nuclear Information System (INIS)

    Rehm, Christine

    2009-01-01

    Full text: An ultra-small-angle neutron scattering (USANS) instrument is to be built at ANSTO's new research reactor OPAL. This instrument will extend the range of experimentally measurable length scales currently accessible through the already existing SANS instrument Quokka by two orders of magnitude into the micrometre regime. Therefore, the combined USANS/SANS utilisation at ANSTO will allow the characterisation of microstructure over 4 orders of magnitude in size (1 nm to 10μm). Kookaburra is to be installed at the cold-neutron guide CG 3 , and will use the classical Bonse-Hart method. The instrument shall individually operate at two different wavelengths to optimally accommodate weakly and strongly scattering samples at one sample position. This contribution will discuss the layout and conceptual design of Kookaburra, and its expected performance is compared to that of the reactor-based USANS instrument BT-5 at NIST.

  6. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  7. Polarized small-angle neutron scattering (SANSPOL) for discrimination of nano sized components in ferro fluids

    International Nuclear Information System (INIS)

    Heinemann, A.; Wiedenmann, A.; Kammel, M.; Hoell, A.

    2003-01-01

    The use of polarized neutron technique in small-angle scattering (SANS) have led to new results in the case of magnetic nanometer-scale structure analysis. Different magnetic cross sections for spin-up and spin-down neutron scattering can be combined with chemical contrast variation methods. We show that the analysis of the interference term of nuclear and magnetic scattering respectively enables the extraction of additional information on the composition and magnetization profiles of the samples. This technique profits by the clear distinction between the magnetic and nonmagnetic scattering contributions and the strong auxiliary conditions for model fitting procedures. Beside general formulas for some special cases of present experimental interest, we apply the approach to cobalt bases ferro fluid scattering data obtained in the HMI-V4 experiment. (authors)

  8. Size analysis of nanometer titanium carbide in steel by using small-angle neutron scattering

    International Nuclear Information System (INIS)

    Yasuhara, Hisao; Sato, Kaoru; Toji, Yuki; Ohnuma, Masato; Suzuki, Jun-ichi; Tomota, Yo

    2010-01-01

    Utilization of nanometer size precipitates in steel is a promising technology for the developing high tensile strength steels, and it is important to analyze the size of the precipitates. Electron microscopy is a powerful method in directly determining the precipitates size, but the area observed is limited and statistical procedure is tedious. Therefore, size analysis of precipitates in steel was conducted by using small-angle neutron scattering method (SANS). Sample (0.045%C-1.8%Mn-0.2%Ti-0.004%N) with different heat treatment was used for the experiments. Size of nanometer size TiC calculated by SANS profiles agreed with that obtained by direct observation of precipitates by transmission electron microscope (TEM). We have succeeded in macroscopic and non-destructive determination of the size of nanometer-sized TiC. (author)

  9. A Small Angle Neutron Scattering Study of Cylindrical nanoparticle with Controlled Surface Charge Density

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.

    2007-01-01

    Surfactant molecules in aqueous solution self assemble into various micellar structures such as sphere, rod, vesicle, and lamellar, above critical micelle concentration (CMC). Self-assembled surfactants systems, therefore, have been very popular as templates for preparing various nanostructured materials. Due to their dynamic nature, however, micellar structures are very susceptible to solution conditions such as temperature, concentration, pH and pressure, limiting their applications. In this study, we have developed rigid rod-like nanoparticles with controlled surface charge density by the free radical polymerization of cationic surfactants with polymerizable counterions, cetyltrimethylammonium 4- vinylbenzoate (CTVB), with varying concentration of sodium styrenesulfonate (NaSS). The structure and surface charge density of the nanoparticles were characterized by small angle neutron scattering (SANS) and zeta potential measurements

  10. System of primary collimators of SR beam at the small-angle station for KSRS

    CERN Document Server

    Ariskin, N I; Korneev, V N; Sergienko, P M; Shishkov, V I; Sheromov, M A; Stankevich, V G; Vazina, A A

    2001-01-01

    The wide program of development of methods and experimental techniques for usage at the Kurchatov Synchrotron Radiation Source (KSRS) is implemented by us. The report illustrates a part of this program directed at creating the small-angle station DICSI-6 on the beam line 'Siberia-2'. It is intended for X-ray diffraction research of structures and structural changes of a wide range of objects in various areas of science and technology--molecular and cell biology, organic chemistry, solid-state physics, etc. Some technical information about the elaborated system of devices for station DICSI-6 intended for forming an X-ray synchrotron beam and method for adjustment of the system are considered.

  11. System of primary collimators of SR beam at the small-angle station for KSRS

    Science.gov (United States)

    Ariskin, N. I.; Gerasimov, V. S.; Korneev, V. N.; Sergienko, P. M.; Shishkov, V. I.; Sheromov, M. A.; Stankevich, V. G.; Vazina, A. A.

    2001-09-01

    The wide program of development of methods and experimental techniques for usage at the Kurchatov Synchrotron Radiation Source (KSRS) is implemented by us. The report illustrates a part of this program directed at creating the small-angle station DICSI-6 on the beam line "Siberia-2". It is intended for X-ray diffraction research of structures and structural changes of a wide range of objects in various areas of science and technology—molecular and cell biology, organic chemistry, solid-state physics, etc. Some technical information about the elaborated system of devices for station DICSI-6 intended for forming an X-ray synchrotron beam and method for adjustment of the system are considered.

  12. Polymer boosting effect in the droplet phase studied by small-angle neutron scattering

    CERN Document Server

    Frielinghaus, H; Allgaier, J; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    Small-angle neutron-scattering experiments were performed in order to obtain the six partial scattering functions of a droplet microemulsion containing water, decane, C sub 1 sub 0 E sub 4 surfactant and PEP sub 5 -PEO sub 8 sub 0. We systematically varied the contrast around the polymer contrast, where only the polymer becomes visible, and we also measured bulk and film contrasts. With the singular value decomposition method we could extract the desired six partial scattering functions from the 15 measured spectra. We find a sphere-shell-shell structure of the droplets, where the innermost sphere consists of oil, the middle shell of surfactant and the outer shell is a depletion zone where the polymer is almost not present. (orig.)

  13. Kappa-casein micelles: structure, interaction and gelling studied by small-angle neutron scattering.

    Science.gov (United States)

    de Kruif, C G; May, R P

    1991-09-01

    Small-angle neutron scattering (SANS) measurements on dilute and concentrated dispersions of kappa-casein micelles in a buffer at pH = 6.7 were made using the D11 diffractometer in Grenoble. Results indicate that the micelles have a dense core with a fluffy outer layer. This outer layer appears to give rise to a steeply repulsive interaction on contact. In fact, the hard-sphere model best fits the measured scattering intensities. Adding chymosin to the dispersion initiated a fractal flocculation of the micelles and consecutively a coalescence of the micelles. This unexpected second process resembled that of spinodal demixing. The dispersion phase thus separates into a water and a protein phase on a time scale of hours. The observed phenomona contribute to the understanding of the cheese-making process.

  14. Small-angle neutron scattering investigation of Pt-loaded electrodes for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Coppola, R.; Giorgi, L.; Lapp, A.

    1999-01-01

    Complete text of publication follows. Pt-loaded carbon catalysts are being developed for polymer electrolyte fuel cell technology. They are prepared by depositing, with different techniques, an electrocatalytic layer containing dispersed Pt clusters on a composite carbon substrate. The performance and the lifetime of these catalysts are strongly correlated to the deposition technique, to the Pt content and to the size distribution function of the Pt clusters. Small-angle neutron scattering (SANS) measurements have been carried out on catalysts with relatively high Pt deposited content (.5 mg cm -2 ). A Pt-free C-paper support (identical to the one used for the platinized samples) has been used as a reference to obtain the SANS signal arising from the Pt clusters. Their size distribution function has been determined and compared with the results of transmission electron microscopy (TEM) observations. (author)

  15. A small-angle neutron scattering investigation of coke deposits on catalysts

    International Nuclear Information System (INIS)

    Acharya, D.R.; Hughes, R.; Allen, A.J.

    1990-01-01

    Small-angle neutron scattering (SANS) has been used to characterize a silica-alumina catalyst before and after coke deposition. The reaction used to deactivate the catalyst was the isomerization of xylenes. The results showed that, while most of the surface area in this type of catalyst resides in the ultrafine pores of diameters less than 1 nm occupying about 7% of the sample volume, there appears to be no coke deposition in these pores. The coke seems to coat the solid structures of 3.3-nm diameter which are of capillary shape. Such structures occupy about 6% of the sample volume. The coke was found to correspond to amonolayer of composition CH 0.3 with a density of 1660 kg/m 3

  16. Beyond the small-angle approximation for MBR anisotropy from seeds

    International Nuclear Information System (INIS)

    Stebbins, A.; Veeraraghavan, S.

    1995-01-01

    In this paper we give a general expression for the energy shift of massless particles traveling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is not assumed that matter is nonrelativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the observer's velocity) depends only on the matter distribution on the observer's past light cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of an object such as a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot

  17. Small angle neutron scattering and Moessbauer effect in nitrogen-bearing austenite

    International Nuclear Information System (INIS)

    Nadutov, V.M.; Garamus, V.M.; Islamov, A.Kh.

    2002-01-01

    The phase composition and changes in the close atomic order under the effect of the low-temperature annealing of the Fe-Cr-Mn-N steel are studied with application of the neutron diffraction and the Moessbauer spectroscopy method. The small angle neutron scattering (SANS) in the high-nitrogen Fe-19% Cr-19% Mn-0.9 N and Fe-18% Cr-10% Mn-16% Ni-0.5% N austenite is studied. The measurements and analysis of the neutron diffraction and the Moessbauer spectra are carried out. The character of the SANS in the nitrogen-bearing austenite is related to the existence of the micrononuniformities, the structure whereof depends on the nickel alloying. The average size and form of the nonuniformities are evaluated [ru

  18. Small angle neutron scattering study on star di-block copolymers

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2006-01-01

    Determining structural properties, phase transitions and stability of polymer mixtures is very important to produce new materials with desired and interesting properties. Small Angle Neutron Scattering Technique (SANS) has been one of the most powerful and intensely used methods for the characterization of polymers for last decades, m this study, we use a model based on Gaussian Random Phase Approximation (RPA) to describe Star Di-block Copolymers (SDC) mixtures with homo-polymers. We could able to predict the miscibility and phase transitions of the various mixtures along with their structure factors, producing a thermodynamic picture of the system. Also the results suggest that scattering intensity will be dictated by the structure factor of the core or shell parts of star polymer only, which depends on the homo-polymer type of the mixture

  19. Small angle neutron scattering study of the initial stage of lysozyme crystallization process

    International Nuclear Information System (INIS)

    Minezaki, Yoshiaki; Tanaka, Ichiro; Niimura, Nobuo; Ataka, Mituo; Katsura, Tatsuo.

    1993-01-01

    Despite the enormous amount of information obtained from atomic resolution crystal data, the difficulties encountered in growing crystals preclude structural X-ray studies for the majority of known isolated proteins. The protein crystal growth process can be studied by electron microscopy and by light scattering, and recently Ataka and Asai have discussed the kinetics on lysozyme crystal growth. We have conducted small angle neutron scattering (SANS) experiments on the time evolution from the initial stages to the visible size of crystallization of hen egg-white lysozyme. SANS from several kinds of solutions have been carried out. The SANS result showed the distinctive change of time evolution. We have also conducted the experiments under various unsaturated conditions using SANS. From these experiments, we found that even under unsaturated conditions, aggregation of lysozyme was found to be started, against the result of light-scattering experiments. (author)

  20. Composite material characterisation using an advanced small angle x-ray (SAXS) technique

    Science.gov (United States)

    Yazid, Hafizal; Murshidi, Julie A.; Jamro, Rafhayudi; Megat Harun, M. A.; Aziz Mohamed, Abdul

    2018-01-01

    Materials development in the field of composite material spurs the use of advanced characterization technique. As the fillers become in the nanoscale range in size, the effect of agglomeration become apparent and cannot be avoided. The use of Small Angle X-Ray (SAXS) Scattering technique revealed the information on agglomeration based on the value of specific surface (m2/g). Thermoplastic natural rubber composite was found isotropic based on 2D saxs scattering pattern. As the amount of fillers increased from 2-10% wt., the value of specific surface dropped accordingly. This indicated the higher the amount of filler used, the higher the degree of agglomeration. The SAXS system was also tested by Alumina (BAM) powder and yield result which was in good agreement with BET technique.

  1. The small-angle X-ray scattering beamline of the Brazilian Synchrotron Light Laboratory

    International Nuclear Information System (INIS)

    Kellermann, G.; Vicentin, F.; Tamura, E.; Rocha, M.; Tolentino, H.; Craievich, A.; Barbosa, A.; Torriani, I.

    1997-01-01

    This paper describes the small-angle scattering beamline built at the Brazilian synchrotron light laboratory (LNLS). Vertical focusing of the synchrotron beam is achieved by an elastically bent gold-plated cylindrical mirror. An asymmetric cut curved triangle-shaped silicon single crystal (111 reflection) is used for monochromatization and horizontal focusing. The mirror, monochromator optics and 2θ arm were designed to cover the spectral range between 1.0 and 2.0 A. Three slit sets, a secondary photon shutter, two beam monitors, filters and absorbers, a multi-sample holder, a vacuum path, a beam-stopper and a set of detectors are the basic components of the workstation. The stepping motors are equipped with specially designed encoders. All mechanical and pneumatic movements and detectors can be remotely controlled using a direct panel or a PC. (orig.)

  2. On Small-Angle Neutron Scattering from Microemulsion Droplets the Role of Shape Fluctuations

    CERN Document Server

    Lisy, V

    2001-01-01

    The form factor and intensity of static neutron scattering from microemulsion droplets are calculated. The droplet is modeled by a double-layered sphere consisting of a fluid core and a thin surfactant layer, immersed in another fluid. All the three components are incompressible and characterized by different scattering length densities. As distinct from previous descriptions of small-angle neutron scattering (SANS), we consistently take into account thermal fluctuations of the droplet shape, to the second order of the fluctuations of the droplet radius. The properties of the layer are described within Helfrich's concept of the elasticity of curved interfaces. It is shown that in many cases the account for the fluctuations is essential for the interpretation of SANS. Information about two elastic constants \\kappa and \\bar\\kappa (so far extracted from the experiments in the combination 2\\kappa+\\bar\\kappa) can be now simultaneously obtained from SANS for system in conditions of two-phase coexistence. As an illu...

  3. Invisible detergents for structure determination of membrane proteins by small-angle neutron scattering.

    Science.gov (United States)

    Midtgaard, Søren Roi; Darwish, Tamim A; Pedersen, Martin Cramer; Huda, Pie; Larsen, Andreas Haahr; Jensen, Grethe Vestergaard; Kynde, Søren Andreas Røssell; Skar-Gislinge, Nicholas; Nielsen, Agnieszka Janina Zygadlo; Olesen, Claus; Blaise, Mickael; Dorosz, Jerzy Józef; Thorsen, Thor Seneca; Venskutonytė, Raminta; Krintel, Christian; Møller, Jesper V; Frielinghaus, Henrich; Gilbert, Elliot Paul; Martel, Anne; Kastrup, Jette Sandholm; Jensen, Poul Erik; Nissen, Poul; Arleth, Lise

    2018-01-01

    A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron scattering length difference between hydrogen and deuterium. Individual hydrogen/deuterium levels of the detergent head and tail groups were achieved such that the formed micelles became effectively invisible in heavy water (D 2 O) when investigated by neutrons. This way, only the signal from the membrane protein remained in the SANS data. We demonstrate that the method is not only generally applicable on five very different membrane proteins but also reveals subtle structural details about the sarco/endoplasmatic reticulum Ca 2+ ATPase (SERCA). In all, the synthesis of isotope-substituted detergents makes solution structure determination of membrane proteins by SANS and subsequent data analysis available to nonspecialists. © 2017 Federation of European Biochemical Societies.

  4. Spin echo small angle neutron scattering using a continuously pumped (3)He neutron polarisation analyser.

    Science.gov (United States)

    Parnell, S R; Washington, A L; Li, K; Yan, H; Stonaha, P; Li, F; Wang, T; Walsh, A; Chen, W C; Parnell, A J; Fairclough, J P A; Baxter, D V; Snow, W M; Pynn, R

    2015-02-01

    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of (3)He. We describe the performance of the analyser along with a study of the (3)He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

  5. The small angle neutron scattering spectrometer at the Budapest research reactor

    International Nuclear Information System (INIS)

    Retfalvi, E.; Almasy, L.; Toeroek, Gy.; Len, A.; Rosta, L.

    2001-01-01

    The reinstallation of the Small Angle Neutron Scattering spectrometer (named 'Yellow Submarine') at the Budapest Research Reactor has been finished in winter 2001. Parallel to the installation of a liquid hydrogen cold source, the guide system of the spectrometer was also rebuilt to a more optimized geometry. The old natural Ni-coated guide sections of 2.5x10 cm 2 after the velocity selector have been replaced by a new supermirror coated curved neutron guide with 4x4 cm 2 cross section. The neutron flux of the upgraded spectrometer is much higher. The beam is formed by a fixed length collimator tube and monitored by a fission chamber. (R.P.)

  6. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    Science.gov (United States)

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  7. Comments on 'Design optimization of a small-angle neutron scattering spectrometer'

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1990-01-01

    Margaca, Falcao, Salgado and Carvahlo have recently discussed the design parameters of a small-angle scattering spectrometer. They claim to have shown that the instrument can be optimized for constant angular resolution and a fixed neutron source area, such that the detector count rate is higher than that obtained with a spectrometer optimized for a fixed total length and having the same angular resolution. They also claim that the relative gain in intensity depends upon the size of the neutron emitting surface available to the spectrometer. The initial assumptions made by the authors are too constrained to be generally applicable and therefore misleading conclusions could be drawn, and in fact the equal path length arrangement is optimum. (orig.)

  8. Characterisation of creep cavitation damage in a stainless steel pressure vessel using small angle neutron scattering

    CERN Document Server

    Bouchard, P J; Treimer, W

    2002-01-01

    Grain-boundary cavitation is the dominant failure mode associated with initiation of reheat cracking, which has been widely observed in austenitic stainless steel pressure vessels operating at temperatures within the creep range (>450 C). Small angle neutron scattering (SANS) experiments at the LLB PAXE instrument (Saclay) and the V12 double-crystal diffractometer of the HMI-BENSC facility (Berlin) are used to characterise cavitation damage (in the size range R=10-2000 nm) in a variety of creep specimens extracted from ex-service plant. Factors that affect the evolution of cavities and the cavity-size distribution are discussed. The results demonstrate that SANS techniques have the potential to quantify the development of creep damage in type-316H stainless steel, and thereby link microstructural damage with ductility-exhaustion models of reheat cracking. (orig.)

  9. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    Science.gov (United States)

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  10. Data reduction for time-of-flight small-angle neutron scattering with virtual neutrons

    Science.gov (United States)

    Du, Rong; Tian, Haolai; Zuo, Taisen; Tang, Ming; Yan, Lili; Zhang, Junrong

    2017-09-01

    Small-angle neutron scattering (SANS) is an experimental technique to detect material structures in the nanometer to micrometer range. The solution of the structural model constructed from SANS strongly depends on the accuracy of the reduced data. The time-of-flight (TOF) SANS data are dependent on the wavelength of the pulsed neutron source. Therefore, data reduction must be handled very carefully to transform measured neutron events into neutron scattering intensity. In this study, reduction algorithms for TOF SANS data are developed and optimized using simulated data from a virtual neutron experiment. Each possible effect on the measured data is studied systematically, and suitable corrections are performed to obtain high-quality data. This work will facilitate scientific research and the instrument design at China Spallation Neutron Source.

  11. Use of Small-Angle Neutron Scattering in Testing the Stability of Ferrofluids

    CERN Document Server

    Balasoiu, M; Avdeev, M V; Aksenov, V L; Khokhryakov, A A; Bica, L D; Hasegan, D; Török, G; Rosta, L

    2004-01-01

    Stability of ferrofluids - colloidal solutions of magnetic particles covered with surfactants - is the main characteristic that determines the possibility to exploit ferrofluids in different industrial and biomedical applications. Small-angle neutron scattering (SANS) can be effectively used to reveal the aggregation and its change with time in ferrofluids under the action of magnetic field. Despite the fact that in most cases the detailed description of scattering is complicated, one can judge whether a ferrofluid is stable or not by simple analysis of changes in the mean scattering intensity. The advantages of SANS are that industrial samples can be tested without any additional modifications, as well as the real-time experiments with any magnetic load can be easily performed. Examples for a number of ferrofluids are given.

  12. Deciphering the "Fuzzy" Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering.

    Science.gov (United States)

    Sparks, Samuel; Temel, Deniz B; Rout, Michael P; Cowburn, David

    2018-03-06

    The largely intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG Nups) underline a selectivity mechanism that enables the rapid translocation of transport factors (TFs) through the nuclear pore complexes (NPCs). Conflicting models of NPC transport have assumed that FG Nups undergo different conformational transitions upon interacting with TFs. To selectively characterize conformational changes in FG Nups induced by TFs we performed small-angle neutron scattering (SANS) with contrast matching. Conformational-ensembles derived from SANS data indicated an increase in the overall size of FG Nups is associated with TF interaction. Moreover, the organization of the FG motif in the interacting state is consistent with prior experimental analyses defining that FG motifs undergo conformational restriction upon interacting with TFs. These results provide structural insights into a highly dynamic interaction and illustrate how functional disorder imparts rapid and selective FG Nup-TF interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Science.gov (United States)

    Peng, Mei; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-01

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm-1 to 5.0 nm-1. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service.

  14. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering.

    Science.gov (United States)

    Luo, Zhi; Marson, Domenico; Ong, Quy K; Loiudice, Anna; Kohlbrecher, Joachim; Radulescu, Aurel; Krause-Heuer, Anwen; Darwish, Tamim; Balog, Sandor; Buonsanti, Raffaella; Svergun, Dmitri I; Posocco, Paola; Stellacci, Francesco

    2018-04-09

    The ligand shell (LS) determines a number of nanoparticles' properties. Nanoparticles' cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS' morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles' core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles' LS.

  15. Observation of cross-shaped anisotropy in spin-resolved small-angle neutron scattering

    Science.gov (United States)

    Michels, Andreas; Honecker, Dirk; Döbrich, Frank; Dewhurst, Charles D.; Suzuki, Kiyonori; Heinemann, André

    2012-05-01

    We report the results of spin-resolved small-angle neutron scattering (SANS) experiments on the two-phase nanocrystalline alloy NANOPERM. At a saturating applied magnetic field of 1.27T we observe a cross-shaped angular anisotropy in the non-spin-flip SANS cross section Σ++. This feature—for this class of materials only visible at saturation in Σ++—is attributed to the specific ratio of nuclear to magnetic scattering being smaller than unity. Analysis of the non-spin-flip and spin-flip cross sections provides the nuclear and magnetic SANS and allows us to estimate the magnitude of the respective scattering-length density contrast at the interphase between the nanoparticles and the amorphous magnetic matrix.

  16. Stroboscopic Small Angle Neutron Scattering Investigations of Microsecond Dynamics in Magnetic Nanomaterials

    Science.gov (United States)

    Wiedenmann, A.; Gähler, R.; May, R. P.; Keiderling, U.; Habicht, K.; Prévost, S.; Klokkenburg, M.; Erné, B.; Kohlbrecher, J.

    Time-resolved Small Angle Neutron Scattering (SANS) techniques have recently been developed that allow ordering and relaxation processes of magnetic moments in nanoparticles to be monitored. In stroboscopic experiments, time-frame data acquisition has been synchronized with a periodic external magnetic field. Slow relaxation of magnetic particle moments onto equilibrium has been studied in periods of the order of 30 s after switch off a static field. By applying a sine-wave modulated magnetic field at frequencies above 50 Hz, the time-resolved SANS response to a forced oscillation could be analyzed. When a continuous neutron flux was used in conventional SANS, the shortest accessible time range was limited to about 3 ms resulting from the wavelength spread. A breakthrough of time resolution into the micro-second range was achieved with the pulsed frame overlap TISANE technique, which allows us to exploit a dynamical range similar to that of X-ray photon-correlation spectroscopy.

  17. Small-angle neutron scattering investigation of the nanostructure of ferritic-martensitic 12%-chromium steels

    Science.gov (United States)

    Bogdanov, S. G.; Goshchitskii, B. N.; Parkhomenko, V. D.; Leontieva-Smirnova, M. V.; Chernov, V. M.

    2014-01-01

    The nanostructure (nanoparticle distribution) of ferritic-martensitic 12%-chromium steels EK-181 (Fe-12Cr-2W-V-Ta-B) and ChS-139 (Fe-12Cr-2W-V-Ta-B-Nb-Mo) subjected to different modes of mechanical and heat treatments and neutron irradiation has been investigated using small-angle neutron scattering. The samples have been studied in the initial state and after neutron irradiation (IVV-2M reactor) at a temperature of 80°C with fluences of 1018, 1019, and 5 × 1019 cm-2 ( E ≥ 0.1 MeV). The nanostructure of the steels is characterized by precipitations of nanoparticles with two characteristic sizes of 1.0-1.5 and 7-8 nm. The dependence of the nanostructure parameters on the composition of the steels and on the conditions of heat treatment and irradiation has been discussed.

  18. A new package: MySAS for small angle scattering data analysis

    International Nuclear Information System (INIS)

    Huang Chaoqiang; Xia Qingzhong; Yan Guanyun; Sun Guang'ai; Chen Bo

    2010-01-01

    In this paper, A MySAS package, which is verified on Windows XP, can easily convert two-dimensional data in small angle neutron and X-ray scattering analysis, operate individually and execute one particular operation as numerical data reduction or analysis, and graphical visualization. This MySAS package can implement the input and output routines via scanning certain properties, thus recalling completely sets of repetition input and selecting the input files. On starting from the two-dimensional files, the MySAS package can correct the anisotropic or isotropic data for physical interpretation and select the relevant pixels. Over 50 model functions are fitted by the POWELL code using χ 2 as the figure of merit function. (authors)

  19. The modular small-angle X-ray scattering data correction sequence.

    Science.gov (United States)

    Pauw, B R; Smith, A J; Snow, T; Terrill, N J; Thünemann, A F

    2017-12-01

    Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.

  20. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements.

    Science.gov (United States)

    Sedlak, Steffen M; Bruetzel, Linda K; Lipfert, Jan

    2017-04-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2 ( q ) = [ I ( q ) + const.]/( kq ), where I ( q ) is the scattering intensity as a function of the momentum transfer q ; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  1. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented...... for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during...... the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample...

  2. Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions.

    Science.gov (United States)

    Modregger, Peter; Kagias, Matias; Irvine, Sarah C; Brönnimann, Rolf; Jefimovs, Konstantins; Endrizzi, Marco; Olivo, Alessandro

    2017-06-30

    Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.

  3. Small-angle neutron scattering from poly(NIPA-co-AMPS) gels

    DEFF Research Database (Denmark)

    Travas-Sejdic, J.; Easteal, A.; Knott, R.

    2000-01-01

    was reversed; that is the lower cross-link density, the higher the scattered intensity. Therefore, the role of cross-links at high temperature was to suppress microphase separation. The fitting of the experimental data with the Rabin and Panyukov theory indicated qualitative agreement.......The microstructure of the poly( N-isopropylacrylamide-co-acrylamido- 2-methyl-1-propane sulphonic acid) gel, poly( NIPA-co-AMPS), was investigated as a function of temperature and cross-link density using the small angle neutron scattering technique. The sample temperature was varied in the range...... 30 to 55C. Two different behaviours of poly( NIPA-co-AMPS) gels were observed. At low temperature (30C), the magnitude of the scattered intensity increased with cross-link density suggesting that additional cross-links introduced more inhomogeneities in the gel network. At high temperatures the trend...

  4. Structure investigations on Portland cement paste by small angle neutron scattering

    International Nuclear Information System (INIS)

    Dragolici, C. A.; Len, A.

    2003-01-01

    Portland cement pastes consist of many crystalline and non-crystalline phases in various ranges of sizes (nm and mm scale). The crystalline phases are embedded in amorphous phases of the hydration products. We investigated the structural changes of hydrating phases in the time interval of 1-30 days at Budapest Neutron Center's SANS diffractometer. The small angle neutron scattering of Portland cements prepared with a water-to-cement ratio from 0,3 to 0,8 gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. The variation of fractals size depending on the preparation-to-measurement time interval and water-to-cement ratio could be observed. (authors)

  5. Small angle neutron scattering study on short and long chain phosphatidylcholine mixture in trehalose solution

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi [Department of Physics, Gunma University, Maebashi, Gunma (Japan)

    2001-03-01

    Trehalose protects cells and proteins against various stresses due to low temperatures or dryness. In order to clarify the molecular mechanism of cryoprotective function of trehalose, we have studied the interaction between trehalose and phosphatidylcholine (PC) which is a main lipid component of cell membranes. In this study, the structural change of a binary PC mixture by the presence of trehalose was investigated by means of small angle neutron scattering. The PC binary mixture studied contains dihexanoyl-PC (diC{sub 6}PC) and dihexadecy-PC (DHPC). The former has short hydrocarbon chains and the latter has long hydrocarbon chains. The scattering profiles from the DHPC/diC{sub 6}PC mixture were changed, depending on trehalose concentrations. This change can be interpreted as suggesting that the presence of trehalose reduces the interfacial area between water and PCs. (author)

  6. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  7. Search for small-angle neutron scattering in MnO at 1700K

    International Nuclear Information System (INIS)

    Routbort, J.L.; Epperson, J.E.; Klippert, T.E.; Goretta, K.C.

    1986-01-01

    A preliminary small-angle scattering (SANS) experiment has been performed on MnO single crystal at the Intense Pulsed Neutron Source. The experiment was preformed at 1700 0 K at oxygen partial pressures of 2.2 x 10 -4 , 1 x 10 2 , and 2 x 10 2 Pa, which resulted in deviations from stoichiometry of about 0.0015, 0.082, and 0.127. No statistically significant change in SANS was observed at this temperature with the pressure changes. Neither was any significant change observed in the wavelength-dependent sample transmission, also measured in-situ as a function of pressure. Therefore, either clustering of cation vacancies is negligible in MnO for these conditions, or the clusters are smaller than about 5 A. Of proposed cluster configurations, only the existence of the smallest (4:1, 6:2, or possible 8:3) appears to be consistent with these results

  8. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...... of the dosimeter. When omitting gelatin, ellipsoidal micelles of SDS were formed with a core radius near 15 Å, an eccentricity of 1.6, and a head-group shell thickness near 7 Å. Gelatin significantly changed the micelles to a cylindrical shape with around three times lower core radius and four times larger shell...... thickness, which shows that the gelatin is present in the shell and the outer part of the core. Insight into the detailed structure might help to improve the dosimeter performance and increase the dose response to clinically relevant dose levels....

  9. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  10. Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1999-03-01

    High-resolution differential scanning calorimetry (DSC) and small angle neutron scattering (SANS) experiments have been conducted on large unilamellar vesicles (LUV{close_quote}s) of the phospholipid dipalmitoylphosphatidylcholine (DPPC) in excess water. The DSC results indicate a phase transition at temperatures corresponding to the gel (L{sub {beta}{sup {prime}}}) to ripple (P{sub {beta}{sup {prime}}}) phase transition seen in multilamellar vesicles of DPPC while the SANS experiments provide direct evidence for the formation of the P{sub {beta}{sup {prime}}} phase in these systems. In addition, it is shown that SANS is an effective technique for extracting structural parameters such as vesicle radius and thickness in LUV model membrane systems. {copyright} {ital 1999} {ital The American Physical Society}

  11. Invisible detergents for structure determination of membrane proteins by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Darwish, Tamim A.; Pedersen, Martin Cramer

    2018-01-01

    A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron...... scattering length difference between hydrogen and deuterium. Individual hydrogen/deuterium levels of the detergent head and tail groups were achieved such that the formed micelles became effectively invisible in heavy water (D2 O) when investigated by neutrons. This way, only the signal from the membrane...... protein remained in the SANS data. We demonstrate that the method is not only generally applicable on five very different membrane proteins but also reveals subtle structural details about the sarco/endoplasmatic reticulum Ca2+ ATPase (SERCA). In all, the synthesis of isotope-substituted detergents makes...

  12. Multiple size scale structures in silica/siloxane composites studied by small-angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, G.; Schaefer, D.W.; Ulibarri, T.; Black, E.

    1993-12-31

    The physical properties of in-situ produced composites, such as the TEOS-polysiloxane based systems, are directly related to the complex interaction of structural features from the nano- to macro-scopic scales. The nature of these structural interactions are a key element in understanding and controlling mechanical properties in these systems. We believe that the smallest scale structures, in the nanometer range, correlate with properties such as the modulus while large-scale structures on the micron scale effect failure in these materials. This paper discusses techniques for analysis of structural features and interrelation of structural features over these wide ranges of size using small-angle light, x-ray and neutron scattering. Combination of data from different instruments allows for characterization of the interaction between these different size scale features.

  13. Real-time remedial action against aperiodic small signal rotor angle instability

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Østergaard, Jacob

    2016-01-01

    This paper presents a method that in real-time determines remedial actions, which restore stable operation with respect to aperiodic small signal rotor angle stability (ASSRAS) when insecure or unstable operation has been detected. An ASSRAS assessment method is used to monitor the stability...... boundary for each generator in real-time. The ASSRAS boundary represents the condition when a generator reaches the maximum steady state active power injection. The proposed control method exploits analytically derived expressions for the ASSRAS boundary and other characteristic curves in the injection...... on the IEEE 14-bus and the Nordic32 test systems where results show that the method can efficiently determine the required active power redispatch to avoid an imminent instability....

  14. Time-resolved small-angle neutron scattering of a micelle-to-vesicle transition

    Energy Technology Data Exchange (ETDEWEB)

    Egelhaaf, S.U. [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France); Schurtenberger, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-04-01

    Amphiphilic molecules spontaneously self-assemble in solution to form a variety of aggregates. Only limited information is available on the kinetics of the structural transitions as well as on the existence of non-equilibrium or metastable states. Aqueous mixtures of lecithin and bile salt are very interesting biological model-systems which exhibit a spontaneous transition from polymer-like mixed micelles to vesicles upon dilution. The small-angle neutron scattering (SANS) instrument D22, with its very high neutron flux and the broad range of scattering vectors covered in a single instrumental setting, allowed us for the first time to perform time-resolved scattering experiments in order to study the micelle-to-vesicle transition. The temporal evolution of the aggregate structures were followed and detailed information was obtained even on molecular length-scales. (author). 5 refs.

  15. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.

    Science.gov (United States)

    Nguyen, Hung T; Pabit, Suzette A; Meisburger, Steve P; Pollack, Lois; Case, David A

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb(+) and Sr(2+)) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  16. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.

    Science.gov (United States)

    Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C

    1988-02-25

    The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the

  17. Determination of low-field critical parameters of superconducting niobium by small-angle neutron diffraction

    International Nuclear Information System (INIS)

    Christen, D.K.; Spooner, S.; Thorel, P.; Kerchner, H.R.

    1977-01-01

    The perfect double-crystal small-angle diffraction technique enables measurement of scattering angles to within 0.3 arc sec. accuracy. At a wavelength of 2.55 A, this provides a resolution of 3 x 10 -6 A -1 in the scattering vector. This technique has been used to study the anisotropic behavior of the critical parameters B 0 and H/sub c1/, characteristic of the first-order magnetic phase transition which occurs in low-kappa type-II superconductors. Magnetic fields were applied parallel to several crystal axes of a large single-crystal sphere of pure niobium, resulting in well-defined flux-line lattices (FLL). Measurement of the FLL cell area in the intermediate mixed state field region gives the equilibrium flux density B 0 , which results from an attractive interaction between fluxoids. In addition, field variation of the scattered neutron intensity allows measurement of the transition field between the mixed state and intermediate mixed state. This transition field is related to the lower critical field H/sub c1/ and enables its determination to a precision 0.2%. Data at T = 4.3 K display a small anisotropic effect of about 2% in B 0 and 1% in H/sub c1/. Although orientation effects of this magnitude are difficult to resolve by bulk measurements, the neutron data are in accord with magnetization data. Observations regarding the temperature dependence of these parameters also will be presented, and comparisons made with current theoretical models

  18. ORNL 10-m small-angle X-ray scattering camera

    International Nuclear Information System (INIS)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm 2 , the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10 6 photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera

  19. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    Science.gov (United States)

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  20. Energy dependent modulation of the ulf ion flux oscillations observed at small pitch angles

    International Nuclear Information System (INIS)

    Su, S.; Konradi, A.; Fritz, T.A.

    1979-01-01

    The characteristics of the ultralow frequency oscillations in the ion fluxes observed at small pitch angles by the National Oceanic and Atmospheric Adminstration detector telescopes on board ATS 6 are again examined. The present report concentrates on the dramatic variation of the flux modulations detected in various energy channels during a single event which occurred on February 18, 1975. The wave amplitude is observed to be larger in a higher energy channel with energies from 100 keV to 150 keV and to decrease toward the lower energy channels. The lowest-energy protons (25--33 keV) in general are seldom seen to be oscillating, but in this event they display a low-amplitude oscillation which is 180 0 out of p ase with the adjacent channel. Such energy dependent modulation of the flux oscillation is thought to be a consequence of the wave particle resonant interaction. However, the prediction of the bounce resonant interaction is not consistent with the observations of both the energy dependent variation of the flux amplitudes and a 180 0 change in the oscillation phase in the adjacent low-energy channels that occurred in the February 18, 1975, event. Since the shape of the undisturned particle distribution can also determine the variation of the particle perturbation at various energies, the first-order particle distribution derived in a homogeneous plasma with a uniform magnetic field is examined without any specification of the wave mode. When the average particle distribution during the wave observation is used together with a parallel wave electric field that presumably causes the flux modulation at small pitch angles, a reasonable agreement is found between the variation of flux modulation derived from the slope of the average particle distribution and that from the experimental observation

  1. ORNL 10-m small-angle X-ray scattering camera

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm/sup 2/, the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10/sup 6/ photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera.

  2. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Malik, Leila; Nygaard, Jesper; Christensen, Niels Johan

    2013-01-01

    , they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical...

  3. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    Science.gov (United States)

    van Heijkamp, Léon F.; Sevcenco, Ana-Maria; Abou, Diane; van Luik, Remko; Krijger, Gerard C.; Hagedoorn, Peter-Leon; de Schepper, Ignatz M.; Wolterbeek, Bert; Koning, Gerben A.; Bouwman, Wim G.

    2010-10-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H2O, were resuspended in D2O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal strength and curve shape were more indicative of hollow particles, indicating that the H2O-D2O exchange occurred too fast to be observed with the available time resolution. Fitting the particle diameter and membrane thickness of the hollow sphere model to the data, gave results which were in good agreement with Dynamic Light Scattering (DLS) data and literature, showing as a proof-of-principle that SESANS is able to investigate such systems. SESANS may become a good alternative to conventional tritium studies or a tool with which to study intracellular vesicle transport phenomena, with possible in vivo applications. Calculations show that a substantial change in numbers of a mixed system of small and large biological particles should be observable. A possible application is the destruction by external means of great numbers of liposomes in the presence of tumor cells for triggered drug release in cancer treatment. Since SESANS is both non-invasive and non-destructive and can handle relatively thick samples, it could be a useful addition to more conventional techniques.

  4. Improving small-angle X-ray scattering data for structural analyses of the RNA world.

    Science.gov (United States)

    Rambo, Robert P; Tainer, John A

    2010-03-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNA(val), and yeast tRNA(phe) that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways.

  5. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering

    Science.gov (United States)

    Jonah, E. O.; Britton, D. T.; Beaucage, P.; Rai, D. K.; Beaucage, G.; Magunje, B.; Ilavsky, J.; Scriba, M. R.; Härting, M.

    2012-11-01

    The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of 41 and 21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be 1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.

  6. Light-microscope specimen holder with 3-axis rotation and small-angle control.

    Science.gov (United States)

    Iwabuchi, Sadahiro; Koh, Jin-Young; Wardenburg, Michael; Johnson, James D; Harata, N Charles

    2014-01-15

    Although recent developments in methodologies for light microscopy have enabled imaging of fine biological structures, such imaging is often accompanied by two types of problems. One is a tilting of the specimen with respect to the x-y plane (i.e. rotation around the x- or y-axis) such that the sample is not perpendicular to the optical z-axis, and the other is rotation around the z-axis that precludes optimal orientations for imaging and experimentation. These rotation problems can cause optical aberrations and hamper imaging experiments, even when the angular difference from the ideal position is small. In order to correct for these practical issues, we have developed a specimen holder with 3-axis (x-y-z) rotation for an inverted light microscope. This allows for full-range rotations of 2-4° for x-, y-axes, ~24° for z-axis, and a small-angle control of microscope stage without requiring changes to the existing optical components. Similar devices with full capability have not been available. It will be useful for imaging experiments with biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Small angle neutron scattering study of nanostructure in permanent magnet materials and coercivity mechanism

    International Nuclear Information System (INIS)

    Kato, Hiroaki

    2008-01-01

    Small angle neutron scattering study was performed in sintered Nd-Fe-B permanent magnets. The 99% enriched 11 B isotope was used to avoid high neutron absorption of 10 B in natural boron. In all the samples examined, the intensity of scattered neutrons was proportional to the q -4 for q -1 , irrespective of the direction of q. For q>0.5 nm -1 , on the other hand, the intensity was markedly higher than that expected from the q -4 dependence. These results show that there exists a neutron scatterer with a dimension of less than 10 nm, which is considered to be a Nd-rich grain boundary phase in the matrix of Nd 2 Fe 14 B phase. In the sample with Al and Cu additives, we observed a small but finite increase of intensity as compared with the sample without Al and Cu additives for the q range of 0.1 -1 . Since Al- and Cu-containing samples have higher coercivity, this result suggests that there is a correlation between the density of neutron scatterer at a Nd-rich grain boundary and the coercivity. (author)

  8. Structure and interaction in protein solutions as studied by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Chodankar, S.; Aswal, V.K.

    2005-01-01

    Small-angle neutron scattering (SANS) measurements have been performed to compare the effect of the salts KF, KCl, and KBr on crystallization in aqueous solution of lysozyme protein. It is found that the propensity of the salt to crystallize protein follows the Hoffmeister series (KF< KCl< KBr) with marked differences in the effect of these salts. In pure protein solution, lysozyme macromolecules are prolate ellipsoidal with semimajor and semiminor axes as 22 and 13.5 A, respectively. SANS also gives that the effective (structural+counterion) charge (Z) on the protein as obtained by taking into account screened Coulomb interaction between the protein macromolecules is found to be much smaller than the structural charge. There is decrease in Z suggesting the higher counterion condensation on protein with the increase in the concentration. The counterion condensation seems to be responsible for the differences in the effect of different salts. It is also found that with the addition of salts, lysozyme macromolecules convert to dimers, and for the same salt concentration the comparative effect of different salts follows the Hoffmeister series. Time evolved measurements prior to and after the crystallization show that the protein solution mostly consists of monomers and dimers. Interestingly, higher-mers are not observed in these measurements as perhaps they are formed in very small numbers towards the process that leads to the crystallization. The time dependent data have been used to obtain the fraction of crystallization as a function of time

  9. The accurate assessment of small-angle X-ray scattering data.

    Science.gov (United States)

    Grant, Thomas D; Luft, Joseph R; Carter, Lester G; Matsui, Tsutomu; Weiss, Thomas M; Martel, Anne; Snell, Edward H

    2015-01-01

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  10. Small-angle neutron scattering study of magnetic microstructures in Co-Cr films

    International Nuclear Information System (INIS)

    Suzuki, J.; Morii, Y.; Maeda, Y.

    1998-01-01

    We report a small-angle neutron scattering (SANS) study of the influence of compositional separation (CS) on the magnetic microstructure of sputtered Co-22 at% Cr thin films deposited at substrate temperatures (T S ) of 40-400 C. Using vibrating sample magnetometry and nuclear magnetic resonance, we observed that CS producing a Co-enriched component develops as T S increases and becomes most prominent at around 250 C with a maximum saturation magnetization. At T S over 400 C compositional homogenization occurs. The SANS spectra show that all the films exhibit much larger scattering cross-sections than that of a compositionally homogeneous Co-22 at% Cr bulk alloy sample. This indicates that CS promotes both magnetic and chemical microstructures in the thin films. The SANS spectra are observed to change systematically with the variation in T S . An analysis of these spectra suggests that CS produces in-grain columnar magnetic microstructures with small sizes of several nanometers at T S of 40-200 C, and these microstructures become particulate at T S of 300 and 400 C, where compositional homogenization occurs. It is shown that T S is a critical factor in the formation of the magnetic microstructures. (orig.)

  11. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M. (Alberta)

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  12. A Preliminary Method for Calculating the Aerodynamic Characteristics of Cruciform Missiles to High Angles of Attack Including Effects of Roll Angle and Control Deflections

    Science.gov (United States)

    1977-11-01

    20 ... 60xNNOS 2 Program Variable RNOSE(i) RNOSE(2) ... RNOSE(N+ SE Item 6 (1) FORMAT (8F10.5), 8 values of ALFAC per card Column Number 1Q 20...OxNALFI4 Program Variable \\LFAC (1) ALFAC (2) ... LFAC (NALIA) Item 7 (optional) (1) FORMAT (8F10.5) , 8 values of PHI per card Column Number 10 1 20...dimensional. Item 6 ALFAC (K) a c(K) Body angle of attack in degrees; 1 < K < NALFA. Item 7 (optional Optional input to be read in if NFIN > 2. PHI(L

  13. A triple axis double crystal multiple reflection camera for ultra small angle X-ray scattering

    Science.gov (United States)

    Lambard, Jacques; Lesieur, Pierre; Zemb, Thomas

    1992-06-01

    To extend the domain of small angle X-ray scattering requires multiple reflection crystals to collimate the beam. A double crystal, triple axis X-ray camera using multiple reflection channel cut crystals is described. Procedures for measuring the desmeared scattering cross-section on absolute scale are described as well as the measurement from several typical samples : fibrils of collagen, 0.3 μm diameter silica spheres, 0.16 μm diameter interacting latex spheres, porous lignite coal, liquid crystals in a surfactant-water system, colloidal crystal of 0.32 μm diameter silica spheres. L'extension du domaine de diffusion des rayons-X vers les petits angles demande l'emploi de cristaux à réflexions multiples pour collimater le faisceau. Nous décrivons une caméra à rayons-X à trois axes où les réflexions multiples sont réalisées dans deux cristaux à gorge. Nous donnons ensuite les procédures de déconvolution pour obtenir la section efficace de diffusion en échelle absolue, ainsi que les résultats des mesures effectuées avec plusieurs échantillons typiques : fibres de collagène, sphères de silice de 0,3 μm de diamètre, sphères de latex de 0,16 μm de diamètre en interaction, charbon lignite poreux, cristaux liquides formés dans un système eau-tensioactif, solution colloïdale de sphères de silice de 0,32 μm de diamètre.

  14. The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

    International Nuclear Information System (INIS)

    Van Hook, W.A.

    2000-01-01

    A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering

  15. SIMSAS - a window based software package for simulation and analysis of multiple small-angle scattering data

    International Nuclear Information System (INIS)

    Jayaswal, B.; Mazumder, S.

    1998-09-01

    Small-angle scattering data from strong scattering systems, e.g. porous materials, cannot be analysed invoking single scattering approximation as specimen needed to replicate the bulk matrix in essential properties are too thick to validate the approximation. The presence of multiple scattering is indicated by invalidity of the functional invariance property of the observed scattering profile with variation of sample thickness and/or wave length of the probing radiation. This article delineates how non accounting of multiple scattering affects the results of analysis and then how to correct the data for its effect. It deals with an algorithm to extract single scattering profile from small-angle scattering data affected by multiple scattering. The algorithm can process the scattering data and deduce single scattering profile in absolute scale. A software package, SIMSAS, is introduced for executing this inversion step. This package is useful both to simulate and to analyse multiple small-angle scattering data. (author)

  16. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.

    Science.gov (United States)

    Heller, William T

    2005-01-01

    A common structural motif for many proteins comprises rigid domains connected by a flexible hinge or linker. The flexibility afforded by these domains is important for proper function and such proteins may be able to adopt more than one conformation in solution under equilibrium conditions. Small-angle scattering of proteins in solution samples all conformations that exist in the sampled volume during the time of the measurement, providing an ensemble-averaged intensity. In this paper, the influence of sampling an ensemble of well defined protein structures on the small-angle solution scattering intensity profile is examined through common analysis methods. Two tests were performed using simulated data: one with the extended and collapsed states of the bilobal calcium-binding protein calmodulin and the second with the catalytic subunit of protein kinase A, which has two globular domains connected by a glycine hinge. In addition to analyzing the simulated data for the radii of gyration Rg, distance distribution function P(r) and particle volume, shape restoration was applied to the simulated data. Rg and P(r) of the ensemble profiles could be easily mistaken for a single intermediate state. The particle volumes and models of the ensemble intensity profiles show that some indication of multiple conformations exists in the case of calmodulin, which manifests an enlarged volume and shapes that are clear superpositions of the conformations used. The effect on the structural parameters and models is much more subtle in the case of the catalytic subunit of protein kinase A. Examples of how noise influences the data and analyses are also presented. These examples demonstrate the loss of the indications of multiple conformations in cases where even broad distributions of structures exist. While the tests using calmodulin show that the ensemble states remain discernible from the other ensembles tested or a single partially collapsed state, the tests performed using the

  17. Nano-scale morphology of melanosomes revealed by small-angle X-ray scattering.

    Directory of Open Access Journals (Sweden)

    Thomas Gorniak

    Full Text Available Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences--determining the color of skin, hair and the iris--they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye. Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering--a method effective in determining the three-dimensional structures of biomolecules--to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance.

  18. Changes of creatine kinase structure upon ligand binding as seen by small-angle scattering

    Science.gov (United States)

    Forstner, Michael; Kriechbaum, Manfred; Laggner, Peter; Wallimann, Theo

    1996-09-01

    Small-angle X-ray and neutron scattering have been used to investigate structural changes upon binding of individual substrates or a transition state analogue complex (TSAC), consisting of Mg-ADP, creatine and KNO 3 to creatine kinase isoenzymes (dimeric M-CK and octameric Mi-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-ATP and TSAC, whereas creatine alone had only a small effect. In Mi-CK, the radius of gyration was reduced from 55.6 Å (free enzyme) to 48.9 Å (enzyme + Mg-ATP) and to 48.2 Å (enzyme + TSAC). The experiments performed with M-CK showed similar changes from 28.0 Å (free enzyme) to 25.6 Å (enzyme + Mg-ATP) and to 25.5 Å (enzyme + TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK showed the same behaviour: a change of the radius of gyration from 21.5 Å (free enzyme) to 19.7 Å (enzyme + MG-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a magnesium-nucleotide induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In creatine kinase, however, further movements must be involved in the large conformational change.

  19. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Science.gov (United States)

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Small-angle physics at the intersecting storage rings forty years later

    International Nuclear Information System (INIS)

    Amaldi, Ugo

    2012-01-01

    It is often said that the ISR did not have the detectors needed to discover fundamental phenomena made accessible by its large and new energy range. This is certainly true for ‘high-momentum-transfer physics’, which, since the end of the 1960s, became a main focus of research, but the statement does not apply to the field that is the subject of this paper. In fact, looking back to the results obtained at the ISR by the experiments that were programmed to study ‘small-angle physics’, one can safely say that the detectors were very well suited to the tasks and performed much better than foreseen. As far as the results are concerned, in this particular corner of hadron–hadron physics, new phenomena were discovered, unexpected scaling laws were found and the first detailed studies of that elusive concept, which goes under the name ‘pomeron’, were performed, opening the way to phenomena that we hope will be observed at the LHC. Moreover, some techniques and methods have had a lasting influence: all colliders had and have their Roman pots, and the different methods developed at the ISR for measuring the luminosity are still in use.