WorldWideScience

Sample records for included rrna genes

  1. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  2. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  3. Sequencing of 16S rRNA gene for id ntification of Sta h lococcus ...

    African Journals Online (AJOL)

    Asdmin

    2014-01-15

    Jan 15, 2014 ... as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit rRNA databases. The sequence was deposited in GenBank with the accession numbers.

  4. A renaissance for the pioneering 16S rRNA gene

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah; Hugenholtz, Philip

    2008-09-07

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the last quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  5. A renaissance for the pioneering 16S rRNA gene.

    Science.gov (United States)

    Tringe, Susannah G; Hugenholtz, Philip

    2008-10-01

    Culture-independent molecular surveys using the 16S rRNA gene have become a mainstay for characterizing microbial community structure over the past quarter century. More recently this approach has been overshadowed by metagenomics, which provides a global overview of a community's functional potential rather than just an inventory of its inhabitants. However, the pioneering 16S rRNA gene is making a comeback in its own right thanks to a number of methodological advancements including higher resolution (more sequences), analysis of multiple related samples (e.g. spatial and temporal series) and improved metadata, and use of metadata. The standard conclusion that microbial ecosystems are remarkably complex and diverse is now being replaced by detailed insights into microbial ecology and evolution based only on this one historically important marker gene.

  6. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  7. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  8. How many 5S rRNA genes and pseudogenes are there in ''Aspergillus nidulans''?

    International Nuclear Information System (INIS)

    Pelczar, P.; Fiett, J.; Bartnik, E.

    1994-01-01

    We have estimated the number of 5S rRNA genes in ''Aspergillus nidulans'' using two-dimensional agarose gel electrophoresis and hybridization to appropriate probes, representing the 5'-halves, the 3'-halves of the 5S rRNA sequence and a sequence found at the 3'-end of all known. ''A. nidulans'' pseudogenes (block C). We have found 23 5S rRNA genes, 15 pseudogenes consisting of the 5'-half of the 5S rRNA sequence (of which 3 are flanked by block C) and 12 copies of block C which do not seem to be in the vicinity of 5S rRNA sequences. This number of genes is much lower than our earlier estimates, and makes our previously analyzed sample of 9 sequenced genes and 3 pseudogenes much more representative. (author). 7 refs, 1 fig

  9. Prevalence of 16S rRNA methylase genes among b-lactamase ...

    African Journals Online (AJOL)

    2014-07-07

    Jul 7, 2014 ... School of Life Sciences, Pondicherry University, Pondicherry, India ... Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and .... Isolates positive for bla or 16S rRNA methylase genes.

  10. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  11. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Irina S. Kolesnikova

    2017-09-01

    Sep 1, 2017 ... Asia R. Shorina d, Alexander S. Graphodatsky a, Ekaterina M. Galanina b, Dmitry V. Yudkin a,b,* ... rRNA gene copy numbers on affected acrocentric chromosomes in .... estimated using MS Excel software (Microsoft, USA).

  12. Robertsonian translocation 13/14 associated with rRNA genes ...

    African Journals Online (AJOL)

    Robertsonian translocation 13/14 associated with rRNA genes overexpression and intellectual disability. Alexander A. Dolskiy, Natalya A. Lemskaya, Yulia V. Maksimova, Asia R. Shorina, Irina S. Kolesnikova, Dmitry V. Yudkin ...

  13. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Ulanová, Dana; Šanderová, P.; Omelka, M.; Kameník, Zdeněk; Olšovská, J.; Kopecký, J.

    2015-01-01

    Roč. 15, APR 2015 (2015) ISSN 1471-2180 Institutional support: RVO:61388971 Keywords : Actinobacteria * 16S rRNA diversity * Resistance genes Subject RIV: EH - Ecology, Behaviour Impact factor: 2.581, year: 2015

  14. Prevalence of 16S rRNA methylase genes among β-lactamase ...

    African Journals Online (AJOL)

    Background: Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and ...

  15. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  16. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  17. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    Directory of Open Access Journals (Sweden)

    Shu Wu

    Full Text Available Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9 within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%; and could aid in species-level analyses, but with some limitations; 2 nearly-whole-length sequences and some partial regions (around V2, V4, and V9 of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%; 3 compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%; and 4 V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  18. The nucleotide sequence and organization of nuclear 5S rRNA genes in yellow lupine

    International Nuclear Information System (INIS)

    Nuc, K.; Nuc, P.; Pawelkiewicz, J.

    1993-01-01

    We have isolated a genomic clone containing 'Lupinus luteus' 5S ribosomal RNA genes by screening with 5S rDNA probe clones that were hybridized previously with the initiator methionine tRNA preparation (contaminated) with traces of rRNA or its degradation products). The clone isolated contains ten repeat units of 342 bp with 119 bp fragment showing 100% homology to the 5S rRNA from yellow lupine. Sequence analysis indicates only point heterogeneities among the flanking regions of the genes. (author). 6 refs, 3 figs

  19. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    NARCIS (Netherlands)

    Ziesemer, K.A.; Mann, A.E.; Sankaranarayanan, K.; Schroeder, H.; Ozga, A.T.; Brandt, B.W.; Zaura, E.; Waters-Rist, A.; Hoogland, M.; Salazar-García, D.C.; Aldenderfer, M.; Speller, C.; Hendy, J.; Weston, D.A.; MacDonald, S.J.; Thomas, G.H.; Collins, M.J.; Lewis, C.M.; Hofman, C.; Warinner, C.

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this

  20. 16S rRNA gene sequence and phylogenetic tree of lactobacillus ...

    African Journals Online (AJOL)

    ... processed by denaturing gradient gel electrophoresis (DGGE). Phylogenetic tree was constructed with the sequences of the V2-V3 region of 16S rRNA gene. Results show two distinct divisions among the Lactobacillus species. The study presents a new understanding of the nature of the Lactobacillus vaginal microbiota ...

  1. Phylogenetic analysis of 23S rRNA gene sequences of some ...

    African Journals Online (AJOL)

    ... glycol plus control. All isolates exhibited good drought-tolerant efficiencies at 10% PEG. While most of the isolates could not tolerate up to 20% PEG, isolates of Rlv6, Rlv9, Rlv12 and Rlv13 tolerated up to 20% PEG. Keywords: Rhizobium leguminosarum, 23S rRNA gene, phylogenetic tree, diversity and drought tolerance ...

  2. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing

    OpenAIRE

    B Dhawan; S Sebastian; R Malhotra; A Kapil; D Gautam

    2016-01-01

    We report the first case of prosthetic joint infection caused by Lysobacter thermophilus which was identified by 16S rRNA gene sequencing. Removal of prosthesis followed by antibiotic treatment resulted in good clinical outcome. This case illustrates the use of molecular diagnostics to detect uncommon organisms in suspected prosthetic infections.

  3. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    B Dhawan

    2016-01-01

    Full Text Available We report the first case of prosthetic joint infection caused by Lysobacter thermophilus which was identified by 16S rRNA gene sequencing. Removal of prosthesis followed by antibiotic treatment resulted in good clinical outcome. This case illustrates the use of molecular diagnostics to detect uncommon organisms in suspected prosthetic infections.

  4. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales.

    Science.gov (United States)

    Jay, Zackary J; Inskeep, William P

    2015-07-09

    Intron sequences are common in 16S rRNA genes of specific thermophilic lineages of Archaea, specifically the Thermoproteales (phylum Crenarchaeota). Environmental sequencing (16S rRNA gene and metagenome) from geothermal habitats in Yellowstone National Park (YNP) has expanded the available datasets for investigating 16S rRNA gene introns. The objectives of this study were to characterize and curate archaeal 16S rRNA gene introns from high-temperature habitats, evaluate the conservation and distribution of archaeal 16S rRNA introns in geothermal systems, and determine which "universal" archaeal 16S rRNA gene primers are impacted by the presence of intron sequences. Several new introns were identified and their insertion loci were constrained to thirteen locations across the 16S rRNA gene. Many of these introns encode homing endonucleases, although some introns were short or partial sequences. Pyrobaculum, Thermoproteus, and Caldivirga 16S rRNA genes contained the most abundant and diverse intron sequences. Phylogenetic analysis of introns revealed that sequences within the same locus are distributed biogeographically. The most diverse set of introns were observed in a high-temperature, circumneutral (pH 6) sulfur sediment environment, which also contained the greatest diversity of different Thermoproteales phylotypes. The widespread presence of introns in the Thermoproteales indicates a high probability of misalignments using different "universal" 16S rRNA primers employed in environmental microbial community analysis.

  5. Phylogenetic Analysis of Pasteuria penetrans by 16S rRNA Gene Cloning and Sequencing.

    Science.gov (United States)

    Anderson, J M; Preston, J F; Dickson, D W; Hewlett, T E; Williams, N H; Maruniak, J E

    1999-09-01

    Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.

  6. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  7. Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils.

    Science.gov (United States)

    Duan, Y P; Castro, H F; Hewlett, T E; White, J H; Ogram, A V

    2003-01-01

    Various bacterial species in the genus Pasteuria have great potential as biocontrol agents against plant-parasitic nematodes, although study of this important genus is hampered by the current inability to cultivate Pasteuria species outside their host. To aid in the study of this genus, an extensive 16S rRNA gene sequence phylogeny was constructed and this information was used to develop cultivation-independent methods for detection of Pasteuria in soils and nematodes. Thirty new clones of Pasteuria 16S rRNA genes were obtained directly from nematodes and soil samples. These were sequenced and used to construct an extensive phylogeny of this genus. These sequences were divided into two deeply branching clades within the low-G + C, Gram-positive division; some sequences appear to represent novel species within the genus Pasteuria. In addition, a surprising degree of 16S rRNA gene sequence diversity was observed within what had previously been designated a single strain of Pasteuria penetrans (P-20). PCR primers specific to Pasteuria 16S rRNA for detection of Pasteuria in soils were also designed and evaluated. Detection limits for soil DNA were 100-10,000 Pasteuria endospores (g soil)(-1).

  8. [Phylogeny of protostome moulting animals (Ecdysozoa) inferred from 18 and 28S rRNA gene sequences].

    Science.gov (United States)

    Petrov, N B; Vladychenskaia, N S

    2005-01-01

    Reliability of reconstruction of phylogenetic relationships within a group of protostome moulting animals was evaluated by means of comparison of 18 and 28S rRNA gene sequences sets both taken separately and combined. Reliability of reconstructions was evaluated by values of the bootstrap support of major phylogenetic tree nodes and by degree of congruence of phylogenetic trees inferred by various methods. By both criteria, phylogenetic trees reconstructed from the combined 18 and 28S rRNA gene sequences were better than those inferred from 18 and 28S sequences taken separately. Results obtained are consistent with phylogenetic hypothesis separating protostome animals into two major clades, moulting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, Crustacea + Hexapoda) and unmoulting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, Sipuncula). Clade Cephalorhyncha does not include nematomorphs (Nematomorpha). Conclusion was taken that it is necessary to use combined 18 and 28S data in phylogenetic studies.

  9. Analysis of rRNA gene methylation in Arabidopsis thaliana by CHEF-Conventional 2D gel electrophoresis

    Science.gov (United States)

    Mohannath, Gireesha; Pikaard, Craig S.

    2017-01-01

    Summary Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb to 9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes and sub-chromosomal DNA fragments, etc. Here we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~ 4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  10. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    Science.gov (United States)

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  11. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  12. High prevalence of plasmid-mediated 16S rRNA methylase gene rmtB among Escherichia coli clinical isolates from a Chinese teaching hospital

    Directory of Open Access Journals (Sweden)

    Zhang Xue-qing

    2010-06-01

    Full Text Available Abstract Background Recently, production of 16S rRNA methylases by Gram-negative bacilli has emerged as a novel mechanism for high-level resistance to aminoglycosides by these organisms in a variety of geographic locations. Therefore, the spread of high-level aminoglycoside resistance determinants has become a great concern. Methods Between January 2006 and July 2008, 680 distinct Escherichia coli clinical isolates were collected from a teaching hospital in Wenzhou, China. PCR and DNA sequencing were used to identify 16S rRNA methylase and extended-spectrum β-lactamase (ESBL genes, including armA and rmtB, and in situ hybridization was performed to determine the location of 16S rRNA methylase genes. Conjugation experiments were subsequently performed to determine whether aminoglycoside resistance was transferable from the E. coli isolates via 16S rRNA methylase-bearing plasmids. Homology of the isolates harboring 16S rRNA methylase genes was determined using pulse-field gel electrophoresis (PFGE. Results Among the 680 E. coli isolates, 357 (52.5%, 346 (50.9% and 44 (6.5% isolates were resistant to gentamicin, tobramycin and amikacin, respectively. Thirty-seven of 44 amikacin-resistant isolates harbored 16S rRNA methylase genes, with 36 of 37 harboring the rmtB gene and only one harboring armA. The positive rates of 16S rRNA methylase genes among all isolates and amikacin-resistant isolates were 5.4% (37/680 and 84.1% (37/44, respectively. Thirty-one isolates harboring 16S rRNA methylase genes also produced ESBLs. In addition, high-level aminoglycoside resistance could be transferred by conjugation from four rmtB-positive donors. The plasmids of incompatibility groups IncF, IncK and IncN were detected in 34, 3 and 3 isolates, respectively. Upstream regions of the armA gene contained ISCR1 and tnpU, the latter a putative transposase gene,. Another putative transposase gene, tnpD, was located within a region downstream of armA. Moreover, a

  13. Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Maciej Pietrzak

    Full Text Available Ribosomal deficits are documented in mild cognitive impairment (MCI, which often represents an early stage Alzheimer's disease (AD, as well as in advanced AD. The nucleolar rRNA genes (rDNA, transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation.To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups.In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosomal deficits and, ultimately, dementia.

  14. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.

    Science.gov (United States)

    Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam

    2018-01-01

    Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.

  15. The Cladophora complex (Chlorophyta): new views based on 18S rRNA gene sequences.

    Science.gov (United States)

    Bakker, F T; Olsen, J L; Stam, W T; van den Hoek, C

    1994-12-01

    Evolutionary relationships among species traditionally ascribed to the Siphonocladales/Cladophorales have remained unclear due to a lack of phylogenetically informative characters and extensive morphological plasticity resulting in morphological convergence. This study explores some of the diversity within the generic complex Cladophora and its siphonocladalaen allies. Twelve species of Cladophora representing 6 of the 11 morphological sections recognized by van den Hoek were analyzed along with 8 siphonocladalaen species using 18S rRNA gene sequences. The final alignment consisted of 1460 positions containing 92 phylogenetically informative substitutions. Weighting schemes (EOR weighting, combinatorial weighting) were applied in maximum parsimony analysis to correct for substitution bias. Stem characters were weighted 0.66 relative to single-stranded characters to correct for secondary structural constraints. Both weighting approaches resulted in greater phylogenetic resolution. Results confirm that there is no basis for the independent recognition of the Cladophorales and Siphonocladales. The Siphonocladales is polyphyletic, and Cladophora is paraphyletic. All analyses support two principal lineages, of which one contains predominantly tropical members including almost all siphonocladalean taxa, while the other lineage consists of mostly warm- to cold-temperate species of Cladophora.

  16. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Directory of Open Access Journals (Sweden)

    Kuchipudi Suresh V

    2012-10-01

    Full Text Available Abstract Background One requisite of quantitative reverse transcription PCR (qRT-PCR is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA, ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9 (ATP5G1] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs, pig tracheal epithelial cells (PTECs, and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH were highly affected by influenza virus infection and

  17. Characterization of Hydrocortisone Biometabolites and 18S rRNA Gene in Chlamydomonas reinhardtii Cultures

    Directory of Open Access Journals (Sweden)

    Seyed Bagher Mosavi-Azam

    2008-10-01

    Full Text Available A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1. This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25ºC for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17b-Dihydroxyandrost-4-en-3-one (2, 11b-hydroxyandrost-4-en-3,17-dione (3, 11b,17a,20b,21-tetrahydroxypregn-4-en-3-one (4 and prednisolone (5 were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  18. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  19. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    Science.gov (United States)

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  20. DNA sequencing reveals limited heterogeneity in the 16S rRNA gene from the rrnB operon among five Mycoplasma hominis isolates

    DEFF Research Database (Denmark)

    Mygind, T; Birkelund, Svend; Christiansen, Gunna

    1998-01-01

    To investigate the intraspecies heterogeneity within the 16S rRNA gene of Mycoplasma hominis, five isolates with diverse antigenic profiles, variable/identical P120 hypervariable domains, and different 16S rRNA gene RFLP patterns were analysed. The 16S rRNA gene from the rrnB operon was amplified...

  1. 16S rRNA gene sequencing as a tool to study microbial populations in foods and process environments

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2015-01-01

    communities in meat and the meat process environment with special focus on the Enterobacteriaceae family as a subpopulation comprising enteropathogens including Salmonella. Samples were analyzed by a nested PCR approach combined with MiSeq® Illumina®16S DNA sequencing and standardized culture methods as cross...... reference. Results: Taxonomic assignments and abundances of sequences in the total community and in the Enterobacteriaceae subpopulation were affected by the 16S rRNA gene variable region, DNA extraction methods, and polymerases chosen. However, community compositions were very reproducible when the same...

  2. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition.

    Science.gov (United States)

    Chen, Zhou; Trivedi, Harsh M; Chhun, Nok; Barnes, Virginia M; Saxena, Deepak; Xu, Tao; Li, Yihong

    2011-01-01

    To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles and 16S rRNA gene segments sequence analysis. Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified 6 phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride may promote a healthier composition within the oral bacterial community.

  3. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    Science.gov (United States)

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  4. Globicatella sanguinis bacteraemia identified by partial 16S rRNA gene sequencing

    DEFF Research Database (Denmark)

    Abdul-Redha, Rawaa Jalil; Balslew, Ulla; Christensen, Jens Jørgen

    2007-01-01

    Globicatella sanguinis is a gram-positive coccus, resembling non-haemolytic streptococci. The organism has been isolated infrequently from normally sterile sites of humans. Three isolates obtained by blood culture could not be identified by Rapid 32 ID Strep, but partial sequencing of the 16S r......RNA gene revealed the identity of the isolated bacteria, and supplementary biochemical tests confirmed the species identification. The cases histories illustrate the dilemma of finding relevant, newly recognized, opportunistic pathogens and the identification achievement (s) that can be obtained by using...

  5. Phylogenetic inference of Coxiella burnetii by 16S rRNA gene sequencing.

    Directory of Open Access Journals (Sweden)

    Heather P McLaughlin

    Full Text Available Coxiella burnetii is a human pathogen that causes the serious zoonotic disease Q fever. It is ubiquitous in the environment and due to its wide host range, long-range dispersal potential and classification as a bioterrorism agent, this microorganism is considered an HHS Select Agent. In the event of an outbreak or intentional release, laboratory strain typing methods can contribute to epidemiological investigations, law enforcement investigation and the public health response by providing critical information about the relatedness between C. burnetii isolates collected from different sources. Laboratory cultivation of C. burnetii is both time-consuming and challenging. Availability of strain collections is often limited and while several strain typing methods have been described over the years, a true gold-standard method is still elusive. Building upon epidemiological knowledge from limited, historical strain collections and typing data is essential to more accurately infer C. burnetii phylogeny. Harmonization of auspicious high-resolution laboratory typing techniques is critical to support epidemiological and law enforcement investigation. The single nucleotide polymorphism (SNP -based genotyping approach offers simplicity, rapidity and robustness. Herein, we demonstrate SNPs identified within 16S rRNA gene sequences can differentiate C. burnetii strains. Using this method, 55 isolates were assigned to six groups based on six polymorphisms. These 16S rRNA SNP-based genotyping results were largely congruent with those obtained by analyzing restriction-endonuclease (RE-digested DNA separated by SDS-PAGE and by the high-resolution approach based on SNPs within multispacer sequence typing (MST loci. The SNPs identified within the 16S rRNA gene can be used as targets for the development of additional SNP-based genotyping assays for C. burnetii.

  6. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians

    Directory of Open Access Journals (Sweden)

    Chiari Ylenia

    2005-03-01

    Full Text Available Abstract Background Identifying species of organisms by short sequences of DNA has been in the center of ongoing discussions under the terms DNA barcoding or DNA taxonomy. A C-terminal fragment of the mitochondrial gene for cytochrome oxidase subunit I (COI has been proposed as universal marker for this purpose among animals. Results Herein we present experimental evidence that the mitochondrial 16S rRNA gene fulfills the requirements for a universal DNA barcoding marker in amphibians. In terms of universality of priming sites and identification of major vertebrate clades the studied 16S fragment is superior to COI. Amplification success was 100% for 16S in a subset of fresh and well-preserved samples of Madagascan frogs, while various combination of COI primers had lower success rates.COI priming sites showed high variability among amphibians both at the level of groups and closely related species, whereas 16S priming sites were highly conserved among vertebrates. Interspecific pairwise 16S divergences in a test group of Madagascan frogs were at a level suitable for assignment of larval stages to species (1–17%, with low degrees of pairwise haplotype divergence within populations (0–1%. Conclusion We strongly advocate the use of 16S rRNA as standard DNA barcoding marker for vertebrates to complement COI, especially if samples a priori could belong to various phylogenetically distant taxa and false negatives would constitute a major problem.

  7. Comparison of two approaches for the classification of 16S rRNA gene sequences.

    Science.gov (United States)

    Chatellier, Sonia; Mugnier, Nathalie; Allard, Françoise; Bonnaud, Bertrand; Collin, Valérie; van Belkum, Alex; Veyrieras, Jean-Baptiste; Emler, Stefan

    2014-10-01

    The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the lca (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods. © 2014 The Authors.

  8. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons.

    Science.gov (United States)

    Lagkouvardos, Ilias; Fischer, Sandra; Kumar, Neeraj; Clavel, Thomas

    2017-01-01

    The importance of 16S rRNA gene amplicon profiles for understanding the influence of microbes in a variety of environments coupled with the steep reduction in sequencing costs led to a surge of microbial sequencing projects. The expanding crowd of scientists and clinicians wanting to make use of sequencing datasets can choose among a range of multipurpose software platforms, the use of which can be intimidating for non-expert users. Among available pipeline options for high-throughput 16S rRNA gene analysis, the R programming language and software environment for statistical computing stands out for its power and increased flexibility, and the possibility to adhere to most recent best practices and to adjust to individual project needs. Here we present the Rhea pipeline, a set of R scripts that encode a series of well-documented choices for the downstream analysis of Operational Taxonomic Units (OTUs) tables, including normalization steps, alpha - and beta -diversity analysis, taxonomic composition, statistical comparisons, and calculation of correlations. Rhea is primarily a straightforward starting point for beginners, but can also be a framework for advanced users who can modify and expand the tool. As the community standards evolve, Rhea will adapt to always represent the current state-of-the-art in microbial profiles analysis in the clear and comprehensive way allowed by the R language. Rhea scripts and documentation are freely available at https://lagkouvardos.github.io/Rhea.

  9. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons

    Directory of Open Access Journals (Sweden)

    Ilias Lagkouvardos

    2017-01-01

    Full Text Available The importance of 16S rRNA gene amplicon profiles for understanding the influence of microbes in a variety of environments coupled with the steep reduction in sequencing costs led to a surge of microbial sequencing projects. The expanding crowd of scientists and clinicians wanting to make use of sequencing datasets can choose among a range of multipurpose software platforms, the use of which can be intimidating for non-expert users. Among available pipeline options for high-throughput 16S rRNA gene analysis, the R programming language and software environment for statistical computing stands out for its power and increased flexibility, and the possibility to adhere to most recent best practices and to adjust to individual project needs. Here we present the Rhea pipeline, a set of R scripts that encode a series of well-documented choices for the downstream analysis of Operational Taxonomic Units (OTUs tables, including normalization steps, alpha- and beta-diversity analysis, taxonomic composition, statistical comparisons, and calculation of correlations. Rhea is primarily a straightforward starting point for beginners, but can also be a framework for advanced users who can modify and expand the tool. As the community standards evolve, Rhea will adapt to always represent the current state-of-the-art in microbial profiles analysis in the clear and comprehensive way allowed by the R language. Rhea scripts and documentation are freely available at https://lagkouvardos.github.io/Rhea.

  10. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    Science.gov (United States)

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

  11. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    Science.gov (United States)

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  12. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  13. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  14. Soil DNA extraction procedure influences protist 18S rRNA gene community profiling outcome

    DEFF Research Database (Denmark)

    Santos, Susana S.; Nunes, Ines Marques; Nielsen, Tue K.

    2017-01-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two...... manual methods (ISOm-11063, GnS-GII) and one commercial kit (MoBio), on soil protist community structures obtained from different sites with different land uses. Results from 18S rRNA gene amplicon sequencing suggest that DNA extraction method significantly affect the replicate homogeneity, the total...... number of operational taxonomic units (OTUs) recovered and the overall taxonomic structure and diversity of soil protist communities. However, DNA extraction effects did not overwhelm the natural variation among samples, as the community data still strongly grouped by geographical location...

  15. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  16. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    Science.gov (United States)

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  17. Extensive 16S rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications

    DEFF Research Database (Denmark)

    Harrington, C.S.; On, Stephen L.W.

    1999-01-01

    Phylogenetic relationships of Campylobacter hyointestinalis subspecies were examined by means of 16S rRNA gene sequencing. Sequence similarities among C. hyointestinalis subsp. lawsonii strains exceeded 99.0 %, but values among C. hyointestinalis subsp. hyointestinalis strains ranged from 96...... of the genus Campylobacter, emphasizing the need for multiple strain analysis when using 16S rRNA gene sequence comparisons for taxonomic investigations........4 to 100 %. Sequence similarites between strains representing the two different subspecies ranged from 95.7 to 99.0 %. An intervening sequence was identified in certain of the C. hyointestinalis subsp. lawsonii strains. C. hyointestinalis strains occupied two distinct branches in a phylogenetic analysis...

  18. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    Science.gov (United States)

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    Science.gov (United States)

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2017-03-17

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota.

    Directory of Open Access Journals (Sweden)

    Lance B Price

    Full Text Available BACKGROUND: Bacterial colonization is hypothesized to play a pathogenic role in the non-healing state of chronic wounds. We characterized wound bacteria from a cohort of chronic wound patients using a 16S rRNA gene-based pyrosequencing approach and assessed the impact of diabetes and antibiotics on chronic wound microbiota. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively enrolled 24 patients at a referral wound center in Baltimore, MD; sampled patients' wounds by curette; cultured samples under aerobic and anaerobic conditions; and pyrosequenced the 16S rRNA V3 hypervariable region. The 16S rRNA gene-based analyses revealed an average of 10 different bacterial families in wounds--approximately 4 times more than estimated by culture-based analyses. Fastidious anaerobic bacteria belonging to the Clostridiales family XI were among the most prevalent bacteria identified exclusively by 16S rRNA gene-based analyses. Community-scale analyses showed that wound microbiota from antibiotic treated patients were significantly different from untreated patients (p = 0.007 and were characterized by increased Pseudomonadaceae abundance. These analyses also revealed that antibiotic use was associated with decreased Streptococcaceae among diabetics and that Streptococcaceae was more abundant among diabetics as compared to non-diabetics. CONCLUSIONS/SIGNIFICANCE: The 16S rRNA gene-based analyses revealed complex bacterial communities including anaerobic bacteria that may play causative roles in the non-healing state of some chronic wounds. Our data suggest that antimicrobial therapy alters community structure--reducing some bacteria while selecting for others.

  1. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra

  2. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jan S Suchodolski

    Full Text Available BACKGROUND: Canine idiopathic inflammatory bowel disease (IBD is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6 and dogs with moderate IBD (n = 7 or severe IBD (n = 7 as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001. Proportions of Fusobacteria (p = 0.010, Bacteroidaceae (p = 0.015, Prevotellaceae (p = 0.022, and Clostridiales (p = 0.019 were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044 and Acinetobacter (p = 0.040, were either more abundant or more frequently identified in IBD dogs. CONCLUSIONS/SIGNIFICANCE: In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.

  3. Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library

    Directory of Open Access Journals (Sweden)

    Tatsuro Koyanagi

    2010-05-01

    Full Text Available Background: Peri-implantitis (PI is an inflammatory disease which leads to the destruction of soft and hard tissues around osseointegrated implants. The subgingival microbiota appears to be responsible for peri-implant lesions and although the complexity of the microbiota has been reported in PI, the microbiota responsible for PI has not been identified. Objective: The purpose of this study was to identify the microbiota in subjects who have PI, clinically healthy implants, and periodontitis-affected teeth using 16S rRNA gene clone library analysis to clarify the microbial differences. Design: Three subjects participated in this study. The conditions around the teeth and implants were evaluated based on clinical and radiographic examinations and diseased implants, clinically healthy implants, and periodontally diseased teeth were selected. Subgingival plaque samples were taken from the deepest pockets using sterile paper points. Prevalence and identity of bacteria was analyzed using a 16S rRNA gene clone library technique. Results: A total of 112 different species were identified from 335 clones sequenced. Among the 112 species, 51 (46% were uncultivated phylotypes, of which 22 were novel phylotypes. The numbers of bacterial species identified at the sites of PI, periodontitis, and periodontally healthy implants were 77, 57, and 12, respectively. Microbiota in PI mainly included Gram-negative species and the composition was more diverse when compared to that of the healthy implant and periodontitis. The phyla Chloroflexi, Tenericutes, and Synergistetes were only detected at PI sites, as were Parvimonas micra, Peptostreptococcus stomatis, Pseudoramibacter alactolyticus, and Solobacterium moorei. Low levels of periodontopathic bacteria, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were seen in peri-implant lesions. Conclusions: The biofilm in PI showed a more complex microbiota when compared to periodontitis and

  4. Campylobacter jejuni, an uncommon cause of splenic abscess diagnosed by 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Piseth Seng

    2014-12-01

    Full Text Available Splenic abscess is a rare disease that primarily occurs in patients with splenic trauma, endocarditis, sickle cell anemia, or other diseases that compromise the immune system. This report describes a culture-negative splenic abscess in an immunocompetent patient caused by Campylobacter jejuni, as determined by 16S rRNA gene sequencing.

  5. Direct Regulation of tRNA and 5S rRNA Gene Transcription by Polo-like Kinase 1

    NARCIS (Netherlands)

    Fairley, Jennifer A.; Mitchell, Louise E.; Berg, Tracy; Kenneth, Niall S.; von Schubert, Conrad; Sillje, Herman H. W.; Medema, Rene H.; Nigg, Erich A.; White, Robert J.

    2012-01-01

    Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase Ill (pol Ill) through direct binding and phosphorylation of transcription factor Brit During interphase, Plk1 promotes

  6. Direct 16S rRNA gene sequencing of polymicrobial culture-negative samples with analysis of mixed chromatograms

    DEFF Research Database (Denmark)

    Hartmeyer, Gitte N; Justesen, Ulrik S

    2010-01-01

    Two cases involving polymicrobial culture-negative samples were investigated by 16S rRNA gene sequencing, with analysis of mixed chromatograms. Fusobacterium necrophorum, Prevotella intermedia and Streptococcus constellatus were identified from pleural fluid in a patient with Lemierre's syndrome...

  7. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  8. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    Science.gov (United States)

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  9. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    Science.gov (United States)

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  10. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Background: Intellectual disability (ID) is an important medical and social problem that can be caused by different genetic and environmental factors. One such factor could be rDNA amplification and changes in rRNA expression and maturation. Aim of the study: The aim of the present study was to investigate rRNA levels in ...

  11. DNA sequencing reveals limited heterogeneity in the 16S rRNA gene from the rrnB operon among five Mycoplasma hominis isolates

    DEFF Research Database (Denmark)

    Mygind, T; Birkelund, Svend; Christiansen, Gunna

    1998-01-01

    To investigate the intraspecies heterogeneity within the 16S rRNA gene of Mycoplasma hominis, five isolates with diverse antigenic profiles, variable/identical P120 hypervariable domains, and different 16S rRNA gene RFLP patterns were analysed. The 16S rRNA gene from the rrnB operon was amplified...... by PCR and the PCR products were sequenced. Three isolates had identical 16S rRNA sequences and two isolates had sequences that differed from the others by only one nucleotide....

  12. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis.

    Science.gov (United States)

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-12-31

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification.

  13. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    Science.gov (United States)

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  14. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Javadi Nobandegani

    2015-01-01

    Full Text Available Phosphate solubilizing bacteria (PSB can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang oil palm field (University Putra Malaysia. Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer in an oil palm field.

  15. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    KAUST Repository

    Ngugi, David; Stingl, Ulrich

    2012-01-01

    that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While

  16. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Dueholm, Morten Simonsen; McIlroy, Simon Jon

    2018-01-01

    Small subunit ribosomal RNA (SSU rRNA) genes, 16S in bacteria and 18S in eukaryotes, have been the standard phylogenetic markers used to characterize microbial diversity and evolution for decades. However, the reference databases of full-length SSU rRNA gene sequences are skewed to well-studied e...

  17. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    Science.gov (United States)

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  18. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation.

    Science.gov (United States)

    Garcia, S; Kovařík, A

    2013-07-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.

  19. Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Harsi Dewantari Kusumaningrum

    2016-08-01

    Full Text Available The choice of primer used in 16S rRNA sequencing for identification of Staphylococcus species found in food is important. This study aimed to characterize Staphylococcus aureus isolates by partial sequencing based on 16S rRNA gene employing primers 16sF, 63F or 1387R. The isolates were isolated from milk, egg dishes and chicken dishes and selected based on the presence of sea gene that responsible for formation of enterotoxin-A. Antibiotic susceptibility of the isolates towards six antibiotics was also tested. The use of 16sF resulted generally in higher identity percentage and query coverage compared to the sequencing by 63F or 1387R. BLAST results of all isolates, sequenced by 16sF, showed 99% homology to complete genome of four S. aureus strains, with different characteristics on enterotoxin production and antibiotic resistance. Considering that all isolates were carrying sea gene, indicated by the occurence of 120 bp amplicon after PCR amplification using primer SEA1/SEA2,  the isolates were most in agreeing to S. aureus subsp. aureus ST288. This study indicated that 4 out of 8 selected isolates were resistant towards streptomycin. The 16S rRNA gene sequencing using 16sF is useful for identification of S. aureus. However, additional analysis such as PCR employing specific gene target, should give a valuable supplementary information, when specific characteristic is expected.

  20. dinoref: A curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene.

    Science.gov (United States)

    Mordret, Solenn; Piredda, Roberta; Vaulot, Daniel; Montresor, Marina; Kooistra, Wiebe H C F; Sarno, Diana

    2018-03-30

    Dinoflagellates are a heterogeneous group of protists present in all aquatic ecosystems where they occupy various ecological niches. They play a major role as primary producers, but many species are mixotrophic or heterotrophic. Environmental metabarcoding based on high-throughput sequencing is increasingly applied to assess diversity and abundance of planktonic organisms, and reference databases are definitely needed to taxonomically assign the huge number of sequences. We provide an updated 18S rRNA reference database of dinoflagellates: dinoref. Sequences were downloaded from genbank and filtered based on stringent quality criteria. All sequences were taxonomically curated, classified taking into account classical morphotaxonomic studies and molecular phylogenies, and linked to a series of metadata. dinoref includes 1,671 sequences representing 149 genera and 422 species. The taxonomic assignation of 468 sequences was revised. The largest number of sequences belongs to Gonyaulacales and Suessiales that include toxic and symbiotic species. dinoref provides an opportunity to test the level of taxonomic resolution of different 18S barcode markers based on a large number of sequences and species. As an example, when only the V4 region is considered, 374 of the 422 species included in dinoref can still be unambiguously identified. Clustering the V4 sequences at 98% similarity, a threshold that is commonly applied in metabarcoding studies, resulted in a considerable underestimation of species diversity. © 2018 John Wiley & Sons Ltd.

  1. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications

    KAUST Repository

    Arrigoni, Roberto; Vacherie, Benoî t; Benzoni, Francesca; Stefani, Fabrizio; Karsenti, Eric; Jaillon, Olivier; Not, Fabrice; Nunes, Flavia; Payri, Claude; Wincker, Patrick; Barbe, Valé rie

    2016-01-01

    Scleractinian corals (i.e. hard corals) play a fundamental role in building and maintaining coral reefs, one of the most diverse ecosystems on Earth. Nevertheless, their phylogenies remain largely unresolved and little is known about dispersal and survival of their planktonic larval phase. The small subunit ribosomal RNA (SSU rRNA) is a commonly used gene for DNA barcoding in several metazoans, and small variable regions of SSU rRNA are widely adopted as barcode marker to investigate marine plankton community structure worldwide. Here, we provide a large sequence data set of the complete SSU rRNA gene from 298 specimens, representing all known extant reef coral families and a total of 106 genera. The secondary structure was extremely conserved within the order with few exceptions due to insertions or deletions occurring in the variable regions. Remarkable differences in SSU rRNA length and base composition were detected between and within acroporids (Acropora, Montipora, Isopora and Alveopora) compared to other corals. The V4 and V9 regions seem to be promising barcode loci because variation at commonly used barcode primer binding sites was extremely low, while their levels of divergence allowed families and genera to be distinguished. A time-calibrated phylogeny of Scleractinia is provided, and mutation rate heterogeneity is demonstrated across main lineages. The use of this data set as a valuable reference for investigating aspects of ecology, biology, molecular taxonomy and evolution of scleractinian corals is discussed.

  2. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications

    KAUST Repository

    Arrigoni, Roberto

    2016-11-27

    Scleractinian corals (i.e. hard corals) play a fundamental role in building and maintaining coral reefs, one of the most diverse ecosystems on Earth. Nevertheless, their phylogenies remain largely unresolved and little is known about dispersal and survival of their planktonic larval phase. The small subunit ribosomal RNA (SSU rRNA) is a commonly used gene for DNA barcoding in several metazoans, and small variable regions of SSU rRNA are widely adopted as barcode marker to investigate marine plankton community structure worldwide. Here, we provide a large sequence data set of the complete SSU rRNA gene from 298 specimens, representing all known extant reef coral families and a total of 106 genera. The secondary structure was extremely conserved within the order with few exceptions due to insertions or deletions occurring in the variable regions. Remarkable differences in SSU rRNA length and base composition were detected between and within acroporids (Acropora, Montipora, Isopora and Alveopora) compared to other corals. The V4 and V9 regions seem to be promising barcode loci because variation at commonly used barcode primer binding sites was extremely low, while their levels of divergence allowed families and genera to be distinguished. A time-calibrated phylogeny of Scleractinia is provided, and mutation rate heterogeneity is demonstrated across main lineages. The use of this data set as a valuable reference for investigating aspects of ecology, biology, molecular taxonomy and evolution of scleractinian corals is discussed.

  3. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    Science.gov (United States)

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  4. Microbial community in persistent apical periodontitis: a 16S rRNA gene clone library analysis.

    Science.gov (United States)

    Zakaria, M N; Takeshita, T; Shibata, Y; Maeda, H; Wada, N; Akamine, A; Yamashita, Y

    2015-08-01

    To characterize the microbial composition of persistent periapical lesions of root filled teeth using a molecular genetics approach. Apical lesion samples were collected from 12 patients (23-80 years old) who visited the Kyushu University Hospital for apicectomy with persistent periapical lesions associated with root filled teeth. DNA was directly extracted from each sample and the microbial composition was comprehensively analysed using clone library analysis of the 16S rRNA gene. Enterococcus faecalis, Candida albicans and specific fimA genotypes of Porphyromonas gingivalis were confirmed using polymerase chain reaction (PCR) analysis with specific primers. Bacteria were detected in all samples, and the dominant findings were P. gingivalis (19.9%), Fusobacterium nucleatum (11.2%) and Propionibacterium acnes (9%). Bacterial diversity was greater in symptomatic lesions than in asymptomatic ones. In addition, the following bacteria or bacterial combinations were characteristic to symptomatic lesions: Prevotella spp., Treponema spp., Peptostreptococcaceae sp. HOT-113, Olsenella uli, Slackia exigua, Selemonas infelix, P. gingivalis with type IV fimA, and a combination of P. gingivalis, F. nucleatum, and Peptostreptococcaceae sp. HOT-113 and predominance of Streptococcus spp. On the other hand, neither Enterococcus faecalis nor C. albicans were detected in any of the samples. Whilst a diverse bacterial species were observed in the persistent apical lesions, some characteristic patterns of bacterial community were found in the symptomatic lesions. The diverse variation of community indicates that bacterial combinations as a community may cause persistent inflammation in periapical tissues rather than specific bacterial species. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Polybacterial community analysis in human conjunctiva through 16S rRNA gene libraries.

    Science.gov (United States)

    Deepthi, KrishnanNair Geetha; Jayasudha, Rajagopalaboopathi; Girish, Rameshan Nair; Manikandan, Palanisamy; Ram, Rammohan; Narendran, Venkatapathy; Prabagaran, Solai Ramatchandirane

    2018-05-14

    The conjunctival sac of healthy human harbours a variety of microorganisms. When the eye is compromised, an occasional inadvertent spread happens to the adjacent tissue, resulting in bacterial ocular infections. Microbiological investigation of the conjunctival swab is one of the broadly used modality to study the aetiological agent of conjunctiva. However, most of the time such methods yield unsatisfactory results. Hence, the present study intends to identify the bacterial community in human conjunctiva of pre-operative subjects through 16S rRNA gene libraries. Out of 45 samples collected from preoperative patients undergoing cataract surgery, 36 libraries were constructed with bacterial nested-PCR-positive samples. The representative clones with unique restriction pattern were generated through Amplified Ribosomal DNA Restriction Analysis (ARDRA) which were sequenced for phylogenetic affiliation. A total of 211 representative clones were obtained which were distributed in phyla Actinobacteria, Firmicutes, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, and Deinococcus-Thermus. Findings revealed the presence of polybacterial community, especially in some cases even though no bacterium or a single bacterium alone was identified through cultivable method. Remarkably, we identified 17 species which have never been reported in any ocular infections. The sequencing data reported 6 unidentified bacteria suggesting the possibility of novel organisms in the sample. Since, polybacterial community has been identified consisting of both gram positive and gram negative bacteria, a broad spectrum antibiotic therapy is advisable to the patients who are undergoing cataract surgery. Consolidated effort would significantly improve a clear understanding of the nature of microbial community in the human conjunctiva which will promote administration of appropriate antibiotic regimen and also help in the development of oligonucleotide probes to screen the

  6. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  7. Flow Cytometry-Assisted Cloning of Specific Sequence Motifs from Complex 16S rRNA Gene Libraries

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Lund; Schramm, Andreas; Bernhard, Anne E.

    2004-01-01

    for Systems Biology,3 Seattle, Washington, and Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany2 A flow cytometry method was developed for rapid screening and recovery of cloned DNA containing common sequence motifs. This approach, termed fluorescence-activated cell sorting......  FLOW CYTOMETRY-ASSISTED CLONING OF SPECIFIC SEQUENCE MOTIFS FROM COMPLEX 16S RRNA GENE LIBRARIES Jeppe L. Nielsen,1 Andreas Schramm,1,2 Anne E. Bernhard,1 Gerrit J. van den Engh,3 and David A. Stahl1* Department of Civil and Environmental Engineering, University of Washington,1 and Institute......-assisted cloning, was used to recover sequences affiliated with a unique lineage within the Bacteroidetes not abundant in a clone library of environmental 16S rRNA genes.  ...

  8. Phylogenetic relationships between Sarcocystis species from reindeer and other Sarcocystidae deduced from ssu rRNA gene sequences

    DEFF Research Database (Denmark)

    Dahlgren, S.S.; Oliveira, Rodrigo Gouveia; Gjerde, B.

    2008-01-01

    any effect on previously inferred phylogenetic relationships within the Sarcocystidae. The complete small subunit (ssu) rRNA gene sequences of all six Sarcocystis species from reindeer were used in the phylogenetic analyses along with ssu rRNA gene sequences of 85 other members of the Coccidea. Trees...... the six species in phylogenetic analyses of the Sarcocystidae, and also to investigate the phylogenetic relationships between the species from reindeer and those from other hosts. The study also aimed at revealing whether the inclusion of six Sarcocystis species from the same intermediate host would have....... tarandivulpes, formed a sister group to other Sarcocystis species with a canine definitive host. The position of S. hardangeri on the tree suggested that it uses another type of definitive host than the other Sarcocystis species in this clade. Considering the geographical distribution and infection intensity...

  9. Dominant obligate anaerobes revealed in lower respiratory tract infection in horses by 16S rRNA gene sequencing.

    Science.gov (United States)

    Kinoshita, Yuta; Niwa, Hidekazu; Katayama, Yoshinari; Hariu, Kazuhisa

    2014-04-01

    Obligate anaerobes are important etiological agents in pneumonia or pleuropneumonia in horses, because they are isolated more commonly from ill horses that have died or been euthanized than from those that survive. We performed bacterial identification and antimicrobial susceptibility testing for obligate anaerobes to establish effective antimicrobial therapy. We used 16S rRNA gene sequencing to identify 58 obligate anaerobes and compared the results with those from a phenotypic identification kit. The identification results of 16S rRNA gene sequencing were more reliable than those of the commercial kit. We concluded that genera Bacteroides and Prevotella-especially B. fragilis and P. heparinolytica-are dominant anaerobes in lower respiratory tract infection in horses; these organisms were susceptible to metronidazole, imipenem and clindamycin.

  10. A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.

    Science.gov (United States)

    Whelan, Fiona J; Surette, Michael G

    2017-08-14

    Advances in next-generation sequencing technologies have allowed for detailed, molecular-based studies of microbial communities such as the human gut, soil, and ocean waters. Sequencing of the 16S rRNA gene, specific to prokaryotes, using universal PCR primers has become a common approach to studying the composition of these microbiota. However, the bioinformatic processing of the resulting millions of DNA sequences can be challenging, and a standardized protocol would aid in reproducible analyses. The short-read library 16S rRNA gene sequencing pipeline (sl1p, pronounced "slip") was designed with the purpose of mitigating this lack of reproducibility by combining pre-existing tools into a computational pipeline. This pipeline automates the processing of raw 16S rRNA gene sequencing data to create human-readable tables, graphs, and figures to make the collected data more readily accessible. Data generated from mock communities were compared using eight OTU clustering algorithms, two taxon assignment approaches, and three 16S rRNA gene reference databases. While all of these algorithms and options are available to sl1p users, through testing with human-associated mock communities, AbundantOTU+, the RDP Classifier, and the Greengenes 2011 reference database were chosen as sl1p's defaults based on their ability to best represent the known input communities. sl1p promotes reproducible research by providing a comprehensive log file, and reduces the computational knowledge needed by the user to process next-generation sequencing data. sl1p is freely available at https://bitbucket.org/fwhelan/sl1p .

  11. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  12. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    Science.gov (United States)

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  13. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation.

    Science.gov (United States)

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).

  14. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR.

    Science.gov (United States)

    Tatti, Enrico; McKew, Boyd A; Whitby, Corrine; Smith, Cindy J

    2016-06-11

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.

  15. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis.

    Science.gov (United States)

    Virtanen, Seppo; Kalliala, Ilkka; Nieminen, Pekka; Salonen, Anne

    2017-01-01

    Molecular methods such as next-generation sequencing are actively being employed to characterize the vaginal microbiota in health and disease. Previous studies have focused on characterizing the biological variation in the microbiota, and less is known about how factors related to sampling contribute to the results. Our aim was to investigate the impact of a sampling device and anatomical sampling site on the quantitative and qualitative outcomes relevant for vaginal microbiota research. We sampled 10 Finnish women representing diverse clinical characteristics with flocked swabs, the Evalyn® self-sampling device, sterile plastic spatulas and a cervical brush that were used to collect samples from fornix, vaginal wall and cervix. Samples were compared on DNA and protein yield, bacterial load, and microbiota diversity and species composition based on Illumina MiSeq sequencing of the 16S rRNA gene. We quantified the relative contributions of sampling variables versus intrinsic variables in the overall microbiota variation, and evaluated the microbiota profiles using several commonly employed metrics such as alpha and beta diversity as well as abundance of major bacterial genera and species. The total DNA yield was strongly dependent on the sampling device and to a lesser extent on the anatomical site of sampling. The sampling strategy did not affect the protein yield or the bacterial load. All tested sampling methods produced highly comparable microbiota profiles based on MiSeq sequencing. The sampling method explained only 2% (p-value = 0.89) of the overall microbiota variation, markedly surpassed by intrinsic factors such as clinical status (microscopy for bacterial vaginosis 53%, p = 0.0001), bleeding (19%, p = 0.0001), and the variation between subjects (11%, p-value 0.0001). The results indicate that different sampling strategies yield comparable vaginal microbiota composition and diversity. Hence, past and future vaginal microbiota studies employing different

  16. Robertsonian translocation 13/14 associated with rRNA genes ...

    African Journals Online (AJOL)

    Alexander A. Dolskiy

    2017-12-01

    Dec 1, 2017 ... Results: We describe a family case of a translocation rob (13; 14) and elevated rRNA expression in the proband with ..... Clin Genet 2010;78:299–309. ... [9] Bertini V, Fogli A, Bruno R, Azzarà A, Michelucci A, Mattina T, et al.

  17. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    DEFF Research Database (Denmark)

    Wolff Sönksen, Ute; Christensen, Jens Jørgen; Nielsen, Lisbeth

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic...... characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification...

  18. Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences.

    Science.gov (United States)

    Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi

    2015-01-01

    Loricifera is an enigmatic metazoan phylum; its morphology appeared to place it with Priapulida and Kinorhyncha in the group Scalidophora which, along with Nematoida (Nematoda and Nematomorpha), comprised the group Cycloneuralia. Scarce molecular data have suggested an alternative phylogenetic hypothesis, that the phylum Loricifera is a sister taxon to Nematomorpha, although the actual phylogenetic position of the phylum remains unclear. Ecdysozoan phylogeny was reconstructed through maximum-likelihood (ML) and Bayesian inference (BI) analyses of nuclear 18S and 28S rRNA gene sequences from 60 species representing all eight ecdysozoan phyla, and including a newly collected loriciferan species. Ecdysozoa comprised two clades with high support values in both the ML and BI trees. One consisted of Priapulida and Kinorhyncha, and the other of Loricifera, Nematoida, and Panarthropoda (Tardigrada, Onychophora, and Arthropoda). The relationships between Loricifera, Nematoida, and Panarthropoda were not well resolved. Loricifera appears to be closely related to Nematoida and Panarthropoda, rather than grouping with Priapulida and Kinorhyncha, as had been suggested by previous studies. Thus, both Scalidophora and Cycloneuralia are a polyphyletic or paraphyletic groups. In addition, Loricifera and Nematomorpha did not emerge as sister groups.

  19. Deletion analysis of the expression of rRNA genes and associated tRNA genes carried by a lambda transducing bacteriophage

    International Nuclear Information System (INIS)

    Morgan, E.A.; Nomura, M.

    1979-01-01

    Transducing phage lambda ilv5 carries genes for rRNA's, spacer tRNA's (tRNA 1 /sup Ile/ and tRNA/sub 1B//sup Ala/), and two other tRNA's (tRNA 1 /sup Asp/ and tRNA/sup Trp/). We have isolated a mutant of lambda ilv5, lambda ilv5su7, which carries an amber suppressor mutation in the tRNA/sup Trp/ gene. A series of deletion mutants were isolated from the lambda ilv5su7 phage. Genetic and biochemical analyses of these deletion mutants have confirmed our previous conclusion that the genes for tRNA 1 /sup Asp/ and tRNA/sup Trp/ located at the distal end of the rRNA operon (rrnC) are cotranscribed with other rRNA genes in that operon. In addition, these deletions were used to define roughly the physical location of the promoter(s) of the rRNA operon carried by the lambda ilv5su7 transducing phage

  20. Validation of a PCR Assay for Chlamydophila abortus rRNA gene detection in a murine model

    Directory of Open Access Journals (Sweden)

    Francielle Gibson da Silva-Zacarias

    2009-11-01

    Full Text Available Chlamydophila abortus (C. abortus is associated with reproductive problems in cattle, sheep, and goats. Diagnosis of C. abortus using embryonated chicken eggs or immortalized cell lines has a very low sensitivity. Polymerase chain reaction (PCR assays have been used to detect C. abortus infection in clinical specimens and organ fragments, such as placenta, fetal organs, vaginal secretions, and semen. The aim of this study was to develop a PCR assay for the amplification of an 856-bp fragment of the rRNA gene of the Chlamydiaceae family. The PCR assay was evaluated using organs from 15 mice experimentally infected with the S26/3 reference strain of C. abortus. The results of the rRNA PCR were compared to the results from another PCR system (Omp2 PCR that has been previously described for the Omp2 (outer major protein gene from the Chlamydiaceae family. From the 15 C. abortus-inoculated mice, 13 (K=0.84, standard error =0.20 tested positive using the rRNA PCR assay and 9 (K=0.55, standard error=0.18 tested positive using the Omp2 PCR assay. The detection limit, measured using inclusion-forming units (IFU, for C. abortus with the rRNA PCR (1.05 IFU was 100-fold lower than for the Omp2 PCR (105 IFU. The higher sensitivity of the rRNA PCR, as compared to the previously described PCR assay, and the specificity of the assay, demonstrated using different pathogenic microorganisms of the bovine reproductive system, suggest that the new PCR assay developed in this study can be used for the molecular diagnosis of C. abortus in abortion and other reproductive failures in bovines, caprines, and ovines.Chlamydophila abortus (C. abortus é frequentemente associada a distúrbios reprodutivos em bovinos, ovinos e caprinos. Para o diagnóstico, os métodos de cultivo em ovo embrionado de galinha e em células de linhagem contínua apresentam baixa sensibilidade. A reação em cadeia da polimerase (PCR tem sido utilizada em placenta, órgãos fetais, secre

  1. Simultaneous pyrosequencing of the 16S rRNA, IncP-1 trfA, and merA genes

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai; Sørensen, Søren Johannes; Hansen, Lars H.

    2013-01-01

    The use of amplicon pyrosequencing makes it possible to produce thousands of sequences of the same gene at relatively low costs. Here we show that it is possible to simultaneously sequence the 16S rRNA gene, IncP-1 trfA gene and mercury reductase gene (merA) as a way for screening the diversity...

  2. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Irina S. Kolesnikova

    2017-09-01

    Sep 1, 2017 ... conjugated avidin and anti-avidin antibody (both from New Eng- land Biolabs ... performed using an Aurum Total RNA Mini Kit (BioRad, USA) or .... 5.8S rRNA in CPG148 are 19.60 ± 0.82 and 20.09 ± 0.13 times the .... Science + Business Media Dordrecht; 2011. p. ... New York: Academic Press; 1977. p.

  3. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum.

    Science.gov (United States)

    Li, Bei-Bei; Shen, Jian-Zhong; Cao, Xing-Yuan; Wang, Yang; Dai, Lei; Huang, Si-Yang; Wu, Cong-Ming

    2010-07-01

    Mycoplasma gallisepticum is a major etiological agent of chronic respiratory disease (CRD) in chickens and sinusitis in turkeys. The pleuromutilin antibiotics tiamulin and valnemulin are currently used in the treatment of M. gallisepticum infection. We studied the in vitro development of pleuromutilin resistance in M. gallisepticum and investigated the molecular mechanisms involved in this process. Pleuromutilin-resistant mutants were selected by serial passages of M. gallisepticum strains PG31 and S6 in broth medium containing subinhibitory concentrations of tiamulin or valnemulin. A portion of the gene encoding 23S rRNA gene (domain V) and the gene encoding ribosome protein L3 were amplified and sequenced. No mutation could be detected in ribosome protein L3. Mutations were found at nucleotide positions 2058, 2059, 2061, 2447 and 2503 of 23S rRNA gene (Escherichia coli numbering). Although a single mutation could cause elevation of tiamulin and valnemulin MICs, combinations of two or three mutations were necessary to produce high-level resistance. All the mutants were cross-resistant to lincomycin, chloramphenicol and florfenicol. Mutants with the A2058G or the A2059G mutation exhibited cross-resistance to macrolide antibiotics erythromycin, tilmicosin and tylosin.

  4. Detection of a Mixed Infection in a Culture-Negative Brain Abscess by Broad-Spectrum Bacterial 16S rRNA Gene PCR ▿ †

    Science.gov (United States)

    Keller, Peter M.; Rampini, Silvana K.; Bloemberg, Guido V.

    2010-01-01

    We describe the identification of two bacterial pathogens from a culture-negative brain abscess by the use of broad-spectrum 16S rRNA gene PCR. Simultaneous detection of Fusobacterium nucleatum and Porphyromonas endodontalis was possible due to a 24-bp length difference of their partially amplified 16S rRNA genes, which allowed separation by high-resolution polyacrylamide gel electrophoresis. PMID:20392909

  5. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression

    OpenAIRE

    Har, Jia Y.; Helbig, Tim; Lim, Ju H.; Fernando, Samodha C.; Reitzel, Adam M.; Penn, Kevin; Thompson, Janelle R.

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacter...

  6. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    Directory of Open Access Journals (Sweden)

    Lee SH

    2016-04-01

    Full Text Available Sin Hang Lee,1,21Pathology Department, Milford Hospital, Milford, CT, USA; 2Milford Molecular Diagnostics, Milford, CT, USA Abstract: Lyme disease (LD, the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. Keywords: Lyme disease, Borrelia burgdorferi, homeologous 16S rRNA genes, DNA sequencing

  7. 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer.

    Directory of Open Access Journals (Sweden)

    Clare Bird

    Full Text Available Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM to investigate their species-specific trophic interactions and potential symbiotic associations. 53-99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM, but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83-95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta

  8. Microbial Dark Matter: Unusual intervening sequences in 16S rRNA genes of candidate phyla from the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Jarett, Jessica; Stepanauskas, Ramunas; Kieft, Thomas; Onstott, Tullis; Woyke, Tanja

    2014-03-17

    The Microbial Dark Matter project has sequenced genomes from over 200 single cells from candidate phyla, greatly expanding our knowledge of the ecology, inferred metabolism, and evolution of these widely distributed, yet poorly understood lineages. The second phase of this project aims to sequence an additional 800 single cells from known as well as potentially novel candidate phyla derived from a variety of environments. In order to identify whole genome amplified single cells, screening based on phylogenetic placement of 16S rRNA gene sequences is being conducted. Briefly, derived 16S rRNA gene sequences are aligned to a custom version of the Greengenes reference database and added to a reference tree in ARB using parsimony. In multiple samples from deep subsurface habitats but not from other habitats, a large number of sequences proved difficult to align and therefore to place in the tree. Based on comparisons to reference sequences and structural alignments using SSU-ALIGN, many of these ?difficult? sequences appear to originate from candidate phyla, and contain intervening sequences (IVSs) within the 16S rRNA genes. These IVSs are short (39 - 79 nt) and do not appear to be self-splicing or to contain open reading frames. IVSs were found in the loop regions of stem-loop structures in several different taxonomic groups. Phylogenetic placement of sequences is strongly affected by IVSs; two out of three groups investigated were classified as different phyla after their removal. Based on data from samples screened in this project, IVSs appear to be more common in microbes occurring in deep subsurface habitats, although the reasons for this remain elusive.

  9. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus.

    Science.gov (United States)

    Moore, S G; Ericsson, A C; Poock, S E; Melendez, P; Lucy, M C

    2017-06-01

    We tested the hypothesis that the uterus of virgin heifers and pregnant cows possessed a resident microbiome by 16S rRNA gene sequencing of the virgin and pregnant bovine uterus. The endometrium of 10 virgin heifers in estrus and the amniotic fluid, placentome, intercotyledonary placenta, cervical lumen, and external cervix surface (control) of 5 pregnant cows were sampled using aseptic techniques. The DNA was extracted, the V4 hypervariable region of the 16S rRNA gene was amplified, and amplicons were sequenced using Illumina MiSeq technology (Illumina Inc., San Diego, CA). Operational taxonomic units (OTU) were generated from the sequences using Qiime v1.8 software, and taxonomy was assigned using the Greengenes database. The effect of tissue on the microbial composition within the pregnant uterus was tested using univariate (mixed model) and multivariate (permutational multivariate ANOVA) procedures. Amplicons of 16S rRNA gene were generated in all samples, supporting the contention that the uterus of virgin heifers and pregnant cows contained a microbiome. On average, 53, 199, 380, 382, 525, and 13,589 reads annotated as 16, 35, 43, 63, 48, and 176 OTU in the placentome, virgin endometrium, amniotic fluid, cervical lumen, intercotyledonary placenta, and external surface of the cervix, respectively, were generated. The 3 most abundant phyla in the uterus of the virgin heifers and pregnant cows were Firmicutes, Bacteroidetes, and Proteobacteria, and they accounted for approximately 40, 35, and 10% of the sequences, respectively. Phyla abundance was similar between the tissues of the pregnant uterus. Principal component analysis, one-way PERMANOVA analysis of the Bray-Curtis similarity index, and mixed model analysis of the Shannon diversity index and Chao1 index demonstrated that the microbiome of the control tissue (external surface of the cervix) was significantly different from that of the amniotic fluid, intercotyledonary placenta, and placentome tissues

  10. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Khanna, S [NIIT Univ, Neemrana (India). Dept. of Biotechnology & Bioinformation

    2010-04-15

    In order to develop effective bioremediation strategies for polyaromatic hydrocarbons (PAHs) degradation, the composition and metabolic potential of microbial communities need to be better understood, especially in highly PAH contaminated sites in which little information on the cultivation-independent communities is available. Coal-tar-contaminated soil was collected, which consisted of 122-122.5 mg g{sup -1} total extractable PAH compounds. Biodegradation studies with this soil indicated the presence of microbial community that is capable of degrading the model PAH compounds viz naphthalene, phenanthrene and pyrene at 50 ppm each. PCR clone libraries were established from the DNA of the coal-tar-contaminated soil, targeting the 16S rRNA to characterize (I) the microbial communities, (ii) partial gene fragment encoding the Rieske iron sulfur center {alpha}-subunit) common to all PAH dioxygenase enzymes and (iii) {beta}-subunit of dioxygenase. Phylotypes related to Proteobacteria ({Alpha}-, {Epsilon}- and Gammaproteobacteria), Acidobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes and Deinococci were detected in 16S rRNA derived clone libraries. Many of the gene fragment sequences of alpha-subunit and beta-subunit of dioxygenase obtained from the respective clone libraries fell into clades that are distinct from the reference dioxygenase gene sequences. Presence of consensus sequence of the Rieske type (2Fe2S) cluster binding site suggested that these gene fragments encode for {alpha}-subunit of dioxygenase gene. Sequencing of the cloned libraries representing {alpha}-subunit gene fragments (Rf1) and beta-subunit of dioxygenase showed the presence of hitherto unidentified dioxygenase in coal-tar-contaminated soil.

  11. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion.

    Science.gov (United States)

    Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David

    2018-03-19

    To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.

  12. Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-01-01

    We explored the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA Ser(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA Ser(UCN) gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene

  13. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease.

    Science.gov (United States)

    Suchodolski, Jan S; Dowd, Scot E; Wilke, Vicky; Steiner, Jörg M; Jergens, Albert E

    2012-01-01

    Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, pmicrobial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation.

  14. Design and Evaluation of Illumina MiSeq-Compatible, 18S rRNA Gene-Specific Primers for Improved Characterization of Mixed Phototrophic Communities.

    Science.gov (United States)

    Bradley, Ian M; Pinto, Ameet J; Guest, Jeremy S

    2016-10-01

    The use of high-throughput sequencing technologies with the 16S rRNA gene for characterization of bacterial and archaeal communities has become routine. However, the adoption of sequencing methods for eukaryotes has been slow, despite their significance to natural and engineered systems. There are large variations among the target genes used for amplicon sequencing, and for the 18S rRNA gene, there is no consensus on which hypervariable region provides the most suitable representation of diversity. Additionally, it is unclear how much PCR/sequencing bias affects the depiction of community structure using current primers. The present study amplified the V4 and V8-V9 regions from seven microalgal mock communities as well as eukaryotic communities from freshwater, coastal, and wastewater samples to examine the effect of PCR/sequencing bias on community structure and membership. We found that degeneracies on the 3' end of the current V4-specific primers impact read length and mean relative abundance. Furthermore, the PCR/sequencing error is markedly higher for GC-rich members than for communities with balanced GC content. Importantly, the V4 region failed to reliably capture 2 of the 12 mock community members, and the V8-V9 hypervariable region more accurately represents mean relative abundance and alpha and beta diversity. Overall, the V4 and V8-V9 regions show similar community representations over freshwater, coastal, and wastewater environments, but specific samples show markedly different communities. These results indicate that multiple primer sets may be advantageous for gaining a more complete understanding of community structure and highlight the importance of including mock communities composed of species of interest. The quantification of error associated with community representation by amplicon sequencing is a critical challenge that is often ignored. When target genes are amplified using currently available primers, differential amplification efficiencies

  15. Recognition of Potentially Novel Human Disease-Associated Pathogens by Implementation of Systematic 16S rRNA Gene Sequencing in the Diagnostic Laboratory▿ †

    Science.gov (United States)

    Keller, Peter M.; Rampini, Silvana K.; Büchler, Andrea C.; Eich, Gerhard; Wanner, Roger M.; Speck, Roberto F.; Böttger, Erik C.; Bloemberg, Guido V.

    2010-01-01

    Clinical isolates that are difficult to identify by conventional means form a valuable source of novel human pathogens. We report on a 5-year study based on systematic 16S rRNA gene sequence analysis. We found 60 previously unknown 16S rRNA sequences corresponding to potentially novel bacterial taxa. For 30 of 60 isolates, clinical relevance was evaluated; 18 of the 30 isolates analyzed were considered to be associated with human disease. PMID:20631113

  16. lncRNA-Induced Nucleosome Repositioning Reinforces Transcriptional Repression of rRNA Genes upon Hypotonic Stress

    Directory of Open Access Journals (Sweden)

    Zhongliang Zhao

    2016-03-01

    Full Text Available The activity of rRNA genes (rDNA is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3 and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional “off” position. Thus, PAPAS exerts a “stress-tailored” dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.

  17. Characterization of Actinomyces with genomic DNA fingerprints and rRNA gene probes.

    Science.gov (United States)

    Bowden, G; Johnson, J; Schachtele, C

    1993-08-01

    Cellular DNA from 25 Actinomyces naeslundii and Actinomyces viscosus strains belonging to the 7 taxonomic clusters of Fillery et al. (1978) and several unclustered strains was obtained by enzymatic and N-lauroylsarcosine/guanidine isothiocyanate treatment of whole cells, followed by extraction of the nucleic acid. The DNA samples were digested with restriction endonucleases BamHI or PvuII, and agarose gel electrophoresis was used to obtain DNA fingerprints. The DNA fragments were subjected to Southern blot hybridization with a digoxigenin-labeled cDNA probe transcribed from Escherichia coli 16S and 23S rRNA. The patterns of bands from genomic (DNA fingerprints) and rDNA fingerprints (ribotypes) were used for comparison between the taxonomic cluster strains and strains within clusters. Representative strains from each taxonomic cluster provided different BamHI DNA fingerprints and ribotype patterns with 3 to 9 distinct bands. Some strains within a cluster showed identical ribotype patterns with both endonucleases (A. naeslundii B120 and A. naeslundii B102 from cluster 3), while others showed the same pattern with BamHI but a different pattern with PvuII (A. naeslundii ATCC 12104 and 398A from cluster 5). A viscosus ATCC 15987 (cluster 7) and its parent strain T6 yielded identical fingerprint and ribotype patterns. The genomic diversity revealed by DNA fingerprinting and ribotyping demonstrates that these techniques, which do not require phenotypic expression, are suited for study of the oral ecology of the Actinomyces, and for epidemiological tracking of specific Actinomyces strains associated with caries lesions and sites of periodontal destruction.

  18. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Cébron, Aurélie; Murrell, J Colin

    2007-11-01

    Active methanotrophs in a landfill soil were revealed by detecting the 16S rRNA of methanotrophs and the mRNA transcripts of key genes involved in methane oxidation. New 16S rRNA primers targeting type I and type II methanotrophs were designed and optimized for analysis by denaturing gradient gel electrophoresis. Direct extraction of RNA from soil enabled the analysis of the expression of the functional genes: mmoX, pmoA and mxaF, which encode subunits of soluble methane monooxygenase, particulate methane monooxygenase and methanol dehydrogenase respectively. The 16S rRNA polymerase chain reaction (PCR) primers for type I methanotrophs detected Methylomonas, Methylosarcina and Methylobacter sequences from both soil DNA and cDNA which was generated from RNA extracted directly from the landfill cover soil. The 16S rRNA primers for type II methanotrophs detected primarily Methylocella and some Methylocystis 16S rRNA genes. Phylogenetic analysis of mRNA recovered from the soil indicated that Methylobacter, Methylosarcina, Methylomonas, Methylocystis and Methylocella were actively expressing genes involved in methane and methanol oxidation. Transcripts of pmoA but not mmoX were readily detected by reverse transcription polymerase chain reaction (RT-PCR), indicating that particulate methane monooxygenase may be largely responsible for methane oxidation in situ.

  19. Detection of Microbial 16S rRNA Gene in the Blood of Patients With Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yiwei Qian

    2018-05-01

    Full Text Available Emerging evidence suggests that the microbiota present in feces plays a role in Parkinson’s disease (PD. However, the alterations of the microbiome in the blood of PD patients remain unknown. To test this hypothesis, we conducted this case-control study to explore the microbiota compositions in the blood of Chinese PD patients. Microbiota communities in the blood of 45 patients and their healthy spouses were investigated using high-throughput Illumina HiSeq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA gene. The relationships between the microbiota in the blood and PD clinical characteristics were analyzed. No difference was detected in the structure and richness between PD patients and healthy controls. The following genera were enriched in the blood of PD patients: Isoptericola, Cloacibacterium, Enhydrobacter and Microbacterium; whereas genus Limnobacter was enriched in the healthy controls after adjusting for age, gender, body mass index (BMI and constipation. Additionally, the findings regarding these genera were validated in another independent group of 58 PD patients and 57 healthy controls using real-time PCR targeting genus-specific 16S rRNA genes. Furthermore, not only the genera Cloacibacterium and Isoptericola (which were identified as enriched in PD patients but also the genera Paludibacter and Saccharofermentans were positively associated with disease duration. Some specific genera in the blood were related to mood disorders. We believe this is the first report to provide direct evidence to support the hypothesis that the identified microbiota in the blood are associated with PD. Additionally, some microbiota in the blood are closely associated with the clinical characteristics of PD. Elucidating these differences in blood microbiomes will provide a foundation to improve our understanding of the role of microbiota in the pathogenesis of PD.

  20. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets.

    Science.gov (United States)

    Yu, Guoqin; Fadrosh, Doug; Goedert, James J; Ravel, Jacques; Goldstein, Alisa M

    2015-01-01

    Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention. In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon's index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (Pnested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance 27% of total OTUs in stool). Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by nested PCR should be validated by other technologies.

  1. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    DEFF Research Database (Denmark)

    Wolff Sönksen, Ute; Christensen, Jens Jørgen; Nielsen, Lisbeth

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic...... characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification...... results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial...

  2. Symmetric dimeric bisbenzimidazoles DBP(n reduce methylation of RARB and PTEN while significantly increase methylation of rRNA genes in MCF-7 cancer cells.

    Directory of Open Access Journals (Sweden)

    Svetlana V Kostyuk

    Full Text Available Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n are able to block DNA methyltransferase activities. It was also found that DBP(n produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome.It is shown that DBP(n are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n.It is concluded that DBP (n are able to accumulate in the nucleus (excluding the nucleolus area and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed

  3. Expression stability of two housekeeping genes (18S rRNA and G3PDH) during in vitro maturation of follicular oocytes in buffalo (Bubalus bubalis).

    Science.gov (United States)

    Aswal, Ajay Pal Singh; Raghav, Sarvesh; De, Sachinandan; Thakur, Manish; Goswami, Surender Lal; Datta, Tirtha Kumar

    2008-01-15

    The present study was undertaken to evaluate the expression stability of two housekeeping genes (HKGs), 18S rRNA and G3PDH during in vitro maturation (IVM) of oocytes in buffalo, which qualifies their use as internal controls for valid qRT-PCR estimation of other oocyte transcripts. A semi quantitative RT-PCR system was used with optimised qRT-PCR parameters at exponential PCR cycle for evaluation of temporal expression pattern of these genes over 24 h of IVM. 18S rRNA was found more stable in its expression pattern than G3PDH.

  4. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  5. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies.

    Directory of Open Access Journals (Sweden)

    Patrick D Schloss

    Full Text Available Pyrosequencing of PCR-amplified fragments that target variable regions within the 16S rRNA gene has quickly become a powerful method for analyzing the membership and structure of microbial communities. This approach has revealed and introduced questions that were not fully appreciated by those carrying out traditional Sanger sequencing-based methods. These include the effects of alignment quality, the best method of calculating pairwise genetic distances for 16S rRNA genes, whether it is appropriate to filter variable regions, and how the choice of variable region relates to the genetic diversity observed in full-length sequences. I used a diverse collection of 13,501 high-quality full-length sequences to assess each of these questions. First, alignment quality had a significant impact on distance values and downstream analyses. Specifically, the greengenes alignment, which does a poor job of aligning variable regions, predicted higher genetic diversity, richness, and phylogenetic diversity than the SILVA and RDP-based alignments. Second, the effect of different gap treatments in determining pairwise genetic distances was strongly affected by the variation in sequence length for a region; however, the effect of different calculation methods was subtle when determining the sample's richness or phylogenetic diversity for a region. Third, applying a sequence mask to remove variable positions had a profound impact on genetic distances by muting the observed richness and phylogenetic diversity. Finally, the genetic distances calculated for each of the variable regions did a poor job of correlating with the full-length gene. Thus, while it is tempting to apply traditional cutoff levels derived for full-length sequences to these shorter sequences, it is not advisable. Analysis of beta-diversity metrics showed that each of these factors can have a significant impact on the comparison of community membership and structure. Taken together, these results

  6. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic.

    Directory of Open Access Journals (Sweden)

    Tomoko Matsuda

    Full Text Available The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825-1,901 bp and 28S (the 5' end of 646-743 bp rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp. As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

  7. Nearly Complete 28S rRNA Gene Sequences Confirm New Hypotheses of Sponge Evolution

    Science.gov (United States)

    Thacker, Robert W.; Hill, April L.; Hill, Malcolm S.; Redmond, Niamh E.; Collins, Allen G.; Morrow, Christine C.; Spicer, Lori; Carmack, Cheryl A.; Zappe, Megan E.; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C.; Bangalore, Purushotham V.

    2013-01-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  8. Comparison of COBAS AMPLICOR Neissefia gonorrhoeae PCR, including confirmation with N-gonorrhoeae-specific 16S rRNA PCR, with traditional culture

    NARCIS (Netherlands)

    Luijt, DS; Bos, PAJ; van Zwet, AA; Vader, PCV; Schirm, J

    A total of 3,023 clinical specimens were tested for Neisseria gonorrhoeae by using COBAS AMPLICOR (CA) PCR and confirmation of positives by N. gonorrhoeae-specific 16S rRNA PCR. The sensitivity of CA plus 16S rRNA PCR was 98.8%, compared to 68.2% for culture. Confirmation of CA positives increased

  9. Establishment of a continuous culture system for Entamoeba muris and analysis of the small subunit rRNA gene

    Directory of Open Access Journals (Sweden)

    Kobayashi S.

    2009-06-01

    Full Text Available We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil using a modified Balamuth’s egg yolk infusion medium supplemented with 4% adult bovine serum and Bacteroides fragilis cocultured with Escherichia coli. Further, encystation was observed in the culture medium. The morphological characteristics of E. muris are similar to those of Entamoeba coli (E. coli; moreover, the malic isoenzyme electrophoretic band, which shows species-specific electrophoretic mobility, of E. muris had almost the same mobility as that observed with the malic isoenzyme electrophorectic band of E. coli (UZG-EC-01 strain isolated from a gorilla. We determined the small subunit rRNA (SSU-rRNA gene sequence of the MG-EM-01 strain, and this sequence was observed to show 82.7% homology with that of the UZG-EC-01 strain. Further, the resultant phylogenetic tree for molecular taxonomy based on the SSU-rRNA genes of the 21 strains of the intestinal parasitic amoeba species indicated that the MG-EM-01 strain was most closely related to E. coli.

  10. Nested PCR and RFLP analysis based on the 16S rRNA gene

    Science.gov (United States)

    Current phytoplasma detection and identification method is primarily based on nested PCR followed by restriction fragment length polymorphism analysis and gel electrophoresis. This method can potentially detect and differentiate all phytoplasmas including those previously not described. The present ...

  11. Phylogenetic relationships of Sarcocystis neurona of horses and opossums to other cyst-forming coccidia deduced from SSU rRNA gene sequences.

    Science.gov (United States)

    Elsheikha, Hany M; Lacher, David W; Mansfield, Linda S

    2005-11-01

    Phylogenetic analyses based on sequences of the nuclear-encoded small subunit rRNA (ssurRNA) gene were performed to examine the origin, phylogeny, and biogeographic relationships of Sarcocystis neurona isolates from opossums and horses from the State of Michigan, USA, in relation to other cyst-forming coccidia. A total of 31 taxa representing all recognized subfamilies and genera of Sarcocystidae were included in the analyses with clonal isolates of two opossum and two horse S. neurona. Phylogenies obtained by the four tree-building methods were consistent with the classical taxonomy based on morphological criteria. The "isosporid" coccidia Neospora, Toxoplasma, Besnoitia, Isospora lacking stieda bodies, and Hyaloklossia formed a sister group to the Sarcocystis spp. Sarcocystis species were divided into three main lineages; S. neurona isolates were located in the second lineage and clustered with S. mucosa, S. dispersa, S. lacertae, S. rodentifelis, S. muris, and Frenkelia spp. Alignment of S. neurona SSU rRNA gene sequences of Michigan opossum isolates (MIOP5, MIOP20) and a S. neurona Michigan horse isolate (MIH8) showed 100% identity. These Michigan isolates differed in 2/1085 bp (0.2%) from a Kentucky S. neurona horse isolate (SN5). Additionally, S. neurona isolates from horses and opossums were identical based on the ultrastructural features and PCR-RFLP analyses thus forming a phylogenetically indistinct group in these regions. These findings revealed the concordance between the morphological and molecular data and confirmed that S. neurona from opossums and horses originated from the same phylogenetic origin.

  12. Changes in the diversity of pig ileal lactobacilli around weaning determined by means of 16S rRNA gene amplification and denaturing gradient gel electrophoresis

    NARCIS (Netherlands)

    Janzcyk, P.; Pieper, R.; Smidt, H.; Souffrant, W.B.

    2007-01-01

    Our study aimed to provide a comprehensive characterization of changes in porcine intestinal Lactobacillus populations around the time of weaning based on 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE). DNA was extracted from the ileal contents of piglets at weaning

  13. Phylogenetic relationships among the species of the genus testudo (Testudines : Testudinidae) inferred from mitochondrial 12S rRNA gene sequences

    NARCIS (Netherlands)

    van der Kuyl, Antoinette C.; Ph Ballasina, Donato L.; Dekker, John T.; Maas, Jolanda; Willemsen, Ronald E.; Goudsmit, Jaap

    2002-01-01

    To test phylogenetic relationships within the genus Testudo (Testudines: Testudinidae), we have sequenced a fragment of the mitochondrial (mt) 12S rRNA gene of 98 tortoise specimens belonging to the genera Testudo, Indotestudo, and Geochelone. Maximum likelihood and neighbor-joining methods identify

  14. [Archaeal diversity in permafrost deposits of Bunger Hills Oasis and King George Island (Antarctica) according to the 16S rRNA gene sequencing].

    Science.gov (United States)

    Karaevskaia, E S; Demchenko, L S; Demidov, N É; Rivkina, E M; Bulat, S A; Gilichinskiĭ, D A

    2014-01-01

    Archaeal communities of permafrost deposits of King George Island and Bunger Hills Oasis (Antarctica) differing in the content of biogenic methane were analyzed using clone libraries of two 16S rRNA gene regions. Phylotypes belonging to methanogenic archaea were identified in all horizons.

  15. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies

    DEFF Research Database (Denmark)

    Thorsen, Jonathan; Brejnrod, Asker Daniel; Mortensen, Martin Steen

    2016-01-01

    BACKGROUND: There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons...

  16. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    Czech Academy of Sciences Publication Activity Database

    Garcia, S.; Kovařík, Aleš

    2013-01-01

    Roč. 111, č. 1 (2013), s. 23-33 ISSN 0018-067X R&D Projects: GA ČR(CZ) GA13-10057S; GA ČR GBP501/12/G090 Institutional support: RVO:68081707 Keywords : rRNA gene organisation * intergenic spacer * Ginkgo Subject RIV: BO - Biophysics Impact factor: 3.804, year: 2013

  17. True microbiota involved in chronic lung infection of cystic fibrosis patients found by culturing and 16S rRNA gene analysis

    DEFF Research Database (Denmark)

    Rudkjøbing, Vibeke Børsholt; Thomsen, Trine R; Alhede, Morten

    2011-01-01

    Patients suffering from cystic fibrosis (CF) develop chronic lung infection. In this study, we investigated the microorganisms present in transplanted CF lungs (n = 5) by standard culturing and 16S rRNA gene analysis. A correspondence between culturing and the molecular methods was observed. In c...

  18. Evolutionary relationships of Spirurina (Nematoda: Chromadorea: Rhabditida) with special emphasis on dracunculoid nematodes inferred from SSU rRNA gene sequences

    Czech Academy of Sciences Publication Activity Database

    Wijová, Martina; Moravec, František; Horák, Aleš; Lukeš, Julius

    2006-01-01

    Roč. 36, č. 9 (2006), s. 1067-1075 ISSN 0020-7519 R&D Projects: GA ČR(CZ) GA524/06/0170 Institutional research plan: CEZ:AV0Z60220518 Keywords : Nematoda * Spirurina * SSU rRNA gene sequences Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.337, year: 2006

  19. Routine DNA analysis based on 12S rRNA gene sequencing as a tool in the management of captive primates

    NARCIS (Netherlands)

    van der Kuyl, A. C.; van Gennep, D. R.; Dekker, J. T.; Goudsmit, J.

    2000-01-01

    Automated DNA sequencing of a fragment of the relatively slowly evolving mitochondrial 12S rRNA gene was used to distinguish primate species, and the method was compared with species determination based upon classical taxonomy. DNA from blood from 53 monkeys housed at the Stichting AAP Shelter for

  20. Characterization of microbial communities found in the human vagina by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes

    NARCIS (Netherlands)

    Coolen, MJL; Post, E; Davis, CC; Forney, LJ

    2005-01-01

    To define and monitor the structure of microbial communities found in the human vagina, a cultivation-independent approach based on analyses of terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes was developed and validated. Sixteen bacterial strains commonly found in the

  1. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    Science.gov (United States)

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  2. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    Science.gov (United States)

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  3. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    Science.gov (United States)

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  4. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens.

    Directory of Open Access Journals (Sweden)

    Linxiang Chen

    Full Text Available Conventional Sanger sequencing remains time-consuming and laborious. In this study, we developed a rapid improved sequencing protocol of 16S rRNA for pathogens identification by using a new combination of SYBR Green I real-time PCR and Sanger sequencing with FTA® cards. To compare the sequencing quality of this method with conventional Sanger sequencing, 12 strains, including three kinds of strains (1 reference strain and 3 clinical strains, which were previously identified by biochemical tests, which have 4 Pseudomonas aeruginosa, 4 Staphyloccocus aureus and 4 Escherichia coli, were targeted. Additionally, to validate the sequencing results and bacteria identification, expanded specimens with 90 clinical strains, also comprised of the three kinds of strains which included 30 samples respectively, were performed as just described. The results showed that although statistical differences (P<0.05 were found in sequencing quality between the two methods, their identification results were all correct and consistent. The workload, the time consumption and the cost per batch were respectively light versus heavy, 8 h versus 11 h and $420 versus $400. In the 90 clinical strains, all of the Pseudomonas aeruginosa and Staphyloccocus aureus strains were correctly identified, but only 26.7% of the Escherichia coli strains were recognized as Escherichia coli, while 33.3% as Shigella sonnei and 40% as Shigella dysenteriae. The protocol described here is a rapid, reliable, stable and convenient method for 16S rRNA sequencing, and can be used for Pseudomonas aeruginosa and Staphyloccocus aureus identification, yet it is not completely suitable for discriminating Escherichia coli and Shigella strains.

  5. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  6. Combined Analyses of the ITS Loci and the Corresponding 16S rRNA Genes Reveal High Micro- and Macrodiversity of SAR11 Populations in the Red Sea

    Science.gov (United States)

    Ngugi, David Kamanda; Stingl, Ulrich

    2012-01-01

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24°C throughout the year, and a remarkable uniform temperature (∼22°C) and salinity (∼41 psu) from the mixed layer (∼200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea’s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium. PMID:23185592

  7. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    KAUST Repository

    Ngugi, David

    2012-11-20

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea\\'s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.

  8. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    Science.gov (United States)

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Edward Alain B. Pajarillo

    2015-04-01

    Full Text Available This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1–V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level. Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

  10. Physical localization and DNA methylation of 45S rRNA gene loci in Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Zhiyun Gong

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n=2x=22=12m+10 sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation.

  11. Physical Localization and DNA Methylation of 45S rRNA Gene Loci in Jatropha curcas L.

    Science.gov (United States)

    Gong, Zhiyun; Xue, Chao; Zhang, Mingliang; Guo, Rui; Zhou, Yong; Shi, Guoxin

    2013-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n = 2x = 22 = 12m+10sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation. PMID:24386362

  12. Bacterial community composition in the gut content of Lampetra japonica revealed by 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Zuo, Yu; Xie, Wenfang; Pang, Yue; Li, Tiesong; Li, Qingwei; Li, Yingying

    2017-01-01

    The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.

  13. Bacterial community composition in the gut content of Lampetra japonica revealed by 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yu Zuo

    Full Text Available The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.

  14. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    Science.gov (United States)

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  15. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mu Peng

    2015-09-01

    Full Text Available Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  16. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    Science.gov (United States)

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-09-24

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  17. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, F.E.; Sun, Q.; Li, J.; Tiedje, J.M.

    2000-03-01

    Members of the genera Desulfuromonas and Dehalococcoides reductively dechlorinate tetrachloroethene (PCE) and trichloroethene. Two primer pairs specific to hypervariable regions of the 16S rRNA genes of the Dehalococcoides group (comprising Dehalococcoides ethenogenes and Dehalococcoides sp. strain FL2) and the acetate-oxidizing, PCE-dechlorinating Desulfuromonas group (comprising Desulfuromonas sp. strain BB1 and Desulfuromonas chloroethenica) were designed. The detection threshold of a nested PCR approach using universal bacterial primers followed by a second PCR with the Desulfuromonas dechlorinator-targeted primer pair was 1 x 10{sup 3} BB1 cells added per gram (wet weight) of sandy aquifer material. Total community DNA isolated from sediments of three Michigan rivers and six different chloroethene-contaminated aquifer samples was used as template in nested PCR. All river sediment samples yielded positive signals with the BB1- and the Dehalococcoides-targeted primers. One chloroethene-contaminated aquifer tested positive with the Dehalococcoides-targeted primers, and another contaminated aquifer tested positive with the Desulfuromonas dechlorinator-targeted primer pair. Restriction fragment analysis of the amplicons could discriminate strain BB1 from other known Desulfuromonas species. Microcosm studies confirmed the presence of PCE-dechlorinating, acetate-oxidizing Desulfuromonas and hydrogenotrophic Dehalococcoides species in samples yielding positive PCR signals with the specific primers.

  18. Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study

    Directory of Open Access Journals (Sweden)

    Guillaume eMinard

    2014-05-01

    Full Text Available The Asian tiger mosquito Aedes (Stegomya albopictus is an invasive species that has spread across the world in the last two decades, showing a great capacity to adapt to contrasting climates and environments. While demonstrated in many insects, the contribution of bacterial symbionts in Aedes ecology is a challenging aspect that needs to be investigated however. Some bacterial species have already been identified in Ae. albopictus using classical methods, but a more accurate survey of mosquito-associated bacterial diversity is needed to decipher the potential biological functions of bacterial symbionts in mediating or constraining insect adaptation. We surveyed the bacteria associated with field populations of Ae. albopictus from Madagascar by pyrosequencing 16S rRNA gene amplicons. Different aspects of amplicon preparation and sequencing depth were tested to optimise the breadth of bacterial diversity identified. The results revealed that all mosquitoes collected from different sites have a bacterial microbiota dominated by a single taxon, Wolbachia pipientis, which accounted for about 99% of all 98,520 sequences obtained. Ae. albopictus is known to harbour two Wolbachia strains, wAlbA and wAlbB, and quantitative PCR was used to estimate the relative densities, i.e. the bacteria-to-host gene ratios, of the strains in individual mosquitoes. Relative densities were between 6.25 × 100.01 and 5.47 × 100.1 for wAlbA and between 2.03 × 100.1 and 1.4 × 101 for wAlbB. Apart from Wolbachia, a total of 32 bacterial taxa were identified at the genus level using the different in method variations. Diversity index values were low and probably underestimated the true diversity due to the high abundance of Wolbachia sequences vastly outnumbering sequences from other taxa. Further studies should implement alternative strategies to specifically discard from analysis any sequences from Wolbachia, the dominant endosymbiotic bacterium in Ae. albopictus from

  19. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Charfeddine, Ilhem; Fakhfakh, Faiza

    2008-01-01

    The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene

  20. Genomic GC-content affects the accuracy of 16S rRNA gene sequencing bsed microbial profiling due to PCR bias

    DEFF Research Database (Denmark)

    Laursen, Martin F.; Dalgaard, Marlene Danner; Bahl, Martin Iain

    2017-01-01

    Profiling of microbial community composition is frequently performed by partial 16S rRNA gene sequencing on benchtop platforms following PCR amplification of specific hypervariable regions within this gene. Accuracy and reproducibility of this strategy are two key parameters to consider, which may...... be influenced during all processes from sample collection and storage, through DNA extraction and PCR based library preparation to the final sequencing. In order to evaluate both the reproducibility and accuracy of 16S rRNA gene based microbial profiling using the Ion Torrent PGM platform, we prepared libraries...... be explained partly by premature read truncation, but to larger degree their genomic GC-content, which correlated negatively with the observed relative abundances, suggesting a PCR bias against GC-rich species during library preparation. Increasing the initial denaturation time during the PCR amplification...

  1. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression

    Directory of Open Access Journals (Sweden)

    Jia Yi Har

    2015-09-01

    Full Text Available We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing 99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e. Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P, polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins. We hypothesize that such activities may mediate acclimation and persistence of bacteria in N. vectensis.

  2. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression.

    Science.gov (United States)

    Har, Jia Y; Helbig, Tim; Lim, Ju H; Fernando, Samodha C; Reitzel, Adam M; Penn, Kevin; Thompson, Janelle R

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing 99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N. vectensis holobiont defined by both internal and external gradients of chemicals and

  3. Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars.

    Science.gov (United States)

    Mansfield, J M; Campbell, J H; Bhandari, A R; Jesionowski, A M; Vickerman, M M

    2012-07-01

    Small subunit rRNA sequencing and phylogenetic analysis were used to identify cultivable and uncultivable microorganisms present in the dental plaque of symptomatic and asymptomatic partially erupted third molars to determine the prevalence of putative periodontal pathogens in pericoronal sites. Template DNA prepared from subgingival plaque collected from partially erupted symptomatic and asymptomatic mandibular third molars and healthy incisors was used in polymerase chain reaction with broad-range oligonucleotide primers to amplify 16S rRNA bacterial and archaeal genes. Amplicons were cloned, sequenced, and compared with known nucleotide sequences in online databases to identify the microorganisms present. Two thousand three hundred two clones from the plaque of 12 patients carried bacterial sequences from 63 genera belonging to 11 phyla, including members of the uncultivable TM7, SR1, and Chloroflexi, and difficult-to-cultivate Synergistetes and Spirochaetes. Dialister invisus, Filifactor alocis, Fusobacterium nucleatum, Porphyromonas endodontalis, Prevotella denticola, Tannerella forsythia, and Treponema denticola, which have been associated with periodontal disease, were found in significantly greater abundance in pericoronal compared with incisor sites. Dialister invisus and F nucleatum were found in greater abundance in sites exhibiting clinical symptoms. The archaeal species, Methanobrevibacter oralis, which has been associated with severe periodontitis, was found in 3 symptomatic patients. These findings have provided new insights into the complex microbiota of pericoronitis. Several bacterial and archaeal species implicated in periodontal disease were recovered in greater incidence and abundance from the plaque of partially erupted third molars compared with incisors, supporting the hypothesis that the pericoronal region may provide a favored niche for periodontal pathogens in otherwise healthy mouths. Copyright © 2012 American Association of Oral and

  4. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    Science.gov (United States)

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  5. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin

    2006-01-01

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  6. Seasonal diversity of planktonic protists in Southwestern Alberta rivers over a 1-year period as revealed by terminal restriction fragment length polymorphism and 18S rRNA gene library analyses.

    Science.gov (United States)

    Thomas, Matthew C; Selinger, L Brent; Inglis, G Douglas

    2012-08-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure.

  7. Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization

    KAUST Repository

    Prest, Emmanuelle I E C

    2014-10-01

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5min intervals for 1h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345±15×103 to 425±35×103cellsmL-1) and in the percentage of intact bacterial cells (from 39±3.5% to 53±4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. © 2014 Elsevier Ltd.

  8. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.

    Science.gov (United States)

    Prest, E I; El-Chakhtoura, J; Hammes, F; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2014-10-15

    The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 16S rRNA gene sequencing reveals effects of photoperiod on cecal microbiota of broiler roosters

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2018-02-01

    Full Text Available Photoperiod is an important factor in stimulating broiler performance in commercial poultry practice. However, the mechanism by which photoperiod affects the performance of broiler chickens has not been adequately explored. The current study evaluated the effects of three different photoperiod regimes (short day (LD = 8 h light, control (CTR = 12.5 h light, and long day (SD = 16 h light on the cecal microbiota of broiler roosters by sequencing bacterial 16S rRNA genes. At the phylum level, the dominant bacteria were Firmicutes (CTR: 68%, SD: 69%, LD: 67% and Bacteroidetes (CTR: 25%, SD: 26%, and LD: 28%. There was a greater abundance of Proteobacteria (p < 0.01 and Cyanobacteria (p < 0.05 in chickens in the LD group than in those in the CTR group. A significantly greater abundance of Actinobacteria was observed in CTR chickens than in SD and LD chickens (p < 0.01. The abundance of Deferribacteres was significantly higher in LD chickens than in SD chickens (p < 0.01. Fusobacteria and Proteobacteria were more abundant in SD chickens than in CTR and LD chickens. The predicted functional properties indicate that cellular processes may be influenced by photoperiod. Conversely, carbohydrate metabolism was enhanced in CTR chickens as compared to that in SD and LD chickens. The current results indicate that different photoperiod regimes may influence the abundance of specific bacterial populations and then contribute to differences in the functional properties of gut microbiota of broiler roosters.

  10. Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).

    Science.gov (United States)

    Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar

    2016-12-01

    In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.

  11. Infective Endocarditis: Identification of Catalase-Negative, Gram-Positive Cocci from Blood Cultures by Partial 16S rRNA Gene Analysis and by Vitek 2 Examination

    DEFF Research Database (Denmark)

    Abdul-Redha, Rawaa Jalil; Kemp, Michael; Bangsborg, Jette M

    2010-01-01

    Streptococci, enterococci and Streptococcus-like bacteria are frequent etiologic agents of infective endocarditis and correct species identification can be a laboratory challenge. Viridans streptococci (VS) not seldomly cause contamination of blood cultures. Vitek 2 and partial sequencing of the 16......S rRNA gene were applied in order to compare the results of both methods. STRAINS ORIGINATED FROM TWO GROUPS OF PATIENTS: 149 strains from patients with infective endocarditis and 181 strains assessed as blood culture contaminants. Of the 330 strains, based on partial 16S rRNA gene sequencing......-agreeing identifications with the two methods with respect to allocation to the same VS group. Non-agreeing species identification mostly occurred among strains in the contaminant group, while for endocarditis strains notably fewer disagreeing results were observed.Only 67 of 150 strains in the mitis group strains...

  12. [Characterizing Beijing's Airborne Bacterial Communities in PM2.5 and PM1 Samples During Haze Pollution Episodes Using 16S rRNA Gene Analysis Method].

    Science.gov (United States)

    Wang, Bu-ying; Lang, Ji-dong; Zhang, Li-na; Fang, Jian-huo; Cao, Chen; Hao, Ji-ming; Zhu, Ting; Tian, Geng; Jiang, Jing-kun

    2015-08-01

    During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere.

  13. Comparison of traditional phenotypic identification methods with partial 5' 16S rRNA gene sequencing for species-level identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Cloud, Joann L; Harmsen, Dag; Iwen, Peter C; Dunn, James J; Hall, Gerri; Lasala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L; Mellmann, Alexander

    2010-04-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.

  14. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    OpenAIRE

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nif...

  15. Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene.

    Science.gov (United States)

    Marshall, S M; Melito, P L; Woodward, D L; Johnson, W M; Rodgers, F G; Mulvey, M R

    1999-12-01

    A rapid two-step identification scheme based on PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the 16S rRNA gene was developed in order to differentiate isolates belonging to the Campylobacter, Arcobacter, and Helicobacter genera. For 158 isolates (26 reference cultures and 132 clinical isolates), specific RFLP patterns were obtained and species were successfully identified by this assay.

  16. First Report of the 23S rRNA Gene A2058G Point Mutation Associated With Macrolide Resistance in Treponema pallidum From Syphilis Patients in Cuba.

    Science.gov (United States)

    Noda, Angel A; Matos, Nelvis; Blanco, Orestes; Rodríguez, Islay; Stamm, Lola Virginia

    2016-05-01

    This study aimed to assess the presence of macrolide-resistant Treponema pallidum subtypes in Havana, Cuba. Samples from 41 syphilis patients were tested for T. pallidum 23S rRNA gene mutations. Twenty-five patients (61%) harbored T. pallidum with the A2058G mutation, which was present in all 8 subtypes that were identified. The A2059G mutation was not detected.

  17. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  18. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    Science.gov (United States)

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  19. Metagenomic of Actinomycetes Based on 16S rRNA and nifH Genes in Soil and Roots of Four Indonesian Rice Cultivars Using PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahyarudin

    2015-07-01

    Full Text Available The research was conducted to study the metagenomic of actinomycetes based on 16S ribosomal RNA (rRNA and bacterial nifH genes in soil and roots of four rice cultivars. The denaturing gradient gel electrophoresis profile based on 16S rRNA gene showed that the diversity of actinomycetes in roots was higher than soil samples. The profile also showed that the diversity of actinomycetes was similar in four varieties of rice plant and three types of agroecosystem. The profile was partially sequenced and compared to GenBank database indicating their identity with closely related microbes. The blast results showed that 17 bands were closely related ranging from 93% to 100% of maximum identity with five genera of actinomycetes, which is Geodermatophilus, Actinokineospora, Actinoplanes, Streptomyces and Kocuria. Our study found that Streptomyces species in soil and roots of rice plants were more varied than other genera, with a dominance of Streptomyces alboniger and Streptomyces acidiscabies in almost all the samples. Bacterial community analyses based on nifH gene denaturing gradient gel electrophoresis showed that diversity of bacteria in soils which have nifH gene was higher than that in rice plant roots. The profile also showed that the diversity of those bacteria was similar in four varieties of rice plant and three types of agroecosystem. Five bands were closely related with nifH gene from uncultured bacterium clone J50, uncultured bacterium clone clod-38, and uncultured bacterium clone BG2.37 with maximum identity 99%, 98%, and 92%, respectively. The diversity analysis based on 16S rRNA gene differed from nifH gene and may not correlate with each other. The findings indicated the diversity of actinomycetes and several bacterial genomes analyzed here have an ability to fix nitrogen in soil and roots of rice plant.

  20. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units

    Directory of Open Access Journals (Sweden)

    Sarah L. Westcott

    2015-12-01

    Full Text Available Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units (OTUs that are then used to analyze complex microbial communities. A number of methods have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading to confusion over which method is optimal. A recent study suggested that a clustering method should be selected based on its ability to generate stable OTU assignments that do not change as additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU assignments, the ability of the method to properly represent the distances between the sequences, is more important.Methods. Our analysis implemented six de novo clustering algorithms including the single linkage, complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy clustering, and Swarm and the open and closed-reference methods. Using two previously published datasets we used the Matthew’s Correlation Coefficient (MCC to assess the stability and quality of OTU assignments.Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending on the dataset being analyzed, the average linkage and the distance and abundance-based greedy clustering methods generated OTUs that were more likely to represent the actual distances between sequences than the open and closed-reference methods. We also demonstrated that for the greedy algorithms VSEARCH produced assignments that were comparable to those produced by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were used to identify the closest reference, the OTU assignments were sensitive to the order of the reference sequences because the reference sequences can be identical over the region being considered. More troubling was the observation that while both USEARCH and

  1. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)

    Czech Academy of Sciences Publication Activity Database

    Stenger, B.L.S.; Clark, M.E.; Kváč, Martin; Khan, E.; Giddings, C.W.; Dyer, N.W.; Schultz, J.L.; McEvoy, J.M.

    2015-01-01

    Roč. 32, JUN 2015 (2015), s. 113-123 ISSN 1567-1348 R&D Projects: GA MŠk(CZ) LH11061 Institutional support: RVO:60077344 Keywords : Cryptosporidium * Paralogy * 18S rRNA * 18S rDNA Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.591, year: 2015

  2. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available The composition of the bacterial communities in the contents of the foregut and hindgut of the sea cucumber Apostichopus japonicus and in the ambient surface sediment was surveyed by 16S rRNA gene 454-pyrosequencing. A total of 188,623 optimized reads and 15,527 operational taxonomic units (OTUs were obtained from the ten gut contents samples and four surface sediment samples. The sequences in the sediments, foregut contents, and hindgut contents were assigned to 38.0±4.7, 31.2±6.2 and 27.8±6.5 phyla, respectively. The bacterial richness and Shannon diversity index were both higher in the ambient sediments than in the gut contents. Proteobacteria was the predominant phylum in both the gut contents and sediment samples. The predominant classes in the foregut, hindgut, and ambient sediment were Holophagae and Gammaproteobacteria, Deltaproteobacteria and Gammaproteobacteria, and Gammaproteobacteria and Deltaproteobacteria, respectively. The potential probiotics, including sequences related to Bacillus, lactic acid bacteria (Lactobacillus, Lactococcus, and Streptococcus and Pseudomonas were detected in the gut of A. japonicus. Principle component analysis and heatmap figure showed that the foregut, hindgut, and ambient sediment respectively harbored different characteristic bacterial communities. Selective feeding of A. japonicus may be the primary source of the different bacterial communities between the foregut contents and ambient sediments.

  3. Influence of menstruation on the microbiota of healthy women's labia minora as analyzed using a 16S rRNA gene-based clone library method.

    Science.gov (United States)

    Shiraishi, Tsukasa; Fukuda, Kazumasa; Morotomi, Nobuo; Imamura, Yuri; Mishima, Junko; Imai, Shigeo; Miyazawa, Kiyoshi; Taniguchi, Hatsumi

    2011-01-01

    The aim of this study was to determine the influence of menstruation on the bacterial population of healthy Japanese women's vulvas, especially the labia minora. Labia minora swabs were obtained from 10 premenopausal, nonpregnant Japanese women at premenstruation and on day 2 of menstruation. Vaginal swabs were also obtained from 3 out of the 10 women. No significant difference was found in the average bacterial cell count between the menstruation and premenstruation samples. Molecular analysis using a 16S rRNA gene-based clone library method detected 22 genera from the labia minora swabs (total 20), with the genus Lactobacillus being predominant at both premenstruation and during menstruation in 7 out of the 10 women. Of the other 3 women, 2 showed various kinds of bacterial species, including oral and fecal bacteria, with Atopobium vaginae and Gardnerella vaginalis predominating in the remaining woman's vulva in both conditions. In total, 6 out of 10 cases (60%) showed significantly different microbiota of the labia minora between the two conditions. These results imply that menstruation may promote a distortion of the bacterial flora around the vulva, although it causes no significant increase of the bacterial count.

  4. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes.

    Science.gov (United States)

    Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael

    2015-05-26

    The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Identification of astrocytoma associated genes including cell surface markers

    International Nuclear Information System (INIS)

    Boon, Kathy; Edwards, Jennifer B; Eberhart, Charles G; Riggins, Gregory J

    2004-01-01

    Despite intense effort the treatment options for the invasive astrocytic tumors are still limited to surgery and radiation therapy, with chemotherapy showing little or no increase in survival. The generation of Serial Analysis of Gene Expression (SAGE) profiles is expected to aid in the identification of astrocytoma-associated genes and highly expressed cell surface genes as molecular therapeutic targets. SAGE tag counts can be easily added to public expression databases and quickly disseminated to research efforts worldwide. We generated and analyzed the SAGE transcription profiles of 25 primary grade II, III and IV astrocytomas [1]. These profiles were produced as part of the Cancer Genome Anatomy Project's SAGE Genie [2], and were used in an in silico search for candidate therapeutic targets by comparing astrocytoma to normal brain transcription. Real-time PCR and immunohistochemistry were used for the validation of selected candidate target genes in 2 independent sets of primary tumors. A restricted set of tumor-associated genes was identified for each grade that included genes not previously associated with astrocytomas (e.g. VCAM1, SMOC1, and thymidylate synthetase), with a high percentage of cell surface genes. Two genes with available antibodies, Aquaporin 1 and Topoisomerase 2A, showed protein expression consistent with transcript level predictions. This survey of transcription in malignant and normal brain tissues reveals a small subset of human genes that are activated in malignant astrocytomas. In addition to providing insights into pathway biology, we have revealed and quantified expression for a significant portion of cell surface and extra-cellular astrocytoma genes

  6. Bacterial Diversity Studies Using the 16S rRNA Gene Provide a Powerful Research-Based Curriculum for Molecular Biology Laboratory

    Directory of Open Access Journals (Sweden)

    Bryan E. Dutton

    2002-12-01

    Full Text Available We have developed a ten-week curriculum for molecular biology that uses 16S ribosomal RNA genes to characterize and compare novel bacteria from hot spring communities in Yellowstone National Park. The 16S rRNA approach bypasses selective culture-based methods. Our molecular biology course offered the opportunity for students to learn broadly applicable methods while contributing to a long-term research project. Specifically, students isolated and characterized clones that contained novel 16S rRNA inserts using restriction enzyme, DNA sequencing, and computer-based phylogenetic methods. In both classes, students retrieved novel bacterial 16S rRNA genes, several of which were most similar to Green Nonsulfur bacterial isolates. During class, we evaluated student performance and mastery of skills and concepts using quizzes, formal lab notebooks, and a broad project assignment. For this report, we also assessed student performance alongside data quality and discussed the significance, our goal being to improve both research and teaching methods.

  7. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax

    Science.gov (United States)

    Pakalapati, Deepak; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Subudhi, Amit K; Boopathi, Arunachalam P; Saxena, Vishal; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2013-01-01

    The 28S rRNA gene was amplified and sequenced from P. falciparum and P. vivax isolates collected from northwest India. Based upon the sequence diversity of the Plasmodium 28SrRNA gene in comparison with its human counterpart, various nested polymerase chain reaction (PCR) primers were designed from the 3R region of the 28SrRNA gene and evaluated on field isolates. This is the first report demonstrating the utility of this gene for species-specific diagnosis of malaria for these two species, prevalent in India. The initial evaluation on 363 clinical isolates indicated that, in comparison with microscopy, which showed sensitivity and specificity of 85.39% and 100% respectively, the sensitivity and specificity of the nested PCR assay was found to be 99.08% and 100% respectively. This assay was also successful in detecting mixed infections that are undetected by microscopy. Our results demonstrate the utility of the 28S rRNA gene as a diagnostic target for the detection of the major plasmodial species infecting humans. PMID:23816509

  8. Emergence of methicillin-resistant coagulase-negative staphylococci resistant to linezolid with rRNA gene C2190T and G2603T mutations.

    Science.gov (United States)

    Cidral, Thiago André; Carvalho, Maria Cícera; Figueiredo, Agnes Marie Sá; de Melo, Maria Celeste Nunes

    2015-10-01

    The aim of this article were to determinate the mechanism of linezolid resistance in coagulase-negative methicillin-resistant staphylococci from hospitals in the northeast of Brazil. We identified the isolates using VITEK(®) 2 and MALDI-TOF. Susceptibility to antibiotics was measured by the disk-diffusion method and by Etest(®) . Extraction of the whole genome DNA was performed, followed by screening of all the strains for the presence of mecA and cfr genes. The domain V region of 23S rRNA gene was sequenced and then aligned with a linezolid-susceptible reference strain. Pulsed-field gel electrophoresis (PFGE) macro-restriction analysis was performed. Three linezolid-resistant Staphylococcus hominis and two linezolid-resistant Staphylococcus epidermidis strains were analyzed. The isolates showed two point mutations in the V region of the 23S rRNA gene (C2190T and G2603T). We did not detect the cfr gene in any isolate by PCR. The S. hominis showed the same pulsotype, while the S. epidermidis did not present any genetic relation to each other. In conclusion, this study revealed three S. hominis and two S. epidermidis strains with resistance to linezolid due to a double mutation (C2190T and G2603T) in the domain V of the 23S rRNA gene. For the first time, the mutation of C2190T in S. epidermidis is described. This study also revealed the clonal spread of a S. hominis pulsotype between three public hospitals in the city of Natal, Brazil. These findings highlight the importance of continued vigilance of linezolid resistance in staphylococci. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  9. [Analysis of mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes in patients with nonsyndromic sensorineural hearing loss from various regions of Russia].

    Science.gov (United States)

    Dzhemileva, L U; Posukh, O L; Tazetdinov, A M; Barashkov, N A; Zhuravskiĭ, S G; Ponidelko, S N; Markova, T G; Tadinova, V N; Fedorova, S A; Maksimova, N R; Khusnutdinova, E K

    2009-07-01

    Mitochondrial DNA (mtDNA) mutations play an important role in etiology of hereditary hearing loss. In various regions of the world, patients suffer from nonsyndromic sensorineural hearing loss initiated by aminoglycoside antibiotics. Mutations that had been shown as pathogenetically important for hearing function disturbance were identified in mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes while pathogenic role of several DNA sequences requires additional studies. This work presents the results of studying the spectrum of mutations and polymorphic variations in mtDNA genes 12S rRNA and tRNA(Ser(UGN)) in 410 patients with nonsyndromal sensoneural hearing impairment/loss from the Volga Ural region, St Petersburg, Yakutia, and Altai and in 520 individuals with normal hearing, which represent several ethnic groups (Russians, Tatars, Bashkirs, Yakuts, Altaians) residing in the Russian Federation. Pathogenetically significant mutation A1555G (12S rRNA) was found in two families (from Yakutia and St Peresburg) with hearing loss, probably caused by treatment with aminoglucosides, and in the population sample of Yakuts with a frequency of 0.83%. Further research is needed to confirm the role in hearing impairment of mutations 961insC, 961insC(n), 961delTinsC(n), T961G, T1095C (12S rRNA) and G7444A, A7445C (tRNA(Ser(UGN revealed in the patients. In addition, in the patients and the population groups, polymorphic mt DNA variants were detected, which are characteristic also of other Eurasian populations both in spectrum and frequency.

  10. Anterior foregut microbiota of the glassy-winged sharpshooter explored using deep 16S rRNA gene sequencing from individual insects.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Rogers

    Full Text Available The glassy-winged sharpshooter (GWSS is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium of sharpshooters, where it may interact with other naturally-occurring bacterial species. To evaluate such interactions, a comprehensive list of bacterial species associated with the sharpshooter cibarium and precibarium is needed. Here, a survey of microbiota associated with the GWSS anterior foregut was conducted. Ninety-six individual GWSS, 24 from each of 4 locations (Bakersfield, CA; Ojai, CA; Quincy, FL; and a laboratory colony, were characterized for bacteria in dissected sharpshooter cibaria and precibaria by amplification and sequencing of a portion of the 16S rRNA gene using Illumina MiSeq technology. An average of approximately 150,000 sequence reads were obtained per insect. The most common genus detected was Wolbachia; sequencing of the Wolbachia ftsZ gene placed this strain in supergroup B, one of two Wolbachia supergroups most commonly associated with arthropods. X. fastidiosa was detected in all 96 individuals examined. By multilocus sequence typing, both X. fastidiosa subspecies fastidiosa and subspecies sandyi were present in GWSS from California and the colony; only subspecies fastidiosa was detected in GWSS from Florida. In addition to Wolbachia and X. fastidiosa, 23 other bacterial genera were detected at or above an average incidence of 0.1%; these included plant-associated microbes (Methylobacterium, Sphingomonas, Agrobacterium, and Ralstonia and soil- or water-associated microbes (Anoxybacillus, Novosphingobium, Caulobacter, and Luteimonas. Sequences belonging to species of the family Enterobacteriaceae also were detected but it was not possible to assign these to individual genera. Many of these species likely interact with X. fastidiosa in the

  11. Rhizobia with 16S rRNA and nifH similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC genes are symbionts of New Zealand Carmichaelinae.

    Directory of Open Access Journals (Sweden)

    Heng Wee Tan

    Full Text Available New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems grouped close to the Mesorhizobium huakuii type strain in relation to their 16S rRNA and nifH gene sequences. However, the ten strains separated into four groups on the basis of their recA and glnII sequences: all groups were clearly distinct from all Mesorhizobium type strains. The ten strains separated into two groups on the basis of their nodA sequences but grouped closely together in relation to nodC sequences; all nodA and nodC sequences were novel. Seven strains selected and the M. huakuii type strain (isolated from Astragalus sinicus produced functional nodules on Carmichaelia spp., Clianthus puniceus and A. sinicus but did not nodulate two Sophora species. We conclude that rhizobia closely related to M. huakuii on the basis of 16S rRNA and nifH gene sequences, but with variable recA and glnII genes and novel nodA and nodC genes, are common symbionts of NZ Carmichaelinae.

  12. Evaluation of the use of amplified 16S rRNA gene-restriction fragment length polymorphism analysis to detect enterobacter cloacae and bacillus licheniformis for microbial enhanced oil recovery field pilot

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhiro; Tanaka, Shinji; Otsuka, Makiko; Ichimura, Naoya [Lansai Research Institute, Kyoto (Japan); Yonebayashi, Hideharu [Japan National Oil Corp., Chiba (Japan); Hong, Chengxie; Enomoto, Heiji [Tohoku University, Miyagi (Japan)

    1999-09-01

    Evaluation of effectiveness of restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene of microorganisms injected into an oil reservoir, for monitoring their levels over time, was conducted. Two microorganisms, enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were focused in this paper among the microorganisms selected for injection, and gene fragments of the 16S rRNA gene of these microorganisms were amplified by polymerase chain reaction (PCP), using one set of universal primers. Samples of the reservoir brine and reservoir rock were obtained; the microorganisms inhabiting in the reservoir were isolated from these samples, and the 16S rRNA gene of these microorganisms was amplified, condition remaining the same. RFLP analysis was performed on the 16S rRNA gene of each of these microorganisms, using restriction endonucleases HhaI, MspI, AluI and TaqI as necessary. Comparison of the resultant rRNA gene fragments, demonstrated that closely-related species displaying RFLP profile similar to that of E. cloacae TRC-322 or B. licheniformis TRC-18-2-a were not among the microorganisms isolated from the reservoir. PCR-RFLP analysis of the 16S rRNA gene, using the protocol; presented in this paper, is effective to detect the presence appropriate injecting microorganisms. This method was also effective for studying microorganisms isolated from the reservoir, which have the ability to grow on a molasses. (author)

  13. Prevalence of 16S rRNA Methylase Gene rmtB Among Escherichia coli Isolated from Bovine Mastitis in Ningxia, China.

    Science.gov (United States)

    Yu, Ting; He, Tao; Yao, Hong; Zhang, Jin-Bao; Li, Xiao-Na; Zhang, Rong-Ming; Wang, Gui-Qin

    2015-09-01

    The aim of this study is to understand the prevalence and molecular characterization of 16S rRNA methylase gene, rmtB, among Escherichia coli strains isolated from bovine mastitis in China. A total of 245 E. coli isolates were collected from bovine mastitis in China between 2013 and 2014 and were screened for 16S rRNA methylase genes (armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA) by polymerase chain reaction. About 5.3% (13/245) of the isolates carried the rmtB gene; the isolates were highly resistant to amikacin. Thirteen rmtB-positive strains were analyzed for the presence of extended-spectrum β-lactamase genes (bla(TEM), bla(CTX-M), bla(OXA), and bla(SHV)). All the isolates harbored both bla(TEM-1) and bla(CTX-M-15) genes and two of the isolates were also positive for bla(OXA-1). Pulsed-field gel electrophoresis (PFGE) analysis indicated that the nine rmtB-positive strains belonging to ST10 from one farm showed the similar PFGE pattern, indicating a clonal expansion in this farm. S1-PFGE and Southern blotting showed that 12 isolates harbored the rmtB gene in plasmids of two different sizes (≈45 kb [n=10] and ≈48 kb [n=2]), while only 1 strain harbored the rmtB gene in the chromosome. These plasmids were transferable by conjugation studies, and two isolates from two respective farms carried the same size of plasmid, suggesting that the horizontal transmission of plasmids also contributed to the spread of rmtB gene. This is the first report of prevalence of the 16S rRNA methylase gene rmtB among E. coli isolated from bovine mastitis in China, and rmtB-carrying E. coli may pose a threat to the treatment of bovine mastitis.

  14. Characterization of Acinetobacter baumannii clinical isolates carrying bla(OXA-23) carbapenemase and 16S rRNA methylase armA genes in Yemen.

    Science.gov (United States)

    Bakour, Sofiane; Alsharapy, Samer Ahmed; Touati, Abdelaziz; Rolain, Jean-Marc

    2014-12-01

    The aim of this study was to investigate the molecular support of resistance to carbapenems, aminoglycosides, and fluoroquinolones in Acinetobacter baumannii clinical isolates collected from Yemen hospital. Three A. baumannii were isolated in February 2013 from three patients hospitalized at Al-Thawra University Hospital in Sana'a, Yemen. Antibiotic susceptibility testing was performed using the disk diffusion and E-test methods. Carbapenemase production was carried out by the modified Hodge test (MHT) and imipenem-ethylenediaminetetraacetic acid (EDTA) methods. Carbapenem, aminoglycoside, and fluoroquinolone resistance determinants were studied by polymerase chain reaction and sequencing. The epidemiological relatedness of the three strains was studied using multilocus sequence typing (MLST). The isolates were resistant to almost all antibiotics tested with very high imipenem, amikacin, and ciprofloxacin minimum inhibitory concentrations (>32, >256, and >32 mg/L, respectively). The microbiological tests showed that the three A. baumannii were MHT positive, besides, the activity of β-lactamases was not inhibited by EDTA. All the three isolates contained the naturally occurring bla(OXA-51)-like gene and the bla(OXA-23)-like carbapenemase-encoding gene. The 16S rRNA methylase armA gene was detected in the three isolates. In addition, screening for genes encoding the aminoglycoside-modifying enzymes (AMEs) demonstrated that one isolate contained the acetyltransferase gene aac(6')-Ib. Fluoroquinolone resistance was associated with a single mutation Ser83Leu in the quinolone resistance determining region of the gyrA gene in all isolates. The MLST showed that the sequence type (ST) obtained corresponds to ST2 for the three strains. Here we report the first identification of multidrug-resistant A. baumannii isolates harboring the bla(OXA-23)-like gene, AMEs [aac(6')-Ib], and the 16S rRNA methylase (armA) in the Yemen hospital.

  15. Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis.

    Science.gov (United States)

    Maus, Irena; Kim, Yong Sung; Wibberg, Daniel; Stolze, Yvonne; Off, Sandra; Antonczyk, Sebastian; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas

    2017-02-28

    Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus , were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

  16. Molecular Characterization of the 16S rRNA Gene of Phytoplasmas Detected in Two Leafhopper Species Associated with Alfalfa Plants Infected with Witches' Broom in Oman

    Directory of Open Access Journals (Sweden)

    A.J. Khan

    2003-12-01

    Full Text Available Two leafhopper species, Austroagallia avicula and Empoasca sp., were consistently found in alfalfa fields infected with witches’ broom phytoplasma (OmanAlfWB in the Al-Batinah, Dakhliya, North and South Sharqiya, Muscat, and Al-Bureimi regions of the Sultanate of Oman. Phytoplasmas from both leafhoppers were detected by specific polymerase chain reaction (PCR amplification of the 16S rRNA gene and the spacer region in direct PCR using P1/P7 primer pairs. Comparative RFLP profiles of the amplified rRNA gene and the spacer region from leafhopper phytoplasmas and from 20 phytoplasma controls yielded patterns referable to phytoplasmas belonging to the peanut witches’ broom group (16SrII group. In particular, extensive RFLP analyses with the endonucleases HpaII, Tru9I, Tsp509I, and RsaI indicated that the phytoplasmas in A. avicula and Empoasca sp. were identical but showed some differences from OmanAlfWB; however, RFLP patterns obtained with TaqI showed the OmanAlfWB and the phytoplasmas from the two leafhoppers to be identical. Direct PCR products amplified from phytoplasma leafhopper DNA using the P1/P7 primer pair were cloned and sequenced yielding 1758 bp and 1755 bp products from A. avicula and Empoasca sp. respectively; the homology of these sequences with OmanAlfWB and papaya yellow crinkle phytoplasmas was more than 98%. A phylogenetic tree based on the 16S rRNA gene and spacer region sequences from 44 phytoplasmas revealed that the phytoplasmas from the leafhoppers clustered with OmanAlfWB, papaya yellow crinkle, and gerbera phyllody phytoplasmas, all belonging to 16SrII group, but were distinct from lime witches’ broom phytoplasma, the most commonly found phytoplasma in the Sultanate of Oman.

  17. The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of turkey

    Directory of Open Access Journals (Sweden)

    Arzu Coleri Cihan

    2012-03-01

    Full Text Available Previously isolated 115 endospore-forming bacilli were basically grouped according to their temperature requirements for growth: the thermophiles (74%, the facultative thermophiles (14% and the mesophiles (12%. These isolates were taken into 16S rRNA gene sequence analyses, and they were clustered among the 7 genera: Anoxybacillus, Aeribacillus, Bacillus, Brevibacillus, Geobacillus, Paenibacillus, and Thermoactinomycetes. Of these bacilli, only the thirty two isolates belonging to genera Bacillus (16, Brevibacillus (13, Paenibacillus (1 and Thermoactinomycetes (2 were selected and presented in this paper. The comparative sequence analyses revealed that the similarity values were ranged as 91.4-100 %, 91.8- 99.2 %, 92.6- 99.8 % and 90.7 - 99.8 % between the isolates and the related type strains from these four genera, respectively. Twenty nine of them were found to be related with the validly published type strains. The most abundant species was B. thermoruber with 9 isolates followed by B. pumilus (6, B. lichenformis (3, B. subtilis (3, B. agri (3, B. smithii (2, T. vulgaris (2 and finally P. barengoltzii (1. In addition, isolates of A391a, B51a and D295 were proposed as novel species as their 16S rRNA gene sequences displayed similarities ≤ 97% to their closely related type strains. The AluI-, HaeIII- and TaqI-ARDRA results were in congruence with the 16S rRNA gene sequence analyses. The ARDRA results allowed us to differentiate these isolates, and their discriminative restriction fragments were able to be determined. Some of their phenotypic characters and their amylase, chitinase and protease production were also studied and biotechnologically valuable enzyme producing isolates were introduced in order to use in further studies.

  18. Polyphasic characterization of Dolichospermum spp. and Sphaerospermopsis spp. (Nostocales, cyanobacteria): morphology, 16S rRNA gene sequences and fatty acid and secondary metabolite profiles

    Czech Academy of Sciences Publication Activity Database

    Zapomělová, Eliška; Hrouzek, Pavel; Řezanka, Tomáš; Jezberová, Jitka; Řeháková, Klára; Hisem, D.; Komárková, Jaroslava

    2011-01-01

    Roč. 47, č. 5 (2011), s. 1152-1163 ISSN 0022-3646 R&D Projects: GA AV ČR(CZ) KJB600960703; GA ČR(CZ) GAP504/10/1501; GA ČR(CZ) GA206/09/0309 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z50200510; CEZ:AV0Z60050516 Keywords : taxonomy * cyanobacteria * Anabaena * Dolichospermum * Sphaerospermopsis * phylogeny * 16S rRNA gene * fatty acids * secondary metabolites Subject RIV: EE - Microbiology, Virology Impact factor: 2.071, year: 2011

  19. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA

    DEFF Research Database (Denmark)

    Liu, M; Kirpekar, F; Van Wezel, G P

    2000-01-01

    tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two...... is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches...

  20. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  1. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  2. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    Science.gov (United States)

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  3. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    Science.gov (United States)

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  4. Differential gene expression in Neurospora crassa cell types: heterogeneity and amplification of rRNA genes. Progress report, July 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Dutta, S.K.

    1981-01-01

    The significant results obtained during 1980-1981 year of the current research program are as follows: I. Studies on heterogeneity of multiple copies of rDNAs from N. crassa cell types are being continued, such as: (1) Autoradiographs of Southern transfers of EcoR 1 restricted fragments of nuclear DNA from conidia, germinated conidia (sprouts) and mycelia of N. crassa were compared after hybridization with 32 P-rDNA probe. The nuclear DNA of two hours sprout and of 16 hours mycelia gave similar hybridization patterns with EcoR 1 digest, but no such hybridization pattern was evident in conidial DNA digest; (2) Procedure for concentration of rDNAs from Neurospora species and cell types was standardized; restriction analysis of purified rDNAs is being done; (3) 35S total rDNA clone, 17S rDNA clone and 26S rDNA subclone are being used to see gross differences in the precursor rRNAs of different cell types; (4) Comparison of DNA:DNA homologies of rRNA genes with different Neurospora species. II. Post-mitochondrial DNAs of N. crassa are found to be rDNA-like and were further characterized by electron microscopic studies and are found to be approximately twice the size of SV-40 DNAs. These N. crassa post-mitochondrial DNAs hybridized with 32 P-labeled N. crassa nuclear DNAs. III. Previous studies on differential RNase sensitive DNA polymerase activity in N. Crassa cell types and on evolution of sexual morphogenesis in the genus Neurospora are completed and published. RNase sensitive DNA polymerase activity is found to be in the post-mitochondrial fraction. Heterothallism in the genus Neurospora is evolved from homothallism

  5. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  6. The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera).

    Science.gov (United States)

    Puerma, Eva; Acosta, Manuel J; Barragán, Maria José L; Martínez, Sergio; Marchal, Juan Alberto; Bullejos, Mónica; Sánchez, Antonio

    2008-11-01

    The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair.

  7. A novel RT-PCR for the detection of Helicobacter pylori and identification of clarithromycin resistance mediated by mutations in the 23S rRNA gene.

    Science.gov (United States)

    Redondo, Javier Jareño; Keller, Peter M; Zbinden, Reinhard; Wagner, Karoline

    2018-01-01

    In this study we evaluated the commercially available LightMix® RT-PCR assay for Helicobacter pylori detection and identification of clarithromycin (CLR) resistance in culture and clinical specimens (gastric biopsies and stool). The H. pylori LightMix® RT-PCR detects a 97bp long fragment of the 23S rRNA gene and allows the identification of 3 distinct point mutations conferring CLR resistance via melting curve analysis. The performance of the H. pylori LightMix® RT-PCR was evaluated using a set of 60 H. pylori strains showing phenotypical CLR susceptibility or CLR resistance (Minimum inhibitory concentrations from 0.016 to 256mg/L). We found high concordance (95%) between phenotypical CLR resistance screening by E-Test® and the Lightmix® RT-PCR. Discrepant results were verified by sequencing of the 23S rRNA gene that always confirmed the results obtained by Lightmix® RT-PCR. Furthermore, H. pylori was detected in clinical biopsy and stool specimens by Lightmix® RT-PCR that identified the correct H. pylori genotype. The LightMix® RT-PCR is an accurate, sensitive and easy to use test for H. pylori and CLR resistance detection and can therefore be readily implemented in any diagnostic laboratory. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Population Abundance of Potentially Pathogenic Organisms in Intestinal Microbiome of Jungle Crow (Corvus macrorhynchos Shown with 16S rRNA Gene-Based Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Isamu Maeda

    2013-01-01

    Full Text Available Jungle Crows (Corvus macrorhynchos prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous to Eimeria sp., which belongs to the protozoan phylum Apicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the genera Campylobacter and Brachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.

  9. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae).

    Science.gov (United States)

    Scaldaferro, Marisel A; da Cruz, M Victoria Romero; Cecchini, Nicolás M; Moscone, Eduardo A

    2016-02-01

    Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA.

  10. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Directory of Open Access Journals (Sweden)

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  11. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887

  12. Analysis of 16S rRNA and mxaF genes reveling insights into Methylobacterium niche-specific plant association

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2012-01-01

    Full Text Available The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  13. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  14. Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing

    Directory of Open Access Journals (Sweden)

    Ekaterina Avershina

    2018-05-01

    Full Text Available The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types (Bifidobacterium longum and Enterococcus faecalis. Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis. We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation.

  15. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers.

    Science.gov (United States)

    Biderre-Petit, Corinne; Boucher, Delphine; Kuever, Jan; Alberic, Patrick; Jézéquel, Didier; Chebance, Brigitte; Borrel, Guillaume; Fonty, Gérard; Peyret, Pierre

    2011-02-01

    Geochemical researches at Lake Pavin, a low-sulfate-containing freshwater lake, suggest that the dominant biogeochemical processes are iron and sulfate reduction, and methanogenesis. Although the sulfur cycle is one of the main active element cycles in this lake, little is known about the sulfate-reducer and sulfur-oxidizing bacteria. The aim of this study was to assess the vertical distribution of these microbes and their diversities and to test the hypothesis suggesting that only few SRP populations are involved in dissimilatory sulfate reduction and that Epsilonproteobacteria are the likely key players in the oxidative phase of sulfur cycle by using a PCR aprA gene-based approach in comparison with a 16S rRNA gene-based analysis. The results support this hypothesis. Finally, this preliminary work points strongly the likelihood of novel metabolic processes upon the availability of sulfate and other electron acceptors.

  16. PCR-SSCP of the 16S rRNA gene, a simple methodology for species identification of fish eggs and larvae

    Directory of Open Access Journals (Sweden)

    Eva Garcia-Vazquez

    2006-10-01

    Full Text Available Patterns of the 16S rRNA gene obtained in 8 and 12% acrylamide gels by the SSCP (Single Strand Conformation Polymorphism method were different for various marine fish species (Macrorhamphosus scolopax, Scomber scombrus, Lepidorhombus boscii, L. whiffiagonis, Trachurus trachurus, T. mediterraneus, Molva molva, Merluccius merluccius. SSCP patterns of this gene were employed to successfully identify formaldehyde-fixed eggs of different species (Merluccius merluccius, Scomber scombrus, Macrorhamphosus scolopax and L. whiffiagonis in plankton samples. The advantages of SSCPs in comparison with current genetic methods of egg identification are based on their technical simplicity and low price. The application of the PCR-SSCP methodology is proposed for routine genetic analyses in plankton surveys.

  17. Methylation pattern of the intergenic spacer of rRNA genes in excised cotyledons of Cucurbita pepo L. (Zucchini) after hormone treatment

    International Nuclear Information System (INIS)

    Ananiev, E.; Abdulova, G.; Grozdanov, P.; Karagyozov, L.

    2003-01-01

    High molecular mass genomic DNA was isolated from excised marrow cotyledons (Cucurbita pepo L. zucchini) treated with 6-benzyladenine (BA) of methyl ester of jasmonic acid (MeJA) for 24 h in darkness. DNA purified from contaminating polysaccharides with Celite column was completely digested with the restriction enzyme Eco RI and the changes in the methylation pattern of the intergenic spacer (IGS) of r RNA genes were studied after subsequent digestion with the couple of restriction enzymes-isoschizomers MSP I and Hpa II by the method of 'indirect end labelling'. As rDNA units probe a cloned 32 P-labelled Eco RI 2.1 kb fragment spanning in the most part of 18S r RNA gene from flax rDNA was used. Results showed heavy methylation of the rRNA genes. As judged from the almost total lack of digestion with HPA II, there were no methylation free regions in repeated rDNA units or little if any were observed. A hypo methylated Hps II site was detected near the promoter region in some of the repeats. Digestion with Msp I affected nearly 50% of the repeating units. The Msp digestion fragments of the 6.2 kb Eco RI fragment of r DNA were few in number and large in size (0.5 - 2.5 kb). This suggested that in addition with -CpG- sequences, methylation in -CpNpG- might not be random. Methylation pattern in IGS was not changed upon treatment of the cotyledons in vivo with BA and MeJA. Thus, previously observed hormone-mediated effects on the eactivity of rRNA gene expression were not accompanied by any significant changes of the methylation pattern in IGS. (authors)

  18. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Science.gov (United States)

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  19. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Directory of Open Access Journals (Sweden)

    Daochen Zhu

    Full Text Available BACKGROUND: Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. CONCLUSIONS: This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  20. Influence of heavy metals on rhizosphere microbial communities of Siam weed (Chromolaena odorata (L. using a 16S rRNA gene amplicon sequencing approach

    Directory of Open Access Journals (Sweden)

    Thanyaporn Ruangdech

    2017-06-01

    Full Text Available A 16S rRNA amplicon sequencing approach was used to assess the impacts of cadmium (Cd and zinc (Zn contamination on populations of rhizobacteria on Siam weed (Chromolaena odorata (L.. Bacterial communities were characterized using the Illumina MiSeq platform and the V6 hypervariable region of the 16S rRNA gene. Among the 54,026 unique operational taxonomic units (OTUs identified, 99.7% were classified as bacteria and the rest were classified as archaea. Several dominant bacterial phyla were observed in all samples—Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Bacteroidetes. These five phyla accounted for 89.2% of all OTUs identified among all sites, and only two OTUs could not be classified to a phylum. Comparison among samples containing low and high levels of Cd contamination using nonparametric Shannon and Shannon diversity indices showed that soils with low levels of diversity had a higher level of Cd (p < 0.05. These results indicated that levels of Cd may significantly alter bacterial species selection. The Cd- and Zn-resistant bacteria from each sample were subjected to heavy-metal minimum inhibitory concentration (MIC analyses. The MIC values obtained from 1152 isolates were used to individually analyze the pattern of gene function using the BioNumerics software. The results of this analysis showed that 26.7% of the bacteria were resistant to Cd concentrations up to 320 mg/L and only 2.3% of bacteria were resistant to Zn at concentrations up to 3200 mg/L. The MIC analyses indicated that the number of resistant bacteria decreased with increasing metal concentrations and those bacteria resistant to Cd and Zn may contain more than one group of metal-resistance genes.

  1. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.

    Science.gov (United States)

    de Muinck, Eric J; Trosvik, Pål; Gilfillan, Gregor D; Hov, Johannes R; Sundaram, Arvind Y M

    2017-07-06

    Advances in sequencing technologies and bioinformatics have made the analysis of microbial communities almost routine. Nonetheless, the need remains to improve on the techniques used for gathering such data, including increasing throughput while lowering cost and benchmarking the techniques so that potential sources of bias can be better characterized. We present a triple-index amplicon sequencing strategy to sequence large numbers of samples at significantly lower c ost and in a shorter timeframe compared to existing methods. The design employs a two-stage PCR protocol, incorpo rating three barcodes to each sample, with the possibility to add a fourth-index. It also includes heterogeneity spacers to overcome low complexity issues faced when sequencing amplicons on Illumina platforms. The library preparation method was extensively benchmarked through analysis of a mock community in order to assess biases introduced by sample indexing, number of PCR cycles, and template concentration. We further evaluated the method through re-sequencing of a standardized environmental sample. Finally, we evaluated our protocol on a set of fecal samples from a small cohort of healthy adults, demonstrating good performance in a realistic experimental setting. Between-sample variation was mainly related to batch effects, such as DNA extraction, while sample indexing was also a significant source of bias. PCR cycle number strongly influenced chimera formation and affected relative abundance estimates of species with high GC content. Libraries were sequenced using the Illumina HiSeq and MiSeq platforms to demonstrate that this protocol is highly scalable to sequence thousands of samples at a very low cost. Here, we provide the most comprehensive study of performance and bias inherent to a 16S rRNA gene amplicon sequencing method to date. Triple-indexing greatly reduces the number of long custom DNA oligos required for library preparation, while the inclusion of variable length

  2. Increased Pathogen Identification in Vascular Graft Infections by the Combined Use of Tissue Cultures and 16S rRNA Gene Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Evelyne Ajdler-Schaeffler

    2018-06-01

    Full Text Available Background: Vascular graft infections (VGI are difficult to diagnose and treat, and despite redo surgery combined with antimicrobial treatment, outcomes are often poor. VGI diagnosis is based on a combination of clinical, radiological, laboratory and microbiological criteria. However, as many of the VGI patients are already under antimicrobial treatment at the time of redo surgery, microbiological identification is often difficult and bacterial cultures often remain negative rendering targeted treatment impossible. We aimed to assess the benefit of 16S rRNA gene polymerase chain reaction (broad-range PCR for better microbiological identification in patients with VGI.Methods: We prospectively analyzed the clinical, microbiological, and treatment data of patients enrolled in the observational Vascular Graft Cohort Study (VASGRA, University Hospital Zurich, Switzerland. The routine diagnostic work-up involved microbiological cultures of minced tissue samples, and the use of molecular techniques in parallel. Patient-related and microbiological data were assessed in descriptive analyses, and we calculated sensitivity, specificity, negative and positive predictive value for broad-range 16S rRNA gene PCR versus culture (considered as gold standard.Results: We investigated 60 patients (median age 66 years (Interquartile range [IQR] 59–75 with confirmed VGI between May 2013 and July 2017. The prevalence of antimicrobial pretreatment at the time of sampling was high [91%; median days of antibiotics 7 days (IQR 1–18]. We investigated 226 microbiological specimens. Thereof, 176 (78% were culture-negative and 50 (22% were culture-positive. There was a concordance of 70% (158/226 between conventional culture and broad-range PCR (sensitivity 58% (95% CI 43–72; specificity 74% (67–80%. Among the group of 176 culture-negative specimens, 46 specimens were broad-range PCR-positive resulting in identification of overall 69 species. Among the culture and

  3. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    Directory of Open Access Journals (Sweden)

    Dawyndt Peter

    2010-01-01

    Full Text Available Abstract Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the

  4. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    Science.gov (United States)

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial

  5. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    Science.gov (United States)

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for

  6. Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    Michal Strejcek

    2018-06-01

    Full Text Available Many ecological experiments are based on the extraction and downstream analyses of microorganisms from different environmental samples. Due to its high throughput, cost-effectiveness and rapid performance, Matrix Assisted Laser Desorption/Ionization Mass Spectrometry with Time-of-Flight detector (MALDI-TOF MS, which has been proposed as a promising tool for bacterial identification and classification, could be advantageously used for dereplication of recurrent bacterial isolates. In this study, we compared whole-cell MALDI-TOF MS-based analyses of 49 bacterial cultures to two well-established bacterial identification and classification methods based on nearly complete 16S rRNA gene sequence analyses: a phylotype-based approach, using a closest type strain assignment, and a sequence similarity-based approach involving a 98.65% sequence similarity threshold, which has been found to best delineate bacterial species. Culture classification using reference-based MALDI-TOF MS was comparable to that yielded by phylotype assignment up to the genus level. At the species level, agreement between 16S rRNA gene analysis and MALDI-TOF MS was found to be limited, potentially indicating that spectral reference databases need to be improved. We also evaluated the mass spectral similarity technique for species-level delineation which can be used independently of reference databases. We established optimal mass spectral similarity thresholds which group MALDI-TOF mass spectra of common environmental isolates analogically to phylotype- and sequence similarity-based approaches. When using a mass spectrum similarity approach, we recommend a mass range of 4–10 kDa for analysis, which is populated with stable mass signals and contains the majority of phylotype-determining peaks. We show that a cosine similarity (CS threshold of 0.79 differentiate mass spectra analogously to 98.65% species-level delineation sequence similarity threshold, with corresponding precision

  7. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene

    Directory of Open Access Journals (Sweden)

    Hans Verstraelen

    2016-01-01

    Full Text Available Background. It is widely assumed that the uterine cavity in non-pregnant women is physiologically sterile, also as a premise to the long-held view that human infants develop in a sterile uterine environment, though likely reflecting under-appraisal of the extent of the human bacterial metacommunity. In an exploratory study, we aimed to investigate the putative presence of a uterine microbiome in a selected series of non-pregnant women through deep sequencing of the V1-2 hypervariable region of the 16S ribosomal RNA (rRNA gene.Methods. Nineteen women with various reproductive conditions, including subfertility, scheduled for hysteroscopy and not showing uterine anomalies were recruited. Subjects were highly diverse with regard to demographic and medical history and included nulliparous and parous women. Endometrial tissue and mucus harvesting was performed by use of a transcervical device designed to obtain endometrial biopsy, while avoiding cervicovaginal contamination. Bacteria were targeted by use of a barcoded Illumina MiSeq paired-end sequencing method targeting the 16S rRNA gene V1-2 region, yielding an average of 41,194 reads per sample after quality filtering. Taxonomic annotation was pursued by comparison with sequences available through the Ribosomal Database Project and the NCBI database.Results. Out of 183 unique 16S rRNA gene amplicon sequences, 15 phylotypes were present in all samples. In some 90% of the women included, community architecture was fairly similar inasmuch B. xylanisolvens, B. thetaiotaomicron, B. fragilis and an undetermined Pelomonas taxon constituted over one third of the endometrial bacterial community. On the singular phylotype level, six women showed predominance of L. crispatus or L. iners in the presence of the Bacteroides core. Two endometrial communities were highly dissimilar, largely lacking the Bacteroides core, one dominated by L. crispatus and another consisting of a highly diverse community, including

  8. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2012-06-01

    Full Text Available Abstract Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement or, less commonly, linked to 35 S rDNA units (L-type. The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6 but not all species. Two species contained major L-type and minor S-type units (termed Ls-type. The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’ is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.

  9. Culture dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing

    KAUST Repository

    Mannalamkunnath Alikunhi, Nabeel; Batang, Zenon B.; AlJahdali, Haitham A.; Aziz, Mohammed A.M.; Al-Suwailem, Abdulaziz M.

    2016-01-01

    Fish contaminations have been extensively investigated in Saudi coasts, but studies pertaining to bacterial pathogens are meager. We conducted qualitative assessment and molecular identification of culture dependent bacteria in 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. The bacterial counts of gills, skin, gut and muscle were examined on agar plates of Macconkey’s (Mac), Eosin methylene blue (EMB) and Thiosulfate Citrate Bile Salts (TCBS) culture media. Bacterial counts exhibited interspecific, locational and behavioral differences. Mugil cephalus exhibited higher counts on TCBS (all body-parts), Mac (gills, muscle and gut) and EMB (gills and muscle). Samples of Area I were with higher counts, concurrent to seawater and sediment samples, revealing the influence of residing environment on fish contamination. Among feeding habits, detritivorous fish harbored higher bacterial counts, while carnivorous group accounted for lesser counts. Counts were higher in skin of fish obtained from market compared to field samples, revealing market as a major source of contamination. Bacterial counts of skin were positively correlated with other body-parts indicating influence of surface bacterial biota in overall quality of fish. Hence, hygienic practices and proper storage facilities in the Jeddah fish market is recommended to prevent adverse effect of food-borne illness in consumers. Rahnella aquatilis (Enterobacteriaceae) and Photobacterium damselae (Vibrionaceae) were among the dominant species identified from fish muscle samples using Sanger sequencing of 16S rRNA. This bacterial species are established human pathogens capable of causing foodborne illness with severe antibiotic resistance. Opportunistic pathogens such as Hafnia sp. (Enterobacteriaceae) and Pseudomonas stutzeri (Pseudomonadaceae) were also identified from fish muscle. These findings indicate bacterial contamination risk in commonly consumed fish of

  10. Culture-dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Nabeel M. Alikunhi

    2017-09-01

    Full Text Available Fish contamination has been extensively investigated along the Saudi coasts, but studies pertaining to bacterial pathogens are scarce. We conducted qualitative assessment and molecular identification of culture-dependent bacteria in 13 fish species from three coastal sites and a local fish market in Jeddah, Saudi Arabia. Bacterial counts of gills, skin, gut and muscle were examined on agar plates of Macconkey’s (Mac, Eosin Methylene Blue (EMB and Thiosulfate Citrate Bile Salts (TCBS culture media. Bacterial counts significantly differed between species, sources and feeding habits of examined fishes. Mugil cephalus exhibited higher counts on TCBS (all body parts, Mac (gills, muscle and gut and EMB (gills and muscle. Fishes from Area I had higher bacterial loads, coinciding with those in seawater and sediment from the same site, indicating direct association between habitat conditions and the levels of bacterial contamination. By feeding habit, detritivorous fish harbored higher counts than herbivorous and carnivorous species. Bacterial counts of skin were higher in fish from market than field sites, and positively correlated with other body parts indicating the relation of surface bacterial load on the overall quality of fish. Rahnella aquatilis (Enterobacteriaceae and Photobacterium damselae (Vibrionaceae were among the dominant species from fish muscle based on 16S rRNA sequencing. These species are known human pathogens capable of causing foodborne illness with severe antibiotic resistance. Opportunistic pathogens, e.g. Hafnia sp. (Enterobacteriaceae and Pseudomonas stutzeri (Pseudomonadaceae also occurred in fish muscle. The inclusion of bacterial contamination in future monitoring efforts is thus crucial.

  11. Culture dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing

    KAUST Repository

    Alikunhi, Nabeel M.

    2016-05-27

    Fish contaminations have been extensively investigated in Saudi coasts, but studies pertaining to bacterial pathogens are meager. We conducted qualitative assessment and molecular identification of culture dependent bacteria in 13 fish species collected from three fishing sites and a local fish market in Jeddah, Saudi Arabia. The bacterial counts of gills, skin, gut and muscle were examined on agar plates of Macconkey’s (Mac), Eosin methylene blue (EMB) and Thiosulfate Citrate Bile Salts (TCBS) culture media. Bacterial counts exhibited interspecific, locational and behavioral differences. Mugil cephalus exhibited higher counts on TCBS (all body-parts), Mac (gills, muscle and gut) and EMB (gills and muscle). Samples of Area I were with higher counts, concurrent to seawater and sediment samples, revealing the influence of residing environment on fish contamination. Among feeding habits, detritivorous fish harbored higher bacterial counts, while carnivorous group accounted for lesser counts. Counts were higher in skin of fish obtained from market compared to field samples, revealing market as a major source of contamination. Bacterial counts of skin were positively correlated with other body-parts indicating influence of surface bacterial biota in overall quality of fish. Hence, hygienic practices and proper storage facilities in the Jeddah fish market is recommended to prevent adverse effect of food-borne illness in consumers. Rahnella aquatilis (Enterobacteriaceae) and Photobacterium damselae (Vibrionaceae) were among the dominant species identified from fish muscle samples using Sanger sequencing of 16S rRNA. This bacterial species are established human pathogens capable of causing foodborne illness with severe antibiotic resistance. Opportunistic pathogens such as Hafnia sp. (Enterobacteriaceae) and Pseudomonas stutzeri (Pseudomonadaceae) were also identified from fish muscle. These findings indicate bacterial contamination risk in commonly consumed fish of

  12. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen.

    Science.gov (United States)

    Fang, Shaoming; Xiong, Xingwei; Su, Ying; Huang, Lusheng; Chen, Congying

    2017-07-19

    Intramuscular fat (IMF) that deposits among muscle fibers or within muscle cells is an important meat quality trait in pigs. Previous studies observed the effects of dietary nutrients and additives on improving the pork IMF. Gut microbiome plays an important role in host metabolism and energy harvest. Whether gut microbiota exerts effect on IMF remains unknown. In this study, we investigated the microbial community structure of 500 samples from porcine cecum and feces using high-throughput 16S rRNA gene sequencing. We found that phylogenetic composition and potential function capacity of microbiome varied between two types of samples. Bacteria wide association study identified 119 OTUs significantly associated with IMF in the two types of samples (FDR microbiome associated with IMF might be caused by the IMF-associated microbial taxa. This study firstly evaluated the contribution of gut microbiome to porcine IMF content. The results presented a potential capacity for improving IMF through modulating gut microbiota.

  13. Identification of Raoultella terrigena as a Rare Causative Agent of Subungual Abscess Based on 16S rRNA and Housekeeping Gene Sequencing

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-01-01

    Full Text Available A 63-year-old-man was admitted to our hospital with severe subungual abscess. Bacteria were isolated from pus samples, and an inconsistent identification was shown by VITEK 2 system and MALDI-TOF mass spectrometry as Raoultella planticola and Raoultella terrigena, respectively. Molecular identification by 16S rRNA sequencing suggested that the isolate is R. terrigena, and this was further demonstrated by sequencing three housekeeping genes (rpoB, gyrA, and parC with phylogenetic analysis. To our knowledge, this is the first report of subungual abscess caused by R. terrigena, a rare case of human infection due to soil bacterium. Our study highlights the technique importance on this pathogen identification.

  14. Update on Pneumocystis carinii f. sp. hominis Typing Based on Nucleotide Sequence Variations in Internal Transcribed Spacer Regions of rRNA Genes

    Science.gov (United States)

    Lee, Chao-Hung; Helweg-Larsen, Jannik; Tang, Xing; Jin, Shaoling; Li, Baozheng; Bartlett, Marilyn S.; Lu, Jang-Jih; Lundgren, Bettina; Lundgren, Jens D.; Olsson, Mats; Lucas, Sebastian B.; Roux, Patricia; Cargnel, Antonietta; Atzori, Chiara; Matos, Olga; Smith, James W.

    1998-01-01

    Pneumocystis carinii f. sp. hominis isolates from 207 clinical specimens from nine countries were typed based on nucleotide sequence variations in the internal transcribed spacer regions I and II (ITS1 and ITS2, respectively) of rRNA genes. The number of ITS1 nucleotides has been revised from the previously reported 157 bp to 161 bp. Likewise, the number of ITS2 nucleotides has been changed from 177 to 192 bp. The number of ITS1 sequence types has increased from 2 to 15, and that of ITS2 has increased from 3 to 14. The 15 ITS1 sequence types are designated types A through O, and the 14 ITS2 types are named types a through n. A total of 59 types of P. carinii f. sp. hominis were found in this study. PMID:9508304

  15. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  16. DIVERSITY OF THE TYPE 1 INTRON-ITS REGION OF THE 18S rRNA GENE IN PSEUDOGYMNOASCUS SPECIES FROM THE RED HILLS OF KANSAS.

    Science.gov (United States)

    Chen, Xi; Crupper, Scott S

    2016-09-01

    Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.

  17. Infective Endocarditis: Identification of Catalase-Negative, Gram-Positive Cocci from Blood Cultures by Partial 16S rRNA Gene Analysis and by Vitek 2 Examination.

    Science.gov (United States)

    Abdul-Redha, Rawaa Jalil; Kemp, Michael; Bangsborg, Jette M; Arpi, Magnus; Christensen, Jens Jørgen

    2010-01-01

    Streptococci, enterococci and Streptococcus-like bacteria are frequent etiologic agents of infective endocarditis and correct species identification can be a laboratory challenge. Viridans streptococci (VS) not seldomly cause contamination of blood cultures. Vitek 2 and partial sequencing of the 16S rRNA gene were applied in order to compare the results of both methods. STRAINS ORIGINATED FROM TWO GROUPS OF PATIENTS: 149 strains from patients with infective endocarditis and 181 strains assessed as blood culture contaminants. Of the 330 strains, based on partial 16S rRNA gene sequencing results, 251 (76%) were VS strains, 10 (3%) were pyogenic streptococcal strains, 54 (16%) were E. faecalis strains and 15 (5%) strains belonged to a group of miscellaneous catalase-negative, Gram-positive cocci. Among VS strains, respectively, 220 (87,6%) and 31 (12,3%) obtained agreeing and non-agreeing identifications with the two methods with respect to allocation to the same VS group. Non-agreeing species identification mostly occurred among strains in the contaminant group, while for endocarditis strains notably fewer disagreeing results were observed.Only 67 of 150 strains in the mitis group strains obtained identical species identifications by the two methods. Most VS strains belonging to the groups of salivarius, anginosus, and mutans obtained agreeing species identifications with the two methods, while this only was the case for 13 of the 21 bovis strains. Pyogenic strains (n=10), Enterococcus faecalis strains (n=54) and a miscellaneous group of catalase-negative, Gram-positive cocci (n=15) seemed well identified by both methods, except that disagreements in identifications in the miscellaneous group of strains occurred for 6 of 15 strains.

  18. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    Science.gov (United States)

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology

  19. Segal’s Law, 16S rRNA gene sequencing, and the perils of foodborne pathogen detection within the American Gut Project

    Directory of Open Access Journals (Sweden)

    James B. Pettengill

    2017-06-01

    Full Text Available Obtaining human population level estimates of the prevalence of foodborne pathogens is critical for understanding outbreaks and ameliorating such threats to public health. Estimates are difficult to obtain due to logistic and financial constraints, but citizen science initiatives like that of the American Gut Project (AGP represent a potential source of information concerning enteric pathogens. With an emphasis on genera Listeria and Salmonella, we sought to document the prevalence of those two taxa within the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of samples contained Salmonella and Listeria, respectively. However, a reanalysis of those AGP sequences described here indicated that results depend greatly on the algorithm for assigning taxonomy and differences persisted across both a range of parameter settings and different reference databases (i.e., Greengenes and HITdb. These results are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene, which may not provide good resolution at the lower taxonomic levels (e.g., species, but it was surprising how often methods differ in classifying reads—even at higher taxonomic ranks (e.g., family. This highlights the misleading conclusions that can be reached when relying on a single method that is not a gold standard; this is the essence of Segal’s Law: an individual with one watch knows what time it is but an individual with two is never sure. Our results point to the need for an appropriate molecular marker for the taxonomic resolution of interest, and calls for the development of more conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene datasets, one must be cautious regarding the detection of taxonomic groups of public health interest (e.g., culture independent identification of foodborne pathogens or taxa associated with a given phenotype.

  20. Segal's Law, 16S rRNA gene sequencing, and the perils of foodborne pathogen detection within the American Gut Project.

    Science.gov (United States)

    Pettengill, James B; Rand, Hugh

    2017-01-01

    Obtaining human population level estimates of the prevalence of foodborne pathogens is critical for understanding outbreaks and ameliorating such threats to public health. Estimates are difficult to obtain due to logistic and financial constraints, but citizen science initiatives like that of the American Gut Project (AGP) represent a potential source of information concerning enteric pathogens. With an emphasis on genera Listeria and Salmonella , we sought to document the prevalence of those two taxa within the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of samples contained Salmonella and Listeria , respectively. However, a reanalysis of those AGP sequences described here indicated that results depend greatly on the algorithm for assigning taxonomy and differences persisted across both a range of parameter settings and different reference databases (i.e., Greengenes and HITdb). These results are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene, which may not provide good resolution at the lower taxonomic levels (e.g., species), but it was surprising how often methods differ in classifying reads-even at higher taxonomic ranks (e.g., family). This highlights the misleading conclusions that can be reached when relying on a single method that is not a gold standard; this is the essence of Segal's Law: an individual with one watch knows what time it is but an individual with two is never sure. Our results point to the need for an appropriate molecular marker for the taxonomic resolution of interest, and calls for the development of more conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene datasets, one must be cautious regarding the detection of taxonomic groups of public health interest (e.g., culture independent identification of foodborne pathogens or taxa associated with a given phenotype).

  1. Genetic divergence of Asiatic Bdellocephala (Turbellaria, Tricladida, Paludicola) as revealed by partial 18S rRNA gene sequence comparisons.

    Science.gov (United States)

    Kuznedelov, K D; Timoshkin, O A; Goldman, E

    1997-01-01

    Polymerase chain reaction (PCR) and direct sequencing of small ribosomal RNA genes were used for analysis of genetic differences among Asiatic species of freshwater triclad genus Bdellocephala. Representatives of four species and four subspecies of this genus were used to establish homology between nucleotides in the 5'-end portion of small ribosomal RNA gene sequences. Within 552 nucleotide sites of aligned sequences compared, six variable base positions were discovered, dividing Bdellocephala into five different genotypes. Sequence data allow to distinguish two groups of these genotypes. One of them unites species from Kamchatka and Japan, another one unites Baikalian taxa. Agreement between available morphological, cytological and sequence data is discussed.

  2. 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island)

    OpenAIRE

    Aranda, Carlos; Paredes, Javier; Valenzuela, Cristian; Lam, Phyllis; Guillou, Laure

    2010-01-01

    The mat forming bacteria covering organic matter-enriched and anoxic marine sediments underlying a salmon farm in Southern Chile, were examined using 16S rRNA gene phylogenies. This mat was absent in the sea bed outside the direct influence of the farm (360 m outside fish cages). Based on nearly complete 16S rRNA gene sequences (-1500 bp), mat-forming filamentous cells were settled as the sulphur-oxidizing and putatively dissimilative nitrate-reducing Beggiatoa spp., being closely related (up...

  3. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    Science.gov (United States)

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  4. Molecular phylogeny of the neritidae (Gastropoda: Neritimorpha) based on the mitochondrial genes cytochrome oxidase I (COI) and 16S rRNA

    International Nuclear Information System (INIS)

    Quintero Galvis, Julian Fernando; Castro, Lyda Raquel

    2013-01-01

    The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina, Septaria, Theodoxus, Puperita, and Clithon, while in the Bayesian analyses Theodoxus is separated from the other genera. The phylogenetic status of the species from the genus Nerita from the Colombian Caribbean generated in this study was consistent with that reported for the genus in previous studies. In the resulting consensus tree obtained using maximum parsimony, we included information on habitat type for each species, to map the evolution by habitat. Species of the family Neritidae possibly have their origin in marine environments, which is consistent with conclusions from previous reports based on anatomical studies.

  5. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    Science.gov (United States)

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  6. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis.

    Science.gov (United States)

    von Walden, Ferdinand; Gantelius, Stefan; Liu, Chang; Borgström, Hanna; Björk, Lars; Gremark, Ola; Stål, Per; Nader, Gustavo A; Pontén, Eva

    2018-03-23

    Children with cerebral palsy (CP) and acquired brain injury (ABI) commonly develop muscle contractures with advancing age. An underlying growth defect contributing to skeletal muscle contracture formation in CP/ABI has been suggested. The biceps muscles of children and adolescents with CP/ABI (n=20) and typically developing controls (n=10) were investigated. We used immunohistochemistry, qRT-PCR and western blotting to assess gene expression relevant to growth and size homeostasis. Classical pro-inflammatory cytokines and genes involved in extracellular matrix production were elevated in skeletal muscle of children with CP/ABI. Intramuscular collagen content was increased and satellite cell number decreased and this was associated with reduced levels of RNA polymerase (POL) I transcription factors, 45s pre-rRNA and 28S rRNA. The present study provides novel data suggesting a role for pro-inflammatory cytokines and reduced ribosomal production in the development/maintenance of muscle contractures; possibly underlying stunted growth and perimysial extracellular matrix expansion. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  7. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    Science.gov (United States)

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings.

  8. 16S rRNA and Omp31 Gene Based Molecular Characterization of Field Strains of B. melitensis from Aborted Foetus of Goats in India

    Science.gov (United States)

    Singh, Ajay; Gupta, Vivek Kumar; Kumar, Amit; Singh, Vikas Kumar; Nayakwadi, Shivasharanappa

    2013-01-01

    Brucellosis is a reemerging infectious zoonotic disease of worldwide importance. In human, it is mainly caused by Brucella melitensis, a natural pathogen for goats. In India, a large number of goats are reared in semi-intensive to intensive system within the close vicinity of human being. At present, there is no vaccination and control strategy for caprine brucellosis in the country. Thus, to formulate an effective control strategy, the status of etiological agent is essential. To cope up with these, the present study was conducted to isolate and identify the prevalent Brucella species in caprine brucellosis in India. The 30 samples (fetal membrane, fetal stomach content and vaginal swabs) collected throughout India from the aborted fetus of goats revealed the isolation of 05 isolates all belonging to Brucella melitensis biovars 3. All the isolates produced amplification products of 1412 and 720 bp in polymerase chain reaction with genus and species specific 16S rRNA and omp31 gene based primers, respectively. Moreover, the amplification of omp31 gene in all the isolates confirmed the presence of immuno dominant outer membrane protein (31 kDa omp) in all the field isolates of B. melitensis in aborted foetus of goats in India. These findings can support the development of omp31 based specific serodiagnostic test as well as vaccine for the control of caprine brucellosis in India. PMID:24453799

  9. Candidate genes for performance in horses, including monocarboxylate transporters

    Directory of Open Access Journals (Sweden)

    Inaê Cristina Regatieri

    Full Text Available ABSTRACT: Some horse breeds are highly selected for athletic activities. The athletic potential of each animal can be measured by its performance in sports. High athletic performance depends on the animal capacity to produce energy through aerobic and anaerobic metabolic pathways, among other factors. Transmembrane proteins called monocarboxylate transporters, mainly the isoform 1 (MCT1 and its ancillary protein CD147, can help the organism to adapt to physiological stress caused by physical exercise, transporting lactate and H+ ions. Horse breeds are selected for different purposes so we might expect differences in the amount of those proteins and in the genotypic frequencies for genes that play a significant role in the performance of the animals. The study of MCT1 and CD147 gene polymorphisms, which can affect the formation of the proteins and transport of lactate and H+, can provide enough information to be used for selection of athletic horses increasingly resistant to intense exercise. Two other candidate genes, the PDK4 and DMRT3, have been associated with athletic potential and indicated as possible markers for performance in horses. The oxidation of fatty acids is highly effective in generating ATP and is controlled by the expression of PDK4 (pyruvate dehydrogenase kinase, isozyme 4 in skeletal muscle during and after exercise. The doublesex and mab-3 related transcription factor 3 (DMRT3 gene encodes an important transcription factor in the setting of spinal cord circuits controlling movement in vertebrates and may be associated with gait performance in horses. This review describes how the monocarboxylate transporters work during physical exercise in athletic horses and the influence of polymorphisms in candidate genes for athletic performance in horses.

  10. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.

    Science.gov (United States)

    Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela

    2014-08-01

    Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.

  11. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    Science.gov (United States)

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  12. Detection of Malaria parasite species based on 18S rRNA and assessment of its resistance to the drug for DHPS gene to support the development of irradiation Malaria vaccine

    International Nuclear Information System (INIS)

    Mukh Syaifudin; Darlina; Siti Nurhayati

    2016-01-01

    Malaria remains a major public health problem because it causes 1-2 million mortality per year. Therefore the development of its vaccine, including vaccine created by ionizing radiation, is urgently needed to control the disease. Aim of this research was to determine the species of malaria parasite infecting the blood of malaria suspected patients and its resistance to sulfadoxine-pyrimethamine (SP). The number of samples used were 10 blood specimens that obtained from Dok II Hospital in Jayapura. Microscopic examination on thin blood smear was done according to standard procedure, followed by Polymerase Chain Reaction (PCR) based diagnosis to further confirm the parasite using 18S rRNA gene on deoxyribonucleic acid extract. The presence of mutation in the dhps (dihydropteroate synthetase) gene related to SP drugs was examined using restriction fragment length polymorphism (RFLP) method. Results showed that 9 samples were infected with Plasmodium falciparum and 1 infected with P. vivax. Allelic mutants of dhps gene at codon K540E were detected in 3 (33.3%) samples. Even though only in very limited number of samples analyzed, the information obtained will be a great value in additional knowledge for vaccine development with irradiation. (author)

  13. The ITS1-5.8S rRNA gene -ITS2 sequence variability during the divergence of sweet-grass species (gen us Glyceria R. Br.

    Directory of Open Access Journals (Sweden)

    Alexander V Rodionov

    2011-12-01

    Full Text Available Comparative analysis of the sequence ITS1-5.8S rRNA gene-ITS2 of the nuclear genome of 13 species of genus Glyceria, 4 species of Melica and a species of monotypic genus Pleuropogon showed that the species of the genus Glyceria have 3 haplotypes: 1 Haplotype A was found only in species of the subgenus Glyceria section Glyceria (G. septentrionalis, G. fluitans, G. declinata, G. occidentalis, G. notata, G. borealis, G. leptostachya and in Pleuropogon sabinii; 2 Haplotype C is characteristic of the subgenus Hydropoa, section Hydropoa (G. grandis, G. х amurensis, G. triflora, G. maxima and sect. Lithuanicae (G. leptolepis; 3 Haplotype B is found in the species of the subgenus Hydropoa sections Striatae (G. elata, G. striata, G. neogaea, G. canadensis, Scolochloiformes (G. alnasteretum, G. spiculosa and G. lithuanica of sect. Lithuanicae. Species carring haplotype B are located at the base of the phylogenetic tree of the genus Glyceria and/or clustered with low bootstrap indices. On the phylogenetic trees inferred by the analysis of the sequences ITS and 5.8S rDNA both sect. Glyceria and sect. Hydropoa represented two sister monophyly branches. The species Pleuropogon sabinii belong to the branch of subgenus Glyceria as a sister monotypic branch to the branch of the sect. Glyceria.

  14. An assessment of the hypervariable domains of the 16S rRNA genes for their value in determining microbial community diversity: the paradox of traditional ecological indices.

    Science.gov (United States)

    Mills, DeEtta K; Entry, James A; Voss, Joshua D; Gillevet, Patrick M; Mathee, Kalai

    2006-09-01

    Amplicon length heterogeneity PCR (LH-PCR) was investigated for its ability to distinguish between microbial community patterns from the same soil type under different land management practices. Natural sagebrush and irrigated mouldboard-ploughed soils from Idaho were queried as to which hypervariable domains, or combinations of 16S rRNA gene domains, were the best molecular markers. Using standard ecological indices to measure richness, diversity and evenness, the combination of three domains, V1, V3 and V1+V2, or the combined V1 and V3 domains were the markers that could best distinguish the undisturbed natural sagebrush communities from the mouldboard-ploughed microbial communities. Bray-Curtis similarity and multidimensional scaling were found to be better metrics to ordinate and cluster the LH-PCR community profiling data. The use/misuse of traditional ecological indices such as diversity and evenness to study microbial community profiles will remain a major point to consider when performing metagenomic studies.

  15. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches.

    Science.gov (United States)

    Fernandes, Telmo J R; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2018-04-15

    Fish is one of the most common allergenic foods that should be accurately labelled to protect the health of allergic consumers. In this work, two real-time PCR systems based on the EvaGreen dye and a TaqMan probe are proposed and compared. New primers were designed to target the 16S rRNA gene, as a universal maker for fish detection, with fully demonstrated specificity for a wide range of fish species. Both systems showed similar absolute sensitivities, down to 0.01 pg of fish DNA, and adequate real-time PCR performance parameters. The probe system showed higher relative sensitivity and dynamic range (0.0001-50%) than the EvaGreen (0.05-50%). They were both precise, but trueness was compromised at the highest tested level with the EvaGreen assay. Therefore, both systems were successful, although the probe one exhibited the best performance. Its application to verify labelling compliance of foodstuffs suggested a high level of mislabelling and/or fraudulent practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. IDENTIFICATION OF A LOCAL PROBIOTIC BACTERIUM USING 16S rRNA GENE SEQUENCE THAT WAS USED FOR FIELD TRIAL TO ENHANCED WHITELEG SHRIMP (Litopenaeus vannamei SURVIVAL

    Directory of Open Access Journals (Sweden)

    Tb. Haeru Rahayu

    2015-12-01

    Full Text Available The use of local probiotics in the culture of aquatic organisms is increasing with the demand for more environmental-friendly aquaculture practices. The local bacterium isolate considered as a probiotic was added into the water of whiteleg shrimp (Litopenaeus vannamei culture in a field trial. Four rectangular plastic ponds (ca. 20 m x 30 m per pond were used for 100 days experimentation for six consecutive crops in two years experiment. Survival, harvest size, feed conversion ratio (FCR and Vibrio bacterial count was compared with those of shrimp receiving and none of local isolate. Identification based on 16S rRNA gene sequence shown those isolate was Bacillus pumilus strain DURCK14 with 99% homology. Water shrimp pond added a local isolate had significantly higher survival at about 10.0% to 11.7% than shrimp without added the isolate (p<0.05, and better FCR, but no significant different in shrimp harvest size. Vibrio bacterial was undetected by total plate count. Moreover, it shown better projected yields on an annual basis (three crops per year.

  17. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    Science.gov (United States)

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    Directory of Open Access Journals (Sweden)

    Christopher Ryan Penton

    2016-06-01

    Full Text Available We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5 and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.

  19. [Investigation into the relationship between mitochondrial 12 S rRNA gene, tRNA gene and cytochrome oxidase Ⅱ gene variations and the risk of noise-induced hearing loss].

    Science.gov (United States)

    Jiao, J; Gu, G Z; Chen, G S; Li, Y H; Zhang, H L; Yang, Q Y; Xu, X R; Zhou, W H; Wu, H; He, L H; Zheng, Y X; Yu, S F

    2017-01-06

    Objective: To explore the relationship between mitochondrial 12 S rRNA gene variation, tRNA gene variation and cytochrome oxidase Ⅱ gene point mutations and the risk of noise-induced hearing loss (NIHL). Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory in Henan province, China, from January 1, 2006 to December 31, 2015. Subjects whose average hearing threshold was more than 40 dB(A) in high frequency were defined as the case group, and subjects whose average hearing threshold was less than 35 dB(A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. Subjects was recruited into the case group ( n =286) and the control group ( n= 286) according to gender, age, job category and time of exposure to noise, and a 1∶1 case-control study was carried out. We genotyped eight single nucleotide polymorphisms in the mitochondrial 12 S rRNA gene, the mitochondrial tRNA gene and the mitochondrial cytochrome oxidase Ⅱ gene using SNPscan high-throughput genotyping technology from the recruited subjects. The relationship between polymorphic sites and NIHL, adjusted for covariates, was analyzed using conditional logistic regression analysis, as were the subgroup data. Results: The average age of the recruited subjects was (40.3±8.1) years and the length of service exposure to noise was (18.6±8.9) years. The range of noise exposed levels and cumulative noise exposure (CNE) was 80.1- 93.4 dB (A) and 86.8- 107.9 dB (A) · year, respectively. For workers exposed to noise at a CNE level<98 dB (A) · year, smokers showed an increased risk of NIHL of 1.88 (1.16-3.05) compared with non-smokers; for workers exposed to noise at a CNE level ≥98 dB(A) · year, smokers showed an increased risk of NIHL of 2.53 (1.49- 4.30) compared with non-smokers. For workers exposed to noise at a CNE level<98 dB (A) · year, the results of univariate analysis and multifactor analysis

  20. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis.

    Science.gov (United States)

    Nath, B Surendra; Gupta, S K; Bajpai, A K

    2012-12-01

    The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.

  1. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    Science.gov (United States)

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  2. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI, we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V. This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI. Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the

  3. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: Implications for the evolutionary history of the double karyomastigont of diplomonads

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2008-07-01

    Full Text Available Abstract Background Fornicata is a relatively recently established group of protists that includes the diplokaryotic diplomonads (which have two similar nuclei per cell, and the monokaryotic enteromonads, retortamonads and Carpediemonas, with the more typical one nucleus per cell. The monophyly of the group was confirmed by molecular phylogenetic studies, but neither the internal phylogeny nor its position on the eukaryotic tree has been clearly resolved. Results Here we have introduced data for three genes (SSU rRNA, α-tubulin and HSP90 with a wide taxonomic sampling of Fornicata, including ten isolates of enteromonads, representing the genera Trimitus and Enteromonas, and a new undescribed enteromonad genus. The diplomonad sequences formed two main clades in individual gene and combined gene analyses, with Giardia (and Octomitus on one side of the basal divergence and Spironucleus, Hexamita and Trepomonas on the other. Contrary to earlier evolutionary scenarios, none of the studied enteromonads appeared basal to diplokaryotic diplomonads. Instead, the enteromonad isolates were all robustly situated within the second of the two diplomonad clades. Furthermore, our analyses suggested that enteromonads do not constitute a monophyletic group, and enteromonad monophyly was statistically rejected in 'approximately unbiased' tests of the combined gene data. Conclusion We suggest that all higher taxa intended to unite multiple enteromonad genera be abandoned, that Trimitus and Enteromonas be considered as part of Hexamitinae, and that the term 'enteromonads' be used in a strictly utilitarian sense. Our result suggests either that the diplokaryotic condition characteristic of diplomonads arose several times independently, or that the monokaryotic cell of enteromonads originated several times independently by secondary reduction from the diplokaryotic state. Both scenarios are evolutionarily complex. More comparative data on the similarity of the

  4. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing

    Science.gov (United States)

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers. PMID:26444989

  5. Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints.

    Science.gov (United States)

    Heuer, H; Hartung, K; Wieland, G; Kramer, I; Smalla, K

    1999-03-01

    Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.

  6. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles.

    Science.gov (United States)

    el Fantroussi, S; Verschuere, L; Verstraete, W; Top, E M

    1999-03-01

    The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.

  7. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis.

    Science.gov (United States)

    Parlapani, Foteini F; Kormas, Konstantinos Ar; Boziaris, Ioannis S

    2015-09-01

    Sea bream fillets are one of the most important value-added products of the seafood market. Fresh seafood spoils mainly owing to bacterial action. In this study an exploration of initial and spoilage microbiota of sea bream fillets stored under air and commercial modified atmosphere packaging (MAP) at 0 and 5 °C was conducted by 16S rRNA gene sequence analysis of isolates grown on plates. Sensory evaluation and enumeration of total viable counts and spoilage microorganisms were also conducted to determine shelf life and bacterial growth respectively. Different temperatures and atmospheres affected growth and synthesis of spoilage microbiota as well as shelf life. Shelf life under air at 0 and 5 °C was 14 and 5 days respectively, while under MAP it was 20 and 8 days respectively. Initial microbiota were dominated by Pseudomonas fluorescens, Psychrobacter and Macrococcus caseolyticus. Different temperatures and atmospheres affected the synthesis of spoilage microbiota. At the end of shelf life, different phylotypes of Pseudomonas closely related to Pseudomonas fragi were found to dominate in most cases, while Pseudomonas veronii dominated in fillets under MAP at 0 °C. Furthermore, in fillets under MAP at 5 °C, new dominant species such as Carnobacterium maltaromaticum, Carnobacterium divergens and Vagococcus fluvialis were revealed. Different temperature and atmospheric conditions affected bacterial growth, shelf life and the synthesis of spoilage microbiota. Molecular identification revealed species and strains of microorganisms that have not been reported before for sea bream fillets stored under various conditions, thus providing valuable information regarding microbiological spoilage. © 2014 Society of Chemical Industry.

  8. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing.

    Science.gov (United States)

    Kennedy, Nicholas A; Walker, Alan W; Berry, Susan H; Duncan, Sylvia H; Farquarson, Freda M; Louis, Petra; Thomson, John M; Satsangi, Jack; Flint, Harry J; Parkhill, Julian; Lees, Charlie W; Hold, Georgina L

    2014-01-01

    Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples

  9. Discriminating activated sludge flocs from biofilm microbial communities in a novel pilot-scale reciprocation MBR using high-throughput 16S rRNA gene sequencing.

    Science.gov (United States)

    De Sotto, Ryan; Ho, Jaeho; Lee, Woonyoung; Bae, Sungwoo

    2018-03-29

    Membrane bioreactors (MBRs) are a well-established filtration technology that has become a popular solution for treating wastewater. One of the drawbacks of MBRs, however, is the formation of biofilm on the surface of membrane modules. The occurrence of biofilms leads to biofouling, which eventually compromises water quality and damages the membranes. To prevent this, it is vital to understand the mechanism of biofilm formation on membrane surfaces. In this pilot-scale study, a novel reciprocation membrane bioreactor was operated for a period of 8 months and fed with domestic wastewater from an aerobic tank of a local WWTP. Water quality parameters were monitored and the microbial composition of the attached biofilm and suspended aggregates was evaluated in this reciprocating MBR configuration. The abundance of nitrifiers and composition of microbial communities from biofilm and suspended solids samples were investigated using qPCR and high throughput 16S amplicon sequencing. Removal efficiencies of 29%, 16%, and 15% of chemical oxygen demand, total phosphorus and total nitrogen from the influent were observed after the MBR process with average effluent concentrations of 16 mg/L, 4.6 mg/L, and 5.8 mg/L respectively. This suggests that the energy-efficient MBR, apart from reducing the total energy consumption, was able to maintain effluent concentrations that are within regulatory standards for discharge. Molecular analysis showed the presence of amoA Bacteria and 16S Nitrospira genes with the occurrence of nitrification. Candidatus Accumulibacter, a genus with organisms that can accumulate phosphorus, was found to be present in both groups which explains why phosphorus removal was observed in the system. High-throughput 16S rRNA amplicon sequencing revealed the genus Saprospira to be the most abundant species from the total OTUs of both the membrane tank and biofilm samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    International Nuclear Information System (INIS)

    Okamura, K; Hisada, T; Takata, K; Hiraishi, A

    2013-01-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  11. Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene.

    Science.gov (United States)

    Zhao, Yiping; Li, Bei; Bai, Dongyi; Huang, Jinlong; Shiraigo, Wunierfu; Yang, Lihua; Zhao, Qinan; Ren, Xiujuan; Wu, Jing; Bao, Wuyundalai; Dugarjaviin, Manglai

    2016-09-01

    The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (phorses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (phorse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.

  12. Genetic relationships of Corynebacterium diphtheriae strains isolated from a diphtheria case and carriers by restriction fragment length polymorphism of rRNA genes Relação genética de cepas de Corynebacterium diphtheriae isoladas de caso e seus contatos por RLFP de rRNA gene

    Directory of Open Access Journals (Sweden)

    Claudio Tavares Sacchi

    1995-08-01

    Full Text Available In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells. The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain, that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.No presente estudo, nós reportamos os resultados de uma análise, baseada na ribotipagem de cepas de C. diphtheriae intermedius isoladas de uma criança de 9 anos com difteria e seus 5 contatos. Análise quantitativa por RFLP de rRNA foi usada para determinar a relação destas 7 cepas de C. diphtheriae fornecendo dados de interesse epidemiológico. Nós também testamos estas cepas para toxicidade in vitro usando método de difusão de Elek e in vivo usando método de cultura celular com células VERO. Os resultados de hibridização revelaram que as 5 cepas de C. diphtheriae isoladas dos contatos e uma isolada do caso (cepa isolada

  13. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    OpenAIRE

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-01-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira,...

  14. Karyological characterization and identification of four repetitive element groups (the 18S – 28S rRNA gene, telomeric sequences, microsatellite repeat motifs, Rex retroelements) of the Asian swamp eel (Monopterus albus)

    Science.gov (United States)

    Suntronpong, Aorarat; Thapana, Watcharaporn; Twilprawat, Panupon; Prakhongcheep, Ornjira; Somyong, Suthasinee; Muangmai, Narongrit; Surin Peyachoknagul; Srikulnath, Kornsorn

    2017-01-01

    Abstract Among teleost fishes, Asian swamp eel (Monopterus albus Zuiew, 1793) possesses the lowest chromosome number, 2n = 24. To characterize the chromosome constitution and investigate the genome organization of repetitive sequences in M. albus, karyotyping and chromosome mapping were performed with the 18S – 28S rRNA gene, telomeric repeats, microsatellite repeat motifs, and Rex retroelements. The 18S – 28S rRNA genes were observed to the pericentromeric region of chromosome 4 at the same position with large propidium iodide and C-positive bands, suggesting that the molecular structure of the pericentromeric regions of chromosome 4 has evolved in a concerted manner with amplification of the 18S – 28S rRNA genes. (TTAGGG)n sequences were found at the telomeric ends of all chromosomes. Eight of 19 microsatellite repeat motifs were dispersedly mapped on different chromosomes suggesting the independent amplification of microsatellite repeat motifs in M. albus. Monopterus albus Rex1 (MALRex1) was observed at interstitial sites of all chromosomes and in the pericentromeric regions of most chromosomes whereas MALRex3 was scattered and localized to all chromosomes and MALRex6 to several chromosomes. This suggests that these retroelements were independently amplified or lost in M. albus. Among MALRexs (MALRex1, MALRex3, and MALRex6), MALRex6 showed higher interspecific sequence divergences from other teleost species in comparison. This suggests that the divergence of Rex6 sequences of M. albus might have occurred a relatively long time ago. PMID:29093797

  15. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    Science.gov (United States)

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences.

    Science.gov (United States)

    Cernotíková, Eva; Horák, Ales; Moravec, Frantisek

    2011-06-01

    Abstract: Small subunit rRNA sequences were obtained from 38 representatives mainly of the nematode orders Spirurida (Camallanidae, Cystidicolidae, Daniconematidae, Philometridae, Physalopteridae, Rhabdochonidae, Skrjabillanidae) and, in part, Ascaridida (Anisakidae, Cucullanidae, Quimperiidae). The examined nematodes are predominantly parasites of fishes. Their analyses provided well-supported trees allowing the study ofphylogenetic relationships among some spirurine nematodes. The present results support the placement of Cucullanidae at the base of the suborder Spirurina and, based on the position of the genus Philonema (subfamily Philoneminae) forming a sister group to Skrjabillanidae (thus Philoneminae should be elevated to Philonemidae), the paraphyly of the Philometridae. Comparison of a large number of sequences of representatives of the latter family supports the paraphyly of the genera Philometra, Philometroides and Dentiphilometra. The validity of the newly included genera Afrophilometra and Caranginema is not supported. These results indicate geographical isolation has not been the cause of speciation in this parasite group and no coevolution with fish hosts is apparent. On the contrary, the group of South-American species ofAlinema, Nilonema and Rumai is placed in an independent branch, thus markedly separated from other family members. Molecular data indicate that the skrjabillanid subfamily Esocineminae (represented by Esocinema bohemicum) should be either elevated to the rank of an independent family or Daniconematidae (Mexiconema africanum) should be decreased to Daniconematinae and transferred to the family Skrjabillanidae. Camallanid genera Camallanus and Procamallanus, as well as the subgenera Procamallanus and Spirocamallanus are confirmed to be paraphyletic. Paraphyly has also been found within Filarioidea, Habronematoidea and Thelazioidea and in Cystidicolidae, Physalopteridae and Thelaziidae. The results of the analyses also show that

  17. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jan

    2018-01-01

    Roč. 811, č. 1 (2018), s. 19-34 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GA15-11912S Institutional support: RVO:67985939 Keywords : 16S rRNA * Cyanobacterial orders * Multilocus phylogeny Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.056, year: 2016

  18. Bacteriological Analysis, Antimicrobial Susceptibility and Detection of 16S rRNA gene of Helicobacter pylori by PCR in Drinking Water Samples of Earthquake Affected Areas and Other Parts of Pakistan

    Directory of Open Access Journals (Sweden)

    Rasheed, F.

    2009-01-01

    Full Text Available In Pakistan, clean drinking water is not available to most of the population. Main source of drinking water in Hazara, Azad Jammu and Kashmir-Pakistan is underground and spring water, due to earthquake water reservoirs in these areas were immensely contaminated. Moreover, drinking water treatment and proper sanitary facilities were also lacking. This study was conducted to analyze the quality of drinking water available in most of the cities of Pakistan including earthquake hit areas. For this purpose, 112 water samples were collected and analyzed by membrane filtration method. Microbial isolates were identified using QTS-10 and biochemical tests. Almost all samples were found to be contaminated but in earthquake affected areas quality of drinking water was substandard than other areas of Pakistan. Results revealed the detection of following bacterial pathogens among the water samples: Enterobacter sp., Klebsiellasp., Stenotrophomonas sp., Salmonella sp., Proteus sp., Edwardsiella tarda, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Vibrio cholerae, Escherichia coli, Acinetobacter baumanii, Aeromonas hydrophila, Citrobacter freundii, Shigella dysenteriae, Staphylococcus aureus, Staphylococcus sp. and Streptococcus sp. Furthermore, these bacterial isolates were found to be resistant to ampicillin (32.1%, amoxicillin (30.4%, sulphometoxazole (20.5% and cefaclor (31.3%. All drinking water samples were analyzed for 16S rRNA gene of Helicobacter pylori by using PCR, however no positive result was found in these samples. Based on our results it is suggested that authorities should pay attention to supply safe water and proper sanitary facilities to avoid epidemics of infectious diseases in future.

  19. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples.

    Science.gov (United States)

    Turankar, Ravindra P; Pandey, Shradha; Lavania, Mallika; Singh, Itu; Nigam, Astha; Darlong, Joydeepa; Darlong, Fam; Sengupta, Utpal

    2015-03-01

    PCR assay is a highly sensitive, specific and reliable diagnostic tool for the identification of pathogens in many infectious diseases. Genome sequencing Mycobacterium leprae revealed several gene targets that could be used for the detection of DNA from clinical and environmental samples. The PCR sensitivity of particular gene targets for specific clinical and environmental isolates has not yet been established. The present study was conducted to compare the sensitivity of RLEP, rpoT, Sod A and 16S rRNA gene targets in the detection of M. leprae in slit skin smear (SSS), blood, soil samples of leprosy patients and their surroundings. Leprosy patients were classified into Paucibacillary (PB) and Multibacillary (MB) types. Ziehl-Neelsen (ZN) staining method for all the SSS samples and Bacteriological Index (BI) was calculated for all patients. Standard laboratory protocol was used for DNA extraction from SSS, blood and soil samples. PCR technique was performed for the detection of M. leprae DNA from all the above-mentioned samples. RLEP gene target was able to detect the presence of M. leprae in 83% of SSS, 100% of blood samples and in 36% of soil samples and was noted to be the best out of all other gene targets (rpoT, Sod A and 16S rRNA). It was noted that the RLEP gene target was able to detect the highest number (53%) of BI-negative leprosy patients amongst all the gene targets used in this study. Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  20. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    Science.gov (United States)

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  1. Phylogenetic relationships of Salmonella based on rRNA sequences

    DEFF Research Database (Denmark)

    Christensen, H.; Nordentoft, Steen; Olsen, J.E.

    1998-01-01

    separated by 16S rRNA analysis and found to be closely related to the Escherichia coli and Shigella complex by both 16S and 23S rRNA analyses. The diphasic serotypes S. enterica subspp. I and VI were separated from the monophasic serotypes subspp. IIIa and IV, including S. bongori, by 23S rRNA sequence...

  2. Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences

    Czech Academy of Sciences Publication Activity Database

    Černotíková, Eva; Horák, Aleš; Moravec, František

    2011-01-01

    Roč. 58, č. 2 (2011), s. 135-148 ISSN 0015-5683 R&D Projects: GA ČR(CZ) GA524/06/0170; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Nematoda * Spirurina * SSU rRNA * phylogeny * taxonomy Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.812, year: 2011 http://www.paru.cas.cz/folia/pdfs/showpdf.php?pdf=21981

  3. NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Boris Eleuteri

    2018-05-01

    Full Text Available Summary: Embryonic stem cells (ESCs display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC. A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation. : Histone variant H2A.X defines the rate of embryonic stem cell proliferation. Eleuteri et al. identify H2A.X-interacting proteins, and they show that H2A.X deposition at rDNA promoters assembles the NoRC, which represses rRNA transcription and determines the rate of self-renewal. Keywords: ribosomal biogenesis, rRNA, rDNA, stem cells, TIP5, SNF2H, SPT16, BRG1, H2A.X, G1, cell cycle, cell cycle arrest, proliferation

  4. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Complemented with Selected 16S rRNA and gyrB Genes Sequencing to Practically Identify Clinical Important Viridans Group Streptococci (VGS).

    Science.gov (United States)

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Zhang, Li; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2016-01-01

    There are challenges in viridans group streptococci (VGS) identification especially for the mitis group. Few studies have investigated the performance of MALDI-TOF MS system in VGS identification. Using 16S rRNA gene and gyrB gene sequencing as a gold standard, the performance of two MALDI-TOF MS instruments in the identification of 181 VGS clinical isolates was studied. The Bruker Biotyper and Vitek MS IVD systems correctly identified 88.4% and 98.9% of the 181 isolates, respectively. The Vitek MS RUO system was the least reliable, only correctly identifying 38.7% of the isolates to species level with several misidentifications and invalid results. The Bruker Biotyper system was very unreliable in the identification of species within the mitis group. Among 22 non-pneumococci isolates (S. mitis/S. oralis/S. pseudopneumoniae), Biotyper misidentified 21 of them as S. pneumoniae leading to a low sensitivity and low positive predictive value in these species. In contrast, the Vitek MS IVD demonstrated a better resolution for pneumococci and non-pneumococci despite the inability to distinguish between S. mitis/S. oralis. For more accurate species-level identification, further improvements in the VGS spectra databases are needed. Based on MALDI-TOF analysis and selected 16S rRNA gene plus gyrB genes sequencing, we designed a practical VGS identification algorithm.

  5. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.

    Science.gov (United States)

    Duan, Shan; Hu, Xiaoxi; Li, Mengru; Miao, Jianyin; Du, Jinghe; Wu, Rongli

    2016-03-30

    The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status.

  6. Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, VITEK® 2 with partial sequencing of 16S rRNA gene for identification of coagulase-negative staphylococci.

    Science.gov (United States)

    Ayeni, Funmilola A; Andersen, Camilla; Nørskov-Lauritsen, Niels

    2017-04-01

    Mannitol salt agar (MSA) is often used in resources' limited laboratories for identification of S. aureus however, coagulase-negative staphylococci (CoNS) grows and ferments mannitol on MSA. 171 strains of CoNS which have been previously misidentified as S. aureus due to growth on MSA were collected from different locations in Nigeria and two methods for identification of CoNS were compared i.e. ViTEK 2 and MALDI-TOF MS with partial 16S rRNA gene sequencing as gold standard. Partial tuf gene sequencing was used for contradicting identification. All 171 strains (13 species) grew on MSA and ferments mannitol. All tested strains of S. epidermidis, S. haemolyticus, S. nepalensis, S. pasteuri, S. sciuri,, S. warneri, S. xylosus, S. capitis were correctly identified by MALDI-TOF while variable identification were observed in S. saprophyticus and S. cohnii (90%, 81%). There was low identification of S. arlettae (14%) while all strains of S. kloosii and S. gallinarum were misidentified. There is absence of S. gallinarum in the MALDI-TOF database at the period of this study. All tested strains of S. epidermidis, S. gallinarum, S. haemolyticus, S. sciuri,, S. warneri, S. xylosus and S. capitis were correctly identified by ViTEK while variable identification were observed in S. saprophyticus, S. arlettae, S. cohnii, S. kloosii, (84%, 86%, 75%, 60%) and misidentification of S. nepalensis, S. pasteuri. Partial sequencing of 16S rRNA gene was used as gold standard for most strains except S. capitis and S. xylosus where the two species were misidentified by partial sequencing of 16S rRNA contrary to MALDI-TOF and ViTEK identification. Tuf gene sequencing was used for correct identification. Characteristic growth on MSA for CoNS is also identical to S. aureus growth on the media and therefore, MSA could not differentiate between S. aureus and CoNS. The percentage accuracy of ViTEK was better than MALDI-TOF in identification of CoNS. Although partial sequencing of

  7. FunGene: the functional gene pipeline and repository.

    Science.gov (United States)

    Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  8. FunGene: the Functional Gene Pipeline and Repository

    Directory of Open Access Journals (Sweden)

    Jordan A. Fish

    2013-10-01

    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/ offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  9. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  10. Variations in gut microbiota and fecal metabolic phenotype associated with Fenbendazole and Ivermectin Tablets by 16S rRNA gene sequencing and LC/MS-based metabolomics in Amur tiger.

    Science.gov (United States)

    He, Fengping; Zhai, Jiancheng; Zhang, Le; Liu, Dan; Ma, Yue; Rong, Ke; Xu, Yanchun; Ma, Jianzhang

    2018-05-15

    The Amur tiger is one of the most endangered species in the world, and the healthy population of captive Amur tigers assists the recovery of the wild population. Gut microbes have been shown to be important for human disease and health, but little research exists regarding the microbiome of Amur tigers in captivity. In this study, we used an integrated approach of 16S rRNA gene sequencing combined with ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics to analyze the effects of Fenbendazole and Ivermectin Tablets on the gut microbiota and fecal metabolic phenotype of the Amur tiger. The relative abundances of the bacterial genera Collinsella, Clostridium XI and Megamonas were decreased, whereas those of Escherichia and Clostridium sensu stricto were increased in experimental Amur tigers compared with those in normal controls. Meanwhile, distinct changes in the fecal metabolic phenotype of the experimental Amur tigers were also found, including lower levels of acrylic acid, acetoacetate and catechol and higher amounts of 5,6-dihydrouracil, adenine hydrochloride hydrate and galactitol. Moreover, the differentially abundant gut microbes were substantially associated with the altered fecal metabolites, especially the bacteria in the Firmicutes and Actinomycetes, which were involved in the metabolism of 5,6-dihydrouracil, 6-phospho-d-gluconate and 1-methylnicotinamide. Our results indicate for the first time that Fenbendazole and Ivermectin Tablets not only disturb the gut microbiota at the abundance level but also alter the metabolic homeostasis of the Amur tiger. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis).

    Science.gov (United States)

    Romero, J; García-Varela, M; Laclette, J P; Espejo, R T

    2002-11-01

    To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.

  12. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials.

    Science.gov (United States)

    Nakacwa, R; Kiggundu, A; Talwana, H; Namaganda, J; Lilley, C; Tushemereirwe, W; Atkinson, H

    2013-10-01

    Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.

  13. Phylogeny of Indonesian Nostoc (Cyanobac teria Isolated from Paddy Fields as Inferred from Partial Se quence of 16S rRNA Gene

    Directory of Open Access Journals (Sweden)

    Dian Hendrayanti

    2012-12-01

    Full Text Available In order to collect Indonesian Nostoc, isolation of soil microflora from several paddy fields in West Java, Bali, andSouth Celebes was carried out. Fast-growing isolates of Nostoc were selected to describe and perform molecular identification using partial sequences of 16S rRNA. The results showed that partial sequences of 16S rRNA could not resolve the phylogeny of the isolates. However, it supported the morphological studies that recognize isolates as different species of Nostoc. Potential use of Nostoc as a nitrogen source for paddy growth was carried out using six strains as single inoculums. A total biomass of 2 g (fresh weight for each strain was inoculated, respectively, into the pot planted with three paddy plants. This experiment was conducted in the green house for 115 days. Statistical analyses (ANOVA; α = 0.05 showed that of six strains tested in this study, only strain GIA13a had influence on the augmentation of root length and the total number of filled grains.

  14. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    between the relative abundance, species richness and phylogenetic diversity of the microbial communities associated with the leaf midribs of HLB symptomatic and asymptomatic citrus trees were investigated using high-density 16S rDNA microarray PhyloChip and 16S rRNA gene clone library methods.

  15. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences.

    Science.gov (United States)

    Ghebremedhin, B; Layer, F; König, W; König, B

    2008-03-01

    The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (approximately 931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. König, and B. König, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (approximately 97%), rpoB (approximately 86%), hsp60 (approximately 82%), and sodA (approximately 78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification.

  16. Genetic Classification and Distinguishing of Staphylococcus Species Based on Different Partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf Gene Sequences▿

    Science.gov (United States)

    Ghebremedhin, B.; Layer, F.; König, W.; König, B.

    2008-01-01

    The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (∼931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. König, and B. König, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (∼97%), rpoB (∼86%), hsp60 (∼82%), and sodA (∼78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification. PMID:18174295

  17. Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18S rRNA gene sequences.

    Science.gov (United States)

    Martin, Donald S; Wright, André-Denis G; Barta, John R; Desser, Sherwin S

    2002-06-01

    Phylogenetic relationships within the kinetoplastid flagellates were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included 5 new gene sequences, Trypanosoma fallisi (2,239 bp), Trypanosoma chattoni (2,180 bp), Trypanosoma mega (2,211 bp), Trypanosoma neveulemairei (2,197 bp), and Trypanosoma ranarum (2,203 bp). Trees produced using maximum-parsimony and distance-matrix methods (least-squares, neighbor-joining, and maximum-likelihood), supported by strong bootstrap and quartet-puzzle analyses, indicated that the trypanosomes are a monophyletic group that divides into 2 major lineages, the salivarian trypanosomes and the nonsalivarian trypanosomes. The nonsalivarian trypanosomes further divide into 2 lineages, 1 containing trypanosomes of birds, mammals, and reptiles and the other containing trypanosomes of fish, reptiles, and anurans. Among the giant trypanosomes, T. chattoni is clearly shown to be distantly related to all the other anuran trypanosome species. Trypanosoma mega is closely associated with T. fallisi and T. ranarum, whereas T. neveulemairei and Trypanosoma rotatorium are sister taxa. The branching order of the anuran trypanosomes suggests that some toad trypanosomes may have evolved by host switching from frogs to toads.

  18. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope.

    Science.gov (United States)

    Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming

    2015-03-01

    Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.

  19. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific.

    Science.gov (United States)

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.

  20. 'Candidatus mycoplasma haemodidelphidis' sp. nov., 'Candidatus mycoplasma haemolamae' sp. nov. and Mycoplasma haemocanis comb. nov., haemotrophic parasites from a naturally infected opossum (Didelphis virginiana), alpaca (Lama pacos) and dog (Canis familiaris): phylogenetic and secondary structural relatedness of their 16S rRNA genes to other mycoplasmas.

    Science.gov (United States)

    Messick, Joanne B; Walker, Pamela G; Raphael, William; Berent, Linda; Shi, Xun

    2002-05-01

    The 16S rRNA sequence of newly characterized haemotrophic bacteria in an opossum (Didelphis virginiana) and alpaca (Lama pacos) was determined. In addition, the 16S rRNA sequence of a haemotrophic parasite in the dog (Canis familiaris) was determined. Sequence alignment and evolutionary analysis as well as secondary structural similarity and signature nucleotide sequence motifs of their 16S rRNA genes, positioned these organisms in the genus Mycoplasma. The highest scoring sequence similarities were 16S rRNA genes from haemotrophic mycoplasma species (Haemobartonella and Eperythrozoon spp.). However, the lack of several higher-order structural idiosyncrasies used to define the pneumoniae group, suggests that these organisms and related haemotrophic mycoplasmas represent a new group of mycoplasmas. It is recommended that the organisms be named 'Candidatus Mycoplasma haemodidelphidis', 'Candidatus Mycoplasma haemolamae' and Mycoplasma haemocanis comb. nov., to provide some indication of the target cell and host species of these parasites, and to reflect their phylogenetic affiliation.

  1. Increased 5S rRNA oxidation in Alzheimer's disease.

    Science.gov (United States)

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  2. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling.

    Science.gov (United States)

    Piao, Hailan; Lachman, Medora; Malfatti, Stephanie; Sczyrba, Alexander; Knierim, Bernhard; Auer, Manfred; Tringe, Susannah G; Mackie, Roderick I; Yeoman, Carl J; Hess, Matthias

    2014-01-01

    The rumen microbial ecosystem is known for its biomass-degrading and methane-producing phenotype. Fermentation of recalcitrant plant material, comprised of a multitude of interwoven fibers, necessitates the synergistic activity of diverse microbial taxonomic groups that inhabit the anaerobic rumen ecosystem. Although interspecies hydrogen (H2) transfer, a process during which bacterially generated H2 is transferred to methanogenic Archaea, has obtained significant attention over the last decades, the temporal variation of the different taxa involved in in situ biomass-degradation, H2 transfer and the methanogenesis process remains to be established. Here we investigated the temporal succession of microbial taxa and its effect on fiber composition during rumen incubation using 16S rRNA amplicon sequencing. Switchgrass filled nylon bags were placed in the rumen of a cannulated cow and collected at nine time points for DNA extraction and 16S pyrotag profiling. The microbial community colonizing the air-dried and non-incubated (0 h) switchgrass was dominated by members of the Bacilli (recruiting 63% of the pyrotag reads). During in situ incubation of the switchgrass, two major shifts in the community composition were observed: Bacilli were replaced within 30 min by members belonging to the Bacteroidia and Clostridia, which recruited 34 and 25% of the 16S rRNA reads generated, respectively. A second significant shift was observed after 16 h of rumen incubation, when members of the Spirochaetes and Fibrobacteria classes became more abundant in the fiber-adherent community. During the first 30 min of rumen incubation ~13% of the switchgrass dry matter was degraded, whereas little biomass degradation appeared to have occurred between 30 min and 4 h after the switchgrass was placed in the rumen. Interestingly, methanogenic members of the Euryarchaeota (i.e., Methanobacteria) increased up to 3-fold during this period of reduced biomass-degradation, with peak abundance just

  3. Diagnóstico de Mycoplasma genitalium por amplificación de los genes MgPa y ARN ribosomal 16S Diagnosis of Mycoplasma genitalium by MgPa and rRNA 16S gene amplification

    Directory of Open Access Journals (Sweden)

    Carmen Fernández-Molina

    2008-10-01

    Full Text Available OBJETIVO: El microorganismo Mycoplasma genitalium se ha relacionado con la uretritis no gonocócica (UNG. La técnica de PCR se ha convertido en el principal método de detección de este patógeno. En consecuencia, debe aplicarse un método de diagnóstico mediante la amplificación de fragmentos de ADN por la técnica PCR. MATERIAL Y MÉTODOS: Se seleccionaron los cebadores MGF-MGR y MgPaF-MgPaR, complementarios de los genes de ARNr 16S y MgPa de M. genitalium, respectivamente. Se efectuaron ensayos de especificidad y sensibilidad y se estudiaron muestras clínicas. RESULTADOS: La PCR con cada grupo de cebadores utilizado fue específica sólo para M. genitalium y la sensibilidad fue mayor con el grupo de cebadores MGF-MGR. En el estudio de 34 muestras clínicas, 18.5% fue positivo a M. genitalium y se encontró un mayor número de muestras positivas al utilizar los cebadores MgPaF-MgPaR. CONCLUSIONES: Debe aplicarse en la práctica clínica el diagnóstico de M. genitalium mediante la amplificación del ADN por PCR en los pacientes con UNG.OBJECTIVE: Mycoplasma genitalium has been associated with nongonococcal urethritis (NGU. Diagnosis by PCR has become the primary detection method for this organism. Thus, diagnosis by DNA amplification using the PCR technique should be utilized. MATERIAL AND METHODS: GMF/GMR and MgpF/MgpR primer pairs, complementary to the M. genitalium 16S rRNA and MgPa genes, respectively, were selected. Specificity and sensibility assays were conducted and clinical samples were studied. RESULTS: The PCR with each primer pair was specific only for M. genitalium, and the sensibility was higher with the GMF/GMR primers. In the study of 34 clinical samples, 18,5% were positive for M. genitalium, with more positive samples when the MgpF/MgpR primers were used. CONCLUSIONS: DNA amplification by PCR should be applied in clinical practice to the diagnosis of M. genitalium in patients with NGU should using.

  4. The natural history of class I primate alcohol dehydrogenases includes gene duplication, gene loss, and gene conversion.

    Directory of Open Access Journals (Sweden)

    Matthew A Carrigan

    Full Text Available Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s, where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs and hominoids.To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines. Database mining then identified novel ADH1 paralogs in both macaque (an OWM and marmoset (a NWM. These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding sequences and intronic sequences.We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels. The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs and catarrhines (OWMs and hominoids having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates

  5. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    Science.gov (United States)

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. © 2015 John Wiley & Sons Ltd.

  6. MOLECULAR PHYLOGENY OF THE NERITIDAE (GASTROPODA: NERITIMORPHA BASED ON THE MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI AND 16S rRNA

    Directory of Open Access Journals (Sweden)

    Julián Fernando Quintero Galvis

    2013-05-01

    La familia Neritidae cuenta con representantes en regiones tropicales y subtropicales adaptadas a diferentes ambientes, con un registro fósil que data para finales del Cretáceo. Sin embargo no se han realizado estudios de filogenia molecular en la familia. En este estudio se realizó una reconstrucción filogenética de la familia Neritidae utilizando las regiones COI (722 pb y 16S rRNA (559 pb del genoma mitocondrial. Se realizaron análisis de distancias de Neighbor-Joining, Máxima Parsimonia e Inferencia Bayesiana. La mejor reconstrucción filogenética fue mediante la región COI, considerándola un marcador apropiado para realizar estudios filogenéticos dentro del grupo. El consenso de las relaciones filogenéticas (COI+16S rRNA permitió confirmar que el género Nerita es monofilético. El consenso del análisis de parsimonia reveló un grupo monofilético formado por los géneros Neritina, Septaria, Theodoxus, Puperita y Clithon, mientras que en el análisis bayesiano Theodoxus se encuentra separado de los otros géneros. El resultado en las especies del género Nerita del Caribe colombiano fue consistente con lo reportado para el género en estudios previos. En el árbol resultante del análisis de parsimonia se sobrepuso la

  7. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene.

    Directory of Open Access Journals (Sweden)

    G Estruch

    Full Text Available Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata, the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043 and Photobacterium (p-value: 0.025 were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of

  8. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling

    Directory of Open Access Journals (Sweden)

    Hailan ePiao

    2014-07-01

    Full Text Available The rumen is known for its biomass-degrading and methane-producing phenotype. Fermentation of recalcitrant plant material necessitates the synergistic activity of diverse microbial taxonomic groups that inhabit this anaerobic environment. Although interspecies hydrogen (H2 transfer, a process during which bacterially generated H2 is transferred to methanogenic Archaea, has obtained significant attention over the last decades, the temporal variation of the different taxa involved in in situ biomass-degradation, H2 transfer and methanogenesis process remains to be established. We investigated the temporal succession of microbial taxa and its effect on fiber composition during rumen incubation using 16S rRNA amplicon sequencing. Switchgrass filled nylon bags were placed in the rumen of a cannulated cow and collected at nine time points for DNA extraction and 16S pyrotag profiling. The microbial community colonizing the air-dried and non-incubated switchgrass was dominated by members of the Bacilli. During in situ incubation of the switchgrass, two major shifts in the community composition were observed: Bacilli were replaced within 30 min by members belonging to the Bacteroidia and Clostridia. A second significant shift was observed after 16 h of rumen incubation, when members of the Spirochaetes and Fibrobacteria classes became more abundant in the fiber-adherent community. During the first 30 min of rumen incubation ~13% of the switchgrass dry matter was degraded, whereas little biomass degradation appeared to have occurred between 30 min and 4 h after the switchgrass was placed in the rumen. Interestingly, methanogenic members of the Euryarchaeota increased up to 3-fold during this period of reduced biomass-degradation, with peak abundance just before rates of dry matter degradation increased again. We hypothesize that during this period microbial-mediated fibrolysis was temporarily inhibited until H2 was metabolized into CH4 by methanogens.

  9. Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries.

    Science.gov (United States)

    Luo, Yu-heng; Peng, Huan-wei; Wright, André-Denis G; Bai, Shi-ping; Ding, Xue-mei; Zeng, Qiu-feng; Li, Hua; Zheng, Ping; Su, Zhuo-wei; Cui, Ren-yong; Zhang, Ke-ying

    2013-09-01

    Research on the interaction between dietary vitamins and intestinal bacteria is poorly understood. To investigate the effect of dietary vitamins on the cecal bacterial communities, 2 bacterial 16S rRNA gene clone libraries were constructed from pooled PCR products obtained from the cecal digesta of 28-d broilers fed diets with vitamins (V) at the NRC level or with no vitamins (NV). The results showed that BW gain and average feed intake of V broilers was significantly higher (P vitamins can increase the ratio of facultative pathogenic bacteria and decrease the diversity of bacteria in the cecum of broilers. Our results provide new leads for further investigations on the interaction between dietary vitamin additives and the gut health of broilers.

  10. Rapid PCR using nested primers of the 16S rRNA and the hippuricase (hipO) genes to detect Campylobacter jejuni and Campylobacter coli in environmental samples

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Wedderkopp, A.; Pedersen, Karl

    2002-01-01

    sensitivity due to the use of selective media, the low number of bacteria in the samples and possibly also due to the presence of non-culturable or sub-lethally injured stages of the bacteria. The present paper describes a rapid PCR assay using nested primers of the 16S rRNA or the hippuricase (hipO) genes...... to detect Campylobacter jejuni and Campylobacter coli in environmental samples. The sensitivity of the nested PCR was determined to be 0.01 pg/PCR, corresponding to 2-3 colony forming units (cfu) per ml. The nested PCR assays were applied to detect C. jejuni and C. coli in 269 environmental samples...... collected from ten broiler farms. The sensitivity, specificity and the usefulness of the PCR assay for detection of C. jejuni and C coli in environmental samples are presented and discussed....

  11. Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2008-08-01

    Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species), whereas 26% appeared to be P. cf. corticata specifically associated microorganisms ("specialists"); 21% of the phylotypes were confirmed to represent seawater- and sediment-derived proteobacterial species ("contaminants") acquired by filtration processes from the host environment. Consistently, the aprA and amoA gene-based analyses indicated the presence of environmentally derived sulfur- and ammonia-oxidizers besides putative sponge-specific sulfur-oxidizing Gammaproteobacteria and Alphaproteobacteria and a sulfate-reducing archaeon. A sponge-specific, endosymbiotic sulfur cycle as described for marine oligochaetes is proposed to be also present in P. cf. corticata. Overall, the results of this work support the recent studies that demonstrated the sponge species specificity of the associated microbial community while the biogeography of the host collection site has only a minor influence on the composition. In P. cf. corticata, the specificity of the sponge-microbe associations is even extended to the spatial distribution of the microorganisms within the sponge body; distinct bacterial populations were associated with the different tissue sections, papillae, outer and inner cortex, and choanosome. The local distribution of a phylotype within P. cf. corticata correlated with its (1) phylogenetic affiliation, (2) classification as sponge-specific or nonspecifically associated microorganism, and (3) potential ecological role in the host sponge.

  12. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    Directory of Open Access Journals (Sweden)

    Bunlong eYim

    2015-11-01

    Full Text Available Replant disease (RD severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after eight weeks was improved in the two RD soils either treated at 50 °C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE and 454-pyrosequencing revealed significant differences in the bacterial community composition even after eight weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e. potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.

  13. Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling.

    Directory of Open Access Journals (Sweden)

    Renee M Petri

    Full Text Available Subacute rumen acidotic (SARA conditions are a consequence of high grain feeding. Recent work has shown that the pattern of grain feeding can significantly impact the rumen epimural microbiota. In a continuation of these works, the objective of this study was to determine the role of grain feeding patterns on the colonization and associated changes in predicted functional properties of the fiber-adherent microbial community over a 48 h period. Eight rumen-cannulated Holstein cows were randomly assigned to interrupted or continuous 60%-grain challenge model (n = 4 per model to induce SARA conditions. Cows in the continuous model were challenged for 4 weeks, whereas cows of interrupted model had a 1-wk break in between challenges. To determine dynamics of rumen fiber-adherent microbial community we incubated the same hay from the diet samples for 24 and 48 h in situ during the baseline (no grain fed, week 1 and 4 of the continuous grain feeding model as well as during the week 1 following the break in the interrupted model. Microbial DNA was extracted and 16SrRNA amplicon (V3-V5 region sequencing was done with the Illumina MiSeq platform. A significant decrease (P 0.1% relative abundance in the rumen, 18 of which were significantly impacted by the feeding challenge model. Correlation analysis of the significant OTUs to rumen pH as an indicator of SARA showed genus Succiniclasticum had a positive correlation to SARA conditions regardless of treatment. Predictive analysis of functional microbial properties suggested that the glyoxylate/dicarboxylate pathway was increased in response to SARA conditions, decreased between 24h to 48h of incubation, negatively correlated with propanoate metabolism and positively correlated to members of the Veillonellaceae family including Succiniclasticum spp. This may indicate an adaptive response in bacterial metabolism under SARA conditions. This research clearly indicates that changes to the colonizing fiber

  14. Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China)

    DEFF Research Database (Denmark)

    Huang, Yili; Zeng, Yanhua; Lu, Hang

    2016-01-01

    Seq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria...... a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was ... fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers...

  15. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris.

    Science.gov (United States)

    Dedysh, S N; Derakshani, M; Liesack, W

    2001-10-01

    Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.

  16. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    Science.gov (United States)

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  17. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    Science.gov (United States)

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  19. In Situ Dark Adaptation Enhances the Efficiency of DNA Extraction from Mature Pin Oak (Quercus palustris Leaves, Facilitating the Identification of Partial Sequences of the 18S rRNA and Isoprene Synthase (IspS Genes

    Directory of Open Access Journals (Sweden)

    Csengele E. Barta

    2017-10-01

    Full Text Available Mature oak (Quercus spp. leaves, although abundantly available during the plants’ developmental cycle, are rarely exploited as viable sources of genomic DNA. These leaves are rich in metabolites difficult to remove during standard DNA purification, interfering with downstream molecular genetics applications. The current work assessed whether in situ dark adaptation, to deplete sugar reserves and inhibit secondary metabolite synthesis could compensate for the difficulties encountered when isolating DNA from mature leaves rich in secondary metabolites. We optimized a rapid, commercial kit based method to extract genomic DNA from dark- and light-adapted leaves. We demonstrated that in situ dark adaptation increases the yield and quality of genomic DNA obtained from mature oak leaves, yielding templates of sufficiently high quality for direct downstream applications, such as PCR amplification and gene identification. The quality of templates isolated from dark-adapted pin oak leaves particularly improved the amplification of larger fragments in our experiments. From DNA extracts prepared with our optimized method, we identified for the first time partial segments of the genes encoding 18S rRNA and isoprene synthase (IspS from pin oak (Quercus palustris, whose full genome has not yet been sequenced.

  20. Microsatellite polymorphisms associated with human behavioural and psychological phenotypes including a gene-environment interaction.

    Science.gov (United States)

    Bagshaw, Andrew T M; Horwood, L John; Fergusson, David M; Gemmell, Neil J; Kennedy, Martin A

    2017-02-03

    The genetic and environmental influences on human personality and behaviour are a complex matter of ongoing debate. Accumulating evidence indicates that short tandem repeats (STRs) in regulatory regions are good candidates to explain heritability not accessed by genome-wide association studies. We tested for associations between the genotypes of four selected repeats and 18 traits relating to personality, behaviour, cognitive ability and mental health in a well-studied longitudinal birth cohort (n = 458-589) using one way analysis of variance. The repeats were a highly conserved poly-AC microsatellite in the upstream promoter region of the T-box brain 1 (TBR1) gene and three previously studied STRs in the activating enhancer-binding protein 2-beta (AP2-β) and androgen receptor (AR) genes. Where significance was found we used multiple regression to assess the influence of confounding factors. Carriers of the shorter, most common, allele of the AR gene's GGN microsatellite polymorphism had fewer anxiety-related symptoms, which was consistent with previous studies, but in our study this was not significant following Bonferroni correction. No associations with two repeats in the AP2-β gene withstood this correction. A novel finding was that carriers of the minor allele of the TBR1 AC microsatellite were at higher risk of conduct problems in childhood at age 7-9 (p = 0.0007, which did pass Bonferroni correction). Including maternal smoking during pregnancy (MSDP) in models controlling for potentially confounding influences showed that an interaction between TBR1 genotype and MSDP was a significant predictor of conduct problems in childhood and adolescence (p behaviour up to age 25 years (p ≤ 0.02). This interaction remained significant after controlling for possible confounders including maternal age at birth, socio-economic status and education, and offspring birth weight. The potential functional importance of the TBR1 gene's promoter microsatellite

  1. First report of Angiostrongylus cantonensis in the giant African land snail Achatina fulica in French Polynesia detected using the SSU rRNA gene.

    Science.gov (United States)

    Fontanilla I, K C; Wade, C M

    2012-12-01

    The 5' end of the small subunit ribosomal RNA gene was used to determine whether 3rd larval stage Angiostrongylus cantonensis are present in populations of the giant African land snail Achatina fulica from French Polynesia. Two populations, one from Moaroa Valley, Tahiti (n=5) and the other from Haapiti Valley, Moorea (n=10), were examined. All snails from Tahiti were infected with nematodes, with parasite load ranging from 12 to 28. A total of 92 nematodes were found, of which 91 were positively identified as A. cantonensis. No nematodes were found in the snails from Moorea. We report for the first time the presence of A. cantonensis in A. fulica snails from French Polynesia, indicating a viable route of human infection of A. cantonensis in the region through the handling of A. fulica or consumption of the snail or contaminated food crops associated with the snail.

  2. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions

    Science.gov (United States)

    Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R.; Sánchez, Sergio

    2018-01-01

    Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions. PMID:29447216

  3. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions.

    Directory of Open Access Journals (Sweden)

    Corina Diana Ceapă

    Full Text Available Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.

  4. High-throughput sequencing of 16S rRNA gene amplicons: effects of extraction procedure, primer length and annealing temperature.

    Science.gov (United States)

    Sergeant, Martin J; Constantinidou, Chrystala; Cogan, Tristan; Penn, Charles W; Pallen, Mark J

    2012-01-01

    The analysis of 16S-rDNA sequences to assess the bacterial community composition of a sample is a widely used technique that has increased with the advent of high throughput sequencing. Although considerable effort has been devoted to identifying the most informative region of the 16S gene and the optimal informatics procedures to process the data, little attention has been paid to the PCR step, in particular annealing temperature and primer length. To address this, amplicons derived from 16S-rDNA were generated from chicken caecal content DNA using different annealing temperatures, primers and different DNA extraction procedures. The amplicons were pyrosequenced to determine the optimal protocols for capture of maximum bacterial diversity from a chicken caecal sample. Even at very low annealing temperatures there was little effect on the community structure, although the abundance of some OTUs such as Bifidobacterium increased. Using shorter primers did not reveal any novel OTUs but did change the community profile obtained. Mechanical disruption of the sample by bead beating had a significant effect on the results obtained, as did repeated freezing and thawing. In conclusion, existing primers and standard annealing temperatures captured as much diversity as lower annealing temperatures and shorter primers.

  5. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture

    Science.gov (United States)

    Dempsey, Kate E; Riggio, Marcello P; Lennon, Alan; Hannah, Victoria E; Ramage, Gordon; Allan, David; Bagg, Jeremy

    2007-01-01

    It has been postulated that bacteria attached to the surface of prosthetic hip joints can cause localised inflammation, resulting in failure of the replacement joint. However, diagnosis of infection is difficult with traditional microbiological culture methods, and evidence exists that highly fastidious or non-cultivable organisms have a role in implant infections. The purpose of this study was to use culture and culture-independent methods to detect the bacteria present on the surface of prosthetic hip joints removed during revision arthroplasties. Ten consecutive revisions were performed by two surgeons, which were all clinically and radiologically loose. Five of the hip replacement revision surgeries were performed because of clinical infections and five because of aseptic loosening. Preoperative and perioperative specimens were obtained from each patient and subjected to routine microbiological culture. The prostheses removed from each patient were subjected to mild ultrasonication to dislodge adherent bacteria, followed by aerobic and anaerobic microbiological culture. Bacterial DNA was extracted from each sonicate and the 16S rRNA gene was amplified with the universal primer pair 27f/1387r. All 10 specimens were positive for the presence of bacteria by both culture and PCR. PCR products were then cloned, organised into groups by RFLP analysis and one clone from each group was sequenced. Bacteria were identified by comparison of the 16S rRNA gene sequences obtained with those deposited in public access sequence databases. A total of 512 clones were analysed by RFLP analysis, of which 118 were sequenced. Culture methods identified species from the genera Leifsonia (54.3%), Staphylococcus (21.7%), Proteus (8.7%), Brevundimonas (6.5%), Salibacillus (4.3%), Methylobacterium (2.2%) and Zimmermannella (2.2%). Molecular detection methods identified a more diverse microflora. The predominant genus detected was Lysobacter, representing 312 (60.9%) of 512 clones

  6. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    Science.gov (United States)

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  7. Free-living protozoa in two unchlorinated drinking water supplies identified by phylogenic analysis of 18S rRNA gene sequences

    NARCIS (Netherlands)

    Valster, R.M.; Wullings, B.A.; Bakker, G.; Smidt, H.; Kooij, van der D.

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria and also pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies using cultivation-independent molecular approaches. For

  8. Simulation of E. coli gene regulation including overlapping cell cycles, growth, division, time delays and noise.

    Directory of Open Access Journals (Sweden)

    Ruoyu Luo

    Full Text Available Due to the complexity of biological systems, simulation of biological networks is necessary but sometimes complicated. The classic stochastic simulation algorithm (SSA by Gillespie and its modified versions are widely used to simulate the stochastic dynamics of biochemical reaction systems. However, it has remained a challenge to implement accurate and efficient simulation algorithms for general reaction schemes in growing cells. Here, we present a modeling and simulation tool, called 'GeneCircuits', which is specifically developed to simulate gene-regulation in exponentially growing bacterial cells (such as E. coli with overlapping cell cycles. Our tool integrates three specific features of these cells that are not generally included in SSA tools: 1 the time delay between the regulation and synthesis of proteins that is due to transcription and translation processes; 2 cell cycle-dependent periodic changes of gene dosage; and 3 variations in the propensities of chemical reactions that have time-dependent reaction rates as a consequence of volume expansion and cell division. We give three biologically relevant examples to illustrate the use of our simulation tool in quantitative studies of systems biology and synthetic biology.

  9. Including α s1 casein gene information in genomic evaluations of French dairy goats.

    Science.gov (United States)

    Carillier-Jacquin, Céline; Larroque, Hélène; Robert-Granié, Christèle

    2016-08-04

    Genomic best linear unbiased prediction methods assume that all markers explain the same fraction of the genetic variance and do not account effectively for genes with major effects such as the α s1 casein polymorphism in dairy goats. In this study, we investigated methods to include the available α s1 casein genotype effect in genomic evaluations of French dairy goats. First, the α s1 casein genotype was included as a fixed effect in genomic evaluation models based only on bucks that were genotyped at the α s1 casein locus. Less than 1 % of the females with phenotypes were genotyped at the α s1 casein gene. Thus, to incorporate these female phenotypes in the genomic evaluation, two methods that allowed for this large number of missing α s1 casein genotypes were investigated. Probabilities for each possible α s1 casein genotype were first estimated for each female of unknown genotype based on iterative peeling equations. The second method is based on a multiallelic gene content approach. For each model tested, we used three datasets each divided into a training and a validation set: (1) two-breed population (Alpine + Saanen), (2) Alpine population, and (3) Saanen population. The α s1 casein genotype had a significant effect on milk yield, fat content and protein content. Including an α s1 casein effect in genetic and genomic evaluations based only on male known α s1 casein genotypes improved accuracies (from 6 to 27 %). In genomic evaluations based on all female phenotypes, the gene content approach performed better than the other tested methods but the improvement in accuracy was only slightly better (from 1 to 14 %) than that of a genomic model without the α s1 casein effect. Including the α s1 casein effect in a genomic evaluation model for French dairy goats is possible and useful to improve accuracy. Difficulties in predicting the genotypes for ungenotyped animals limited the improvement in accuracy of the obtained estimated breeding values.

  10. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform

    Directory of Open Access Journals (Sweden)

    De Keulenaer Sarah

    2012-05-01

    Full Text Available Abstract Background Hereditary hearing loss (HL can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60. Next generation sequencing technology (NGS has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency. Results In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1. Conclusions We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL. For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available.

  11. Investigating the etiology of bovine digital dermatitis by a combination of 16S rRNA gene analysis and fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Rasmussen, Marianne; Capion, Nynne

    , and the current view on this disease points towards a complicated etiology involving co-infection of more than one, and probably multiple species belonging to the genus Treponema. Still, the pathogenic role of each of the digital dermatitis-associated phylotypes remains unclear. The aim of this investigation...... was to obtain a better understanding of digital dermatitis in general, including possible predisposing skin alternations and the role of the bacteria Dichelobacter nodosus. Finally, we wanted to determine if any Treponema phylotypes could be singled out as having a particularly prominent role in the etiology...

  12. Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Jørgensen, K.; Christensen, H.

    1997-01-01

    Seventy-six presumed Shewanella putrefaciens isolates from fish, oil drillings, and clinical specimens, the type strain of Shewanella putrefaciens (ATCC 8071), the type strain of Shewanella alga (IAM 14159), and the type strain of Shewanella hanedai (ATCC 33224) were compared by several typing...... methods. Numerical analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell protein and ribotyping patterns showed that the strains were separated into two distinct clusters with 56% +/- 10% and 40% +/- 14% similarity for whole- cell protein profiling and ribotyping......, respectively. One cluster consisted of 26 isolates with 52 to 55 mol% G + C and included 15 human isolates, mostly clinical specimens, 8 isolates from marine waters, and the type strain of S. alga. This homogeneous cluster of mesophilic, halotolerant strains was by all analyses identical to the recently...

  13. Karyotype characterization of Crotalaria juncea (L. by chromosome banding and physical mapping of 18S-5.8S-26S and 5S rRNA gene sites

    Directory of Open Access Journals (Sweden)

    Mateus Mondin

    2007-01-01

    Full Text Available The chromosomes of Crotalaria juncea, a legume of agronomic interest with a 2n = 16 karyotype composed of metacentric chromosomes, were analyzed using several cytogenetic techniques. C-banding revealed heterochromatic regions around the centromeres in all chromosomes and adjacent to the secondary constriction on the chromosome 1 short arm. Fluorescent staining with the GC-specific chromomycin A3 (CMA highlighted these heterochromatic regions and a tiny site on the chromosome 1 long arm while the AT-specific stain 4'-6-diamidino-2-phenylindole (DAPI induced a reversed pattern. Staining with CMA combined with AT-specific distamycin A (DA counterstaining quenched the pericentromeric regions of all chromosomes, but enhanced fluorescence was observed at the heterochromatic regions around the secondary constriction and on the long arms of chromosomes 1 and 4. Fluorescence in situ hybridization (FISH revealed 18S-5.8S-26S rRNA gene sites (45S rDNA on chromosomes 1 and 4, and one 5S rDNA locus on chromosome 1. All the rDNA sites were co-located with the positive-CMA/DA bands, suggesting they were very rich in GC. Silver staining revealed signals at the main 45S rDNA locus on chromosome 1 and, in some cells, chromosome 4 was labeled. Two small nucleoli were detected in a few interphase cells, suggesting that the minor site on chromosome 4 could be active at some stages of the cell cycle.

  14. Bacterial diversity of the Colombian fermented milk "Suero Costeño" assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons.

    Science.gov (United States)

    Motato, Karina Edith; Milani, Christian; Ventura, Marco; Valencia, Francia Elena; Ruas-Madiedo, Patricia; Delgado, Susana

    2017-12-01

    "Suero Costeño" (SC) is a traditional soured cream elaborated from raw milk in the Northern-Caribbean coast of Colombia. The natural microbiota that characterizes this popular Colombian fermented milk is unknown, although several culturing studies have previously been attempted. In this work, the microbiota associated with SC from three manufacturers in two regions, "Planeta Rica" (Córdoba) and "Caucasia" (Antioquia), was analysed by means of culturing methods in combination with high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. The bacterial ecosystem of SC samples was revealed to be composed of lactic acid bacteria belonging to the Streptococcaceae and Lactobacillaceae families; the proportions and genera varying among manufacturers and region of elaboration. Members of the Lactobacillus acidophilus group, Lactocococcus lactis, Streptococcus infantarius and Streptococcus salivarius characterized this artisanal product. In comparison with culturing, the use of molecular in deep culture-independent techniques provides a more realistic picture of the overall bacterial communities residing in SC. Besides the descriptive purpose, these approaches will facilitate a rational strategy to follow (culture media and growing conditions) for the isolation of indigenous strains that allow standardization in the manufacture of SC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    Science.gov (United States)

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-05-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.

  16. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies

    DEFF Research Database (Denmark)

    2014-01-01

    in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p...... = 8.2 × 10(-4)), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have...... analyzed exome-sequencing data of 356 trios with the "classical" epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1...

  17. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    Science.gov (United States)

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  18. The human genome and sport, including epigenetics, gene doping, and athleticogenomics.

    Science.gov (United States)

    Sharp, N C Craig

    2010-03-01

    Hugh Montgomery's discovery of the first of more than 239 fitness genes together with rapid advances in human gene therapy have created a prospect of using genes, genetic elements, and cells that have the capacity to enhance athletic performance (to paraphrase the World Anti-Doping Agency's definition of gene doping). This brief overview covers the main areas of interface between genetics and sport, attempts to provide a context against which gene doping may be viewed, and predicts a futuristic legitimate use of genomic (and possibly epigenetic) information in sport. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12

    Directory of Open Access Journals (Sweden)

    Parker Nadeene

    2004-01-01

    Full Text Available Abstract Background The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN. The predicted products of these genes are small (12.9 and 11.5 kDa respectively, hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins. Results We have used in silico analyses to identify a novel family of genes (the ISG12 gene family related to both the human 6–16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif. So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6–16 gene at chromosome 1p35 and three genes (ISG12(a, ISG12(b and ISG12(c clustered at chromosome 14q32. Mice have three family members (ISG12(a, ISG12(b1 and ISG12(b2 clustered at chromosome 12F1 (syntenic with human chromosome 14q32. There does not appear to be a murine 6–16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b and ISG12(c being upregulated in response to type I IFN in the cell lines tested. Conclusions Members of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of ~80 amino-acids (the ISG12 motif. In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of

  20. Innate immune genes including a mucin-like gene, mul-1, induced by ionizing radiation in Caenorhabditis elegans.

    Science.gov (United States)

    Kimura, Takafumi; Takanami, Takako; Sakashita, Tetsuya; Wada, Seiichi; Kobayashi, Yasuhiko; Higashitani, Atsushi

    2012-10-01

    The effect of radiation on the intestine has been studied for more than one hundred years. It remains unclear, however, whether this organ uses specific defensive mechanisms against ionizing radiation. The infection with Pseudomonas aeruginosa (PA14) in Caenorhabditis elegans induces up-regulation of innate immune response genes. Here, we found that exposure to ionizing radiation also induces certain innate immune response genes such as F49F1.6 (termed mul-1), clec-4, clec-67, lys-1 and lys-2 in the intestine. Moreover, pre-treatment with ionizing radiation before seeding on PA14 lawn plate significantly increased survival rate in the nematode. We also studied transcription pathway of the mul-1 in response to ionizing radiation. Induction of mul-1 gene was highly dependent on the ELT-2 transcription factor and p38 MAPK. Moreover, the insulin/IGF-1 signal pathway works to enhance induction of this gene. The mul-1 gene showed a different induction pattern from the DNA damage response gene, ced-13, which implies that the expression of this gene might be triggered as an indirect effect of radiation. Silencing of the mul-1 gene led to growth retardation after treatment with ionizing radiation. We describe the cross-tolerance between the response to radiation exposure and the innate immune system.

  1. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  2. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    Science.gov (United States)

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia.

  3. Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis†

    OpenAIRE

    Randazzo, Cinzia L.; Torriani, Sandra; Akkermans, Antoon D. L.; de Vos, Willem M.; Vaughan, Elaine E.

    2002-01-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes (rDNA). Bacterial and Lactobacillus group-specific primers were used to amplify the V6 to V8 and V1 to V3 regions of the 16S rRNA gene...

  4. No linkage and association of atopy to chromosome 16 including the interleukin-4 receptor gene

    DEFF Research Database (Denmark)

    Haagerup, A; Bjerke, T; Schiøtz, P O

    2001-01-01

    BACKGROUND: Several susceptibility genes for atopy have been suggested in recent years. Few have been investigated as intensively as the interleukin-4-receptor alpha (IL4Ralpha) gene on chromosome 16. The results remain in dispute. Therefore, in a robust design, we tested for association of type ...

  5. Bacteriemia fulminante asociada a Capnocytophaga sputigena en un paciente con linfoma no Hodgkin tipo T: Diagnóstico por secuenciación genética del ARNr 16S Fatal bacteremia related to Capnocytophaga sputigena in a hematological patient with type T non- Hodgkin lymphoma: Diagnosis by 16S rRNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Tomás García Lozano

    2012-09-01

    Full Text Available Describimos un caso de bacteriemia fulminante asociada a Capnocytophaga sputigena en un paciente hematológico. El aislamiento fue identificado mediante la secuenciación genética de la subunidad 16S del ARNr.We described a case of fatal bacteremia related to Capnocytophaga sputigena in a hematological patient. The strain was identified by 16S rRNA gene sequencing.

  6. Integrative Analysis of Gene Expression Data Including an Assessment of Pathway Enrichment for Predicting Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2006-01-01

    Full Text Available Background: Microarray technology has been previously used to identify genes that are differentially expressed between tumour and normal samples in a single study, as well as in syntheses involving multiple studies. When integrating results from several Affymetrix microarray datasets, previous studies summarized probeset-level data, which may potentially lead to a loss of information available at the probe-level. In this paper, we present an approach for integrating results across studies while taking probe-level data into account. Additionally, we follow a new direction in the analysis of microarray expression data, namely to focus on the variation of expression phenotypes in predefined gene sets, such as pathways. This targeted approach can be helpful for revealing information that is not easily visible from the changes in the individual genes. Results: We used a recently developed method to integrate Affymetrix expression data across studies. The idea is based on a probe-level based test statistic developed for testing for differentially expressed genes in individual studies. We incorporated this test statistic into a classic random-effects model for integrating data across studies. Subsequently, we used a gene set enrichment test to evaluate the significance of enriched biological pathways in the differentially expressed genes identified from the integrative analysis. We compared statistical and biological significance of the prognostic gene expression signatures and pathways identified in the probe-level model (PLM with those in the probeset-level model (PSLM. Our integrative analysis of Affymetrix microarray data from 110 prostate cancer samples obtained from three studies reveals thousands of genes significantly correlated with tumour cell differentiation. The bioinformatics analysis, mapping these genes to the publicly available KEGG database, reveals evidence that tumour cell differentiation is significantly associated with many

  7. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    Science.gov (United States)

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  8. Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence

    Directory of Open Access Journals (Sweden)

    Rose Ray J

    2011-03-01

    Full Text Available Abstract Background SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK genes are part of the regulation of diverse signalling events in plants. Current evidence shows SERK proteins function both in developmental and defence signalling pathways, which occur in response to both peptide and steroid ligands. SERKs are generally present as small gene families in plants, with five SERK genes in Arabidopsis. Knowledge gained primarily through work on Arabidopsis SERKs indicates that these proteins probably interact with a wide range of other receptor kinases and form a fundamental part of many essential signalling pathways. The SERK1 gene of the model legume, Medicago truncatula functions in somatic and zygotic embryogenesis, and during many phases of plant development, including nodule and lateral root formation. However, other SERK genes in M. truncatula and other legumes are largely unidentified and their functions unknown. Results To aid the understanding of signalling pathways in M. truncatula, we have identified and annotated the SERK genes in this species. Using degenerate PCR and database mining, eight more SERK-like genes have been identified and these have been shown to be expressed. The amplification and sequencing of several different PCR products from one of these genes is consistent with the presence of splice variants. Four of the eight additional genes identified are upregulated in cultured leaf tissue grown on embryogenic medium. The sequence information obtained from M. truncatula was used to identify SERK family genes in the recently sequenced soybean (Glycine max genome. Conclusions A total of nine SERK or SERK-like genes have been identified in M. truncatula and potentially 17 in soybean. Five M. truncatula SERK genes arose from duplication events not evident in soybean and Lotus. The presence of splice variants has not been previously reported in a SERK gene. Upregulation of four newly identified SERK genes (in addition to the

  9. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yih-Horng Shiao

    Full Text Available BACKGROUND: Ribosomal RNA (rRNA is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1 and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014. During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014. Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE: The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  10. Cloning of synthetic gene including antigens against Urinary Tract Infections in pET28a+ vector

    Directory of Open Access Journals (Sweden)

    Zohreh Haghri

    2017-12-01

    Full Text Available There are many different bacterial infections in the world that patients are suffering from and research teams are trying to find suitable ways to prevent and treat them. Urinary Tract Infections (UTIs are most important infections in the world , and they are more common among women because vaginal cavity is near to urethral opening. The aim of this study is cloning of synthetic gene include antigens against UTIs in pET28a+ vector. Antibiotic resistant has been increasing because of antibiotic overuse recently, so It shows the necessity of developing a vaccine against these infections. There for, it will be imperative to develop a vaccine instead of antibiotics. This infection causes by many organisms, most important of which are Uropathogenic Escherichia coli (UPEC, Proteus mirabilis and Klebsiella pneumoniae Uropathogenic Escherichia .coli is the most important microorganism that causes these infections more than other bacteria, so in developing a vaccine it is the most important one, that have to be considered. The synthetic Gene which was designed against these three bacteria including antigens which are important and common to cause these infections. This gene has involved 1293bp. It was ordered to Gene Ray Biotechnology. Primers were designed by Gene Runner. Gene and pET28a+ vector was checked by SnappGene. Synthetic gene was multiplied by PCR and cloned in pET28a+ vector. Construct was transformed into E. coli TOP10.The clone was confirmed by PCR, Digestion. This data indicates that this gene can be expressed and it might be a vaccine candidate to protect people from these infections in the future.

  11. Full-Length Sequence of Mouse Acupuncture-Induced 1-L (Aig1l Gene Including Its Transcriptional Start Site

    Directory of Open Access Journals (Sweden)

    Mika Ohta

    2011-01-01

    Full Text Available We have been investigating the molecular efficacy of electroacupuncture (EA, which is one type of acupuncture therapy. In our previous molecular biological study of acupuncture, we found an EA-induced gene, named acupuncture-induced 1-L (Aig1l, in mouse skeletal muscle. The aims of this study consisted of identification of the full-length cDNA sequence of Aig1l including the transcriptional start site, determination of the tissue distribution of Aig1l and analysis of the effect of EA on Aig1l gene expression. We determined the complete cDNA sequence including the transcriptional start site via cDNA cloning with the cap site hunting method. We then analyzed the tissue distribution of Aig1l by means of northern blot analysis and real-time quantitative polymerase chain reaction. We used the semiquantitative reverse transcriptase-polymerase chain reaction to examine the effect of EA on Aig1l gene expression. Our results showed that the complete cDNA sequence of Aig1l was 6073 bp long, and the putative protein consisted of 962 amino acids. All seven tissues that we analyzed expressed the Aig1l gene. In skeletal muscle, EA induced expression of the Aig1l gene, with high expression observed after 3 hours of EA. Our findings thus suggest that the Aig1l gene may play a key role in the molecular mechanisms of EA efficacy.

  12. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  13. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  14. I Have a Dream: Organic Movements Include Gene Manipulation to Improve Sustainable Farming

    Directory of Open Access Journals (Sweden)

    Gerhart U. Ryffel

    2017-03-01

    Full Text Available Several papers in a Special Issue of Sustainability have recently discussed various aspects to evaluate whether organic farming and gene manipulation are compatible. A special emphasis was given to new plant breeding techniques (NPBTs. These new approaches allow the most predictable genetic alterations of crop plants in ways that the genetically modified plant is identical to a plant generated by conventional breeding. The articles of the Special Issue present the arguments pro and contra the inclusion of the plants generated by NPBTs in organic farming. Organic movements have not yet made a final decision whether some of these techniques should be accepted or banned. In my view these novel genetically manipulated (GM crops could be used in such a way as to respect the requirements for genetically manipulated organisms (GMOs formulated by the International Federation of Organic Movements (IFOAM. Reviewing the potential benefits of disease-resistant potatoes and bananas, it seems possible that these crops support organic farming. To this end, I propose specific requirements that the organic movements should proactively formulate as their standards to accept specific GM crops.

  15. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  16. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    NARCIS (Netherlands)

    Nakayama, A.; Nakaoka, H.; Yamamoto, K.; Sakiyama, M.; Shaukat, A.; Toyoda, Y.; Okada, Y.; Kamatani, Y.; Nakamura, T.; Takada, T.; Inoue, K.; Yasujima, T.; Yuasa, H.; Shirahama, Y.; Nakashima, H.; Shimizu, S.; Higashino, T.; Kawamura, Y.; Ogata, H.; Kawaguchi, M.; Ohkawa, Y.; Danjoh, I.; Tokumasu, A.; Ooyama, K.; Ito, T.; Kondo, T.; Wakai, K.; Stiburkova, B.; Pavelka, K.; Stamp, L.K.; Dalbeth, N.; Sakurai, Y.; Suzuki, H; Hosoyamada, M.; Fujimori, S.; Yokoo, T.; Hosoya, T.; Inoue, I.; Takahashi, A.; Kubo, M.; Ooyama, H.; Shimizu, T.; Ichida, K.; Shinomiya, N.; Merriman, T.R.; Matsuo, H.; Andres, M; Joosten, L.A.; Janssen, M.C.H.; Jansen, T.L.; Liote, F.; Radstake, T.R.; Riches, P.L.; So, A.; Tauches, A.K.

    2017-01-01

    OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were

  17. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    OpenAIRE

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi

    2016-01-01

    Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zeala...

  18. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  19. Detection systems for carbapenemase gene identification should include the SME serine carbapenemase.

    Science.gov (United States)

    Bush, Karen; Pannell, Megan; Lock, John L; Queenan, Anne Marie; Jorgensen, James H; Lee, Ryan M; Lewis, James S; Jarrett, Deidre

    2013-01-01

    Carbapenemase detection has become a major problem in hospitals that encounter outbreaks of infections caused by carbapenem-resistant Gram-negative bacteria. Rapid detection systems have been reported using multiplex PCR analyses and DNA microarray assays. Major carbapenemases that are detected by these systems include the KPC and OXA serine carbapenemases, and the IMP, VIM and NDM families of metallo-β-lactamases. However, increasing numbers of the SME serine carbapenemase are being reported from Serratia marcescens, especially from North and South America. These organisms differ from many of the other carbapenemase-producing pathogens in that they are generally susceptible to the expanded-spectrum cephalosporins ceftazidime and cefepime while retaining resistance to almost all other β-lactam antibiotics. Thus, multiplex PCR assays or DNA microarray testing of carbapenem-resistant S. marcescens isolates should include analyses for production of the SME carbapenemase. Confirmation of the presence of this enzyme may provide reassurance that oxyimino-cephalosporins can be considered for treatment of infections caused by these carbapenem-resistant pathogens. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    Science.gov (United States)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  1. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.

    Science.gov (United States)

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi; Shimizu, Seiko; Higashino, Toshihide; Kawamura, Yusuke; Ogata, Hiraku; Kawaguchi, Makoto; Ohkawa, Yasuyuki; Danjoh, Inaho; Tokumasu, Atsumi; Ooyama, Keiko; Ito, Toshimitsu; Kondo, Takaaki; Wakai, Kenji; Stiburkova, Blanka; Pavelka, Karel; Stamp, Lisa K; Dalbeth, Nicola; Sakurai, Yutaka; Suzuki, Hiroshi; Hosoyamada, Makoto; Fujimori, Shin; Yokoo, Takashi; Hosoya, Tatsuo; Inoue, Ituro; Takahashi, Atsushi; Kubo, Michiaki; Ooyama, Hiroshi; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi; Merriman, Tony R; Matsuo, Hirotaka

    2017-05-01

    A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (pgout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10 -8 ). Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli

    DEFF Research Database (Denmark)

    Triman, K; Becker, E; Dammel, C

    1989-01-01

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance....... The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature......-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between...

  3. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b.

    Directory of Open Access Journals (Sweden)

    Rebecca Cotterman

    2009-06-01

    Full Text Available myc genes are best known for causing tumors when overexpressed, but recent studies suggest endogenous myc regulates pluripotency and self-renewal of stem cells. For example, N-myc is associated with a number of tumors including neuroblastoma, but also plays a central role in the function of normal neural stem and precursor cells (NSC. Both c- and N-myc also enhance the production of induced pluripotent stem cells (iPSC and are linked to neural tumor stem cells. The mechanisms by which myc regulates normal and neoplastic stem-related functions remain largely open questions. Here from a global, unbiased search for N-Myc bound genes using ChIP-chip assays in neuroblastoma, we found lif as a putative N-Myc bound gene with a number of strong N-Myc binding peaks in the promoter region enriched for E-boxes. Amongst putative N-Myc target genes in expression microarray studies in neuroblastoma we also found lif and three additional important embryonic stem cell (ESC-related factors that are linked to production of iPSC: klf2, klf4, and lin28b. To examine the regulation of these genes by N-Myc, we measured their expression using neuroblastoma cells that contain a Tet-regulatable N-myc transgene (TET21N as well as NSC with a nestin-cre driven N-myc knockout. N-myc levels closely correlated with the expression of all of these genes in neuroblastoma and all but lif in NSC. Direct ChIP assays also indicate that N-Myc directly binds the lif promoter. N-Myc regulates trimethylation of lysine 4 of histone H3 in the promoter of lif and possibly in the promoters of several other stem-related genes. Together these findings indicate that N-Myc regulates overlapping stem-related gene expression programs in neuroblastoma and NSC, supporting a novel model by which amplification of the N-myc gene may drive formation of neuroblastoma. They also suggest mechanisms by which Myc proteins more generally contribute to maintenance of pluripotency and self-renewal of ESC as

  4. Diagnostic Utility of Broad Range Bacterial 16S rRNA Gene PCR with Degradation of Human and Free Bacterial DNA in Bloodstream Infection Is More Sensitive Than an In-House Developed PCR without Degradation of Human and Free Bacterial DNA

    Directory of Open Access Journals (Sweden)

    Petra Rogina

    2014-01-01

    Full Text Available We compared a commercial broad range 16S rRNA gene PCR assay (SepsiTest to an in-house developed assay (IHP. We assessed whether CD64 index, a biomarker of bacterial infection, can be used to exclude patients with a low probability of systemic bacterial infection. From January to March 2010, 23 patients with suspected sepsis were enrolled. CD64 index, procalcitonin, and C-reactive protein were measured on admission. Broad range 16S rRNA gene PCR was performed from whole blood (SepsiTest or blood plasma (IHP and compared to blood culture results. Blood samples spiked with Staphylococcus aureus were used to assess sensitivity of the molecular assays in vitro. CD64 index was lower in patients where possible sepsis was excluded than in patients with microbiologically confirmed sepsis (P=0.004. SepsiTest identified more relevant pathogens than blood cultures (P=0.008; in three patients (13% results from blood culture and SepsiTest were congruent, whereas in four cases (17.4% relevant pathogens were detected by SepsiTest only. In vitro spiking experiments suggested equal sensitivity of SepsiTest and IHP. A diagnostic algorithm using CD64 index as a decision maker to perform SepsiTest shows improved detection of pathogens in patients with suspected blood stream infection and may enable earlier targeted antibiotic therapy.

  5. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples

    Directory of Open Access Journals (Sweden)

    Ravindra P Turankar

    2015-01-01

    Conclusion: Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes.

  6. Evaluation of 5.8S rRNA to identify Penaeus semisulcatus and its subspecies, Penaeus semisulcatus persicus (Penaeidae and some Decapoda species

    Directory of Open Access Journals (Sweden)

    Zahra Noroozi

    2015-10-01

    Full Text Available The green tiger prawn, Penaeus semisulcatus is one of the most important members of the family Penaeidae in the Persian Gulf. Based on the morphological characteristics, two groups, including P. semisulcatus and its subspecies viz. P. s. persicus are recognized. This study was conducted to investigate the genetic distance between P. semisulcatus and P. s. persicus by analyzing partial sequence of 5.8S rRNA. Another objective of this study is to evaluate the ability of 5.8S rRNA to identify the species of Decapoda. The results indicated that the 5.8S rRNA gene of both P. semisulcatus and P. s. persicus were exactly identical, and sequence variation was not observed. The results also indicated that 5.8S rRNA sequences between species of the same genus of analysed species of Decapoda are conserved, and no genetic distance was observed in species level. The low evolutionary rate and efficient conservation of the 5.8S rRNA can be attributed to its role in the translation process.

  7. [Phylogenetic analysis of closely related Leuconostoc citreum species based on partial housekeeping genes].

    Science.gov (United States)

    Lv, Qiang; Chen, Ming; Xu, Haiyan; Song, Yuqin; Sun, Zhihong; Dan, Tong; Sun, Tiansong

    2013-07-04

    Using the 16S rRNA, dnaA, murC and pyrG gene sequences, we identified the phylogenetic relationship among closely related Leuconostoc citreum species. Seven Leu. citreum strains originally isolated from sourdough were characterized by PCR methods to amplify the dnaA, murC and pyrG gene sequences, which were determined to assess the suitability as phylogenetic markers. Then, we estimated the genetic distance and constructed the phylogenetic trees including 16S rRNA and above mentioned three housekeeping genes combining with published corresponding sequences. By comparing the phylogenetic trees, the topology of three housekeeping genes trees were consistent with that of 16S rRNA gene. The homology of closely related Leu. citreum species among dnaA, murC, pyrG and 16S rRNA gene sequences were different, ranged from75.5% to 97.2%, 50.2% to 99.7%, 65.0% to 99.8% and 98.5% 100%, respectively. The phylogenetic relationship of three housekeeping genes sequences were highly consistent with the results of 16S rRNA gene sequence, while the genetic distance of these housekeeping genes were extremely high than 16S rRNA gene. Consequently, the dnaA, murC and pyrG gene are suitable for classification and identification closely related Leu. citreum species.

  8. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly.

    Science.gov (United States)

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-08-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.

  9. Linking Maternal and Somatic 5S rRNA types with Different Sequence-Specific Non-LTR Retrotransposons

    NARCIS (Netherlands)

    Locati, M.D.; Pagano, J.F.B.; Ensink, W.A.; van Olst, M.; van Leeuwen, S.; Nehrdich, U.; Zhu, K.; Spaink, H.P.; Girard, G.; Rauwerda, H.; Jonker, M.J.; Dekker, R.J.; Breit, T.M.

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo and adult tissue,

  10. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis

    DEFF Research Database (Denmark)

    Chen, Chun; Xie, Tingna; Ye, Sudan

    2016-01-01

    candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongationfactor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reac-tion at different developmental stages (conidia, conidia with germ tubes, short hyphae andelongated hyphae), and under different nutritional conditions...

  11. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    Science.gov (United States)

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  12. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Johansen

    Full Text Available A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%. The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%, and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

  13. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci.

    Science.gov (United States)

    Yang, Luming; Li, Dawei; Li, Yuhong; Gu, Xingfang; Huang, Sanwen; Garcia-Mas, Jordi; Weng, Yiqun

    2013-03-25

    Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of

  14. Chemotherapy modulates intestinal immune gene expression including surfactant Protein-D and deleted in malignant brain tumors 1 in piglets

    DEFF Research Database (Denmark)

    Rathe, Mathias; Thomassen, Mads; Shen, René L.

    2016-01-01

    Background: Information about chemotherapy-induced intestinal gene expression may provide insight into the mechanisms underlying gut toxicity and help identify biomarkers and targets for intervention. Methods: We analyzed jejunal tissue from piglets subjected to two different, clinically relevant...... the upregulated genes for both treatments. Conclusion: In the developing intestine, chemotherapy increases the expression of genes related to innate immune functions involved in surveillance, protection, and homeostasis of mucosal surfaces....

  15. Nontypeable pneumococci can be divided into multiple cps types, including one type expressing the novel gene pspK.

    Science.gov (United States)

    Park, In Ho; Kim, Kyung-Hyo; Andrade, Ana Lucia; Briles, David E; McDaniel, Larry S; Nahm, Moon H

    2012-01-01

    Although virulence of Streptococcus pneumoniae is associated with its capsule, some pathogenic S. pneumoniae isolates lack capsules and are serologically nontypeable (NT). We obtained 64 isolates that were identified as NT "pneumococci" (i.e., bacteria satisfying the conventional definition but without the multilocus sequence typing [MLST]-based definition of S. pneumoniae) by the traditional criteria. All 64 were optochin sensitive and had lytA, and 63 had ply. Twelve isolates had cpsA, suggesting the presence of a conventional but defective capsular polysaccharide synthesis (cps) locus. The 52 cpsA-negative isolates could be divided into three null capsule clades (NCC) based on aliC (aliB-like ORF1), aliD (aliB-like ORF2), and our newly discovered gene, pspK, in their cps loci. pspK encodes a protein with a long alpha-helical region containing an LPxTG motif and a YPT motif known to bind human pIgR. There were nine isolates in NCC1 (pspK(+) but negative for aliC and aliD), 32 isolates in NCC2 (aliC(+) aliD(+) but negative for pspK), and 11 in NCC3 (aliD(+) but negative for aliC and pspK). Among 52 cpsA-negative isolates, 41 were identified as S. pneumoniae by MLST analysis. All NCC1 and most NCC2 isolates were S. pneumoniae, whereas all nine NCC3 and two NCC2 isolates were not S. pneumoniae. Several NCC1 and NCC2 isolates from multiple individuals had identical MLST and cps regions, showing that unencapsulated S. pneumoniae can be infectious among humans. Furthermore, NCC1 and NCC2 S. pneumoniae isolates could colonize mice as well as encapsulated S. pneumoniae, although S. pneumoniae with an artificially disrupted cps locus did not. Moreover, an NCC1 isolate with pspK deletion did not colonize mice, suggesting that pspK is critical for colonization. Thus, PspK may provide pneumococci a means of surviving in the nasopharynx without capsule. IMPORTANCE The presence of a capsule is critical for many pathogenic bacteria, including pneumococci. Reflecting the

  16. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

    Science.gov (United States)

    Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke

    2017-09-18

    Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B

  17. Renal Cell Carcinoma With Chromosome 6p Amplification Including the TFEB Gene: A Novel Mechanism of Tumor Pathogenesis?

    Science.gov (United States)

    Williamson, Sean R; Grignon, David J; Cheng, Liang; Favazza, Laura; Gondim, Dibson D; Carskadon, Shannon; Gupta, Nilesh S; Chitale, Dhananjay A; Kalyana-Sundaram, Shanker; Palanisamy, Nallasivam

    2017-03-01

    Amplification of chromosome 6p has been implicated in aggressive behavior in several cancers, but has not been characterized in renal cell carcinoma (RCC). We identified 9 renal tumors with amplification of chromosome 6p including the TFEB gene, 3 by fluorescence in situ hybridization, and 6 from the Cancer Genome Atlas (TCGA) databases. Patients' ages were 28 to 78 years (median, 61 y). Most tumors were high stage (7/9 pT3a, 2/9 pN1). Using immunohistochemistry, 2/4 were positive for melanocytic markers and cathepsin K. Novel TFEB fusions were reported by TCGA in 2; however, due to a small composition of fusion transcripts compared with full-length transcripts (0.5/174 and 3.3/132 FPKM), we hypothesize that these represent secondary fusions due to amplification. Five specimens (4 TCGA, 1 fluorescence in situ hybridization) had concurrent chromosome 3p copy number loss or VHL deletion. However, these did not resemble clear cell RCC, had negative carbonic anhydrase IX labeling, lacked VHL mutation, and had papillary or unclassified histology (2/4 had gain of chromosome 7 or 17). One tumor each had somatic FH mutation and SMARCB1 mutation. Chromosome 6p amplification including TFEB is a previously unrecognized cytogenetic alteration in RCC, associated with heterogenous tubulopapillary eosinophilic and clear cell histology. The combined constellation of features does not fit cleanly into an existing tumor category (unclassified), most closely resembling papillary or translocation RCC. The tendency for high tumor stage, varied tubulopapillary morphology, and a subset with melanocytic marker positivity suggests the possibility of a unique tumor type, despite some variation in appearance and genetics.

  18. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  19. Methyltransferase That Modifies Guanine 966 of the 16 S rRNA: FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE*

    Science.gov (United States)

    Lesnyak, Dmitry V.; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V.; Bogdanov, Alexey A.; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A.

    2010-01-01

    N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05 Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed. PMID:17189261

  20. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure.

    Science.gov (United States)

    Lesnyak, Dmitry V; Osipiuk, Jerzy; Skarina, Tatiana; Sergiev, Petr V; Bogdanov, Alexey A; Edwards, Aled; Savchenko, Alexei; Joachimiak, Andrzej; Dontsova, Olga A

    2007-02-23

    N(2)-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m(2)G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m(2)G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m(2)G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05A(.) The structure closely resembles RsmC rRNA methyltransferase, specific for m(2)G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m(2)G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.

  1. Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I

    NARCIS (Netherlands)

    Fischer, U.; Heckel, D.; Michel, A.; Janka, M.; Hulsebos, T.; Meese, E.

    1997-01-01

    Gene amplification, which is generally considered to occur late in tumor development, is a common feature of high grade glioma. Up until now, there have been no reports on amplification in astrocytoma grade I. In this study, we report cloning and sequencing of a cDNA termed glioma-amplified sequence

  2. Discrimination of press fit candidate microorganism (Enterobacter cloacae, Bacillus licheniformis) by restriction fragment length polymorphic analysis of the 16SrRNA gene; 16S rRNA idenshi no sengen danpen kchotakei kaiseki niyoru atsunyukoho biseibutsu (Enterobacter cloacae, Bacillus licheni-formis) no shikibetsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhiro; Tanaka, Shinji; Otsuka, Makiko; Ichimura, Naoya; Yonebayashi, Eiji; Enomoto, Heiji

    1999-09-01

    In MeOH viewed as one of the improvement method for recovery of the petroleum with hope, the development of discrimination technique of press fit candidate microorganism and oil reservoir resident microorganism which exists in the test object oil reservoir was tried in order to monitor the survival situation of the microorganism which inserted in the oil reservoir under pressure. 16S rRNA amplified by the PCR using the universal primer The microorganism that it cut off the gene at restriction enzyme HhaI,MspI, AluI and inhabits oil reservoir water and oil reservoir rock in the object oil reservoir by ( necessarily TaqI ) and restriction fragment length polymorphic analysis was classified. As the result, the effectiveness of the this PCR-RFLP method was indicated the microorganism which showed RFLP pattern which is identical with the press fit candidate microorganism in the oil reservoir resident microorganism for the discrimination of the press fit candidate microorganism without existing. And, it was indicated that the this PCR-RFLP method was effective for the investigation of oil reservoir resident microbial community which can positively utilize source of nutrition inserted to oil reservoir with the press fit candidate microorganism under pressure, and it was possible to grasp oil reservoir resident microorganism to be especially considered in MEOR. (translated by NEDO)

  3. Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental Listeria spp. isolates including Listeria monocytogenes.

    Science.gov (United States)

    Bertsch, David; Muelli, Mirjam; Weller, Monika; Uruty, Anaïs; Lacroix, Christophe; Meile, Leo

    2014-02-01

    The aims of this study were to assess antibiotic resistance pheno- and genotypes in foodborne, clinical, and environmental Listeria isolates, as well as to elucidate the horizontal gene transfer potential of detected resistance genes. A small fraction of in total 524 Listeria spp. isolates (3.1%) displayed acquired antibiotic resistance mainly to tetracycline (n = 11), but also to clindamycin (n = 4) and trimethoprim (n = 3), which was genotypically confirmed. In two cases, a tetracycline resistance phenotype was observed together with a trimethoprim resistance phenotype, namely in a clinical L. monocytogenes strain and in a foodborne L. innocua isolate. Depending on the applied guidelines, a differing number of isolates (n = 2 or n = 20) showed values for ampicillin that are on the edge between intermediate susceptibility and resistance. Transferability of the antibiotic resistance genes from the Listeria donors, elucidated in vitro by filter matings, was demonstrated for genes located on transposons of the Tn916 family and for an unknown clindamycin resistance determinant. Transfer rates of up to 10(-5) transconjugants per donor were obtained with a L. monocytogenes recipient and up to 10(-7) with an Enterococcus faecalis recipient, respectively. Although the prevalence of acquired antibiotic resistance in Listeria isolates from this study was rather low, the transferability of these resistances enables further spread in the future. This endorses the importance of surveillance of L. monocytogenes and other Listeria spp. in terms of antibiotic susceptibility. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous Plakophilin 2-gene mutation.

    Directory of Open Access Journals (Sweden)

    Baerbel Klauke

    Full Text Available Cardiomyopathies might lead to end-stage heart disease with the requirement of drastic treatments like bridging up to transplant or heart transplantation. A not precisely known proportion of these diseases are genetically determined. We genotyped 43 index-patients (30 DCM, 10 ARVC, 3 RCM with advanced or end stage cardiomyopathy using a gene panel which covered 46 known cardiomyopathy disease genes. Fifty-three variants with possible impact on disease in 33 patients were identified. Of these 27 (51% were classified as likely pathogenic or pathogenic in the MYH7, MYL2, MYL3, NEXN, TNNC1, TNNI3, DES, LMNA, PKP2, PLN, RBM20, TTN, and CRYAB genes. Fifty-six percent (n = 24 of index-patients carried a likely pathogenic or pathogenic mutation. Of these 75% (n = 18 were familial and 25% (n = 6 sporadic cases. However, severe cardiomyopathy seemed to be not characterized by a specific mutation profile. Remarkably, we identified a novel homozygous PKP2-missense variant in a large consanguineous family with sudden death in early childhood and several members with heart transplantation in adolescent age.

  5. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon

    DEFF Research Database (Denmark)

    van Wezel, G P; Krab, I M; Douthwaite, S

    1994-01-01

    Transcription start sites and processing sites of the Streptomyces coelicolor A3(2) rrnA operon have been investigated by a combination of in vivo and in vitro transcription analyses. The data from these approaches are consistent with the existence of four in vivo transcription sites, corresponding...... to the promoters P1-P4. The transcription start sites are located at -597, -416, -334 and -254 relative to the start of the 16S rRNA gene. Two putative processing sites were identified, one of which is similar to a sequence reported earlier in S. coelicolor and other eubacteria. The P1 promoter is likely...... common to P2, P3 and P4 is not similar to any other known consensus promoter sequence. In fast-growing mycelium, P2 appears to be the most frequently used promoter. Transcription from all of the rrnA promoters decreased during the transition from exponential to stationary phase, although transcription...

  6. ADRB3 Gene Trp64Arg Polymorphism and Essential Hypertension: A Meta-Analysis Including 9,555 Subjects.

    Science.gov (United States)

    Li, Yan-Yan; Lu, Xin-Zheng; Wang, Hui; Zhou, Yan-Hong; Yang, Xin-Xing; Geng, Hong-Yu; Gong, Ge; Kim, Hyun Jun

    2018-01-01

    Background: Presence of the β 3-Adrenergic receptor (ADRB3) gene Trp64Arg (T64A) polymorphism may be associated with an increased susceptibility for essential hypertension (EH). A clear consensus, however, has yet to be reached. Objective and methods: To further elucidate the relationship between the ADRB3 gene Trp64Arg polymorphism and EH, a meta-analysis of 9,555 subjects aggregated from 16 individual studies was performed. The combined odds ratios (ORs) and their corresponding 95% confidence intervals (CI) were evaluated using either a random or fixed effect model. Results: We found a marginally significant association between ADRB3 gene Trp64Arg polymorphism and EH in the whole population under the additive genetic model (OR: 1.200, 95% CI: 1.00-1.43, P = 0.049). Association within the Chinese subgroup, however, was significant under allelic (OR: 1.150, 95% CI: 1.002-1.320, P = 0.046), dominant (OR: 1.213, 95% CI: 1.005-1.464, P = 0.044), heterozygous (OR: 1.430, 95% CI:1.040-1.970, P = 0.03), and additive genetic models (OR: 1.280, 95% CI: 1.030-1.580, P = 0.02). A significant association was also found in the Caucasian subgroup under allelic (OR: 1.850, 95% CI: 1. 260-2.720, P = 0.002), dominant (OR: 2.004, 95% CI: 1.316-3.052, P = 0.001), heterozygous (OR: 2.220, 95% CI: 1.450-3.400, P = 0.0002), and additive genetic models (OR: 2.000, 95% CI: 1. 330-3.010, P = 0.0009). Conclusions: The presence of the ADRB3 gene Trp64Arg polymorphism is positively associated with EH, especially in the Chinese and Caucasian population. The Arg allele carriers of ADRB3 gene Trp64Arg polymorphism may be at an increased risk for developing EH.

  7. Decreases in average bacterial community rRNA operon copy number during succession.

    Science.gov (United States)

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.

  8. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    We have determined the nucleotide sequence of the 26S large subunit (LSU) rRNA genes for two Tetrahymena species, T. thermophila and T. pyriformis. The inferred rRNA sequences are presented in their most probable secondary structures based on compensatory mutations, energy, and conservation crite...

  9. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  10. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  11. Databases for rRNA gene profiling of microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Matthew

    2013-07-02

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  12. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    Science.gov (United States)

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  13. Cholesterol-α-glucosyltransferase gene is present in most Helicobacter species including gastric non-Helicobacter pylori helicobacters obtained from Japanese patients.

    Science.gov (United States)

    Kawakubo, Masatomo; Horiuchi, Kazuki; Matsumoto, Takehisa; Nakayama, Jun; Akamatsu, Taiji; Katsuyama, Tsutomu; Ota, Hiroyoshi; Sagara, Junji

    2018-02-01

    Non-Helicobacter pylori helicobacters (NHPHs) besides H. pylori infect human stomachs and cause chronic gastritis and mucosa-associated lymphoid tissue lymphoma. Cholesteryl-α-glucosides have been identified as unique glycolipids present in H. pylori and some Helicobacter species. Cholesterol-α-glucosyltransferase (αCgT), a key enzyme for the biosynthesis of cholesteryl-α-glucosides, plays crucial roles in the pathogenicity of H. pylori. Therefore, it is important to examine αCgTs of NHPHs. Six gastric NHPHs were isolated from Japanese patients and maintained in mouse stomachs. The αCgT genes were amplified by PCR and inverse PCR. We retrieved the αCgT genes of other Helicobacter species by BLAST searches in GenBank. αCgT genes were present in most Helicobacter species and in all Japanese isolates examined. However, we could find no candidate gene for αCgT in the whole genome of Helicobacter cinaedi and several enterohepatic species. Phylogenic analysis demonstrated that the αCgT genes of all Japanese isolates show high similarities to that of a zoonotic group of gastric NHPHs including Helicobacter suis, Helicobacter heilmannii, and Helicobacter ailurogastricus. Of 6 Japanese isolates, the αCgT genes of 4 isolates were identical to that of H. suis, and that of another 2 isolates were similar to that of H. heilmannii and H. ailurogastricus. All gastric NHPHs examined showed presence of αCgT genes, indicating that αCgT may be beneficial for these helicobacters to infect human and possibly animal stomachs. Our study indicated that NHPHs could be classified into 2 groups, NHPHs with αCgT genes and NHPHs without αCgT genes. © 2017 John Wiley & Sons Ltd.

  14. Genotypic and Antimicrobial Susceptibility of Carbapenem-Resistant Acinetobacter baumannii: Analysis of ISAba Elements and blaOXA-23-like Genes Including A New Variant

    Directory of Open Access Journals (Sweden)

    Abbas eBahador

    2015-11-01

    Full Text Available Carbapenem-resistant Acinetobacter baumannii (CR-AB causes serious nosocomial infections, especially in ICU wards of hospitals, worldwide. Expression of blaOXA genes is the chief mechanism of conferring carbapenem resistance among CR-AB. Although some blaOXA genes have been studied among CR-AB isolates from Iran, their blaOXA-23-like genes have not been investigated. We used a multiplex-PCR to detect Ambler class A, B, and D carbapenemases of 85 isolates, and determined that 34 harbored blaOXA-23-like genes. Amplified fragment length polymorphism (AFLP genotyping, followed by DNA sequencing of blaOXA-23-like amplicons of CR-AB from each AFLP group was used to characterize their blaOXA-23-like genes. We also assessed the antimicrobial susceptibility pattern of CR-AB isolates, and tested whether they harbored insertion sequences ISAba1 and ISAba4. Sequence comparison with reference strain A. baumannii (NCTC12156 revealed five types of mutations in blaOXA-23-like genes; including one novel variant and four mutants that were already reported from China and the USA. All of the blaOXA-23-like genes mutations were associated with increased minimum inhibitory concentrations (MICs against imipenem. ISAba1 and ISAba4 sequences were detected upstream of blaOXA-23 genes in 19% and 7% of isolates, respectively. The isolation of CR-AB with new blaOXA-23 mutations including some that have been reported from the USA and China highlights CR-AB pervasive distribution, which underscores the importance of concerted national and global efforts to control the spread of CR-AB isolates worldwide.

  15. Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

    DEFF Research Database (Denmark)

    Hansen, M.C.; Nielsen, A.K.; Molin, Søren

    2001-01-01

    obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting...... the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell...... decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes...

  16. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.

    Science.gov (United States)

    Wickramasinghe, Gammadde Hewa Ishan Maduka; Rathnayake, Pilimathalawe Panditharathna Attanayake Mudiyanselage Samith Indika; Chandrasekharan, Naduviladath Vishvanath; Weerasinghe, Mahindagoda Siril Samantha; Wijesundera, Ravindra Lakshman Chundananda; Wijesundera, Wijepurage Sandhya Sulochana

    2017-06-21

    Cellulose, a linear polymer of β 1-4, linked glucose, is the most abundant renewable fraction of plant biomass (lignocellulose). It is synergistically converted to glucose by endoglucanase (EG) cellobiohydrolase (CBH) and β-glucosidase (BGL) of the cellulase complex. BGL plays a major role in the conversion of randomly cleaved cellooligosaccharides into glucose. As it is well known, Saccharomyces cerevisiae can efficiently convert glucose into ethanol under anaerobic conditions. Therefore, S.cerevisiae was genetically modified with the objective of heterologous extracellular expression of the BGLI gene of Trichoderma virens making it capable of utilizing cellobiose to produce ethanol. The cDNA and a genomic sequence of the BGLI gene of Trichoderma virens was cloned in the yeast expression vector pGAPZα and separately transformed to Saccharomyces cerevisiae. The size of the BGLI cDNA clone was 1363 bp and the genomic DNA clone contained an additional 76 bp single intron following the first exon. The gene was 90% similar to the DNA sequence and 99% similar to the deduced amino acid sequence of 1,4-β-D-glucosidase of T. atroviride (AC237343.1). The BGLI activity expressed by the recombinant genomic clone was 3.4 times greater (1.7 x 10 -3  IU ml -1 ) than that observed for the cDNA clone (5 x 10 -4  IU ml -1 ). Furthermore, the activity was similar to the activity of locally isolated Trichoderma virens (1.5 x 10 -3  IU ml -1 ). The estimated size of the protein was 52 kDA. In fermentation studies, the maximum ethanol production by the genomic and the cDNA clones were 0.36 g and 0.06 g /g of cellobiose respectively. Molecular docking results indicated that the bare protein and cellobiose-protein complex behave in a similar manner with considerable stability in aqueous medium. The deduced binding site and the binding affinity of the constructed homology model appeared to be reasonable. Moreover, it was identified that the five hydrogen bonds formed

  17. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium.

    Science.gov (United States)

    Lee, Sae-Mi; Huh, Hee Jae; Song, Dong Joon; Shim, Hyang Jin; Park, Kyung Sun; Kang, Cheol-In; Ki, Chang-Seok; Lee, Nam Yong

    2017-12-01

    To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. Enterococcal isolates exhibiting linezolid MICs ≥4 mg l -1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.

  18. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    Science.gov (United States)

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  19. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(DJ Recombination

    Directory of Open Access Journals (Sweden)

    Louise S. Matheson

    2017-11-01

    Full Text Available V(DJ recombination is essential for the generation of diverse antigen receptor (AgR repertoires. In B cells, immunoglobulin kappa (Igκ light chain recombination follows immunoglobulin heavy chain (Igh recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh, as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(DJ recombination and provide avenues for further investigation of chromatin signatures that may underpin V(DJ-mediated chromosomal translocations.

  20. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  1. Delineation of a new chromosome 20q11.2 duplication syndrome including the ASXL1 gene

    DEFF Research Database (Denmark)

    Avila, Magali; Kirchhoff, Eva Maria; Marle, Nathalie

    2013-01-01

    We report on three males with de novo overlapping 7.5, 9.8, and 10 Mb duplication of chromosome 20q11.2. Together with another patient previously published in the literature with overlapping 20q11 microduplication, we show that such patients display common clinical features including metopic ridg...

  2. Thousands of primer-free, high-quality, full-length SSU rRNA sequences from all domains of life

    DEFF Research Database (Denmark)

    Karst, Soeren M; Dueholm, Morten S; McIlroy, Simon J

    2016-01-01

    Ribosomal RNA (rRNA) genes are the consensus marker for determination of microbial diversity on the planet, invaluable in studies of evolution and, for the past decade, high-throughput sequencing of variable regions of ribosomal RNA genes has become the backbone of most microbial ecology studies...... (SSU) rRNA genes and synthetic long read sequencing by molecular tagging, to generate primer-free, full-length SSU rRNA gene sequences from all domains of life, with a median raw error rate of 0.17%. We generated thousands of full-length SSU rRNA sequences from five well-studied ecosystems (soil, human...... gut, fresh water, anaerobic digestion, and activated sludge) and obtained sequences covering all domains of life and the majority of all described phyla. Interestingly, 30% of all bacterial operational taxonomic units were novel, compared to the SILVA database (less than 97% similarity...

  3. 16S rRNA PCR-Denaturing Gradient Gel Electrophoresis of Oral Lactobacillus casei Group and Their Phenotypic Appearances.

    Science.gov (United States)

    Piwat, S; Teanpaisan, R

    2013-01-01

    This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances.

  4. Investigation of a Patient With a Partial Trisomy 16q Including the Fat Mass and Obesity Associated Gene (FTO): Fine Mapping and FTO Gene Expression Study

    NARCIS (Netherlands)

    van den Berg, L.; Delemarre-van d Waal, H.A.; Han, J.C.; Ylstra, B.; Eijk, P.; Nesterova, M.; Heutink, P.; Stratakis, C.A.

    2010-01-01

    A female patient with a partial trisomy 16q was described previously. Her clinical characteristics included obesity, severe anisomastia, moderate to severe mental retardation, attention deficit hyperactivity disorder, dysmorphic facies, and contractions of the small joints. In this article, we

  5. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2.

    Science.gov (United States)

    Siomou, Elisavet; Manolakos, Emmanouil; Petersen, Michael; Thomaidis, Loretta; Gyftodimou, Yolanda; Orru, Sandro; Papoulidis, Ioannis

    2012-11-01

    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Organism-specific rRNA capture system for application in next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sai-Kam Li

    Full Text Available RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA and transfer RNA (tRNA have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by in vitro transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from Mycobacterium smegmatis. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.

  7. The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes

    Science.gov (United States)

    Tonkin-Hill, Gerry Q.; Trianty, Leily; Noviyanti, Rintis; Nguyen, Hanh H. T.; Sebayang, Boni F.; Lampah, Daniel A.; Marfurt, Jutta; Cobbold, Simon A.; Rambhatla, Janavi S.; McConville, Malcolm J.; Rogerson, Stephen J.; Brown, Graham V.; Day, Karen P.; Price, Ric N.; Anstey, Nicholas M.

    2018-01-01

    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to—or is selected by—this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to—or are selected by—the host environment in severe malaria. PMID:29529020

  8. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    Science.gov (United States)

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  9. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Directory of Open Access Journals (Sweden)

    Melissa K Boles

    2009-12-01

    Full Text Available An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn, inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.

  10. Deteksi Keragaman Spesies Bakteri Metanogen Rumen Sapi Menggunakan Kloning Gen 16s Rrna dan Sekuensing

    OpenAIRE

    Noor, Shoffiana; Pramono, Hendro; Aziz, Saefuddin

    2014-01-01

    Ruminants produce methane gas which contributes to enhanced greenhouse effect in the atmosphere. Cattle issued the highest methane during the fermentation of feed in the rumen. Methane gas produced by methanogen bacteria in carbohydrates anaerobic fermentation. Methanogen bacteria are difficult to obtain diversity information because difficult cultured. One technique can be used is molecular rRNA 16S gene cloning and sequencing. This study was aims to determine the species diversity of methan...

  11. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    Directory of Open Access Journals (Sweden)

    William Orsi

    Full Text Available The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC, nitrate, sulfide, and dissolved inorganic carbon (DIC. These correlations are supported by terminal restriction length polymorphism (TRFLP analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  12. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  13. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  14. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia).

    Science.gov (United States)

    Douzery, E; Catzeflis, F M

    1995-11-01

    The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of the suborder Ruminantia was not supported and the branching pattern between Cetacea and the artiodacytyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced

  15. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    Science.gov (United States)

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z; Boman, Bruce M

    2014-01-15

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.

  16. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  17. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  18. Nephrogenic diabetes insipidus in a patient with L1 syndrome: a new report of a contiguous gene deletion syndrome including L1CAM and AVPR2.

    Science.gov (United States)

    Knops, Noël B B; Bos, Krista K; Kerstjens, Mieke; van Dael, Karin; Vos, Yvonne J

    2008-07-15

    We report on an infant boy with congenital hydrocephalus due to L1 syndrome and polyuria due to diabetes insipidus. We initially believed his excessive urine loss was from central diabetes insipidus and that the cerebral malformation caused a secondary insufficient pituitary vasopressin release. However, he failed to respond to treatment with a vasopressin analogue, which pointed to nephrogenic diabetes insipidus (NDI). L1 syndrome and X-linked NDI are distinct clinical disorders caused by mutations in the L1CAM and AVPR2 genes, respectively, located in adjacent positions in Xq28. In this boy we found a deletion of 61,577 basepairs encompassing the entire L1CAM and AVPR2 genes and extending into intron 7 of the ARHGAP4 gene. To our knowledge this is the first description of a patient with a deletion of these three genes. He is the second patient to be described with L1 syndrome and NDI. During follow-up he manifested complications from the hydrocephalus and NDI including global developmental delay and growth failure with low IGF-1 and hypothyroidism. 2008 Wiley-Liss, Inc.

  19. Identification of a rare 17p13.3 duplication including the BHLHA9 and YWHAE genes in a family with developmental delay and behavioural problems

    Directory of Open Access Journals (Sweden)

    Capra Valeria

    2012-10-01

    Full Text Available Abstract Background Deletions and duplications of the PAFAH1B1 and YWHAE genes in 17p13.3 are associated with different clinical phenotypes. In particular, deletion of PAFAH1B1 causes isolated lissencephaly while deletions involving both PAFAH1B1 and YWHAE cause Miller-Dieker syndrome. Isolated duplications of PAFAH1B1 have been associated with mild developmental delay and hypotonia, while isolated duplications of YWHAE have been associated with autism. In particular, different dysmorphic features associated with PAFAH1B1 or YWHAE duplication have suggested the need to classify the patient clinical features in two groups according to which gene is involved in the chromosomal duplication. Methods We analyze the proband and his family by classical cytogenetic and array-CGH analyses. The putative rearrangement was confirmed by fluorescence in situ hybridization. Results We have identified a family segregating a 17p13.3 duplication extending 329.5 kilobases by FISH and array-CGH involving the YWHAE gene, but not PAFAH1B1, affected by a mild dysmorphic phenotype with associated autism and mental retardation. We propose that BHLHA9, YWHAE, and CRK genes contribute to the phenotype of our patient. The small chromosomal duplication was inherited from his mother who was affected by a bipolar and borderline disorder and was alcohol addicted. Conclusions We report an additional familial case of small 17p13.3 chromosomal duplication including only BHLHA9, YWHAE, and CRK genes. Our observation and further cases with similar microduplications are expected to be diagnosed, and will help better characterise the clinical spectrum of phenotypes associated with 17p13.3 microduplications.

  20. Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes.

    Science.gov (United States)

    Collins, F A; Murphy, D L; Reiss, A L; Sims, K B; Lewis, J G; Freund, L; Karoum, F; Zhu, D; Maumenee, I H; Antonarakis, S E

    1992-01-01

    Norrie disease is a rare X-linked recessive disorder characterized by blindness from infancy. The gene for Norrie disease has been localized to Xp11.3. More recently, the genes for monoamine oxidase (MAOA, MAOB) have been mapped to the same region. This study evaluates the clinical, biochemical, and neuropsychiatric data in an affected male and 2 obligate heterozygote females from a single family with a submicroscopic deletion involving Norrie disease and MAO genes. The propositus was a profoundly retarded, blind male; he also had neurologic abnormalities including myoclonus and stereotopy-habit disorder. Both obligate carrier females had a normal IQ. The propositus' mother met diagnostic criteria for "chronic hypomania and schizotypal features." The propositus' MAO activity was undetectable and the female heterozygotes had reduced levels comparable to patients receiving MAO inhibiting antidepressants. MAO substrate and metabolite abnormalities were found in the propositus' plasma and CSF. This study indicates that subtle biochemical and possibly neuropsychiatric abnormalities may be detected in some heterozygotes with the microdeletion in Xp11.3 due to loss of the gene product for the MAO genes; this deletion can also explain some of the complex phenotype of this contiguous gene syndrome in the propositus.

  1. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    Science.gov (United States)

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  2. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, Human Papilloma Virus infection and surgical treatment

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Godoy-Vitorino, Filipa; Jedlicka, Anne; Rodriguez-Hilario, Arnold; Gonzalez, Herminio; Bondy, Jessica; Lawson, Fahcina; Folawiyo, Oluwasina; Michailidi, Christina; Dziedzic, Amanda; Thangavel, Rajagowthamee; Hadar, Tal; Noordhuis, Maartje G.; Westra, William; Koch, Wayne; Sidransky, David

    2016-01-01

    Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from

  3. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    DEFF Research Database (Denmark)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon

    2015-01-01

    venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S r...

  4. Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database

    NARCIS (Netherlands)

    Ritari, Jarmo; Salojärvi, Jarkko; Lahti, Leo; Vos, de Willem M.

    2015-01-01

    Background: Current sequencing technology enables taxonomic profiling of microbial ecosystems at high resolution and depth by using the 16S rRNA gene as a phylogenetic marker. Taxonomic assignation of newly acquired data is based on sequence comparisons with comprehensive reference databases to

  5. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1.

    Directory of Open Access Journals (Sweden)

    Philipp Harter

    Full Text Available Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated.Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53 were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history.In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16-93 and 406 patients (77.6% had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%, BRCA2 (5.5%, RAD51C (2.5% and PALB2 (1.1% genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes in patients <60 years was 30.2% (33.2% versus 10.6% (18.9% in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants

  6. Karyotype characterization of Mugil incilis Hancock, 1830 (Mugiliformes: Mugilidae, including a description of an unusual co-localization of major and minor ribosomal genes in the family

    Directory of Open Access Journals (Sweden)

    Anne Kathrin Hett

    Full Text Available This study reports the description of the karyotype of Mugil incilis from Venezuela. The chromosome complement is composed of 48 acrocentric chromosomes, which uniformly decrease in size. Therefore, the homologues can not be clearly identified, with the exception of one of the largest chromosome pairs, classified as number 1, whose homologues may show a subcentromeric secondary constriction, and of chromosome pair number 24, which is considerably smaller than the others. C-banding showed heterochromatic blocks at the centromeric/pericentromeric regions of all chromosomes, which were more conspicuous on chromosomes 1, given the C-positive signals include the secondary constrictions. AgNO3 and fluorescent in situ hybridization (FISH with 45S rDNA demonstrated that the nucleolus organizer regions are indeed located on the secondary constrictions of chromosome pair number 1. FISH with 5S rDNA revealed that the minor ribosomal genes are located on this same chromosome pair, near the NORs, though signals are closer to the centromeres and of smaller size, compared to those of the major ribosomal gene clusters. This is the first description of co-localization of major and minor ribosomal genes in the family. Data are discussed from a cytotaxonomic and phylogenetic perspective.

  7. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Anna eKiryk

    2013-11-01

    Full Text Available Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer´s disease (AD and may play a role in dementia. Moreover aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3 and dentate gyrus. Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that thirty-six transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the dentate gyrus a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving

  8. Homozygous deletion of six genes including corneodesmosin on chromosome 6p21.3 is associated with generalized peeling skin disease.

    Science.gov (United States)

    Teye, Kwesi; Hamada, Takahiro; Krol, Rafal P; Numata, Sanae; Ishii, Norito; Matsuda, Mitsuhiro; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-07-01

    Peeling skin syndrome (PSS) is a rare autosomal recessive form of ichthyosis showing skin exfoliation. PSS is divided into acral and generalized PSS, and the latter is further classified into non-inflammatory type (PSS type A) and inflammatory type (PSS type B). PSS type B is now called peeling skin disease (PSD). Different loss-of-function mutations in the corneodesmosin (CDSN) gene have been reported to cause PSD. The aim of this study was to determine genetic basis of disease in a 14-year-old Japanese patient with PSD. Immunohistochemical study showed lack of corneodesmosin (CDSN) in the skin, and standard PCR for genomic DNA failed to amplify CDSN product, suggesting CDSN defect. Multiplex ligation-dependent probe amplification and genomic quantitative real-time PCR analyses detected large homozygous deletion of 59,184bp extending from 40.6kb upstream to 13.2kb downstream of CDSN, which included 6 genes (TCF19, CCHCR1, PSORS1C2, PSORS1C1, CDSN and C6orf15). The continuous gene lost did not result in additional clinical features. Inverted repeats with 85% similarity flanking the deletion breakpoint were considered to mediate the deletion by non-homologous end joining or fork stalling and template switching/microhomology-mediated break-induced replication. Parents were clinically unaffected and were heterozygote carriers of the same deletion, which was absent in 284 ethnically matched control alleles. We also developed simple PCR method, which is useful for detection of this deletion. Although 5 other genes were also deleted, homozygous deletion of CDSN was considered to be responsible for this PSD. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Insertional translocation leading to a 4q13 duplication including the EPHA5 gene in two siblings with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Matoso, Eunice; Melo, Joana B; Ferreira, Susana I; Jardim, Ana; Castelo, Teresa M; Weise, Anja; Carreira, Isabel M

    2013-08-01

    An insertional translocation (IT) can result in pure segmental aneusomy for the inserted genomic segment allowing to define a more accurate clinical phenotype. Here, we report on two siblings sharing an unbalanced IT inherited from the mother with a history of learning difficulty. An 8-year-old girl with developmental delay, speech disability, and attention-deficit hyperactivity disorder (ADHD), showed by GTG banding analysis a subtle interstitial alteration in 21q21. Oligonucleotide array comparative genomic hybridization (array-CGH) analysis showed a 4q13.1-q13.3 duplication spanning 8.6 Mb. Fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) clones confirmed the rearrangement, a der(21)ins(21;4)(q21;q13.1q13.3). The duplication described involves 50 RefSeq genes including the EPHA5 gene that encodes for the EphA5 receptor involved in embryonic development of the brain and also in synaptic remodeling and plasticity thought to underlie learning and memory. The same rearrangement was observed in a younger brother with behavioral problems and also exhibiting ADHD. ADHD is among the most heritable of neuropsychiatric disorders. There are few reports of patients with duplications involving the proximal region of 4q and a mild phenotype. To the best of our knowledge this is the first report of a duplication restricted to band 4q13. This abnormality could be easily missed in children who have nonspecific cognitive impairment. The presence of this behavioral disorder in the two siblings reinforces the hypothesis that the region involved could include genes involved in ADHD. Copyright © 2013 Wiley Periodicals, Inc.

  10. Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease.

    Science.gov (United States)

    Jacobsson, Susanne; Hedberg, Sara Thulin; Mölling, Paula; Unemo, Magnus; Comanducci, Maurizio; Rappuoli, Rino; Olcén, Per

    2009-03-04

    During the recent years, projects are in progress for designing broad-range non-capsular-based meningococcal vaccines, covering also serogroup B isolates. We have examined three genes encoding antigens (NadA, GNA1030 and GNA2091) included in a novel vaccine, i.e. the 5 Component Vaccine against Meningococcus B (5CVMB), in terms of gene prevalence and sequence variations. These data were combined with the results from a similar study, examining the two additional antigens included in the 5CVMB (fHbp and GNA2132). nadA and fHbp v. 1 were present in 38% (n=36), respectively 71% (n=67) of the isolates, whereas gna2132, gna1030 and gna2091 were present in all the Neisseria meningitidis isolates tested (n=95). The level of amino acid conservation was relatively high in GNA1030 (93%), GNA2091 (92%), and within the main variants of NadA and fHbp. GNA2132 (54% of the amino acids conserved) appeared to be the most diversified antigen. Consequently, the theoretical coverage of the 5CVMB antigens and the feasibility to use these in a broad-range meningococcal vaccine is appealing.

  11. Fluorescence immunophenotyping and interphase cytogenetics (FICTION) detects BCL6 abnormalities, including gene amplification, in most cases of nodular lymphocyte-predominant Hodgkin lymphoma.

    Science.gov (United States)

    Bakhirev, Alexei G; Vasef, Mohammad A; Zhang, Qian-Yun; Reichard, Kaaren K; Czuchlewski, David R

    2014-04-01

    BCL6 translocations are a frequent finding in B-cell lymphomas of diverse subtypes, including some cases of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). However, reliable analysis of BCL6 rearrangements using fluorescence in situ hybridization is difficult in NLPHL because of the relative paucity of neoplastic cells. Combined immunofluorescence microscopy and fluorescence in situ hybridization, or fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION), permits targeted analysis of neoplastic cells. To better define the spectrum of BCL6 abnormalities in NLPHL using FICTION analysis. We performed an optimized FICTION analysis of 24 lymph nodes, including 11 NLPHL, 5 follicular hyperplasia with prominent progressive transformation of germinal centers, and 8 follicular hyperplasia without progressive transformation of germinal centers. BCL6 rearrangement was identified in 5 of 11 cases of NLPHL (46%). In addition, BCL6 gene amplification, with large clusters of BCL6 signals in the absence of chromosome 3 aneuploidy, was detected in 3 of 11 cases of NLPHL (27%). One NLPHL showed extra copies of BCL6 present in conjunction with multiple copies of chromosome 3. Altogether, we detected BCL6 abnormalities in 9 of 11 cases of NLPHL (82%). None of the progressive transformation of germinal centers or follicular hyperplasia cases showed BCL6 abnormalities by FICTION. To our knowledge, this is the first report of BCL6 gene amplification in NLPHL. Our optimized protocol for FICTION permits detection of cytogenetic abnormalities in most NLPHL cases and may represent a useful ancillary diagnostic technique.

  12. Autism genetic database (AGD: a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites

    Directory of Open Access Journals (Sweden)

    Talebizadeh Zohreh

    2009-09-01

    Full Text Available Abstract Background Autism is a highly heritable complex neurodevelopmental disorder, therefore identifying its genetic basis has been challenging. To date, numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism, but most discoveries either fail to be replicated or account for a small effect. Thus, in most cases the underlying causative genetic mechanisms are not fully understood. In the present work, the Autism Genetic Database (AGD was developed as a literature-driven, web-based, and easy to access database designed with the aim of creating a comprehensive repository for all the currently reported genes and genomic copy number variations (CNVs associated with autism in order to further facilitate the assessment of these autism susceptibility genetic factors. Description AGD is a relational database that organizes data resulting from exhaustive literature searches for reported susceptibility genes and CNVs associated with autism. Furthermore, genomic information about human fragile sites and noncoding RNAs was also downloaded and parsed from miRBase, snoRNA-LBME-db, piRNABank, and the MIT/ICBP siRNA database. A web client genome browser enables viewing of the features while a web client query tool provides access to more specific information for the features. When applicable, links to external databases including GenBank, PubMed, miRBase, snoRNA-LBME-db, piRNABank, and the MIT siRNA database are provided. Conclusion AGD comprises a comprehensive list of susceptibility genes and copy number variations reported to-date in association with autism, as well as all known human noncoding RNA genes and fragile sites. Such a unique and inclusive autism genetic database will facilitate the evaluation of autism susceptibility factors in relation to known human noncoding RNAs and fragile sites, impacting on human diseases. As a result, this new autism database offers a valuable tool for the research

  13. Wakame and Nori in restructured meats included in cholesterol-enriched diets affect the antioxidant enzyme gene expressions and activities in Wistar rats.

    Science.gov (United States)

    Moreira, Adriana Schultz; González-Torres, Laura; Olivero-David, Raul; Bastida, Sara; Benedi, Juana; Sánchez-Muniz, Francisco J

    2010-09-01

    The effects of diets including restructured meats (RM) containing Wakame or Nori on total liver glutathione status, and several antioxidant enzyme gene expressions and activities were tested. Six groups of ten male growing Wistar rats each were fed a mix of 85% AIN-93 M diet and 15% freeze-dried RM for 35 days. The control group (C) consumed control RM, the Wakame (W) and the Nori (N) groups, RM with 5% Wakame and 5% Nori, respectively. Animals on added cholesterol diets (CC, CW, and CN) consumed their corresponding basal diets added with cholesterol (2%) and cholic acid (0.4%). Alga and dietary cholesterol significantly interact (P Nori-RM is a hypocholesterolemic food while Wakame-RM is an antioxidant food. This should be taken into account when including this kind of RM as potential functional foods in human.

  14. Rodentibacter gen. nov including Rodentibacter pneumotropicus comb. nov., Rodentibacter heylii sp nov., Rodentibacter myodis sp nov., Rodentibacter ratti sp nov., Rodentibacter heidelbergensis sp nov., Rodentibacter trehalosifermentans sp nov., Rodentibacter rarus sp nov., Rodentibacter mrazii and two genomospecies

    DEFF Research Database (Denmark)

    Adhikary, Sadhana; Nicklas, Werner; Bisgaard, Magne

    2017-01-01

    -galactosidase and in acid formation from (+)-l-arabinose, (−)-d-ribose, (+)-d-xylose, myo-inositol, (−)-d-mannitol, lactose, melibiose and trehalose. Forty-six strains including taxon 48 of Bisgaard formed a monophyletic group by rpoB and 16S rRNA gene sequence analysis, but could not be separated phenotypically from R...

  15. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences

    DEFF Research Database (Denmark)

    Rasmussen, L D; Zawadsky, C; Binnerup, S J

    2008-01-01

    different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial...... sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One...

  16. Karyotype characterization of Mugil incilis Hancock, 1830 (Mugiliformes: Mugilidae, including a description of an unusual co-localization of major and minor ribosomal genes in the family

    Directory of Open Access Journals (Sweden)

    Anne Kathrin Hett

    2011-03-01

    Full Text Available This study reports the description of the karyotype of Mugil incilis from Venezuela. The chromosome complement is composed of 48 acrocentric chromosomes, which uniformly decrease in size. Therefore, the homologues can not be clearly identified, with the exception of one of the largest chromosome pairs, classified as number 1, whose homologues may show a subcentromeric secondary constriction, and of chromosome pair number 24, which is considerably smaller than the others. C-banding showed heterochromatic blocks at the centromeric/pericentromeric regions of all chromosomes, which were more conspicuous on chromosomes 1, given the C-positive signals include the secondary constrictions. AgNO3 and fluorescent in situ hybridization (FISH with 45S rDNA demonstrated that the nucleolus organizer regions are indeed located on the secondary constrictions of chromosome pair number 1. FISH with 5S rDNA revealed that the minor ribosomal genes are located on this same chromosome pair, near the NORs, though signals are closer to the centromeres and of smaller size, compared to those of the major ribosomal gene clusters. This is the first description of co-localization of major and minor ribosomal genes in the family. Data are discussed from a cytotaxonomic and phylogenetic perspective.Se presenta la primera descripción del cariotipo de Mugil incilis de Venezuela. El complemento cromosómico está compuesto por 48 cromosomas acrocéntricos uniformemente decrecientes en tamaño. Por lo tanto, los homólogos no pueden ser claramente identificados, con excepción de uno de los pares de mayor tamaño, clasificado como número 1, cuyos homólogos poseen una constricción secundaria subcentromérica, y el par de cromosomas número 24, considerablemente más pequeño que los otros. El bandeo-C reveló bloques heterocromáticos en las regiones centroméricas/pericentroméricas de todos los cromosomas, más conspicuas en el cromosoma 1 en el que las señales C

  17. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen

    2006-01-01

    generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA...... methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere...

  18. Lack of association of the serotonin transporter gene promoter region polymorphism, 5-HTTLPR, including rs25531 with cigarette smoking and alcohol consumption

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Bagger, Yu; Tanko, Laszlo B

    2009-01-01

    We addressed the question whether 5-HTTLPR, a variable number of tandem repeats located in the 5' end of the serotonin transporter gene, is associated with smoking or alcohol consumption. Samples of DNA from 1,365 elderly women with a mean age of 69.2 years were genotyped for this polymorphism...... using a procedure, which allowed the simultaneous determination of variation in the number of repeat units and single nucleotide changes, including the A > G variation at rs25531 for discrimination between the L(A) and L(G) alleles. Qualitative and quantitative information on the women's current...... and previous consumption of cigarettes and alcohol were obtained using a questionnaire. Genotypes were classified according to allele size, that is, S and L with 14 and 16 repeat units, respectively, and on a functional basis by amalgamation of the L(G) and S alleles. Data were subjected to regression analyses...

  19. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes

    International Nuclear Information System (INIS)

    Igarashi, Aki; Yamagata, Kousuke; Sugai, Tomokazu; Takahashi, Yukari; Sugawara, Emiko; Tamura, Akihiro; Yaegashi, Hajime; Yamagishi, Noriko; Takahashi, Tsubasa; Isogai, Masamichi; Takahashi, Hideki; Yoshikawa, Nobuyuki

    2009-01-01

    Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.

  20. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Molecular defects of the growth hormone receptor gene, including a new mutation, in Laron syndrome patients in Israel: relationship between defects and ethnic groups.

    Science.gov (United States)

    Shevah, Orit; Rubinstein, Menachem; Laron, Zvi

    2004-10-01

    Laron Syndrome, first described in Israel, is a form of dwarfism similar to isolated growth hormone deficiency caused by molecular defects in the GH receptor gene. To characterize the molecular defects of the GH-R in Laron syndrome patients followed in our clinic. Of the 63 patients in the cohort, we investigated 31 patients and 32 relatives belonging to several ethnic origins. Molecular analysis of the GH-R gene was performed using the single strand conformation polymorphism and DNA sequencing techniques. Eleven molecular defects including a novel mutation were found. Twenty-two patients carried mutations in the extracellular domain, one in the transmembrane domain, and 3 siblings with typical Laron syndrome presented a normal GH-R. Of interest are, on one hand, different mutations within the same ethnic groups: W-15X and 5, 6 exon deletion in Jewish-Iraqis, and E180 splice and 5, 6 exon deletion in Jewish-Moroccans; and on the other hand, identical findings in patients from distinct regions: the 785-1 G to T mutation in an Israeli-Druze and a Peruvian patient. A polymorphism in exon 6, Gly168Gly, was found in 15 probands. One typical Laron patient from Greece was heterozygous for R43X in exon 4 and heterozygous for Gly168Gly. In addition, a novel mutation in exon 5: substitution of T to G replacing tyrosine 86 for aspartic acid (Y86D) is described. This study demonstrates: a) an increased focal incidence of Laron syndrome in different ethnic groups from our area with a high incidence of consanguinity; and b) a relationship between molecular defects of the GH-R, ethnic group and geographic area.

  2. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3.

    Directory of Open Access Journals (Sweden)

    Noelia Sanchez

    Full Text Available MiR-7 acts as a tumour suppressor in many cancers and abrogates proliferation of CHO cells in culture. In this study we demonstrate that miR-7 targets key regulators of the G1 to S phase transition, including Skp2 and Psme3, to promote increased levels of p27(KIP and temporary growth arrest of CHO cells in the G1 phase. Simultaneously, the down-regulation of DNA repair-specific proteins via miR-7 including Rad54L, and pro-apoptotic regulators such as p53, combined with the up-regulation of anti-apoptotic factors like p-Akt, promoted cell survival while arrested in G1. Thus miR-7 can co-ordinate the levels of multiple genes and proteins to influence G1 to S phase transition and the apoptotic response in order to maintain cellular homeostasis. This work provides further mechanistic insight into the role of miR-7 as a regulator of cell growth in times of cellular stress.

  3. Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance

    DEFF Research Database (Denmark)

    Dam, M; Douthwaite, S; Tenson, T

    1996-01-01

    Mutations in domain II of Escherichia coli 23 S rRNA that cause resistance to erythromycin do so in a manner fundamentally different from mutations at the drug binding site in domain V of the 23 S rRNA. The domain II mutations are located in a hairpin structure between nucleotides 1198 and 1247...... this hypothesis, a range of point mutations was generated in domain II of 23 S rRNA in the vicinity of the E-peptide open reading frame. We find a correlation between erythromycin resistance of the mutant clones and increased accessibility of the ribosome binding site of the E-peptide gene. Furthermore......, the erythromycin resistance determinant in the mutants was shown to be confined to a small 23 S rRNA segment containing the coding region and the ribosome binding site of the E-peptide open reading frame. It thus appears that the domain II mutations mediate erythromycin resistance by increasing expression...

  4. rRNA fragmentation induced by a yeast killer toxin.

    Science.gov (United States)

    Kast, Alene; Klassen, Roland; Meinhardt, Friedhelm

    2014-02-01

    Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins. © 2013 John Wiley & Sons Ltd.

  5. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    Directory of Open Access Journals (Sweden)

    Fontanesi Luca

    2012-11-01

    Full Text Available Abstract Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07 Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the biology of fat metabolism and deposition that could also be relevant for other mammalian species including humans, confirming the role of neuronal genes on obesity.

  6. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44.

    Science.gov (United States)

    Allcock, Richard J N; Barrow, Alexander D; Forbes, Simon; Beck, Stephan; Trowsdale, John

    2003-02-01

    We have characterized a cluster of single immunoglobulin variable (IgV) domain receptors centromeric of the major histocompatibility complex (MHC) on human chromosome 6. In addition to triggering receptor expressed on myeloid cells (TREM)-1 and TREM2, the cluster contains NKp44, a triggering receptor whose expression is limited to NK cells. We identified three new related genes and two gene fragments within a cluster of approximately 200 kb. Two of the three new genes lack charged residues in their transmembrane domain tails. Further, one of the genes contains two potential immunotyrosine Inhibitory motifs in its cytoplasmic tail, suggesting that it delivers inhibitory signals. The human and mouse TREM clusters appear to have diverged such that there are unique sequences in each species. Finally, each gene in the TREM cluster was expressed in a different range of cell types.

  7. Occurence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in extended-spectrum β-lactamases producing Escherichia coli in Algerian hospitals.

    Directory of Open Access Journals (Sweden)

    Amel Ayad

    2016-09-01

    Full Text Available The aim of this study was to characterize the extended-spectrum-β-lactamases (ESBLs producing clinical strains of Escherichia coli isolated between January 2009 and June 2012 from Algerian hospitals and to determine the prevalence of 16S rRNA methylase among them. Sixty-seven ESBL-producers were detected among the 239 isolates included: 52 CTX-M-15-producers, 5 CTX-M-3-producers, 5 CTX-M-1-producers, 2 CTX-M-14-producers, 2 SHV-12-producers and one TEM-167-producer. Among the ESBL-producing strains twelve harboured 16S rRNA methylase genes: 8 rmtB and 4 armA. rmtB was located on a IncFIA plasmid and armA was located either on a IncL/M or a IncFIA plasmid. RmtB-producing isolates were genotypically related and belonged to the sequence type ST 405 whereas ArmA-producing isolates belonged to ST10, ST 167 and ST 117. This first description of 16S rRNA methylases among E. coli in Algerian hospitals pointed out the necessity to establish control measures to avoid their dissemination.

  8. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform.

    Directory of Open Access Journals (Sweden)

    Hideyuki Tamaki

    Full Text Available BACKGROUND: 16S rRNA gene pyrosequencing approach has revolutionized studies in microbial ecology. While primer selection and short read length can affect the resulting microbial community profile, little is known about the influence of pyrosequencing methods on the sequencing throughput and the outcome of microbial community analyses. The aim of this study is to compare differences in output, ease, and cost among three different amplicon pyrosequencing methods for the Roche/454 Titanium platform METHODOLOGY/PRINCIPAL FINDINGS: The following three pyrosequencing methods for 16S rRNA genes were selected in this study: Method-1 (standard method is the recommended method for bi-directional sequencing using the LIB-A kit; Method-2 is a new option designed in this study for unidirectional sequencing with the LIB-A kit; and Method-3 uses the LIB-L kit for unidirectional sequencing. In our comparison among these three methods using 10 different environmental samples, Method-2 and Method-3 produced 1.5-1.6 times more useable reads than the standard method (Method-1, after quality-based trimming, and did not compromise the outcome of microbial community analyses. Specifically, Method-3 is the most cost-effective unidirectional amplicon sequencing method as it provided the most reads and required the least effort in consumables management. CONCLUSIONS: Our findings clearly demonstrated that alternative pyrosequencing methods for 16S rRNA genes could drastically affect sequencing output (e.g. number of reads before and after trimming but have little effect on the outcomes of microbial community analysis. This finding is important for both researchers and sequencing facilities utilizing 16S rRNA gene pyrosequencing for microbial ecological studies.

  9. Locus-specific ribosomal RNA gene silencing in nucleolar dominance.

    Directory of Open Access Journals (Sweden)

    Michelle S Lewis

    2007-08-01

    Full Text Available The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs, the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent.

  10. Genomic and gene variation in Mycoplasma hominis strains

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Andersen, H; Birkelund, Svend

    1987-01-01

    DNAs from 14 strains of Mycoplasma hominis isolated from various habitats, including strain PG21, were analyzed for genomic heterogeneity. DNA-DNA filter hybridization values were from 51 to 91%. Restriction endonuclease digestion patterns, analyzed by agarose gel electrophoresis, revealed...... no identity or cluster formation between strains. Variation within M. hominis rRNA genes was analyzed by Southern hybridization of EcoRI-cleaved DNA hybridized with a cloned fragment of the rRNA gene from the mycoplasma strain PG50. Five of the M. hominis strains showed identical hybridization patterns....... These hybridization patterns were compared with those of 12 other mycoplasma species, which showed a much more complex band pattern. Cloned nonribosomal RNA gene fragments of M. hominis PG21 DNA were analyzed, and the fragments were used to demonstrate heterogeneity among the strains. A monoclonal antibody against...

  11. Nucleation by rRNA Dictates the Precision of Nucleolus Assembly.

    Science.gov (United States)

    Falahati, Hanieh; Pelham-Webb, Bobbie; Blythe, Shelby; Wieschaus, Eric

    2016-02-08

    Membrane-less organelles are intracellular compartments specialized to carry out specific cellular functions. There is growing evidence supporting the possibility that such organelles form as a new phase, separating from cytoplasm or nucleoplasm. However, a main challenge to such phase separation models is that the initial assembly, or nucleation, of the new phase is typically a highly stochastic process and does not allow for the spatiotemporal precision observed in biological systems. Here, we investigate the initial assembly of the nucleolus, a membrane-less organelle involved in different cellular functions including ribosomal biogenesis. We demonstrate that the nucleolus formation is precisely timed in D. melanogaster embryos and follows the transcription of rRNA. We provide evidence that transcription of rRNA is necessary for overcoming the highly stochastic nucleation step in the formation of the nucleolus, through a seeding mechanism. In the absence of rDNA, the nucleolar proteins studied are able to form high-concentration assemblies. However, unlike the nucleolus, these assemblies are highly variable in number, location, and time at which they form. In addition, quantitative study of the changes in the nucleoplasmic concentration and distribution of these nucleolar proteins in the wild-type embryos is consistent with the role of rRNA in seeding the nucleolus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance-Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation.

    Science.gov (United States)

    Burdon, Kathryn P; McKay, James D; Sale, Michèle M; Russell-Eggitt, Isabelle M; Mackey, David A; Wirth, M Gabriela; Elder, James E; Nicoll, Alan; Clarke, Michael P; FitzGerald, Liesel M; Stankovich, James M; Shaw, Marie A; Sharma, Shiwani; Gajovic, Srecko; Gruss, Peter; Ross, Shelley; Thomas, Paul; Voss, Anne K; Thomas, Tim; Gécz, Jozef; Craig, Jamie E

    2003-11-01

    Nance-Horan syndrome (NHS) is an X-linked disorder characterized by congenital cataracts, dental anomalies, dysmorphic features, and, in some cases, mental retardation. NHS has been mapped to a 1.3-Mb interval on Xp22.13. We have confirmed the same localization in the original, extended Australian family with NHS and have identified protein-truncating mutations in a novel gene, which we have called "NHS," in five families. The NHS gene encompasses approximately 650 kb of genomic DNA, coding for a 1,630-amino acid putative nuclear protein. NHS orthologs were found in other vertebrates, but no sequence similarity to known genes was identified. The murine developmental expression profile of the NHS gene was studied using in situ hybridization and a mouse line containing a lacZ reporter-gene insertion in the Nhs locus. We found a complex pattern of temporally and spatially regulated expression, which, together with the pleiotropic features of NHS, suggests that this gene has key functions in the regulation of eye, tooth, brain, and craniofacial development.

  13. Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis

    DEFF Research Database (Denmark)

    Andersen, Paal Skytt; Martinussen, Jan; Hammer, Karin

    1996-01-01

    Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon in Lactococcus lactis. Two of the genes are the well-known pyr genes pyrDb and pyrF, encoding dihydroorotate dehydrogenase and orotidine monophosphate decarboxylase, respectively....... The third gene encodes a protein which was shown to be necessary for the activity of the pyrDb-encoded dihydroorotate dehydrogenase; we propose to name the gene pyrK. The pyrK-encoded protein is homologous to a number of proteins which are involved in electron transfer. The lactococcal pyrKDbF operon...... is highly homologous to the corresponding part of the much-larger pyr operon of Bacillus subtilis. orf2, the pyrK homolog in B. subtilis, has also been shown to be necessary for pyrimidine biosynthesis (A.E. Kahler and R.L. Switzer, J. Bacteriol. 178:5013-5016, 1996). Four genes adjacent to the operon, i...

  14. Diversity in the 18S SSU rRNA V4 hyper-variable region of Theileria spp. in Cape buffalo (Syncerus caffer) and cattle from southern Africa.

    Science.gov (United States)

    Mans, Ben J; Pienaar, Ronel; Latif, Abdalla A; Potgieter, Fred T

    2011-05-01

    Sequence variation within the 18S SSU rRNA V4 hyper-variable region can affect the accuracy of real-time hybridization probe-based diagnostics for the detection of Theileria spp. infections. This is relevant for assays that use non-specific primers, such as the real-time hybridization assay for T. parva (Sibeko et al. 2008). To assess the effect of sequence variation on this test, the Theileria 18S gene from 62 buffalo and 49 cattle samples was cloned and ∼1000 clones sequenced. Twenty-six genotypes were detected which included known and novel genotypes for the T. buffeli, T. mutans, T. taurotragi and T. velifera clades. A novel genotype related to T. sp. (sable) was also detected in 1 bovine sample. Theileria genotypic diversity was higher in buffalo compared to cattle. Polymorphism within the T. parva hyper-variable region was confirmed by aberrant real-time melting peaks and supported by sequencing of the S5 ribosomal gene. Analysis of the S5 gene suggests that this gene can be a marker for species differentiation. T. parva, T. sp. (buffalo) and T. sp. (bougasvlei) remain the only genotypes amplified by the primer set of the hybridization assay. Therefore, the 18S sequence diversity observed does not seem to affect the current real-time hybridization assay for T. parva.

  15. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis.

    Science.gov (United States)

    Randazzo, Cinzia L; Torriani, Sandra; Akkermans, Antoon D L; de Vos, Willem M; Vaughan, Elaine E

    2002-04-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes (rDNA). Bacterial and Lactobacillus group-specific primers were used to amplify the V6 to V8 and V1 to V3 regions of the 16S rRNA gene, respectively. DGGE profiles from samples taken during cheese production indicated dramatic shifts in the microbial community structure. Cloning and sequencing of rDNA amplicons revealed that mesophilic lactic acid bacteria (LAB), including species of Leuconostoc, Lactococcus lactis, and Macrococcus caseolyticus were dominant in the raw milk, while Streptococcus thermophilus prevailed during lactic fermentation. Other thermophilic LAB, especially Lactobacillus delbrueckii and Lactobacillus fermentum, also flourished during ripening. Comparison of the rRNA-derived patterns obtained by RT-PCR to the rDNA DGGE patterns indicated a substantially different degree of metabolic activity for the microbial groups detected. Identification of cultivated LAB isolates by phenotypic characterization and 16S rDNA analysis indicated a variety of species, reflecting to a large extent the results obtained from the 16S rDNA clone libraries, with the significant exception of the Lactobacillus delbrueckii species, which dominated in the ripening cheese but was not detected by cultivation. The present molecular approaches combined with culture can effectively describe the complex ecosystem of natural fermented dairy products, giving useful information for starter culture design and preservation of artisanal fermented food technology.

  16. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Robust computational analysis of rRNA hypervariable tag datasets.

    Directory of Open Access Journals (Sweden)

    Maksim Sipos

    Full Text Available Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gastrointestinal microbiomes, where it is important to be able to quantify measures of abundance and diversity. The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to the recognition that the results of such analyses are potentially contaminated by a variety of artifacts, both experimental and computational. Here we quantify how multiple alignment and clustering errors contribute to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We show that straightforward procedural optimizations, combining preexisting tools, are effective in handling large (10(5-10(6 16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained. We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that complete linkage clustering greatly outperforms other widely used methods.

  18. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome.

    Science.gov (United States)

    Garone, Caterina; D'Souza, Aaron R; Dallabona, Cristina; Lodi, Tiziana; Rebelo-Guiomar, Pedro; Rorbach, Joanna; Donati, Maria Alice; Procopio, Elena; Montomoli, Martino; Guerrini, Renzo; Zeviani, Massimo; Calvo, Sarah E; Mootha, Vamsi K; DiMauro, Salvatore; Ferrero, Ileana; Minczuk, Michal

    2017-11-01

    Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation. © The Author 2017. Published by Oxford University Press.

  19. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    Science.gov (United States)

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  20. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences

    Directory of Open Access Journals (Sweden)

    Robert C. Edgar

    2018-04-01

    Full Text Available Prediction of taxonomy for marker gene sequences such as 16S ribosomal RNA (rRNA is a fundamental task in microbiology. Most experimentally observed sequences are diverged from reference sequences of authoritatively named organisms, creating a challenge for prediction methods. I assessed the accuracy of several algorithms using cross-validation by identity, a new benchmark strategy which explicitly models the variation in distances between query sequences and the closest entry in a reference database. When the accuracy of genus predictions was averaged over a representative range of identities with the reference database (100%, 99%, 97%, 95% and 90%, all tested methods had ≤50% accuracy on the currently-popular V4 region of 16S rRNA. Accuracy was found to fall rapidly with identity; for example, better methods were found to have V4 genus prediction accuracy of ∼100% at 100% identity but ∼50% at 97% identity. The relationship between identity and taxonomy was quantified as the probability that a rank is the lowest shared by a pair of sequences with a given pair-wise identity. With the V4 region, 95% identity was found to be a twilight zone where taxonomy is highly ambiguous because the probabilities that the lowest shared rank between pairs of sequences is genus, family, order or class are approximately equal.