The higher rank numerical range of matrix polynomials
Aretaki, Aikaterini; Maroulas, John
2011-01-01
The notion of the higher rank numerical range $\\Lambda_{k}(L(\\lambda))$ for matrix polynomials $L(\\lambda)=A_{m}\\lambda^{m}+...+A_{1}\\lambda+A_{0}$ is introduced here and some fundamental geometrical properties are investigated. Further, the sharp points of $\\Lambda_{k}(L(\\lambda))$ are defined and their relation to the numerical range $w(L(\\lambda))$ is presented. A connection of $\\Lambda_{k}(L(\\lambda))$ with the vector-valued higher rank numerical range $\\Lambda_{k}(A_{0},..., A_{m})$ is a...
International Nuclear Information System (INIS)
Singh, K.
1992-10-01
The theory of isotropic-nematic transition described in earlier papers is applied to investigate the influence of quadrupolar interactions and pressure on the stability, ordering and thermodynamic transition properties retaining second and fourth rank orientational order parameters in the calculation for a system of hard ellipsoids of revolution characterized by its length-to-width ratio (x 0 = 2a/2b). Results are in accordance with experimental observations. (author). 9 refs, 1 tab
Directory of Open Access Journals (Sweden)
Okkyung Choi
2014-01-01
Full Text Available With smartphone distribution becoming common and robotic applications on the rise, social tagging services for various applications including robotic domains have advanced significantly. Though social tagging plays an important role when users are finding the exact information through web search, reliability and semantic relation between web contents and tags are not considered. Spams are making ill use of this aspect and put irrelevant tags deliberately on contents and induce users to advertise contents when they click items of search results. Therefore, this study proposes a detection method for tag-ranking manipulation to solve the problem of the existing methods which cannot guarantee the reliability of tagging. Similarity is measured for ranking the grade of registered tag on the contents, and weighted values of each tag are measured by means of synonym relevance, frequency, and semantic distances between tags. Lastly, experimental evaluation results are provided and its efficiency and accuracy are verified through them.
Choi, Okkyung; Jung, Hanyoung; Moon, Seungbin
2014-01-01
With smartphone distribution becoming common and robotic applications on the rise, social tagging services for various applications including robotic domains have advanced significantly. Though social tagging plays an important role when users are finding the exact information through web search, reliability and semantic relation between web contents and tags are not considered. Spams are making ill use of this aspect and put irrelevant tags deliberately on contents and induce users to advertise contents when they click items of search results. Therefore, this study proposes a detection method for tag-ranking manipulation to solve the problem of the existing methods which cannot guarantee the reliability of tagging. Similarity is measured for ranking the grade of registered tag on the contents, and weighted values of each tag are measured by means of synonym relevance, frequency, and semantic distances between tags. Lastly, experimental evaluation results are provided and its efficiency and accuracy are verified through them.
Veroniki, Areti Angeliki; Straus, Sharon E; Fyraridis, Alexandros; Tricco, Andrea C
2016-08-01
To present a novel and simple graphical approach to improve the presentation of the treatment ranking in a network meta-analysis (NMA) including multiple outcomes. NMA simultaneously compares many relevant interventions for a clinical condition from a network of trials, and allows ranking of the effectiveness and/or safety of each intervention. There are numerous ways to present the NMA results, which can challenge their interpretation by research users. The rank-heat plot is a novel graph that can be used to quickly recognize which interventions are most likely the best or worst interventions with respect to their effectiveness and/or safety for a single or multiple outcome(s) and may increase interpretability. Using empirical NMAs, we show that the need for a concise and informative presentation of results is imperative, particularly as the number of competing treatments and outcomes in an NMA increases. The rank-heat plot is an efficient way to present the results of ranking statistics, particularly when a large amount of data is available, and it is targeted to users from various backgrounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Nozawa, Sohei; Wada, Nozomi; Matsushita, Yosuke; Yamamoto, Tsuyoshi; Omori, Motohira; Harada, Tatsuro
2012-01-01
Thermogravimetry (TG) for two different coal ranks, Loy Yang coal and Newlands coal, was carried out in an atmospheric air environment. Detailed parameters of the heterogeneous oxidation reaction for each coal rank were estimated by analyzing the TG results. Heat and mass transfer of a single pulverized coal particle that was heated at a constant temperature were numerically simulated. In this calculation, the decrease in the mass ratio caused by the oxidation reaction was considered. The num...
Numerical optimization of conical flow waveriders including detailed viscous effects
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Energy Technology Data Exchange (ETDEWEB)
1989-12-31
This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).
Energy Technology Data Exchange (ETDEWEB)
Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno
2016-09-15
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area
El-Amin, Mohamed
2015-06-01
In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.
Energy Technology Data Exchange (ETDEWEB)
1990-11-01
Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.
A numerical model including PID control of a multizone crystal growth furnace
Panzarella, Charles H.; Kassemi, Mohammad
1992-01-01
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Ortleb, Sigrun; Seidel, Christian
2017-07-01
In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.
A novel method of including Landau level mixing in numerical studies of the quantum Hall effect
International Nuclear Information System (INIS)
Wooten, Rachel; Quinn, John; Macek, Joseph
2013-01-01
Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented
Algebraic and computational aspects of real tensor ranks
Sakata, Toshio; Miyazaki, Mitsuhiro
2016-01-01
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...
Gershenson, Carlos
Studies of rank distributions have been popular for decades, especially since the work of Zipf. For example, if we rank words of a given language by use frequency (most used word in English is 'the', rank 1; second most common word is 'of', rank 2), the distribution can be approximated roughly with a power law. The same applies for cities (most populated city in a country ranks first), earthquakes, metabolism, the Internet, and dozens of other phenomena. We recently proposed ``rank diversity'' to measure how ranks change in time, using the Google Books Ngram dataset. Studying six languages between 1800 and 2009, we found that the rank diversity curves of languages are universal, adjusted with a sigmoid on log-normal scale. We are studying several other datasets (sports, economies, social systems, urban systems, earthquakes, artificial life). Rank diversity seems to be universal, independently of the shape of the rank distribution. I will present our work in progress towards a general description of the features of rank change in time, along with simple models which reproduce it
International Nuclear Information System (INIS)
Amirkhizi, Alireza V; Nemat-Nasser, Sia
2008-01-01
Through the use of conductive straight wires or coils the electromagnetic properties of a composite material can be modified. The asymmetric geometry of the coils creates an overall chiral response. The polarization vectors rotate as an electromagnetic wave travels through such a medium. To calculate the chirality of a medium prior to its manufacturing, we developed a method to extract all four electromagnetic material parameter tensors for a general uniaxial bianisotropic composite based on the numerical simulation of the electromagnetic fields. Our method uses appropriate line and surface field averages in a single unit cell of the periodic structure of the composite material. These overall field quantities have physical meaning only when the microscopic variation of the electromagnetic fields in the scale of the unit cell is not important, that is when the wavelength of interest is significantly larger than the maximum linear dimension of the unit cell. The overall constitutive relations of the periodic structure can then be obtained from the relations among the average quantities
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2010-01-01
A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...
Directory of Open Access Journals (Sweden)
Nathállya Etyenne Figueira Silva
2017-10-01
Full Text Available This study aimed to analyze the effect of corporate returns after the disclosure of inclusion in the Global 100 ranking. For this purpose, the methodology of the Study of Events was used, based on the hypothesis of a semi-strong efficient market. The Global 100 rankings considered in this study were the ones released over 12 years, from 2005 to 2016. The survey sample composed of the shares of the companies that had data on the date of their inclusion, and thus consisting of 266 shares. The variable used was daily quotations of companies' shares during the estimation period (160 days and event window (21 days and the market indices of the countries in which the share was quoted, collected in the Thomson Reuters Database®. The results showed that the release of the Global 100 ranking did not cause significant positive or negative effect on the cumulative abnormal returns (CARs of the shares of listed companies. Keywords Global 100; Corporate social responsibility; Sustainability; Financial performance.
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
University Rankings: The Web Ranking
Aguillo, Isidro F.
2012-01-01
The publication in 2003 of the Ranking of Universities by Jiao Tong University of Shanghai has revolutionized not only academic studies on Higher Education, but has also had an important impact on the national policies and the individual strategies of the sector. The work gathers the main characteristics of this and other global university…
Directory of Open Access Journals (Sweden)
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
Hierarchical partial order ranking
International Nuclear Information System (INIS)
Carlsen, Lars
2008-01-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters
DEFF Research Database (Denmark)
Rasmussen, Filip Salling; Sonne, Mads Rostgaard; Larsen, Martin
In the present study, a two-dimensional (2D) transient Eulerian thermo-chemical analysis of a carbon fibre epoxy thermosetting Resin Injection Pultrusion (RIP) process is carried out. The numerical model is implemented using the well known unconditionally stable Alternating Direction Implicit (ADI......) scheme. The total heat of reaction and the cure kinetics of the epoxy thermosetting are determined using Differential Scanning Calorimetry (DSC). A very good agreement is observed between the fitted cure kinetic model and the experimental measurements. The numerical steady state temperature predictions...
DEFF Research Database (Denmark)
Sonne, Mads Rostgaard; Carlone, Pierpaolo; Palazzo, Gaetano S.
2014-01-01
In the present paper, a numerical finite element model of the precipitation hardenable AA2024-T3 aluminum alloy, consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical model for heat generation, and a sequentially coupled quasi-static stress analysis is proposed. Metallurgi...
International Nuclear Information System (INIS)
Noguchi, M.; Takeda, K.; Higuchi, H.
1981-01-01
A method of γ-ray efficiency determination for extended (plane or bulk) samples based on numerical integration of point source efficiency is studied. The proposed method is widely applicable to samples of various shapes and materials. The geometrical factor in the peak efficiency can easily be corrected for by simply changing the integration region, and γ-ray self-absorption is also corrected by the absorption coefficients for the sample matrix. (author)
14 CFR 1214.1105 - Final ranking.
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Final ranking. 1214.1105 Section 1214.1105... Recruitment and Selection Program § 1214.1105 Final ranking. Final rankings will be based on a combination of... preference will be included in this final ranking in accordance with applicable regulations. ...
Energy Technology Data Exchange (ETDEWEB)
Weber, G. F.; Laudal, D. L.
1989-01-01
This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).
Rhazi, Dilal
In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt
International Nuclear Information System (INIS)
Frahm, K M; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers. (paper)
Subtracting a best rank-1 approximation may increase tensor rank
Stegeman, Alwin; Comon, Pierre
2010-01-01
It has been shown that a best rank-R approximation of an order-k tensor may not exist when R >= 2 and k >= 3. This poses a serious problem to data analysts using tensor decompositions it has been observed numerically that, generally, this issue cannot be solved by consecutively computing and
Hyper-local, directions-based ranking of places
DEFF Research Database (Denmark)
Venetis, Petros; Gonzalez, Hector; Jensen, Christian S.
2011-01-01
they are numerous and contain precise locations. Specifically, the paper proposes a framework that takes a user location and a collection of near-by places as arguments, producing a ranking of the places. The framework enables a range of aspects of directions queries to be exploited for the ranking of places......, including the frequency with which places have been referred to in directions queries. Next, the paper proposes an algorithm and accompanying data structures capable of ranking places in response to hyper-local web queries. Finally, an empirical study with very large directions query logs offers insight...... into the potential of directions queries for the ranking of places and suggests that the proposed algorithm is suitable for use in real web search engines....
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Kolandaivelu, K. P.; Lowell, R. P.
2015-12-01
To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.
African Journals Online (AJOL)
maths/stats
... GAUSS SEIDEL'S. NUMERICAL ALGORITHMS IN PAGE RANK ANALYSIS. ... The convergence is guaranteed, if the absolute value of the largest eigen ... improved Gauss-Seidel iteration algorithm, based on the decomposition. U. L. D. M. +. +. = ..... This corresponds to determine the eigen vector of T with eigen value 1.
International Nuclear Information System (INIS)
Nagata, A.; Ashida, H.; Okamoto, M.; Hirano, K.
1981-03-01
Two dimentional fluid simulation code ''TOPICS'' is developed for the STP-2, the shock heated screw pinch at Nagoya. It involves the effects of impurity ions and neutral atoms. In order to estimate the radiation losses, the impurity continuity equations with ionizations and recombinations are solved simultaneously with the plasma fluid equations. The results are compared with the coronal equilibrium model. It is found that the coronal equilibrium model underestimates the radiation losses from shock heated pinch plasmas in its initial dynamic phase. The present calculations including impurities and neutrals show the importance of the radiation losses from the plasma of the STP-2. Introducing the anomalous resistivity caused by the ion acoustic instability, the observed magnetic field penetration is explained fairly well. (author)
The Privilege of Ranking: Google Plays Ball.
Wiggins, Richard
2003-01-01
Discussion of ranking systems used in various settings, including college football and academic admissions, focuses on the Google search engine. Explains the PageRank mathematical formula that scores Web pages by connecting the number of links; limitations, including authenticity and accuracy of ranked Web pages; relevancy; adjusting algorithms;…
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
PageRank tracker: from ranking to tracking.
Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie
2014-06-01
Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.
Universal emergence of PageRank
Energy Technology Data Exchange (ETDEWEB)
Frahm, K M; Georgeot, B; Shepelyansky, D L, E-mail: frahm@irsamc.ups-tlse.fr, E-mail: georgeot@irsamc.ups-tlse.fr, E-mail: dima@irsamc.ups-tlse.fr [Laboratoire de Physique Theorique du CNRS, IRSAMC, Universite de Toulouse, UPS, 31062 Toulouse (France)
2011-11-18
The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter {alpha} Element-Of ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when {alpha} {yields} 1. The whole network can be divided into a core part and a group of invariant subspaces. For {alpha} {yields} 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at {alpha} {yields} 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses. (paper)
Universal emergence of PageRank
International Nuclear Information System (INIS)
Frahm, K M; Georgeot, B; Shepelyansky, D L
2011-01-01
The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter α ∈ ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when α → 1. The whole network can be divided into a core part and a group of invariant subspaces. For α → 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at α → 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses. (paper)
Ranking Operations Management conferences
Steenhuis, H.J.; de Bruijn, E.J.; Gupta, Sushil; Laptaned, U
2007-01-01
Several publications have appeared in the field of Operations Management which rank Operations Management related journals. Several ranking systems exist for journals based on , for example, perceived relevance and quality, citation, and author affiliation. Many academics also publish at conferences
Ranking environmental liabilities at a petroleum refinery
International Nuclear Information System (INIS)
Lupo, M.
1995-01-01
A new computer model is available to allow the management of a petroleum refinery to prioritize environmental action and construct a holistic approach to remediation. A large refinery may have numerous solid waste management units regulated by the Resource Conservation and Recovery Act (RCRA), as well as process units that emit hazardous chemicals into the environment. These sources can impact several environmental media, potentially including the air, the soil, the groundwater, the unsaturated zone water, and surface water. The number of chemicals of concern may be large. The new model is able to rank the sources by considering the impact of each chemical in each medium from each source in terms of concentration, release rate, and a weighted index based on toxicity. In addition to environmental impact, the sources can be ranked in three other ways: (1) by cost to remediate, (2) by environmental risk reduction caused by the remediation in terms of the decreases in release rate, concentration, and weighted index, and (3) by cost-benefit, which is the environmental risk reduction for each source divided by the cost of the remedy. Ranking each unit in the refinery allows management to use its limited environmental resources in a pro-active strategic manner that produces long-term results, rather than in reactive, narrowly focused, costly, regulatory-driven campaigns that produce only short-term results
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
Ranking in evolving complex networks
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
RANK and RANK ligand expression in primary human osteosarcoma
Directory of Open Access Journals (Sweden)
Daniel Branstetter
2015-09-01
Our results demonstrate RANKL expression was observed in the tumor element in 68% of human OS using IHC. However, the staining intensity was relatively low and only 37% (29/79 of samples exhibited≥10% RANKL positive tumor cells. RANK expression was not observed in OS tumor cells. In contrast, RANK expression was clearly observed in other cells within OS samples, including the myeloid osteoclast precursor compartment, osteoclasts and in giant osteoclast cells. The intensity and frequency of RANKL and RANK staining in OS samples were substantially less than that observed in GCTB samples. The observation that RANKL is expressed in OS cells themselves suggests that these tumors may mediate an osteoclastic response, and anti-RANKL therapy may potentially be protective against bone pathologies in OS. However, the absence of RANK expression in primary human OS cells suggests that any autocrine RANKL/RANK signaling in human OS tumor cells is not operative, and anti-RANKL therapy would not directly affect the tumor.
Bradshaw, Corey J A; Brook, Barry W
2016-01-01
There are now many methods available to assess the relative citation performance of peer-reviewed journals. Regardless of their individual faults and advantages, citation-based metrics are used by researchers to maximize the citation potential of their articles, and by employers to rank academic track records. The absolute value of any particular index is arguably meaningless unless compared to other journals, and different metrics result in divergent rankings. To provide a simple yet more objective way to rank journals within and among disciplines, we developed a κ-resampled composite journal rank incorporating five popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index of relative rank uncertainty. We applied the approach to six sample sets of scientific journals from Ecology (n = 100 journals), Medicine (n = 100), Multidisciplinary (n = 50); Ecology + Multidisciplinary (n = 25), Obstetrics & Gynaecology (n = 25) and Marine Biology & Fisheries (n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplinary journal set to the results of a survey of 188 publishing ecologists who were asked to rank the same journals, and found a 0.68-0.84 Spearman's ρ correlation between the two rankings datasets. Our composite index approach therefore approximates relative journal reputation, at least for that discipline. Agglomerative and divisive clustering and multi-dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identified specific clusters of similarly ranked journals, with only Nature & Science separating out from the others. When comparing a selection of journals within or among disciplines, we recommend collecting multiple citation-based metrics for a sample of relevant and realistic journals to calculate the composite rankings and their relative uncertainty windows.
Hoede, C.
In this paper the concept of page rank for the world wide web is discussed. The possibility of describing the distribution of page rank by an exponential law is considered. It is shown that the concept is essentially equal to that of status score, a centrality measure discussed already in 1953 by
Dobbs, David E.
2012-01-01
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
Chapman, David W.
2008-01-01
Recently, Samford University was ranked 27th in the nation in a report released by "Forbes" magazine. In this article, the author relates how the people working at Samford University were surprised at its ranking. Although Samford is the largest privately institution in Alabama, its distinguished academic achievements aren't even…
Recurrent fuzzy ranking methods
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
Energy Technology Data Exchange (ETDEWEB)
Ersland, B.G.
1996-05-01
This mathematical doctoral thesis contains the theory, algorithms and numerical simulations for a heterogeneous oil reservoir. It presents the equations, which apply to immiscible and incompressible two-phase fluid flow in the reservoir, including the effect of capillary pressure forces, and emphasises in particular the interior boundary conditions at the interface between two sediments. Two different approaches are discussed. The first approach is to decompose the computational domain along the interior boundary and iterate between the subdomains until mass balance is achieved. The second approach accounts for the interior boundary conditions in the basis in which the solution is expanded, the basis being discontinuous over the interior boundaries. An overview of the construction of iterative solvers for partial differential equations by means of Schwartz methods is given, and the algorithm for local refinement with Schwartz iterations as iterative solver is described. The theory is then applied to a core plug problem in one and two space dimensions and the results of different methods compared. A general description is given of the computer simulation model, which is implemented in C++. 64 refs., 49 figs., 7 tabs.
Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering
Directory of Open Access Journals (Sweden)
Shan Gao
2017-01-01
Full Text Available Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users’ preference by exploiting explicit feedbacks (numerical ratings, or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks. Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users’ actions, based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users’ other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app.
Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering.
Gao, Shan; Guo, Guibing; Li, Runzhi; Wang, Zongmin
2017-01-01
Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks). Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users' actions), based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users' other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app.
A tilting approach to ranking influence
Genton, Marc G.
2014-12-01
We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking the data in terms of that influence. Our method is based on, first, perturbing the value of the statistic by ‘tilting’, or reweighting, each data value, where the total amount of tilt is constrained to be the least possible, subject to achieving a given small perturbation of the statistic, and, then, taking the ranking of the influence of data values to be that which corresponds to ranking the changes in data weights. It is shown, both theoretically and numerically, that this ranking does not depend on the size of the perturbation, provided that the perturbation is sufficiently small. That simple result leads directly to an elegant geometric interpretation of the ranks; they are the ranks of the lengths of projections of the weights onto a ‘line’ determined by the first empirical principal component function in a generalized measure of covariance. To illustrate the generality of the method we introduce and explore it in the case of functional data, where (for example) it leads to generalized boxplots. The method has the advantage of providing an interpretable ranking that depends on the statistic under consideration. For example, the ranking of data, in terms of their influence on the value of a statistic, is different for a measure of location and for a measure of scale. This is as it should be; a ranking of data in terms of their influence should depend on the manner in which the data are used. Additionally, the ranking recognizes, rather than ignores, sign, and in particular can identify left- and right-hand ‘tails’ of the distribution of a random function or vector.
Ranking as parameter estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Guy, Tatiana Valentine
2009-01-01
Roč. 4, č. 2 (2009), s. 142-158 ISSN 1745-7645 R&D Projects: GA MŠk 2C06001; GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : ranking * Bayesian estimation * negotiation * modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2009/AS/karny- ranking as parameter estimation.pdf
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Statistical Optimality in Multipartite Ranking and Ordinal Regression.
Uematsu, Kazuki; Lee, Yoonkyung
2015-05-01
Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.
International Nuclear Information System (INIS)
Pruess, Karsten
2003-01-01
The critical point of CO 2 is at temperature and pressure conditions of T crit = 31.04 C, P crit = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO 2 can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO 2 into brine formations would be made at supercritical pressures. However, CO 2 escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO 2 would be in subcritical conditions. An assessment of the fate of leaking CO 2 requires a capability to model not only supercritical but also subcritical CO 2 , as well as phase changes between liquid and gaseous CO 2 in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO 2 mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO 2 . This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO 2 plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO 2 rises to elevations where it begins to boil and evolve a gaseous CO 2 phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO 2 to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO 2 upflow, causes the plume to spread out laterally, and gives rise to dispersed CO 2 discharge at the land surface. Our simulation suggests that temperatures along a CO 2 leakage path may decline to levels low enough so that solid water ice and CO 2 hydrate phases may be formed
Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra
2013-01-01
Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Directory of Open Access Journals (Sweden)
Arda Halu
Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Groundwater contaminant plume ranking
International Nuclear Information System (INIS)
1988-08-01
Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs
Efficient Rank Reduction of Correlation Matrices
I. Grubisic (Igor); R. Pietersz (Raoul)
2005-01-01
textabstractGeometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established,
Language Games: University Responses to Ranking Metrics
Heffernan, Troy A.; Heffernan, Amanda
2018-01-01
League tables of universities that measure performance in various ways are now commonplace, with numerous bodies providing their own rankings of how institutions throughout the world are seen to be performing on a range of metrics. This paper uses Lyotard's notion of language games to theorise that universities are regaining some power over being…
Ranking economic history journals
DEFF Research Database (Denmark)
Di Vaio, Gianfranco; Weisdorf, Jacob Louis
2010-01-01
This study ranks-for the first time-12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We also...... compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential for economic...... history, and that, although economic history is quite independent from economics as a whole, knowledge exchange between the two fields is indeed going on....
Ranking Economic History Journals
DEFF Research Database (Denmark)
Di Vaio, Gianfranco; Weisdorf, Jacob Louis
This study ranks - for the first time - 12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We...... also compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential...... for economic history, and that, although economic history is quite independent from economics as a whole, knowledge exchange between the two fields is indeed going on....
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....
W.H. Oldenmenger (Wendy); P.J. de Raaf (Pleun); C. de Klerk (Cora); C.C.D. van der Rijt (Carin)
2013-01-01
textabstractContext: To improve the management of cancer-related symptoms, systematic screening is necessary, often performed by using 0-10 numeric rating scales. Cut points are used to determine if scores represent clinically relevant burden. Objectives: The aim of this systematic review was to
Diversifying customer review rankings.
Krestel, Ralf; Dokoohaki, Nima
2015-06-01
E-commerce Web sites owe much of their popularity to consumer reviews accompanying product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to decide which products to buy. At the same time, each popular product has thousands of user-generated reviews, making it impossible for a buyer to read everything. Current approaches to display reviews to users or recommend an individual review for a product are based on the recency or helpfulness of each review. In this paper, we present a framework to rank product reviews by optimizing the coverage of the ranking with respect to sentiment or aspects, or by summarizing all reviews with the top-K reviews in the ranking. To accomplish this, we make use of the assigned star rating for a product as an indicator for a review's sentiment polarity and compare bag-of-words (language model) with topic models (latent Dirichlet allocation) as a mean to represent aspects. Our evaluation on manually annotated review data from a commercial review Web site demonstrates the effectiveness of our approach, outperforming plain recency ranking by 30% and obtaining best results by combining language and topic model representations. Copyright © 2015 Elsevier Ltd. All rights reserved.
College Rankings. ERIC Digest.
Holub, Tamara
The popularity of college ranking surveys published by "U.S. News and World Report" and other magazines is indisputable, but the methodologies used to measure the quality of higher education institutions have come under fire by scholars and college officials. Criticisms have focused on methodological flaws, such as failure to consider…
DEFF Research Database (Denmark)
Müller, Emmanuel; Assent, Ira; Steinhausen, Uwe
2008-01-01
Outlier detection is an important data mining task for consistency checks, fraud detection, etc. Binary decision making on whether or not an object is an outlier is not appropriate in many applications and moreover hard to parametrize. Thus, recently, methods for outlier ranking have been proposed...
International Nuclear Information System (INIS)
Kacha, K.; Djeffal, F.; Ferhati, H.; Arar, D.; Meguellati, M.
2015-01-01
We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells. (paper)
González-Galván, María del Carmen; Mosqueda-Taylor, Adalberto; Bologna-Molina, Ronell; Setien-Olarra, Amaia; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel
2018-01-01
Background Odontogenic myxoma (OM) is a benign intraosseous neoplasm that exhibits local aggressiveness and high recurrence rates. Osteoclastogenesis is an important phenomenon in the tumor growth of maxillary neoplasms. RANK (Receptor Activator of Nuclear Factor κappa B) is the signaling receptor of RANK-L (Receptor activator of nuclear factor kappa-Β ligand) that activates the osteoclasts. OPG (osteoprotegerin) is a decoy receptor for RANK-L that inhibits pro-osteoclastogenesis. The RANK / RANKL / OPG system participates in the regulation of osteolytic activity under normal conditions, and its alteration has been associated with greater bone destruction, and also with tumor growth. Objectives To analyze the immunohistochemical expression of OPG, RANK and RANK-L proteins in odontogenic myxomas (OMs) and their relationship with the tumor size. Material and Methods Eighteen OMs, 4 small ( 3cm) and 18 dental follicles (DF) that were included as control were studied by means of standard immunohistochemical procedure with RANK, RANKL and OPG antibodies. For the evaluation, 5 fields (40x) of representative areas of OM and DF were selected where the expression of each antibody was determined. Descriptive and comparative statistical analyses were performed with the obtained data. Results There are significant differences in the expression of RANK in OM samples as compared to DF (p = 0.022) and among the OMSs and OMLs (p = 0.032). Also a strong association is recognized in the expression of RANK-L and OPG in OM samples. Conclusions Activation of the RANK / RANK-L / OPG triad seems to be involved in the mechanisms of bone balance and destruction, as well as associated with tumor growth in odontogenic myxomas. Key words:Odontogenic myxoma, dental follicle, RANK, RANK-L, OPG, osteoclastogenesis. PMID:29680857
Country-specific determinants of world university rankings.
Pietrucha, Jacek
2018-01-01
This paper examines country-specific factors that affect the three most influential world university rankings (the Academic Ranking of World Universities, the QS World University Ranking, and the Times Higher Education World University Ranking). We run a cross sectional regression that covers 42-71 countries (depending on the ranking and data availability). We show that the position of universities from a country in the ranking is determined by the following country-specific variables: economic potential of the country, research and development expenditure, long-term political stability (freedom from war, occupation, coups and major changes in the political system), and institutional variables, including government effectiveness.
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...
A Ranking Approach to Genomic Selection.
Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori
2015-01-01
Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.
1991 Acceptance priority ranking
International Nuclear Information System (INIS)
1991-12-01
The Standard Contract for Disposal of Spent Nuclear Fuel and/or High- Level Radioactive Waste (10 CFR Part 961) that the Department of Energy (DOE) has executed with the owners and generators of civilian spent nuclear fuel requires annual publication of the Acceptance Priority Ranking (APR). The 1991 APR details the order in which DOE will allocate Federal waste acceptance capacity. As required by the Standard Contract, the ranking is based on the age of permanently discharged spent nuclear fuel (SNF), with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. the 1991 APR will be the basis for the annual allocation of waste acceptance capacity to the Purchasers in the 1991 Annual Capacity Report (ACR), to be issued later this year. This document is based on SNF discharges as of December 31, 1990, and reflects Purchaser comments and corrections, as appropriate, to the draft APR issued on May 15, 1991
Around power law for PageRank components in Buckley-Osthus model of web graph
Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil
2017-01-01
In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.
Generalized PageRank on Directed Configuration Networks
Chen, Ningyuan; Litvak, Nelli; Olvera-Cravioto, Mariana
2017-01-01
Note: formula is not displayed correctly. This paper studies the distribution of a family of rankings, which includes Google’s PageRank, on a directed configuration model. In particular, it is shown that the distribution of the rank of a randomly chosen node in the graph converges in distribution to
Third-rank chromatic aberrations of electron lenses.
Liu, Zhixiong
2018-02-01
In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Ranking Adverse Drug Reactions With Crowdsourcing
Gottlieb, Assaf
2015-03-23
Background: There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. Objective: The intent of the study was to rank ADRs according to severity. Methods: We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. Results: There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. Conclusions: ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.
Ranking adverse drug reactions with crowdsourcing.
Gottlieb, Assaf; Hoehndorf, Robert; Dumontier, Michel; Altman, Russ B
2015-03-23
There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. The intent of the study was to rank ADRs according to severity. We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.
International Nuclear Information System (INIS)
McColl, S.; Gower, S.; Hicks, J.; Shortreed, J.; Craig, L.
2004-01-01
This paper presents the concept and methodologies behind the development of a health effects priority ranking tool for the reduction of air emissions from oil refineries. The Health Effects Indicators Decision Index- Versions 2 (Heidi II) was designed to assist policy makers in prioritizing air emissions reductions on the basis of estimated risk to human health. Inputs include facility level rankings of potential health impacts associated with carcinogenic air toxics, non-carcinogenic air toxics and criteria air contaminants for each of the 20 refineries in Canada. Rankings of estimated health impacts are presented on predicted incidence of health effects. Heidi II considers site-specific annual pollutant emission data, ambient air concentrations associated with releases and concentration response functions for various types of health effects. Additional data includes location specific background air concentrations, site-specific population densities, and the baseline incidence of different health effects endpoints, such as cancer, non-cancer illnesses and cardiorespiratory illnesses and death. Air pollutants include the 29 air toxics reported annually in Environment Canada's National Pollutant Release Inventory. Three health impact ranking outputs are provided for each facility: ranking of pollutants based on predicted number of annual cases of health effects; ranking of pollutants based on simplified Disability Adjusted Life Years (DALYs); and ranking of pollutants based on more complex DALYs that consider types of cancer, systemic disease or types of cardiopulmonary health effects. Rankings rely on rough statistical estimates of predicted incidence rates for health endpoints. The models used to calculate rankings can provide useful guidance by comparing estimated health impacts. Heidi II has demonstrated that it is possible to develop a consistent and objective approach for ranking priority reductions of air emissions. Heidi II requires numerous types and
Ranking Baltic States Researchers
Directory of Open Access Journals (Sweden)
Gyula Mester
2017-10-01
Full Text Available In this article, using the h-index and the total number of citations, the best 10 Lithuanian, Latvian and Estonian researchers from several disciplines are ranked. The list may be formed based on the h-index and the total number of citations, given in Web of Science, Scopus, Publish or Perish Program and Google Scholar database. Data for the first 10 researchers are presented. Google Scholar is the most complete. Therefore, to define a single indicator, h-index calculated by Google Scholar may be a good and simple one. The author chooses the Google Scholar database as it is the broadest one.
International Nuclear Information System (INIS)
Marrakchi, A.E.L.; Tapia, V.
1992-05-01
Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with k obs =0 and Ω obs t clas approx. 10 20 t Planck approx. 10 -23 s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs
Who's bigger? where historical figures really rank
Skiena, Steven
2014-01-01
Is Hitler bigger than Napoleon? Washington bigger than Lincoln? Picasso bigger than Einstein? Quantitative analysts are rapidly finding homes in social and cultural domains, from finance to politics. What about history? In this fascinating book, Steve Skiena and Charles Ward bring quantitative analysis to bear on ranking and comparing historical reputations. They evaluate each person by aggregating the traces of millions of opinions, just as Google ranks webpages. The book includes a technical discussion for readers interested in the details of the methods, but no mathematical or computational background is necessary to understand the rankings or conclusions. Along the way, the authors present the rankings of more than one thousand of history's most significant people in science, politics, entertainment, and all areas of human endeavor. Anyone interested in history or biography can see where their favorite figures place in the grand scheme of things.
Co-integration Rank Testing under Conditional Heteroskedasticity
DEFF Research Database (Denmark)
Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert
null distributions of the rank statistics coincide with those derived by previous authors who assume either i.i.d. or (strict and covariance) stationary martingale difference innovations. We then propose wild bootstrap implementations of the co-integrating rank tests and demonstrate that the associated...... bootstrap rank statistics replicate the first-order asymptotic null distributions of the rank statistics. We show the same is also true of the corresponding rank tests based on the i.i.d. bootstrap of Swensen (2006). The wild bootstrap, however, has the important property that, unlike the i.i.d. bootstrap......, it preserves in the re-sampled data the pattern of heteroskedasticity present in the original shocks. Consistent with this, numerical evidence sug- gests that, relative to tests based on the asymptotic critical values or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small samples un...
University Rankings and Social Science
Marginson, S.
2014-01-01
University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real outputs are of no common value. It is necessary that rankings be soundly based in scientific terms if a virtuous relationship between performance and...
PageRank, HITS and a unified framework for link analysis
Energy Technology Data Exchange (ETDEWEB)
Ding, Chris; He, Xiaofeng; Husbands, Parry; Zha, Hongyuan; Simon, Horst
2001-10-01
Two popular webpage ranking algorithms are HITS and PageRank. HITS emphasizes mutual reinforcement between authority and hub webpages, while PageRank emphasizes hyperlink weight normalization and web surfing based on random walk models. We systematically generalize/combine these concepts into a unified framework. The ranking framework contains a large algorithm space; HITS and PageRank are two extreme ends in this space. We study several normalized ranking algorithms which are intermediate between HITS and PageRank, and obtain closed-form solutions. We show that, to first order approximation, all ranking algorithms in this framework, including PageRank and HITS, lead to same ranking which is highly correlated with ranking by indegree. These results support the notion that in web resource ranking indegree and outdegree are of fundamental importance. Rankings of webgraphs of different sizes and queries are presented to illustrate our analysis.
International Nuclear Information System (INIS)
Creighton, J.R.
1975-01-01
Waveforms and population distributions have been calculated by a numerical model and compared with experiment for an electric-discharge-initiated, pulsed NF 3 + H 2 chemical laser. The model treats each vibrational-rotational state separately, allowing rotational relaxation between adjacent states as well as vibrational relaxation and lasing according to P-branch selection rules. Calculated waveforms agree with experiment and show several features not seen when rotational equilibrium is assumed: simultaneous lasing on many transitions, cascade behavior, spikes due to laser relaxation oscillations, non-Boltzmann rotational distributions, and ''hole burning'' in the population distributions. The calculations give insight into the physical phenomena governing the shape and duration of the waveforms. The effect of varying certain parameters, relaxation rates, temperature, pressure, and diluents, is studied. Best fit to experimental waveforms is obtained when the rotational relaxation rate and collisional line broadening rate are approximately equal at about 10 times the hard sphere collision rate. The IXION computer code, developed for these calculations, is described in detail. In addition, an analytic model is presented which accounts for major features of the total (all transitions) output waveform of the laser assuming rotational equilibrium, a steady state laser model, and constant temperature. A second computer code, MINOTAR, was developed as a general purpose chemical kinetics code. It verifies the analytic model and extends the results to adiabatic reactions where the temperature varies, and can yield waveforms using the assumptions of rotational equilibrium and a steady state laser. The MINOTAR code, being general, can also be used for chemical kinetics problems such as air pollution and combustion
University Rankings and Social Science
Marginson, Simon
2014-01-01
University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real…
Fractional cointegration rank estimation
DEFF Research Database (Denmark)
Lasak, Katarzyna; Velasco, Carlos
the parameters of the model under the null hypothesis of the cointegration rank r = 1, 2, ..., p-1. This step provides consistent estimates of the cointegration degree, the cointegration vectors, the speed of adjustment to the equilibrium parameters and the common trends. In the second step we carry out a sup......-likelihood ratio test of no-cointegration on the estimated p - r common trends that are not cointegrated under the null. The cointegration degree is re-estimated in the second step to allow for new cointegration relationships with different memory. We augment the error correction model in the second step...... to control for stochastic trend estimation effects from the first step. The critical values of the tests proposed depend only on the number of common trends under the null, p - r, and on the interval of the cointegration degrees b allowed, but not on the true cointegration degree b0. Hence, no additional...
Rankings, creatividad y urbanismo
Directory of Open Access Journals (Sweden)
JOAQUÍN SABATÉ
2008-08-01
Full Text Available La competencia entre ciudades constituye uno de los factores impulsores de procesos de renovación urbana y los rankings han devenido instrumentos de medida de la calidad de las ciudades. Nos detendremos en el caso de un antiguo barrio industrial hoy en vías de transformación en distrito "creativo" por medio de una intervención urbanística de gran escala. Su análisis nos descubre tres claves críticas. En primer lugar, nos obliga a plantearnos la definición de innovación urbana y cómo se integran el pasado, la identidad y la memoria en la construcción del futuro. Nos lleva a comprender que la innovación y el conocimiento no se "dan" casualmente, sino que son el fruto de una larga y compleja red en la que participan saberes, espacios, actores e instituciones diversas en naturaleza, escala y magnitud. Por último nos obliga a reflexionar sobre el valor que se le otorga a lo local en los procesos de renovación urbana.Competition among cities constitutes one ofthe main factors o furban renewal, and rankings have become instruments to indícate cities quality. Studying the transformation of an old industrial quarter into a "creative district" by the means ofa large scale urban project we highlight three main conclusions. First, itasks us to reconsider the notion ofurban innovation and hoto past, identity and memory should intégrate the future development. Second, it shows that innovation and knowledge doesn't yield per chance, but are the result ofa large and complex grid of diverse knowledges, spaces, agents and institutions. Finally itforces us to reflect about the valué attributed to the "local" in urban renewalprocesses.
Ranking nodes in growing networks: When PageRank fails.
Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng
2015-11-10
PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm's efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank's performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.
Energy Technology Data Exchange (ETDEWEB)
Gossman, Michael S., E-mail: MGossman@TSRCC.com [Regulation Directive Medical Physics, Russell, KY (United States); Wilkinson, Jeffrey D. [Medtronic, Inc., Mounds View, MN (United States); Mallick, Avishek [Department of Mathematics, Marshall University, Huntington, WV (United States)
2014-01-01
In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient's sex; patient's age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient's medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.
Neophilia Ranking of Scientific Journals.
Packalen, Mikko; Bhattacharya, Jay
2017-01-01
The ranking of scientific journals is important because of the signal it sends to scientists about what is considered most vital for scientific progress. Existing ranking systems focus on measuring the influence of a scientific paper (citations)-these rankings do not reward journals for publishing innovative work that builds on new ideas. We propose an alternative ranking based on the proclivity of journals to publish papers that build on new ideas, and we implement this ranking via a text-based analysis of all published biomedical papers dating back to 1946. In addition, we compare our neophilia ranking to citation-based (impact factor) rankings; this comparison shows that the two ranking approaches are distinct. Prior theoretical work suggests an active role for our neophilia index in science policy. Absent an explicit incentive to pursue novel science, scientists underinvest in innovative work because of a coordination problem: for work on a new idea to flourish, many scientists must decide to adopt it in their work. Rankings that are based purely on influence thus do not provide sufficient incentives for publishing innovative work. By contrast, adoption of the neophilia index as part of journal-ranking procedures by funding agencies and university administrators would provide an explicit incentive for journals to publish innovative work and thus help solve the coordination problem by increasing scientists' incentives to pursue innovative work.
Feier, Ioan I., Jr.
The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two
Energy Technology Data Exchange (ETDEWEB)
Lepechinsky, D; Parlange, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
Dispersion curves including the effect of collisions have been calculated with a 7090 IBM computer for several types of laboratory hydrogen plasmas; Te = Ti = 1 eV; Te = 1 eV, Ti = 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti 10 eV, with neutral gas pressures of 10{sup -1}, 10{sup -3} and 10{sup -4} mmHg and electron densities of 10{sup 10}, 10{sup 13} and eventually 10{sup 15} el/cc. The corresponding collision frequencies with neutrals and between electrons and ions have been derived using appropriate relationships The dispersion equations used correspond to the macroscopic treatment. The real and imaginary parts of the wave number K are presented as a function of real values of the frequency {omega}, for electrostatic and electromagnetic waves and for e.m. waves propagating parallel to a permanent magnetic field of 500 gauss and 12.5 Kgauss. (authors) [French] Des courbes de dispersion tenant compte de l'effet des collisions ont ete calculees a l'aide d'un ordinateur IBM 7090 pour differents types de plasmas d'hydrogene se presentant au laboratoire; les temperatures electroniques et ioniques envisagees ont ete les suivantes: Te = Ti = 1 Ev; Te = 1 eV, Ti 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti = 10 eV; les pressions de neutres - de 10{sup -1}, 10{sup -3} et 10{sup -4} mmHg; les densites electroniques - de 10{sup 10}, 10{sup 13} et eventuellement de 10{sup 15} el/cc. Les frequences de collision avec les neutres et entre electrons et ions ont ete evaluees en fonction de ces donnees. Les equations, de dispersion utilisees correspondant au traitement macroscopique. On presente les valeurs des parties reelle et imaginaire du nombre d'ondes K en fonction de valeurs reelles de la frequence {omega} pour les ondes electrostatiques et electromagnetiques et pour les ondes e.m. se propageant parallelement a un champ magnetique permanent de 500 gauss et de 12,5 kgauss. (auteurs)
Ranking Specific Sets of Objects.
Maly, Jan; Woltran, Stefan
2017-01-01
Ranking sets of objects based on an order between the single elements has been thoroughly studied in the literature. In particular, it has been shown that it is in general impossible to find a total ranking - jointly satisfying properties as dominance and independence - on the whole power set of objects. However, in many applications certain elements from the entire power set might not be required and can be neglected in the ranking process. For instance, certain sets might be ruled out due to hard constraints or are not satisfying some background theory. In this paper, we treat the computational problem whether an order on a given subset of the power set of elements satisfying different variants of dominance and independence can be found, given a ranking on the elements. We show that this problem is tractable for partial rankings and NP-complete for total rankings.
Wikipedia ranking of world universities
Lages, José; Patt, Antoine; Shepelyansky, Dima L.
2016-03-01
We use the directed networks between articles of 24 Wikipedia language editions for producing the wikipedia ranking of world Universities (WRWU) using PageRank, 2DRank and CheiRank algorithms. This approach allows to incorporate various cultural views on world universities using the mathematical statistical analysis independent of cultural preferences. The Wikipedia ranking of top 100 universities provides about 60% overlap with the Shanghai university ranking demonstrating the reliable features of this approach. At the same time WRWU incorporates all knowledge accumulated at 24 Wikipedia editions giving stronger highlights for historically important universities leading to a different estimation of efficiency of world countries in university education. The historical development of university ranking is analyzed during ten centuries of their history.
Are university rankings useful to improve research? A systematic review.
Vernon, Marlo M; Balas, E Andrew; Momani, Shaher
2018-01-01
Concerns about reproducibility and impact of research urge improvement initiatives. Current university ranking systems evaluate and compare universities on measures of academic and research performance. Although often useful for marketing purposes, the value of ranking systems when examining quality and outcomes is unclear. The purpose of this study was to evaluate usefulness of ranking systems and identify opportunities to support research quality and performance improvement. A systematic review of university ranking systems was conducted to investigate research performance and academic quality measures. Eligibility requirements included: inclusion of at least 100 doctoral granting institutions, be currently produced on an ongoing basis and include both global and US universities, publish rank calculation methodology in English and independently calculate ranks. Ranking systems must also include some measures of research outcomes. Indicators were abstracted and contrasted with basic quality improvement requirements. Exploration of aggregation methods, validity of research and academic quality indicators, and suitability for quality improvement within ranking systems were also conducted. A total of 24 ranking systems were identified and 13 eligible ranking systems were evaluated. Six of the 13 rankings are 100% focused on research performance. For those reporting weighting, 76% of the total ranks are attributed to research indicators, with 24% attributed to academic or teaching quality. Seven systems rely on reputation surveys and/or faculty and alumni awards. Rankings influence academic choice yet research performance measures are the most weighted indicators. There are no generally accepted academic quality indicators in ranking systems. No single ranking system provides a comprehensive evaluation of research and academic quality. Utilizing a combined approach of the Leiden, Thomson Reuters Most Innovative Universities, and the SCImago ranking systems may provide
VaRank: a simple and powerful tool for ranking genetic variants
Directory of Open Access Journals (Sweden)
Véronique Geoffroy
2015-03-01
Full Text Available Background. Most genetic disorders are caused by single nucleotide variations (SNVs or small insertion/deletions (indels. High throughput sequencing has broadened the catalogue of human variation, including common polymorphisms, rare variations or disease causing mutations. However, identifying one variation among hundreds or thousands of others is still a complex task for biologists, geneticists and clinicians.Results. We have developed VaRank, a command-line tool for the ranking of genetic variants detected by high-throughput sequencing. VaRank scores and prioritizes variants annotated either by Alamut Batch or SnpEff. A barcode allows users to quickly view the presence/absence of variants (with homozygote/heterozygote status in analyzed samples. VaRank supports the commonly used VCF input format for variants analysis thus allowing it to be easily integrated into NGS bioinformatics analysis pipelines. VaRank has been successfully applied to disease-gene identification as well as to molecular diagnostics setup for several hundred patients.Conclusions. VaRank is implemented in Tcl/Tk, a scripting language which is platform-independent but has been tested only on Unix environment. The source code is available under the GNU GPL, and together with sample data and detailed documentation can be downloaded from http://www.lbgi.fr/VaRank/.
Statistical methods for ranking data
Alvo, Mayer
2014-01-01
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
Ranking nodes in growing networks: When PageRank fails
Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng
2015-11-01
PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.
Ranking of Developing Countries Based on the Economic Freedom Index
Zirak, Masoumeh; Mehrara, Mohsen
2013-01-01
In this paper we’ve ranked developing countries based on the Economic Freedom index. Therefore we are trying to do the analysis how this ranking is done using numerical taxonomic methodology. To do this, by estimating the effects of the determinants of FDI in 123 developing countries from 1997 to 2010, results showed that with regard to the degree of economic freedom or Economic openness, attract foreign direct investment in each country is different. In this study china, Equator, Liberia, Az...
Low Rank Approximation Algorithms, Implementation, Applications
Markovsky, Ivan
2012-01-01
Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...
Ranking Thinning Potential of Lodgepole Pine Stands
United States Department of Agriculture, Forest Service
1987-01-01
This paper presents models for predicting edge-response of dominant and codominant trees to clearing. Procedures are given for converting predictions to a thinning response index, for ranking stands for thinning priority. Data requirements, sampling suggestions, examples of application, and suggestions for management use are included to facilitate use as a field guide.
Comparing survival curves using rank tests
Albers, Willem/Wim
1990-01-01
Survival times of patients can be compared using rank tests in various experimental setups, including the two-sample case and the case of paired data. Attention is focussed on two frequently occurring complications in medical applications: censoring and tail alternatives. A review is given of the
Methodology for ranking restoration options
International Nuclear Information System (INIS)
Hedemann Jensen, Per
1999-04-01
The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Five contaminated European sites have been studied. Various remedial measures have been envisaged with respect to the optimisation of the protection of the populations being exposed to the radionuclides at the sites. Cost-benefit analysis and multi-attribute utility analysis have been applied for optimisation. Health, economic and social attributes have been included and weighting factors for the different attributes have been determined by the use of scaling constants. (au)
Low-rank driving in quantum systems
International Nuclear Information System (INIS)
Burkey, R.S.
1989-01-01
A new property of quantum systems called low-rank driving is introduced. Numerous simplifications in the solution of the time-dependent Schroedinger equation are pointed out for systems having this property. These simplifications are in the areas of finding eigenvalues, taking the Laplace transform, converting Schroedinger's equation to an integral form, discretizing the continuum, generalizing the Weisskopf-Wigner approximation, band-diagonalizing the Hamiltonian, finding new exact solutions to Schroedinger's equation, and so forth. The principal physical application considered is the phenomenon of coherent populations-trapping in continuum-continuum interactions
An R package for analyzing and modeling ranking data.
Lee, Paul H; Yu, Philip L H
2013-05-14
multidimensional preference analysis. Various probability models for ranking data are also included, allowing users to choose that which is most suitable to their specific situations.
Universal scaling in sports ranking
International Nuclear Information System (INIS)
Deng Weibing; Li Wei; Cai Xu; Bulou, Alain; Wang Qiuping A
2012-01-01
Ranking is a ubiquitous phenomenon in human society. On the web pages of Forbes, one may find all kinds of rankings, such as the world's most powerful people, the world's richest people, the highest-earning tennis players, and so on and so forth. Herewith, we study a specific kind—sports ranking systems in which players' scores and/or prize money are accrued based on their performances in different matches. By investigating 40 data samples which span 12 different sports, we find that the distributions of scores and/or prize money follow universal power laws, with exponents nearly identical for most sports. In order to understand the origin of this universal scaling we focus on the tennis ranking systems. By checking the data we find that, for any pair of players, the probability that the higher-ranked player tops the lower-ranked opponent is proportional to the rank difference between the pair. Such a dependence can be well fitted to a sigmoidal function. By using this feature, we propose a simple toy model which can simulate the competition of players in different matches. The simulations yield results consistent with the empirical findings. Extensive simulation studies indicate that the model is quite robust with respect to the modifications of some parameters. (paper)
Multidimensional ranking the design and development of U-Multirank
Ziegele, Frank
2012-01-01
During the last decades ranking has become one of the most controversial issues in higher education and research. It is widely recognized now that, although some of the current rankings can be severely criticized, they seem to be here to stay. In addition, rankings appear to have a great impact on decision-makers at all levels of higher education and research systems worldwide, including in universities. Rankings reflect a growing international competition among universities for talent and resources; at the same time they reinforce competition by their very results. Yet major concerns remain a
Learning to rank for information retrieval and natural language processing
Li, Hang
2014-01-01
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on its problems recently, and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, major approaches, theories, applications, and future work.The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as tw
Rank of quantized universal enveloping algebras and modular functions
International Nuclear Information System (INIS)
Majid, S.; Soibelman, Ya.S.
1991-01-01
We compute an intrinsic rank invariant for quasitriangular Hopf algebras in the case of general quantum groups U q (g). As a function of q the rank has remarkable number theoretic properties connected with modular covariance and Galois theory. A number of examples are treated in detail, including rank (U q (su(3)) and rank (U q (e 8 )). We briefly indicate a physical interpretation as relating Chern-Simons theory with the theory of a quantum particle confined to an alcove of g. (orig.)
Scott, L Ridgway
2011-01-01
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...
Rank-dependant factorization of entanglement evolution
International Nuclear Information System (INIS)
Siomau, Michael
2016-01-01
Highlights: • In some cases the complex entanglement evolution can be factorized on simple terms. • We suggest factorization equations for multiqubit entanglement evolution. • The factorization is solely defined by the rank of the final state density matrices. • The factorization is independent on the local noisy channels and initial pure states. - Abstract: The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.
Freudenthal ranks: GHZ versus W
International Nuclear Information System (INIS)
Borsten, L
2013-01-01
The Hilbert space of three-qubit pure states may be identified with a Freudenthal triple system. Every state has an unique Freudenthal rank ranging from 1 to 4, which is determined by a set of automorphism group covariants. It is shown here that the optimal success rates for winning a three-player non-local game, varying over all local strategies, are strictly ordered by the Freudenthal rank of the shared three-qubit resource. (paper)
Ranking Queries on Uncertain Data
Hua, Ming
2011-01-01
Uncertain data is inherent in many important applications, such as environmental surveillance, market analysis, and quantitative economics research. Due to the importance of those applications and rapidly increasing amounts of uncertain data collected and accumulated, analyzing large collections of uncertain data has become an important task. Ranking queries (also known as top-k queries) are often natural and useful in analyzing uncertain data. Ranking Queries on Uncertain Data discusses the motivations/applications, challenging problems, the fundamental principles, and the evaluation algorith
Positioning Open Access Journals in a LIS Journal Ranking
Xia, Jingfeng
2012-01-01
This research uses the h-index to rank the quality of library and information science journals between 2004 and 2008. Selected open access (OA) journals are included in the ranking to assess current OA development in support of scholarly communication. It is found that OA journals have gained momentum supporting high-quality research and…
An Adaptive Reordered Method for Computing PageRank
Directory of Open Access Journals (Sweden)
Yi-Ming Bu
2013-01-01
Full Text Available We propose an adaptive reordered method to deal with the PageRank problem. It has been shown that one can reorder the hyperlink matrix of PageRank problem to calculate a reduced system and get the full PageRank vector through forward substitutions. This method can provide a speedup for calculating the PageRank vector. We observe that in the existing reordered method, the cost of the recursively reordering procedure could offset the computational reduction brought by minimizing the dimension of linear system. With this observation, we introduce an adaptive reordered method to accelerate the total calculation, in which we terminate the reordering procedure appropriately instead of reordering to the end. Numerical experiments show the effectiveness of this adaptive reordered method.
Ranking structures and rank-rank correlations of countries: The FIFA and UEFA cases
Ausloos, Marcel; Cloots, Rudi; Gadomski, Adam; Vitanov, Nikolay K.
2014-04-01
Ranking of agents competing with each other in complex systems may lead to paradoxes according to the pre-chosen different measures. A discussion is presented on such rank-rank, similar or not, correlations based on the case of European countries ranked by UEFA and FIFA from different soccer competitions. The first question to be answered is whether an empirical and simple law is obtained for such (self-) organizations of complex sociological systems with such different measuring schemes. It is found that the power law form is not the best description contrary to many modern expectations. The stretched exponential is much more adequate. Moreover, it is found that the measuring rules lead to some inner structures in both cases.
Sailaukhanuly, Yerbolat; Zhakupbekova, Arai; Amutova, Farida; Carlsen, Lars
2013-01-01
Knowledge of the environmental behavior of chemicals is a fundamental part of the risk assessment process. The present paper discusses various methods of ranking of a series of persistent organic pollutants (POPs) according to the persistence, bioaccumulation and toxicity (PBT) characteristics. Traditionally ranking has been done as an absolute (total) ranking applying various multicriteria data analysis methods like simple additive ranking (SAR) or various utility functions (UFs) based rankings. An attractive alternative to these ranking methodologies appears to be partial order ranking (POR). The present paper compares different ranking methods like SAR, UF and POR. Significant discrepancies between the rankings are noted and it is concluded that partial order ranking, as a method without any pre-assumptions concerning possible relation between the single parameters, appears as the most attractive ranking methodology. In addition to the initial ranking partial order methodology offers a wide variety of analytical tools to elucidate the interplay between the objects to be ranked and the ranking parameters. In the present study is included an analysis of the relative importance of the single P, B and T parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.
UTV Expansion Pack: Special-Purpose Rank-Revealing Algorithms
DEFF Research Database (Denmark)
Fierro, Ricardo D.; Hansen, Per Christian
2005-01-01
This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank-r...... values of a sparse or structured matrix. These new algorithms have applications in signal processing, optimization and LSI information retrieval.......This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank......-revealing VSV decompositions, we expand the algorithms for the ULLV decomposition of a matrix pair to handle interference-type problems with a rank-deficient covariance matrix, and we provide a robust and reliable Lanczos algorithm which - despite its simplicity - is able to capture all the dominant singular...
Robust rankings of socioeconomic health inequality using a categorical variable.
Makdissi, Paul; Yazbeck, Myra
2017-09-01
When assessing socioeconomic health inequalities, researchers often draw upon measures of income inequality that were developed for ratio scale variables. As a result, the use of categorical data (such as self-reported health status) produces rankings that may be arbitrary and contingent to the numerical scale adopted. In this paper, we develop a method that overcomes this issue by providing conditions for which these rankings are invariant to the numerical scale chosen by the researcher. In doing so, we draw on the insight provided by Allison and Foster (2004) and extend their method to the dimension of socioeconomic inequality by exploiting the properties of rank-dependent indices such as Wagstaff (2002) achievement and extended concentration indices. We also provide an empirical illustration using the National Institute of Health Survey 2012. Copyright © 2017 John Wiley & Sons, Ltd.
Social Media Impact on Website Ranking
Vaghela, Dushyant
2014-01-01
Internet is fast becoming critically important to commerce, industry and individuals. Search Engine (SE) is the most vital component for communication network and also used for discover information for users or people. Search engine optimization (SEO) is the process that is mostly used to increasing traffic from free, organic or natural listings on search engines and also helps to increase website ranking. It includes techniques like link building, directory submission, classified submission ...
Ranking species in mutualistic networks
Domínguez-García, Virginia; Muñoz, Miguel A.
2015-02-01
Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.
Ranking Theory and Conditional Reasoning.
Skovgaard-Olsen, Niels
2016-05-01
Ranking theory is a formal epistemology that has been developed in over 600 pages in Spohn's recent book The Laws of Belief, which aims to provide a normative account of the dynamics of beliefs that presents an alternative to current probabilistic approaches. It has long been received in the AI community, but it has not yet found application in experimental psychology. The purpose of this paper is to derive clear, quantitative predictions by exploiting a parallel between ranking theory and a statistical model called logistic regression. This approach is illustrated by the development of a model for the conditional inference task using Spohn's (2013) ranking theoretic approach to conditionals. Copyright © 2015 Cognitive Science Society, Inc.
University rankings in computer science
DEFF Research Database (Denmark)
Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela
2017-01-01
This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...
Consistent ranking of volatility models
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
2006-01-01
We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable....
Low-rank quadratic semidefinite programming
Yuan, Ganzhao
2013-04-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Ranking oil sands bitumen recovery techniques
Energy Technology Data Exchange (ETDEWEB)
Lam, A.; Nobes, D.S.; Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering
2009-07-01
The preference ranking organization method (PROMETHEE) was used to assess and rank 3 techniques for in situ bitumen recovery: (1) steam assisted gravity drainage; (2) vapour extraction (VAPEX); and (3) toe-to-heel air injection (THAI). The study used a business scenario where management-type indicators included potential production rates; estimated overall operating costs; energy consumption; facilities requirement; recovery efficiency; and energy loss. Amounts of carbon dioxide (CO{sub 2}) emissions were also considered, as well as the production depth, formation thickness, and API gravity of the produced bitumen. The study showed that THAI recovery methods had the most beneficial criteria weighting of the 3 processes, while SAGD was the least favourable choice. However, SAGD processes are the most widely used of the 3 processes, while THAI has only been demonstrated on a limited scale. It was concluded that the maturity of a technology should be weighted more heavily when using the PROMETHEE method. 8 refs., 2 tabs.
Low-rank quadratic semidefinite programming
Yuan, Ganzhao; Zhang, Zhenjie; Ghanem, Bernard; Hao, Zhifeng
2013-01-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Energy Technology Data Exchange (ETDEWEB)
Grace, Matthew; Lowry, Thomas Stephen; Arnold, Bill Walter; James, Scott Carlton; Gray, Genetha Anne; Ahlmann, Michael
2008-08-01
Uncertainty in site characterization arises from a lack of data and knowledge about a site and includes uncertainty in the boundary conditions, uncertainty in the characteristics, location, and behavior of major features within an investigation area (e.g., major faults as barriers or conduits), uncertainty in the geologic structure, as well as differences in numerical implementation (e.g., 2-D versus 3-D, finite difference versus finite element, grid resolution, deterministic versus stochastic, etc.). Since the true condition at a site can never be known, selection of the best conceptual model is very difficult. In addition, limiting the understanding to a single conceptualization too early in the process, or before data can support that conceptualization, may lead to confidence in a characterization that is unwarranted as well as to data collection efforts and field investigations that are misdirected and/or redundant. Using a series of numerical modeling experiments, this project examined the application and use of information criteria within the site characterization process. The numerical experiments are based on models of varying complexity that were developed to represent one of two synthetically developed groundwater sites; (1) a fully hypothetical site that represented a complex, multi-layer, multi-faulted site, and (2) a site that was based on the Horonobe site in northern Japan. Each of the synthetic sites were modeled in detail to provide increasingly informative 'field' data over successive iterations to the representing numerical models. The representing numerical models were calibrated to the synthetic site data and then ranked and compared using several different information criteria approaches. Results show, that for the early phases of site characterization, low-parameterized models ranked highest while more complex models generally ranked lowest. In addition, predictive capabilities were also better with the low-parameterized models. For
Let Us Rank Journalism Programs
Weber, Joseph
2014-01-01
Unlike law, business, and medical schools, as well as universities in general, journalism schools and journalism programs have rarely been ranked. Publishers such as "U.S. News & World Report," "Forbes," "Bloomberg Businessweek," and "Washington Monthly" do not pay them much mind. What is the best…
On Rank Driven Dynamical Systems
Veerman, J. J. P.; Prieto, F. J.
2014-08-01
We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.
A new mutually reinforcing network node and link ranking algorithm.
Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E
2015-10-23
This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.
A new mutually reinforcing network node and link ranking algorithm
Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.
2015-10-01
This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.
A new mutually reinforcing network node and link ranking algorithm
Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.
2015-01-01
This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
A novel three-stage distance-based consensus ranking method
Aghayi, Nazila; Tavana, Madjid
2018-05-01
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights obtained in the first stage is not unique. Finally, in the third stage, the group rank position of alternatives is obtained based on a distance of individual rank positions. The third stage determines a consensus solution for the group so that the ranks obtained have a minimum distance from the ranks acquired by each alternative in the previous stage. A numerical example is presented to demonstrate the applicability and exhibit the efficacy of the proposed method and algorithms.
Tensor completion and low-n-rank tensor recovery via convex optimization
International Nuclear Information System (INIS)
Gandy, Silvia; Yamada, Isao; Recht, Benjamin
2011-01-01
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers
A Survey on PageRank Computing
Berkhin, Pavel
2005-01-01
This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. This defines the importance of the model and the data structures that underly PageRank processing. Computing even a single PageRank is a difficult computational task. Computing many PageRanks is a much mor...
Menachemi, Nir; Hogan, Tory H; DelliFraine, Jami L
2015-01-01
Health administration (HA) faculty members publish in a variety of journals, including journals focused on management, economics, policy, and information technology. HA faculty members are evaluated on the basis of the quality and quantity of their journal publications. However, it is unclear how perceptions of these journals vary by subdiscipline, department leadership role, or faculty rank. It is also not clear how perceptions of journals may have changed over the past decade since the last evaluation of journal rankings in the field was published. The purpose of the current study is to examine how respondents rank journals in the field of HA, as well as the variation in perception by academic rank, department leadership status, and area of expertise. Data were drawn from a survey of HA faculty members at U.S. universities, which was completed in 2012. Different journal ranking patterns were noted for faculty members of different subdisciplines. The health management-oriented journals (Health Care Management Review and Journal of Healthcare Management) were ranked higher than in previous research, suggesting that journal ranking perceptions may have changed over the intervening decade. Few differences in perceptions were noted by academic rank, but we found that department chairs were more likely than others to select Health Affairs in their top three most prestigious journals (β = 0.768; p journal prestige varied between a department chair and untenured faculty in different disciplines, and this perceived difference could have implications for promotion and tenure decisions.
Time evolution of Wikipedia network ranking
Eom, Young-Ho; Frahm, Klaus M.; Benczúr, András; Shepelyansky, Dima L.
2013-12-01
We study the time evolution of ranking and spectral properties of the Google matrix of English Wikipedia hyperlink network during years 2003-2011. The statistical properties of ranking of Wikipedia articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabilized for 2007-2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80% of top universities of Shanghai ranking during the considered time period.
Identification of significant features by the Global Mean Rank test.
Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph
2014-01-01
With the introduction of omics-technologies such as transcriptomics and proteomics, numerous methods for the reliable identification of significantly regulated features (genes, proteins, etc.) have been developed. Experimental practice requires these tests to successfully deal with conditions such as small numbers of replicates, missing values, non-normally distributed expression levels, and non-identical distributions of features. With the MeanRank test we aimed at developing a test that performs robustly under these conditions, while favorably scaling with the number of replicates. The test proposed here is a global one-sample location test, which is based on the mean ranks across replicates, and internally estimates and controls the false discovery rate. Furthermore, missing data is accounted for without the need of imputation. In extensive simulations comparing MeanRank to other frequently used methods, we found that it performs well with small and large numbers of replicates, feature dependent variance between replicates, and variable regulation across features on simulation data and a recent two-color microarray spike-in dataset. The tests were then used to identify significant changes in the phosphoproteomes of cancer cells induced by the kinase inhibitors erlotinib and 3-MB-PP1 in two independently published mass spectrometry-based studies. MeanRank outperformed the other global rank-based methods applied in this study. Compared to the popular Significance Analysis of Microarrays and Linear Models for Microarray methods, MeanRank performed similar or better. Furthermore, MeanRank exhibits more consistent behavior regarding the degree of regulation and is robust against the choice of preprocessing methods. MeanRank does not require any imputation of missing values, is easy to understand, and yields results that are easy to interpret. The software implementing the algorithm is freely available for academic and commercial use.
Association between Metabolic Syndrome and Job Rank.
Mehrdad, Ramin; Pouryaghoub, Gholamreza; Moradi, Mahboubeh
2018-01-01
The occupation of the people can influence the development of metabolic syndrome. To determine the association between metabolic syndrome and its determinants with the job rank in workers of a large car factory in Iran. 3989 male workers at a large car manufacturing company were invited to participate in this cross-sectional study. Demographic and anthropometric data of the participants, including age, height, weight, and abdominal circumference were measured. Blood samples were taken to measure lipid profile and blood glucose level. Metabolic syndrome was diagnosed in each participant based on ATPIII 2001 criteria. The workers were categorized based on their job rank into 3 groups of (1) office workers, (2) workers with physical exertion, and (3) workers with chemical exposure. The study characteristics, particularly the frequency of metabolic syndrome and its determinants were compared among the study groups. The prevalence of metabolic syndrome in our study was 7.7% (95% CI 6.9 to 8.5). HDL levels were significantly lower in those who had chemical exposure (p=0.045). Diastolic blood pressure was significantly higher in those who had mechanical exertion (p=0.026). The frequency of metabolic syndrome in the office workers, workers with physical exertion, and workers with chemical exposure was 7.3%, 7.9%, and 7.8%, respectively (p=0.836). Seemingly, there is no association between metabolic syndrome and job rank.
Ranking agility factors affecting hospitals in Iran
Directory of Open Access Journals (Sweden)
M. Abdi Talarposht
2017-04-01
Full Text Available Background: Agility is an effective response to the changing and unpredictable environment and using these changes as opportunities for organizational improvement. Objective: The aim of the present study was to rank the factors affecting agile supply chain of hospitals of Iran. Methods: This applied study was conducted by cross sectional-descriptive method at some point of 2015 for one year. The research population included managers, administrators, faculty members and experts were selected hospitals. A total of 260 people were selected as sample from the health centers. The construct validity of the questionnaire was approved by confirmatory factor analysis test and its reliability was approved by Cronbach's alpha (α=0.97. All data were analyzed by Kolmogorov-Smirnov, Chi-square and Friedman tests. Findings: The development of staff skills, the use of information technology, the integration of processes, appropriate planning, and customer satisfaction and product quality had a significant impact on the agility of public hospitals of Iran (P<0.001. New product introductions had earned the highest ranking and the development of staff skills earned the lowest ranking. Conclusion: The new product introduction, market responsiveness and sensitivity, reduce costs, and the integration of organizational processes, ratings better to have acquired agility hospitals in Iran. Therefore, planners and officials of hospitals have to, through the promotion quality and variety of services customer-oriented, providing a basis for investing in the hospital and etc to apply for agility supply chain public hospitals of Iran.
Ranking of Palliative Care Development in the Countries of the European Union.
Woitha, Kathrin; Garralda, Eduardo; Martin-Moreno, Jose María; Clark, David; Centeno, Carlos
2016-09-01
There is growing interest in monitoring palliative care (PC) development internationally. One aspect of this is the ranking of such development for comparative purposes. To generate a ranking classification and to compare scores for PC development in the countries of the European Union, 2007 and 2013. PC "development" in this study is understood as a combination of the existence of relevant services in a country ("resources") plus the capacity to develop further resources in the future ("vitality"). "Resources" comprise indicators of three types of PC services per population (inpatient palliative care units and inpatient hospices, hospital support teams, and home care teams). "Vitality" of PC is estimated by numerical scores for the existence of a national association, a directory of services, physician accreditation, attendances at a key European conference and volume of publications on PC development. The leading country (by raw score) is then considered as the reference point against which all other countries are measured. Different weightings are applied to resources (75%) and vitality (25%). From this, an overall ranking is constructed. The U.K. achieved the highest level of development (86% of the maximum possible score), followed by Belgium and overall The Netherlands (81%), and Sweden (80%). In the resources domain, Luxembourg, the U.K., and Belgium were leading. The top countries in vitality were Germany and the U.K. In comparison to 2007, The Netherlands, Malta, and Portugal showed the biggest improvements, whereas the positions of Spain, France, and Greece deteriorated. The ranking method permitted a comparison of palliative care development between countries and shows changes over time. Recommendations for improving the ranking include improvements to the methodology and greater explanation of the levels and changes it reveals. Copyright © 2016 Universidad Navarra. Published by Elsevier Inc. All rights reserved.
First rank symptoms for schizophrenia.
Soares-Weiser, Karla; Maayan, Nicola; Bergman, Hanna; Davenport, Clare; Kirkham, Amanda J; Grabowski, Sarah; Adams, Clive E
2015-01-25
Early and accurate diagnosis and treatment of schizophrenia may have long-term advantages for the patient; the longer psychosis goes untreated the more severe the repercussions for relapse and recovery. If the correct diagnosis is not schizophrenia, but another psychotic disorder with some symptoms similar to schizophrenia, appropriate treatment might be delayed, with possible severe repercussions for the person involved and their family. There is widespread uncertainty about the diagnostic accuracy of First Rank Symptoms (FRS); we examined whether they are a useful diagnostic tool to differentiate schizophrenia from other psychotic disorders. To determine the diagnostic accuracy of one or multiple FRS for diagnosing schizophrenia, verified by clinical history and examination by a qualified professional (e.g. psychiatrists, nurses, social workers), with or without the use of operational criteria and checklists, in people thought to have non-organic psychotic symptoms. We conducted searches in MEDLINE, EMBASE, and PsycInfo using OvidSP in April, June, July 2011 and December 2012. We also searched MEDION in December 2013. We selected studies that consecutively enrolled or randomly selected adults and adolescents with symptoms of psychosis, and assessed the diagnostic accuracy of FRS for schizophrenia compared to history and clinical examination performed by a qualified professional, which may or may not involve the use of symptom checklists or based on operational criteria such as ICD and DSM. Two review authors independently screened all references for inclusion. Risk of bias in included studies were assessed using the QUADAS-2 instrument. We recorded the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for constructing a 2 x 2 table for each study or derived 2 x 2 data from reported summary statistics such as sensitivity, specificity, and/or likelihood ratios. We included 21 studies with a total of 6253 participants
Validating rankings in soccer championships
Directory of Open Access Journals (Sweden)
Annibal Parracho Sant'Anna
2012-08-01
Full Text Available The final ranking of a championship is determined by quality attributes combined with other factors which should be filtered out of any decision on relegation or draft for upper level tournaments. Factors like referees' mistakes and difficulty of certain matches due to its accidental importance to the opponents should have their influence reduced. This work tests approaches to combine classification rules considering the imprecision of the number of points as a measure of quality and of the variables that provide reliable explanation for it. Two home-advantage variables are tested and shown to be apt to enter as explanatory variables. Independence between the criteria is checked against the hypothesis of maximal correlation. The importance of factors and of composition rules is evaluated on the basis of correlation between rank vectors, number of classes and number of clubs in tail classes. Data from five years of the Brazilian Soccer Championship are analyzed.
Minkowski metrics in creating universal ranking algorithms
Directory of Open Access Journals (Sweden)
Andrzej Ameljańczyk
2014-06-01
Full Text Available The paper presents a general procedure for creating the rankings of a set of objects, while the relation of preference based on any ranking function. The analysis was possible to use the ranking functions began by showing the fundamental drawbacks of commonly used functions in the form of a weighted sum. As a special case of the ranking procedure in the space of a relation, the procedure based on the notion of an ideal element and generalized Minkowski distance from the element was proposed. This procedure, presented as universal ranking algorithm, eliminates most of the disadvantages of ranking functions in the form of a weighted sum.[b]Keywords[/b]: ranking functions, preference relation, ranking clusters, categories, ideal point, universal ranking algorithm
Iacovacci, Jacopo; Rahmede, Christoph; Arenas, Alex; Bianconi, Ginestra
2016-10-01
Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so-called pattern to success.
Low rank magnetic resonance fingerprinting.
Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C
2016-08-01
Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.
Ranking Support Vector Machine with Kernel Approximation
Directory of Open Access Journals (Sweden)
Kai Chen
2017-01-01
Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
An Improved Approach to the PageRank Problems
Directory of Open Access Journals (Sweden)
Yue Xie
2013-01-01
Full Text Available We introduce a partition of the web pages particularly suited to the PageRank problems in which the web link graph has a nested block structure. Based on the partition of the web pages, dangling nodes, common nodes, and general nodes, the hyperlink matrix can be reordered to be a more simple block structure. Then based on the parallel computation method, we propose an algorithm for the PageRank problems. In this algorithm, the dimension of the linear system becomes smaller, and the vector for general nodes in each block can be calculated separately in every iteration. Numerical experiments show that this approach speeds up the computation of PageRank.
Ranking and Mapping the Contributions by Overseas Chinese Strategy Scholars
DEFF Research Database (Denmark)
Li, Weiwen; Li, Peter Ping; Shu, Cheng
2015-01-01
The authors comment on an article by H. Jiao and colleagues regarding development of a ranking of overseas Chines strategy scholars in terms of their contributions to the strategy research. Topics include selection of 24 business journals ranked by the University of Texas at Dallas for their rese......The authors comment on an article by H. Jiao and colleagues regarding development of a ranking of overseas Chines strategy scholars in terms of their contributions to the strategy research. Topics include selection of 24 business journals ranked by the University of Texas at Dallas...... for their research; identifying authors who had published articles in periodicals such as "Management and Organization Review;" and development of a coding protocol and discussing coding procedure.....
SRS: Site ranking system for hazardous chemical and radioactive waste
International Nuclear Information System (INIS)
Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.
1988-05-01
This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs
Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay
Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao
2016-06-01
This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.
Ranking Practice Variability in the Medical Student Performance Evaluation: So Bad, It's "Good".
Boysen Osborn, Megan; Mattson, James; Yanuck, Justin; Anderson, Craig; Tekian, Ara; Fox, John Christian; Harris, Ilene B
2016-11-01
To examine the variability among medical schools in ranking systems used in medical student performance evaluations (MSPEs). The authors reviewed MSPEs from U.S. MD-granting medical schools received by the University of California, Irvine emergency medicine and internal medicine residency programs during 2012-2013 and 2014-2015. They recorded whether the school used a ranking system, the type of ranking system used, the size and description of student categories, the location of the ranking statement and category legend, and whether nonranking schools used language suggestive of rank. Of the 134 medical schools in the study sample, the majority (n = 101; 75%) provided ranks for students in the MSPE. Most of the ranking schools (n = 63; 62%) placed students into named category groups, but the number and size of groups varied. The most common descriptors used for these 63 schools' top, second, third, and lowest groups were "outstanding," "excellent," "very good," and "good," respectively, but each of these terms was used across a broad range of percentile ranks. Student ranks and school category legends were found in various locations. Many of the 33 schools that did not rank students included language suggestive of rank. There is extensive variation in ranking systems used in MSPEs. Program directors may find it difficult to use MSPEs to compare applicants, which may diminish the MSPE's value in the residency application process and negatively affect high-achieving students. A consistent approach to ranking students would benefit program directors, students, and student affairs officers.
SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking
Shams, Bita; Haratizadeh, Saman
2016-09-01
Collaborative ranking is an emerging field of recommender systems that utilizes users' preference data rather than rating values. Unfortunately, neighbor-based collaborative ranking has gained little attention despite its more flexibility and justifiability. This paper proposes a novel framework, called SibRank that seeks to improve the state of the art neighbor-based collaborative ranking methods. SibRank represents users' preferences as a signed bipartite network, and finds similar users, through a novel personalized ranking algorithm in signed networks.
Rank Two Affine Manifolds in Genus 3
Aulicino, David; Nguyen, Duc-Manh
2016-01-01
We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.
Reduced-Rank Adaptive Filtering Using Krylov Subspace
Directory of Open Access Journals (Sweden)
Sergueï Burykh
2003-01-01
Full Text Available A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.
A Comprehensive Analysis of Marketing Journal Rankings
Steward, Michelle D.; Lewis, Bruce R.
2010-01-01
The purpose of this study is to offer a comprehensive assessment of journal standings in Marketing from two perspectives. The discipline perspective of rankings is obtained from a collection of published journal ranking studies during the past 15 years. The studies in the published ranking stream are assessed for reliability by examining internal…
Fuzzy Logic and Its Application in Football Team Ranking
Directory of Open Access Journals (Sweden)
Wenyi Zeng
2014-01-01
some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T7, T3, T1, T9, T10, T8, T11, T12, T2, T6, T5, T4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.
Directory of Open Access Journals (Sweden)
Bouchra Sojod
2017-05-01
Full Text Available Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.
Sojod, Bouchra; Chateau, Danielle; Mueller, Christopher G.; Babajko, Sylvie; Berdal, Ariane; Lézot, Frédéric; Castaneda, Beatriz
2017-01-01
Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases. PMID:28596739
International Conference on Robust Rank-Based and Nonparametric Methods
McKean, Joseph
2016-01-01
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.
Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej
2015-09-01
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.
The ranking of negative-cost emissions reduction measures
International Nuclear Information System (INIS)
Taylor, Simon
2012-01-01
A flaw has been identified in the calculation of the cost-effectiveness in marginal abatement cost curves (MACCs). The problem affects “negative-cost” emissions reduction measures—those that produce a return on investment. The resulting ranking sometimes favours measures that produce low emissions savings and is therefore unreliable. The issue is important because incorrect ranking means a potential failure to achieve the best-value outcome. A simple mathematical analysis shows that not only is the standard cost-effectiveness calculation inadequate for ranking negative-cost measures, but there is no possible replacement that satisfies reasonable requirements. Furthermore, the concept of negative cost-effectiveness is found to be unsound and its use should be avoided. Among other things, this means that MACCs are unsuitable for ranking negative-cost measures. As a result, MACCs produced by a range of organizations including UK government departments may need to be revised. An alternative partial ranking method has been devised by making use of Pareto optimization. The outcome can be presented as a stacked bar chart that indicates both the preferred ordering and the total emissions saving available for each measure without specifying a cost-effectiveness. - Highlights: ► Marginal abatement cost curves (MACCs) are used to rank emission reduction measures. ► There is a flaw in the standard ranking method for negative-cost measures. ► Negative values of cost-effectiveness (in £/tC or equivalent) are invalid. ► There may be errors in published MACCs. ► A method based on Pareto principles provides an alternative ranking method.
Cell adhesion signaling regulates RANK expression in osteoclast precursors.
Directory of Open Access Journals (Sweden)
Ayako Mochizuki
Full Text Available Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK differentiate into osteoclasts following stimulation with the RANK ligand (RANKL. Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition. BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS and tumor necrosis factor -αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6 in BMMs induced their differentiation into osteoclasts even under the non
24 CFR 599.401 - Ranking of applications.
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Ranking of applications. 599.401... Communities § 599.401 Ranking of applications. (a) Ranking order. Rural and urban applications will be ranked... applications ranked first. (b) Separate ranking categories. After initial ranking, both rural and urban...
Cioca, L. I.; Giurea, R.; Precazzini, I.; Ragazzi, M.; Achim, M. I.; Schiavon, M.; Rada, E. C.
2018-05-01
Nowadays the global tourism growth has caused a significant interest in research focused on the impact of the tourism on environment and community. The purpose of this study is to introduce a new ranking for the classification of tourist accommodation establishments with the functions of agro-tourism boarding house type by examining the sector of agro-tourism based on a research aimed to improve the economic, socio-cultural and environmental performance of agrotourism structures. This paper links the criteria for the classification of agro-tourism boarding houses (ABHs) to the impact of agro-tourism activities on the environment, enhancing an eco-friendly approach on agro-tourism activities by increasing the quality reputation of the agro-tourism products and services. Taking into account the impact on the environment, agrotourism can play an important role by protecting and conserving it.
International Nuclear Information System (INIS)
Piran, T.
1982-01-01
There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)
Demographic Ranking of the Baltic Sea States
Directory of Open Access Journals (Sweden)
Sluka N.
2014-06-01
Full Text Available The relevance of the study lies in the acute need to modernise the tools for a more accurate and comparable reflection of the demographic reality of spatial objects of different scales. This article aims to test the methods of “demographic rankings” developed by Yermakov and Shmakov. The method is based on the principles of indirect standardisation of the major demographic coefficients relative to the age structure.The article describes the first attempt to apply the method to the analysis of birth and mortality rates in 1995 and 2010 for 140 countries against the global average, and for the Baltic Sea states against the European average. The grouping of countries and the analysis of changes over the given period confirmed a number of demographic development trends and the persistence of wide territorial disparities in major indicators. The authors identify opposite trends in ranking based on the standardised birth (country consolidation at the level of averaged values and mortality (polarisation rates. The features of demographic process development in the Baltic regions states are described against the global and European background. The study confirmed the validity of the demographic ranking method, which can be instrumental in solving not only scientific but also practical tasks, including those in the field of demographic and social policy.
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among
Rank-Constrained Beamforming for MIMO Cognitive Interference Channel
Directory of Open Access Journals (Sweden)
Duoying Zhang
2016-01-01
Full Text Available This paper considers the spectrum sharing multiple-input multiple-output (MIMO cognitive interference channel, in which multiple primary users (PUs coexist with multiple secondary users (SUs. Interference alignment (IA approach is introduced that guarantees that secondary users access the licensed spectrum without causing harmful interference to the PUs. A rank-constrained beamforming design is proposed where the rank of the interferences and the desired signals is concerned. The standard interferences metric for the primary link, that is, interference temperature, is investigated and redesigned. The work provides a further improvement that optimizes the dimension of the interferences in the cognitive interference channel, instead of the power of the interference leakage. Due to the nonconvexity of the rank, the developed optimization problems are further approximated as convex form and are solved via choosing the transmitter precoder and receiver subspace iteratively. Numerical results show that the proposed designs can improve the achievable degree of freedom (DoF of the primary links and provide the considerable sum rate for both secondary and primary transmissions under the rank constraints.
Complete hazard ranking to analyze right-censored data: An ALS survival study.
Directory of Open Access Journals (Sweden)
Zhengnan Huang
2017-12-01
Full Text Available Survival analysis represents an important outcome measure in clinical research and clinical trials; further, survival ranking may offer additional advantages in clinical trials. In this study, we developed GuanRank, a non-parametric ranking-based technique to transform patients' survival data into a linear space of hazard ranks. The transformation enables the utilization of machine learning base-learners including Gaussian process regression, Lasso, and random forest on survival data. The method was submitted to the DREAM Amyotrophic Lateral Sclerosis (ALS Stratification Challenge. Ranked first place, the model gave more accurate ranking predictions on the PRO-ACT ALS dataset in comparison to Cox proportional hazard model. By utilizing right-censored data in its training process, the method demonstrated its state-of-the-art predictive power in ALS survival ranking. Its feature selection identified multiple important factors, some of which conflicts with previous studies.
Complete hazard ranking to analyze right-censored data: An ALS survival study.
Huang, Zhengnan; Zhang, Hongjiu; Boss, Jonathan; Goutman, Stephen A; Mukherjee, Bhramar; Dinov, Ivo D; Guan, Yuanfang
2017-12-01
Survival analysis represents an important outcome measure in clinical research and clinical trials; further, survival ranking may offer additional advantages in clinical trials. In this study, we developed GuanRank, a non-parametric ranking-based technique to transform patients' survival data into a linear space of hazard ranks. The transformation enables the utilization of machine learning base-learners including Gaussian process regression, Lasso, and random forest on survival data. The method was submitted to the DREAM Amyotrophic Lateral Sclerosis (ALS) Stratification Challenge. Ranked first place, the model gave more accurate ranking predictions on the PRO-ACT ALS dataset in comparison to Cox proportional hazard model. By utilizing right-censored data in its training process, the method demonstrated its state-of-the-art predictive power in ALS survival ranking. Its feature selection identified multiple important factors, some of which conflicts with previous studies.
Selection of suitable e-learning approach using TOPSIS technique with best ranked criteria weights
Mohammed, Husam Jasim; Kasim, Maznah Mat; Shaharanee, Izwan Nizal Mohd
2017-11-01
This paper compares the performances of four rank-based weighting assessment techniques, Rank Sum (RS), Rank Reciprocal (RR), Rank Exponent (RE), and Rank Order Centroid (ROC) on five identified e-learning criteria to select the best weights method. A total of 35 experts in a public university in Malaysia were asked to rank the criteria and to evaluate five e-learning approaches which include blended learning, flipped classroom, ICT supported face to face learning, synchronous learning, and asynchronous learning. The best ranked criteria weights are defined as weights that have the least total absolute differences with the geometric mean of all weights, were then used to select the most suitable e-learning approach by using TOPSIS method. The results show that RR weights are the best, while flipped classroom approach implementation is the most suitable approach. This paper has developed a decision framework to aid decision makers (DMs) in choosing the most suitable weighting method for solving MCDM problems.
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Motif discovery in ranked lists of sequences
DEFF Research Database (Denmark)
Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias
2016-01-01
Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... advantage of the regular expression feature, including enrichments for combinations of different microRNA seed sites. The method is implemented and made publicly available as an R package and supports high parallelization on multi-core machinery....... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...
Citation graph based ranking in Invenio
Marian, Ludmila; Rajman, Martin; Vesely, Martin
2010-01-01
Invenio is the web-based integrated digital library system developed at CERN. Within this framework, we present four types of ranking models based on the citation graph that complement the simple approach based on citation counts: time-dependent citation counts, a relevancy ranking which extends the PageRank model, a time-dependent ranking which combines the freshness of citations with PageRank and a ranking that takes into consideration the external citations. We present our analysis and results obtained on two main data sets: Inspire and CERN Document Server. Our main contributions are: (i) a study of the currently available ranking methods based on the citation graph; (ii) the development of new ranking methods that correct some of the identified limitations of the current methods such as treating all citations of equal importance, not taking time into account or considering the citation graph complete; (iii) a detailed study of the key parameters for these ranking methods. (The original publication is ava...
Communities in Large Networks: Identification and Ranking
DEFF Research Database (Denmark)
Olsen, Martin
2008-01-01
We study the problem of identifying and ranking the members of a community in a very large network with link analysis only, given a set of representatives of the community. We define the concept of a community justified by a formal analysis of a simple model of the evolution of a directed graph. ...... and its immediate surroundings. The members are ranked with a “local” variant of the PageRank algorithm. Results are reported from successful experiments on identifying and ranking Danish Computer Science sites and Danish Chess pages using only a few representatives....
Ranking Entities in Networks via Lefschetz Duality
DEFF Research Database (Denmark)
Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Poulsen, Bjarne
2014-01-01
then be ranked according to how essential their positions are in the network by considering the effect of their respective absences. Defining a ranking of a network which takes the individual position of each entity into account has the purpose of assigning different roles to the entities, e.g. agents......, in the network. In this paper it is shown that the topology of a given network induces a ranking of the entities in the network. Further, it is demonstrated how to calculate this ranking and thus how to identify weak sub-networks in any given network....
Jacques, Ian
1987-01-01
This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...
Khabaza, I M
1960-01-01
Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput
Shibata, Masaru
2016-01-01
This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.
Sparse reduced-rank regression with covariance estimation
Chen, Lisha
2014-12-08
Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.
Sparse reduced-rank regression with covariance estimation
Chen, Lisha; Huang, Jianhua Z.
2014-01-01
Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.
Low-rank matrix approximation with manifold regularization.
Zhang, Zhenyue; Zhao, Keke
2013-07-01
This paper proposes a new model of low-rank matrix factorization that incorporates manifold regularization to the matrix factorization. Superior to the graph-regularized nonnegative matrix factorization, this new regularization model has globally optimal and closed-form solutions. A direct algorithm (for data with small number of points) and an alternate iterative algorithm with inexact inner iteration (for large scale data) are proposed to solve the new model. A convergence analysis establishes the global convergence of the iterative algorithm. The efficiency and precision of the algorithm are demonstrated numerically through applications to six real-world datasets on clustering and classification. Performance comparison with existing algorithms shows the effectiveness of the proposed method for low-rank factorization in general.
The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation
Directory of Open Access Journals (Sweden)
Bing-Yuan Pu
2013-01-01
Full Text Available An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.
Expanding the landscape of N=2 rank 1 SCFTs
International Nuclear Information System (INIS)
Argyres, Philip C.; Lotito, Matteo; Lü, Yongchao; Martone, Mario
2016-01-01
We refine our previous proposal http://arxiv.org/abs/1505.04814http://arxiv.org/abs/1601.00011P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N=2 SCFTs III: enhanced Coulomb branches and central charges, to appear. for systematically classifying 4d rank-1 N=2 SCFTs by constructing their possible Coulomb branch geometries. Four new recently discussed rank-1 theories http://dx.doi.org/10.1007/JHEP03(2016)083http://arxiv.org/abs/1601.02077, including novel N=3 SCFTs, sit beautifully in our refined classification framework. By arguing for the consistency of their RG flows we can make a strong case for the existence of at least four additional rank-1 SCFTs, nearly doubling the number of known rank-1 SCFTs. The refinement consists of relaxing the assumption that the flavor symmetries of the SCFTs have no discrete factors. This results in an enlarged (but finite) set of possible rank-1 SCFTs. Their existence can be further constrained using consistency of their central charges and RG flows.
Solutions of interval type-2 fuzzy polynomials using a new ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Some spacetimes with higher rank Killing-Staeckel tensors
International Nuclear Information System (INIS)
Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.
2011-01-01
By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.
Low-rank and sparse modeling for visual analysis
Fu, Yun
2014-01-01
This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applic
Logic-based aggregation methods for ranking student applicants
Directory of Open Access Journals (Sweden)
Milošević Pavle
2017-01-01
Full Text Available In this paper, we present logic-based aggregation models used for ranking student applicants and we compare them with a number of existing aggregation methods, each more complex than the previous one. The proposed models aim to include depen- dencies in the data using Logical aggregation (LA. LA is a aggregation method based on interpolative Boolean algebra (IBA, a consistent multi-valued realization of Boolean algebra. This technique is used for a Boolean consistent aggregation of attributes that are logically dependent. The comparison is performed in the case of student applicants for master programs at the University of Belgrade. We have shown that LA has some advantages over other presented aggregation methods. The software realization of all applied aggregation methods is also provided. This paper may be of interest not only for student ranking, but also for similar problems of ranking people e.g. employees, team members, etc.
Ranking of lignocellulosic biomass pellets through multicriteria modeling
Energy Technology Data Exchange (ETDEWEB)
Sultana, A.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering
2009-07-01
A study was conducted in which pellets from different lignocellulosic biomass sources were ranked using a multicriteria assessment model. Five different pellet alternatives were compared based on 10 criteria. The pair-wise comparison was done in order to develop preference indices for various alternatives. The methodology used in this study was the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). The biomass included wood pellets, straw pellets, switchgrass pellets, alfalfa pellets and poultry pellets. The study considered both quantitative and qualitative criteria such as energy consumption to produce the pellets, production cost, bulk density, NOx emissions, SOx emissions, deposit formation, net calorific value, moisture content, maturity of technology, and quality of material. A sensitivity analysis was performed by changing weights of criteria and threshold values of the criteria. Different scenarios were developed for ranking cost and environmental impacts. According to preliminary results, the wood pellet is the best energy source, followed by switchgrass pellets, straw pellets, alfalfa pellets and poultry pellets.
Ranking scientific publications: the effect of nonlinearity
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru
2014-10-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Ranking scientific publications: the effect of nonlinearity.
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru
2014-10-17
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Neural Ranking Models with Weak Supervision
Dehghani, M.; Zamani, H.; Severyn, A.; Kamps, J.; Croft, W.B.
2017-01-01
Despite the impressive improvements achieved by unsupervised deep neural networks in computer vision and NLP tasks, such improvements have not yet been observed in ranking for information retrieval. The reason may be the complexity of the ranking problem, as it is not obvious how to learn from
A Rational Method for Ranking Engineering Programs.
Glower, Donald D.
1980-01-01
Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)
Lerot: An Online Learning to Rank Framework
Schuth, A.; Hofmann, K.; Whiteson, S.; de Rijke, M.
2013-01-01
Online learning to rank methods for IR allow retrieval systems to optimize their own performance directly from interactions with users via click feedback. In the software package Lerot, presented in this paper, we have bundled all ingredients needed for experimenting with online learning to rank for
Adaptive distributional extensions to DFR ranking
DEFF Research Database (Denmark)
Petersen, Casper; Simonsen, Jakob Grue; Järvelin, Kalervo
2016-01-01
-fitting distribution. We call this model Adaptive Distributional Ranking (ADR) because it adapts the ranking to the statistics of the specific dataset being processed each time. Experiments on TREC data show ADR to outperform DFR models (and their extensions) and be comparable in performance to a query likelihood...
Contests with rank-order spillovers
M.R. Baye (Michael); D. Kovenock (Dan); C.G. de Vries (Casper)
2012-01-01
textabstractThis paper presents a unified framework for characterizing symmetric equilibrium in simultaneous move, two-player, rank-order contests with complete information, in which each player's strategy generates direct or indirect affine "spillover" effects that depend on the rank-order of her
Classification of rank 2 cluster varieties
DEFF Research Database (Denmark)
Mandel, Travis
We classify rank 2 cluster varieties (those whose corresponding skew-form has rank 2) according to the deformation type of a generic fiber U of their X-spaces, as defined by Fock and Goncharov. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi...
Using centrality to rank web snippets
Jijkoun, V.; de Rijke, M.; Peters, C.; Jijkoun, V.; Mandl, T.; Müller, H.; Oard, D.W.; Peñas, A.; Petras, V.; Santos, D.
2008-01-01
We describe our participation in the WebCLEF 2007 task, targeted at snippet retrieval from web data. Our system ranks snippets based on a simple similarity-based centrality, inspired by the web page ranking algorithms. We experimented with retrieval units (sentences and paragraphs) and with the
Mining Feedback in Ranking and Recommendation Systems
Zhuang, Ziming
2009-01-01
The amount of online information has grown exponentially over the past few decades, and users become more and more dependent on ranking and recommendation systems to address their information seeking needs. The advance in information technologies has enabled users to provide feedback on the utilities of the underlying ranking and recommendation…
Entity Ranking using Wikipedia as a Pivot
R. Kaptein; P. Serdyukov; A.P. de Vries (Arjen); J. Kamps
2010-01-01
htmlabstractIn this paper we investigate the task of Entity Ranking on the Web. Searchers looking for entities are arguably better served by presenting a ranked list of entities directly, rather than a list of web pages with relevant but also potentially redundant information about
Entity ranking using Wikipedia as a pivot
Kaptein, R.; Serdyukov, P.; de Vries, A.; Kamps, J.; Huang, X.J.; Jones, G.; Koudas, N.; Wu, X.; Collins-Thompson, K.
2010-01-01
In this paper we investigate the task of Entity Ranking on the Web. Searchers looking for entities are arguably better served by presenting a ranked list of entities directly, rather than a list of web pages with relevant but also potentially redundant information about these entities. Since
Rank 2 fusion rings are complete intersections
DEFF Research Database (Denmark)
Andersen, Troels Bak
We give a non-constructive proof that fusion rings attached to a simple complex Lie algebra of rank 2 are complete intersections.......We give a non-constructive proof that fusion rings attached to a simple complex Lie algebra of rank 2 are complete intersections....
A Ranking Method for Evaluating Constructed Responses
Attali, Yigal
2014-01-01
This article presents a comparative judgment approach for holistically scored constructed response tasks. In this approach, the grader rank orders (rather than rate) the quality of a small set of responses. A prior automated evaluation of responses guides both set formation and scaling of rankings. Sets are formed to have similar prior scores and…
Ranking Music Data by Relevance and Importance
DEFF Research Database (Denmark)
Ruxanda, Maria Magdalena; Nanopoulos, Alexandros; Jensen, Christian Søndergaard
2008-01-01
Due to the rapidly increasing availability of audio files on the Web, it is relevant to augment search engines with advanced audio search functionality. In this context, the ranking of the retrieved music is an important issue. This paper proposes a music ranking method capable of flexibly fusing...
Ranking of Unwarranted Variations in Healthcare Treatments
Moes, Herry; Brekelmans, Ruud; Hamers, Herbert; Hasaart, F.
2017-01-01
In this paper, we introduce a framework designed to identify and rank possible unwarranted variation of treatments in healthcare. The innovative aspect of this framework is a ranking procedure that aims to identify healthcare institutions where unwarranted variation is most severe, and diagnosis
The Rankings Game: Who's Playing Whom?
Burness, John F.
2008-01-01
This summer, Forbes magazine published its new rankings of "America's Best Colleges," implying that it had developed a methodology that would give the public the information that it needed to choose a college wisely. "U.S. News & World Report," which in 1983 published the first annual ranking, just announced its latest ratings last week--including…
Dynamic collective entity representations for entity ranking
Graus, D.; Tsagkias, M.; Weerkamp, W.; Meij, E.; de Rijke, M.
2016-01-01
Entity ranking, i.e., successfully positioning a relevant entity at the top of the ranking for a given query, is inherently difficult due to the potential mismatch between the entity's description in a knowledge base, and the way people refer to the entity when searching for it. To counter this
Workshop report: Proceedings of the Rank Forum on Vitamin D
Lanham-New, S.A.; Buttriss, J.L.; Miles, L.M.; Ashwell, M.; Berry, J.L.; Boucher, B.J.; Cashman, K.D.; Cooper, C.; Darling, A.L.; Francis, R.M.; Fraser, W.D.; Groot, de C.P.G.M.; Hypponen, E.; Kiely, M.; Lamberg-Allardt, C.; Macdonald, H.M.; Martineau, A.R.; Masud, T.; Mavroeidi, A.; Nowson, C.; Prentice, A.; Stone, E.M.; Reddy, S.; Vieth, R.; Williams, M.
2011-01-01
The Rank Forum on Vitamin D was held on 2nd and 3rd July 2009 at the University of Surrey, Guildford, UK. The workshop consisted of a series of scene-setting presentations to address the current issues and challenges concerning vitamin D and health, and included an open discussion focusing on the
Optimal provision of public goods with rank dependent expected utility
Eide, Erling
2003-01-01
In this paper the theory of rank-dependent expected utility (RDEU) is substituted for the theory of expected utility (EU) in a model of optimal provision of public goods. The substitution generalizes the Samuelson rule, previously modified to include deadweight loss and tax evasion loss.
Comparing classical and quantum PageRanks
Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B.
2017-01-01
Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker's probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.
PageRank and rank-reversal dependence on the damping factor
Son, S.-W.; Christensen, C.; Grassberger, P.; Paczuski, M.
2012-12-01
PageRank (PR) is an algorithm originally developed by Google to evaluate the importance of web pages. Considering how deeply rooted Google's PR algorithm is to gathering relevant information or to the success of modern businesses, the question of rank stability and choice of the damping factor (a parameter in the algorithm) is clearly important. We investigate PR as a function of the damping factor d on a network obtained from a domain of the World Wide Web, finding that rank reversal happens frequently over a broad range of PR (and of d). We use three different correlation measures, Pearson, Spearman, and Kendall, to study rank reversal as d changes, and we show that the correlation of PR vectors drops rapidly as d changes from its frequently cited value, d0=0.85. Rank reversal is also observed by measuring the Spearman and Kendall rank correlation, which evaluate relative ranks rather than absolute PR. Rank reversal happens not only in directed networks containing rank sinks but also in a single strongly connected component, which by definition does not contain any sinks. We relate rank reversals to rank pockets and bottlenecks in the directed network structure. For the network studied, the relative rank is more stable by our measures around d=0.65 than at d=d0.
PageRank and rank-reversal dependence on the damping factor.
Son, S-W; Christensen, C; Grassberger, P; Paczuski, M
2012-12-01
PageRank (PR) is an algorithm originally developed by Google to evaluate the importance of web pages. Considering how deeply rooted Google's PR algorithm is to gathering relevant information or to the success of modern businesses, the question of rank stability and choice of the damping factor (a parameter in the algorithm) is clearly important. We investigate PR as a function of the damping factor d on a network obtained from a domain of the World Wide Web, finding that rank reversal happens frequently over a broad range of PR (and of d). We use three different correlation measures, Pearson, Spearman, and Kendall, to study rank reversal as d changes, and we show that the correlation of PR vectors drops rapidly as d changes from its frequently cited value, d_{0}=0.85. Rank reversal is also observed by measuring the Spearman and Kendall rank correlation, which evaluate relative ranks rather than absolute PR. Rank reversal happens not only in directed networks containing rank sinks but also in a single strongly connected component, which by definition does not contain any sinks. We relate rank reversals to rank pockets and bottlenecks in the directed network structure. For the network studied, the relative rank is more stable by our measures around d=0.65 than at d=d_{0}.
Review and Ranking of NDA Techniques to Determine Plutonium Content in Spent Fuel
International Nuclear Information System (INIS)
Cheatham, Jesse R.; Wagner, John C.
2010-01-01
A number of efforts are under way to improve nondestructive assay (NDA) techniques for spent nuclear fuel (SNF) safeguard applications. These efforts have largely focused on advancing individual NDA approaches to assay plutonium content. Although significant improvements have been made in NDA techniques, relatively little work has been done to thoroughly and systematically compare the methods. A comparative review of the relative strengths and weaknesses of current NDA techniques brings a new perspective to guide future research. To gauge the practicality and effectiveness of the various relevant NDA approaches, criteria have been developed from two broad categories: functionality and operability. The functionality category includes accuracy estimates, measurement time, plutonium verification capabilities, and assembly or fuel rod assay. Since SNF composition changes with operational history and cooling times, the viability of certain NDA approaches will also change over time. While active interrogation approaches will benefit from reduced background radiation, passive assays will lose the information contained in short-lived isotopes. Therefore, the expected assay accuracy as a function of time is considered. The operability category attempts to gauge the challenges associated with the application of different NDA techniques. This category examines the NDA deploy-ability, measurement capabilities and constraints in spent fuel pools, required on-site facilities, NDA technique synergies, and the extent to which the measurements are obtrusive to the facility. Each topic listed in the categories will be given a numerical score used to rank the different NDA approaches. While the combined numerical score of each technique is informative, the individual-topic scoring will allow for a more-tailored ranking approach. Since the needs and tools of the International Atomic Energy Agency differ from those of a recycling facility, the best assay technique may change with users
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-01
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
Bright, William
In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…
Charting taxonomic knowledge through ontologies and ranking algorithms
Huber, Robert; Klump, Jens
2009-04-01
Since the inception of geology as a modern science, paleontologists have described a large number of fossil species. This makes fossilized organisms an important tool in the study of stratigraphy and past environments. Since taxonomic classifications of organisms, and thereby their names, change frequently, the correct application of this tool requires taxonomic expertise in finding correct synonyms for a given species name. Much of this taxonomic information has already been published in journals and books where it is compiled in carefully prepared synonymy lists. Because this information is scattered throughout the paleontological literature, it is difficult to find and sometimes not accessible. Also, taxonomic information in the literature is often difficult to interpret for non-taxonomists looking for taxonomic synonymies as part of their research. The highly formalized structure makes Open Nomenclature synonymy lists ideally suited for computer aided identification of taxonomic synonyms. Because a synonymy list is a list of citations related to a taxon name, its bibliographic nature allows the application of bibliometric techniques to calculate the impact of synonymies and taxonomic concepts. TaxonRank is a ranking algorithm based on bibliometric analysis and Internet page ranking algorithms. TaxonRank uses published synonymy list data stored in TaxonConcept, a taxonomic information system. The basic ranking algorithm has been modified to include a measure of confidence on species identification based on the Open Nomenclature notation used in synonymy list, as well as other synonymy specific criteria. The results of our experiments show that the output of the proposed ranking algorithm gives a good estimate of the impact a published taxonomic concept has on the taxonomic opinions in the geological community. Also, our results show that treating taxonomic synonymies as part of on an ontology is a way to record and manage taxonomic knowledge, and thus contribute
Rao, G Shanker
2006-01-01
About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...
RankExplorer: Visualization of Ranking Changes in Large Time Series Data.
Shi, Conglei; Cui, Weiwei; Liu, Shixia; Xu, Panpan; Chen, Wei; Qu, Huamin
2012-12-01
For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.
Augmenting the Deliberative Method for Ranking Risks.
Susel, Irving; Lasley, Trace; Montezemolo, Mark; Piper, Joel
2016-01-01
The Department of Homeland Security (DHS) characterized and prioritized the physical cross-border threats and hazards to the nation stemming from terrorism, market-driven illicit flows of people and goods (illegal immigration, narcotics, funds, counterfeits, and weaponry), and other nonmarket concerns (movement of diseases, pests, and invasive species). These threats and hazards pose a wide diversity of consequences with very different combinations of magnitudes and likelihoods, making it very challenging to prioritize them. This article presents the approach that was used at DHS to arrive at a consensus regarding the threats and hazards that stand out from the rest based on the overall risk they pose. Due to time constraints for the decision analysis, it was not feasible to apply multiattribute methodologies like multiattribute utility theory or the analytic hierarchy process. Using a holistic approach was considered, such as the deliberative method for ranking risks first published in this journal. However, an ordinal ranking alone does not indicate relative or absolute magnitude differences among the risks. Therefore, the use of the deliberative method for ranking risks is not sufficient for deciding whether there is a material difference between the top-ranked and bottom-ranked risks, let alone deciding what the stand-out risks are. To address this limitation of ordinal rankings, the deliberative method for ranking risks was augmented by adding an additional step to transform the ordinal ranking into a ratio scale ranking. This additional step enabled the selection of stand-out risks to help prioritize further analysis. © 2015 Society for Risk Analysis.
Non-intrusive low-rank separated approximation of high-dimensional stochastic models
Doostan, Alireza; Validi, AbdoulAhad; Iaccarino, Gianluca
2013-01-01
This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.
Non-intrusive low-rank separated approximation of high-dimensional stochastic models
Doostan, Alireza
2013-08-01
This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.
Communities in Large Networks: Identification and Ranking
DEFF Research Database (Denmark)
Olsen, Martin
2008-01-01
show that the problem of deciding whether a non trivial community exists is NP complete. Nevertheless, experiments show that a very simple greedy approach can identify members of a community in the Danish part of the web graph with time complexity only dependent on the size of the found community...... and its immediate surroundings. The members are ranked with a “local” variant of the PageRank algorithm. Results are reported from successful experiments on identifying and ranking Danish Computer Science sites and Danish Chess pages using only a few representatives....
2016-01-01
A mere hyperbolic law, like the Zipf’s law power function, is often inadequate to describe rank-size relationships. An alternative theoretical distribution is proposed based on theoretical physics arguments starting from the Yule-Simon distribution. A modeling is proposed leading to a universal form. A theoretical suggestion for the “best (or optimal) distribution”, is provided through an entropy argument. The ranking of areas through the number of cities in various countries and some sport competition ranking serves for the present illustrations. PMID:27812192
Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging.
Directory of Open Access Journals (Sweden)
Xingjian Yu
Full Text Available In dynamic Positron Emission Tomography (PET, an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.
Scalable Faceted Ranking in Tagging Systems
Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.
Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.
Evaluation of treatment effects by ranking
DEFF Research Database (Denmark)
Halekoh, U; Kristensen, K
2008-01-01
In crop experiments measurements are often made by a judge evaluating the crops' conditions after treatment. In the present paper an analysis is proposed for experiments where plots of crops treated differently are mutually ranked. In the experimental layout the crops are treated on consecutive...... plots usually placed side by side in one or more rows. In the proposed method a judge ranks several neighbouring plots, say three, by ranking them from best to worst. For the next observation the judge moves on by no more than two plots, such that up to two plots will be re-evaluated again...... in a comparison with the new plot(s). Data from studies using this set-up were analysed by a Thurstonian random utility model, which assumed that the judge's rankings were obtained by comparing latent continuous utilities or treatment effects. For the latent utilities a variance component model was considered...
Superfund Hazard Ranking System Training Course
The Hazard Ranking System (HRS) training course is a four and ½ day, intermediate-level course designed for personnel who are required to compile, draft, and review preliminary assessments (PAs), site inspections (SIs), and HRS documentation records/packag
Ranking Forestry Investments With Parametric Linear Programming
Paul A. Murphy
1976-01-01
Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.
About the use of rank transformation in sensitivity analysis of model output
International Nuclear Information System (INIS)
Saltelli, Andrea; Sobol', Ilya M
1995-01-01
Rank transformations are frequently employed in numerical experiments involving a computational model, especially in the context of sensitivity and uncertainty analyses. Response surface replacement and parameter screening are tasks which may benefit from a rank transformation. Ranks can cope with nonlinear (albeit monotonic) input-output distributions, allowing the use of linear regression techniques. Rank transformed statistics are more robust, and provide a useful solution in the presence of long tailed input and output distributions. As is known to practitioners, care must be employed when interpreting the results of such analyses, as any conclusion drawn using ranks does not translate easily to the original model. In the present note an heuristic approach is taken, to explore, by way of practical examples, the effect of a rank transformation on the outcome of a sensitivity analysis. An attempt is made to identify trends, and to correlate these effects to a model taxonomy. Employing sensitivity indices, whereby the total variance of the model output is decomposed into a sum of terms of increasing dimensionality, we show that the main effect of the rank transformation is to increase the relative weight of the first order terms (the 'main effects'), at the expense of the 'interactions' and 'higher order interactions'. As a result the influence of those parameters which influence the output mostly by way of interactions may be overlooked in an analysis based on the ranks. This difficulty increases with the dimensionality of the problem, and may lead to the failure of a rank based sensitivity analysis. We suggest that the models can be ranked, with respect to the complexity of their input-output relationship, by mean of an 'Association' index I y . I y may complement the usual model coefficient of determination R y 2 as a measure of model complexity for the purpose of uncertainty and sensitivity analysis
Block models and personalized PageRank.
Kloumann, Isabel M; Ugander, Johan; Kleinberg, Jon
2017-01-03
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods through the "seed set expansion problem": given a subset [Formula: see text] of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of "landing probabilities" of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work, we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameter [Formula: see text] that depends on the block model parameters. This connection provides a formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance, despite being simple linear classification rules, and are even competitive with belief propagation.
Block models and personalized PageRank
Kloumann, Isabel M.; Ugander, Johan; Kleinberg, Jon
2016-01-01
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods though the seed set expansion problem: given a subset $S$ of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate...
Linear Subspace Ranking Hashing for Cross-Modal Retrieval.
Li, Kai; Qi, Guo-Jun; Ye, Jun; Hua, Kien A
2017-09-01
Hashing has attracted a great deal of research in recent years due to its effectiveness for the retrieval and indexing of large-scale high-dimensional multimedia data. In this paper, we propose a novel ranking-based hashing framework that maps data from different modalities into a common Hamming space where the cross-modal similarity can be measured using Hamming distance. Unlike existing cross-modal hashing algorithms where the learned hash functions are binary space partitioning functions, such as the sign and threshold function, the proposed hashing scheme takes advantage of a new class of hash functions closely related to rank correlation measures which are known to be scale-invariant, numerically stable, and highly nonlinear. Specifically, we jointly learn two groups of linear subspaces, one for each modality, so that features' ranking orders in different linear subspaces maximally preserve the cross-modal similarities. We show that the ranking-based hash function has a natural probabilistic approximation which transforms the original highly discontinuous optimization problem into one that can be efficiently solved using simple gradient descent algorithms. The proposed hashing framework is also flexible in the sense that the optimization procedures are not tied up to any specific form of loss function, which is typical for existing cross-modal hashing methods, but rather we can flexibly accommodate different loss functions with minimal changes to the learning steps. We demonstrate through extensive experiments on four widely-used real-world multimodal datasets that the proposed cross-modal hashing method can achieve competitive performance against several state-of-the-arts with only moderate training and testing time.
How Many Alternatives Can Be Ranked? A Comparison of the Paired Comparison and Ranking Methods.
Ock, Minsu; Yi, Nari; Ahn, Jeonghoon; Jo, Min-Woo
2016-01-01
To determine the feasibility of converting ranking data into paired comparison (PC) data and suggest the number of alternatives that can be ranked by comparing a PC and a ranking method. Using a total of 222 health states, a household survey was conducted in a sample of 300 individuals from the general population. Each respondent performed a PC 15 times and a ranking method 6 times (two attempts of ranking three, four, and five health states, respectively). The health states of the PC and the ranking method were constructed to overlap each other. We converted the ranked data into PC data and examined the consistency of the response rate. Applying probit regression, we obtained the predicted probability of each method. Pearson correlation coefficients were determined between the predicted probabilities of those methods. The mean absolute error was also assessed between the observed and the predicted values. The overall consistency of the response rate was 82.8%. The Pearson correlation coefficients were 0.789, 0.852, and 0.893 for ranking three, four, and five health states, respectively. The lowest mean absolute error was 0.082 (95% confidence interval [CI] 0.074-0.090) in ranking five health states, followed by 0.123 (95% CI 0.111-0.135) in ranking four health states and 0.126 (95% CI 0.113-0.138) in ranking three health states. After empirically examining the consistency of the response rate between a PC and a ranking method, we suggest that using five alternatives in the ranking method may be superior to using three or four alternatives. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Bibliometric Rankings of Journals Based on the Thomson Reuters Citations Database
C-L. Chang (Chia-Lin); M.J. McAleer (Michael)
2015-01-01
markdownabstract__Abstract__ Virtually all rankings of journals are based on citations, including self citations by journals and individual academics. The gold standard for bibliometric rankings based on citations data is the widely-used Thomson Reuters Web of Science (2014) citations database,
Bibliometric Rankings of Journals based on the Thomson Reuters Citations Database
C-L. Chang (Chia-Lin); M.J. McAleer (Michael)
2015-01-01
markdownabstract__Abstract__ Virtually all rankings of journals are based on citations, including self citations by journals and individual academics. The gold standard for bibliometric rankings based on citations data is the widely-used Thomson Reuters Web of Science (2014) citations database,
Hattendorf, Lynn C.
1987-01-01
This annotated bibliography of recent articles and books on academic rankings updates an article in the Spring 1986 "RQ." Items are listed by subject and ranking in general; individual guides; subject areas including accounting, advertising, biogeography, business, communications, data communications, economics, music, publishing,…
Rank distributions: A panoramic macroscopic outlook
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Fair ranking of researchers and research teams.
Vavryčuk, Václav
2018-01-01
The main drawback of ranking of researchers by the number of papers, citations or by the Hirsch index is ignoring the problem of distributing authorship among authors in multi-author publications. So far, the single-author or multi-author publications contribute to the publication record of a researcher equally. This full counting scheme is apparently unfair and causes unjust disproportions, in particular, if ranked researchers have distinctly different collaboration profiles. These disproportions are removed by less common fractional or authorship-weighted counting schemes, which can distribute the authorship credit more properly and suppress a tendency to unjustified inflation of co-authors. The urgent need of widely adopting a fair ranking scheme in practise is exemplified by analysing citation profiles of several highly-cited astronomers and astrophysicists. While the full counting scheme often leads to completely incorrect and misleading ranking, the fractional or authorship-weighted schemes are more accurate and applicable to ranking of researchers as well as research teams. In addition, they suppress differences in ranking among scientific disciplines. These more appropriate schemes should urgently be adopted by scientific publication databases as the Web of Science (Thomson Reuters) or the Scopus (Elsevier).
It's all relative: ranking the diversity of aquatic bacterial communities.
Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H
2008-09-01
The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.
Solving the interval type-2 fuzzy polynomial equation using the ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
Methodology for ranking restoration options
DEFF Research Database (Denmark)
Jensen, Per Hedemann
1999-01-01
techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps:-characterisation of relevant contaminated sites -identication and characterisation of relevant restoration...... techniques -assessment of the radiological impact -development and application of a selection methodology for restoration options -formulation ofgeneric conclusions and development of a manual The project is intended to apply to situations in which sites with nuclear installations have been contaminated...
PageRank as a method to rank biomedical literature by importance.
Yates, Elliot J; Dixon, Louise C
2015-01-01
Optimal ranking of literature importance is vital in overcoming article overload. Existing ranking methods are typically based on raw citation counts, giving a sum of 'inbound' links with no consideration of citation importance. PageRank, an algorithm originally developed for ranking webpages at the search engine, Google, could potentially be adapted to bibliometrics to quantify the relative importance weightings of a citation network. This article seeks to validate such an approach on the freely available, PubMed Central open access subset (PMC-OAS) of biomedical literature. On-demand cloud computing infrastructure was used to extract a citation network from over 600,000 full-text PMC-OAS articles. PageRanks and citation counts were calculated for each node in this network. PageRank is highly correlated with citation count (R = 0.905, P PageRank can be trivially computed on commodity cluster hardware and is linearly correlated with citation count. Given its putative benefits in quantifying relative importance, we suggest it may enrich the citation network, thereby overcoming the existing inadequacy of citation counts alone. We thus suggest PageRank as a feasible supplement to, or replacement of, existing bibliometric ranking methods.
RANK/RANK-Ligand/OPG: Ein neuer Therapieansatz in der Osteoporosebehandlung
Directory of Open Access Journals (Sweden)
Preisinger E
2007-01-01
Full Text Available Die Erforschung der Kopplungsmechanismen zur Osteoklastogenese, Knochenresorption und Remodellierung eröffnete neue mögliche Therapieansätze in der Behandlung der Osteoporose. Eine Schlüsselrolle beim Knochenabbau spielt der RANK- ("receptor activator of nuclear factor (NF- κB"- Ligand (RANKL. Durch die Bindung von RANKL an den Rezeptor RANK wird die Knochenresorption eingeleitet. OPG (Osteoprotegerin sowie der für den klinischen Gebrauch entwickelte humane monoklonale Antikörper (IgG2 Denosumab blockieren die Bindung von RANK-Ligand an RANK und verhindern den Knochenabbau.
Setchell, Joanna M; Wickings, E Jean; Knapp, Leslie A
2006-12-01
We assess life history from birth to death in male mandrills (Mandrillus sphinx) living in a semifree-ranging colony in Gabon, using data collected for 82 males that attained at least the age of puberty, including 33 that reached adulthood and 25 that died, yielding data for their entire lifespan. We describe patterns of mortality and injuries, dominance rank, group association, growth and stature, and secondary sexual character expression across the male lifespan. We examine relationships among these variables and investigate potential influences on male life history, including differences in the social environment (maternal rank and group demography) and early development, with the aim of identifying characteristics of successful males. Sons of higher-ranking females were more likely to survive to adulthood than sons of low-ranking females. Adolescent males varied consistently in the rate at which they developed, and this variation was related to a male's own dominance rank. Males with fewer peers and sons of higher-ranking and heavier mothers also matured faster. However, maternal variables were not significantly related to dominance rank during adolescence, the age at which males attained adult dominance rank, or whether a male became alpha male. Among adult males, behavior and morphological development were related to a male's own dominance rank, and sons of high-ranking females were larger than sons of low-ranking females. Alpha males were always the most social, and the most brightly colored males, but were not necessarily the largest males present. Finally, alpha male tenure was related to group demography, with larger numbers of rival adult males and maturing adolescent males reducing the time a male spent as alpha male. Tenure did not appear to be related to characteristics of the alpha male himself. 2006 Wiley-Liss, Inc.
Introduction to numerical analysis
Hildebrand, F B
1987-01-01
Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.
Country-specific determinants of world university rankings
Pietrucha, Jacek
2017-01-01
This paper examines country-specific factors that affect the three most influential world university rankings (the Academic Ranking of World Universities, the QS World University Ranking, and the Times Higher Education World University Ranking). We run a cross sectional regression that covers 42–71 countries (depending on the ranking and data availability). We show that the position of universities from a country in the ranking is determined by the following country-specific variables: econom...
Brezinski, C
2012-01-01
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<
Global network centrality of university rankings
Guo, Weisi; Del Vecchio, Marco; Pogrebna, Ganna
2017-10-01
Universities and higher education institutions form an integral part of the national infrastructure and prestige. As academic research benefits increasingly from international exchange and cooperation, many universities have increased investment in improving and enabling their global connectivity. Yet, the relationship of university performance and its global physical connectedness has not been explored in detail. We conduct, to our knowledge, the first large-scale data-driven analysis into whether there is a correlation between university relative ranking performance and its global connectivity via the air transport network. The results show that local access to global hubs (as measured by air transport network betweenness) strongly and positively correlates with the ranking growth (statistical significance in different models ranges between 5% and 1% level). We also found that the local airport's aggregate flight paths (degree) and capacity (weighted degree) has no effect on university ranking, further showing that global connectivity distance is more important than the capacity of flight connections. We also examined the effect of local city economic development as a confounding variable and no effect was observed suggesting that access to global transportation hubs outweighs economic performance as a determinant of university ranking. The impact of this research is that we have determined the importance of the centrality of global connectivity and, hence, established initial evidence for further exploring potential connections between university ranking and regional investment policies on improving global connectivity.
Diversity rankings among bacterial lineages in soil.
Youssef, Noha H; Elshahed, Mostafa S
2009-03-01
We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.
Social class rank, essentialism, and punitive judgment.
Kraus, Michael W; Keltner, Dacher
2013-08-01
Recent evidence suggests that perceptions of social class rank influence a variety of social cognitive tendencies, from patterns of causal attribution to moral judgment. In the present studies we tested the hypotheses that upper-class rank individuals would be more likely to endorse essentialist lay theories of social class categories (i.e., that social class is founded in genetically based, biological differences) than would lower-class rank individuals and that these beliefs would decrease support for restorative justice--which seeks to rehabilitate offenders, rather than punish unlawful action. Across studies, higher social class rank was associated with increased essentialism of social class categories (Studies 1, 2, and 4) and decreased support for restorative justice (Study 4). Moreover, manipulated essentialist beliefs decreased preferences for restorative justice (Study 3), and the association between social class rank and class-based essentialist theories was explained by the tendency to endorse beliefs in a just world (Study 2). Implications for how class-based essentialist beliefs potentially constrain social opportunity and mobility are discussed.
RANK und RANKL - Vom Knochen zum Mammakarzinom
Directory of Open Access Journals (Sweden)
Sigl V
2012-01-01
Full Text Available RANK (Receptor Activator of NF-κB und sein Ligand RANKL sind Schlüsselmoleküle im Knochenmetabolismus und spielen eine essenzielle Rolle in der Entstehung von pathologischen Knochenveränderungen. Die Deregulation des RANK/RANKL-Systems ist zum Beispiel ein Hauptgrund für das Auftreten von postmenopausaler Osteoporose bei Frauen. Eine weitere wesentliche Funktion von RANK und RANKL liegt in der Entwicklung von milchsekretierenden Drüsen während der Schwangerschaft. Dabei regulieren Sexualhormone, wie zum Beispiel Progesteron, die Expression von RANKL und induzieren dadurch die Proliferation von epithelialen Zellen der Brust. Seit Längerem war schon bekannt, dass RANK und RANKL in der Metastasenbildung von Brustkrebszellen im Knochengewebe beteiligt sind. Wir konnten nun das RANK/RANKLSystem auch als essenziellen Mechanismus in der Entstehung von hormonellem Brustkrebs identifizieren. In diesem Beitrag werden wir daher den neuesten Erkenntnissen besondere Aufmerksamkeit schenken und diese kritisch in Bezug auf Brustkrebsentwicklung betrachten.
Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.
Chen, Liang-Hsuan; Tu, Chien-Cheng
2014-08-01
The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
Model assessment using a multi-metric ranking technique
Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.
2017-12-01
Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.
Resolution of ranking hierarchies in directed networks
Barucca, Paolo; Lillo, Fabrizio
2018-01-01
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278
Ranking beta sheet topologies of proteins
DEFF Research Database (Denmark)
Fonseca, Rasmus; Helles, Glennie; Winter, Pawel
2010-01-01
One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...
Data envelopment analysis of randomized ranks
Directory of Open Access Journals (Sweden)
Sant'Anna Annibal P.
2002-01-01
Full Text Available Probabilities and odds, derived from vectors of ranks, are here compared as measures of efficiency of decision-making units (DMUs. These measures are computed with the goal of providing preliminary information before starting a Data Envelopment Analysis (DEA or the application of any other evaluation or composition of preferences methodology. Preferences, quality and productivity evaluations are usually measured with errors or subject to influence of other random disturbances. Reducing evaluations to ranks and treating the ranks as estimates of location parameters of random variables, we are able to compute the probability of each DMU being classified as the best according to the consumption of each input and the production of each output. Employing the probabilities of being the best as efficiency measures, we stretch distances between the most efficient units. We combine these partial probabilities in a global efficiency score determined in terms of proximity to the efficiency frontier.
Ranking spreaders by decomposing complex networks
International Nuclear Information System (INIS)
Zeng, An; Zhang, Cheng-Jun
2013-01-01
Ranking the nodes' ability of spreading in networks is crucial for designing efficient strategies to hinder spreading in the case of diseases or accelerate spreading in the case of information dissemination. In the well-known k-shell method, nodes are ranked only according to the links between the remaining nodes (residual links) while the links connecting to the removed nodes (exhausted links) are entirely ignored. In this Letter, we propose a mixed degree decomposition (MDD) procedure in which both the residual degree and the exhausted degree are considered. By simulating the epidemic spreading process on real networks, we show that the MDD method can outperform the k-shell and degree methods in ranking spreaders.
Sign rank versus Vapnik-Chervonenkis dimension
Alon, N.; Moran, Sh; Yehudayoff, A.
2017-12-01
This work studies the maximum possible sign rank of sign (N × N)-matrices with a given Vapnik-Chervonenkis dimension d. For d=1, this maximum is three. For d=2, this maximum is \\widetilde{\\Theta}(N1/2). For d >2, similar but slightly less accurate statements hold. The lower bounds improve on previous ones by Ben-David et al., and the upper bounds are novel. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given Vapnik-Chervonenkis dimension, and the number of maximum classes of a given Vapnik-Chervonenkis dimension--answering a question of Frankl from 1989, and (ii) design an efficient algorithm that provides an O(N/log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the adjacency (N × N)-matrix of a Δ-regular graph with a second eigenvalue of absolute value λ and Δ ≤ N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ. We use this connection to prove the existence of a maximum class C\\subseteq\\{+/- 1\\}^N with Vapnik-Chervonenkis dimension 2 and sign rank \\widetilde{\\Theta}(N1/2). This answers a question of Ben-David et al. regarding the sign rank of large Vapnik-Chervonenkis classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics. Bibliography: 69 titles.
RankProdIt: A web-interactive Rank Products analysis tool
Directory of Open Access Journals (Sweden)
Laing Emma
2010-08-01
Full Text Available Abstract Background The first objective of a DNA microarray experiment is typically to generate a list of genes or probes that are found to be differentially expressed or represented (in the case of comparative genomic hybridizations and/or copy number variation between two conditions or strains. Rank Products analysis comprises a robust algorithm for deriving such lists from microarray experiments that comprise small numbers of replicates, for example, less than the number required for the commonly used t-test. Currently, users wishing to apply Rank Products analysis to their own microarray data sets have been restricted to the use of command line-based software which can limit its usage within the biological community. Findings Here we have developed a web interface to existing Rank Products analysis tools allowing users to quickly process their data in an intuitive and step-wise manner to obtain the respective Rank Product or Rank Sum, probability of false prediction and p-values in a downloadable file. Conclusions The online interactive Rank Products analysis tool RankProdIt, for analysis of any data set containing measurements for multiple replicated conditions, is available at: http://strep-microarray.sbs.surrey.ac.uk/RankProducts
Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models
Hallin, M.; van den Akker, R.; Werker, B.J.M.
2012-01-01
Abstract: This paper introduces rank-based tests for the cointegrating rank in an Error Correction Model with i.i.d. elliptical innovations. The tests are asymptotically distribution-free, and their validity does not depend on the actual distribution of the innovations. This result holds despite the
When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores
Wang, Jim Jing-Yan
2017-06-28
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.
Learning to rank for information retrieval
Liu, Tie-Yan
2011-01-01
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as coll
Cointegration rank testing under conditional heteroskedasticity
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.
2010-01-01
We analyze the properties of the conventional Gaussian-based cointegrating rank tests of Johansen (1996, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models) in the case where the vector of series under test is driven by globally stationary, conditionally heteroskedastic......, relative to tests based on the asymptotic critical values or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small samples under a variety of conditionally heteroskedastic innovation processes. An empirical application to the term structure of interest rates is given....
Ranking health between countries in international comparisons
DEFF Research Database (Denmark)
Brønnum-Hansen, Henrik
2014-01-01
Cross-national comparisons and ranking of summary measures of population health sometimes give rise to inconsistent and diverging conclusions. In order to minimise confusion, international comparative studies ought to be based on well-harmonised data with common standards of definitions and docum......Cross-national comparisons and ranking of summary measures of population health sometimes give rise to inconsistent and diverging conclusions. In order to minimise confusion, international comparative studies ought to be based on well-harmonised data with common standards of definitions...
Preference Learning and Ranking by Pairwise Comparison
Fürnkranz, Johannes; Hüllermeier, Eyke
This chapter provides an overview of recent work on preference learning and ranking via pairwise classification. The learning by pairwise comparison (LPC) paradigm is the natural machine learning counterpart to the relational approach to preference modeling and decision making. From a machine learning point of view, LPC is especially appealing as it decomposes a possibly complex prediction problem into a certain number of learning problems of the simplest type, namely binary classification. We explain how to approach different preference learning problems, such as label and instance ranking, within the framework of LPC. We primarily focus on methodological aspects, but also address theoretical questions as well as algorithmic and complexity issues.
Compressed Sensing with Rank Deficient Dictionaries
DEFF Research Database (Denmark)
Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn
2012-01-01
In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...
Ranking mutual funds using Sortino method
Directory of Open Access Journals (Sweden)
Khosro Faghani Makrani
2014-04-01
Full Text Available One of the primary concerns on most business activities is to determine an efficient method for ranking mutual funds. This paper performs an empirical investigation to rank 42 mutual funds listed on Tehran Stock Exchange using Sortino method over the period 2011-2012. The results of survey have been compared with market return and the results have confirmed that there were some positive and meaningful relationships between Sortino return and market return. In addition, there were some positive and meaningful relationship between two Sortino methods.
Forward projections of energy market competitiveness rankings
International Nuclear Information System (INIS)
2008-01-01
By July 2007, the provisions of the second Internal Market Directives for Electricity and Gas had been implemented in the majority of EU Member States. These fundamental changes in market opening, ownership structures and network access conditions, together with the increasing maturity of liberalised trading and retail markets, can be expected to affect the behaviour of existing and potential market participants, consequently affecting the energy market competitiveness of alternative countries. While the UK was the most competitive of the EU and G7 energy markets in 2006, the dynamic effect of the liberalisation programme across Continental Europe may challenge that position in the future. This report assesses how competitiveness rankings may evolve in the future, identifying changes that could take place in the UK and the rest of the EU from 2007 to 201 1. It goes on to explore the potential risk that the competitiveness of the UK's energy markets will decline relative to those of other countries in the EU and G7, to the extent that the PSA target will not be met. A detailed analysis of the potential changes in the UK markets is undertaken, including the development of upside and downside scenarios showing the positive and negative effects of changes in market structure and behaviour on the UK's competitiveness score. Changes in market structures required for energy markets in both the 2006 comparator group and the rest of the EU to become as competitive as the UK are then assessed, along with the plausibility of these changes given the current and future market, legislative and regulatory environments
Research of Subgraph Estimation Page Rank Algorithm for Web Page Rank
Directory of Open Access Journals (Sweden)
LI Lan-yin
2017-04-01
Full Text Available The traditional PageRank algorithm can not efficiently perform large data Webpage scheduling problem. This paper proposes an accelerated algorithm named topK-Rank，which is based on PageRank on the MapReduce platform. It can find top k nodes efficiently for a given graph without sacrificing accuracy. In order to identify top k nodes，topK-Rank algorithm prunes unnecessary nodes and edges in each iteration to dynamically construct subgraphs，and iteratively estimates lower/upper bounds of PageRank scores through subgraphs. Theoretical analysis shows that this method guarantees result exactness. Experiments show that topK-Rank algorithm can find k nodes much faster than the existing approaches.
Nakamura, T
1993-01-01
In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difﬁculties in principle as well as in practice.
Ranking beta sheet topologies with applications to protein structure prediction
DEFF Research Database (Denmark)
Fonseca, Rasmus; Helles, Glennie; Winter, Pawel
2011-01-01
One reason why ab initio protein structure predictors do not perform very well is their inability to reliably identify long-range interactions between amino acids. To achieve reliable long-range interactions, all potential pairings of ß-strands (ß-topologies) of a given protein are enumerated......, including the native ß-topology. Two very different ß-topology scoring methods from the literature are then used to rank all potential ß-topologies. This has not previously been attempted for any scoring method. The main result of this paper is a justification that one of the scoring methods, in particular......, consistently top-ranks native ß-topologies. Since the number of potential ß-topologies grows exponentially with the number of ß-strands, it is unrealistic to expect that all potential ß-topologies can be enumerated for large proteins. The second result of this paper is an enumeration scheme of a subset of ß-topologies...
Ranking Canadian oil and gas projects using TOPSIS
Directory of Open Access Journals (Sweden)
Seyed Jafar Sadjadi
2017-08-01
Full Text Available One of the primary concerns for investment in oil and gas projects is to have a comprehensive understanding on different issues associated with this industry. The industry is mainly influ-enced by the price of oil and gas and in some events, many production units have been forced to shut down solely because of low price of oil and gas. Environmental issues are other important factors, which may put pressure on Canada’s political affairs since the country has strong com-mitment to reduce green gas effect. In this paper, we introduce a multi-criteria decision making method, which helps us rank different projects in terms of investment. The proposed study con-siders different investment factors including net present value, rate of return, benefit-cost analy-sis and payback period along with the intensity of green gas effects for ranking the present oil and gas projects in Canada.
An application of TOPSIS for ranking internet web browsers
Directory of Open Access Journals (Sweden)
Shahram Rostampour
2012-07-01
Full Text Available Web browser is one of the most important internet facilities for surfing the internet. A good web browser must incorporate literally tens of features such as integrated search engine, automatic updates, etc. Each year, ten web browsers are formally introduced as top best reviewers by some organizations. In this paper, we propose the implementation of TOPSIS technique to rank ten web browsers. The proposed model of this paper uses five criteria including speed, features, security, technical support and supported configurations. In terms of speed, Safari is the best web reviewer followed by Google Chrome and Internet Explorer while Opera is the best web reviewer when we look into 20 different features. We have also ranked these web browsers using all five categories together and the results indicate that Opera, Internet explorer, Firefox and Google Chrome are the best web browsers to be chosen.
A study on ranking ethical factors influencing customer loyalty
Directory of Open Access Journals (Sweden)
Mahmood Modiri
2013-10-01
Full Text Available Having loyal customer is the primary objective of any business owner since loyal customers purchase on regular basis, create sustainable growth and reduce risk of bankruptcy. During the past few years, many people argue that customer loyalty must be established through ethical values. In this paper, we present an empirical investigation to detect ethical factors influencing customer loyalty. The proposed study determines five criteria including customer repurchase, interest in brand, recommending brand to others, positive attitude toward brand and cognitive loyalty to brand. These criteria have been ranked using fuzzy analytical network process. The study determines 14 different ethical values, which may play essential role on customer loyalty and using VIKOR, different ethical values are ranked. The study indicates that welcoming customers is the most important factor followed by cheerfulness, on time delivery, being informative and having appropriate standards.
Akbudak, Kadir; Ltaief, Hatem; Mikhalev, Aleksandr; Keyes, David E.
2017-01-01
Covariance matrices are ubiquitous in computational science and engineering. In particular, large covariance matrices arise from multivariate spatial data sets, for instance, in climate/weather modeling applications to improve prediction using statistical methods and spatial data. One of the most time-consuming computational steps consists in calculating the Cholesky factorization of the symmetric, positive-definite covariance matrix problem. The structure of such covariance matrices is also often data-sparse, in other words, effectively of low rank, though formally dense. While not typically globally of low rank, covariance matrices in which correlation decays with distance are nearly always hierarchically of low rank. While symmetry and positive definiteness should be, and nearly always are, exploited for performance purposes, exploiting low rank character in this context is very recent, and will be a key to solving these challenging problems at large-scale dimensions. The authors design a new and flexible tile row rank Cholesky factorization and propose a high performance implementation using OpenMP task-based programming model on various leading-edge manycore architectures. Performance comparisons and memory footprint saving on up to 200K×200K covariance matrix size show a gain of more than an order of magnitude for both metrics, against state-of-the-art open-source and vendor optimized numerical libraries, while preserving the numerical accuracy fidelity of the original model. This research represents an important milestone in enabling large-scale simulations for covariance-based scientific applications.
Akbudak, Kadir
2017-05-11
Covariance matrices are ubiquitous in computational science and engineering. In particular, large covariance matrices arise from multivariate spatial data sets, for instance, in climate/weather modeling applications to improve prediction using statistical methods and spatial data. One of the most time-consuming computational steps consists in calculating the Cholesky factorization of the symmetric, positive-definite covariance matrix problem. The structure of such covariance matrices is also often data-sparse, in other words, effectively of low rank, though formally dense. While not typically globally of low rank, covariance matrices in which correlation decays with distance are nearly always hierarchically of low rank. While symmetry and positive definiteness should be, and nearly always are, exploited for performance purposes, exploiting low rank character in this context is very recent, and will be a key to solving these challenging problems at large-scale dimensions. The authors design a new and flexible tile row rank Cholesky factorization and propose a high performance implementation using OpenMP task-based programming model on various leading-edge manycore architectures. Performance comparisons and memory footprint saving on up to 200K×200K covariance matrix size show a gain of more than an order of magnitude for both metrics, against state-of-the-art open-source and vendor optimized numerical libraries, while preserving the numerical accuracy fidelity of the original model. This research represents an important milestone in enabling large-scale simulations for covariance-based scientific applications.
Ross, David A; Moore, Edward Z
2013-09-01
As part of the National Resident Matching Program, programs must submit a rank order list of desired applicants. Despite the importance of this process and the numerous manifest limitations with traditional approaches, minimal research has been conducted to examine the accuracy of different ranking strategies. The authors developed the Moore Optimized Ordinal Rank Estimator (MOORE), a novel algorithm for ranking applicants that is based on college sports ranking systems. Because it is not possible to study the Match in vivo, the authors then designed the Recruitment Outcomes Simulation System (ROSS). This program was used to simulate a series of interview seasons and to compare MOORE and traditional approaches under different conditions. The accuracy of traditional ranking and the MOORE approach are equally and adversely affected with higher levels of intrarater variability. However, compared with traditional ranking methods, MOORE produces a more accurate rank order list as interrater variability increases. The present data demonstrate three key findings. First, they provide proof of concept that it is possible to scientifically test the accuracy of different rank methods used in the Match. Second, they show that small amounts of variability can have a significant adverse impact on the accuracy of rank order lists. Finally, they demonstrate that an ordinal approach may lead to a more accurate rank order list in the presence of interviewer bias. The ROSS-MOORE approach offers programs a novel way to optimize the recruitment process and, potentially, to construct a more accurate rank order list.
Subject Gateway Sites and Search Engine Ranking.
Thelwall, Mike
2002-01-01
Discusses subject gateway sites and commercial search engines for the Web and presents an explanation of Google's PageRank algorithm. The principle question addressed is the conditions under which a gateway site will increase the likelihood that a target page is found in search engines. (LRW)
Rank reduction of correlation matrices by majorization
R. Pietersz (Raoul); P.J.F. Groenen (Patrick)
2004-01-01
textabstractIn this paper a novel method is developed for the problem of finding a low-rank correlation matrix nearest to a given correlation matrix. The method is based on majorization and therefore it is globally convergent. The method is computationally efficient, is straightforward to implement,
Ranking related entities: components and analyses
Bron, M.; Balog, K.; de Rijke, M.
2010-01-01
Related entity finding is the task of returning a ranked list of homepages of relevant entities of a specified type that need to engage in a given relationship with a given source entity. We propose a framework for addressing this task and perform a detailed analysis of four core components;
Ranking Very Many Typed Entities on Wikipedia
Zaragoza, Hugo; Rode, H.; Mika, Peter; Atserias, Jordi; Ciaramita, Massimiliano; Attardi, Guiseppe
2007-01-01
We discuss the problem of ranking very many entities of different types. In particular we deal with a heterogeneous set of types, some being very generic and some very specific. We discuss two approaches for this problem: i) exploiting the entity containment graph and ii) using a Web search engine
International Nuclear Information System (INIS)
Ferreira, P.L.; Alcaras, J.A.C.
1980-01-01
The group theoretical properties of the Dirac groups of rank n are discussed together with the properties and construction of their IR's. The cases n even and n odd show distinct features. Furthermore, for n odd, the cases n=4K+1 and n=4K+3 exhibit some different properties too. (Author) [pt
On rank 2 Seiberg-Witten equations
International Nuclear Information System (INIS)
Massamba, F.; Thompson, G.
2004-02-01
We introduce and study a set of rank 2 Seiberg-Witten equations. We show that the moduli space of solutions is a compact, orientational and smooth manifold. For minimal surfaces of general type we are able to determine the basic classes. (author)
A tilting approach to ranking influence
Genton, Marc G.; Hall, Peter
2014-01-01
We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking
Texture Repairing by Unified Low Rank Optimization
Institute of Scientific and Technical Information of China (English)
Xiao Liang; Xiang Ren; Zhengdong Zhang; Yi Ma
2016-01-01
In this paper, we show how to harness both low-rank and sparse structures in regular or near-regular textures for image completion. Our method is based on a unified formulation for both random and contiguous corruption. In addition to the low rank property of texture, the algorithm also uses the sparse assumption of the natural image: because the natural image is piecewise smooth, it is sparse in certain transformed domain (such as Fourier or wavelet transform). We combine low-rank and sparsity properties of the texture image together in the proposed algorithm. Our algorithm based on convex optimization can automatically and correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. This algorithm integrates texture rectification and repairing into one optimization problem. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Our method demonstrates significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.
Semantic association ranking schemes for information retrieval ...
Indian Academy of Sciences (India)
retrieval applications using term association graph representation ... Department of Computer Science and Engineering, Government College of ... Introduction ... leads to poor precision, e.g., model, python, and chip. ...... The approaches proposed in this paper focuses on the query-centric re-ranking of search results.
Zero forcing parameters and minimum rank problems
Barioli, F.; Barrett, W.; Fallat, S.M.; Hall, H.T.; Hogben, L.; Shader, B.L.; Driessche, van den P.; Holst, van der H.
2010-01-01
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero
A note on ranking assignments using reoptimization
DEFF Research Database (Denmark)
Pedersen, Christian Roed; Nielsen, L.R.; Andersen, K.A.
2005-01-01
We consider the problem of ranking assignments according to cost in the classical linear assignment problem. An algorithm partitioning the set of possible assignments, as suggested by Murty, is presented where, for each partition, the optimal assignment is calculated using a new reoptimization...
Primate Innovation: Sex, Age and Social Rank
Reader, S.M.; Laland, K.N.
2001-01-01
Analysis of an exhaustive survey of primate behavior collated from the published literature revealed significant variation in rates of innovation among individuals of different sex, age and social rank. We searched approximately 1,000 articles in four primatology journals, together with other
Biomechanics Scholar Citations across Academic Ranks
Directory of Open Access Journals (Sweden)
Knudson Duane
2015-11-01
Full Text Available Study aim: citations to the publications of a scholar have been used as a measure of the quality or influence of their research record. A world-wide descriptive study of the citations to the publications of biomechanics scholars of various academic ranks was conducted.
An algorithm for ranking assignments using reoptimization
DEFF Research Database (Denmark)
Pedersen, Christian Roed; Nielsen, Lars Relund; Andersen, Kim Allan
2008-01-01
We consider the problem of ranking assignments according to cost in the classical linear assignment problem. An algorithm partitioning the set of possible assignments, as suggested by Murty, is presented where, for each partition, the optimal assignment is calculated using a new reoptimization...... technique. Computational results for the new algorithm are presented...
Ranking Workplace Competencies: Student and Graduate Perceptions.
Rainsbury, Elizabeth; Hodges, Dave; Burchell, Noel; Lay, Mark
2002-01-01
New Zealand business students and graduates made similar rankings of the five most important workplace competencies: computer literacy, customer service orientation, teamwork and cooperation, self-confidence, and willingness to learn. Graduates placed greater importance on most of the 24 competencies, resulting in a statistically significant…
A generalization of Friedman's rank statistic
Kroon, de J.; Laan, van der P.
1983-01-01
In this paper a very natural generalization of the two·way analysis of variance rank statistic of FRIEDMAN is given. The general distribution-free test procedure based on this statistic for the effect of J treatments in a random block design can be applied in general two-way layouts without
Probabilistic relation between In-Degree and PageRank
Litvak, Nelli; Scheinhardt, Willem R.W.; Volkovich, Y.
2008-01-01
This paper presents a novel stochastic model that explains the relation between power laws of In-Degree and PageRank. PageRank is a popularity measure designed by Google to rank Web pages. We model the relation between PageRank and In-Degree through a stochastic equation, which is inspired by the
Generalized reduced rank tests using the singular value decomposition
Kleibergen, F.R.; Paap, R.
2002-01-01
We propose a novel statistic to test the rank of a matrix. The rank statistic overcomes deficiencies of existing rank statistics, like: necessity of a Kronecker covariance matrix for the canonical correlation rank statistic of Anderson (1951), sensitivity to the ordering of the variables for the LDU
Nominal versus Attained Weights in Universitas 21 Ranking
Soh, Kaycheng
2014-01-01
Universitas 21 Ranking of National Higher Education Systems (U21 Ranking) is one of the three new ranking systems appearing in 2012. In contrast with the other systems, U21 Ranking uses countries as the unit of analysis. It has several features which lend it with greater trustworthiness, but it also shared some methodological issues with the other…
The effect of new links on Google PageRank
Avrachenkov, Konstatin; Litvak, Nelli
2004-01-01
PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer and thus it reflects the popularity of a Web page. We study the effect of newly created links on Google PageRank. We discuss to
Generalized Reduced Rank Tests using the Singular Value Decomposition
F.R. Kleibergen (Frank); R. Paap (Richard)
2003-01-01
textabstractWe propose a novel statistic to test the rank of a matrix. The rank statistic overcomes deficiencies of existing rank statistics, like: necessity of a Kronecker covariance matrix for the canonical correlation rank statistic of Anderson (1951), sensitivity to the ordering of the variables
Ranking metrics in gene set enrichment analysis: do they matter?
Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna
2017-05-12
There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner
Singh, Devraj
2015-01-01
Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept
Model of Decision Making through Consensus in Ranking Case
Tarigan, Gim; Darnius, Open
2018-01-01
The basic problem to determine ranking consensus is a problem to combine some rankings those are decided by two or more Decision Maker (DM) into ranking consensus. DM is frequently asked to present their preferences over a group of objects in terms of ranks, for example to determine a new project, new product, a candidate in a election, and so on. The problem in ranking can be classified into two major categories; namely, cardinal and ordinal rankings. The objective of the study is to obtin the ranking consensus by appying some algorithms and methods. The algorithms and methods used in this study were partial algorithm, optimal ranking consensus, BAK (Borde-Kendal)Model. A method proposed as an alternative in ranking conssensus is a Weighted Distance Forward-Backward (WDFB) method, which gave a little difference i ranking consensus result compare to the result oethe example solved by Cook, et.al (2005).
Identifying important nodes by adaptive LeaderRank
Xu, Shuang; Wang, Pei
2017-03-01
Spreading process is a common phenomenon in complex networks. Identifying important nodes in complex networks is of great significance in real-world applications. Based on the spreading process on networks, a lot of measures have been proposed to evaluate the importance of nodes. However, most of the existing measures are appropriate to static networks, which are fragile to topological perturbations. Many real-world complex networks are dynamic rather than static, meaning that the nodes and edges of such networks may change with time, which challenge numerous existing centrality measures. Based on a new weighted mechanism and the newly proposed H-index and LeaderRank (LR), this paper introduces a variant of the LR measure, called adaptive LeaderRank (ALR), which is a new member of the LR-family. Simulations on six real-world networks reveal that the new measure can well balance between prediction accuracy and robustness. More interestingly, the new measure can better adapt to the adjustment or local perturbations of network topologies, as compared with the existing measures. By discussing the detailed properties of the measures from the LR-family, we illustrate that the ALR has its competitive advantages over the other measures. The proposed algorithm enriches the measures to understand complex networks, and may have potential applications in social networks and biological systems.
Numerical computations with GPUs
Kindratenko, Volodymyr
2014-01-01
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to
EVALUATION AND RANKING OF ARTIFICIAL HIP PROSTHESIS SUPPLIERS BY USING A FUZZY TOPSIS METHODOLOGY
Directory of Open Access Journals (Sweden)
Marija Zahar Djordjevic
2014-06-01
Full Text Available The aim of this study is to propose a fuzzy multi-criteria decision-making approach (MCDM to evaluate the artificial hip prosthesis suppliers with respect to numerous criteria, simultaneously, taking into account the type of each criteria and its relative importance. The fuzzy of the Technique for Order Preference by Similarity to Ideal Solution (FTOSISis applied in order to rank the artificial hip prosthesis suppliers. The rank is obtained using the process of fuzzy number comparison. Software solution based on suggested method is also presented. A real-life example with real data is presented to clarify the proposed method.
Differential invariants for higher-rank tensors. A progress report
International Nuclear Information System (INIS)
Tapial, V.
2004-07-01
We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)
Beyond Low Rank: A Data-Adaptive Tensor Completion Method
Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning
2017-01-01
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...
University Ranking, an Important Quality-Assurance Tool
Directory of Open Access Journals (Sweden)
Crina Rădulescu
2012-05-01
Full Text Available “University Rankings” - or “League Tables”, as they are known in the United Kingdom – have in ashort period of time become an important feature in policy-making and practice in higher education. They arenow a global phenomenon serving different purposes for different and varied audiences. Even if they are notnecessarily universally appreciated, there is an increasing understanding that they have become the “third armof the quality-assurance tool, together with accreditation, government regulation and licensing" and they areclearly here to stay. Indisputably university ranking has changed the way higher education institutions andtheir activities are being presented, perceived and assessed at the institutional, local, national and internationallevels.In our research we will try to answer some questions concerning this topic: is university ranking aninflexible tool, which favors traditional universities, with resources and experience?; what types ofperformance indicators, procedure and ethical considerations should be included in a conceptual frameworkor typology for higher education ranking systems?
A human fecal contamination index for ranking impaired ...
Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk management. The transition from a research subject to a management tool requires the integration of standardized water sampling, laboratory, and data analysis procedures. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and Bayesian data algorithm to establish a human fecal contamination index that can be used to rank impaired recreational water sites polluted with human waste. Stability and bias of index predictions were investigated under various parameters including siteswith different pollution levels, sampling period time range (1-15 weeks), and number of qPCR replicates per sample (2-14 replicates). Sensitivity analyses were conducted with simulated data sets (100 iterations) seeded with HF183/BacR287 qPCR laboratory measurements from water samples collected from three Southern California sites (588 qPCR measurements). Findings suggest that site ranking is feasible and that all parameters tested influence stability and bias in human fecal contamination indexscoring. Trends identified by sensitivity analyses will provide managers with the information needed to design and conduct field studies to rank impaired recreational water sites based
The BACON Approach for Rank-Deﬁcient Data
Directory of Open Access Journals (Sweden)
Athanassios Kondylis
2012-07-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Rank-deficient data are not uncommon in practice. They result from highly collinear variables and/or high-dimensional data. A special case of the latter occurs when the number of recorded variables exceeds the number of observations. The use of the BACON algorithm for outlier detection in multivariate data is extended here to include rank-deficient data. We present two approaches to identifying outliers in rank-deficient data based on the original BACON algorithm. The first algorithm projects the data onto a robust subspace of reduced dimension, while the second employs a ridge type regularization on the covariance matrix. Both algorithms are tested on real as well as simulated data sets with good results in terms of their effectiveness in outlier detection. They are also examined in terms of computational efficiency and found to be very fast, with particularly good scaling properties for increasing dimension.
DEFF Research Database (Denmark)
Hald, Tine
-down tool to rank pathogens. Uncertainty needs to be addressed and communicated to decision makers and stakeholders as one of the outcomes of the risk ranking process. Uncertainty and variability can be represented by means of probability distributions. Techniques such as the NUSAP (numeral, unit, spread...
Relationships between nurse- and physician-to-population ratios and state health rankings.
Bigbee, Jeri L
2008-01-01
To evaluate the relationship between nurse-to-population ratios and population health, as indicated by state health ranking, and to compare the findings with physician-to-population ratios. Secondary analysis correlational design. The sample consisted of all 50 states in the United States. Data sources included the United Health Foundation's 2006 state health rankings, the 2004 National Sample Survey for Registered Nurses, and the U.S. Health Workforce Profile from the New York Center for Health Workforce Studies. Significant relationships between nurse-to-population ratio and overall state health ranking (rho=-.446, p tf?>=.001) and 11 of the 18 components of that ranking were found. Significant components included motor vehicle death rate, high school graduation rate, violent crime rate, infectious disease rate, percentage of children in poverty, percentage of uninsured residents, immunization rate, adequacy of prenatal care, number of poor mental health days, number of poor physical health days, and premature death rate, with higher nurse-to-population ratios associated with higher health rankings. Specialty (public health and school) nurse-to-population ratios were not as strongly related to state health ranking. Physician-to-population ratios were also significantly related to state health ranking, but were associated with different components than nurses. These findings suggest that greater nurses per capita may be uniquely associated with healthier communities; however, further multivariate research is needed.
Development of the Operational Events Groups Ranking Tool
International Nuclear Information System (INIS)
Simic, Zdenko; Banov, Reni
2014-01-01
Both because of complexity and ageing, facilities like nuclear power plants require feedback from the operating experience in order to further improve safety and operation performance. That is the reason why significant effort is dedicated to operating experience feedback. This paper contains description of the specification and development of the application for the operating events ranking software tool. Robust and consistent way of selecting most important events for detail investigation is important because it is not feasible or even useful to investigate all of them. Development of the tool is based on the comprehensive events characterisation and methodical prioritization. This includes rich set of events parameters which allow their top level preliminary analysis, different ways of groupings and even to evaluate uncertainty propagation to the ranking results. One distinct feature of the implemented method is that user (i.e., expert) could determine how important is particular ranking parameter based on their pairwise comparison. For tools demonstration and usability it is crucial that sample database is also created. For useful analysis the whole set of events for 5 years is selected and characterised. Based on the preliminary results this tool seems valuable for new preliminary prospective on data as whole, and especially for the identification of events groups which should have priority in the more detailed assessment. The results are consisting of different informative views on the events groups importance and related sensitivity and uncertainty results. This presents valuable tool for improving overall picture about specific operating experience and also for helping identify the most important events groups for further assessment. It is clear that completeness and consistency of the input data characterisation is very important to get full and valuable importance ranking. Method and tool development described in this paper is part of continuous effort of
Risk-informed ranking of engineering projects
International Nuclear Information System (INIS)
Jyrkama, M.; Pandey, M.
2011-01-01
Refurbishment planning requires prudent investment decisions with respect to the various systems and components at the station. These decisions are influenced by many factors, including engineering, safety, regulatory, economic, and political constraints. From an engineering perspective, the concept of cost-benefit analysis is a common way to allocate capital among various projects. Naturally, the 'best' or optimal project should have the lowest cost and the highest benefit. In the context of risk-informed decision making (RIDM), a process that has been widely embraced by the global nuclear community, the costs and benefits must further be 'weighted' by probabilities to estimate the underlying risk associated with the various planning alternatives. The main purpose of this study is to illustrate how risk and reliability information can be integrated into the refurbishment planning process to facilitate more objective and transparent investment decisions. The methodology is based on the concept of generation risk assessment (GRA) which provides a systematic approach for balancing investment costs with the reduction in overall financial risk. In addition to reliability predictions, the model provides estimates for the level of risk reduction associated with each system/project and also the break-even point for investment. This information is vital for project ranking, and helps to address the key question of whether capital investment should be made in the most risk critical systems, or in systems that reduce the overall risk the most. The application of the proposed methodology requires only basic information regarding the current reliability of each engineering system, which should be readily available from plant records and routine condition assessments. Because the methodology can be readily implemented in a Microsoft Excel spreadsheet, all plausible (e.g., bounding) planning scenarios, with or without investment, can also be generated quickly and easily, while
When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores
Wang, Jim Jing-Yan; Cui, Xuefeng; Yu, Ge; Guo, Lili; Gao, Xin
2017-01-01
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays
Fourth-rank gravity. A progress report
International Nuclear Information System (INIS)
Tapia, V.
1992-04-01
We consider the consequences of describing the metric properties of space-time through a quartic line element. The associated ''metric'' is a fourth-rank tensor. After developing some fundamentals for such geometry, we construct a field theory for the gravitational field. This theory coincides with General Relativity in the vacuum case. Departures from General Relativity are obtained only in the presence of matter. We develop a simple cosmological model which is not in contradiction with the observed value Ω approx. 0.2-0.3 for the energy density parameter. A further application concerns conformal field theory. We are able to prove that a conformal field theory possesses an infinite-dimensional symmetry group only if the dimension of space-time is equal to the rank of the metric. In this case we are able to construct an integrable conformal field theory in four dimensions. The model is renormalisable by power counting. (author). 9 refs
On Locally Most Powerful Sequential Rank Tests
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2017-01-01
Roč. 36, č. 1 (2017), s. 111-125 ISSN 0747-4946 R&D Projects: GA ČR GA17-07384S Grant - others:Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985807 Keywords : nonparametric test s * sequential ranks * stopping variable Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.339, year: 2016
Probabilistic real-time contingency ranking method
International Nuclear Information System (INIS)
Mijuskovic, N.A.; Stojnic, D.
2000-01-01
This paper describes a real-time contingency method based on a probabilistic index-expected energy not supplied. This way it is possible to take into account the stochastic nature of the electric power system equipment outages. This approach enables more comprehensive ranking of contingencies and it is possible to form reliability cost values that can form the basis for hourly spot price calculations. The electric power system of Serbia is used as an example for the method proposed. (author)
Returns to Tenure: Time or Rank?
DEFF Research Database (Denmark)
Buhai, Ioan Sebastian
-specific investment, efficiency-wages or adverse-selection models. However, rent extracting arguments as suggested by the theory of internal labor markets, indicate that the relative position of the worker in the seniority hierarchy of the firm, her 'seniority rank', may also explain part of the observed returns...... relative to their peer workers), as predicted by theories on unionized and insider-outsider markets....
Efficient Low Rank Tensor Ring Completion
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2017-01-01
Using the matrix product state (MPS) representation of the recently proposed tensor ring decompositions, in this paper we propose a tensor completion algorithm, which is an alternating minimization algorithm that alternates over the factors in the MPS representation. This development is motivated in part by the success of matrix completion algorithms that alternate over the (low-rank) factors. In this paper, we propose a spectral initialization for the tensor ring completion algorithm and ana...
Energy Technology Data Exchange (ETDEWEB)
Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.
1986-11-01
The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.
International Nuclear Information System (INIS)
Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.
1986-11-01
The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included
Citation ranking versus peer evaluation of senior faculty research performance
DEFF Research Database (Denmark)
Meho, Lokman I.; Sonnenwald, Diane H.
2000-01-01
The purpose of this study is to analyze the relationship between citation ranking and peer evaluation in assessing senior faculty research performance. Other studies typically derive their peer evaluation data directly from referees, often in the form of ranking. This study uses two additional...... indicator of research performance of senior faculty members? Citation data, book reviews, and peer ranking were compiled and examined for faculty members specializing in Kurdish studies. Analysis shows that normalized citation ranking and citation content analysis data yield identical ranking results....... Analysis also shows that normalized citation ranking and citation content analysis, book reviews, and peer ranking perform similarly (i.e., are highly correlated) for high-ranked and low-ranked senior scholars. Additional evaluation methods and measures that take into account the context and content...
Assigning Numerical Scores to Linguistic Expressions
Directory of Open Access Journals (Sweden)
María Jesús Campión
2017-07-01
Full Text Available In this paper, we study different methods of scoring linguistic expressions defined on a finite set, in the search for a linear order that ranks all those possible expressions. Among them, particular attention is paid to the canonical extension, and its representability through distances in a graph plus some suitable penalization of imprecision. The relationship between this setting and the classical problems of numerical representability of orderings, as well as extension of orderings from a set to a superset is also explored. Finally, aggregation procedures of qualitative rankings and scorings are also analyzed.
Fourth-rank gravity and cosmology
International Nuclear Information System (INIS)
Marrakchi, A.L.; Tapia, V.
1992-07-01
We consider the consequences of describing the metric properties of space-time through a quartic line element. The associated ''metric'' is a fourth-rank tensor G μυλπ . In order to recover a Riemannian behaviour of the geometry it is necessary to have G μυλπ = g (μυ g λπ) . We construct a theory for the gravitational field based on the fourth-rank metric G μυλπ . In the absence of matter the fourth-rank metric becomes separable and the theory coincides with General Relativity. In the presence of matter we can maintain Riemmanianicity, but now gravitation couples, as compared to General Relativity, in a different way to matter. We develop a simple cosmological model based on a FRW metric with matter described by a perfect fluid. For the present time the field equations are compatible with k OBS = O and Ω OBS t CLAS approx. 10 20 t PLANCK approx. 10 -23 s. Our final and most important result is the fact that the entropy is an increasing function of time. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. (author). 16 refs, 1 fig
Estimation of rank correlation for clustered data.
Rosner, Bernard; Glynn, Robert J
2017-06-30
It is well known that the sample correlation coefficient (R xy ) is the maximum likelihood estimator of the Pearson correlation (ρ xy ) for independent and identically distributed (i.i.d.) bivariate normal data. However, this is not true for ophthalmologic data where X (e.g., visual acuity) and Y (e.g., visual field) are available for each eye and there is positive intraclass correlation for both X and Y in fellow eyes. In this paper, we provide a regression-based approach for obtaining the maximum likelihood estimator of ρ xy for clustered data, which can be implemented using standard mixed effects model software. This method is also extended to allow for estimation of partial correlation by controlling both X and Y for a vector U_ of other covariates. In addition, these methods can be extended to allow for estimation of rank correlation for clustered data by (i) converting ranks of both X and Y to the probit scale, (ii) estimating the Pearson correlation between probit scores for X and Y, and (iii) using the relationship between Pearson and rank correlation for bivariate normally distributed data. The validity of the methods in finite-sized samples is supported by simulation studies. Finally, two examples from ophthalmology and analgesic abuse are used to illustrate the methods. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Iris Template Protection Based on Local Ranking
Directory of Open Access Journals (Sweden)
Dongdong Zhao
2018-01-01
Full Text Available Biometrics have been widely studied in recent years, and they are increasingly employed in real-world applications. Meanwhile, a number of potential threats to the privacy of biometric data arise. Iris template protection demands that the privacy of iris data should be protected when performing iris recognition. According to the international standard ISO/IEC 24745, iris template protection should satisfy the irreversibility, revocability, and unlinkability. However, existing works about iris template protection demonstrate that it is difficult to satisfy the three privacy requirements simultaneously while supporting effective iris recognition. In this paper, we propose an iris template protection method based on local ranking. Specifically, the iris data are first XORed (Exclusive OR operation with an application-specific string; next, we divide the results into blocks and then partition the blocks into groups. The blocks in each group are ranked according to their decimal values, and original blocks are transformed to their rank values for storage. We also extend the basic method to support the shifting strategy and masking strategy, which are two important strategies for iris recognition. We demonstrate that the proposed method satisfies the irreversibility, revocability, and unlinkability. Experimental results on typical iris datasets (i.e., CASIA-IrisV3-Interval, CASIA-IrisV4-Lamp, UBIRIS-V1-S1, and MMU-V1 show that the proposed method could maintain the recognition performance while protecting the privacy of iris data.
Balakrishnan, N; Nagaraja, HN
2007-01-01
S. Panchapakesan has made significant contributions to ranking and selection and has published in many other areas of statistics, including order statistics, reliability theory, stochastic inequalities, and inference. Written in his honor, the twenty invited articles in this volume reflect recent advances in these areas and form a tribute to Panchapakesan's influence and impact on these areas. Thematically organized, the chapters cover a broad range of topics from: Inference; Ranking and Selection; Multiple Comparisons and Tests; Agreement Assessment; Reliability; and Biostatistics. Featuring
Incorporating the surfing behavior of web users into PageRank
Ashyralyyev, Shatlyk
2013-01-01
Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 68-73 One of the most crucial factors that determines the effectiveness of a large-scale commercial web search engine is the ranking (i.e., order) in which web search results are presented to the end user. In modern web search engines, the skeleton for the rank...
From soldier to marshal: the origin of the ranks of the French army
Directory of Open Access Journals (Sweden)
Lyadsky V.G.
2017-01-01
Full Text Available this article discusses one of the fragments of the lexical system of the French language – the origin of terms denoting military ranks in the armed forces of France. The etymological analysis is carried out in close connection with the concrete historical situation which gave rise to the need of such language units. The author outlines the practical basis of the comparative study of the ways of lexical designation of ranks in the major European languages, including Russian.
Hall, M B; Mertens, D R
2012-04-01
difference between samples that were not declared different by means separation was 4.4% NDFD. Although the values did not have great precision, GVS labs were able to reliably rank sample data in order of 30-h NDFD (Spearman correlation coefficient = 0.93) with 80% of the rankings correct or off by only 1 ranking. A relative ranking system for NDFD could reduce the effect of within- and among-lab variation in numeric values. Such a system could give a more accurate portrayal of the comparative values of samples than current numeric values imply. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Experienced stigma and its impacts in psychosis: The role of social rank and external shame.
Wood, Lisa; Irons, Chris
2017-09-01
Experienced stigma is detrimental to those who experience psychosis and can cause emotional distress and hinder recovery. This study aimed to explore the relationship between experienced stigma with emotional distress and recovery in people with psychosis. It explored the role of external shame and social rank as mediators in these relationships. A cross-sectional design was implemented. Fifty-two service users were administered a battery of questionnaires examining experienced stigma, external shame, social rank, personal recovery, positive symptoms, depression, and anxiety. Correlation and multiple regression analysis were conducted on the data. Where appropriate, mediation analysis was employed to explore social rank and external shame as mediatory variables. Experienced stigma was significantly related to shame (social rank and external shame), positive symptoms, emotional distress (depression and anxiety), and personal recovery. The impact of experienced stigma on depression was mediated by external shame. Social rank was a mediator between experienced stigma and personal recovery only. People with psychosis who have experienced stigma are likely to experience emotional distress and be inhibited in their recovery. This was found to be partly mediated by external shame and low social rank. Clinical approaches to stigma need to target these as potential maintenance factors. Experienced stigma is significantly related to shame (social rank and external shame) emotional distress, and reduced personal recovery. External shame mediated the relationship between experienced stigma and depression in psychosis. Social rank mediated the relationship between experienced stigma and personal recovery. Clinical approaches to stigma should include the assessment of external shame and low social rank. © 2017 The British Psychological Society.
Ranking of biomass pellets by integration of economic, environmental and technical factors
International Nuclear Information System (INIS)
Sultana, Arifa; Kumar, Amit
2012-01-01
Interest in biomass as a renewable energy source has increased recently in response to a need to reduce greenhouse gas (GHG) emissions. The objective of this study is to develop a multi-criteria assessment model and rank different biomass feedstock-based pellets, in terms of their suitability for use in large heat and power generation plants and show the importance of environmental, economical and technical factors in making decision about different pellets. Five pellet alternatives, each produced from a different sustainable biomass feedstock i.e., wood, straw, switchgrass, alfalfa and poultry litter, are ranked according to eleven criteria, using the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). Both quantitative and qualitative criteria are considered, including environmental, technical and economic factors. Three scenarios, namely base case, environmental and economic, are developed by changing the weight assigned to different criteria. In the base case scenario, equal weights are assigned to each criterion. In the economic and environmental scenarios, more weight is given to the economic and environmental factors, respectively. Based on the PROMETHEE rankings, wood pellets are the best source of energy for all scenarios followed by switchgrass, straw, poultry litter and alfalfa pellets except economic scenario, where straw pellets held higher position than switchgrass pellets. Sensitivity analysis on weights, threshold values, preference function and production cost indicate that the ranking was stable. The ranking in all scenarios remained same when qualitative criteria were omitted from the model; this indicates the stronger influence of quantitative criteria. -- Highlights: ► This study ranks the pellets produced from different biomass feedstocks. ► The ranking of the pellets is based on technical, economical and environmental factors. ► This study uses PROMETHEE method for ranking pellets based on a range of
Directory of Open Access Journals (Sweden)
Carlos-Roberto Peña-Barrera
2011-08-01
Full Text Available Los principales objetivos de esta investigación son los siguientes: (1 que la comunidad científica nacional e internacional y la sociedad en general co-nozcan los resultados del Ranking U-Sapiens Colombia 2010_2, el cual clasifica a cada institución de educación superior colombiana según puntaje, posición y cuartil; (2 destacar los movimientos más importantes al comparar los resultados del ranking 2010_1 con los del 2010_2; (3 publicar las respuestas de algunos actores de la academia nacional con respecto a la dinámica de la investigación en el país; (4 reconocer algunas instituciones, medios de comunicación e investigadores que se han interesado a modo de reflexión, referenciación o citación por esta investigación; y (5 dar a conocer el «Sello Ranking U-Sapiens Colombia» para las IES clasificadas. El alcance de este estudio en cuanto a actores abordó todas y cada una de las IES nacionales (aunque solo algunas lograran entrar al ranking y en cuanto a tiempo, un periodo referido al primer semestre de 2010 con respecto a: (1 los resultados 2010-1 de revistas indexadas en Publindex, (2 los programas de maestrías y doctorados activos durante 2010-1 según el Ministerio de Educación Nacional, y (3 los resultados de grupos de investigación clasificados para 2010 según Colciencias. El método empleado para esta investigación es el mismo que para el ranking 2010_1, salvo por una especificación aún más detallada en uno de los pasos del modelo (las variables α, β, γ; es completamente cuantitativo y los datos de las variables que fundamentan sus resultados provienen de Colciencias y el Ministerio de Educación Nacional; y en esta ocasión se darán a conocer los resultados por variable para 2010_1 y 2010_2. Los resultados más relevantes son estos: (1 entraron 8 IES al ranking y salieron 3; (2 las 3 primeras IES son públicas; (3 en total hay 6 instituciones universitarias en el ranking; (4 7 de las 10 primeras IES son
Low rank approach to computing first and higher order derivatives using automatic differentiation
International Nuclear Information System (INIS)
Reed, J. A.; Abdel-Khalik, H. S.; Utke, J.
2012-01-01
This manuscript outlines a new approach for increasing the efficiency of applying automatic differentiation (AD) to large scale computational models. By using the principles of the Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and higher orders can be calculated using minimized computational resources. The output obtained from nuclear reactor calculations typically has a much smaller numerical rank compared to the number of inputs and outputs. This rank deficiency can be exploited to reduce the number of derivatives that need to be calculated using AD. The effective rank can be determined according to ESM by computing derivatives with AD at random inputs. Reduced or pseudo variables are then defined and new derivatives are calculated with respect to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. OpenAD is used to determine the effective rank and the subspace that contains the derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo variables for the desired order. The overall approach is applied to two simple problems and to MATWS, a safety code for sodium cooled reactors. (authors)
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe
2013-01-01
Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764
International Nuclear Information System (INIS)
Burchell, Timothy D.; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will
2008-01-01
Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version (a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version (a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV
Wang, Ling; Xia, Jie-lai; Yu, Li-li; Li, Chan-juan; Wang, Su-zhen
2008-06-01
To explore several numerical methods of ordinal variable in one-way ordinal contingency table and their interrelationship, and to compare corresponding statistical analysis methods such as Ridit analysis and rank sum test. Formula deduction was based on five simplified grading approaches including rank_r(i), ridit_r(i), ridit_r(ci), ridit_r(mi), and table scores. Practical data set was verified by SAS8.2 in clinical practice (to test the effect of Shiwei solution in treatment for chronic tracheitis). Because of the linear relationship of rank_r(i) = N ridit_r(i) + 1/2 = N ridit_r(ci) = (N + 1) ridit_r(mi), the exact chi2 values in Ridit analysis based on ridit_r(i), ridit_r(ci), and ridit_r(mi), were completely the same, and they were equivalent to the Kruskal-Wallis H test. Traditional Ridit analysis was based on ridit_r(i), and its corresponding chi2 value calculated with an approximate variance (1/12) was conservative. The exact chi2 test of Ridit analysis should be used when comparing multiple groups in the clinical researches because of its special merits such as distribution of mean ridit value on (0,1) and clear graph expression. The exact chi2 test of Ridit analysis can be output directly by proc freq of SAS8.2 with ridit and modridit option (SCORES =). The exact chi2 test of Ridit analysis is equivalent to the Kruskal-Wallis H test, and should be used when comparing multiple groups in the clinical researches.
Ranking the Online Documents Based on Relative Credibility Measures
Directory of Open Access Journals (Sweden)
Ahmad Dahlan
2013-09-01
Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.
Ranking the Online Documents Based on Relative Credibility Measures
Directory of Open Access Journals (Sweden)
Ahmad Dahlan
2009-05-01
Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.
On Locally Most Powerful Sequential Rank Tests
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2017-01-01
Roč. 36, č. 1 (2017), s. 111-125 ISSN 0747-4946 R&D Projects: GA ČR GA17-07384S Grant - others:Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985556 Keywords : nonparametric test s * sequential ranks * stopping variable Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.339, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/kalina-0474065.pdf
International Nuclear Information System (INIS)
Tapia, V.
1992-04-01
Recently we have explored the consequences of describing the metric properties of our universe through a quartic line element. In this geometry the natural object is a fourth-rank metric, i.e., a tensor with four indices. Based on this geometry we constructed a simple field theory for the gravitational field. The field equations coincide with the Einstein field equations in the vacuum case. This fact, however, does not guarantee the observational equivalence of both theories since one must still verify that, as a consequence of the field equations, test particles move along geodesics. This letter is aimed at establishing this result. (author). 7 refs
Classical impurities associated to high rank algebras
Energy Technology Data Exchange (ETDEWEB)
Doikou, Anastasia, E-mail: A.Doikou@hw.ac.uk [Department of Mathematics, Heriot–Watt University, EH14 4AS, Edinburgh (United Kingdom); Department of Computer Engineering and Informatics, University of Patras, Patras GR-26500 (Greece)
2014-07-15
Classical integrable impurities associated with high rank (gl{sub N}) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution.
Classical impurities associated to high rank algebras
International Nuclear Information System (INIS)
Doikou, Anastasia
2014-01-01
Classical integrable impurities associated with high rank (gl N ) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution
On the growth of rank for subgroups of finitely generated groups
International Nuclear Information System (INIS)
Osin, D V
1999-01-01
In [1] and [2] the functions of rank growth were independently introduced and investigated for subgroups of a finitely generated free group. In the present paper the concept of growth of rank is extended to subgroups of an arbitrary finitely generated group G, and the dependence of the asymptotic behaviour of the above functions on the choice of a finite generating set in G is studied. For a broad class of groups (which includes, in particular, the free polynilpotent groups) estimates for the growth of rank for subgroups are obtained that generalize the wellknown Baumslag-Eidel'kind result on finitely generated normal subgroups. Some problems related to the realization of arbitrary functions as functions of rank growth for subgroups of soluble groups are treated
Global cities rankings. A research agenda or a neoliberal urban planning tool?
Directory of Open Access Journals (Sweden)
Cándida Gago García
2017-03-01
Full Text Available This paper contains a theoretical reflection about the methodology and meaning given to the global city rankings. There is a very large academic production about the role that some cities have in global territorial processes, which has been related to the concept of global city. Many recent contributions from the mass media, advertising and consulting services must be considered also in the analysis. All of them have included new indicators in order to show the main role that cultural services have acquired in the urban economy. Also the city rankings are being used as a tool in neoliberal policies. These policies stress the position that cities have in the rankings, which are used in practices of city-branding and to justify the neoliberal decisions that are being taken. In fact, we think that rankings are used inappropriately and that it is necessary a deep and new reflection about them.
Directory of Open Access Journals (Sweden)
P. Phani Bushan Rao
2011-01-01
Full Text Available Ranking fuzzy numbers are an important aspect of decision making in a fuzzy environment. Since their inception in 1965, many authors have proposed different methods for ranking fuzzy numbers. However, there is no method which gives a satisfactory result to all situations. Most of the methods proposed so far are nondiscriminating and counterintuitive. This paper proposes a new method for ranking fuzzy numbers based on the Circumcenter of Centroids and uses an index of optimism to reflect the decision maker's optimistic attitude and also an index of modality that represents the neutrality of the decision maker. This method ranks various types of fuzzy numbers which include normal, generalized trapezoidal, and triangular fuzzy numbers along with crisp numbers with the particularity that crisp numbers are to be considered particular cases of fuzzy numbers.
Prewhitening for Rank-Deficient Noise in Subspace Methods for Noise Reduction
DEFF Research Database (Denmark)
Hansen, Per Christian; Jensen, Søren Holdt
2005-01-01
A fundamental issue in connection with subspace methods for noise reduction is that the covariance matrix for the noise is required to have full rank, in order for the prewhitening step to be defined. However, there are important cases where this requirement is not fulfilled, e.g., when the noise...... has narrow-band characteristics, or in the case of tonal noise. We extend the concept of prewhitening to include the case when the noise covariance matrix is rank deficient, using a weighted pseudoinverse and the quotient SVD, and we show how to formulate a general rank-reduction algorithm that works...... also for rank deficient noise. We also demonstrate how to formulate this algorithm by means of a quotient ULV decomposition, which allows for faster computation and updating. Finally we apply our algorithm to a problem involving a speech signal contaminated by narrow-band noise....
Directory of Open Access Journals (Sweden)
Samah Ibrahim Abdel Aal
2018-03-01
Full Text Available The concept of neutrosophic can provide a generalization of fuzzy set and intuitionistic fuzzy set that make it is the best fit in representing indeterminacy and uncertainty. Single Valued Triangular Numbers (SVTrN-numbers is a special case of neutrosophic set that can handle ill-known quantity very difficult problems. This work intended to introduce a framework with two types of ranking methods. The results indicated that each ranking method has its own advantage. In this perspective, the weighted value and ambiguity based method gives more attention to uncertainty in ranking and evaluating ISQ as well as it takes into account cut sets of SVTrN numbers that can reflect the information on Truth-membership-membership degree, false membership-membership degree and Indeterminacy-membership degree. The value index and ambiguity index method can reflect the decision maker's subjectivity attitude to the SVTrN- numbers.
Hou, Mingjun; Fan, Peihua; Liu, Heng
2014-01-01
The authors rank the management schools in Greater China (including Mainland China, Hong Kong, Taiwan, and Macau) based on their academic publications in the Social Sciences Citation Index management and business journals from 2000 to 2010. Following K. Ritzberger's (2008) and X. Yu and Z. Gao's (2010) ranking method, the authors develop six…
Galassi, John P.; Thornton, Beryl; Sheffield, Anne; Bryan, Michael; Oliver, Joyce
1998-01-01
Goal card sort and ranking task was given to middle school teachers and a sample of sixth- through eighth-grade students to generate data relevant to revising goals of an advisory program. Study categories included advocacy, community, skills, invigoration, academic and administrative. Community and advocacy goals received highest student ranking,…
UTV Expansion Pack - Special-Purpose Rank Revealing Algorithms (version 1.0 for Matlab 6.5)
DEFF Research Database (Denmark)
Fierro, Ricardo D.; Hansen, Per Christian
This collection of Matlab software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank...
Directory of Open Access Journals (Sweden)
Torres-Salinas, Daniel
2015-12-01
Full Text Available We present the results of the Bibliometric Indicators for Publishers project (also known as BiPublishers. This project represents the first attempt to systematically develop bibliometric publisher rankings. The data for this project was derived from the Book Citation Index and the study time period was 2009-2013. We have developed 42 rankings: 4 by fields and 38 by disciplines. We display six indicators for publishers divided into three types: output, impact and publisher’s profile. The aim is to capture different characteristics of the research performance of publishers. 254 publishers were processed and classified according to publisher type: commercial publishers and university presses. We present the main publishers by field and then discuss the principal challenges presented when developing this type of tool. The BiPublishers ranking is an on-going project which aims to develop and explore new data sources and indicators to better capture and define the research impact of publishers.Presentamos los resultados del proyecto Bibliometric Indicators for Publishers (BiPublishers. Es el primer proyecto que desarrolla de manera sistemática rankings bibliométricos de editoriales. La fuente de datos empleada es el Book Citation Index y el periodo de análisis 2009-2013. Se presentan 42 rankings: 4 por áreas y 38 por disciplinas. Mostramos seis indicadores por editorial divididos según su tipología: producción, impacto y características editoriales. Se procesaron 254 editoriales y se clasificaron según el tipo: comerciales y universitarias. Se presentan las principales editoriales por áreas. Después, se discuten los principales retos a superar en el desarrollo de este tipo de herramientas. El ranking Bipublishers es un proyecto en desarrollo que persigue analizar y explorar nuevas fuentes de datos e indicadores para captar y definir el impacto de las editoriales académicas.
PageRank in scale-free random graphs
Chen, Ningyuan; Litvak, Nelli; Olvera-Cravioto, Mariana; Bonata, Anthony; Chung, Fan; Pralat, Paweł
2014-01-01
We analyze the distribution of PageRank on a directed configuration model and show that as the size of the graph grows to infinity, the PageRank of a randomly chosen node can be closely approximated by the PageRank of the root node of an appropriately constructed tree. This tree approximation is in
Ranking Quality in Higher Education: Guiding or Misleading?
Bergseth, Brita; Petocz, Peter; Abrandt Dahlgren, Madeleine
2014-01-01
The study examines two different models of measuring, assessing and ranking quality in higher education. Do different systems of quality assessment lead to equivalent conclusions about the quality of education? This comparative study is based on the rankings of 24 Swedish higher education institutions. Two ranking actors have independently…
Revisiting the Relationship between Institutional Rank and Student Engagement
Zilvinskis, John; Louis Rocconi
2018-01-01
College rankings dominate the conversation regarding quality in postsecondary education. However, the criteria used to rank institutions often have nothing to do with the quality of education students receive. A decade ago, Pike (2004) demonstrated that institutional rank had little association with student involvement in educational activities.…
Academic Ranking--From Its Genesis to Its International Expansion
Vieira, Rosilene C.; Lima, Manolita C.
2015-01-01
Given the visibility and popularity of rankings that encompass the measurement of quality of post-graduate courses, for instance, the MBA (Master of Business Administration) or graduate studies program (MSc and PhD) as do global academic rankings--Academic Ranking of World Universities-ARWU, Times Higher/Thomson Reuters World University Ranking…
7 CFR 1491.6 - Ranking considerations and proposal selection.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Ranking considerations and proposal selection. 1491.6... PROGRAM General Provisions § 1491.6 Ranking considerations and proposal selection. (a) Before the State.... The national ranking criteria will be established by the Chief and the State criteria will be...
46 CFR 282.11 - Ranking of flags.
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Ranking of flags. 282.11 Section 282.11 Shipping... COMMERCE OF THE UNITED STATES Foreign-Flag Competition § 282.11 Ranking of flags. The operators under each... priority of costs which are representative of the flag. For liner cargo vessels, the ranking of operators...
10 CFR 455.131 - State ranking of grant applications.
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false State ranking of grant applications. 455.131 Section 455... State ranking of grant applications. (a) Except as provided by § 455.92 of this part, all eligible... audit or energy use evaluation pursuant to § 455.20(k). Each State shall develop separate rankings for...
Control by Numbers: New Managerialism and Ranking in Higher Education
Lynch, Kathleen
2015-01-01
This paper analyses the role of rankings as an instrument of new managerialism. It shows how rankings are reconstituting the purpose of universities, the role of academics and the definition of what it is to be a student. The paper opens by examining the forces that have facilitated the emergence of the ranking industry and the ideologies…
Paired comparisons analysis: an axiomatic approach to ranking methods
Gonzalez-Diaz, J.; Hendrickx, Ruud; Lohmann, E.R.M.A.
2014-01-01
In this paper we present an axiomatic analysis of several ranking methods for general tournaments. We find that the ranking method obtained by applying maximum likelihood to the (Zermelo-)Bradley-Terry model, the most common method in statistics and psychology, is one of the ranking methods that
Extracting Rankings for Spatial Keyword Queries from GPS Data
DEFF Research Database (Denmark)
Keles, Ilkcan; Jensen, Christian Søndergaard; Saltenis, Simonas
2018-01-01
Studies suggest that many search engine queries have local intent. We consider the evaluation of ranking functions important for such queries. The key challenge is to be able to determine the “best” ranking for a query, as this enables evaluation of the results of ranking functions. We propose...
Tutorial: Calculating Percentile Rank and Percentile Norms Using SPSS
Baumgartner, Ted A.
2009-01-01
Practitioners can benefit from using norms, but they often have to develop their own percentile rank and percentile norms. This article is a tutorial on how to quickly and easily calculate percentile rank and percentile norms using SPSS, and this information is presented for a data set. Some issues in calculating percentile rank and percentile…
Variation in rank abundance replicate samples and impact of clustering
Neuteboom, J.H.; Struik, P.C.
2005-01-01
Calculating a single-sample rank abundance curve by using the negative-binomial distribution provides a way to investigate the variability within rank abundance replicate samples and yields a measure of the degree of heterogeneity of the sampled community. The calculation of the single-sample rank
A Fast Algorithm for Generating Permutation Distribution of Ranks in ...
African Journals Online (AJOL)
... function of the distribution of the ranks. This further gives insight into the permutation distribution of a rank statistics. The algorithm is implemented with the aid of the computer algebra system Mathematica. Key words: Combinatorics, generating function, permutation distribution, rank statistics, partitions, computer algebra.
Approximation of High-Dimensional Rank One Tensors
Bachmayr, Markus
2013-11-12
Many real world problems are high-dimensional in that their solution is a function which depends on many variables or parameters. This presents a computational challenge since traditional numerical techniques are built on model classes for functions based solely on smoothness. It is known that the approximation of smoothness classes of functions suffers from the so-called \\'curse of dimensionality\\'. Avoiding this curse requires new model classes for real world functions that match applications. This has led to the introduction of notions such as sparsity, variable reduction, and reduced modeling. One theme that is particularly common is to assume a tensor structure for the target function. This paper investigates how well a rank one function f(x 1,...,x d)=f 1(x 1)⋯f d(x d), defined on Ω=[0,1]d can be captured through point queries. It is shown that such a rank one function with component functions f j in W∞ r([0,1]) can be captured (in L ∞) to accuracy O(C(d,r)N -r) from N well-chosen point evaluations. The constant C(d,r) scales like d dr. The queries in our algorithms have two ingredients, a set of points built on the results from discrepancy theory and a second adaptive set of queries dependent on the information drawn from the first set. Under the assumption that a point z∈Ω with nonvanishing f(z) is known, the accuracy improves to O(dN -r). © 2013 Springer Science+Business Media New York.
Approximation of High-Dimensional Rank One Tensors
Bachmayr, Markus; Dahmen, Wolfgang; DeVore, Ronald; Grasedyck, Lars
2013-01-01
Many real world problems are high-dimensional in that their solution is a function which depends on many variables or parameters. This presents a computational challenge since traditional numerical techniques are built on model classes for functions based solely on smoothness. It is known that the approximation of smoothness classes of functions suffers from the so-called 'curse of dimensionality'. Avoiding this curse requires new model classes for real world functions that match applications. This has led to the introduction of notions such as sparsity, variable reduction, and reduced modeling. One theme that is particularly common is to assume a tensor structure for the target function. This paper investigates how well a rank one function f(x 1,...,x d)=f 1(x 1)⋯f d(x d), defined on Ω=[0,1]d can be captured through point queries. It is shown that such a rank one function with component functions f j in W∞ r([0,1]) can be captured (in L ∞) to accuracy O(C(d,r)N -r) from N well-chosen point evaluations. The constant C(d,r) scales like d dr. The queries in our algorithms have two ingredients, a set of points built on the results from discrepancy theory and a second adaptive set of queries dependent on the information drawn from the first set. Under the assumption that a point z∈Ω with nonvanishing f(z) is known, the accuracy improves to O(dN -r). © 2013 Springer Science+Business Media New York.
Form and Function in Doing Business Rankings: is Investor Protection in Italy Still so Bad?
Luca Enriques; Matteo Gargantini
2016-01-01
The World Bank’s Doing Business Report (DBR) ranks every year numerous jurisdictions across the globe according to their ability to facilitate business activities. Among the indexes contributing to the definition of the global competitiveness of the legislations, the “Protecting investors index” (PII) measures the protection of minority shareholders in listed companies. In this paper, we analyse the DBR’s assessment of the Italian regulatory framework on investor protection. We find that the ...
A Class of Weighted Low Rank Approximation of the Positive Semidefinite Hankel Matrix
Directory of Open Access Journals (Sweden)
Jianchao Bai
2015-01-01
Full Text Available We consider the weighted low rank approximation of the positive semidefinite Hankel matrix problem arising in signal processing. By using the Vandermonde representation, we firstly transform the problem into an unconstrained optimization problem and then use the nonlinear conjugate gradient algorithm with the Armijo line search to solve the equivalent unconstrained optimization problem. Numerical examples illustrate that the new method is feasible and effective.
Dahlquist, Germund
1974-01-01
""Substantial, detailed and rigorous . . . readers for whom the book is intended are admirably served."" - MathSciNet (Mathematical Reviews on the Web), American Mathematical Society.Practical text strikes fine balance between students' requirements for theoretical treatment and needs of practitioners, with best methods for large- and small-scale computing. Prerequisites are minimal (calculus, linear algebra, and preferably some acquaintance with computer programming). Text includes many worked examples, problems, and an extensive bibliography.
Rank hypocrisies the insult of the REF
Sayer, Derek
2015-01-01
"The REF is right out of Havel's and Kundera's Eastern Europe: a state-administered exercise to rank academic research like hotel chains dependent on the active collaboration of the UK professoriate. In crystalline text steeped in cold rage, Sayer takes aim at the REF's central claim, that it is a legitimate process of expert peer review. He critiques university and national-level REF processes against actual practices of scholarly review as found in academic journals, university presses, and North American tenure procedures. His analysis is damning. If the REF fails as scholarly review, how can academics and universities continue to participate? And how can government use its rankings as a basis for public policy?" - Tarak Barkawi, Reader in the Department of International Relations, London School of Economics "Many academics across the world have come to see the REF as an arrogant attempt to raise national research standards that has resulted in a variety of self-inflicted wounds to UK higher education. Der...
Ranking insurance firms using AHP and Factor Analysis
Directory of Open Access Journals (Sweden)
Mohammad Khodaei Valahzaghard
2013-03-01
Full Text Available Insurance industry includes a significant part of economy and it is important to learn more about the capabilities of different firms, which are active in this industry. In this paper, we present an empirical study to rank the insurance firms using analytical hierarchy process as well as factor analysis. The study considers four criteria including capital adequacy, quality of earning, quality of cash flow and quality of firms’ assets. The results of the implementation of factor analysis (FA have been verified using Kaiser-Meyer-Olkin (KMO=0.573 and Bartlett's Chi-Square (443.267 P-value=0.000 tests. According to the results FA, the first important factor, capital adequacy, represents 21.557% of total variance, the second factor, quality of income, represents 20.958% of total variance. In addition, the third factor, quality of cash flow, represents 19.417% of total variance and the last factor, quality of assets, represents 18.641% of total variance. The study has also used analytical hierarchy process (AHP to rank insurance firms. The results of our survey indicate that capital adequacy (0.559 is accounted as the most important factor followed by quality of income (0.235, quality of cash flow (0.144 and quality of assets (0.061. The results of AHP are consistent with the results of FA, which somewhat validates the overall study.
Assessing the Readability of Medical Documents: A Ranking Approach.
Zheng, Jiaping; Yu, Hong
2018-03-23
The use of electronic health record (EHR) systems with patient engagement capabilities, including viewing, downloading, and transmitting health information, has recently grown tremendously. However, using these resources to engage patients in managing their own health remains challenging due to the complex and technical nature of the EHR narratives. Our objective was to develop a machine learning-based system to assess readability levels of complex documents such as EHR notes. We collected difficulty ratings of EHR notes and Wikipedia articles using crowdsourcing from 90 readers. We built a supervised model to assess readability based on relative orders of text difficulty using both surface text features and word embeddings. We evaluated system performance using the Kendall coefficient of concordance against human ratings. Our system achieved significantly higher concordance (.734) with human annotators than did a baseline using the Flesch-Kincaid Grade Level, a widely adopted readability formula (.531). The improvement was also consistent across different disease topics. This method's concordance with an individual human user's ratings was also higher than the concordance between different human annotators (.658). We explored methods to automatically assess the readability levels of clinical narratives. Our ranking-based system using simple textual features and easy-to-learn word embeddings outperformed a widely used readability formula. Our ranking-based method can predict relative difficulties of medical documents. It is not constrained to a predefined set of readability levels, a common design in many machine learning-based systems. Furthermore, the feature set does not rely on complex processing of the documents. One potential application of our readability ranking is personalization, allowing patients to better accommodate their own background knowledge. ©Jiaping Zheng, Hong Yu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 23.03.2018.
TrustRank: a Cold-Start tolerant recommender system
Zou, Haitao; Gong, Zhiguo; Zhang, Nan; Zhao, Wei; Guo, Jingzhi
2015-02-01
The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. User- and item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are known to have Cold-Start problems, i.e., they are unable to effectively handle Cold-Start users who have an extremely limited number of purchase records. In this paper, we develop TrustRank, a novel recommender system which handles the Cold-Start problem by leveraging the user-trust networks which are commonly available for e-commerce applications. A user-trust network is formed by friendships or trust relationships that users specify among them. While it is straightforward to conjecture that a user-trust network is helpful for improving the accuracy of recommendations, a key challenge for using user-trust network to facilitate Cold-Start users is that these users also tend to have a very limited number of trust relationships. To address this challenge, we propose a pre-processing propagation of the Cold-Start users' trust network. In particular, by applying the personalised PageRank algorithm, we expand the friends of a given user to include others with similar purchase records to his/her original friends. To make this propagation algorithm scalable to a large amount of users, as required by real-world recommender systems, we devise an iterative computation algorithm of the original personalised TrustRank which can incrementally compute trust vectors for Cold-Start users. We conduct extensive experiments to demonstrate the consistently improvement provided by our proposed algorithm over the existing recommender algorithms on the accuracy of recommendations for Cold-Start users.
Service Quality Evaluation and Ranking of Container Terminal Operators
Directory of Open Access Journals (Sweden)
Jafar Sayareh
2016-12-01
Full Text Available In the service industry, the regular assessment of service quality is considered as a means of promoting the quality of services. Container market is no exception, and the quality of providing service in a container terminal is of prime importance in attracting new customers and maintaining the existing ones. The main aim of present research is to evaluate the quality of service being offered at Shahid Rajaee Container Terminal (SRCT in Bandar Abbas port. The evaluation process uses SERVQUAL model which is an appropriate tool for measuring the service quality, identifying and analyzing available gaps between service expectations and perceptions. Target population in this research includes customers of SRCT. The standard and customized questionnaires were distributed among 165 samples, out of which 127 (77% were returned. For the purpose of data analyses, initially the reliability of SERVQUAL model was checked, and then paired sample t-test was performed to reveal any possible gap between expectations and perceptions of respondents. Finally, TOPSIS was used to rank the 9 main container service companies in the SRCT. The results indicated that there are significant gaps between customers’ expectations and perceptions in SRCT, in all five dimensions of services quality. Additionally, from weighing point of view, ‘Tangibles’ was the most important dimension, followed by ‘Reliability’, ‘Assurance’, ‘Responsiveness’ and ‘Empathy’. In addition, ‘Tangibles’ dimension had maximum gap and ‘Empathy’ dimension had minimum gap between customers’ expectations and perceptions. Finally, after ranking companies, BandarAbbas Aria Container Terminal (BACT Company was ranked first among nine companies in satisfying customers’ expectations.
Directory of Open Access Journals (Sweden)
Hugo Lara
2014-12-01
Full Text Available The matrix completion problem (MC has been approximated by using the nuclear norm relaxation. Some algorithms based on this strategy require the computationally expensive singular value decomposition (SVD at each iteration. One way to avoid SVD calculations is to use alternating methods, which pursue the completion through matrix factorization with a low rank condition. In this work an augmented Lagrangean-type alternating algorithm is proposed. The new algorithm uses duality information to define the iterations, in contrast to the solely primal LMaFit algorithm, which employs a Successive Over Relaxation scheme. The convergence result is studied. Some numerical experiments are given to compare numerical performance of both proposals.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Exact distributions of two-sample rank statistics and block rank statistics using computer algebra
Wiel, van de M.A.
1998-01-01
We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for
Poortvliet, P. Marijn; Janssen, Onne; Van Yperen, N.W.; Van de Vliert, E.
This investigation tested the joint effect of achievement goals and ranking information on information exchange intentions with a commensurate exchange partner. Results showed that individuals with performance goals were less inclined to cooperate with an exchange partner when they had low or high
A logical framework for ranking landslide inventory maps
Santangelo, Michele; Fiorucci, Federica; Bucci, Francesco; Cardinali, Mauro; Ardizzone, Francesca; Marchesini, Ivan; Cesare Mondini, Alessandro; Reichenbach, Paola; Rossi, Mauro; Guzzetti, Fausto
2014-05-01
Landslides inventory maps are essential for quantitative landslide hazard and risk assessments, and for geomorphological and ecological studies. Landslide maps, including geomorphological, event based, multi-temporal, and seasonal inventory maps, are most commonly prepared through the visual interpretation of (i) monoscopic and stereoscopic aerial photographs, (ii) satellite images, (iii) LiDAR derived images, aided by more or less extensive field surveys. Landslide inventory maps are the basic information for a number of different scientific, technical and civil protection purposes, such as: (i) quantitative geomorphic analyses, (ii) erosion studies, (iii) deriving landslide statistics, (iv) urban development planning (v) landslide susceptibility, hazard and risk evaluation, and (vi) landslide monitoring systems. Despite several decades of activity in landslide inventory making, still no worldwide-accepted standards, best practices and protocols exist for the ranking and the production of landslide inventory maps. Standards for the preparation (and/or ranking) of landslide inventories should indicate the minimum amount of information for a landslide inventory map, given the scale, the type of images, the instrumentation available, and the available ancillary data. We recently attempted at a systematic description and evaluation of a total of 22 geomorphological inventories, 6 multi-temporal inventories, 10 event inventories, and 3 seasonal inventories, in the scale range between 1:10,000 and 1:500,000, prepared for areas in different geological and geomorphological settings. All of the analysed inventories were carried out by using image interpretation techniques, or field surveys. Firstly, a detailed characterisation was performed for each landslide inventory, mainly collecting metadata related (i) to the amount of information used for preparing the landslide inventory (i.e. images used, instrumentation, ancillary data, digitalisation method, legend, validation
Receptor activator of nuclear factor kappa B (RANK as a determinant of peri-implantitis
Directory of Open Access Journals (Sweden)
Rakić Mia
2013-01-01
Full Text Available Background/Aim. Peri-implantitis presents inflammatory process that affects soft and hard supporting tissues of osseointegrated implant based on inflammatory osteoclastogenesis. The aim of this study was to investigate whether receptor activator of nuclear factor kappa B (RANK concentrations in peri-implant crevicular fluid could be associated with clinical parameters that reflect inflammatory nature of peri-implantitis. Methods. The study included 67 patients, 22 with diagnosed peri-implantitis, 22 persons with healthy peri-implant tissues and 23 patients with periodontitis. Clinical parameters from each patient were recorded and samples of peri-implant/gingival crevicular fluid were collected for the enzyme-linked immunosorbent assay (ELISA analysis. Results. RANK concentration was significantly increased in samples from the patients with periimplantitis when compared to healthy implants (p < 0.0001, where the average levels were 9 times higher. At the same time RANK concentration was significantly higher in periimplantitis than in periodontitis sites (p < 0.0001. In implant patients pocket depths and bleeding on probing values were positively associated with high RANK concentrations (p < 0.0001. Conclusion. These results revealed association of increased RANK concentration in samples of periimplant/ gingival crevicular fluid with peri-implant inflammation and suggests that RANK could be a pathologic determinant of peri-implantitis, thereby a potential parameter in assessment of peri-implant tissue inflammation and a potential target in designing treatment strategies.
Can Future Academic Surgeons be Identified in the Residency Ranking Process?
Beninato, Toni; Kleiman, David A; Zarnegar, Rasa; Fahey, Thomas J
2016-01-01
The goal of surgical residency training programs is to train competent surgeons. Academic surgical training programs also have as a mission training future academicians-surgical scientists, teachers, and leaders. However, selection of surgical residents is dependent on a relatively unscientific process. Here we sought to determine how well the residency selection process is able to identify future academicians in surgery. Rank lists from an academic surgical residency program from 1992 to 1997 were examined. All ranked candidates׳ career paths after residency were reviewed to determine whether they stayed in academics, were university affiliated, or in private practice. The study was performed at New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY. A total of 663 applicants for general surgery residency participated in this study. In total 6 rank lists were evaluated, which included 663 candidates. Overall 76% remained in a general surgery subspecialty. Of those who remained in general surgery, 49% were in private practice, 20% were university affiliated, and 31% had academic careers. Approximately 47% of candidates that were ranked in the top 20 had ≥20 publications, with decreasing percentages as rank number increased. There was a strong correlation between the candidates׳ rank position and pursuing an academic career (p career. The residency selection process can identify candidates likely to be future academicians. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
RANKL/RANK: from bone loss to the prevention of breast cancer.
Sigl, Verena; Jones, Laundette P; Penninger, Josef M
2016-11-01
RANK and RANKL, a receptor ligand pair belonging to the tumour necrosis factor family, are the critical regulators of osteoclast development and bone metabolism. Besides their essential function in bone, RANK and RANKL have also been identified as the key factors for the formation of a lactating mammary gland in pregnancy. Mechanistically, RANK and RANKL link the sex hormone progesterone with stem cell expansion and proliferation of mammary epithelial cells. Based on their normal physiology, RANKL/RANK control the onset of hormone-induced breast cancer through the expansion of mammary progenitor cells. Recently, we and others were able to show that RANK and RANKL are also critical regulators of BRCA1-mutation-driven breast cancer. Currently, the preventive strategy for BRCA1-mutation carriers includes preventive mastectomy, associated with wide-ranging risks and psychosocial effects. The search for an alternative non-invasive prevention strategy is therefore of paramount importance. As our work strongly implicates RANK and RANKL as key molecules involved in the initiation of BRCA1-associated breast cancer, we propose that anti-RANKL therapy could be a feasible preventive strategy for women carrying BRCA1 mutations, and by extension to other women with high risk of breast cancer. © 2016 The Authors.
Characterizing Microseismicity at the Newberry Volcano Geothermal Site using PageRank
Aguiar, A. C.; Myers, S. C.
2015-12-01
The Newberry Volcano, within the Deschutes National Forest in Oregon, has been designated as a candidate site for the Department of Energy's Frontier Observatory for Research in Geothermal Energy (FORGE) program. This site was stimulated using high-pressure fluid injection during the fall of 2012, which generated several hundred microseismic events. Exploring the spatial and temporal development of microseismicity is key to understanding how subsurface stimulation modifies stress, fractures rock, and increases permeability. We analyze Newberry seismicity using both surface and borehole seismometers from the AltaRock and LLNL seismic networks. For our analysis we adapt PageRank, Google's initial search algorithm, to evaluate microseismicity during the 2012 stimulation. PageRank is a measure of connectivity, where higher ranking represents highly connected windows. In seismic applications connectivity is measured by the cross correlation of 2 time windows recorded on a common seismic station and channel. Aguiar and Beroza (2014) used PageRank based on cross correlation to detect low-frequency earthquakes, which are highly repetitive but difficult to detect. We expand on this application by using PageRank to define signal-correlation topology for micro-earthquakes, including the identification of signals that are connected to the largest number of other signals. We then use this information to create signal families and compare PageRank families to the spatial and temporal proximity of associated earthquakes. Studying signal PageRank will potentially allow us to efficiently group earthquakes with similar physical characteristics, such as focal mechanisms and stress drop. Our ultimate goal is to determine whether changes in the state of stress and/or changes in the generation of subsurface fracture networks can be detected using PageRank topology. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Yun, Yong-Huan; Deng, Bai-Chuan; Cao, Dong-Sheng; Wang, Wei-Ting; Liang, Yi-Zeng
2016-03-10
Biomarker discovery is one important goal in metabolomics, which is typically modeled as selecting the most discriminating metabolites for classification and often referred to as variable importance analysis or variable selection. Until now, a number of variable importance analysis methods to discover biomarkers in the metabolomics studies have been proposed. However, different methods are mostly likely to generate different variable ranking results due to their different principles. Each method generates a variable ranking list just as an expert presents an opinion. The problem of inconsistency between different variable ranking methods is often ignored. To address this problem, a simple and ideal solution is that every ranking should be taken into account. In this study, a strategy, called rank aggregation, was employed. It is an indispensable tool for merging individual ranking lists into a single "super"-list reflective of the overall preference or importance within the population. This "super"-list is regarded as the final ranking for biomarker discovery. Finally, it was used for biomarkers discovery and selecting the best variable subset with the highest predictive classification accuracy. Nine methods were used, including three univariate filtering and six multivariate methods. When applied to two metabolic datasets (Childhood overweight dataset and Tubulointerstitial lesions dataset), the results show that the performance of rank aggregation has improved greatly with higher prediction accuracy compared with using all variables. Moreover, it is also better than penalized method, least absolute shrinkage and selectionator operator (LASSO), with higher prediction accuracy or less number of selected variables which are more interpretable. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Gong, Wenyin; Cai, Zhihua
2013-01-01
Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data
Inhibition of osteoclastogenesis by RNA interference targeting RANK
Directory of Open Access Journals (Sweden)
Ma Ruofan
2012-08-01
Full Text Available Abstract Background Osteoclasts and osteoblasts regulate bone resorption and formation to allow bone remodeling and homeostasis. The balance between bone resorption and formation is disturbed by abnormal recruitment of osteoclasts. Osteoclast differentiation is dependent on the receptor activator of nuclear factor NF-kappa B (RANK ligand (RANKL as well as the macrophage colony-stimulating factor (M-CSF. The RANKL/RANK system and RANK signaling induce osteoclast formation mediated by various cytokines. The RANK/RANKL pathway has been primarily implicated in metabolic, degenerative and neoplastic bone disorders or osteolysis. The central role of RANK/RANKL interaction in osteoclastogenesis makes RANK an attractive target for potential therapies in treatment of osteolysis. The purpose of this study was to assess the effect of inhibition of RANK expression in mouse bone marrow macrophages on osteoclast differentiation and bone resorption. Methods Three pairs of short hairpin RNAs (shRNA targeting RANK were designed and synthesized. The optimal shRNA was selected among three pairs of shRNAs by RANK expression analyzed by Western blot and Real-time PCR. We investigated suppression of osteoclastogenesis of mouse bone marrow macrophages (BMMs using the optimal shRNA by targeting RANK. Results Among the three shRANKs examined, shRANK-3 significantly suppressed [88.3%] the RANK expression (p Conclusions These findings suggest that retrovirus-mediated shRNA targeting RANK inhibits osteoclast differentiation and osteolysis. It may appear an attractive target for preventing osteolysis in humans with a potential clinical application.
Asynchronous Gossip for Averaging and Spectral Ranking
Borkar, Vivek S.; Makhijani, Rahul; Sundaresan, Rajesh
2014-08-01
We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.
Fuzzy-set based contingency ranking
International Nuclear Information System (INIS)
Hsu, Y.Y.; Kuo, H.C.
1992-01-01
In this paper, a new approach based on fuzzy set theory is developed for contingency ranking of Taiwan power system. To examine whether a power system can remain in a secure and reliable operating state under contingency conditions, those contingency cases that will result in loss-of-load, loss-of generation, or islanding are first identified. Then 1P-1Q iteration of fast decoupled load flow is preformed to estimate post-contingent quantities (line flows, bus voltages) for other contingency cases. Based on system operators' past experience, each post-contingent quantity is assigned a degree of severity according to the potential damage that could be imposed on the power system by the quantity, should the contingency occurs. An approach based on fuzzy set theory is developed to deal with the imprecision of linguistic terms
Ranked retrieval of Computational Biology models.
Henkel, Ron; Endler, Lukas; Peters, Andre; Le Novère, Nicolas; Waltemath, Dagmar
2010-08-11
The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Nonnegative Matrix Factorization with Rank Regularization and Hard Constraint.
Shang, Ronghua; Liu, Chiyang; Meng, Yang; Jiao, Licheng; Stolkin, Rustam
2017-09-01
Nonnegative matrix factorization (NMF) is well known to be an effective tool for dimensionality reduction in problems involving big data. For this reason, it frequently appears in many areas of scientific and engineering literature. This letter proposes a novel semisupervised NMF algorithm for overcoming a variety of problems associated with NMF algorithms, including poor use of prior information, negative impact on manifold structure of the sparse constraint, and inaccurate graph construction. Our proposed algorithm, nonnegative matrix factorization with rank regularization and hard constraint (NMFRC), incorporates label information into data representation as a hard constraint, which makes full use of prior information. NMFRC also measures pairwise similarity according to geodesic distance rather than Euclidean distance. This results in more accurate measurement of pairwise relationships, resulting in more effective manifold information. Furthermore, NMFRC adopts rank constraint instead of norm constraints for regularization to balance the sparseness and smoothness of data. In this way, the new data representation is more representative and has better interpretability. Experiments on real data sets suggest that NMFRC outperforms four other state-of-the-art algorithms in terms of clustering accuracy.
Neoclassical transport including collisional nonlinearity.
Candy, J; Belli, E A
2011-06-10
In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package
Directory of Open Access Journals (Sweden)
Douglas Bates
2013-01-01
Full Text Available The RcppEigen package provides access from R (R Core Team 2012a to the Eigen (Guennebaud, Jacob, and others 2012 C++ template library for numerical linear algebra. Rcpp (Eddelbuettel and François 2011, 2012 classes and specializations of the C++ templated functions as and wrap from Rcpp provide the "glue" for passing objects from R to C++ and back. Several introductory examples are presented. This is followed by an in-depth discussion of various available approaches for solving least-squares problems, including rank-revealing methods, concluding with an empirical run-time comparison. Last but not least, sparse matrix methods are discussed.
International Nuclear Information System (INIS)
Naftchi-Ardebili, Kasra; Hau, Nathania W.; Mazziotti, David A.
2011-01-01
Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N 2 improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.
Ode, Minami; Asaba, Akari; Miyazawa, Eri; Mogi, Kazutaka; Kikusui, Takefumi; Izawa, Ei-Ichi
2015-07-01
Group living has both benefits and costs to individuals; benefits include efficient acquisition of resources, and costs include stress from social conflicts among group members. Such social challenges result in hierarchical dominance ranking among group members as a solution to avoid escalating conflict that causes different levels of basal stress between individuals at different ranks. Stress-associated glucocorticoid (corticosterone in rodents and birds; CORT) levels are known to correlate with dominance rank in diverse taxa and to covary with various social factors, such as sex and dominance maintenance styles. Although there is much evidence for sex differences in the basal levels of CORT in various species, the correlation of sex differences in basal CORT with dominance rank is poorly understood. We investigated the correlation between CORT metabolites (CM) in the droppings and social factors, including rank and sex, in a captive non-breeder group of crows. In this group, all the single males dominated all the single females, and dominance ranks were stable among single males but relatively unstable among single females. CM levels and rank were significantly correlated in a sex-reversed fashion: males at higher rank (i.e., more dominant) had higher CM, whereas females at higher rank exhibited lower CM. This is the first evidence of sex-reversed patterns of CM-rank correlation in birds. The results suggest that different mechanisms of stress-dominance relationships operate on the sexes in non-breeder crow aggregations; in males, stress is associated with the cost of aggressive displays, whereas females experience subordination stress due to males' overt aggression. Copyright © 2015 Elsevier Inc. All rights reserved.
Handbook of numerical analysis
Ciarlet, Philippe G
Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an
Deep Multimodal Distance Metric Learning Using Click Constraints for Image Ranking.
Yu, Jun; Yang, Xiaokang; Gao, Fei; Tao, Dacheng
2017-12-01
How do we retrieve images accurately? Also, how do we rank a group of images precisely and efficiently for specific queries? These problems are critical for researchers and engineers to generate a novel image searching engine. First, it is important to obtain an appropriate description that effectively represent the images. In this paper, multimodal features are considered for describing images. The images unique properties are reflected by visual features, which are correlated to each other. However, semantic gaps always exist between images visual features and semantics. Therefore, we utilize click feature to reduce the semantic gap. The second key issue is learning an appropriate distance metric to combine these multimodal features. This paper develops a novel deep multimodal distance metric learning (Deep-MDML) method. A structured ranking model is adopted to utilize both visual and click features in distance metric learning (DML). Specifically, images and their related ranking results are first collected to form the training set. Multimodal features, including click and visual features, are collected with these images. Next, a group of autoencoders is applied to obtain initially a distance metric in different visual spaces, and an MDML method is used to assign optimal weights for different modalities. Next, we conduct alternating optimization to train the ranking model, which is used for the ranking of new queries with click features. Compared with existing image ranking methods, the proposed method adopts a new ranking model to use multimodal features, including click features and visual features in DML. We operated experiments to analyze the proposed Deep-MDML in two benchmark data sets, and the results validate the effects of the method.
Introduction to precise numerical methods
Aberth, Oliver
2007-01-01
Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.
A Multiobjective Programming Method for Ranking All Units Based on Compensatory DEA Model
Directory of Open Access Journals (Sweden)
Haifang Cheng
2014-01-01
Full Text Available In order to rank all decision making units (DMUs on the same basis, this paper proposes a multiobjective programming (MOP model based on a compensatory data envelopment analysis (DEA model to derive a common set of weights that can be used for the full ranking of all DMUs. We first revisit a compensatory DEA model for ranking all units, point out the existing problem for solving the model, and present an improved algorithm for which an approximate global optimal solution of the model can be obtained by solving a sequence of linear programming. Then, we applied the key idea of the compensatory DEA model to develop the MOP model in which the objectives are to simultaneously maximize all common weights under constraints that the sum of efficiency values of all DMUs is equal to unity and the sum of all common weights is also equal to unity. In order to solve the MOP model, we transform it into a single objective programming (SOP model using a fuzzy programming method and solve the SOP model using the proposed approximation algorithm. To illustrate the ranking method using the proposed method, two numerical examples are solved.
Low-rank extremal positive-partial-transpose states and unextendible product bases
International Nuclear Information System (INIS)
Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan
2010-01-01
It is known how to construct, in a bipartite quantum system, a unique low-rank entangled mixed state with positive partial transpose (a PPT state) from an unextendible product basis (UPB), defined as an unextendible set of orthogonal product vectors. We point out that a state constructed in this way belongs to a continuous family of entangled PPT states of the same rank, all related by nonsingular unitary or nonunitary product transformations. The characteristic property of a state ρ in such a family is that its kernel Ker ρ has a generalized UPB, a basis of product vectors, not necessarily orthogonal, with no product vector in Im ρ, the orthogonal complement of Ker ρ. The generalized UPB in Ker ρ has the special property that it can be transformed to orthogonal form by a product transformation. In the case of a system of dimension 3x3, we give a complete parametrization of orthogonal UPBs. This is then a parametrization of families of rank 4 entangled (and extremal) PPT states, and we present strong numerical evidence that it is a complete classification of such states. We speculate that the lowest rank entangled and extremal PPT states also in higher dimensions are related to generalized, nonorthogonal UPBs in similar ways.
Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations
Giraldi, Loic; Nouy, Anthony
2017-01-01
This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.
Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations
Giraldi, Loic
2017-06-30
This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.
Using incomplete citation data for MEDLINE results ranking.
Herskovic, Jorge R; Bernstam, Elmer V
2005-01-01
Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.
Social Rank, Stress, Fitness, and Life Expectancy in Wild Rabbits
von Holst, Dietrich; Hutzelmeyer, Hans; Kaetzke, Paul; Khaschei, Martin; Schönheiter, Ronald
Wild rabbits of the two sexes have separate linear rank orders, which are established and maintained by intensive fights. The social rank of individuals strongly influence their fitness: males and females that gain a high social rank, at least at the outset of their second breeding season, have a much higher lifetime fitness than subordinate individuals. This is because of two separate factors: a much higher fecundity and annual reproductive success and a 50% longer reproductive life span. These results are in contrast to the view in evolutionary biology that current reproduction can be increased only at the expense of future survival and/or fecundity. These concepts entail higher physiological costs in high-ranking mammals, which is not supported by our data: In wild rabbits the physiological costs of social positions are caused predominantly by differential psychosocial stress responses that are much lower in high-ranking than in low-ranking individuals.
Discovering author impact: A PageRank perspective
Yan, Erjia; Ding, Ying
2010-01-01
This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International So...
Convolutional Codes with Maximum Column Sum Rank for Network Streaming
Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish
2015-01-01
The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a network with link failures. We prove rank analogues of several known column Hamming distance properties and introduce a new family of convolutional codes that maximize the column sum rank up to the code memory. Our construction invol...
Ranking agricultural, environmental and natural resource economics journals: A note
Halkos, George; Tzeremes, Nickolaos
2012-01-01
This paper by applying Data Envelopment Analysis (DEA) ranks for the first time Economics journals in the field of Agricultural, Environmental and Natural Resource. Specifically, by using one composite input and one composite output the paper ranks 32 journals. In addition for the first time three different quality ranking reports have been incorporated to the DEA modelling problem in order to classify the journals into four categories (‘A’ to ‘D’). The results reveal that the journals with t...
Is there a 'Mid-Rank Trap' for Universities'
Chang Da Wan
2015-01-01
The middle-income trap is an economic phenomenon to describe economies that have stagnated at the middle-income level and failed to progress into the high-income level. Inspired by this economic concept, this paper explores a hypothesis: is there a 'mid-rank trap' for universities in the exercise to rank universities globally' Using the rankings between 2004 and 2014 that were jointly and separately developed by Times Higher Education and Quacquarelli Symonds Company, this paper argues that t...
Asympotic efficiency of signed - rank symmetry tests under skew alternatives.
Alessandra Durio; Yakov Nikitin
2002-01-01
The efficiency of some known tests for symmetry such as the sign test, the Wilcoxon signed-rank test or more general linear signed rank tests was studied mainly under the classical alternatives of location. However it is interesting to compare the efficiencies of these tests under asymmetric alternatives like the so-called skew alternative proposed in Azzalini (1985). We find and compare local Bahadur efficiencies of linear signed-rank statistics for skew alternatives and discuss also the con...
Reduced Rank Adaptive Filtering in Impulsive Noise Environments
Soury, Hamza
2014-01-06
An impulsive noise environment is used in this paper. A new aspect of signal truncation is deployed to reduce the harmful effect of the impulsive noise to the signal. A full rank direct solution is derived followed by an iterative solution. The reduced rank adaptive filter is presented in this environment by using two methods for rank reduction. The minimized objective function is defined using the Lp norm. The results are presented and the efficiency of each algorithm is discussed.
Reduced Rank Adaptive Filtering in Impulsive Noise Environments
Soury, Hamza; Abed-Meraim, Karim; Alouini, Mohamed-Slim
2014-01-01
An impulsive noise environment is used in this paper. A new aspect of signal truncation is deployed to reduce the harmful effect of the impulsive noise to the signal. A full rank direct solution is derived followed by an iterative solution. The reduced rank adaptive filter is presented in this environment by using two methods for rank reduction. The minimized objective function is defined using the Lp norm. The results are presented and the efficiency of each algorithm is discussed.
A Citation-Based Ranking of Strategic Management Journals
Azar, Ofer H.; Brock, David M.
2007-01-01
Rankings of strategy journals are important for authors, readers, and promotion and tenure committees. We present several rankings, based either on the number of articles that cited the journal or the per-article impact. Our analyses cover various periods between 1991 and 2006, for most of which the Strategic Management Journal was in first place and Journal of Economics & Management Strategy (JEMS) second, although JEMS ranked first in certain instances. Long Range Planning and Technology An...
Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K
2011-10-01
To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods
Variable screening and ranking using sampling-based sensitivity measures
International Nuclear Information System (INIS)
Wu, Y-T.; Mohanty, Sitakanta
2006-01-01
This paper presents a methodology for screening insignificant random variables and ranking significant important random variables using sensitivity measures including two cumulative distribution function (CDF)-based and two mean-response based measures. The methodology features (1) using random samples to compute sensitivities and (2) using acceptance limits, derived from the test-of-hypothesis, to classify significant and insignificant random variables. Because no approximation is needed in either the form of the performance functions or the type of continuous distribution functions representing input variables, the sampling-based approach can handle highly nonlinear functions with non-normal variables. The main characteristics and effectiveness of the sampling-based sensitivity measures are investigated using both simple and complex examples. Because the number of samples needed does not depend on the number of variables, the methodology appears to be particularly suitable for problems with large, complex models that have large numbers of random variables but relatively few numbers of significant random variables
Effect of State-Specific Factors on Acquisition Path Ranking
International Nuclear Information System (INIS)
Vincze, A.; Nemeth, A.
2015-01-01
The ''directed graph analysis'' has been shown to be a promising methodology to implement acquisition path analysis by the IAEA to support the State evaluation process. Based on this methodology a material flow network model has been developed under the Hungarian Support Programme to the IAEA, in which materials in different chemical and physical form can flow through pipes representing declared processes, material transports, diversions or undeclared processes. The ranking of the resulting acquisition paths of the analysis is a key step to facilitate the determination of technical objectives and the planning of safeguards implementation on State-level. These are determined by the attributes of the processes included into the graph and different state-specific factors. In this paper different set of attributes, State-specific factors and their functional combination will be tested for hypothetical case studies. (author)
Ranking of Delay Factors for Makkah’s Construction Industry
Directory of Open Access Journals (Sweden)
Al-Emad Nashwan
2017-01-01
Full Text Available This paper presents identification of significant delay factors encountered by Makkah’s construction industry using quantitative approach. A structured questionnaire developed based on literature review was verified through pilot study involved selected construction experts. Questionnaire survey was conducted amongst Makkah construction practitioners include contractors, consultants and project management consultancy. The survey managed to collect 100 valid responses which were used to rank the factors using average index approach. Results of the analysis for 10 most significant factors causing construction delay in Makkah construction industry are Difficulties in financing project by contractor, Poor coordination between parties, Shortage of manpower, Delays in producing design documents, Improper planning and scheduling of the project, Delay in progress payments, Low productivity level of labour, Poor communication between parties, Unqualified workforce and Poor contract management. This finding is helpful to Makkah construction’s community particularly projects’ stakeholders in avoiding potential delay for their future projects.
Connectivity ranking of heterogeneous random conductivity models
Rizzo, C. B.; de Barros, F.
2017-12-01
To overcome the challenges associated with hydrogeological data scarcity, the hydraulic conductivity (K) field is often represented by a spatial random process. The state-of-the-art provides several methods to generate 2D or 3D random K-fields, such as the classic multi-Gaussian fields or non-Gaussian fields, training image-based fields and object-based fields. We provide a systematic comparison of these models based on their connectivity. We use the minimum hydraulic resistance as a connectivity measure, which it has been found to be strictly correlated with early time arrival of dissolved contaminants. A computationally efficient graph-based algorithm is employed, allowing a stochastic treatment of the minimum hydraulic resistance through a Monte-Carlo approach and therefore enabling the computation of its uncertainty. The results show the impact of geostatistical parameters on the connectivity for each group of random fields, being able to rank the fields according to their minimum hydraulic resistance.
Multirelational Social Recommendations via Multigraph Ranking.
Mao, Mingsong; Lu, Jie; Zhang, Guangquan; Zhang, Jinlong
2017-12-01
Recommender systems aim to identify relevant items for particular users in large-scale online applications. The historical rating data of users is a valuable input resource for many recommendation models such as collaborative filtering (CF), but these models are known to suffer from the rating sparsity problem when the users or items under consideration have insufficient rating records. With the continued growth of online social networks, the increased user-to-user relationships are reported to be helpful and can alleviate the CF rating sparsity problem. Although researchers have developed a range of social network-based recommender systems, there is no unified model to handle multirelational social networks. To address this challenge, this paper represents different user relationships in a multigraph and develops a multigraph ranking model to identify and recommend the nearest neighbors of particular users in high-order environments. We conduct empirical experiments on two real-world datasets: 1) Epinions and 2) Last.fm, and the comprehensive comparison with other approaches demonstrates that our model improves recommendation performance in terms of both recommendation coverage and accuracy, especially when the rating data are sparse.
Improving CBIR Systems Using Automated Ranking
Directory of Open Access Journals (Sweden)
B. D. Reljin
2012-11-01
Full Text Available The most common way of searching images on the Internet and in private collections is based on a similarity measuring of a series of text words that are assigned to each image with users query series. This method imposes strong constraints (the number of words to describe the image, the time necessary to thoroughly describe the subjective experience of images, the level of details in the picture, language barrier, etc., and is therefore very inefficient. Modern researches in this area are focused on the contentbased searching images (CBIR. In this way, all described disadvantages are overcome and the quality of searching results is improved. This paper presents a solution for CBIR systems where the search procedure is enhanced using sophisticated extraction and ranking of extracted images. The searching procedure is based on extraction and preprocessing of a large number of low level image features. Thus, when the user defines a query image, the proposed algorithm based on artificial intelligence, shows to the user a group of images which are most similar to a query image by content. The proposed algorithm is iterative, so the user can direct the searching procedure to an expected outcome and get a set of images that are more similar to the query one.
Method ranks competing projects by priorities, risk
International Nuclear Information System (INIS)
Moeckel, D.R.
1993-01-01
A practical, objective guide for ranking projects based on risk-based priorities has been developed by Sun Pipe Line Co. The deliberately simple system guides decisions on how to allocate scarce company resources because all managers employ the same criteria in weighing potential risks to the company versus benefits. Managers at all levels are continuously having to comply with an ever growing amount of legislative and regulatory requirements while at the same time trying to run their businesses effectively. The system primarily is designed for use as a compliance oversight and tracking process to document, categorize, and follow-up on work concerning various issues or projects. That is, the system consists of an electronic database which is updated periodically, and is used by various levels of management to monitor progress of health, safety, environmental and compliance-related projects. Criteria used in determining a risk factor and assigning a priority also have been adapted and found useful for evaluating other types of projects. The process enables management to better define potential risks and/or loss of benefits that are being accepted when a project is rejected from an immediate work plan or budget. In times of financial austerity, it is extremely important that the right decisions are made at the right time
Leclerc, Arnaud; Thomas, Phillip S.; Carrington, Tucker
2017-08-01
Vibrational spectra and wavefunctions of polyatomic molecules can be calculated at low memory cost using low-rank sum-of-product (SOP) decompositions to represent basis functions generated using an iterative eigensolver. Using a SOP tensor format does not determine the iterative eigensolver. The choice of the interative eigensolver is limited by the need to restrict the rank of the SOP basis functions at every stage of the calculation. We have adapted, implemented and compared different reduced-rank algorithms based on standard iterative methods (block-Davidson algorithm, Chebyshev iteration) to calculate vibrational energy levels and wavefunctions of the 12-dimensional acetonitrile molecule. The effect of using low-rank SOP basis functions on the different methods is analysed and the numerical results are compared with those obtained with the reduced rank block power method. Relative merits of the different algorithms are presented, showing that the advantage of using a more sophisticated method, although mitigated by the use of reduced-rank SOP functions, is noticeable in terms of CPU time.
A Note on the PageRank of Undirected Graphs
Grolmusz, Vince
2012-01-01
The PageRank is a widely used scoring function of networks in general and of the World Wide Web graph in particular. The PageRank is defined for directed graphs, but in some special cases applications for undirected graphs occur. In the literature it is widely noted that the PageRank for undirected graphs are proportional to the degrees of the vertices of the graph. We prove that statement for a particular personalization vector in the definition of the PageRank, and we also show that in gene...
Rank diversity of languages: generic behavior in computational linguistics.
Cocho, Germinal; Flores, Jorge; Gershenson, Carlos; Pineda, Carlos; Sánchez, Sergio
2015-01-01
Statistical studies of languages have focused on the rank-frequency distribution of words. Instead, we introduce here a measure of how word ranks change in time and call this distribution rank diversity. We calculate this diversity for books published in six European languages since 1800, and find that it follows a universal lognormal distribution. Based on the mean and standard deviation associated with the lognormal distribution, we define three different word regimes of languages: "heads" consist of words which almost do not change their rank in time, "bodies" are words of general use, while "tails" are comprised by context-specific words and vary their rank considerably in time. The heads and bodies reflect the size of language cores identified by linguists for basic communication. We propose a Gaussian random walk model which reproduces the rank variation of words in time and thus the diversity. Rank diversity of words can be understood as the result of random variations in rank, where the size of the variation depends on the rank itself. We find that the core size is similar for all languages studied.
Rank Diversity of Languages: Generic Behavior in Computational Linguistics
Cocho, Germinal; Flores, Jorge; Gershenson, Carlos; Pineda, Carlos; Sánchez, Sergio
2015-01-01
Statistical studies of languages have focused on the rank-frequency distribution of words. Instead, we introduce here a measure of how word ranks change in time and call this distribution rank diversity. We calculate this diversity for books published in six European languages since 1800, and find that it follows a universal lognormal distribution. Based on the mean and standard deviation associated with the lognormal distribution, we define three different word regimes of languages: “heads” consist of words which almost do not change their rank in time, “bodies” are words of general use, while “tails” are comprised by context-specific words and vary their rank considerably in time. The heads and bodies reflect the size of language cores identified by linguists for basic communication. We propose a Gaussian random walk model which reproduces the rank variation of words in time and thus the diversity. Rank diversity of words can be understood as the result of random variations in rank, where the size of the variation depends on the rank itself. We find that the core size is similar for all languages studied. PMID:25849150
Tensor rank of the tripartite state |W>xn
International Nuclear Information System (INIS)
Yu Nengkun; Guo Cheng; Duan Runyao; Chitambar, Eric
2010-01-01
Tensor rank refers to the number of product states needed to express a given multipartite quantum state. Its nonadditivity as an entanglement measure has recently been observed. In this Brief Report, we estimate the tensor rank of multiple copies of the tripartite state |W>=(1/√(3))(|100>+|010>+|001>). Both an upper bound and a lower bound of this rank are derived. In particular, it is proven that the rank of |W> x 2 is 7, thus resolving a previously open problem. Some implications of this result are discussed in terms of transformation rates between |W> xn and multiple copies of the state |GHZ>=(1/√(2))(|000>+|111>).
Quantum probability ranking principle for ligand-based virtual screening
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Proceedings of the sixteenth biennial low-rank fuels symposium
International Nuclear Information System (INIS)
1991-01-01
Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium
Extreme learning machine for ranking: generalization analysis and applications.
Chen, Hong; Peng, Jiangtao; Zhou, Yicong; Li, Luoqing; Pan, Zhibin
2014-05-01
The extreme learning machine (ELM) has attracted increasing attention recently with its successful applications in classification and regression. In this paper, we investigate the generalization performance of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations of activation functions in ELM. The generalization analysis is established for the ELM-based ranking (ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treatment plan ranking using physical and biological indices
International Nuclear Information System (INIS)
Ebert, M. A.; University of Western Asutralia, WA
2001-01-01
Full text: The ranking of dose distributions is of importance in several areas such as i) comparing rival treatment plans, ii) comparing iterations in an optimisation routine, and iii) dose-assessment of clinical trial data. This study aimed to investigate the influence of choice of objective function in ranking tumour dose distributions. A series of physical (mean, maximum, minimum, standard deviation of dose) dose-volume histogram (DVH) reduction indices and biologically-based (tumour-control probability - TCP; equivalent uniform dose -EUD) indices were used to rank a series of hypothetical DVHs, as well as DVHs obtained from a series of 18 prostate patients. The distribution in ranking and change in distribution with change in indice parameters were investigated. It is found that not only is the ranking of DVHs dependent on the actual model used to perform the DVH reduction, it is also found to depend on the inherent characteristics of each model (i.e., selected parameters). The adjacent figure shows an example where the 18 prostate patients are ranked (grey-scale from black to white) by EUD when an α value of 0.8 Gy -1 is used in the model. The change of ranking as α varies is evident. Conclusion: This study has shown that the characteristics of the model selected in plan optimisation or DVH ranking will have an impact on the ranking obtained. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine
Quantum probability ranking principle for ligand-based virtual screening.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Ranking accounting, banking and finance journals: A note
Halkos, George; Tzeremes, Nickolaos
2012-01-01
This paper by applying Data Envelopment Analysis (DEA) ranks Economics journals in the field of Accounting, Banking and Finance. By using one composite input and one composite output the paper ranks 57 journals. In addition for the first time three different quality ranking reports have been incorporated to the DEA modelling problem in order to classify the journals into four categories (‘A’ to ‘D’). The results reveal that the journals with the highest rankings in the field are Journal of Fi...
Proceedings of the sixteenth biennial low-rank fuels symposium
Energy Technology Data Exchange (ETDEWEB)
1991-01-01
Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium.
Econophysics of a ranked demand and supply resource allocation problem
Priel, Avner; Tamir, Boaz
2018-01-01
We present a two sided resource allocation problem, between demands and supplies, where both parties are ranked. For example, in Big Data problems where a set of different computational tasks is divided between a set of computers each with its own resources, or between employees and employers where both parties are ranked, the employees by their fitness and the employers by their package benefits. The allocation process can be viewed as a repeated game where in each iteration the strategy is decided by a meta-rule, based on the ranks of both parties and the results of the previous games. We show the existence of a phase transition between an absorbing state, where all demands are satisfied, and an active one where part of the demands are always left unsatisfied. The phase transition is governed by the ratio between supplies and demand. In a job allocation problem we find positive correlation between the rank of the workers and the rank of the factories; higher rank workers are usually allocated to higher ranked factories. These all suggest global emergent properties stemming from local variables. To demonstrate the global versus local relations, we introduce a local inertial force that increases the rank of employees in proportion to their persistence time in the same factory. We show that such a local force induces non trivial global effects, mostly to benefit the lower ranked employees.
Low-Rank Matrix Factorization With Adaptive Graph Regularizer.
Lu, Gui-Fu; Wang, Yong; Zou, Jian
2016-05-01
In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.
Neural modelling of ranking data with an application to stated preference data
Directory of Open Access Journals (Sweden)
Catherine Krier
2013-05-01
Full Text Available Although neural networks are commonly encountered to solve classification problems, ranking data present specificities which require adapting the model. Based on a latent utility function defined on the characteristics of the objects to be ranked, the approach suggested in this paper leads to a perceptron-based algorithm for a highly non linear model. Data on stated preferences obtained through a survey by face-to-face interviews, in the field of freight transport, are used to illustrate the method. Numerical difficulties are pinpointed and a Pocket type algorithm is shown to provide an efficient heuristic to minimize the discrete error criterion. A substantial merit of this approach is to provide a workable estimation of contextually interpretable parameters along with a statistical evaluation of the goodness of fit.
Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal
2009-11-01
A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.
A new concept for stainless steels ranking upon the resistance to cavitation erosion
Bordeasu, I.; Popoviciu, M. O.; Salcianu, L. C.; Ghera, C.; Micu, L. M.; Badarau, R.; Iosif, A.; Pirvulescu, L. D.; Podoleanu, C. E.
2017-01-01
In present, the ranking of materials as their resistance to cavitation erosion is obtained by using laboratory tests finalized with the characteristic curves mean depth erosion against time MDE(t) and mean depth erosion rate against time MDER(t). In some previous papers, Bordeasu and co-workers give procedures to establish exponential equation representing the curves, with minimum scatter of the experimental obtained results. For a given material, both exponential equations MDE(t) and MDER(t) have the same values for the parameters of scale and for the shape one. For the ranking of materials is sometimes important to establish single figure. Till now in Timisoara Polytechnic University Cavitation Laboratory were used three such numbers: the stable value of the curve MDER(t), the resistance to cavitation erosion (Rcav ≡ 1/MDERstable) and the normalized cavitation resistance Rns which is the rate between vs = MDERstable for the analyzed material and vse= MDERse the mean depth erosion rate for the steel OH12NDL (Rns = vs/vse ). OH12NDL is a material used for manufacturing the blades of numerous Kaplan turbines in Romania for which both cavitation erosion laboratory tests and field measurements of cavitation erosions are available. In the present paper we recommend a new method for ranking the materials upon cavitation erosion resistance. This method uses the scale and shape parameters of the exponential equations which represents the characteristic cavitation erosion curves. Till now the method was applied only for stainless steels. The experimental results show that the scale parameter represents an excellent method for ranking the stainless steels. In the future this kind of ranking will be tested also for other materials especially for bronzes used for manufacturing ship propellers.
Directory of Open Access Journals (Sweden)
Chunlin Li
Full Text Available Quantifying vigilance and exploring the underlying mechanisms has been the subject of numerous studies. Less attention has focused on the complex interplay between contributing factors such as reproductive status, social rank, sex and group size. Reproductive status and social rank are of particular interest due to their association with mating behavior. Mating activities in rutting season may interfere with typical patterns of vigilance and possibly interact with social rank. In addition, balancing the tradeoff between vigilance and life maintenance may represent a challenge for gregarious ungulate species rutting under harsh winter conditions. We studied vigilance patterns in the endangered Przewalski's gazelle (Procapra przewalskii during both the rutting and non-rutting seasons to examine these issues.Field observations were carried out with focal sampling during rutting and non-rutting season in 2008-2009. Results indicated a complex interplay between reproductive status, social rank, sex and group size in determining vigilance in this species. Vigilance decreased with group size in female but not in male gazelles. Males scanned more frequently and thus spent more time vigilant than females. Compared to non-rutting season, gazelles increased time spent scanning at the expense of bedding in rutting season. During the rutting season, territorial males spent a large proportion of time on rutting activities and were less vigilant than non-territorial males. Although territorial males may share collective risk detection with harem females, we suggest that they are probably more vulnerable to predation because they seemed reluctant to leave rut stands under threats.Vigilance behavior in Przewalski's gazelle was significantly affected by reproductive status, social rank, sex, group size and their complex interactions. These findings shed light on the mechanisms underlying vigilance patterns and the tradeoff between vigilance and other crucial
Playing for First Place: An Analysis of Online Reviews and Their Impact on Local Market Rankings
Directory of Open Access Journals (Sweden)
Dipendra SINGH
2016-06-01
Full Text Available Whereas past research studied the impact of online reviews on a hotel’s image, the present study analyzes the impact of various measures of customer engagement on the local market ranking of a hotel. For these purposes, the researchers collected data on a sample of hotels including the number of reviews, absolute rating (i.e. 1-5 stars, and market ranking (i.e. 1st, 2nd, 3rd place on TripAdvisor. The authors tested the relationships between number of reviews, market ranking, overall rating and number of booking transactions. Results revealed that the absolute rating of the hotel was a significant factor in determining its market ranking, whereas other elements such as the number of reviews were not. Since the logarithm used by TripAdvisor and other review sites is of a proprietary nature, research that illuminates the relationships between overall rating, market ranking, and number of reviews, helps illuminate scholar’s and practitioner’s understanding of how to improve hotel performance and online image.
Robust subspace estimation using low-rank optimization theory and applications
Oreifej, Omar
2014-01-01
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book,?the authors?discuss fundame
Assessment of low-rank (LRC) drying technologies
International Nuclear Information System (INIS)
Willson, W.G.; Young, B.C.; Irwinj, W.
1992-01-01
This paper reports that low-rank coals (LRCs), brown, lignitic, and subbituminous coals, represent nearly half of the estimated coal resources in the world. In many of the developing nations, LRCs are the only source of low-cost energy. LRCs are geologically younger than higher-rank bituminous coals and are typically present in thick seams with less cover (overburden) than bituminous coals, making them recoverable by low-cost strip mining. Current pit-head coal prices for LRCs range from a low of around $0.25 per MM Btus for subbituminous coals from the USA's Powder River Basin, to highs of around $1,00 for those that are more costly to mine. On the other hand, the pit-head price of bituminous coals in the USA range from a low of around $1 to over $2 per MM Btu. Unfortunately, this differential in favor of LRC is more than offset in distant markers where, until now, it has been considered a nuisance. Often less than half of its weight is combustible, the rest being water and ash. Thus the cost of hauling it any distance at all in its untreated dry bulk form is prohibitive. However, from a utilization aspect, LRCs have a lower fuel ration (fixed carbon to volatile matter) and are typically an order of magnitude more reactive than bituminous coals. Many LRCs, including the enormous reserves in Alaska, Australia, and Indonesia, also have extremely low sulfur contents of only a few tenths of a percent. Low mining costs, high reactivity, and extremely low sulfur content would make these coals premium fuel were it not for their high moisture levels, which range from around 25% w/w to over 60% w/w. High moisture creates a mistaken perception, among major coal importers, of inferior quality, and the many positive features of LRCs are overlooked
Development and first application of an operating events ranking tool
International Nuclear Information System (INIS)
Šimić, Zdenko; Zerger, Benoit; Banov, Reni
2015-01-01
Highlights: • A method using analitycal hierarchy process for ranking operating events is developed and tested. • The method is applied for 5 years of U.S. NRC Licensee Event Reports (1453 events). • Uncertainty and sensitivity of the ranking results are evaluated. • Real events assessment shows potential of the method for operating experience feedback. - Abstract: The operating experience feedback is important for maintaining and improving safety and availability in nuclear power plants. Detailed investigation of all events is challenging since it requires excessive resources, especially in case of large event databases. This paper presents an event groups ranking method to complement the analysis of individual operating events. The basis for the method is the use of an internationally accepted events characterization scheme that allows different ways of events grouping and ranking. The ranking method itself consists of implementing the analytical hierarchy process (AHP) by means of a custom developed tool which allows events ranking based on ranking indexes pre-determined by expert judgment. Following the development phase, the tool was applied to analyze a complete set of 5 years of real nuclear power plants operating events (1453 events). The paper presents the potential of this ranking method to identify possible patterns throughout the event database and therefore to give additional insights into the events as well as to give quantitative input for the prioritization of further more detailed investigation of selected event groups
University Rankings: How Well Do They Measure Library Service Quality?
Jackson, Brian
2015-01-01
University rankings play an increasingly large role in shaping the goals of academic institutions and departments, while removing universities themselves from the evaluation process. This study compares the library-related results of two university ranking publications with scores on the LibQUAL+™ survey to identify if library service quality--as…
Jackknife Variance Estimator for Two Sample Linear Rank Statistics
1988-11-01
Accesion For - - ,NTIS GPA&I "TIC TAB Unann c, nc .. [d Keywords: strong consistency; linear rank test’ influence function . i , at L By S- )Distribut...reverse if necessary and identify by block number) FIELD IGROUP SUB-GROUP Strong consistency; linear rank test; influence function . 19. ABSTRACT
Monte Carlo methods of PageRank computation
Litvak, Nelli
2004-01-01
We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink
Feeding rank in the Derby eland: lessons for management ...
African Journals Online (AJOL)
High-ranking individuals in good condition limited access to supplementary feeding to their lower-ranking herdmates. Effective supplementary feeding should therefore be provided in excess amounts to enable younger and weaker individuals in need to benefit from it, despite their lower positions in the hierarchy. Keywords: ...
Balancing exploration and exploitation in learning to rank online
Hofmann, K.; Whiteson, S.; de Rijke, M.
2011-01-01
As retrieval systems become more complex, learning to rank approaches are being developed to automatically tune their parameters. Using online learning to rank approaches, retrieval systems can learn directly from implicit feedback, while they are running. In such an online setting, algorithms need
Ranking production units according to marginal efficiency contribution
DEFF Research Database (Denmark)
Ghiyasi, Mojtaba; Hougaard, Jens Leth
League tables associated with various forms of service activities from schools to hospitals illustrate the public need for ranking institutions by their productive performance. We present a new method for ranking production units which is based on each units marginal contribution to the technical...
Trachomatous Scar Ranking: A Novel Outcome for Trachoma Studies.
Baldwin, Angela; Ryner, Alexander M; Tadesse, Zerihun; Shiferaw, Ayalew; Callahan, Kelly; Fry, Dionna M; Zhou, Zhaoxia; Lietman, Thomas M; Keenan, Jeremy D
2017-06-01
AbstractWe evaluated a new trachoma scarring ranking system with potential use in clinical research. The upper right tarsal conjunctivas of 427 individuals from Ethiopian villages with hyperendemic trachoma were photographed. An expert grader first assigned a scar grade to each photograph using the 1981 World Health Organization (WHO) grading system. Then, all photographs were ranked from least (rank = 1) to most scarring (rank = 427). Photographic grading found 79 (18.5%) conjunctivae without scarring (C0), 191 (44.7%) with minimal scarring (C1), 105 (24.6%) with moderate scarring (C2), and 52 (12.2%) with severe scarring (C3). The ranking method demonstrated good internal validity, exhibiting a monotonic increase in the median rank across the levels of the 1981 WHO grading system. Intrarater repeatability was better for the ranking method (intraclass correlation coefficient = 0.84, 95% CI = 0.74-0.94). Exhibiting better internal and external validity, this ranking method may be useful for evaluating the difference in scarring between groups of individuals.
Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions
The Optimal Ranking Regime (ORR) method was used to identify 6-100 year time windows containing significant ranking sequences in 55 western U.S. streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method’s ability t...
The Ranking Phenomenon and the Experience of Academics in Taiwan
Lo, William Yat Wai
2014-01-01
The primary aim of the paper is to examine how global university rankings have influenced the higher education sector in Taiwan from the perspective of academics. A qualitative case study method was used to examine how university ranking influenced the Taiwanese higher education at institutional and individual levels, respectively, thereby…
Ranking Regime and the Future of Vernacular Scholarship
Ishikawa, Mayumi
2014-01-01
World university rankings and their global popularity present a number of far-reaching impacts for vernacular scholarship. This article employs a multidimensional approach to analyze the ranking regime's threat to local scholarship and knowledge construction through a study of Japanese research universities. First, local conditions that have led…
The Distribution of the Sum of Signed Ranks
Albright, Brian
2012-01-01
We describe the calculation of the distribution of the sum of signed ranks and develop an exact recursive algorithm for the distribution as well as an approximation of the distribution using the normal. The results have applications to the non-parametric Wilcoxon signed-rank test.
Ranking Exponential Trapezoidal Fuzzy Numbers by Median Value
Directory of Open Access Journals (Sweden)
S. Rezvani
2013-12-01
Full Text Available In this paper, we want represented a method for ranking of two exponential trapezoidal fuzzy numbers. A median value is proposed for the ranking of exponential trapezoidal fuzzy numbers. For the validation the results of the proposed approach are compared with different existing approaches.
Rank dependent expected utility models of tax evasion.
Erling Eide
2001-01-01
In this paper the rank-dependent expected utility theory is substituted for the expected utility theory in models of tax evasion. It is demonstrated that the comparative statics results of the expected utility, portfolio choice model of tax evasion carry over to the more general rank dependent expected utility model.
Prototyping a Distributed Information Retrieval System That Uses Statistical Ranking.
Harman, Donna; And Others
1991-01-01
Built using a distributed architecture, this prototype distributed information retrieval system uses statistical ranking techniques to provide better service to the end user. Distributed architecture was shown to be a feasible alternative to centralized or CD-ROM information retrieval, and user testing of the ranking methodology showed both…
Numerical calculations in quantum field theories
International Nuclear Information System (INIS)
Rebbi, C.
1984-01-01
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references
Effects of OCR Errors on Ranking and Feedback Using the Vector Space Model.
Taghva, Kazem; And Others
1996-01-01
Reports on the performance of the vector space model in the presence of OCR (optical character recognition) errors in information retrieval. Highlights include precision and recall, a full-text test collection, smart vector representation, impact of weighting parameters, ranking variability, and the effect of relevance feedback. (Author/LRW)
Tuthill, Jonathan W.; Frechette, Darren L.
2002-01-01
This paper discusses some of the failings of expected utility including the Allais paradox and expected utility's inadequate one dimensional characterization of risk. Three alternatives to expected utility are discussed at length; weighted expected utility, rank dependent utility, and cumulative prospect theory. Each alternative is capable of explaining Allais paradox type problems and permits more sophisticated multi dimensional risk preferences.
A web-based tool for ranking landslide mitigation measures
Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.
2012-04-01
brief description, guidance on design, schematic details, practical examples and references for each mitigation measure. Each of the measures was given a score on its ability and applicability for different types of landslides and boundary conditions, and a decision support matrix was established. The web-based toolbox organizes the information in the compendium and provides an algorithm to rank the measures on the basis of the decision support matrix, and on the basis of the risk level estimated at the site. The toolbox includes a description of the case under study and offers a simplified option for estimating the hazard and risk levels of the slide at hand. The user selects the mitigation measures to be included in the assessment. The toolbox then ranks, with built-in assessment factors and weights and/or with user-defined ranking values and criteria, the mitigation measures included in the analysis. The toolbox includes data management, e.g. saving data half-way in an analysis, returning to an earlier case, looking up prepared examples or looking up information on mitigation measures. The toolbox also generates a report and has user-forum and help features. The presentation will give an overview of the mitigation measures considered and examples of the use of the toolbox, and will take the attendees through the application of the toolbox.
Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.
Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A
2017-11-01
Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.
A model-based approach to operational event groups ranking
Energy Technology Data Exchange (ETDEWEB)
Simic, Zdenko [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)
2014-04-15
The operational experience (OE) feedback provides improvements in all industrial activities. Identification of the most important and valuable groups of events within accumulated experience is important in order to focus on a detailed investigation of events. The paper describes the new ranking method and compares it with three others. Methods have been described and applied to OE events utilised by nuclear power plants in France and Germany for twenty years. The results show that different ranking methods only roughly agree on which of the event groups are the most important ones. In the new ranking method the analytical hierarchy process is applied in order to assure consistent and comprehensive weighting determination for ranking indexes. The proposed method allows a transparent and flexible event groups ranking and identification of the most important OE for further more detailed investigation in order to complete the feedback. (orig.)
A Case-Based Reasoning Method with Rank Aggregation
Sun, Jinhua; Du, Jiao; Hu, Jian
2018-03-01
In order to improve the accuracy of case-based reasoning (CBR), this paper addresses a new CBR framework with the basic principle of rank aggregation. First, the ranking methods are put forward in each attribute subspace of case. The ordering relation between cases on each attribute is got between cases. Then, a sorting matrix is got. Second, the similar case retrieval process from ranking matrix is transformed into a rank aggregation optimal problem, which uses the Kemeny optimal. On the basis, a rank aggregation case-based reasoning algorithm, named RA-CBR, is designed. The experiment result on UCI data sets shows that case retrieval accuracy of RA-CBR algorithm is higher than euclidean distance CBR and mahalanobis distance CBR testing.So we can get the conclusion that RA-CBR method can increase the performance and efficiency of CBR.
Feasibility study of component risk ranking for plant maintenance
International Nuclear Information System (INIS)
Ushijima, Koji; Yonebayashi, Kenji; Narumiya, Yoshiyuki; Sakata, Kaoru; Kumano, Tetsuji
1999-01-01
Nuclear power is the base load electricity source in Japan, and reduction of operation and maintenance cost maintaining or improving plant safety is one of the major issues. Recently, Risk Informed Management (RIM) is focused as a solution. In this paper, the outline regarding feasibility study of component risk ranking for plant maintenance for a typical Japanese PWR plant is described. A feasibility study of component risk raking for plant maintenance optimization is performed on check valves and motor-operated valves. Risk ranking is performed in two steps using probabilistic analysis (quantitative method) for risk ranking of components, and deterministic examination (qualitative method) for component review. In this study, plant components are ranked from the viewpoint of plant safety / reliability, and the applicability for maintenance is assessed. As a result, distribution of maintenance resources using risk ranking is considered effective. (author)
CNN-based ranking for biomedical entity normalization.
Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong
2017-10-03
Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.
Numerical differential protection
Ziegler, Gerhard
2012-01-01
Differential protection is a fast and selective method of protection against short-circuits. It is applied in many variants for electrical machines, trans?formers, busbars, and electric lines.Initially this book covers the theory and fundamentals of analog and numerical differential protection. Current transformers are treated in detail including transient behaviour, impact on protection performance, and practical dimensioning. An extended chapter is dedicated to signal transmission for line protection, in particular, modern digital communication and GPS timing.The emphasis is then pla
Numerical distribution functions of fractional unit root and cointegration tests
DEFF Research Database (Denmark)
MacKinnon, James G.; Nielsen, Morten Ørregaard
We calculate numerically the asymptotic distribution functions of likelihood ratio tests for fractional unit roots and cointegration rank. Because these distributions depend on a real-valued parameter, b, which must be estimated, simple tabulation is not feasible. Partly due to the presence...
VisualRank: applying PageRank to large-scale image search.
Jing, Yushi; Baluja, Shumeet
2008-11-01
Because of the relative ease in understanding and processing text, commercial image-search systems often rely on techniques that are largely indistinguishable from text-search. Recently, academic studies have demonstrated the effectiveness of employing image-based features to provide alternative or additional signals. However, it remains uncertain whether such techniques will generalize to a large number of popular web queries, and whether the potential improvement to search quality warrants the additional computational cost. In this work, we cast the image-ranking problem into the task of identifying "authority" nodes on an inferred visual similarity graph and propose VisualRank to analyze the visual link structures among images. The images found to be "authorities" are chosen as those that answer the image-queries well. To understand the performance of such an approach in a real system, we conducted a series of large-scale experiments based on the task of retrieving images for 2000 of the most popular products queries. Our experimental results show significant improvement, in terms of user satisfaction and relevancy, in comparison to the most recent Google Image Search results. Maintaining modest computational cost is vital to ensuring that this procedure can be used in practice; we describe the techniques required to make this system practical for large scale deployment in commercial search engines.
The structure of completely positive matrices according to their CP-rank and CP-plus-rank
Dickinson, Peter James Clair; Bomze, Immanuel M.; Still, Georg J.
2015-01-01
We study the topological properties of the cp-rank operator $\\mathrm{cp}(A)$ and the related cp-plus-rank operator $\\mathrm{cp}^+(A)$ (which is introduced in this paper) in the set $\\mathcal{S}^n$ of symmetric $n\\times n$-matrices. For the set of completely positive matrices, $\\mathcal{CP}^n$, we
Carbon-free hydrogen production from low rank coal
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit
2017-05-01
Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.
Numerical Optimization in Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2017-01-01
Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....
Methods of numerical relativity
International Nuclear Information System (INIS)
Piran, T.
1983-01-01
Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)
International Nuclear Information System (INIS)
Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A.
2009-01-01
Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle
Energy Technology Data Exchange (ETDEWEB)
Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)
2009-01-15
Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle. (author)
Two-Step Proximal Gradient Algorithm for Low-Rank Matrix Completion
Directory of Open Access Journals (Sweden)
Qiuyu Wang
2016-06-01
Full Text Available In this paper, we propose a two-step proximal gradient algorithm to solve nuclear norm regularized least squares for the purpose of recovering low-rank data matrix from sampling of its entries. Each iteration generated by the proposed algorithm is a combination of the latest three points, namely, the previous point, the current iterate, and its proximal gradient point. This algorithm preserves the computational simplicity of classical proximal gradient algorithm where a singular value decomposition in proximal operator is involved. Global convergence is followed directly in the literature. Numerical results are reported to show the efficiency of the algorithm.
AptRank: an adaptive PageRank model for protein function prediction on bi-relational graphs.
Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael
2017-06-15
Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Henderson, Michael
1997-08-01
The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.
Highlighting Entanglement of Cultures via Ranking of Multilingual Wikipedia Articles
Eom, Young-Ho; Shepelyansky, Dima L.
2013-01-01
How different cultures evaluate a person? Is an important person in one culture is also important in the other culture? We address these questions via ranking of multilingual Wikipedia articles. With three ranking algorithms based on network structure of Wikipedia, we assign ranking to all articles in 9 multilingual editions of Wikipedia and investigate general ranking structure of PageRank, CheiRank and 2DRank. In particular, we focus on articles related to persons, identify top 30 persons for each rank among different editions and analyze distinctions of their distributions over activity fields such as politics, art, science, religion, sport for each edition. We find that local heroes are dominant but also global heroes exist and create an effective network representing entanglement of cultures. The Google matrix analysis of network of cultures shows signs of the Zipf law distribution. This approach allows to examine diversity and shared characteristics of knowledge organization between cultures. The developed computational, data driven approach highlights cultural interconnections in a new perspective. Dated: June 26, 2013 PMID:24098338
Highlighting entanglement of cultures via ranking of multilingual Wikipedia articles.
Directory of Open Access Journals (Sweden)
Young-Ho Eom
Full Text Available How different cultures evaluate a person? Is an important person in one culture is also important in the other culture? We address these questions via ranking of multilingual Wikipedia articles. With three ranking algorithms based on network structure of Wikipedia, we assign ranking to all articles in 9 multilingual editions of Wikipedia and investigate general ranking structure of PageRank, CheiRank and 2DRank. In particular, we focus on articles related to persons, identify top 30 persons for each rank among different editions and analyze distinctions of their distributions over activity fields such as politics, art, science, religion, sport for each edition. We find that local heroes are dominant but also global heroes exist and create an effective network representing entanglement of cultures. The Google matrix analysis of network of cultures shows signs of the Zipf law distribution. This approach allows to examine diversity and shared characteristics of knowledge organization between cultures. The developed computational, data driven approach highlights cultural interconnections in a new perspective. Dated: June 26, 2013.
AP600 passive containment cooling system phenomena identification and ranking table
International Nuclear Information System (INIS)
Spencer, D.R.; Woodcock, Joel
1999-01-01
This paper presents the Phenomena Identification and Ranking Table (PIRT) used in the containment Design Basis Analysis (DBA) for the AP600 nuclear power plant. The PIRT is a tool generally applied to best estimate thermal hydraulic analyses. In the conservative analytical modeling approach used for the AP600 DBA containment pressure response, the PIRT was a tool used to show completeness and relevance of the test database in accordance with the Code of Federal Regulations for advanced plant design. Additionally, the ranking of phenomena by relative importance in a PIRT allows appropriate focusing of resources during model development and licensing review. The focus of the paper is on the organization and structure of the PIRT to show level of detail and format accepted for the AP600, for potential application to other containment designs or accident scenarios. Conclusions of general interest are discussed regarding table organization and structure, the process for developing relative ranking and incorporating expert opinion, and the definition and usage of the relative ranking in support of the conservative evaluation model. The AP600 containment evaluation model approach, as influenced by the relative rankings, is briefly described to put into context this unique application of the PIRT to a conservative methodology. The bases for relative ranking of each phenomenon, which included expert opinion, and quantitative results of scaling and testing, was submitted to the NRC as part of AP600-specific evaluations. Since a PIRT supports the sufficiency of both a testing program and analytical modeling, the process followed to generate and confirm the PIRT, an important part of the licensing acceptance, was a focus of extensive NRC review. General descriptions of key phenomena are provided to aid in understanding the containment PIRT for more general applications for containment evaluations of other PWR designs or for other scenarios. (author)