WorldWideScience

Sample records for included high-temperature materials

  1. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  2. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  3. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  4. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  5. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  6. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  7. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  8. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  9. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  10. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B.

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si 3 N 4 . Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation

  11. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  12. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  13. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  14. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  15. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  16. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  17. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  18. Platform for high temperature materials (PHiTEM)

    International Nuclear Information System (INIS)

    Baluc, N.; Hoffelner, W.; Michler, J.

    2007-01-01

    Advanced energy power systems like Generation IV fission reactors, thermonuclear fusion reactors, solar thermal/solar chemical reactors, gas turbines and coal gasification systems require materials that can operate at high temperatures in extreme environments: irradiation, corrosion, unidirectional and cyclic loads. On the path to development of new and adequate high temperature materials, understanding of damage formation and evolution and of damage effects is indispensable. Damage of materials in components takes place on different time and length scales. Component failure is usually a macroscopic event. Macroscopic material properties and their changes with time (e.g., hardening, creep embrittlement, corrosion) are determined by the micro- to nano-properties of the material. The multi scale is an ambitious and challenging attempt to take these facts into consideration by developing an unified model of the material behaviour. This requires, however, dedicated tools to test and analyse materials on different scales. The platform for high temperatures materials is being set up within the framework of collaboration between the EPFL, the PSI and the EMPA. It has three main goals: 1) Establish a platform that allows the multi scale characterization of relationships between microstructure and mechanical properties of advanced, high temperature materials, with a focus on irradiated, i.e. radioactive, materials, by combining the use of a focused ion beam and a nano indentation device with multi scale modelling and simulations. 2) Use the methods developed and the results gained for existing materials for developing improved high temperature materials to be used in advanced and sustainable future energy power plants. 3) Become an attractive partner for industry by providing a wide knowledge base, flexibility in answering technical questions and skills to better understand damage in already existing plants and to support development of new products at the industrial scale

  19. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  20. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  1. High Temperature Materials Interim Data Qualification Report FY 2011

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2011-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  2. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  3. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  4. Development of materials for high temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Houlton, R.J.; Reagor, D.W.; Hawley, M.E.; Springer, K.N.; Jia, Q.X.; Mombourquette, C.B.; Garzon, F.H.; Wu, X.D.

    1994-01-01

    We have conducted a systematic optimization of deposition parameters for fabrication of multilayered oxide films to be used in the development of high temperature superconducting SNS Functions. These films were deposited by off-axis sputtering using a custom fabricated multi-gun planar magnetron system. Each material and the various combinations of materials were optimized for epitaxial lattice match, crystal quality, film uniformity, electrical properties, and surface microstructure. In addition to the standard procedures commonly used to sputter deposit epitaxial oxide films, a variety of insitu and exsitu procedures were used to produce high quality multilayer devices, including varying the nucleation temperature from the actual film growth temperature, location of the substrate during the deposition process, constant rotation of the substrate, and timing of the oxygen anneal. The unprocessed films and devices in process were characterized with Atomic Force Microscopy and Scanning Tunneling Microscopy as well as other common materials characterization techniques. Completed multilayer devices were patterned and packaged for electrical characterization. Relation between material properties and electrical characteristics is discussed

  5. Development of materials for high temperature superconductor Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Houlton, R.J.; Reagor, D.W.; Hawley, M.E.; Springer, K.N.; Jia, Q.X.; Mombourquette, C.B.; Garzon, F.H.; Wu, X.D.

    1994-10-01

    We have conducted a systematic optimization of deposition parameters for fabrication of multilayered oxide films to be used in the development of high temperature superconducting SNS Functions. These films were deposited by off-axis sputtering using a custom fabricated multi-gun planar magnetron system. Each material and the various combinations of materials were optimized for epitaxial lattice match, crystal quality, film uniformity, electrical properties, and surface microstructure. In addition to the standard procedures commonly used to sputter deposit epitaxial oxide films, a variety of insitu and exsitu procedures were used to produce high quality multilayer devices, including varying the nucleation temperature from the actual film growth temperature, location of the substrate during the deposition process, constant rotation of the substrate, and timing of the oxygen anneal. The unprocessed films and devices in process were characterized with Atomic Force Microscopy and Scanning Tunneling Microscopy as well as other common materials characterization techniques. Completed multilayer devices were patterned and packaged for electrical characterization. Relation between material properties and electrical characteristics is discussed

  6. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  7. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  8. Thermal-mechanical fatigue of high temperature structural materials

    Science.gov (United States)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  9. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  10. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  11. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  12. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  13. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  14. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design

  15. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel

  16. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel.

  17. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  18. Practical reasons for investigating ion transport in high temperature insulating materials

    International Nuclear Information System (INIS)

    Sonder, E.

    1976-01-01

    Practical problems encountered in a number of advanced technology appliations, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include: a) ceramic nuclear fuels for high temperature fission reactors, b) high temperature gas turbine blades, c) insulators in controlled thermonuclear reactors, and d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed

  19. PETIs as High-Temperature Resin-Transfer-Molding Materials

    Science.gov (United States)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  20. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  1. High Temperature Materials Laboratory Thirteenth Annual Report: October 1999 Through September 2000; ANNUAL

    International Nuclear Information System (INIS)

    Pasto, AE

    2001-01-01

    The High Temperature Materials Laboratory (HTML) is designed to assist American industries, universities, and governmental agencies develop advanced materials by providing a skilled staff and numerous sophisticated, often one-of-a-kind pieces of materials characterization equipment. It is a nationally designated user facility sponsored by the U.S. Department of Energy's (DOE's) office of Transportation Technologies, Energy Efficiency and Renewable Energy. Physically, it is a 64,500-ft(sup 2) building at the Oak Ridge National Laboratory (ORNL). The HTML houses six ''user centers,'' which are clusters of specialized equipment designed for specific types of properties measurements. The HTML was conceived and built in the mid-1980s in response to the oil embargoes of the 1970s. The concept was to build a facility that would allow direct work with American industry, academia, and government laboratories in providing advanced high-temperature materials such as structural ceramics for energy-efficient engines. The HTML's scope of work has since expanded to include other, non-high-temperature materials of interest to transportation and other industries

  2. Materials for high temperature reactor vessels

    International Nuclear Information System (INIS)

    Buenaventura Pouyfaucon, A.

    2004-01-01

    Within the 5th Euraton Framework Programme, a big effort is being made to promote and consolidate the development of the High Temperature Reactor (HTR). Empresarios Agrupados is participating in this project and among others, also forms part of the HTR-M project Materials for HTRs. This paper summarises the work carried out by Empresarios Agrupados regarding the material selection of the HTR Reactor Pressure Vessel (RPV). The possible candidate materials and the most promising ones are discussed. Design aspects such as the RPV sensitive zones and material damage mechanisms are considered. Finally, the applicability of the existing design Codes and Standards for the design of the HTR RPV is also discussed. (Author)

  3. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  4. Screening of High Temperature Organic Materials for Future Stirling Convertors

    Science.gov (United States)

    Shin, Euy-sik E.; Scheiman, Daniel A.

    2017-01-01

    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection

  5. Self-weldability of various materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Self-Weldability of Various Materials in High Temperature Sodium. The self-welding behavior of various materials was evaluated by measuring the tensile breakaway force of the specimen which had been self-welded in high temperature sodium. Experiments were carried out to investigate the influence of the sodium temperature and the contact stress on the self-welding behavior. The results obtained are as follows: (1) The self-welding behavior in sodium was recognized to initiate by the diffusion of the principal element through the real contact area. (2) Remarkable self-welding behavior was observed for SUS 316 material at 650 0 C, and for 2 1/4Cr-1Mo steel at a sodium temperature of 600 0 C. The self-welding force acting on the real contact area corresponds to the tensile strength of each material. (3) Hard chrome plating or hardfacing material showed good self-weld resistance, but the different combinations of SUS 316 with either of these materials were observed to easily cause self-welding. (4) The self-weldability of Cr 3 C 2 /Ni-Cr material varied with the preparing methods, especially, with the distribution of the binder composition contained in this material. (5) A derived equation was proposed to evaluate the self-welding force. It was found that the measured breakaway force was relatively equal to the self-welding force derived from this equation. (author)

  6. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  7. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  8. Improved Creep Measurements for Ultra-High Temperature Materials

    Science.gov (United States)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.

    2010-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  9. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  10. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  11. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  12. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  13. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  14. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  15. Ultra light weight refractory material for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Finke, V.; Kern, H. [Rath GmbH, Meissen (Germany); Springer, M. [Aug. Rath jun. GmbH, Vienna (Austria)

    2007-07-01

    The requirements on companies running high temperature processes, i.e. at temperatures about 1000 C and above, have increased dramatically within the last few years. For technological, economical and ecological purposes each application has to be checked carefully. As well the political discussion regarding environmental pollution, greenhouse effect and emission trading and the guidelines for climate and environmental protection exert massive influence on thermal process technology and pose an appropriate challenge for the companies. Next to costs of labour and raw materials the costs for energy and environmental costs play a decisive role more and more. The pressure on the management thereby incurred may have a lasting effect on innovations regarding increase of energy efficiency, decrease of CO{sub 2}-emission and often on non negligible increase of productivity. Mainly against the background of the highly scheduled European aims for emission reduction and also in consideration of the still proceeding globalisation the usage of state-of-the-art refractory technics in thermal process technology is of particular importance for business success, for reducing of environmental impact and last but not least for conservation and safeguarding of jobs in Europe and Germany. The applications for products made from high-temperature insulation wool in high temperature applications have strongly increased during the last five years. Especially the production capacities of polycrystalline wool (aluminium oxide wool e.g. Altra B72) have been doubled within the last three years. Primarily ultra light weight products made from HTIW are used in industrial furnaces with application temperatures above 1000 C and / or with high thermo-mechanical (thermal shock) and chemical exposure. The outstanding and essential advantages of these materials are obviously: Ultra light weight material with high resilience and flexibility, Optimised energy consumption (energy saving up to 50% compared

  16. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  17. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  18. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  19. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    Science.gov (United States)

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  20. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  1. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  2. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  3. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  4. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  5. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  6. Creep behavior of materials for high-temperature reactor application

    International Nuclear Information System (INIS)

    Schneider, K.; Hartnagel, W.; Iischner, B.; Schepp, P.

    1984-01-01

    Materials for high-temperature gas-cooled reactor (HTGR) application are selected according to their creep behavior. For two alloys--Incoloy-800 used for the live steam tubing of the thorium high-temperature reactor and Inconel-617 evaluated for tubings in advanced HTGRs--creep curves are measured and described by equations. A microstructural interpretation is given. An essential result is that nonstable microstructures determine the creep behavior

  7. Short-time, high temperature mechanical testing of electrically conductive materials

    International Nuclear Information System (INIS)

    Marion, R.H.; Karnes, C.H.

    1975-10-01

    Design and performance details are given for a facility which was developed to obtain the mechanical properties of materials under high heating rate or transient temperature conditions and medium strain rates. The system is shown to be applicable to materials possessing electrical resistivities ranging from that of aluminum to that of graphite without taxing the heating capability. Heating rates as high as 2000 0 K/s in graphite are attained under controlled conditions. Methods of measuring temperature and the effects of expected temperature distributions are discussed. A method for measuring strain valid for transient temperature conditions to 3000 0 K is described. Results are presented for the stress-strain behavior of 316 stainless steel and ATJ(S) graphite obtained for heating times of a few seconds. (auth)

  8. Ten years of high temperature materials research at PSI - An overview paper

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Chen Jiachao

    2014-01-01

    At the Paul Scherrer Institute high temperature materials research for advanced nuclear systems is performed since a decade, formerly by the HT-Mat group and today the advanced nuclear materials (ANM) group. In this paper the activities being conducted in this time are summarized. This includes the study of three major materials classes, intermetallics with a titanium alluminide, nanostructured steel with different ODS candidates, and ceramics with silicon carbide composites. The studies being performed include experimental work, studying the mechanical behavior as function of irradiation exposure and temperature, including also in situ studies such as the creep under ion beam irradiation plus miniaturized samples such as pillars. The microstructure changes as function of these exposures, using electron microscopy on one hand and advanced beamline techniques on the other hand. Part of the finding lead to the development of new damage mechanism models. Complementary to the experimental approach, modelling activities were conducted to understand the basics of the damage mechanisms. The research lead to a consolidation of the candidate materials to the most promising ones, namely the oxide dispersion strengthened steels (ODS) and the silicon carbide based composite materials. The research lead to new, relevant data such as the creep behavior of material under extreme reactor conditions, the embitterment mechanism in advanced materials, and much more. A sketch of the research philosophy and an outline of the main results will be given. (author)

  9. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  10. Elaboration of high-temperature friction polymer material and study of its wear aspects

    International Nuclear Information System (INIS)

    Gventsadze, L.

    2009-01-01

    High-temperature friction composite material is elaborated and its physical, mechanical and tribologic features are studied. It is shown, that addition to the friction material composition of filling material having nanopores -diatomite-and its modification with polyethilensilan leads to friction materials friction coefficient stability and wear resistance increase at high temperatures (400-600 ℃). (author)

  11. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  12. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  13. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1976-01-01

    The results recently obtained from the Dragon program are presented to illustrate materials behavior: (a) effect of temperature on oxidation and carburisation in HTR helium (variation in oxide depth and in C content of AISI 321 after 5000 hours in HTR helium; effect of temperature on surface scale formation in the γ' strengthened alloys Nimonic 80A and 713LC); (b) effect of alloy composition on oxidation and carburisation behavior (influence of Nb and Ti on the corrosion of austenitic steels; influence of Ti and Al in IN-102; weight gain of cast high Ni alloys); (c) effect of environment on creep strength (results of tests for hastelloy X, grade I inconel 625, grade II inconel 625 and inconel 617 in He and air between 750 and 800 0 C)

  14. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  15. Proceedings of Prof. Brahm Prakash birth centenary workshop on high temperature materials and hot structures: souvenir and book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    Traditionally, monolithic ceramics and refractory metals were identified for use at high temperatures. Considerations such as higher operating temperatures, increased thermostructural loads, lower density, etc. brought exotic materials such as ceramic matrix composites, carbon based composites, ODS alloy, intermetallics and thermal barrier coatings to the horizon. Advent of ultra high temperature ceramics and functionally graded materials further pushed the threshold of applicability of high temperature materials and hot structures. Impressive progress in this area has been possible because of the fact that characterization tools along with design and simulation techniques have constantly kept pace with advancement occurring in the processing methods of these materials. The workshop scope includes: Thermal Protection Systems and Materials, Hot Structures, Ceramic and Carbon Matrix Composites, Ultra High Temperature Ceramics, Coating Technology, Simulation and Characterization. Articles relevant to INIS are indexed separately

  16. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available load is carried by the g phase, which is a ductile material; at high temperatures the g phase is weak, and 0966-9795/00/$ - see front matter #2000 Elsevier Science Ltd. All rights reserved. PII: S0966-9795(00)00030-3 Intermetallics 8 (2000) 979?985 www...-temperature phase of ZrO2 containing 4.5 mol% per cent Y2O3 has the cubic ?uorite structure. A 980 F.R.N. Nabarro / Intermetallics 8 (2000) 979?985 face-centred cube of Zr atoms, with 4 Zr atoms in the unit cell, contains a simple cube of 8 O-atoms. On cooling...

  17. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  18. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  19. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  20. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  1. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  2. Spectral emissivity measurements of candidate materials for very high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.; Weber, S.J.; Martin, S.O.; Anderson, M.H. [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, Madison, WI (United States); Sridharan, K., E-mail: kumars@cae.wisc.edu [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, Madison, WI (United States); Allen, T.R. [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Drive, Madison, WI (United States)

    2012-10-15

    Heat dissipation by radiation is an important consideration in VHTR components, particularly the reactor pressure vessel (RPV), because of the fourth power temperature dependence of radiated heat. Since emissivity is the material property that dictates the ability to radiate heat, measurements of emissivities of materials that are being specifically considered for the construction of VHTR become important. Emissivity is a surface phenomenon and therefore compositional, structural, and topographical changes that occur at the surfaces of these materials as a result of their interactions with the environment at high temperatures will alter their emissivities. With this background, an experimental system for the measurement of spectral emissivity has been designed and constructed. The system has been calibrated in conformance with U.S. DoE quality assurance standards using inert ceramic materials, boron nitride, silicon carbide, and aluminum oxide. The results of high temperature emissivity measurements of potential VHTR materials such as ferritic steels SA 508, T22, T91 and austenitic alloys IN 800H, Haynes 230, IN 617, and 316 stainless steel have been presented.

  3. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Nickel, H.

    1992-01-01

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  4. High temperature outgassing tests on materials used in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Holtrop, K.L.; Hansink, M.J.

    2006-01-01

    This article is a continuation of previous work on determining the outgassing characteristics of materials used in the DIII-D magnetic fusion tokamak [K. L. Holtrop, J. Vac. Sci. Technol. A 17, 2064 (1999)]. Achievement of high performance plasma discharges in the DIII-D tokamak requires careful control of impurity levels. Among the techniques used to control impurities are routine bakes of the vacuum vessel to an average temperature of 350 deg. C. Materials used in DIII-D must release only very small amounts of impurities (below 2x10 -6 mole) at this temperature that could be transferred to the first wall materials and later contaminate plasma discharges. To better study the behavior of materials proposed for use in DIII-D at elevated temperatures, the initial outgassing test chamber was improved to include an independent heating control of the sample and a simple load lock chamber. The goal was to determine not only the total degassing rate of the material during baking, but to also determine the gas species composition and to obtain a quantitative estimate of the degassing rate of each species by the use of a residual gas analyzer. Initial results for aluminum anodized using three different processes, stainless steel plated with black oxide and black chrome, and a commercially available fiber optic feedthrough will be presented

  5. Development and evaluation of high temperature materials for power plant

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1992-01-01

    The development of high temperature materials requires the evaluation of the interaction of microstructure and mechanical properties, the implementation of the microstructural aspects in the constitutive equations for the analysis of loads in a high temperature component and verification of the materials reactions. In this way the full potential of materials properties can be better used. This fundamental method is the basis for the formulation of the structural design code KTA 3221 'Metallic HTR Components'. The method of 'design by analysis' is also activated for large internally cooled turbine blades for stationary gas turbines in combined cycle power plants. This kind of exploratory analysis during the dimensioning procedure are discussed with two examples: He/He-heat exchanger produced of NiCr23Co12Mo (Alloy 617) and turbine blades made of superalloys (e.g. IN 738 LC). (author)

  6. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  7. ASM Inaugural Lecture 2009: High temperature superconductors: Materials, mechanisms and applications

    International Nuclear Information System (INIS)

    Roslan Abdul Shukor

    2009-01-01

    A surprising variety of new superconducting materials has been discovered in recent years. Many compounds with light elements such as fullerenes, oxides, borides, nitrides, some organic materials and also heavy fermions have been found to superconductor at various temperatures. Hitherto, superconductors have proven to be highly varied in composition but elusive and mysterious. The juxtaposition of superconductivity and magnetism at the nano scale in some of these new materials has paved the way to a rich and exciting new field in condensed matter and materials research. An overview of superconductor research in Malaysian institutions is presented in this paper. Some of the new superconducting materials and their possible mechanisms, conventional and exotic, are presented. The possible role of lattice vibrations in the mechanisms of high temperature superconductivity and the study of this via acoustic methods are discussed. Frozen flux superconductors in a nano magnet-superconductor hybrid system are also discussed. (author)

  8. Characterization of sapphire: For its material properties at high temperatures

    Science.gov (United States)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  9. Modelling of the high temperature behaviour of metallic materials

    International Nuclear Information System (INIS)

    Mohr, R.

    1999-01-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of a chromium steel and an intermetallic titanium aluminide alloy. (orig.)

  10. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  11. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  12. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, Arvid [ORNL

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  13. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  14. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...... with other similar oxide modules reported in the literature. A maximum power density of 4.5 kW/m2 was obtained for an oxide module comprising of 8 p-n couples at a temperature difference of 496 K, an encouraging result in the context of the present high temperature oxide modules....

  15. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  16. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  17. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  18. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  19. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Norton, J.F. [Cranfield University, Power Generation Technology Centre, Cranfield, Beds, MK43 0AL (United Kingdom); Consultant in Corrosion Science and Technology, Hemel Hempstead, Herts HP1 1SR (United Kingdom); McColvin, G. [Siemens Industrial Turbines Ltd., Lincoln, LN5 7FD (United Kingdom)

    2005-11-01

    The development of abradeable gas turbine seals for higher temperature duties has been the target of an EU-funded R and D project, ADSEALS, with the aim of moving towards seals that can withstand surface temperatures as high as {proportional_to} 1100 C for periods of at least 24,000 h. The ADSEALS project has investigated the manufacturing and performance of a number of alternative materials for the traditional honeycomb seal design and novel alternative designs. This paper reports results from two series of exposure tests carried out to evaluate the oxidation performance of the seal structures in combustion gases and under thermal cycling conditions. These investigations formed one part of the evaluation of seal materials that has been carried out within the ADSEALS project. The first series of three tests, carried out for screening purposes, exposed candidate abradeable seal materials to a simulated natural gas combustion environment at temperatures within the range 1050-1150 C in controlled atmosphere furnaces for periods of up to {proportional_to} 2,500 h with fifteen thermal cycles. The samples were thermally cycled to room temperature on a weekly basis to enable the progress of the degradation to be monitored by mass change and visual observation, as well as allowing samples to be exchanged at planned intervals. The honeycombs were manufactured from PM2000 and Haynes 214. The backing plates for the seal constructions were manufactured from Haynes 214. Some seals contained fillers or had been surface treated (e.g. aluminised). The second series of three tests were carried out in a natural gas fired ribbon furnace facility that allowed up to sixty samples of candidate seal structures (including honeycombs, hollow sphere structures and porous ceramics manufactured from an extended range of materials including Aluchrom YHf, PM2Hf, Haynes 230, IN738LC and MarM247) to be exposed simultaneously to a stream of hot combustion gas. In this case the samples were cooled

  20. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  1. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  2. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  3. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  4. The materials programme for the high-temperature gas-cooled reactor in the Federal Republic of Germany: Status of the development of high-temperature materials, integrity concept, and design codes

    International Nuclear Information System (INIS)

    Nickel, H.; Bodmann, E.; Seehafer, H.J.

    1990-01-01

    During the last 15 years, the research and development of materials for high temperature gas-cooled reactor (HTGR) applications in the Federal Republic of Germany have been concentrated on the qualification of high-temperature structural alloys. Such materials are required for heat exchanger components of advanced HTGRs supplying nuclear process heat in the temperature range between 750 deg. and 950 deg. C. The suitability of the candidate alloys for service in the HTGR has been established, and continuing research is aimed at verification of the integrity of components over the envisaged service lifetimes. The special features of the HTGR which provide a high degree of safety are the use of ceramics for the core construction and the low power density of the core. The reactor integrity concept which has been developed is based on these two characteristics. Previously, technical guidelines and design codes for nuclear plants were tailored exclusively to light water reactor systems. An extensive research project was therefore initiated which led to the formulation of the basic principles on which a high temperature design code can be based. (author)

  5. Pseudo-icosahedral Cr55Al232 -δ as a high-temperature protective material

    Science.gov (United States)

    Rosa, R.; Bhattacharya, S.; Pabla, J.; He, H.; Misuraca, J.; Nakajima, Y.; Bender, A. D.; Antonacci, A. K.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Tritt, T. M.; Aronson, M. C.; Simonson, J. W.

    2018-03-01

    We report here a course of basic research into the potential suitability of a pseudo-icosahedral Cr aluminide as a material for high-temperature protective coatings. Cr55Al232 -δ [ δ =2.70 (6 ) ] exhibits high hardness at room temperature as well as low thermal conductivity and excellent oxidation resistance at 973 K, with an oxidation rate comparable to those of softer, denser benchmark materials. The origin of these promising properties can be traced to competing long-range and short-range symmetries within the pseudo-icosahedral crystal structure, suggesting new criteria for future materials research.

  6. Some metallic materials and fluoride salts for high temperature applications

    International Nuclear Information System (INIS)

    Hosnedl, P.; Hron, M.; Matal, O.

    2009-01-01

    There has been a special Ni base alloy MONICR for high temperature applications in fluoride salt environments developed in the framework of the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic. Selected results of MONICR alloy tests and results of semi products fabrication from this alloy are discussed in the paper. The results of the structural materials tests are applied on semi-products and for the design of the testing devices as the autoclave in loop arrangement for high temperature fluoride salts applications. Material properties other Ni base alloys are compared to those of MONICR. Corrosion test results of the alloy A686 in the LiF - NaF - ZrF 4 molten salt are provided and compared to the measured values of the polarizing resistance. (author)

  7. High temperature viscoplastic ratchetting: Material response or modeling artifact

    International Nuclear Information System (INIS)

    Freed, A.D.

    1991-01-01

    Ratchetting, the net accumulation of strain over a loading cycle, is a deformation mechanism that leads to distortions in shape, often resulting in a loss of function that culminates in structural failure. Viscoplastic ratchetting is prevalent at high homologous temperatures where viscous characteristics are prominent in material response. This deformation mechanism is accentuated by the presence of a mean stress; a consequence of interaction between thermal gradients and structural constraints. Favorable conditions for viscoplastic ratchetting exist in the Stirling engines being developed by the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) for space and terrestrial power applications. To assess the potential for ratchetting and its effect on durability of high temperature structures requires a viscoplastic analysis of the design. But ratchetting is a very difficult phenomenon to accurately model. One must therefore ask whether the results from such an analysis are indicative of actual material behavior, or if they are artifacts of the theory being used in the analysis. There are several subtle aspects in a viscoplastic model that must be dealt with in order to accurately model ratchetting behavior, and therefore obtain meaningful predictions from it. In this paper, some of these subtlties and the necessary ratchet experiments needed to obtain an accurate viscoplastic representation of a material are discussed

  8. Analysis and description of high temperature alloy data and their representation in the high temperature materials data bank of the Joint Research Centre

    International Nuclear Information System (INIS)

    Krefeld, R.; Kroeckel, H.; Fattori, G.; Maurandy, C.

    1985-01-01

    In the frame of the high temperature materials programme the JRC has set up a pilot data bank for mechanical and corrosion properties of materials for high temperature application in energy conversion and chemical systems. The scope of the data bank content embraces mechanical properties and corrosion tests with emphasis on 600 to 1000 0 C test temperature and C-O-H type test environments. The basic information on materials properties obtained by test is analysed and the data items and their structure are described. The logical structure of the 250 data items involved and their organization in the data bank by file and record using ADABAS dbms is presented. The design is discussed with respect to its adaptability to changes in the scope of data content and to its versatile data access resulting in easy handling of complex structured queries which represent the interest of materials scientists and engineers as well as those of non-specialist users. (orig.)

  9. Specialists' meeting on high temperature metallic materials for application in gas-cooled reactors

    International Nuclear Information System (INIS)

    At the meeting overviews of current programmes for the development of high temperature materials in Japan, F.R. Germany and the United States of America were presented. Some papers were presented dealing with various aspects of microstructural studies, surface reactions and the changes of microstructure and dimensions due mainly to the associated interfacial material transports, protective surface coatings for HTGR and AGR applications. Other topics presented were mechanical properties of materials and also the influence of materials' properties data on design at temperatures in the creep region where time dependent behaviour must be considered

  10. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  11. Heat treated 9 Cr-1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  12. High-Temperature Release of SO2 from Calcined Cement Raw Materials

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of alternative fuels in the material inlet end of cement rotary kilns, local reducing conditions may occur and cause reductive decomposition of sulfates from calcined cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2...... concentration, which may cause deposit formation in the kiln system. In this study, the release of sulfur from calcined cement raw materials under both oxidizing and reducing conditions is investigated. The investigations include thermodynamic equilibrium calculations in the temperature interval of 800–1500 °C...... and experiments in a tube furnace reactor in the temperature interval of 900–1100 °C. The investigated conditions resemble actual conditions in the material inlet end of cement rotary kilns. It was found that the sulfates CaSO4, K2SO4, and Na2SO4 were all stable under oxidizing conditions but began to decompose...

  13. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  14. Ductility of brazing assemblies with high-temperature materials

    International Nuclear Information System (INIS)

    Colbus, J.; De Paoli, A.

    1977-01-01

    Brazing assemblies with the high temperature materials X8CrNiNb1613, X12CrNiMo12 and X8NiCrAlTiMo7020 have been produced using different solder metals. These brazing assemblies have been studied with the emphasis on the interrelation between microstructure and ductility. Besides the ordinary impact bend tests of notched and unnotched brazed joints, the impact bend tests of unnotched brazed joints with drawing of a Strength-Way-Diagram have been added for better results. (GSC) [de

  15. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  16. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  17. Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials

    Science.gov (United States)

    Lee, Yu Seong; Kim, Suk Jun; Kim, Byeong Geun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2017-05-01

    Metallic glass (MG) can be a candidate for an alternative brazing material of high-temperature thermoelectric modules, since we can expect both a lower brazing temperature and a high operating temperature for the junction from the MG brazers. Another advantage of MG powders is their outstanding oxidation resistance, namely, high-temperature durability in atmosphere. We fabricated three compositions of Al-based MGs—Al-Y-Ni, Al-Y-Ni-Co, and Al-Y-Ni-Co-La—by using the melt spinning process, and their T gs were 273°C, 264°C, and 249°C, respectively. The electrical resistivity of the Al-Y-Ni MG ribbon dropped significantly after annealing at 300°C. The electrical resistivity of crystallized Al-Y-Ni reduced down to 0.03 mΩ cm, which is an order of magnitude lower than that of the amorphous one. After the MG ribbons were pulverized to sub-100 μm, the average particle size was about 400 μm.

  18. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  19. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  20. THE INFLUENCE OF HIGH-TEMPERATURE BRAZING UPON INDICATORS OF MATERIAL BRAZEABILITY

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2010-03-01

    Full Text Available The effect of both common and extreme parameters of AISI 321stainless steel high-temperature brazing using the NI 102 brazing alloy upon material brazeability indicators. The ascertainment of the wetting angle, the area over which Ni brazing alloy spreads, the width of AISI 321 steel's dissolubility band, and the width of Ni brazing alloy’s diffusion band into the basic material.

  1. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  2. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  3. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  4. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  5. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  6. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  7. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  8. Long-term creep behavior of high-temperature gas turbine materials under constant and variable stress

    International Nuclear Information System (INIS)

    Granacher, J.; Preussler, T.

    1987-01-01

    Within the framework of the documented research project, extensive creep rupture tests were carried out with characteristic, high-temperature gas turbine materials for establishment of improved design data. In the range of the main application temperatures and in stress ranges down to application-relevant values the tests extended over a period of about 40,000 hours. In addition, long-term annealing tests were carried out in the most important temperature ranges for the measurement of the density-dependent straim, which almost always manifested itself as a material contraction. Furthermore, hot tensile tests were carried out for the description of the elastoplastic short-term behavior. Several creep curves were derived from the results of the different tests with a differentiated evaluation method. On the basis of these creep curves, creep equations were set up for a series of materials which are valid in the entire examined temperature range and stress range and up to the end of the secondary creep range. Also, equations for the time-temperature-dependent description of the material contraction behavior were derived. With these equations, the high-temperature deformation behavior of the examined materials under constant creep stress can be described simply and application-oriented. (orig.) With 109 figs., 19 tabs., 77 refs [de

  9. Recent Progress in Nanostructured Oxide TE Materials for Power Generation at High Temperatures

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    Thermoelectric (TE) materials, which can convert waste heat into electricity, could play an important role in a global sustainable energy solution and environmental problems. Metal oxides have been considered as potential TE materials for power generation that can operate at high temperatures...

  10. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  11. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  12. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  13. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  14. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  15. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  16. Literature review of thermal and radiation performance parameters for high-temperature, uranium dioxide fueled cermet materials

    International Nuclear Information System (INIS)

    Haertling, C.; Hanrahan, R.J.

    2007-01-01

    High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO 2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO 2 fuel particles, use of oxide stabilizers in the UO 2 , minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet

  17. Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Woisetschlaeger, Mischa, E-mail: Mischa.woisetschlager@lio.se [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Lussi, Adrian, E-mail: anders.persson@cmiv.lio.se [Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern (Switzerland); Persson, Anders, E-mail: adrian.lussi@zmk.unibe.ch [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Jackowski, Christian, E-mail: christian.jackowski@irm.uzh.ch [Center for Medical Image Science and Visualisation (CMIV), University Hospital Linkoeping, Linkoeping University, 58185 Linkoeping (Sweden); Institute of Legal Medicine, University of Zuerich, Winterthurerstrasse 190/52, 8057 Zuerich (Switzerland)

    2011-11-15

    Objectives: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure. Methods: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale. Results: The majority of filling materials diminished in size at temperatures {>=}400 deg. C. HU values were stable for all materials up till 200 deg. C, and only slightly changed up to 600 deg. C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 deg. C. Conclusions: Over 600 deg. C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 deg. C and have to be optimized for bodies exposed to higher temperatures.

  18. Fire victim identification by post-mortem dental CT: Radiologic evaluation of restorative materials after exposure to high temperatures

    International Nuclear Information System (INIS)

    Woisetschlaeger, Mischa; Lussi, Adrian; Persson, Anders; Jackowski, Christian

    2011-01-01

    Objectives: The aim of this study was to evaluate the use of high resolution CT to radiologically define teeth filling material properties in terms of Hounsfield units after high temperature exposure. Methods: 122 human molars with 10 different filling materials at defined filling diameters were examined. The teeth were CT scanned both before and after the exposure to different temperatures. After image reconstruction, the teeth and filling materials were analyzed regarding their morphology and Hounsfield units (HU) using an extended HU scale. Results: The majority of filling materials diminished in size at temperatures ≥400 deg. C. HU values were stable for all materials up till 200 deg. C, and only slightly changed up to 600 deg. C. Cerec, Dyract and dentin showed only minor changes in HU at all temperatures. The other materials, inclusive enamel, showed specific patterns, either increasing or decreasing in HU with increasing temperatures over 600 deg. C. Conclusions: Over 600 deg. C the filling materials show specific patterns that can be used to discriminate filling materials. Ultra high resolution CT may improve the identification processes in fire victims. Existing 3D visualization presets for the dentition can be used until 600 deg. C and have to be optimized for bodies exposed to higher temperatures.

  19. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    of the dopants and dopant concentrations, a large power factor was obtainable. The sample with the composition of Zn0.9Cd0.1Sc0.01O obtained the highest zT ∼0.3 @1173 K, ~0.24 @1073K, and a good average zT which is better than the state-of-the-art n-type thermoelectric oxide materials. Meanwhile, Sc-doped Zn......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  20. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material

    International Nuclear Information System (INIS)

    Qian, Tingting; Li, Jinhong; Min, Xin; Deng, Yong; Guan, Weimin; Ning, Lei

    2015-01-01

    Graphical abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCMs’ applications is not limited to low temperatures only. In the present study, three kinds of PCMs: polyethylene glycol (PEG), lithium nitrate, and sodium sulfate were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three kinds of PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. - Highlights: • Low-temperature PEG/diatomite was prepared. • Middle-temperature LiNO 3 /diatomite was prepared. • High-temperature Na 2 SO 4 /diatomite was prepared. - Abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCM’s application is not only limited to low temperatures. In this study, polyethylene glycol (PEG), lithium nitrate (LiNO 3 ), and sodium sulfate (Na 2 SO 4 ) were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. The maximum loads of PEG, LiNO 3 , and Na 2 SO 4 in diatomite powder could respectively reach 58%, 60%, and 65%, while PCM melts during the solid–liquid phase transformation. SEM, XRD, and FT-IR results indicated that PCMs were well dispersed into diatomite pores and no chemical changes took place during the heating and cooling process. The prepared fs-PCMs were quite stable in terms of thermal and chemical manner even after a 200-cycle of melting and freezing. The resulting composite fs-PCMs were promising candidates to

  1. 22. lecture meeting of the association for heat-resistant steels and the association for high temperature materials 'long-term performance of heat-resistant steels and high-temperature materials'. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The proceedings volume contains 14 full papers discussing the long-term performance of high-temperature resistant materials (creep, creep fatigue, crack growth). 13 papers have been analysed and processed for separate retrieval from the ENERGY database. (orig./CB) [de

  2. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  3. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2015-01-01

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  4. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  5. High temperature metallic materials for gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The Specialists' Meeting was organized in conjunction with an earlier meeting on this topic held in Vienna, Austria, 1981, which provided for a comprehensive review of the status of materials development and testing at that time and for a description of test facilities. This meeting provided an opportunity (1) to review and discuss the progress made since 1981 in the development, testing and qualification of high temperature metallic materials, (2) to critically assess results achieved, and (3) to give directions for future research and development programmes. In particular, the meeting provided a form for a close interaction between component designers and materials specialists. The meeting was attended by 48 participants from France, People's Republic of China, Federal Republic of Germany, Japan, Poland, Switzerland, United Kingdom, USSR and USA presenting 22 papers. The technical part of the meeting was subdivided into four technical sessions: Components Design and Testing - Implications for Materials (4 papers); Microstructure and Environmental Compatibility (4 papers); Mechanical Properties (9 papers); New Alloys and Developments (6 papers). At the end of the meeting a round table discussion was organized in order to summarize the meeting and to make recommendations for future activities. This volume contains all papers presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  6. Feasibility study of electric motors constructed with high temperature superconducting materials

    International Nuclear Information System (INIS)

    Jordan, H.E.

    1989-01-01

    The potential application of high temperature superconducting (HTSC) materials to electric motors is discussed. The specific application area of motors in electric power generating stations has been selected and a feasible study has been initiated on the use of HTSC materials in the design of motors for this application. A progress report on this feasibility study is presented. Technical challenges in both the development of HTSC wire and the design of a motor to utilize this wire are discussed. Finally, the results of design calculations comparing a superconducting motor with one of conventional design are presented assuming that success can be achieved in overcoming the technical problems which must be resolved to produce a high performance HTSC wire

  7. Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials

    Science.gov (United States)

    Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.

    1994-01-01

    The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.

  8. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  9. ODS-materials for high temperature applications in advanced nuclear systems

    Directory of Open Access Journals (Sweden)

    C.C. Eiselt

    2016-12-01

    Full Text Available A ferritic ODS-alloy (Fe-14Cr-1W-0.25Ti has been manufactured by application of the powder metallurgical production route involving at first mechanical alloying of ∼10kg pre-alloyed steel powder together with an Y2O3 addition for 12h in a high energy industrial ball mill under hydrogen atmosphere at the company ZOZ GmbH. As a next step, one part of the alloyed powder was hot extruded into rods while another portion was hot isostatically pressed into plates. Both materials were then heat treated. A characterization program on these ODS-alloy production forms included microstructural and mechanical investigations: SANS and TEM assume the existence of Y2Ti2O7 nano clusters and show a bimodal distribution of ODS-particle sizes in both ODS variants. EBSD maps showed a strong 〈110〉 texture corresponding to the α fiber for the hot extruded ODS and a slight 〈001〉 texture for the hipped ODS material. Fracture toughness tests in different specimen orientations (extruded ODS with mini 0.2T C(T specimens together with Charpy impact tests revealed anisotropic mechanical properties: Promising (fracture toughness levels were obtained in the specimen orientation perpendicular to the extrusion direction, while the toughness levels remained low in extrusion direction and generally for the hipped ODS material at all test temperatures. The fracture toughness tests were performed according to ASTM E 1921 and 1820 standards.

  10. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  11. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  12. Microstructure and mechanical properties of metallic high-temperature materials. Research report

    International Nuclear Information System (INIS)

    Mughrabi, H.; Gottstein, G.; Mecking, H.; Riedel, H.; Toboloski, J.

    1999-01-01

    This volume contains 38 lectures of research studies performed in the course of the Priority Programme 'Microstructure and Mechanical Properties of Metallic High-Temperature Materials' supported by the Deutsche Forschungsgemeinschaft (DFG) over a period of six years from 1991 to 1997. The four materials selected were: 1. light metal PM-aluminium and titanium base alloys; 2. ferritic chromium and austenitic alloy 800 steels; 3. (monocrystalline) nickel-base superalloys; and 4. nickel- and iron-base oxide-dispersion-strengthened superalloys. All papers have been abstracted separately for the ENERGY database

  13. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  14. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  15. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  16. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  17. Multiyear Program Plan for the High Temperature Materials Laboratory; FINAL

    International Nuclear Information System (INIS)

    Arvid E. Pasto

    2000-01-01

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO(sub x) and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required

  18. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  19. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  20. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  1. Pressure Resistance Welding of High Temperature Metallic Materials

    International Nuclear Information System (INIS)

    Jerred, N.; Zirker, L.; Charit, I.; Cole, J.; Frary, M.; Butt, D.; Meyer, M.; Murty, K.L.

    2010-01-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400 C has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  2. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  3. Nano-Like Effects in Crystalline Thermoelectric Materials at High Temperatures

    Science.gov (United States)

    Korzhuev, M. A.; Katin, I. V.

    2013-05-01

    The mechanisms of improving the figure of merit Z and power parameter W of thermoelectric materials (TEMs) in the transitions λph→a and λe→a are considered (Here λph and λe are the mean free path of the phonons and electrons in the sample, and a is the inter atomic distance). It is shown that the same mechanisms are responsible for the growth of Z and W crystalline TEMs at high temperatures.

  4. Design and preliminary analysis of in-vessel core catcher made of high-temperature ceramics material in PWR

    International Nuclear Information System (INIS)

    Xu Hong; Ma Li; Wang Junrong; Zhou Zhiwei

    2011-01-01

    In order to protect the interior wall of pressure vessel from melting, as an additional way to external reactor vessel cooling (ERVC), a kind of in-vessel core catcher (IVCC) made of high-temperature ceramics material was designed. Through the high-temperature and thermal-resistance characteristic of IVCC, the distributing of heat flux was optimized. The results show that the downward average heat flux from melt in ceramic layer reduces obviously and the interior wall of pressure vessel doesn't melt, keeping its integrity perfectly. Increasing of upward heat flux from metallic layer makes the upper plenum structure's temperature ascend, but the temperature doesn't exceed its melting point. In conclusion, the results indicate the potential feasibility of IVCC made of high-temperature ceramics material. (authors)

  5. MICROWAVE MEASUREMENT OF REFRACTORY MATERIALS AT HIGH-TEMPERATURE

    International Nuclear Information System (INIS)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-01-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  6. Microwave Measurement of Refractory Materials at High-Temperature

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  7. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    International Nuclear Information System (INIS)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In

    2000-03-01

    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  8. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  9. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  10. High temperature superconductor bulk materials. Fundamentals - processing - properties control - application aspects

    International Nuclear Information System (INIS)

    Krabbes, G.; Fuchs, G.; Canders, W.R.; May, H.; Palka, R.

    2006-01-01

    This book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. The authors provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. This book contains the following chapters: 1. Fundamentals 2. Growth and melt processing of YBCO 3. Pinning-relevant defects in bulk YBCO 4. Properties of bulk YBCO 5. Trapped fields 6. Improved YBCO based bulk superconductors and functional elements 7. Alternative systems 8. Peak effect 9. Very high trapped fields in YBCO permanent magnets 10. Engineering aspects: Field distribution in bulk HTSC 11. Inherently stable superconducting magnetic bearings 12. Application of bulk HTSCs in electromagnetic energy converters 13. Applications in magnet technologies and power supplies

  11. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    OpenAIRE

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  12. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  13. Thermal diffusivity measurements of liquid materials at high temperature with the ''laser flash'' method

    International Nuclear Information System (INIS)

    Otter, Claude; Vandevelde, Jean

    1982-01-01

    Two solutions, one analytical and the other numerical are proposed to solve the thermokinetic problem encountered when measuring the thermal diffusivity of liquid materials at very high temperature (T>3123K). The liquid material is contained in a parallel faced vessel. This liquid is traversed by a short thermal pulse from a relaxed laser. The temperature response of the back face of the measurement cell is analysed. The first model proposed which does not take thermal losses into consideration, is a mathematical model derived from the ''two layer model'' (Larson and Koyama, 1968) extended to ''three layers''. In order to take the possibility of thermal losses to the external environment at high temperature into consideration, a Crank-Nicolson (1947) type numerical model utilizing finite differences is employed. These thermokinetic studies were performed in order to interpret temperature response curves obtained from the back face of a tungsten-liquid UO 2 -tungsten thermal wall, the purpose of the measurements made being to determine the thermal properties of liquid uranium oxide [fr

  14. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  15. Acoustic levitation for high temperature containerless processing in space

    Science.gov (United States)

    Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.

  16. High-temperature thermal storage systems for advanced solar receivers materials selections

    Science.gov (United States)

    Wilson, D. F.; Devan, J. H.; Howell, M.

    1990-01-01

    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.

  17. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  18. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  19. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  20. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  1. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  2. Innovative Health Monitoring Techniques for High Temperature Composites

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature composite materials, which include ceramic matrix composites (CMCs), carbon-carbon and polyimide composites, will be essential for future space...

  3. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  4. Effect of high temperatures on cement composite materials in concrete structures

    Czech Academy of Sciences Publication Activity Database

    Bodnárová, L.; Válek, J.; Sitek, Libor; Foldyna, Josef

    2013-01-01

    Roč. 10, č. 2 (2013), s. 173-180 ISSN 1214-9705 R&D Projects: GA MŠk ED2.1.00/03.0082; GA ČR GAP104/12/1988 Institutional support: RVO:68145535 Keywords : high temperature * load resistance * concrete * reinforcing of mine works * fiber reinforcement Subject RIV: JJ - Other Materials Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_06_Bodnirovi_173-180.pdf

  5. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  6. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials

    International Nuclear Information System (INIS)

    Lorrette, Ch.

    2007-04-01

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  7. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H

    2005-08-15

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  8. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Directory of Open Access Journals (Sweden)

    Emília Satoshi Miyamaru Seo

    2004-03-01

    Full Text Available High temperature solid oxide fuel cells (SOFCs offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of NOx and SOx emissions. The high operating temperature (950-1000 °C used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute in São Paulo, have been presented.

  9. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    Science.gov (United States)

    Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)

    1991-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.

  10. A simple method for the investigation of the high temperature plasticity of metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chinh, N.Q. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary))

    1993-11-01

    The indentation creep test is a powerful and quick method for the investigation of the high temperature plasticity of various materials. During creep test a small cylindrical punch is pressed at constant loads into the surface of the sample and the penetration depth is registered as a function of testing time. On the basis of the creep curves taken at various temperatures and loads the strain rate sensitivity and the activation energy of the steady-state creep process can be determined. The main advantage of this test is that it needs only a small amount of testing material. In this paper the usefullness of this method illustrated by some results obtained on superplastic and non superplastic Al alloys. The indentation results are compared with tensile data obtained on the same materials. (orig.).

  11. Contribution to the study of superconducting magnets using high transition temperature superconducting materials

    International Nuclear Information System (INIS)

    Lecrevisse, Thibault

    2012-01-01

    The new industrial superconductors using high critical temperature compounds offer new possibilities for superconducting magnetism. Indeed they allow higher magnetic field with the same classical cryogenics at 4.2 K on one hand, and on the other hand they also pave the way for superconducting magnets working between 10 K and 30 K. The high temperature superconductors are then needed in order to produce magnetic fields higher than 16 T (case of HTS dipole insert for Large Hadron Collider at CERN) or to increase the specific density stored in one SMES (Superconducting Magnetic Energy Storage, in the case of the SuperSMES ANR Project).Nevertheless the indisputable assets (critical temperature, critical magnetic field, mechanical stresses) brought by the use of High critical temperature superconductors like YBCO, used in superconducting magnets, require to solve some challenges. Their behavior is still badly understood, especially during the resistive transitions. To succeed in protecting these conductors we need a new reflection on protection schemes designed to avoid the thermal and mechanical damages. The answer to the question: 'Can we use those materials in the long run inside superconducting magnets?' is now inescapable.Some answers are given here. The use of the conductors is approached through various experimental studies to understand the material (electrical characterization and modeling of the critical surface) and to define the key stages of high critical temperature superconducting magnets manufacturing (work on the junctions between conductors and pancakes). This study led to the creation of two coils in order to identify the issues related to the use of YBCO tapes. A numerical thermo-electrical model of the high critical temperature superconductor has been developed and a numerical code based on the CEA software CASTEM (Finish Elements Model) allowed to study the resistive transition (or quench) behavior of those conductor and coil. The code has been

  12. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  13. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  14. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  15. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  16. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  17. Abstracts of The First Polish-US Conference on High Temperature Superconductivity

    International Nuclear Information System (INIS)

    1995-01-01

    The current problems in high temperature superconductivity science have been presented at the conference. The two main topics have been mostly represented: superconducting material research and fundamental physical research on superconductivity mechanisms. Superconducting material preparation, chemical composition, magnetic and electrical properties of different type of high temperature superconductors, material structure and its influence on superconducting properties and related problems were included in the first of the general topics. In the range of second general topic of the two listed above, many theoretical models being applied for explanation of superconductivity mechanism in different systems up and below transition temperature were presented

  18. InGaN High-Temperature Photovoltaic Cells

    Science.gov (United States)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  19. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  20. Self-propagating high-temperature synthesis of TiC-WC composite materials

    International Nuclear Information System (INIS)

    Mas-Guindal, M.J.; Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2006-01-01

    TiC-WC composites have been obtained in situ by self-propagating high-temperature synthesis (SHS) from a mixture of compacted powders of elemental titanium, tungsten and graphite. The Rietveld method has proved to be a useful tool to quantify the different phases in the reaction and calculate the cell parameters of the solid solution found in the products. The reaction has also been followed in real time by X-ray diffraction at the European Synchrotron Radiation Facility (ESRF ID-11 Materials Science Beamline). The mechanism of the reaction is discussed in terms of the diffusion of liquid titanium to yield titanium carbide with a solid solution of tungsten. The microstructures of the materials obtained by this method are presented

  1. New Oxide Materials for an Ultra High Temperature Environment

    Energy Technology Data Exchange (ETDEWEB)

    Perepezko, John H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering

    2017-11-13

    In this project, a new oxide material, Hf6Ta2O17 has been successfully synthesized by the controlled oxidization of Hf-Ta alloys. This oxide exhibits good oxidation resistance, high temperature phase stability up to more than 2000°C, low thermal conductivity and thus could serve as a component or a coating material in an ultrahigh temperature environment. We have examined the microstructure evolution and phase formation sequence during the oxidation exposure of Hf-Ta alloys at 1500°C and identified that the oxidation of a Hf-26.7atomic %Ta alloy leads to the formation of a single phase adherent Hf6Ta2O17 with a complex atomic structure i.e. superstructure. The overall reactive diffusion pathway is consistent with the calculated Hf-Ta-O ternary phase diagram. Besides the synthesis of Hf6Ta2O17 superstructure by oxidizing Hf-Ta alloys, we have also developed a synthesis method based upon the reactive sintering of the correct ratios of mixed powders of HfO2 and Ta2O5 and verified the low thermal conductivity of Hf6Ta2O17 superstructure on these samples. We have completed a preliminary analysis of the oxidation kinetics for Hf6Ta2O17, which shows an initial parabolic oxidation kinetics.

  2. High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam

    International Nuclear Information System (INIS)

    Hudson, M.L.

    1985-12-01

    When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign

  3. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  4. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    Energy Technology Data Exchange (ETDEWEB)

    Ashokkumar, Saranya, E-mail: saras@food.dtu.dk [Accoat A/S, Munkegardsvej 16, 3490 Kvistgard (Denmark); Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Adler-Nissen, Jens [Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Moller, Per [Department of Materials Science and Engineering, DTU Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2012-12-15

    Graphical abstract: Plot of cos {theta} versus temperature for metal and ceramic surfaces where cos {theta} rises linearly with increase in temperature. Highlights: Black-Right-Pointing-Pointer cos {theta} of olive oil on different surface materials rises linearly with increase in temperature. Black-Right-Pointing-Pointer Slopes are much higher for quasicrystalline and polymers than for ceramics. Black-Right-Pointing-Pointer Increase in surface roughness and surface flaws increases surface wettability. Black-Right-Pointing-Pointer Contact angle values gave information for grouping easy-clean polymers from other materials. Black-Right-Pointing-Pointer Contact angle measurements cannot directly estimate the cleanability of a surface. - Abstract: The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 Degree-Sign C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO{sub 2}), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos {theta} values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos {theta} values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between

  5. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  6. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  7. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  8. TECHNICAL TRAINING SEMINAR: High Temperature Superconductors: Progress and Issues

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Monday 24 June from 14:30 to 15:30 - Training Centre Auditorium - bldg. 593-11 High Temperature Superconductors: Progress and Issues Prof. Jan Evetts / UNIVERSITY OF CAMBRIDGE, Department of Materials Science and Metallurgy, UK Grappling with grain boundaries: Current transport processes in granular High Temperature Superconductors (HTS) The development of High Temperature Superconductors, seen from a materials scientist's point of view, is relevant to the superconductivity community at CERN: their possible high current applications can include high performance magnets for future accelerators. There is an urgent need to develop a quantitative description of HTS conductors in terms of their complex anisotropy, inhomogeneity and dimensionality. This is essential both for the practical specification of a conductor and for charting routes to conductor optimisation. The critical current, the n-value, dissipation and quenching characteristics are amongst most important parameters that make up an engineering specifi...

  9. First demonstration report on the high temperature materials data Bank of JRC

    International Nuclear Information System (INIS)

    1983-01-01

    The High Temperature Materials Programme of the Joint Research Centre has among its activities a project which has the objective to develop a computerised data bank containing mechanical property data of alloys for high temperature applications. The pilot phase of this project during the multiannual programme 1980-1983 is restricted to a few alloys and properties. The present scope comprises tensile, creep and fatigue test results with emphasis on 600-1000 0 C test temperature and C-O-H environments for alloys covered by the specifications of the ''Alloy 800'' group. The data bank is now operational. This report is the first presentation of the data bank characteristics, contents and some output illustrations. It contains a descriptive part on the system and its structure and on the characteristics and quantity of the present data, and an illustrative part showing examples of data bank processed output. The selected print-outs are generated by interactive on-line searches and subsequent numerical or graphical processing in the data bank facilities at Petten and Ispra which are linked by EURONET

  10. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  11. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  12. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  13. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Bjornard, Trond; Hockert, John

    2011-01-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC and A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC and A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC and A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR (Pty) and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC and A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR and D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present

  14. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  15. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials.

    Science.gov (United States)

    Bunn, Jonathan Kenneth; Fang, Randy L; Albing, Mark R; Mehta, Apurva; Kramer, Matthew J; Besser, Matthew F; Hattrick-Simpers, Jason R

    2015-07-10

    High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe–Cr–Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h.

  16. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-15

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA.

  17. Design and Fabrication Technique of the Key Components for Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Song, Ki Nam; Kim, Yong Wan

    2006-12-01

    The gas outlet temperature of Very High Temperature Reactor (VHTR) may be beyond the capability of conventional metallic materials. The requirement of the gas outlet temperature of 950 .deg. C will result in operating temperatures for metallic core components that will approach very high temperature on some cases. The materials that are capable of withstanding this temperature should be prepared, or nonmetallic materials will be required for limited components. The Ni-base alloys such as Alloy 617, Hastelloy X, XR, Incoloy 800H, and Haynes 230 are being investigated to apply them on components operated in high temperature. Currently available national and international codes and procedures are needed reviewed to design the components for HTGR/VHTR. Seven codes and procedures, including five ASME Codes and Code cases, one French code (RCC-MR), and on British Procedure (R5) were reviewed. The scope of the code and code cases needs to be expanded to include the materials with allowable temperatures of 950 .deg. C and higher. The selection of compact heat exchangers technology depends on the operating conditions such as pressure, flow rates, temperature, but also on other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. Welding, brazing, and diffusion bonding are considered proper joining processes for the heat exchanger operating in the high temperature and high pressure conditions without leakage. Because VHTRs require high temperature operations, various controlled materials, thick vessels, dissimilar metal joints, and precise controls of microstructure in weldment, the more advanced joining processes are needed than PWRs. The improved solid joining techniques are considered for the IHX fabrication. The weldability for Alloy 617 and Haynes 230 using GTAW and SMAW processes was investigated by CEA

  18. Minimizing material damage using low temperature irradiation

    International Nuclear Information System (INIS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-01-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to −80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use. - Highlights: ► A study is performed to quantify low temperature irradiation effects on polymer materials and BIs. ► Low temperature irradiation alters the balance of cross-linking and chain scissoning in polymers. ► Low temperatures provide radioprotection for BIs. ► Benefits of low temperatures are application specific and must be considered when dose setting.

  19. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  20. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  1. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  2. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  3. Minimizing material damage using low temperature irradiation

    Science.gov (United States)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  4. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, the ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. (orig.)

  5. Outward transport of high-temperature materials around the midplane of the solar nebula.

    Science.gov (United States)

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  6. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... The question of how to evaluate the suitability of a given material for use in a magnetocaloric device is covered in some detail, including a critical assessment of a number of common performance metrics. Of particular interest is which non-magnetocaloric properties need to be considered in this connection....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented....

  7. Lightweight, High-Temperature Radiator for Space Propulsion

    Science.gov (United States)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  8. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  9. New highly efficient piezoceramic materials

    International Nuclear Information System (INIS)

    Dantsiger, A.Ya.; Razumovskaya, O.N.; Reznichenko, L.A.; Grineva, L.D.; Devlikanova, R.U.; Dudkina, S.I.; Gavrilyachenko, S.V.; Dergunova, N.V.

    1993-01-01

    New high efficient piezoceramic materials with various combination of parameters inclusing high Curie point for high-temperature transducers using in atomic power engineering are worked. They can be used in systems for heated matters nondestructive testing, controllers for varied industrial power plants and other high-temperature equipment

  10. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  11. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  12. Development of high temperature property database for Alloy 800H

    International Nuclear Information System (INIS)

    Yokoyama, Norio; Watanabe, Katsutoshi; Tsuji, Hirokazu; Nakajima, Hajime.

    1993-07-01

    JAERI Material Performance Database (JMPD) has been developed since 1989 in JAERI with a view to utilizing the various kinds of characteristic data of nuclear materials efficiently. Using relational database management system, PLANNER on the mainframe, the JMPD provides the retrieval supporting system, graphic and statistical analyses system. The data obtained with 7868 sets on characteristic data of metallic materials including fatigue crack growth data, etc. have been stored in the JMPD at the end of March in 1993. A ferritic superalloy, Alloy 800H is used for the structural material of the control rods of the High Temperature Engineering Test Reactor (HTTR). Thermal stress generates which might cause a severe creep damage at a reactor scram. It therefore needs to be designed with consideration on the fracture modes induced by creep deformation after neutron irradiation. The creep data (approximately 240 sets) and tensile data (approximately 100 sets) of Alloy 800H including the effects of test environment, aging treatment and neutron irradiation have been stored in the JMPD. Furthermore, using a personal computer, high temperature property database for Alloy 800H has been developed. The present report outlines the development of high temperature property database for Alloy 800H. (author)

  13. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L.; Joester, Derk (NWU)

    2017-04-28

    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.

  14. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    Science.gov (United States)

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  15. Recent advances in design procedures for high temperature plant

    International Nuclear Information System (INIS)

    1988-01-01

    Thirteen papers cover several aspects of design for high temperature plant. These include design codes, computerized structural analysis and mechanical properties of materials at high temperatures. Seven papers are relevant for fast reactors and these are indexed separately. These cover shakedown design, design codes for thin shells subjected to cyclic thermal loading, the inelastic behaviour of stainless steels and creep and crack propagation in reactor structures under stresses caused by thermal cycling loading. (author)

  16. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  17. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  18. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. In-situ high temperature XRD of calcium phosphate biomaterial using DEHPA as the starting material

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslim

    2009-01-01

    A process to produce calcium phosphate biomaterial was done using an organic based phosphoric acid (DEHPA) as its starting material. The gel obtained from this reaction was used to study calcium phosphate transformation using in-situ XRD with temperature ranges from room temperature to 1300 degree C. The results obtained from this analysis show the following phase transformation: Gel β-Ca 2 P 2 O 7 β-TCP + HA α-TCP + HA, β-Ca 2 P 2 O 7 forms at 400 degree C and as we heat the sample at 1000 degree C peaks belonging to β- TCP and HA appears showing the transformation of the β-Ca 2 P 2 O 7 phase. When the sample is heated up further to 1200 degree C, β-TCP is transform into α-TCP. In the cold in-situ study, XRD analysis was performed on the sample from room temperature to -140 degree C. At room the XRD diffractogram shows the sample as an amorphous material and as the temperature was further lowered sharp peaks begins to form indicating that the material had becomes crystalline. The peaks were identified to be that calcium hydrogen phosphate (Ca(H 2 PO 4 ) 2 ) and this indicates that there is no hydroxyl group removal during the cooling process. The relative crystallinity values obtained for the different cooling temperatures show a slow exponential increase on the initial cooling of 0 to -100 degree C and at further cooling temperatures resulted fast and linear process. Also unlike the in-situ XRD analysis performs at high temperature no phase transformation occurred at this low temperature. (Author)

  20. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.

    Science.gov (United States)

    Ramu, Ashok T; Mages, Phillip; Zhang, Chong; Imamura, Jeffrey T; Bowers, John E

    2012-09-01

    The Seebeck coefficient of a typical thermoelectric material, silicon-doped InGaAs lattice-matched to InP, is measured over a temperature range from 300 K to 550 K. By depositing and patterning a thermometric reference bar of silicon-doped InP adjacent to a bar of the material under test, temperature differences are measured directly. This is in contrast to conventional two-thermocouple techniques that subtract two large temperatures to yield a small temperature difference, a procedure prone to errors. The proposed technique retains the simple instrumentation of two-thermocouple techniques while eliminating the critical dependence of the latter on good thermal contact. The repeatability of the proposed technique is demonstrated to be ±2.6% over three temperature sweeps, while the repeatability of two-thermocouple measurements is about ±5%. The improved repeatability is significant for reliable reporting of the ZT figure of merit, which is proportional to the square of the Seebeck coefficient. The accuracy of the proposed technique depends on the accuracy with which the high-temperature Seebeck coefficient of the reference material may be computed or measured. In this work, the Seebeck coefficient of the reference material, n+ InP, is computed by rigorous solution of the Boltzmann transport equation. The accuracy and repeatability of the proposed technique can be systematically improved by scaling, and the method is easily extensible to other material systems currently being investigated for high thermoelectric energy conversion efficiency.

  1. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    Science.gov (United States)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the

  2. Erosion and mass transfer of Mo, W and Nb under neutron irradiation of high temperature materials

    International Nuclear Information System (INIS)

    Berzhatyj, V.I.; Luk'yanov, A.N.; Zavalishin, A.A.; Tkach, V.N.; Fedorenko, A.I.

    1980-01-01

    Studies have been made of the medium composition in thermionic fuel elements of two types during reactor tests; erosion and mass transfer of electrode materials have been investigated in the after-reactor analysis of the tested fuel elements. The studies of electrode material evaporation at the conditions approaching (in environment temperature and composition) those of reactor tests of thermionic fuel elements have shown that the process proceeds in the form of metal oxides. Evaporation rates are determined, the mechanism of evaporation is discussed, and the analytical dependences are obtained for calculating the evaporation rates of Mo and W at certain temperature and gaseous medium composition. It is found that the main contribution to the material transfer off the Mo and Nb surfaces under a high-temperature reactor irradiation comes through the thermal evaporation; in the case of tungsten at the same experimental conditions the rates of mass transfer due to thermal evaporation and neutron sputtering are nearly the same [ru

  3. Effect of retro-reflective materials on temperature environment in tents

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-03-01

    Full Text Available Due to the low thermal inertia and poor thermal insulation of ultrathin envelope in tents, its indoor temperature environment is extremely bad and its occupants are tormented. Especially under the high solar radiation, both indoor air temperature and inner surface radiation temperature increase rapidly. And thereby, decreasing radiation heat gain in summer is necessary to refine indoor temperature environment in tents. Retro-reflective materials make it a reasonable choice due to their high reflectivity for solar radiation. To reveal the temperature environment improvement of tents by integrating with retro-reflective materials, a comparative experiment is carried out under the summer climatic conditions of Chengdu city, China. Experimental results show that due to integrating with retro-reflective materials, indoor air peak temperature in the tent can be reduced by more than 7.7 °C, while inner surface radiant temperature can be lowered up to 4.8 °C in the day time. It shows retro-reflective materials could refine indoor temperature environment in tents. Through a comparison of the walls in different orientations, on which retro-reflective materials are covered, the top, east and north walls are found to be better choices, while the north wall is the worst one for retro-reflective materials.

  4. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  5. Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26

    International Nuclear Information System (INIS)

    McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

    1998-04-01

    This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980's and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data

  6. Mechanical degradation temperature of waste storage materials

    International Nuclear Information System (INIS)

    Fink, M.C.; Meyer, M.L.

    1993-01-01

    Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90 degrees C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66 degrees C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-density polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185 degrees C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110 degrees C; (2) polyvinyl chloride -- 130 degrees C; (3) high-density polyethylene -- 140 degrees C; (4) sealing tape -- 140 degrees C. Testing with LDPE and PVC at temperatures ranging from 110 to 130 degrees C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185 degrees C) is not anticipated

  7. High Temperature Materials Laboratory Thirteenth Annual Report: October 1999 Through September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Pasto, AE

    2001-11-07

    The High Temperature Materials Laboratory (HTML) User Program continued to work with industrial, academic, and governmental users this year, accepting 86 new projects and developing 50 new user agreements. The table on the following page presents the breakdown of these statistics. The figure on page 2 depicts the continued growth in user agreements and user projects. You may note that our total number of proposals is nearing 1000, and we expect to achieve this number in our first proposal review meeting of FY 2001. The large number of new agreements bodes well for the future. A list of proposals to the HTML follows this section; at the end of the report, we present a list of agreements between HTML and universities and industries, broken down by state. Program highlights this year included several outstanding user projects (some of which are discussed in later sections), the annual meeting of the HTML Programs Senior Advisory Committee, the completion of a formal Multiyear Program Plan (MYPP), and finalization of a purchase agreement with JEOL for a new-generation electron microscope.

  8. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  9. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  10. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  11. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  12. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  13. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  14. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  15. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  16. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    Science.gov (United States)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  17. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  18. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  19. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  20. Diffraction studies of order-disorder at high pressures and temperatures

    International Nuclear Information System (INIS)

    Parise, John B.; Antao, Sytle M.; Martin, Charles D.; Crichton, Wilson

    2005-01-01

    Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite (CaMg(CO 3 ) 2 ) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe 2 O 4 , which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO 4 undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO 4 -type structure.

  1. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2014-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., generating defects in materials of major components and fuel claddings, increasing shutdown radiation and increasing the volume of radwaste sources. Corrosion behaviors are much affected by water qualities and differ according to the values of water qualities and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of key issues that determine corrosion related problems but it is not the only issue. Most phenomena for corrosion related problems, e.g., flow-accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. In the paper, theoretical models based on electrochemistry to estimate wall thinning rate of carbon steel piping due to flow-accelerated corrosion and corrosive conditions determining IGSCC crack initiation and growth rate are introduced. (author)

  2. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  3. ARCHER Project: Progress on Material and component activities for the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) integrated project is a four year project which was started in 2011 as part of the European Commission 7th Framework Programme (FP7) to perform High Temperature Reactor technology R&D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research & Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on ARCHER materials and component activities since the start of the project and underlines some of the main conclusions reached. (author)

  4. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  5. High Temperature Materials Laboratory fourth annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1991-12-01

    The High Temperature Materials Laboratory has completed its fourth year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 118 nonproprietary agreements (62 university and 56 industry) and 28 proprietary agreements (2 university, 26 industry) are now in effect. Five other government facilities have also participated in the user program. Sixty-free nonproprietary research proposals (38 from university, 26 from industry, and 1 other government facility) and four proprietary proposals were considered during this reporting period. Research projects active in FY 1991 are summarized.

  6. High temperature mechanical behavior of tube stackings – Part I: Microstructural and mechanical characterization of Inconel® 600 constitutive material

    Energy Technology Data Exchange (ETDEWEB)

    Marcadon, V., E-mail: Vincent.Marcadon@onera.fr [Onera – The French Aerospace Lab, F-92322 Châtillon (France); Davoine, C.; Lévêque, D.; Rafray, A.; Popoff, F.; Horezan, N.; Boivin, D. [Onera – The French Aerospace Lab, F-92322 Châtillon (France)

    2016-11-20

    This paper is the first part of a set of two papers dedicated to the mechanical behavior of cellular materials at high temperatures. For that purpose, cellular materials made of brazed tube stacking cores have been considered here. This paper addresses the characterization of the elasto-viscoplastic properties of the constitutive material of the tubes, Inconel®600, by means of tensile tests. Various temperatures and strain rates were investigated, from room temperature to 800 °C, in order to study the influence of both the brazing heat treatment and the test temperature on the mechanical properties of Inconel®600. Whereas the heat treatment drastically decreases the strength of the tubes, a significant viscous effect is revealed at 800 °C. Electron backscattered diffraction analyses carried out post-mortem on samples showed that both dynamic recrystallization and recovery occurred during tensile tests performed at 800 °C, especially at lower strain rates. In contrast, a highly deformed and textured microstructure was observed for the tubes loaded at lower temperatures.

  7. Research and development of construction at high temperature

    International Nuclear Information System (INIS)

    Hayashi, Shigeru

    1974-01-01

    The contents and present situation of the researches on the construction of a multipurpose high temperature gas reactor are reported. The researches have been divided into five research blocks. The first block deals with the development of analytical codes required for the evaluation of construction in accordance with MITI Notification No.501, ASME section III, and case interpretation 1331-4-8. The codes for the analysis of two dimensional construction named FINEHEAT, AXINCRE and DYNSHL, those for three dimensional construction named STEREO and PINOSE, and for aseismatic analysis DYNAP were completed. The second block deals with the method for evaluating high temperature construction in accordance with ASME section III, case interpretation 133-5-8 and the evaluation of analytical codes. This block is related to a new technological field including a variety of unsolved problems. The third block deals with basic performance data on construction materials used at high temperature. There is very few basic data concerning material performance. The heretofore reported data are confirmed to enable the evaluation of construction. The fourth block deals with the application of construction evaluation method. The object of this block is to grasp the behavior of stress by experimental means, and to enable evaluation and to simultaneously establish stress index. The fifth block deals with the research for the determination of construction, including measuring technique, the effect of radiation heat on heat transfer efficiency, the prevention of metallic adhesion and the welding performance of seven materials by TIC, electron beam and plasma welding. (Iwakiri, K.)

  8. Assessment of the State of the Art of Ultra High Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  9. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  10. Assessment of very high-temperature reactors in process applications

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Gambill, W.R.; Fox, E.C.

    1976-11-01

    An overview is presented of the technical and economic feasibility for the development of a very high-temperature reactor (VHTR) and associated processes. A critical evaluation of VHTR technology for process temperatures of 1400 and 2000 0 F is made. Additionally, an assessment of potential market impact is made to determine the commercial viability of the reactor system. It is concluded that VHTR process heat in the range of 1400 to 1500 0 F is attainable with near-term technology. However, process heat in excess of 1600 0 F would require considerably more materials development. The potential for the VHTR could include a major contribution to synthetic fuel, hydrogen, steel, and fertilizer production and to systems for transport and storage of high-temperature heat. A recommended development program including projected costs is presented

  11. Degradation evaluation of high temperature pipeline material for power plant using ultrasonic noise analysis

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Cho, Yong Sang; Lee, In Cheol

    2001-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial degradation test and ultrasonic measurement for their degraded specimens were carried out for the purpose of evaluation for creep and thermal fatigue damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep/thermal fatigue degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept and thermal fatigued specimens, we conformed that the ultrasonic noise linearly increased in proportion to the increase of degradation.

  12. Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, W.-J.; Lee, J.-O.; Kang, C.-H.

    2000-01-01

    The sealing performance of buffer material in a high-level waste repository depends largely upon the hydraulic conductivity, the swelling pressure, and the dissolution of organic carbon in the buffer material. Temperature effects on these properties were evaluated. The hydraulic conductivity and the swelling pressure of compacted bentonite increase with increasing temperature, but the effect of temperature elevation is not large. The dissolution of organic carbon in bentonite also increases with increasing temperature, but the resultant aqueous concentrations of organic carbon in bentonite suspensions are less than those of deep groundwater in granite. Therefore, the organic carbon dissolved from the bentonite will not cause a significant increase in the organic carbon content of deep groundwater in the repository environment. Overall, temperature effects on the sealing performance of buffer material in a waste repository is not important, if the maximum temperature is maintained below 100 deg. C

  13. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-01-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25–200°C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface...... different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cosθ values. Studies of the effect of roughness and surface flaws on wettability...... contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability....

  14. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  15. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  16. A review of thermo-mechanical considerations of high temperature materials for synchrotron applications

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1993-01-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source (APS) generate x-ray beams with very high heat load and heat flux levels. Certain front end and beamline components will be required to sustain total heat loads of 3.8 to 15 kW and heat flux levels exceeding 400 W/MM 2 even during the first phase of this project. Grazing geometry and enhanced heat transfer techniques used in the design of such components reduce the heat flux levels below the 30 W/MM 2 level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures are sustainable, the structural stresses and the fatigue issues remain viable concerns. Cyclic thermal loads have a propensity to cause spallation and thermal striping concerns. As such, the steady-state part of the problem is much easier to understand and handle than the time- dependent part. Ease of bonding as well as ultrahigh vacuum and radiation compatibility are additional constraints on material selection for these components. The two copper materials are the traditional OFHC and the newer sintered copper, Glidcop (a trademark product of the SCM Corporation of North Carolina), which are very commonly used in synchrotron components. New materials are also appearing in the form of heat sinks or heat spreaders that are bonded to the base copper in some fashion. These are either partially transparent to x-rays and have engineered volumetric heating and/or very conductive thermally to spread the thermal load in a preferred way. These materials are reviewed critically for high-heat-load or high-heat-flux applications in synchrotrons

  17. NCTM of liquids at high temperatures using polarization techniques

    Science.gov (United States)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.

  18. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  19. High Temperature Materials Laboratory sixth annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1993-12-01

    The High Temperature Materials Laboratory has completed its sixth year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program is evidenced by the number of outside institutions executing user agreements since the facility began operation in 1987. A total of 172 nonproprietary agreements (88 university and 84 industry) and 35 proprietary agreements, (2 university, 33 industry) are now in effect. Six other government facilities have also participated in the User Program. Thirty-eight states are represented by these interactions. Ninety-four nonproprietary research proposals (44 from universities, 47 from industry, and 3 from other government facilities) and three proprietary proposals were considered during this reporting period. Nonproprietary research projects active in FY 1993 are summarized.

  20. Characterization and Aging Test Methodology for Power Electronic Devices at High Temperature

    International Nuclear Information System (INIS)

    Ibrahim, A.; Khatir, Z.; Dupont, L.

    2011-01-01

    Power electronic modules are key elements in the chain of power conversion. The application areas include aerospace, aviation, railway, electrical distribution, automotive, home automation, oil industry ... But the use of power electronics in high temperature environments is a major strategic issue in the coming years especially in transport. However, the active components based on silicon are limited in their applications and not suitable for those require both high voltages and high ambient temperatures. The materials with wide energy gap like SiC, GaN and diamond, have the advantage of being able to exceed these limits [1,2]. These materials seem adequate to extremely harsh temperature environments and allow the reduction of cooling systems, but also the increasing of switching frequency. (author)

  1. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  2. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    Science.gov (United States)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  3. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  4. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. I. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers

  5. Thermal expansion and phase transformation studies on some materials by high temperature x-ray powder diffractometry

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Kutty, K.V.G.; Jajoo, H.K.; Ananthakrishnan, S.K.; Asurvatharaman, R.

    1988-01-01

    A high temperature chamber based on electrical resistance heating has been integrated to an existing x-ray powder diffractometer. The system is capable of going upto 2500degC at programmed rates of heating. Temperature measurement is carried out by means by Pt/Rh or W/Re thermocouples or by optical pyrometry depending upon the temperature range. Provision exists for performing high temperature x-ray diffractometry in vacuum or in a gaseous atmosphere of low x-ray absorption. The x-ray optical alignment has been ensured by accurately measuring the unit cell lengths of x-ray diffraction standards like silicon and tungsten. The thermocouples have been calibrated within the system by monitoring the melting points of gold and silver. The well characterized transformation of zirconia from the monoclinic to tetragonal structure occuring around 1100degC has been satisfactorily reproduced . The high temperature phase transitions in some rare earth oxides have been studi ed. lattice parameter measurements on a variety of materials as a function of temperature upto 1500degC have been carried out and the data found to be in agreement with the literature values. From the measured lattice parameter values, percentage thermal expansion and coefficients of thermal expansion have been calculated for many substances from room temperature to 15000degC. (author). 20 refs., 9 figs

  6. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  7. Temperature and Voltage Offsets in High- ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2018-06-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high- ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/ n + and p/ p + junctions, selecting appropriate dimensions, doping, and loading.

  8. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  9. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  10. Corrosion Behaviors of Structural Materials in High Temperature S-CO{sub 2} Environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Hyunmyung; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2014-04-15

    The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and 650 .deg. C in SFR S-CO{sub 2} environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and 650 .deg. C. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at 650 .deg. C, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at 550 .deg. C, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-CO{sub 2} environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

  11. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  12. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  13. Materials for room temperature magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl Hansen, B.

    2010-07-15

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 - 310 K. A magnetic refrigerant should fulfill a number of criteria, among these a large magnetic entropy change, a large adiabatic temperature change, preferably little to no thermal or magnetic hysteresis and the material should have the stability required for long term use. As the temperature range required for room temperature cooling is some 40 - 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures. (Author)

  14. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  15. The European efforts in development of new high temperature rotor materials - COST536

    Energy Technology Data Exchange (ETDEWEB)

    Kern, T.U. [Siemens Energy, Muehlheim (Germany); Mayer, K.H. [Alstom Power, Nuernberg (Germany); Donth, B. [Saarschmiede, Voelklingen (Germany); Zeiler, G. [Boehler Schmiedetechnik, Kapfenberg (Austria); Di Gianfrancesco, A. [CSM, Roma (Italy)

    2010-07-01

    Despite the ongoing efforts to increase the amount of available alternative energy sources, fossil fuels such as lignite and hard coal will remain important for the energy mix and sustainability of energy supply. Fossil-fuelled Steam Power Plants (SSP's) or Combined Cycle power plants (CCPP's) will also continue to supply a significant portion of our energy needs. Within the frame of European COST536, a new project was installed with the aim of Alloy development for Critical Components of Environmentally friendly Power planTs (ACCEPT) aiming for material solutions for steam conditions up to 650 C. Martensitic materials should be used for thick-walled components to maintain high operational flexibility of such large plants. Rotors, casings, bolts, tubes, pipes, and water walls, are the critical components under current investigation. The class of the 9-12%Cr steels offers the highest potential to meet the required property levels for critical components such as rotor forgings. Therefore a significant effort to increase the application temperature of these steels was and is the focus of studies within Europe. Although there are 600 C materials already being successfully utilised in a number of advanced European power plants, further improvement in creep strength is being achieved by the addition of Boron and a well balanced Co content. Full-size prototype components are now being tested. New ideas to improve the behaviour and increase the application temperatures are under investigation. Results are reported here. (orig.)

  16. Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

    Science.gov (United States)

    Pavel, Alexandru Cezar

    The initial goal of the research presented herein was to develop the very first synthetic metal---high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole---Bi2Sr2CaCu 2O8+delta nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-Mo-O ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that

  17. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  18. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    Science.gov (United States)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  19. Design of High Temperature Reactor Vessel Using ANSYS Software

    International Nuclear Information System (INIS)

    Bandriyana; Kasmudin

    2003-01-01

    Design calculation and evaluation of material strength for high temperature reactor vessel based on the design of HTR-10 high temperature reactor vessel were carried out by using the ANSYS 5.4 software. ANSYS software was applied to calculate the combined load from thermal and pressure load. Evaluation of material strength was performed by calculate and determine the distribution of temperature, stress and strain in the thickness direction of vessel, and compared with its material strength for designed. The calculation was based on the inner wall temperature of vessel of 600 o C and the outer temperature of 500 and 600 o C. Result of calculation gave the maximum stress for outer temperature of 600 o C was 288 N/ mm 2 and strain of 0.000187. For outer temperature of 500 o C the maximum stress was 576 N/ mm 2 and strain of 0.003. Based on the analysis result, the material of steel SA 516-70 with limited stress for design of 308 N/ mm 2 can be used for vessel material with outer wall temperature of 600 o C

  20. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  1. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  2. High-temperature levitated materials

    National Research Council Canada - National Science Library

    Price, David L

    2010-01-01

    .... This can be avoided by suspending the sample through levitation. This technique also makes metastable states of matter accessible, opening up new avenues of scientific enquiry, as well as possible new materials for technological applications...

  3. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  4. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  5. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    International Nuclear Information System (INIS)

    Goyal, Amit

    2012-01-01

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R and D resulted in 7 R and D 100 Awards including the 2010 R and D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  6. Development of a structure-dependent materials model for complex high-temperature loads: Turbine blades of IN 738 LC

    International Nuclear Information System (INIS)

    1989-01-01

    In the framework of a material research programme of the Federal Ministry for Research and Technology a joint project of 10 institutes has started. It aims at developing new concepts for high-temperature components. A subtask is concerned with the internally cooled turbine blade of IN 738 LC for stationary gas turbines. The envisaged procedure for the development of the design conception and the level of knowledge concerning the influencing parameters of the structure and the mechanical behaviour at high operating temperatures are reported on. (orig.) [de

  7. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine

    Directory of Open Access Journals (Sweden)

    CAI Jian-ming

    2016-08-01

    Full Text Available Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃ high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

  8. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  9. Long duration performance of high temperature irradiation resistant thermocouples

    International Nuclear Information System (INIS)

    Rempe, J.; Knudson, D.; Condie, K.; Cole, J.; Wilkins, S.C.

    2007-01-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature in-pile degrade at temperatures above 1100 C degrees. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL's recommended thermocouple design, a series of high temperature (from 1200 to 1800 C) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 C that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests. (authors)

  10. Heat-resistant materials

    CERN Document Server

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  11. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  12. Proceedings of damage and oxidation protection in high temperature composites

    International Nuclear Information System (INIS)

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    This book contains proceedings of Damage and Oxidation Protection in High Temperature Composites. Topics covered include: current issues in the development of new materials and structural concepts for the aerospace structures of the future; transportation vehicles of the future; materials and structural concepts; fundamental understanding and quantitative descriptions of the physical processes and mechanisms controlling the behavior of emerging materials and structures; and the critical need for advances in our understanding of how the interaction of service loads and environment influences the lifecycle of emerging structures and materials

  13. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  14. High Temperature Epoxy Foam: Optimization of Process Parameters

    Directory of Open Access Journals (Sweden)

    Samira El Gazzani

    2016-06-01

    Full Text Available For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C.

  15. STEM LEARNING IN MATERIAL OF TEMPERATURE AND ITS CHANGE TO IMPROVE SCIENTIFIC LITERACY OF JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    N. Khaeroningtyas

    2016-04-01

    Full Text Available This research aims to determine the improvement of students’ scientific literacy after STEM (Science, Technology, Engineering, and Mathematics learning using 6E Learning by DesignTM Model on temperature and its changes material. The research was conducted in SMP Negeri (State Junior High School 1 Bumiayu in the academic year 2015/2016. The method used was quasi-experimental design with The Matching Only - pretest posttest control group design. This study used two group of experiment group of students who learned the material with STEM learning using 6E Learning by DesignTM, while the control group students learned with non-STEM learning. The analysis showed that the students' scientific literacy in experiment group is better than control group. The conclusion that can be drawn is STEM learning using 6E Learning by DesignTM on temperature and its changes material can improve students’ scientific literacy.

  16. Stability of test environments for performance evaluation of materials for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Wilson, D.F.; Bell, G.E.C.

    1993-01-01

    Stability of the primary helium-based coolant test gas for use in performance ests of materials for the Modular High-Temperature Gas-Cooled Reactor (MHTGR) was determined. Results of tests of the initial gas chemistry from General Atomics (GA) at elevated temperatures, and the associated results predicted by the SOLGASMIX trademark modelling package are presented. Results indicated that for this gas composition and at flow rates obtainable in the test loop, 466 ± 24C is the highest temperature that can be maintained without significantly altering the specified gas chemistry. Four additional gas chemistries were modelled using SOLGASMIX trademark

  17. Tribological properties of magnet structural materials at cryogenic temperatures in vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, Akira; Shimizu, Tomoharu; Yoshino, Yasuhiro; Iida, Shin-ichiro; Sugimoto, Makoto; Yoshida, Kiyoshi.

    1994-01-01

    Tribological properties of structural materials of a superconducting magnet for a nuclear fusion reactor were investigated at temperatures of 293 K, 77 K and about 5 K in vacuum. Specimen materials were JN1, JN2 and SUS316L steels, copper and its alloys, and GFRP. The properties of the coefficient of friction against the number of cycles were classified into two groups; smooth friction and fluctuating friction. The latter was caused by the strong adhesion dependent on the material combination and temperature. The coefficient of friction of the smooth friction was low less than 0.6. The upper coefficient of friction of fluctuating friction reaches more than 3. The temperature dependence of the coefficient of friction was also examined from 5 K to 130 K. Combinations of Cu-Cu and JN2-cupronickel showed high friction over the temperature, but JN1-Cu and JN2-Cu showed clear temperature dependence where the friction was high at temperatures between 45 K and 90 K. (author)

  18. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    Science.gov (United States)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  19. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  20. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges - 15066

    International Nuclear Information System (INIS)

    Sabharwall, P.; O'Brien, J.E.; Yoon, S.J.; Sun, X.

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic, materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The 3 loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuits heat exchangers (PCHEs) at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integrated System Test (ARTIST) facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 C. degrees), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF 4 ) flow loop operating at low pressure (0.2 MPa), at a temperature of ∼ 450 C. degrees. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift) in measuring operational data for extended periods of times, as data collected will be

  1. High-temperature behavior of advanced spacecraft TPS

    Science.gov (United States)

    Pallix, Joan

    1994-05-01

    The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).

  2. Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

    International Nuclear Information System (INIS)

    Eck, J.; Sans, J.-L.; Balat-Pichelin, M.

    2011-01-01

    The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the probe. In this study, the physical and chemical behavior of carbon materials is experimentally investigated under high temperatures (1600-2100 K), high vacuum (10 -4 Pa) and VUV radiation in conditions near those at perihelion for SP+. Thanks to several in situ and ex situ characterizations, it was found that VUV radiation induced modification of outgassing and of mass loss rate together with alteration of microstructure and morphology.

  3. Temperature dependence of optical properties in Nd/Cr:YAG materials

    International Nuclear Information System (INIS)

    Honda, Yoshiyuki; Motokoshi, Shinji; Jitsuno, Takahisa; Miyanaga, Noriaki; Fujioka, Kana; Nakatsuka, Masahiro; Yoshida, Minoru

    2014-01-01

    The energy transfer from Cr 3+ to Nd 3+ for Nd/Cr:YAG (Nd: 1.0%, Cr: 2.0%) materials was investigated by measuring the temperature dependences of fluorescence characteristics. The fluorescence intensity of Nd 3+ increased with temperature owing to enhancement of the absorption coefficient of Cr 3+ . The energy transfer efficiency was constant from 77 to 450 K. The energy transfer time decreased with increasing temperature. -- Highlights: • We investigate the energy transfer from Cr 3+ to Nd 3+ in Nd/Cr:YAG materials by measuring the temperature dependence of fluorescence characteristics. • The fluorescence intensity of Nd 3+ increased with temperature owing to enhancement of the absorption coefficient of Cr 3+ . • The energy transfer efficiency was constant from 77 to 450 K. • The energy transfer time decreased with increasing temperature. • Nd/Cr:YAG ceramics pumped by a flash lamp would not only provide high conversion efficiency, but can also be expected to function as an effective laser operating at high temperature

  4. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    The observation of pseudogap in normal-state properties of high-temperature supercon- ducting (HTS) oxide materials has raised many questions about the origin and its relation with superconductivity. Emery and Kevilson [1] first used the term pseudogap temper- ature for underdoped high-Tc materials. The temperature at ...

  5. Effects of temperature on mechanical properties of SU-8 photoresist material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soon Wan; Park, Seung Bae [State University of New York, New York (United States)

    2013-09-15

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  6. Effects of temperature on mechanical properties of SU-8 photoresist material

    International Nuclear Information System (INIS)

    Chung, Soon Wan; Park, Seung Bae

    2013-01-01

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  7. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  8. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  9. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  10. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware

    Science.gov (United States)

    Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.

  11. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  12. High-temperature-structural design and research and development for reactor system components

    International Nuclear Information System (INIS)

    Matsumura, Makoto; Hada, Mikio

    1985-01-01

    The design of reactor system components requires high-temperature-structural design guide with the consideration of the creep effect of materials related to research and development on structural design. The high-temperature-structural design guideline for the fast prototype reactor MONJU has been developed under the active leadership by Power Reactor and Nuclear Fuel Development Corporation and Toshiba has actively participated to this work with responsibility on in-vessel components, performing research and development programs. This paper reports the current status of high-temperature-structural-design-oriented research and development programs and development of analytical system including stress-evaluation program. (author)

  13. Temperature analysis of laser ignited metalized material using spectroscopic technique

    Science.gov (United States)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  14. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  15. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  16. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  17. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  18. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  19. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  20. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  1. Computer-Aided Design of Materials for use under High Temperature Operating Condition

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K. R.; Rao, I. J.

    2010-01-31

    The procedures in place for producing materials in order to optimize their performance with respect to creep characteristics, oxidation resistance, elevation of melting point, thermal and electrical conductivity and other thermal and electrical properties are essentially trial and error experimentation that tend to be tremendously time consuming and expensive. A computational approach has been developed that can replace the trial and error procedures in order that one can efficiently design and engineer materials based on the application in question can lead to enhanced performance of the material, significant decrease in costs and cut down the time necessary to produce such materials. The work has relevance to the design and manufacture of turbine blades operating at high operating temperature, development of armor and missiles heads; corrosion resistant tanks and containers, better conductors of electricity, and the numerous other applications that are envisaged for specially structured nanocrystalline solids. A robust thermodynamic framework is developed within which the computational approach is developed. The procedure takes into account microstructural features such as the dislocation density, lattice mismatch, stacking faults, volume fractions of inclusions, interfacial area, etc. A robust model for single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model is developed. Having developed the model, we then implement in a computational scheme using the software ABAQUS/STANDARD. The results of the simulation are compared against experimental data in realistic geometries.

  2. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  3. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel

    Energy Technology Data Exchange (ETDEWEB)

    Le, K. C. [Ruhr-Univ Bochum, Bochum (Germany). Lehrstuhl fur Mechanik-Materialtheorie; Tran, T. M. [Ruhr-Univ Bochum, Bochum (Germany). Lehrstuhl fur Mechanik-Materialtheorie; Langer, J. S. [Univ. of California, Santa Barbara, CA (United States). Dept. of Physics

    2017-07-12

    The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Here, our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.

  5. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  6. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  7. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  8. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  9. Grain-boundary engineering applied to grain growth in a high temperature material

    International Nuclear Information System (INIS)

    Huda, Z.

    1993-01-01

    Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)

  10. A Hall probe technique for characterizing high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  11. The contact-temperature ignition (CTI) criteria for propagating chemical reactions including the effect of moisture and application to Hanford waste

    International Nuclear Information System (INIS)

    Cash, R.J.

    1995-01-01

    To assure the continued absence of uncontrolled condensed-phase chemical reactions in connection with the Hanford waste materials, efforts have been underway including both theoretical and experimental investigations to clarify the requirements for such reactions. This document defines the differences and requirements for homogeneous runaway and propagating chemical reactions incuding a discussion of general contact-temperature ignition (CTI) condition for propagating reactions that include the effect of moisture. The CTI condition implies that the contact temperature or interface temperature between reacted and unreacted materials must exceed the ignition temperature and is compared to experimental data including both synthetic ferrocyanide and surrogate organic materials. In all cases, the occurrences of ignition accompanied by self-propagating reactions are consistent with the theoretical anticipations of the CTI condition

  12. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  13. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  14. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  15. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    International Nuclear Information System (INIS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-01-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  16. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung, E-mail: cwy@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2014-09-08

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  17. Behaviour of neutron moderator materials at high temperatures in CASTOR registered -casks: qualification and assessment

    International Nuclear Information System (INIS)

    Krietsch, T.; Wolff, D.; Knopp, U.; Brocke, H.D.

    2004-01-01

    The Federal Institute for Materials Research and Testing (BAM) is the responsible German authority for the assessment of mechanical and thermal designs of transport and storage casks for radioactive materials. BAM checks up the proofs of the applicants in their safety reports and assesses the conformity to the Regulations for the Safe Transport of Radioactive Material. One applicant is the Gesellschaft fuer Nuklear-Behaelter mbH (GNB) with a new generation of transport and storage casks of CASTOR registered -design. GNB typically uses ultra high molecular weight Polyethylene (UHMW-PE) for the moderation of free neutrons. Rods made of UHMW-PE are positioned in axial bore holes in the wall of the cask and plates of UHMW-PE are in free spaces between primary and secondary lid and between the bottom of the cask and an outer plate (Figure 1). Because of the heat generated by the radioactive inventory and because of a strained spring at the bottom of every bore hole, UHMW-PE is subjected to permanent thermal and mechanical loads as well as loads from gamma and neutron radiation. UHMW-PE has been used under routine- and normal conditions of transport for maximum temperatures up to 130 C. For new generations of CASTOR registered -design maximum temperatures will be increased up to 160 C. That means a permanent use of UHMW-PE at temperatures within and above the melting region of the crystallites. In this paper, some results of special investigations for the proofs of usability of UHMW-PE at temperatures up to 160 C under real conditions of transport and storage in CASTOR registered -casks are given. For that, investigations on temperature dependent expansion behaviour under laboratory conditions as well as in large scale experiments, especially in the case of multiple heating and cooling, were done. Besides, geometrical creep strength for long-term loading by temperatures and pressures with regard to the chemical and physical stability properties of UHMW-PE above the

  18. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  19. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  20. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  1. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  2. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  3. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  4. Research briefing on high-temperature superconductivity

    Science.gov (United States)

    1987-10-01

    The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.

  5. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  6. Failure analysis of a barrel exposed to high temperature

    International Nuclear Information System (INIS)

    Usman, A.; Salam, I.; Rizvi, S.A.; Qasir, S.

    2005-01-01

    The paper deals with the study of a tank gun barrel which had failed after firing only a few rounds. The failure was in the form of bulging at the muzzle end (ME). The material of the barrel was characterized using different techniques including chemical and mechanical testing, optical microscopy and electron microscopy. Study disclosed that the barrel was subjected to excessively high temperature that resulted in its softening and consequent bulging under high pressure of the round. (author)

  7. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  8. Radiation tests at cryogenic temperature on selected organic materials for LHC

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Szeless, B.; Tavlet, M.

    1997-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets in which organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, epoxy resins and composites were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen, i.e. at 80 K, and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results are compared with the ones obtained at cryogenic temperature. They show that within the selected dose range, a number of organic materials are suitable for use in radiation fields of the LHC at cryogenic temperature

  9. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  10. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  11. Temperature-regulated guest admission and release in microporous materials

    Science.gov (United States)

    Li, Gang (Kevin); Shang, Jin; Gu, Qinfen; Awati, Rohan V.; Jensen, Nathan; Grant, Andrew; Zhang, Xueying; Sholl, David S.; Liu, Jefferson Z.; Webley, Paul A.; May, Eric F.

    2017-06-01

    While it has long been known that some highly adsorbing microporous materials suddenly become inaccessible to guest molecules below certain temperatures, previous attempts to explain this phenomenon have failed. Here we show that this anomalous sorption behaviour is a temperature-regulated guest admission process, where the pore-keeping group's thermal fluctuations are influenced by interactions with guest molecules. A physical model is presented to explain the atomic-level chemistry and structure of these thermally regulated micropores, which is crucial to systematic engineering of new functional materials such as tunable molecular sieves, gated membranes and controlled-release nanocontainers. The model was validated experimentally with H2, N2, Ar and CH4 on three classes of microporous materials: trapdoor zeolites, supramolecular host calixarenes and metal-organic frameworks. We demonstrate how temperature can be exploited to achieve appreciable hydrogen and methane storage in such materials without sustained pressure. These findings also open new avenues for gas sensing and isotope separation.

  12. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  13. Compatibility of steels for fast breeder reactor in high temperature sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1981-01-01

    In recent years, considerable progress has been made and experience has been obtained for material applicability in sodium-cooled fast breeder reactors. In this report, materials, principal dimensions and sodium conditions for the reactor system components, which include fuel pin cladding, intermediate heat exchangers, steam generators and pipings, are reviewed with emphasis on the thin-walled, high temperature and high strength components. The corrosion, mechanical and tribological behavior in sodium of important materials used for the reactor components, such as Types 304 and 316 stainless steel and 2 1/4Cr-1Mo steel, are discussed on the basis of characteristic testing results. Furthermore, material requirements concerned with compatibility in sodium are summarized from this review and discussion. (author)

  14. Development and optimization of a high temperature coupling system thermoanalyzer/mass spectrometer

    International Nuclear Information System (INIS)

    Jagdfeld, H.J.

    1983-11-01

    The development of a high temperature coupling system was accomplished to carry out thermodynamic investigations during glass melting to solidify highly radioactive fission products into glass at a temperature up to 1200 0 C. The actual problem consisted of the fact that the gas species evaporating from the melter have to pass without condensation or without change of their composition a multistage pressure reducing system to enter the analysator unit of the mass spectrometer in the high vacuum. With the systems, offered at present, this is only possible up to approximately 450 0 C. The development of a new high temperature coupling included investigations of the gas dynamics, raw materials and thermic behaviour. (orig./EF) [de

  15. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  16. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  17. Development of Environment and Irradiation Effects of High Temperature Materials

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.

    2009-11-01

    Proposed materials, Mod.9Cr-1Mo steel (32 mm thickness) and 9Cr-1Mo-1W (100 mm thickness), for the reactor vessel were procured, and welded by the qualified welding technologies. Welding soundness was conformed by NDT, and mechanical testings were done along to weld depth. Two new irradiation capsules for use in the OR test hole of HANARO were designed and fabricated. specimens was irradiated in the OR5 test hole of HANARO with a 30MW thermal power at 390±10 .deg. C up to a fast neutron fluence of 4.4x10 19 (n/cm 2 ) (E>1.0 MeV). The dpa was evaluated to be 0.034∼0.07. Base metals and weldments of both Mod.9Cr-1Mo and 9Cr-1Mo-1W steels were tested tensile and impact properties in order to evaluate the irradiation hardening effects due to neutron irradiation. DBTT of base metal and weldment of Mod.9Cr-1Mo steel were -16 .deg. C and 1 .deg. C, respectively. After neutron irradiation, DBTT of weldment of Mod.9Cr-1Mo steel increased to 25 . deg. C. Alloy 617 and several nickel-base superalloys were studied to evaluate high temperature degradation mechanisms. Helium loop was developed to evaluate the oxidation behaviors of materials in the VHTR environments. In addition, creep behaviors in air and He environments were compared, and oxidation layers formed outer surfaces were measured as a function of applied stress and these results were investigated to the creep life

  18. Interfacial stabilities of high-temperature composite materials

    International Nuclear Information System (INIS)

    Chang, Y.A.; DeKock, J.; Zhang, M.X.; Kieschke, R.

    1993-01-01

    The thermodynamic and kinetic principles necessary to control interfacial reactions between the matrix and reinforcement in composite materials are presented. The concept of interfacial control has been applied to Ti-based/Al 2 O 3 composite. Results are presented which include estimated diffusivities for the reaction in β-Ti/Al 2 O 3 composites, estimated phase relationships for the systems Ti-Al-O, Ti-Y-O, Nb-Y-O and Nb-Al-O at 1100 C, and a coating scheme for αAl 2 O 3 fibers. 71 refs

  19. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... technology have been identified, and new concepts and solutions have been provisionally identified. FURIM is directed at tackling these key issues by concentrating on the further materials development, compatible technologies, and system integration of the high temperature PEMFC. The strategic developments...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...

  20. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  1. High Temperature Thermoelectric Materials for Waste Heat Regeneration

    Science.gov (United States)

    2013-01-01

    ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE High Temperature...National Aeronautics and Space Administration’s (NASA) deep space explorations, which use radioisotope thermoelectric generators (RTGs) to produce...their octahedral voids (shown in figure 10a) with large rare- earth atoms to reduce their lattice conductivity (20). Ions can also be inserted to

  2. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  3. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  4. Materials for Room Temperature Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered...... candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material...... to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 – 310 K. A magnetic refrigerant...

  5. Effect of some structural parameters on high-temperature crack resistance of tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    The paper presents results of physicomechanical studied in high-temperature crack resistance of tungsten produced by powder metallurgy methods. It is shown that at high temperatures (>2000 deg C) a structure is formed in the material and fails at stresses independent of temperature. It is found that high-temperature tungsten crack resistance is affected neighter by changes in the effictive grain size, nor by appearance of grain-boundary microcraks in the material under high-temperature action

  6. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  7. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    Science.gov (United States)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  8. Performance and Reliability of Bonded Interfaces for High-temperature Packaging: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.

  9. Petascale supercomputing to accelerate the design of high-temperature alloys

    Science.gov (United States)

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; Haynes, J. Allen

    2017-12-01

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ‧-Al2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviour of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. The approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.

  10. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Michael [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  11. Cathodic processes in high-temperature molten salts for the development of new materials processing methods

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2017-01-01

    Molten salts play an important role in the processing of a range of commodity materials. This includes the large-scale production of iron, aluminium, magnesium and alkali metals as well as the refining of nuclear fuel materials. This presentation focuses on two more recent concepts in which the cathodic reactions in molten salt electrolytic cells are used to prepare high-value-added materials. Both were developed and advanced at the Department of Materials Science and Metallurgy at the University of Cambridge and are still actively being pursued. One concept is now generally known as the FFC-Cambridge process. The presentation will highlight the optimisation of the process towards high selectivities for tubes or particles depict a modification of the method to synthesize tin-filled carbon nanomaterial, and illustrate the implementation of a novel type of process control to enable the preparation of gramme quantities of material within a few hours with simple laboratory equipment. Also discussed will be the testing of these materials in lithium ion batteries

  12. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  13. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  14. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  15. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    Science.gov (United States)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  16. High temperature x-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.; Gludovatz, Bernd [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Haboub, Abdel [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); current –Lincoln Univ., Jefferson City, Missouri, 65101 (United States); Larson, Natalie; Zok, Frank [University California Santa Barbara, Santa Barbara CA 93106 (United States); Panerai, Francesco; Mansour, Nagi N. [NASA Ames Research Centre, Moffett Field, CA, 94035 (United States); Bale, Hrishikesh [University California Berkeley, Berkeley, CA 94720 (United States); current - Carl Zeiss X-ray Microscopy, 4385 Hopyard Rd #100, Pleasanton, CA 94588 (United States); Acevedo, Claire [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California San Francisco, San Francisco, CA 94143 (United States); Liu, Dong [University of Bristol, Bristol BS8 1TH (United Kingdom); Ritchie, Robert O. [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California Berkeley, Berkeley, CA 94720 (United States)

    2016-07-27

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrix composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.

  17. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  18. Yb14MnSb11 as a High-Efficiency Thermoelectric Material

    Science.gov (United States)

    Snyder, G. Jeffrey; Gascoin, Franck; Brown, Shawna; Kauzlarich, Susan

    2009-01-01

    Yb14MnSb11 has been found to be wellsuited for use as a p-type thermoelectric material in applications that involve hotside temperatures in the approximate range of 1,200 to 1,300 K. The figure of merit that characterizes the thermal-to-electric power-conversion efficiency is greater for this material than for SiGe, which, until now, has been regarded as the state-of-the art high-temperature ptype thermoelectric material. Moreover, relative to SiGe, Yb14MnSb11 is better suited to incorporation into a segmented thermoelectric leg that includes the moderate-temperature p-type thermoelectric material CeFe4Sb12 and possibly other, lower-temperature p-type thermoelectric materials. Interest in Yb14MnSb11 as a candidate high-temperature thermoelectric material was prompted in part by its unique electronic properties and complex crystalline structure, which place it in a class somewhere between (1) a class of semiconducting valence compounds known in the art as Zintl compounds and (2) the class of intermetallic compounds. From the perspective of chemistry, this classification of Yb14MnSb11 provides a first indication of a potentially rich library of compounds, the thermoelectric properties of which can be easily optimized. The concepts of the thermoelectric figure of merit and the thermoelectric compatibility factor are discussed in Compatibility of Segments of Thermo - electric Generators (NPO-30798), which appears on page 55. The traditional thermoelectric figure of merit, Z, is defined by the equation Z = alpha sup 2/rho K, where alpha is the Seebeck coefficient, rho is the electrical resistivity, and k is the thermal conductivity.

  19. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  20. International Conference: Computer-Aided Design of High-Temperature Materials

    National Research Council Canada - National Science Library

    Kalia, Rajiv

    1998-01-01

    .... The conference was attended by experimental and computational materials scientists, and experts in high performance computing and communications from universities, government laboratories, and industries in the U.S., Europe, and Japan...

  1. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  2. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2006-01-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  3. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  4. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  5. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature

    International Nuclear Information System (INIS)

    Mukherjee, A.; Nag Biswas, S.

    1997-01-01

    The behavior of concrete structures that are exposed to extreme thermo-mechanical loading is an issue of great importance in nuclear engineering. The mechanical behavior of concrete at high temperature is non-linear. The properties that regulate its response are highly temperature dependent and extremely complex. In addition, the constituent materials, e.g. aggregates, influence the response significantly. Attempts have been made to trace the stress-strain curve through mathematical models and rheological models. However, it has been difficult to include all the contributing factors in the mathematical model. This paper examines a new programming paradigm, artificial neural networks, for the problem. Implementing a feedforward network and backpropagation algorithm the stress-strain relationship of the material is captured. The neural networks for the prediction of uniaxial behavior of concrete at high temperature has been presented here. The results of the present investigation are very encouraging. (orig.)

  6. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  8. High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials

    Science.gov (United States)

    Dudziak, T.; Olbrycht, A.; Polkowska, A.; Boron, L.; Skierski, P.; Wypych, A.; Ambroziak, A.; Krezel, A.

    2018-03-01

    Due to shortage of natural resources worldwide, it is a need to develop innovative technologies, to save natural resources and secure Critical Raw Materials (CRM). On the other hand, these new technologies should move forward materials engineering in order to develop better materials for extreme conditions. One way to develop new materials is to use post processing chips of austenitic steels (i.e. 304L stainless steel: 18/10 Cr/Ni) and other materials such as Ni-based alloy with high Cr content. In this work, the results of the preliminary study on the High Velocity Oxy Fuel (HVOF) coatings developed from 304L stainless steel chips and Haynes® 282® Ni- based alloys are shown. The study obeys development of the powder for HVOF technology. The produced coatings were exposed at high temperature at 500 and 700 °C for 100 and 300 hours respectively to assess corrosion behaviour.

  9. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    Science.gov (United States)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  10. Development of high temperature resistant geomembranes for oil sands secondary containments

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)

    2008-07-01

    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  11. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  12. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay; Kara, Ayhan; Korkut, Hatun [Sinop Univ. (Turkey). Dept. of Nuclear Energy Engineering

    2016-12-15

    Ultra High Temperature Ceramics (UHTCs) have low density and high melting point. So they are useful materials in the nuclear industry especially reactor core design. Three UHTCs (silicon carbide, vanadium carbide, and zirconium carbide) were evaluated as the nuclear fuel cladding materials. The SERPENT Monte Carlo code was used to model CANDU, PWR, and VVER type reactor core and to calculate burnup parameters. Some changes were observed at the same burnup and neutronic parameters (keff, neutron flux, absorption rate, and fission rate, depletion of U-238, U-238, Xe-135, Sm-149) with the use of these UHTCs. Results were compared to conventional cladding material zircalloy.

  13. Colloquium 3: Thermal insulation materials in construction and in high-temperature plants. Lectures; Kolloquium 3: Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E.; Gross, U.; Walter, G. [comps.

    1999-07-01

    Colloquium 3, ''Thermal insulation materials in construction and in high-temperature plants'' focused, for one thing, on the inter-relationships between the development of thermal insulation materials for construction and high-temperature applications and the development of processes and plants and, for another, on the standards of and amendments to the thermal protection ordinance. Calcium silicate and Silcapor as a thermal protection material and a high-temperature thermal insulant, respectively, are dealt with inter alia. The use of thermal insulants in industrial furnaces and different methods for measuring thermal conductivity are described. Further topics are the elements of the energy conservation ordinance being drafted, and thermal-insulation construction materials such as bricks and foam mortar. Ten papers are individually listed in the Energy database. (orig.) [German] Im Mittelpunkt des Kolloquium 3 ''Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen'' stehen die wechselseitigen Zusammenhaenge zwischen der Entwicklung von Waermedaemmstoffen fuer das Bauwesen und die Hochtemperaturanwendung einerseits und der Prozess-und Anlagenentwicklung anderseits sowie die Normung und die Novellierung der Waermeschutzverordnung. Es wird u.a. auf den Waermedaemmstoff Calciumsilicat eingegangen ebensowie auf Silcapor als Hochtemperaturd ammstoff. Der Einsatz von Waermedaemmstoffen in Industrieoefen sowie die unterschiedlichen Messmethoden der Waermeleitfaehigkeit werden beschrieben. Weitere Themen sind die Grundlagen der kuenftigen Energiesparverordnung sowie waermedaemmende Baustoffe wie Ziegel und Porenbeton. Fuer die Datenbank Energy wurden zehn Arbeiten separat aufgenommen.

  14. Very high temperature chemistry: Science justification for containerless experimentation in space

    Science.gov (United States)

    Hofmeister, William H.; Nordine, Paul

    1990-01-01

    A summary is presented of the justification for application of containerless processing in space to high temperature science. Low earth orbit offers a gravitational environment that allows samples to be positioned in an experimental apparatus by very small forces. Well controlled experiments become possible on reactive materials at high temperatures in a reasonably quiescent state and without container contamination. This provides an opportunity to advance the science of high temperature chemistry that can only be realized with a commitment by NASA to provide advanced facilities for in-space containerless study of materials at very high temperature.

  15. Evaluation of the high-temperature materials programme of the Joint Research Centre (1980-85)

    International Nuclear Information System (INIS)

    Glenny, R.J.E.; Boehm, H.; Gellings, P.J.; Gobin, P.; Lanzavecchia, G.; Nicholaides, C.

    1986-01-01

    This report covers the findings of the external panel of experts set up to evaluate the results of the Community's programme in the field of high-temperature materials (1980-85), carried out at the Petten establishment of the Joint Research Centre. The evaluation covers the quality and relevance of the research, the usefulness of the results and the role played by the JRC in this field at the European level. The report describes and gives comments on the content, structure and management of the five projects constituting the current programme, outlines the methods and procedures used during the evaluation and gives a number of recommendations pertinent to future activities

  16. Pulsed-laser heating: a tool for studying degradation of materials subjected to repeated high-temperature excursions

    International Nuclear Information System (INIS)

    Goldberg, A.; Cornell, R.H.

    1980-01-01

    The use of pulsed-laser heating was evaluated as a means to obtain high cyclic peak temperatures with short rise times. A two-stage neodymium glass laser was used which produces a 600-μs pulse with energy outputs of up to 100 J. Small disk-shaped samples of AISI 4340 steel served as targets. Some of these were coated with a tungsten deposit. The rear face of some of the targets was instrumented for evaluation of temperature, strain, and stress response. Post-shot metallographic evaluations were made on a number of targets. We saw evidence of surface melting, cracking, and phase transformation. Surface damage was related to differences in the number of pulse cycles and input energy level, variables in the target materials, and the extent of strain-induced stresses. These experiments were performed in air at 1 atm and ambient laboratory temperature. 36 figures

  17. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    International Nuclear Information System (INIS)

    Ojovan, Michael I; Travis, Karl P; Hand, Russell J

    2007-01-01

    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

  18. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D. [Laboratoire PROMES-CNRS, Laboratoire Procedes, Materiaux et Energie Solaire, 7 rue du Four Solaire, 66120 Font-Romeu Odeillo (France)

    2007-07-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H{sup +} ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  19. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    International Nuclear Information System (INIS)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D.

    2007-01-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H + ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  20. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  1. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  2. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  4. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  5. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  6. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  7. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  8. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  9. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  10. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  11. The United States fluoride-salt-cooled high-temperature reactor program

    International Nuclear Information System (INIS)

    Holcomb, David E.

    2013-01-01

    The United States is pursuing the development of fluoride-salt-cooled high-temperature reactors (FHRs) through the Department of Energy's Office of Nuclear Energy (DOE-NE). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. FHRs, in principle, have the potential to economically generate large amounts of electricity while maintaining full passive safety. FHRs, however, remain a longer-term power production option. A principal development focus is, thus, on shortening, to the extent possible, the overall development time by focusing initial efforts on the longest lead-time issues. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid-metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High-temperature gas-cooled reactors provide experience with coated-particle fuel and graphite components. Light-water reactors show the potential of transparent, high-heat-capacity coolants with low chemical reactivity. The FHR development efforts include both reactor concept and technology developments and are being broadly pursued. Oak Ridge National Laboratory (ORNL) provides technical leadership to the effort and is performing concept development on both a large base-load-type FHR as well as a small modular reactor (SMR) in addition to performing a broad scope of technology developments. Idaho National Laboratory (INL) is providing coated-particle fuel irradiation testing as well as developing high-temperature steam generator technology. The Massachusetts Institute of Technology (MIT

  12. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  13. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  14. Material development for gas-cooled high temperature reactors for the production of nuclear process heat

    International Nuclear Information System (INIS)

    Nickel, H.

    1977-04-01

    In the framework of the material development for gas-cooled high temperature reactors, considerable investigations of the materials for the reactor core and the primary cicuit are being conducted. Concerning the core components, the current state-of-the-art and the objectives of the development work on the spherical fuel elements, coated particles and structural graphite are discussed. As an example of the structural graphite, the non-replaceable reflector of the process heat reactor is discussed. The primary circuit will be constructed mainly from metallic materials, although some ceramics are also being considered. Components of interest are hot gas ducts, liners, methane reformer tubes and helium-helium intermediate heat exchangers. The gaseous impurities present in the helium coolant may cause oxidation and carburization of the nickel-base and iron-base alloys envisaged for use in these components, with a possible associated adverse effect on the mechanical properties such as creep and fatigue. Test capacity has therefore been installed to investigate materials behaviour in simulated reactor helium under both constant and alternating stress conditions. The first results on the creep behaviour of several alloys in impure helium are presented and discussed. (orig./GSC) [de

  15. High temperature tensile testing of modified 9Cr-1Mo after irradiation with high energy protons

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Hamilton, M.L.; Maloy, S.A.

    2003-01-01

    This study examines the effect of tensile test temperatures ranging from 50 to 600 deg. C on the tensile properties of a modified 9Cr-1Mo ferritic steel after high energy proton irradiation at about 35-67 deg. C to doses from 1 to 3 dpa and 9 dpa. For the specimens irradiated to doses between 1 and 3 dpa, it was observed that the yield strength and ultimate strength decreased monotonically as a function of tensile test temperature, whereas the uniform elongation (UE) remained at approximately 1% for tensile test temperatures up to 250 deg. C and then increased for tensile test temperatures up to and including 500 deg. C. At 600 deg. C, the UE was observed to be less than the values at 400 and 500 deg. C. UE of the irradiated material tensile tested at 400-600 deg. C was observed to be greater than the values for the unirradiated material at the same temperatures. Tensile tests on the 9 dpa specimens followed similar trends

  16. High Temperature Testing with Sapphire Fiber White-Light Michelson Interferometers

    Science.gov (United States)

    Barnes, A.; Pedrazzani, J.; May, R.; Murphy, K.; Tran, T.; Coate, J.

    1996-01-01

    In the design of new aerospace materials, developmental testing is conducted to characterize the behavior of the material under severe environmental conditions of high stress, temperature, and vibration. But to test these materials under extreme conditions requires sensors that can perform in harsh environments. Current sensors can only monitor high temperature test samples using long throw instrumentation, but this is inherently less accurate than a surface mounted sensor, and provides no means for fabrication process monitoring. A promising alternative is the use of sapphire optical fiber sensors. Sapphire is an incredibly rugged material, being extremely hard (9 mhos), chemically inert, and having a melting temperature (over 2000 C). Additionally, there is a extensive background of optical fiber sensors upon which to draw for sapphire sensor configurations.

  17. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  18. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  19. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  20. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  1. The MWCNTs-Rh Nanocomposite Obtained By The New High-Temperature Method

    Directory of Open Access Journals (Sweden)

    Dobrzańska-Danikiewicz A.D.

    2015-06-01

    Full Text Available A nanocomposite was fabricated during the research undertaken, consisting of multiwalled carbon nanotubes coated with rhodium nanoparticles by the new high-temperature method being the subject of the patent claim. High quality multiwalled carbon nanotubes (MWCNTs with the length of 100÷500 nm and the diameter of 8÷20 nm obtained in advance with Catalytic Chemical Vapour Deposition (CVD were employed in the investigations. The nanotubes manufactured under the own research contain small amounts of metallic impurities and amorphous carbon deposits. Multiwalled carbon nanotubes functionalisation in acids was applied to deposit rhodium nanoparticles onto the surface of carbon nanotubes, and then the material was placed in a solution being a precursor of rhodium nanoparticles. The material prepared was next placed in a quartz vessel and subjected to high-temperature reduction in the atmosphere of argon to deposit rhodium nanoparticles onto the surface of multiwalled carbon nanotubes. The following examinations were performed, respectively: MWCNTs fabrication, fabrication of a CNT-NPs (Carbon NanoTube-NanoParticles nanocomposite material; the characterisation of the materials produced including examination of the structure and morphology, and the assessment of rhodium nanoparticles distribution on the surface of carbon nanotubes. Micro- and spectroscopy techniques were employed to characterise the structure of the nanocomposites obtained.

  2. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  3. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  4. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  5. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  6. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vikas Tomer; John Renaud

    2010-08-31

    It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The

  7. High temperature vitrification of surrogate Savannah River Site (SRS) mixed waste materials

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Schumacher, R.F.; Spatz, T.L.; Newsom, R.A.; Circeo, L.J.; Danjaji, M.B.

    1995-01-01

    The Savannah River Technology Center (SRTC) has been funded through the DOE Office of Technology Development (DOE-OTD) to investigate high-temperature vitrification technologies for the treatment of diverse low-level and mixed wastes. High temperature vitrification is a likely candidate for processing heterogeneous solid wastes containing low levels of activity. Many SRS wastes fit into this category. Plasma torch technology is one high temperature vitrification method. A trial demonstration of plasma torch processing is being performed at the Georgia Institute of Technology on surrogate SRS wastes. This effort is in cooperation with the Engineering Research and Development Association of Georgia Universities (ERDA) program. The results of phase 1 of these plasma torch trials will be presented

  8. High-temperature cuprate superconductors. Experiment, theory, and applications

    International Nuclear Information System (INIS)

    Plakida, Nikolay

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)

  9. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sabbah, Rami; Kizilel, R.; Selman, J.R.; Al-Hallaj, S. [Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616 (United States)

    2008-08-01

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power. (author)

  10. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Science.gov (United States)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  11. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  12. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  13. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  14. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  15. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

  16. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  17. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature

    Science.gov (United States)

    Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming

    2017-06-01

    Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.

  18. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  19. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  20. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  1. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  2. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    Science.gov (United States)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  3. Study of tertiary creep instability in several elevated-temperature structural materials

    International Nuclear Information System (INIS)

    Booker, M.K.; Sikka, V.K.

    1978-01-01

    Data for a number of common elevated temperature structural materials have been analyzed to yield mathematical predictions for the time and strain to tertiary creep at various rupture lives and temperatures. Materials examined include types 304 and 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, alloy 718, Hastelloy alloy X, and ERNiCr--3 weld metal. Data were typically examined over a range of creep temperatures for rupture lives ranging from less than 100 to greater than 10,000 hours. Within a given material, trends in these quantities can be consistently described, but it is difficult to directly relate the onset of tertiary creep to failure-inducing instabilities. A series of discontinued tests for alloy 718 at 649 and 620 0 C showed that the material fails by intergranular cracking but that no significant intergranular cracking occurs until well after the onset of tertiary creep

  4. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  5. Comparison study of inelastic analysis codes for high temperature structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, H. Y.; Park, C. K.; Geon, G. P.; Lee, J. H

    2004-02-01

    LMR high temperature structures subjected to operating and transient loadings may exhibit very complex deformation behaviors due to the use of ductile material such as 316SS and the systematic analysis technology of high temperature structure for reliable safety assessment is essential. In this project, comparative study with developed inelastic analysis program NONSTA and the existing analysis codes was performed applying various types of loading including non-proportional loading. The performance of NONSTA was confirmed and the effect of inelastic constants on the analysis result was analyzed. Also, the applicability of the inelastic analysis was enlarged as a result of applying both the developed program and the existing codes to the analyses of the enhanced creep behavior and the elastic follow-up behavior of high temperature structures and the necessary items for improvements were deduced. Further studies on the improvement of NONSTA program and the decision of the proper values of inelastic constants are necessary.

  6. Material design data of 2.25Cr-1Mo steel and hastelloy-x for the experimental multi-purpose very-high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kodaira, Tsuneo; Suzuki, Michiaki; Uga, Takeo

    1975-08-01

    The preliminary structural design guidelines for the experimental multi-purpose very-high temperature gas-cooled reactor have recently been prepared. The components of the primary system operating at temperatures of creep dominant range are grouped in those of pressure and temperature boundaries respectively. In the material selection, 2 1/4Cr-1Mo steel is chosen for the former and Hastelloy-X for the latter taking into account of material properties at operating temperature. Deriving from the literature in the field, material design data of the alloys are established in design forms such as Sy, So, Sm, St, 100% of minimum stress to rupture, design fatigue curves, isochronous stress-strain curves, creep-fatigue interaction damage factor and so on, which are defined in ASME Code Section III, Code Case 1592. (auth.)

  7. Design of a high-temperature superconductor current lead for electric utility SMES

    International Nuclear Information System (INIS)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Rey, C.M.; Dixon, K.D.

    1995-01-01

    Current leads that rely on high-temperature superconductors (HTSs) to deliver power to devices operating at liquid helium temperature have the potential to reduce refrigeration requirements to levels significantly below those achievable with conventional leads. The design of HTS current leads suitable for use in near-term superconducting magnetic energy storage (SMES) is in progress. The SMES system has an 0.5 MWh energy capacity and a discharge power of 30 MW. Lead-design considerations include safety and reliability, electrical and thermal performance, structural integrity, manufacturability, and cost. Available details of the design, including materials, configuration, and performance predictions, are presented

  8. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  9. High temperature tensile properties and deep drawing of fully green composites

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available In recent years, research and development of materials using biomass sources are much expected to construct a sustainable society. The so-called green composite consisting of natural fibers and biodegradable resin, is one of the most promising materials in developing biomass products. In this study, especially, we focus on the tensile deformation behavior of the green composites reinforced with ramie woven fabrics at high temperature. The results show that the fracture strain at high temperatures increases larger than that of room temperature, and initial deformation resistance of the composites seen at room temperature does not appear at high temperatures. Thus, several conditions to cause more deformability of the green composites were found. Finally, in order to utilize such deformability, Lankford-values of the green composites were clarified, and deep drawing was carried out for sheet materials made of the green composites.

  10. Articles for high temperature service and methods for their manufacture

    Science.gov (United States)

    Sarrafi-Nour, Reza; Meschter, Peter Joel; Johnson, Curtis Alan; Luthra, Krishan Lal; Rosenzweig, Larry Steven

    2016-06-14

    An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer comprising an alkaline-earth aluminosilicate disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing alkaline-earth aluminosilicate layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.

  11. Two decades on[Research into high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-04-15

    Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, T{sub c}, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a T{sub c} of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals

  12. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  13. Oxidation characteristics of MgF2 in air at high temperature

    Science.gov (United States)

    Chen, H. K.; Jie, Y. Y.; Chang, L.

    2017-02-01

    High temperature oxidation properties of MgF2 in air were studied. The changes of phase composition, macro surface morphology, weight and elemental composition of MgF2 samples with temperature were investigated by using XRD, EDS and gravimetric analyses. The results show that the oxidation reaction of MgF2 converted to MgO occurred at high temperature, and the reaction was accelerated by the increase of temperature and the presence of impurities. This result clarifies the understanding of the high temperature oxidation behavior of MgF2 in air, and provides a theoretical basis for the reasonable application of MgF2 in optical coating materials, electronic ceramic materials and magnesium melt protection.

  14. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  16. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  17. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  18. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  19. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  20. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials; Outils de caracterisation thermophysique et modeles numeriques pour les composites thermostructuraux a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lorrette, Ch

    2007-04-15

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  1. Proceedings of the workshop on 'anomalous electronic states and physical properties in high-temperature superconductors'

    International Nuclear Information System (INIS)

    Arai, Masatoshi; Kajimoto, Ryoichi

    2007-03-01

    A workshop entitled 'Anomalous Electronic States and Physical Properties in High-Temperature Superconductors' was held on November 7-8, 2006 at Institute for Materials Research, Tohoku University. In the workshop, leading scientists in the field of high-T c superconductivity, both experimentalists and theorists, gathered in a hall to report the recent progress of the study, clarify the problems to be solved, and discuss the future prospects. The workshop was jointly organized by Specially Promoted Research of MEXT, Development of the 4D Spaces Access Neutron Spectrometer and Elucidation of the Mechanism of Oxide High-T c Superconductivity' (repr. by M. Arai, JAEA) and by the Inter-university Cooperative Research Program of the Institute for Materials Research, Tohoku University, 'Anomalous Electronic States and Physical Properties in High-Temperature Superconductors' (repr. by T. Tohyama, Kyoto Univ.). This report includes abstracts and materials of the presentations in the workshop. (author)

  2. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  3. Comparison Of The MWCNTs-Rh And MWCNTs-Re Carbon-Metal Nanocomposites Obtained In High-Temperature

    Directory of Open Access Journals (Sweden)

    Dobrzańska-Danikiewicz A.D.

    2015-09-01

    Full Text Available Carbon-metal nanocomposites consisting of multiwalled carbon nanotubes coated with rhodium or rhenium nanoparticles by the high-temperature method were fabricated during the research undertaken. Multiwalled carbon nanotubes fabricated by Catalytic-Chemical Vapour Deposition (CCVD were used in the investigations. Multiwalled carbon nanotubes functionalisation in acid or in a mixture of acids was applied to deposit rhodium or rhenium nanoparticles onto the surface of carbon nanotubes, and then the material was placed in a solution being a precursor of metallic nanoparticles. The material prepared was next subjected to high-temperature reduction in the atmosphere of argon and/or hydrogen to deposit rhodium or rhenium nanoparticles onto the surface of multiwalled carbon nanotubes. The investigations performed include, respectively: fabrication of a CNT-NPs (Carbon NanoTube-NanoParticles nanocomposite material; the characterisation of the material produced including examination of the structure and morphology, and the assessment of rhodium and/or rhenium nanoparticles distribution on the surface of carbon nanotubes. Micro- and spectroscopy techniques were employed to characterise the structure of the nanocomposites obtained.

  4. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  5. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    International Nuclear Information System (INIS)

    Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-01

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al 3 Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al 3 Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al 3 Zr crystals were completely dissolved in Al after 20 h. •Cubic Al 3 Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  6. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-15

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  7. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  8. Segmentation of low‐cost high efficiency oxide‐based thermoelectric materials

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Linderoth, Søren

    2015-01-01

    Thermoelectric (TE) oxide materials have attracted great interest in advanced renewable energy research owing to the fact that they consist of abundant elements, can be manufactured by low-cost processing, sustain high temperatures, be robust and provide long lifetime. However, the low conversion...... efficiency of TE oxides has been a major drawback limiting these materials to broaden applications. In this work, theoretical calculations are used to predict how segmentation of oxide and semimetal materials, utilizing the benefits of both types of materials, can provide high efficiency, high temperature...... oxide-based segmented legs. The materials for segmentation are selected by their compatibility factors and their conversion efficiency versus material cost, i.e., “efficiency ratio”. Numerical modelling results showed that conversion efficiency could reach values of more than 10% for unicouples using...

  9. Very heavily electron-doped CrSi2 as a high-performance high-temperature thermoelectric material

    International Nuclear Information System (INIS)

    Parker, David; Singh, David J

    2012-01-01

    We analyze the thermoelectric behavior, using first principles and Boltzmann transport calculations, of very heavily electron-doped CrSi 2 and find that at temperatures of 900-1250 K and electron dopings of 1-4 × 10 21 cm -3 , thermopowers as large in magnitude as 200 μV K -1 may be found. Such high thermopowers at such high carrier concentrations are extremely rare, and suggest that excellent thermoelectric performance may be found in these ranges of temperature and doping. (paper)

  10. Scanning and Transmission Electron Microscopy of High Temperature Materials

    Science.gov (United States)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  11. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  12. Survey on Cooled-Vessel Designs in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Lee, Won-Jae

    2006-01-01

    The core outlet temperature of the coolant in the high temperature gas-cooled reactors (HTGR) has been increased to improve the overall efficiency of their electricity generation by using the Brayton cycle or their nuclear hydrogen production by using thermo-chemical processes. The increase of the outlet temperature accompanies an increase of the coolant inlet temperature. A high coolant inlet temperature results in an increase of the reactor pressure vessel (RPV) operation temperature. The conventional steels, proven vessel material in light water reactors, cannot be used as materials for the RPV in the elevated temperatures which necessitate its design to account for the creep effects. Some ferritic or martensitic steels like 2 1/4Cr-1Mo and 9Cr-1Mo-V are very well established creep resistant materials for a temperature range of 400 to 550 C. Although these materials have been used in a chemical plant, there is limited experience with using these materials in nuclear reactors. Even though the 2 1/4Cr-1Mo steel was used to manufacture the RPV for HTR-10 of Japan Atomic Energy Agency(JAEA), a large RPV has not been manufactured by using this material or 9Cr-1Mo-V steel. Due to not only its difficulties in manufacturing but also its high cost, the JAEA determined that they would exclude these materials from the GTHTR design. For the above reasons, KAERI has been considering a cooled-vessel design as an option for the RPV design of a NHDD plant (Nuclear Hydrogen Development and Demonstration). In this study, we surveyed several HTGRs, which adopt the cooled-vessel concept for their RPV design, and discussed their design characteristics. The survey results in design considerations for the NHDD cooled-vessel design

  13. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  14. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  15. High Temperature Materials Laboratory seventh annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Teague, P.A.

    1994-12-01

    The High Temperature Materials Laboratory (HTML) has completed its seventh year of operation as a designated Department of Energy User Facility at the Oak Ridge National Laboratory. Growth of the User Program has been demonstrated by the number of institutions executing user agreements since the HTML began operation in 1987. A total of 193 nonproprietary agreements (91 industry and 102 university) and 41 proprietary agreements (39 industry and two university) are now in effect. This represents an increase of 21 nonproprietary user agreements during FY 1994. Forty-one states are represented by these users. During FY 1994, the HTML User Program evaluated 106 nonproprietary proposals (46 from industry, 52 from universities, and 8 from other government facilities) and 8 proprietary proposals. The HTML User Advisory Committee approved about ninety-five percent of those evaluated proposals, sometimes after the prospective user revised the proposal based on comments from the Committee. This annual report discusses FY 1994 activities in the individual user centers, as well as plans for the future. It also gives statistics about users and their proposals and FY 1994 publications, and summarizes nonproprietary research projects active in FY 1994.

  16. Application of self-propagation high-temperature synthesis for immobilization of hard radioactive wastes in ceramet materials

    International Nuclear Information System (INIS)

    Ilyin, E.; Pashkeev, I.; Senin, A.; Gerasimova, N.

    2001-01-01

    The possibility of self-propagating high-temperature synthesis (SPHTS) application for an immobilization of solid high level wastes (HLW) in cermet materials is considered. The schemes of multilayer cermet blocks formation are offered. Such blocks consist of a ceramet core with immobilized HLW and a protective cover - ceramet without HLW. The influence of the base components form (pure Ti and Si, ferrotitanium and ferrosilicon), metallic components (Ni, Cu, Cr, Fe, ferrochromium) and nonmetallic components (SiO 2 , Al 2 O 3 , TiO 2 ) on burning rate and cover ceramet structure is investigated in compositions on a basis of Ti+B, Ti+Si, Ti+C systems. Model samples of multilayer cermet blocks are manufactured using of HLW simulators. (authors)

  17. STEM LEARNING IN MATERIAL OF TEMPERATURE AND ITS CHANGE TO IMPROVE SCIENTIFIC LITERACY OF JUNIOR HIGH SCHOOL

    OpenAIRE

    N. Khaeroningtyas; A. Permanasari; I. Hamidah

    2016-01-01

    This research aims to determine the improvement of students’ scientific literacy after STEM (Science, Technology, Engineering, and Mathematics) learning using 6E Learning by DesignTM Model on temperature and its changes material. The research was conducted in SMP Negeri (State Junior High School) 1 Bumiayu in the academic year 2015/2016. The method used was quasi-experimental design with The Matching Only - pretest posttest control group design. This study used two group of experiment group o...

  18. Material Properties at Low Temperature

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes

  19. Material Properties at Low Temperature

    CERN Document Server

    Duthil, P

    2014-07-17

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  20. Material Properties at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.