WorldWideScience

Sample records for included dodecyl dimethyl

  1. The Mechanism by Which Dodecyl Dimethyl Benzyl Ammonium Chloride Increased the Toxicity of Chlorpyrifos to Spodoptera exigua

    Directory of Open Access Journals (Sweden)

    Li Cui

    2017-07-01

    Full Text Available Beet armyworm, Spodoptera exigua (Hübner is one of the most destructive pests that causes significant losses in crops. Unfortunately, S. exigua have developed resistance toward the majority of insecticides. Synergists may provide an important choice to deal with the resistance problems. Dodecyl dimethyl benzyl ammonium chloride (DDBAC is a cationic surfactant, which displayed enhancement effect when combined with chlorpyrifos against S. exigua, giving enhancement factors of 1.50 and 1.57 at the concentrations of 90 and 810 mg L−1. In order to clarify the possible mechanisms, we investigate the effects of DDBAC on detoxification enzymes. However, DDBAC showed no inhibition on these enzymes activities. Meanwhile, scanning electron microscope images indicated DDBAC did not affect the cuticle super micro structure of S. exigua. The alterations in cuticular penetration rate have also been observed; indeed, it has been suggested that synergism is obtained by an acceleration of insecticide penetration through the cuticle. The chlorpyrifos penetration increased sharply when combined with 90 and 810 mg L−1 DDBAC, with only 12.6 and 8.5% of the initial chlorpyrifos recovered by external rinsing after 8 h. In contrast, when there was no DDBAC, more than 23.3% of the initial dose was recovered after 8 h.

  2. sodium dodecyl sulphate (SDS)

    Indian Academy of Sciences (India)

    Unknown

    sodium dodecyl sulphate, SDS) showed a marked effect, although there are some reports where cationic (cetyl trimethyl ammonium bromide, CTAB) and neutral (Triton X-100) surfactants have also shown changes in the. *For correspondence ...

  3. Genotoxic effects of 2-dodecyl cyclobutanone

    International Nuclear Information System (INIS)

    Delincee, H.; Pool-Zobel, B.L.; Rechkemmer, G.

    1999-01-01

    The paper reports in vivo experiments with rats who received two different doses of 2-dodecyl cyclobutane administered orally. 16 hours after administration, colon cells were isolated and examined for DNA damage by means of the comet assay. No cytotoxic effects were found with the trypan blue exclusion test. When the '% tail intensity' or the 'tail moment' were used for quantitative analysis with the comet assay, it was found that similar results are obtained for the test group which received a lower dose of 2-dodecyl cyclobutane (1.12 mg/kg of body weight) and the control group which received 2% dimethyl sulfoxide. Administration of higher concentrations of the 2-dodecyl cyclobutane (14.9 mg/kg of body weight) was found to induce minor, but significant DNA damage in the test group. Further experiments will be needed in order to assess the relevance of these results for assessment of health risks due to consumption of irradiated food. (orig./CB) [de

  4. Intercalation and Exfoliation of Kaolinite with Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Xiaochao Zuo

    2018-03-01

    Full Text Available Kaolinite (Kaol was intercalated with dimethyl sulfoxide (DMSO and subsequently methanol (MeOH to prepare intercalation compounds Kaol-DMSO and Kaol-MeOH. Kaol-MeOH was used as an intermediate to synthesize Kaol-sodium dodecyl sulfate (SDS intercalation compound (Kaol-SDS via displacement reaction. The ultrasonic exfoliation of Kaol-SDS produced a resultant Kaol-SDS-U. The samples were characterized by X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FTIR, thermal analysis, scanning electronic microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. The results revealed that the intercalation of sodium dodecyl sulfate into kaolinite layers caused an obvious increase of the basal spacing from 0.72–4.21 nm. The dehydroxylation temperature of Kaol-SDS was obviously lower than that of original kaolinite. During the intercalation process of sodium dodecyl sulfate, a few kaolinite layers were exfoliated and curled up from the edges of the kaolinite sheets. After sonication treatment, the kaolinite layers were further transformed into nanoscrolls, and the exfoliated resultant Kaol-SDS-U possessed a smaller particle size close to nanoscale.

  5. New water-soluble copper (II) complexes including 4,7-dimethyl-1,10-phenanthroline and L-tyrosine: Synthesis, characterization, DNA interactions and cytotoxicities

    Science.gov (United States)

    İnci, Duygu; Aydın, Rahmiye; Yılmaz, Dilek; Gençkal, Hasene Mutlu; Vatan, Özgür; Çinkılıç, Nilüfer; Zorlu, Yunus

    2015-02-01

    Two new water-soluble copper(II) complexes, [Cu(dmphen)2(NO3)]NO3 (1), [Cu(dmphen)(tyr)(H2O)]NO3·H2O (2) and the diquarternary salt of dmphen (dmphen = 4,7-dimethyl-1,10-phenanthroline and tyr = L-tyrosine), have been synthesized and characterized by elemental analysis, 1H NMR, 13C NMR and IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. The CT-DNA binding properties of these compounds have been investigated by absorption, emission spectroscopy and thermal denaturation measurements. The supercoiled pBR322 plasmid DNA cleavage activity of these compounds has been explored by agarose gel electrophoresis. The cytotoxicity of these compounds against MCF-7, Caco-2, A549 cancer cells and BEAS-2B healthy cells was also studied by the XTT method. Complexes 1 and 2 exhibit significant cytotoxicity, with lower IC50 values than those of cisplatin.

  6. Poly[bis(μ3-dodecyl sulfatocalcium

    Directory of Open Access Journals (Sweden)

    Genta Sakane

    2010-07-01

    Full Text Available In the title compound [Ca(C12H25O4S2]n, the unique CaII ion lies on an inversion center and is coordinated in a slightly distorted octahedral environment by six O atoms from dodecyl sulfate anions. The crystal structure is based on hydrocarbon (dodecyl sulfate layers which sandwich the CaII ions. Within the layers, the hydrocarbon zigzag chains are parallel to one another and interact via van der Waals forces.

  7. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  8. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  9. Hair protein removal by sodium dodecyl sulfate.

    Science.gov (United States)

    de Cássia Comis Wagner, Rita; Joekes, Inés

    2005-03-10

    The effect of sodium dodecyl sulfate (SDS) on protein loss was studied. Three kinds of human hair were tested by rubbing or immersion in water or immersion in SDS solution, at 25, 40 and 70 degrees C. Under friction, hair treated with SDS solution loses seven times more protein than in water, while by immersion, protein loss is roughly two times higher in SDS than in water. Protein loss increases at higher temperatures. Estimated activation energy values for protein loss by immersion are 69+/-22 kJ mol(-1) for blended brown hair; 40+/-12 kJ mol(-1) for blond hair (tip-end region) and 61+/-4 kJ mol(-1) for blond hair (root-end region) for samples treated in water, while 53+/-8, 7+/-5 and 32+/-8 kJ mol(-1) were the corresponding activation energy values for samples treated in 5% SDS solution. These values indicate that protein loss is mainly a diffusion-controlled process. The more damaged the hair, the lower the activation energy and the higher the protein loss. From these data, it can be estimated that daily care shampooing at room temperature will cause opacity and combing difficulties in 1 year and split ends after 3 years by removal of all cuticle layers.

  10. Effects of sodium dodecyl sulfate of polyphenoloxidase

    International Nuclear Information System (INIS)

    Moore, B.M.; Flurkey, W.H.

    1989-01-01

    The effects of sodium dodecyl sulfate (SDS) on the enzymatic and physical characteristics of purified broad bean polyphenoloxidase (PPO) were examined. A sigmoidal increase in PPO activation was observed with increasing SDS concentrations. Half maximal activation occurred at .9 mM SDS well below the CMC of 3.5 mM. No apparent changes in the Km for catechol, pH optimum, of I 50 for tropolone were observed in the presence vs absence of SDS. Thermal inactivation and binding of 14 C dopa increased in the presence of SDS. Analytical ultracentrifugation and HPLC-SEC indicated that SDS did not change the apparent size of the PPO under nondenaturing conditions. Scanning fluorescence spectroscopy showed an increase in intrinsic trp/tyr fluorescence at approximately the same concentration in which SDS activation began. Further addition of SDS caused a large increase in intrinsic fluorescence. These results suggest the SDS causes an apparent conformational change induced by SDS binding which leads to enzyme activation

  11. 4-(4-Bromophenyl-7,7-dimethyl-2-methylamino-3-nitro-7,8-dihydro-4H-chromen-5(6H-one including an unknown solvate

    Directory of Open Access Journals (Sweden)

    S. Antony Inglebert

    2014-05-01

    Full Text Available In the title compound, C18H19BrN2O4, the chromene unit is not quite planar (r.m.s. deviation = 0.199 Å, with the methyl C atoms lying 0.027 (4 and 1.929 (4 Å from the mean plane of the chromene unit. The six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation, with the dimethyl-substituted C atom as the flap. The methylamine and nitro groups are slightly twisted from the chromene moiety, with C—N—C—O and O—N—C—C torsion angles of 2.7 (4 and −0.4 (4°, respectively. The dihedral angle between the mean plane of the chromene unit and the benzene ring is 85.61 (13°. An intramolecular N—H...O hydrogen bond generates an S(6 ring motif, which stabilizes the molecular conformation. In the crystal, molecules are linked via N—H...O hydrogen bonds, forming hexagonal rings lying parallel to the ab plane. A region of disordered electron density, most probably disordered ethanol solvent molecules, occupying voids of ca 432 Å3 for an electron count of 158, was treated using the SQUEEZE routine in PLATON [Spek (2009. Acta Cryst. D65, 148–155]. Their formula mass and unit-cell characteristics were not taken into account during refinement.

  12. Contribution of sodium dodecyl sulphate and sodium lauric acid in ...

    Indian Academy of Sciences (India)

    Contribution of sodium dodecyl sulphate and sodium lauric acid in the one-pot synthesis of intercalated ... chain length but different anion groups were used together as intercalates to prepare intercalated ZnAl–layered double hydroxides ... assembly method, LDHs layers and surfactants are closely interconnected.

  13. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria

    NARCIS (Netherlands)

    Paulo, A.; Plugge, C.M.; Garcia Encina, P.A.; Stams, A.J.M.

    2013-01-01

    Two denitrifying bacteria were isolated using sodium dodecyl sulfate (SDS) as substrate. Strains SN1 and SN2 were isolated from an activated sludge reactor of a wastewater treatment plant (WWTP) with Anaerobic–Anoxic–Oxic (A2/O) steps. Based on 16S rRNA gene analysis strain SN1 is 99% similar to

  14. Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles ...

    Indian Academy of Sciences (India)

    Stabilized nickel nanoparticles (SNNPs) were prepared using Ni(acac) 2 (acac = acetylacetonate) via a simplesolvothermal method. The synthesis of the nickel nanoparticles was performed in the presence of sodium dodecyl sulphate(SDS) of different concentrations (mole ratios of SDS:Ni(acac) 2 = 1:1, 2:1 and 4:1), as the ...

  15. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Indian Academy of Sciences (India)

    An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and not in case of ...

  16. Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles ...

    Indian Academy of Sciences (India)

    2017-11-20

    Nov 20, 2017 ... The synthesis of the nickel nanoparticles was performed in the presence of sodium dodecyl sulphate. (SDS) of different concentrations ... fields of chemical catalysis, rechargeable batteries, catalysis superconductors, magnetic ..... polar group in SDS arrangement and Ni2+ ions were obtained, with the ...

  17. Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles ...

    Indian Academy of Sciences (India)

    2017-11-20

    Nov 20, 2017 ... Abstract. Stabilized nickel nanoparticles (SNNPs) were prepared using Ni(acac)2 (acac = acetylacetonate) via a simple solvothermal method. The synthesis of the nickel nanoparticles was performed in the presence of sodium dodecyl sulphate. (SDS) of different concentrations (mole ratios of SDS:Ni(acac)2 ...

  18. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Indian Academy of Sciences (India)

    Abstract. An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and.

  19. Contribution of sodium dodecyl sulphate and sodium lauric acid in ...

    Indian Academy of Sciences (India)

    Abstract. Anion surfactants, sodium dodecyl sulphate (SDS) and sodium lauric acid (SLA), with almost the same chain length but different anion groups were used together as intercalates to prepare intercalated ZnAl–layered double hydroxides (ZnAl–LDHs). Their composition, structure and morphology were characterized ...

  20. Interfacial properties of chitosan/sodium dodecyl sulfate complexes

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2017-01-01

    Full Text Available Contemporary formulations of cosmetic and pharmaceutical emulsions may be achieved by using combined polymer/surfactant system, which can form complexes with different structure and physicochemical properties. Such complexation can lead to additional stabilization of the emulsion products. For these reasons, the main goal of this study was to investigate the interfacial properties of chitosan/sodium dodecyl sulfate complexes. In order to understand the stabilization mechanism, the interface of the oil/water systems that contained mixtures of chitosan and sodium dodecyl sulfate, was studied by measuring the interfacial tension. Considering the fact that the properties of the oil phase has influence on the adsorption process, three different types of oil were investigated: medium-chain triglycerides (semi-synthetic oil, paraffin oil (mineral oil and natural oil obtained from the grape seed. The surface tension measurements at the oil/water interface, for chitosan water solutions, indicate a poor surface activity of this biopolymer. Addition of sodium dodecyl sulfate to chitosan solution causes a significant decrease in the interfacial tension for all investigated oils. The results of this study are important for understanding the influence of polymer-surfactant interactions on the properties of the solution and stability of dispersed systems. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46010

  1. Dimethyl Ether Injection Studies

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, Michael; Abata, Duane L.

    1998-01-01

    A series of preliminary investigations has been performed in order to investigate the behavior of DME in a diesel injection environment. These studies have in-cluded visual observations of the spray penetration and angles for high pressure injection into Nitrogen using conventional jerk pump inje...... well with the experimentally observed combustion rates during the mixing controlled portions of the combustion in a naturally aspirated direct injection diesel engine.......A series of preliminary investigations has been performed in order to investigate the behavior of DME in a diesel injection environment. These studies have in-cluded visual observations of the spray penetration and angles for high pressure injection into Nitrogen using conventional jerk pump...... injection equipment. It was shown that the penetration of the DME spray can be predicted with the methods developed for diesel fuel by Hiroyasu and co-workers. Some anomalies in spray shape, such as rapid lateral spreading at the base of the spray and spray bifurcation have been observed.The compressibility...

  2. 21 CFR 172.133 - Dimethyl dicarbonate.

    Science.gov (United States)

    2010-04-01

    ... following titration method: principles of method Dimethyl dicarbonate (DMDC) is mixed with excess...) Stirrer Device for potentiometric titration Reference electrode Glass electrode reagents Acetone...,000 ppm (0.2 percent) dimethyl carbonate as determined by a method entitled “Gas Chromatography Method...

  3. Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate on aluminum, studied by QCM-D, XPS, and AAS.

    Science.gov (United States)

    Karlsson, Philip M; Palmqvist, Anders E C; Holmberg, Krister

    2008-12-02

    The adsorption of two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl phosphate (SDP), at surfaces of aluminum and aluminum oxide has been studied by means of atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance with dissipation monitoring (QCM-D). It was shown that more SDP than SDS binds to the surface and that SDP prevents dissolution of aluminum in water whereas SDS does not. This was not obvious, since the adsorption isotherms of the two surfactants to aluminum pigment powder are quite similar, as shown in an earlier work. The decreased aluminum dissolution with SDP compared to SDS was explained by the formation of a more compact protective layer with less permeability on the aluminum surface with SDP than with SDS. This is explained by differences in complexing ability between the surfactants and the aluminum pigment surface. While SDP is expected to form an inner-sphere complex with aluminum, leading to a lower accessibility of aluminum sites to water, SDS is likely to form a weaker outer-sphere complex.

  4. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    and therefore smaller hopping distances. This was supported by X-ray measurements. Synthesis at lower temperatures generally leads to higher conductivity. The conductivity is strongly dependent on the potential, being more than four magnitudes smaller for the reduced state where the number of electronic......The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic....... These investigations demonstrate that even minor differences in the dopant anion can cause significant changes in the physical properties of the electroactive polymer. The highest conductivities ($sigma$-25$/ = 39 Scm$+-1$/) are obtained by the (6D)BS isomer, perhaps because the branching leads to denser packing...

  5. A novel preparation of methyl-β-cyclodextrin from dimethyl carbonate and β-cyclodextrin

    DEFF Research Database (Denmark)

    Gan, Yongjiang; Zhang, Yimin; Xiao, Chuanhao

    2011-01-01

    A novel green synthesis process about methyl-β-cyclodextrin has been investigated through the reaction between β-cyclodextrin and dimethyl carbonate by anhydrous potassium carbonate as catalyst in DMF. The influence of experimental factors including the molar ratio of dimethyl carbonate to β-cycl...... of methyl-β-cyclodextrin were characterized by TLC, IR, MS, 1H NMR, and 13C NMR....

  6. Fragrance material review on 2,2-dimethyl-3-phenylpropanol.

    Science.gov (United States)

    Scognamiglio, J; Jones, L; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2,2-dimethyl-3-phenylpropanol when used as a fragrance ingredient is presented. 2,2-Dimethyl-3-phenylpropanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2,2-dimethyl-3-phenylpropanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, phototoxicity, and photoallergy data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Triethylammonium salt of dimethyl diphenyldithiophosphates: Single ...

    Indian Academy of Sciences (India)

    Triethylammonium salt of dimethyl diphenyldithiophosphates: Single crystal X-ray and DFT analysis. SANDEEP KUMAR RUCHI KHAJURIA MANDEEP KOUR RAKESH KUMAR LOVE KARAN RANA GEETA HUNDAL VIVEK K GUPTA RAJNI KANT SUSHIL K PANDEY. Regular Article Volume 128 Issue 6 June 2016 pp ...

  8. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    Science.gov (United States)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  9. Energetic and binding properties of DNA upon interaction with dodecyl trimethylammonium bromide.

    Science.gov (United States)

    Bathaie, S Z; Moosavi-Movahedi, A A; Saboury, A A

    1999-02-15

    The interaction of dodecyl trimethylammonium bromide (DTAB), a cationic surfactant, with calf thymus DNA has been studied by various methods, including potentiometric technique using DTAB-selective plastic membrane electrode at 27 and 37 degreesC, isothermal titration microcalorimetry and UV spectrophotometry at 27 degreesC using 0.05 M Tris buffer and 0.01 M NaCl at pH 7.4. The free energy is calculated from binding isotherms on the basis of Wyman binding potential theory and the enthalpy of binding according to van't Hoff relation. The enthalpy of unfolding has been determined by subtraction of the enthalpy of binding from the microcalorimetric enthalpy. The results show that, after the interaction of first DTAB molecule to DNA (base molarity) through the electrostatic interaction, the second DTAB molecule also binds to DNA through electrostatic interaction. At this stage, the predom-inant DNA conformational change occurs. Afterwards up to 20 DTAB molecules, below the critical micelle concentration of DTAB, bind through hydrophobic interactions.

  10. Microchamber Western blotting using poly-L-lysine conjugated polyacrylamide gel for blotting of sodium dodecyl sulfate coated proteins.

    Science.gov (United States)

    Chung, Minsub; Kim, Dohyun; Herr, Amy E

    2013-08-20

    We report a novel strategy to immobilize sodium dodecyl sulfate (SDS)-coated proteins for fully integrated microfluidic Western blotting. Polyacrylamide gel copolymerized with a cationic polymer, poly-L-lysine, effectively immobilizes all sized proteins after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and enables SDS-PAGE and subsequent immuno-probing in an automated microfluidic chip. Design of a poly-l-lysine conjugated polyacrylamide gel allows optimization of SDS-protein immobilization strength in the blotting gel region of the microchamber. The dependence of protein capture behavior on both the concentration of copolymerized charges and poly-lysine length is studied and gives important insight into an electrostatic immobilization mechanism. Based on analysis of protein conformation, the immobilized proteins bind with partner antibody after SDS dilution. We demonstrate each step of the microchamber Western blot, including injection, separation, transfer, immobilization, blocking, and immunoblot. The approach advances microfluidic protein immunoblotting, which is directly relevant to the widely-used SDS-PAGE based slab-gel Western blot, while saving sample volume, labor, and assay time.

  11. Characterization of N,N-dimethyl amino acids by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Naresh Chary, V; Sudarshana Reddy, B; Kumar, Ch Dinesh; Srinivas, R; Prabhakar, S

    2015-05-01

    Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass-spectrometric-based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization-tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N-terminal amino acid of the peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Pislewski, N.; Tritt-Goc, J.; Jakubas, R.

    1995-01-01

    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH 2 (CH 3 ) 2 ] + Bi 2 J 9 - and [NH 2 (CH 3 ) 2 ] + SbJ 9 - . Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  13. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn; Christensen, Jakob Munkholt; Temel, B.

    2017-01-01

    concentrations in CO between 0.2 and 2.0%, and at a temperature of 438 K. The theoretical study showed that the reaction of CO with surface methyl groups, the rate-limiting step, is faster in the eight-membered side pockets than in the twelve-membered main channel of the zeolite; the subsequent reaction......The reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite was studied theoretically with periodic density functional theory calculations including dispersion forces and experimentally in a fixed bed flow reactor at pressures between 10 and 100 bar, dimethyl ether...... of dimethyl ether with surface acetyl to form methyl acetate was demonstrated to occur with low energy barriers in both the side pockets and in the main channel. The present analysis has thus identified a path, where the entire reaction occurs favourably on a single site within the side pocket, in good...

  14. CLONING AND SEQUENCING OF PSEUDOMONAS GENES DETERMINING SODIUM DODECYL-SULFATE BIODEGRADATION

    NARCIS (Netherlands)

    DAVISON, J; BRUNEL, F; PHANOPOULOS, A; PROZZI, D; TERPSTRA, P

    1992-01-01

    The nucleotide sequences of two genes involved in sodium dodecyl sulfate (SDS) degradation, by Pseudomonas, have been determined. One of these, sdsA, codes for an alkyl sulfatase (58 957 Da) and has similarity (31.8% identity over a 201-amino acid stretch) to the N terminus of a predicted protein of

  15. Identification of denatured enzyme proteins in sodium dodecyl sulfate polyacrylamide gels

    NARCIS (Netherlands)

    Hakvoort, T. B.; Veyron, P.; Muilerman, H. G.; van Dijk, W.; Tager, J. M.

    1985-01-01

    A simple modification of the immunological sandwich method of Muilerman et al. for the identification of denatured enzyme proteins in sodium dodecyl sulfate-polyacrylamide gels is described, enabling the method to be used in principle for any enzyme whose activity is not inhibited by binding to

  16. Improved method for silver staining of glycoproteins in thin sodium dodecyl sulfate polyacrylamide gels

    DEFF Research Database (Denmark)

    Møller, H J; Poulsen, J H

    1995-01-01

    A method for detection of glycoproteins in thin sodium dodecyl sulfate polyacrylamide gels was developed by a combination of (i) initial periodic acid oxidation/Alcian blue staining and (ii) subsequent staining with silver nitrate. The procedure allowed detection of as little as 1.6 ng of alpha 1...

  17. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.Y.G. (Univ. of British Columbia, Vancouver, Canada); Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  18. Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-06-01

    Full Text Available Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils. Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4 stabilized with sodium dodecyl sulfate (SDS and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10% on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19. The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

  19. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    Science.gov (United States)

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Footwear contact dermatitis from dimethyl fumarate.

    Science.gov (United States)

    Švecová, Danka; Šimaljakova, Maria; Doležalová, Anna

    2013-07-01

    Dimethyl fumarate (DMF) is an effective inhibitor of mold growth. In very low concentrations, DMF is a potent sensitizer that can cause severe allergic contact dermatitis (ACD). It has been identified as the agent responsible for furniture contact dermatitis in Europe. The aim of this study was to evaluate patients in Slovakia with footwear ACD associated with DMF, with regard to clinical manifestations, patch test results, and results of chemical analysis of their footwear. Nine patients with suspected footwear contact dermatitis underwent patch testing with the following allergens: samples of their own footwear, commercial DMF, the European baseline, shoe screening, textile and leather dye screening, and industrial biocides series. The results were recorded according to international guidelines. The content of DMF in footwear and anti-mold sachets was analyzed using gas chromatography and mass spectrometry. Acute ACD was observed in nine Caucasian female patients. All patients developed delayed sensitization, as demonstrated by positive patch testing using textile footwear lining. Seven patients were patch tested with 0.1% DMF, and all seven were positive. Chemical analysis of available footwear showed that DMF was present in very high concentrations (25-80 mg/Kg). Dimethyl fumarate is a new footwear allergen and was responsible for severe ACD in our patients. To avoid an increase in the number of cases, the already approved European preventive measures should be accepted and commonly employed. © 2013 The International Society of Dermatology.

  1. Dimethyl carbonate as a modern green reagent and solvent

    International Nuclear Information System (INIS)

    Arico, F; Tundo, Pietro

    2010-01-01

    Published data on dimethyl carbonate as a safe reagent and solvent in organic synthesis are generalized and analyzed. The methods of dimethyl carbonate preparation and its use as methylating and carboxymethylating reagent are considered. The attention is focused on the environmentally safe processes corresponding to the green chemistry principles.

  2. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    Science.gov (United States)

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  3. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  4. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis.

    Science.gov (United States)

    Liu, Shichang; Yu, Fengchao; Yang, Zhu; Wang, Tingliang; Xiong, Hairong; Chang, Caren; Yu, Weichuan; Li, Ning

    2018-05-01

    Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both C sCl d ensity g radient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl c hemical labeling with c hromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based c omputational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named S table isotope-based Qua ntitation- D imethyl labeling (SQUA-D), and finally the c onfirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain ( i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and

  5. Pathway for Unfolding of Ubiquitin in Sodium Dodecyl Sulfate, Studied by Capillary Electrophoresis

    OpenAIRE

    Schneider, Grégory F.; Shaw, Bryan F.; Lee, Andrew; Carillho, Emanuel; Whitesides, George M.

    2008-01-01

    This paper characterizes the complexes formed by a small protein, ubiquitin (UBI), and a negatively charged surfactant, sodium dodecyl sulfate (SDS), using capillary electrophoresis (CE), circular dichroism (CD), and amide hydrogendeuterium exchange (HDX; as monitored by mass spectroscopy, MS). Capillary electrophoresis of complexes of UBI and SDS, at apparent equilibrium, at concentrations of SDS ranging from sub-micellar and sub-denaturing to micellar and denaturing, revealed multiple compl...

  6. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    Science.gov (United States)

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Study on the synthesis of dimethyl 1,4-cyclohexanedicarboxylate by catalytic hydrogenation of dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    LI Yuanhua

    2016-12-01

    Full Text Available In the field of polymer industry,1,4-cyclohexanedimethanol (CHDM occupies an important position especially for the synthesis of highly valued polyester products.In industry,CHDM is prepared from dimethyl terephthalate (DMT through a two-step hydrogenation process Palladium supported on magnesium oxide (Pd/MgO was prepared by animpregnation method and was characterized by x-ray diffraction (XRD,transmission electron microscope (TEM and scan electron microscope (SEM.During the hydrogenation of DMT to synthesize dimethyl 1,4-cyclohexanedicarboxylate (DMCD,the as-prepared Pd/MgO was used as the catalyst with methyl acetate as the solvent.Under optimized reaction conditions (reaction temperature:180 ℃,reaction pressure:4.5 MPa,the conversion of DMT was 100% and the selectivity of DMCD was 99%.Such a catalyst shows a good potential in industrial applications.

  8. Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sulfide isotopologues: a route toward their astrophysical detection

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, C. [Dipartimento di Chimica, " Giacomo Ciamician," Università diBologna, Via F. Selmi 2, I-40126 Bologna (Italy); Senent, M. L. [Departamento de Química y Física Teóricas, Institsuto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Domínguez-Gómez, R. [Doctora Vinculada IEM-CSIC, Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid (Spain); Carvajal, M. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, E-21071 Huelva (Spain); Hochlaf, M. [Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallée (France); Al-Mogren, M. Mogren, E-mail: cristina.puzzarini@unibo.it, E-mail: senent@iem.cfmac.csic.es, E-mail: rosa.dominguez@upm.es, E-mail: miguel.carvajal@dfa.uhu.es, E-mail: majdi.hochlaf@u-pem.fr, E-mail: mmogren@ksu.edu.sa [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-11-20

    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.

  9. Micelization of dodecyl benzenesulfonic acid and its interaction with poly(ethylene oxide) polymer

    International Nuclear Information System (INIS)

    Khan, M.S.; Ali, Z.

    2009-01-01

    The interaction between dodecyl benzene sulfonic acid (DBSA) with poly (ethylene oxide) (PEO) has been investigated at 293 K by conductance and surface tension measurements. The effect of concentration on the electrical conductance of DBSA in solution itself from 293-323 K above and below the Critical Micelle Concentration (CMC) was also studied. A number of important parameters i.e. critical aggregation concentration (CAC), Gibb's free energy (L delta) and binding ratio (R) was also determined. The effect of NaCI on the CAC and Polymer saturation point (PSP) was also investigated. It was found that conductance of PEO increased with the introduction of DBSA. (author)

  10. Preparation of Barley Storage Protein, Hordein, for Analytical Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    DEFF Research Database (Denmark)

    Doll, Hans; Andersen, Bente

    1981-01-01

    The extraction, reduction, and alkylation of barley hordein for routine electrophoresis in sodium dodecyl sulfate-polyacrylamide gels were studied to set up a simple preparation procedure giving well-resolved bands in the electrophoresis gel. Hordein was extracted from single crushed seeds or flour...... by aqueous 50% propan-2-ol containing a Tris-borate buffer, pH 8.6. The presence of the buffer facilitates the consecutive complete reduction of the extracted protein in the alcohol. Reduction and alkylation in the buffer containing propan-2-ol give sharper bands in the electrophoresis than reduction...

  11. Activity staining of pectinesterase on polyacrylamide gels after acidic or sodium dodecyl sulfate electrophoresis.

    Science.gov (United States)

    Hou, W C; Lin, Y H

    1998-05-01

    Pectinesterase (PE), from commercial orange peels or ammonium sulfate fractionation (50-80% saturation) of pea pods, was detected on polyacrylamide gels after native acidic polyacrylamide gel electrophoresis (PAGE) or sodium dodecyl sulfate (SDS)-PAGE by using the synthetic substrate beta-naphthyl acetate (beta-NA). The release of beta-naphthol (at 322 nm) from beta-NA was proportional to PE activity. The PE activity bands on polyacrylamide gels after native acidic PAGE or SDS-PAGE were stained with a combination of tetrazotized o-dianisidine and beta-NA. This fast and sensitive method can be used for enzyme purification and characterization.

  12. Simple and sensitive method for spectrofluorimetric determination of dodecyl benzene sulfonic acid sodium

    Science.gov (United States)

    Liu, Jinshui; Liu, Yan; Li, Peng; Wang, Lun

    2006-12-01

    The interaction of poly(diallyldimethyl ammonium chloride) (PDDA) with dodecyl benzene sulfonic acid sodium (DBS) has been studied by fluorescence spectra. The fluorescence of DBS can be greatly enhanced by addition of PDDA, owing to the interaction between PDDA and DBS. The enhancement intensity of fluorescence was proportional to the concentration of DBS over the range 2.5 × 10 -7 to 9.6 × 10 -5 mol L -1. Its detection limit is 3.5 × 10 -7 mol L -1. The method has high sensitivity and selectivity and was applied to the determination of trace amounts of DBS in water samples with satisfactory result.

  13. Hyperspectral Analysis for Standoff Detection of Dimethyl ...

    Science.gov (United States)

    Journal Article Detecting organophosphates in indoor settings requires more efficient and faster methods of surveying large surface areas than conventional approaches, which sample small surface areas followed by extraction and analysis. This study examined a standoff detection technique utilizing hyperspectral imaging for analysis of building materials in near-real time. In this proof-of-concept study, dimethyl methylphosphonate (DMMP) was applied to stainless steel and laminate coupons and spectra were collected during active illumination. Absorbance bands at approximately 1275 cm-1 and 1050 cm-1 were associated with phosphorus-oxygen double bond (P=O) and phosphorus-oxygen-carbon (P-O-C) bond stretches of DMMP, respectively. The magnitude of these bands increased linearly (r2 = 0.93) with DMMP across the full absorbance spectrum, between ν1 = 877 cm-1 to ν2 = 1262 cm-1. Comparisons between bare and contaminated surfaces on stainless steel using the spectral contrast angle technique indicated that the bare samples showed no sign of contamination, with large uniformly distributed contrast angles of 45˚-55˚, while the contaminated samples had smaller spectral contact angles of 40° in the uncontaminated region. The laminate contaminated region exhibited contact angles of detect DMMP on building materials, with detection levels similar to c

  14. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com [Department of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246 (Yemen); Talib, Zainal Abidin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia); Hussein, Mohd Zobir [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia)

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  15. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Shahabi, Somayyeh

    2011-01-01

    Graphical abstract: Apparent molar volume against molality: o, ·, and Δ, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, Δ, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research highlights: → C 12 H 25 SO 3 Na(SDSn) was seen to interact with PEG more weakly than C 12 H 25 SO 4 Na(SDS). → The constraints on molecular mobility of SDS micelles are larger than those of SDSn. → Entropy change on micellization for SDSn is larger than those for SDS. → Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. → Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C 12 H 25 SO 4 Na) or sodium dodecyl sulfonate (C 12 H 25 SO 3 Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C 12 H 25 SO 4 Na and C 12 H 25 SO 3 Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C 12 H 25 SO 4 Na/C 12 H 25 SO 3 Na and PEG were studied and it was found that sodium alkyl sulfonates were seen to interact more weakly than their sulfate analogues.

  16. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.ir [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shahabi, Somayyeh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Apparent molar volume against molality: o, {center_dot}, and {Delta}, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, {Delta}, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research Highlights: > C{sub 12}H{sub 25}SO{sub 3}Na(SDSn) was seen to interact with PEG more weakly than C{sub 12}H{sub 25}SO{sub 4}Na(SDS). > The constraints on molecular mobility of SDS micelles are larger than those of SDSn. > Entropy change on micellization for SDSn is larger than those for SDS. > Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. > Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C{sub 12}H{sub 25}SO{sub 4}Na) or sodium dodecyl sulfonate (C{sub 12}H{sub 25}SO{sub 3}Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C{sub 12}H{sub 25}SO{sub 4}Na and C{sub 12}H{sub 25}SO{sub 3}Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C{sub 12}H{sub 25}SO{sub 4}Na/C{sub 12}H{sub 25}SO{sub 3}Na and PEG were studied and it was found that sodium alkyl sulfonates were seen

  17. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mortazavi, Shirin R. [Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); Cheung-Lau, Jasmina C.; Dmochowski, Ivan J. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Loll, Patrick J., E-mail: renyu.liu@uphs.upenn.edu [Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  18. New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In this work, the formation of semiconductive Sb2S3 nanoparticles inside amorphous polystyrene has been achieved by thermal degradation of the corresponding antimony dodecyl-mercaptide, Sb(SC12H253. The thermolysis of the dodecyl-mercaptide precursor was studied as both pure phase and mercaptide solution in polystyrene. The thermal decomposition of the antimony mercaptide precursor at 350°C, under vacuum, showed the formation of a mixture of antimony trisulfide (stibnite, Sb2S3 and zero-valent antimony (Sb phase. X-ray Powder Diffraction (XRD and Rietveld analysis carried out on the obtained nanostructured powder confirmed the presence of Sb and Sb2S3 phases in 10.4 wt% and 89.6 wt% amount, respectively. The same pyrolysis reaction was carried out in the polymer and the resulting nanocomposite material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, UV-VIS spectroscopy, and fluorescence spectroscopy. The nanocomposite structural characterization indicated the presence of well-dispersed nanoclusters of antimony and stibnite (15–30 nm in size inside the amorphous polymeric phase. Optical measurements on the obtained nanocomposite films showed a strong emission at 432 nm upon excitation at 371 nm, probably related to the presence of Sb2S3 nanoclusters.

  19. Towards optimised drug delivery: structure and composition of testosterone enanthate in sodium dodecyl sulfate monolayers.

    Science.gov (United States)

    Saaka, Yussif; Allen, Daniel T; Luangwitchajaroen, Yuvared; Shao, Yanan; Campbell, Richard A; Lorenz, Christian D; Lawrence, M Jayne

    2018-04-09

    Surface tension and specular neutron reflectivity measurements have been used, for the first time to systematically study both the interfacial structure and composition of monolayers of the soluble surfactant, sodium dodecyl sulfate containing a low-dose, poorly water soluble drug, testosterone enanthate. Modelling of the specular neutron reflectivity data suggests that the hydrophobic testosterone enanthate was adsorbed in the C12 hydrophobic tail region of the surfactant monolayer, regardless of the concentration of surfactant at the interface and whether or not additional drug was added to the interface. The location of the hydrophobic drug in the tail region of the surfactant monolayer is supported by the results of classical, large-scale molecular dynamics simulations. The thickness of the surfactant monolayer obtained, in the presence and absence of drug, using molecular dynamics simulations was in good agreement with the corresponding values obtained from the specular neutron reflectivity measurements. The stoichiometry of surfactant:drug at the air-water interface at sodium dodecyl sulfate concentrations above the critical micelle concentration was determined from specular neutron reflectivity measurements to be approximately 3 : 1, and remained constant after the spreading of further testosterone enanthate at the interface. Significantly, this stoichiometry was the same as that obtained in the micelles from bulk solubilisation studies. Important insights into the preferred location of drug in surfactant monolayers at the air-water interface as well as its effect on the structure of the monolayer have been obtained from our combined use of experimental and simulation techniques.

  20. Theoretical methodology for prediction of tropospheric oxidation of dimethyl phosphonate and dimethyl methylphosphonate.

    Science.gov (United States)

    Cory, Marshall G; Taylor, DeCarlos E; Bunte, Steven W; Runge, Keith; Vasey, Joseph L; Burns, Douglas S

    2011-03-17

    Rate constants for the reactions of OH radicals with dimethyl phosphonate [DMHP, (CH(3)O)(2)P(O)H] and dimethyl methylphosphonate [DMMP, (CH(3)O)(2)P(O)CH(3)] have been calculated by ab initio structural methods and semiclassical dynamics modeling and compared with experimental measurements over the temperature range 250-350 K. The structure and energetics of reactants and transition structures are determined for all hydrogen atom abstraction pathways that initiate the atmospheric oxidation mechanism. Structures are obtained at the CCSD/6-31++G** level of chemical theory, and the height of the activation barrier is determined by a variant of the G2MP2 method. A Transfer Hamiltonian is used to compute the minimum energy path in the neighborhood of the transition state (TS). This calculation provides information about the curvature of the potential energy surface in the neighborhood of the TS, as well as the internal forces that are needed by the semiclassical flux-flux autocorrelation function (SCFFAF) dynamics model used to compute the temperature-dependent reaction rate constants for the various possible abstraction pathways. The computed temperature-dependent rate curves frequently lie within the experimental error bars.

  1. Effect of different concentrations of sodium dodecyl sulfate and additional anionic surfactant on properties of low protein natural rubber latex

    Science.gov (United States)

    Abdullah, Nurulhuda; Manaf, Siti Nor Qamarina; Hassan, Aziana Abu

    2017-12-01

    This paper describes the chemical deproteinization process of natural rubber latex (NRL) using chemical denaturants namely urea and sodium dodecyl sulfate (SDS). Commercial high ammoniated natural rubber latex (HANRL) was incubated with both denaturants - urea and SDS for selected period of time before centrifugation and characterization. The role of SDS in NRL deproteinization process was further elucidated by manipulating the concentration of SDS at 0.3 phr and 0.5 phr during the incubation process. It was found that the physical properties of NRL especially stability, were governed by the amount of SDS, whereby higher concentration of SDS used led to greater NRL stability. However, too much concentration of SDS in the system might cause detrimental effect on the properties of low protein NRL. The effects of additional anionic surfactant namely potassium laurate on the physical properties of low protein NRL and its stabilization were also scrutinized. Characterizations include nitrogen determination by Kjeldahl method, zeta potential, and morphological analysis by Field Emission Scanning Electron Microscopy (FESEM).

  2. Development of a Robust Method for Simultaneous Quantification of Polymer (HPMC) and Surfactant (Dodecyl β-D-Maltoside) in Nanosuspensions.

    Science.gov (United States)

    Patel, Salin Gupta; Bummer, Paul M

    2016-10-01

    This report describes the development of a chromatographic method for the simultaneous quantification of a polymer, hydroxypropyl methylcellulose (HPMC), and a surfactant, dodecyl β-D-maltoside (DM), that are commonly used in the physical stabilization of pharmaceutical formulations such as nanosuspensions and solid dispersions. These excipients are often challenging to quantify due to the lack of chromophores. A reverse phase size exclusion chromatography (SEC) with evaporative light scattering detector (ELSD) technique was utilized to develop an accurate and robust assay for the simultaneous quantification of HPMC and DM in a nanosuspension formulation. The statistical design of experiments was used to determine the influence of critical ELSD variables including temperature, pressure, and gain on accuracy, precision, and sensitivity of the assay. A robust design space was identified where it was determined that an increase in the temperature of the drift tube and gain of the instrument increased the accuracy and precision of the assay and a decrease in the nebulizer pressure value increased the sensitivity of the assay. In the optimized design space, response data showed that the assay could quantify HPMC and DM simultaneously with good accuracy, precision, and reproducibility. Overall, SEC-ELSD proved to be a powerful technique for the simultaneous quantification of HPMC and DM. This technique can be used to quantify the amount of HPMC and DM in nanosuspensions, which is critical to understanding their effects on the physical stability of nanosuspensions.

  3. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Directory of Open Access Journals (Sweden)

    Xu Jide

    2009-06-01

    Full Text Available Abstract Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS on the adsorption of the siderophores DFOB (cationic and DFOD (neutral and the ligand EDTA (anionic onto goethite (α-FeOOH at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition.

  4. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate.

    Science.gov (United States)

    Chen, Dong; Zhao, Tong; Doyle, Michael P

    2015-08-17

    The efficacy of levulinic acid (LVA) plus sodium dodecyl sulfate (SDS) to remove or inactivate Listeria monocytogenes, Salmonella Typhimurium, and Shiga toxin-producing Escherichia coli (STEC) in biofilms on the surface of stainless steel coupons was evaluated. Five- or six-strain mixtures (ca. 9.0 log CFU/ml) of the three pathogens were separately inoculated on stainless steel coupons. After incubation at 21 °C for 72 h, the coupons were treated for 10 min by different concentrations of LVA plus SDS (0.5% LVA+0.05% SDS, 1% LVA+0.1% SDS, and 3% LVA+2% SDS) and other commonly used sanitizers, including a commercial quaternary ammonium-based sanitizer (150 ppm), lactic acid (3%), sodium hypochlorite (100 ppm), and hydrogen peroxide (2%). The pathogens grew in the biofilms to ca. 8.6 to 9.3 log CFU/coupon after 72 h of incubation. The combined activity of LVA with SDS was bactericidal in biofilms for cells of the three pathogens evaluated, with the highest concentrations (3% LVA+2% SDS) providing the greatest log reduction. Microscopic images indicated that the cells were detached from the biofilm matrix and the integrity of cell envelopes were decreased after the treatment of LVA plus SDS. This study is conducive to better understanding the antimicrobial behavior of LVA plus SDS to the foodborne pathogens within biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    International Nuclear Information System (INIS)

    Abdel-Messeih, P.L.

    2012-01-01

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T 4 were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T 4 as compared to controls. There were significant negative correlations between NO and both ADMA (r 2 = 0.84) and free T 4 (r 2 = 0.95) in overt hypothyroid group while significant positive correlation (r 2 = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females

  6. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide.

    Science.gov (United States)

    Mardyukov, Artur; Schreiner, Peter R

    2018-02-20

    The large number and amounts of volatile organosulfur compounds emitted to the atmosphere and the enormous variety of their reactions in various oxidation states make experimental measurements of even a small fraction of them a daunting task. Dimethyl sulfide (DMS) is a product of biological processes involving marine phytoplankton, and it is estimated to account for approximately 60% of the total natural sulfur gases released to the atmosphere. Ocean-emitted DMS has been suggested to play a role in atmospheric aerosol formation and thereby cloud formation. The reaction of ·OH with DMS is known to proceed by two independent channels: abstraction and addition. The oxidation of DMS is believed to be initiated by the reaction with ·OH and NO 3 · radicals, which eventually leads to the formation of sulfuric acid (H 2 SO 4 ) and methanesulfonic acid (CH 3 SO 3 H). The reaction of DMS with NO 3 · appears to proceed exclusively by hydrogen abstraction. The oxidation of DMS consists of a complex sequence of reactions. Depending on the time of the day or altitude, it may take a variety of pathways. In general, however, the oxidation proceeds via chains of radical reactions. Dimethyl sulfoxide (DMSO) has been reported to be a major product of the addition channel. Dimethyl sulfone (DMSO 2 ), SO 2 , CH 3 SO 3 H, and methanesulfinic acid (CH 3 S(O)OH) have been observed as products of further oxidation of DMSO. Understanding the details of DMS oxidation requires in-depth knowledge of the elementary steps of this seemingly simple transformation, which in turn requires a combination of experimental and theoretical methods. The methylthiyl (CH 3 S·), methylsulfinyl (CH 3 SO·), methylsulfonyl (CH 3 SO 2 ·), and methylsulfonyloxyl (CH 3 SO 3 ·) radicals have been postulated as intermediates in the oxidation of DMS. Therefore, studying the chemistry of sulfur-containing free radicals in the laboratory also is the basis for understanding the mechanism of DMS oxidation in the

  7. Penguins are attracted to dimethyl sulphide at sea.

    Science.gov (United States)

    Wright, Kyran L B; Pichegru, Lorien; Ryan, Peter G

    2011-08-01

    Breeding Spheniscus penguins are central place foragers that feed primarily on schooling pelagic fish. They are visual hunters, but it is unclear how they locate prey patches on a coarse scale. Many petrels and storm petrels (Procellariiformes), the penguins' closest relatives, use olfactory cues to locate prey concentrations at sea, but this has not been demonstrated for penguins. Procellariiforms are attracted to a variety of olfactory cues, including dimethyl sulphide (DMS), an organosulphur compound released when phytoplankton is grazed, as well as fish odorants such as cod liver oil. A recent study found that African penguins Spheniscus demersus react to DMS on land. We confirm this result and show that African penguins are also attracted by DMS at sea. DMS-scented oil slicks attracted 2-3 times more penguins than control slicks, whereas penguins showed no response to slicks containing cod liver oil. The number of penguins attracted to DMS increased for at least 30 min, suggesting penguins could travel up to 2 km to reach scent cues. Repeats of land-based trials confirmed previous results showing DMS sensitivity of penguins on land. Our results also support the hypothesis that African penguins use DMS as an olfactory cue to locate prey patches at sea from a distance, which is particularly important given their slow commuting speed relative to that of flying seabirds.

  8. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  9. Novel electrochemical route to cleaner fuel dimethyl ether.

    Science.gov (United States)

    Cassone, Giuseppe; Pietrucci, Fabio; Saija, Franz; Guyot, François; Sponer, Jiri; Sponer, Judit E; Saitta, A Marco

    2017-07-31

    Methanol, the simplest alcohol, and dimethyl ether, the simplest ether, are central compounds in the search for alternative "green" combustion fuels. In fact, they are generally considered as the cornerstones of the envisaged "Methanol Economy" scenario, as they are able to efficiently produce energy in an environmentally friendly manner. However, despite a massive amount of research in this field, the synthesis of dimethyl ether from liquid methanol has never so far been reported. Here we present a computational study, based on ab initio Molecular Dynamics, which suggests a novel synthesis route to methanol dehydration - leading thus to the dimethyl ether synthesis - through the application of strong electric fields. Besides proving the impressive catalytic effects afforded by the field, our calculations indicate that the obtained dimethyl ether is stable and that it can be progressively accumulated thanks to the peculiar chemical pathways characterising the methanol reaction network under electric field. These results suggest that the experimental synthesis of dimethyl ether from liquid methanol could be achieved, possibly in the proximity of field emitter tips.

  10. Effect of Anionic Surfactant on the Thermo Acoustical Properties of Sodium Dodecyl Sulphate in Polyvinyl Alcohol Solution by Ultrasonic Method

    Directory of Open Access Journals (Sweden)

    S. Ravichandran

    2011-01-01

    Full Text Available The interaction of sodium dodecyl sulphate (SDS / poly(vinyl alcohol (PVA solution was studied by ultrasonic velocity measurements. Ultrasonic velocity, density, viscosity in mixtures of sodium dodecyl sulphate in polyvinyl alcohol was measured over the entire range of composition. From the experimental data, other related thermodynamic parameters, viz., adiabatic compressibility, intermolecular free length, surface tension, relative association, relaxation time, absorption coefficient and internal pressure were calculated. Formations of rods interfere with velocity of ultrasonic waves. Hence the ultrasonic velocity decreases with concentration. These results were interpreted in terms of polymer-surfactant complex reactions.

  11. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Science.gov (United States)

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  12. THE ACTION OF SODIUM DODECYL SULFATE ON THE CHLOROPHYLL-PROTEIN COMPOUND OF THE SPINACH LEAF.

    Science.gov (United States)

    Smith, E L

    1941-05-20

    1. Sodium dodecyl sulfate (SDS) attacks the chlorophyll-protein compound modifying its protein properties and absorption spectrum. 2. In the presence of SDS, chlorophyll is quantitatively converted to phaeophytin; i.e., magnesium is removed from the molecule. This reaction, measured spectrophotometrically, proceeds at a rate directly proportional to the hydrogen ion concentration. At constant pH, the rate is proportional to the SDS concentration until a maximum rate is achieved. 3. The chlorophyll or phaeophytin (depending on the pH) remains attached to the protein, since the prosthetic group cannot be separated by ultrafiltration, dialysis, or fractional precipitation. 4. This suggests that the magnesium plays no part in binding chlorophyll to the split protein fragments, but may be concerned in binding the larger units, since the metal becomes extremely labile when the protein is split.

  13. Influence of sodium dodecyl sulfate on the reaction between Nile Blue A and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    IVANA A. JANKOVIC

    1999-05-01

    Full Text Available The influence of the anionic surfactant sodium dodecyl sulfate on the rate of the reaction between the cationic form of Nile Blue A and hydrogen peroxide was investigated in the pH range from 5 to 8.5. A retardation of the oxidation of Nile Blue A with hydrogen peroxide of three orders of magnitude was observed at pH 8.5 in the presence of anionic micelles compared to the kinetic data in water. The retardation effect was less pronounced at lower pH values. These effects were explained by the electrostatic interaction of the species involved in the reaction with the negatively charged micellar surface and their effective separation in the vicinity of the micellar surface.

  14. Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin with sodium dodecyl sulfate.

    Science.gov (United States)

    Salehi, N; Moosavi-Movahedi, A A; Fotouhi, L; Yousefinejad, S; Shourian, M; Hosseinzadeh, R; Sheibani, N; Habibi-Rezaei, M

    2014-04-05

    In this study the hemoglobin heme degradation upon interaction with sodium dodecyl sulfate (SDS) was investigated using UV-vis and fluorescence spectroscopy, multivariate curve resolution analysis, and chemiluminescence method. Our results showed that heme degradation occurred during interaction of hemoglobin with SDS producing three fluorescent components. We showed that the hydrogen peroxide, produced during this interaction, caused heme degradation. In addition, the endogenous hydrogen peroxide was more effective in hemoglobin heme degradation compared to exogenously added hydrogen peroxide. The endogenous form of hydrogen peroxide altered oxyHb to aquamethemoglobin and hemichrome at low concentration. In contrast, the exogenous hydrogen peroxide lacked this ability under same conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A thermodynamic investigation on the binding of lysozme with sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Behbeheni, G.R.; Ramazani, S.; Gonbadi, K.

    2013-01-01

    The interaction of Sodium Dodecyl Sulfate (SDS) with hen egg lysozyme have been investigated at 298, 303 and 308 K in phosphate buffer at two different pH values (5 and 7), by isothermal titration calorimetry. The calorimetric data analysis allows the measurement of the complete set of thermodynamic parameters. The negative SDS ion binds to positive residues, neutralizes the protein surface charges and leads to precipitation and turbidity of the solution. At low concentrations of SDS, the binding is mainly electrostatic, with some simultaneous interaction of the hydrophobic tail with nearby hydrophobic patches on the lysozyme. The enthalpies of denaturation at pH 7 are 180.47, 198.51 and 216.56 for 298, 303 and 308 K respectively. (author)

  16. Binding of heavy metals to derivatives of cholesterol and sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, S.; Batchelor, B.; Koseoglu, S.S. [Texas A and M Univ., College Station, TX (United States); Huang, Y.C.

    1995-09-01

    The binding behaviors of five metals (cadmium, copper, nickel, lead, and zinc), individually at pH 6 and collectively at pHs 6 and 3, to deoxycholic acid (DCA) and taurocholic acid (TCA) were compared with those of sodium dodecyl sulfate (SDS) using a continuous diafiltration method. DCA and SDS have been successfully applied in micellar-enhanced ultrafiltration (MEUF) for metal removal from water. In this study, SDS exhibits the strongest binding in the single-component experiments while DCA binds the most in the multicomponent trials. TCA does not show any significant biding compared with DCA and SDS. Overall the molar binding ratios of the mixture at pH 3 were well below those of the other two solutions. This diafiltration technique quantifies the binding characteristics of a surfactant by generating sorption isotherms and determining the intrinsic association constraints with corresponding number of binding sites. These parameters can be useful in designing an efficient MEUF system.

  17. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  18. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Klausen, M; Ernst, RK

    2007-01-01

    -targeting antibacterial agents. All biofilm-associated cells were sensitive to the antibacterial agents when tested in standard plate assays. A mutation eliminating the production of type IV pili, and hence surface-associated motility, prevented the formation of regular mushroom-shaped structures in the flow cell......-shaped multicellular structures. The cap-forming subpopulation was found to develop tolerance to membrane-targeting antimicrobial agents, such as the cyclic cationic peptide colistin and the detergent sodium dodecyl sulfate. The stalk-forming subpopulation, on the other hand, was sensitive to the membrane...... that only the cap-forming subpopulation in biofilms treated with colistin expresses the pmr operon. These results suggest that increased antibiotic tolerance in biofilms may be a consequence of differentiation into distinct subpopulations with different phenotypic properties....

  19. Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS- PAGE) of Irradiated Wheat Flour Proteins

    International Nuclear Information System (INIS)

    Souzan, R.M.

    1999-01-01

    Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) of wheat (Triticum aestivum L) flour have revealed 23 polypeptides of molecular weights between 170 and 11.57 KDa, High molecular weight glutenin subunits (LMW-GS) were distinguished. Densitometric analysis of the gel showed the effect of radiation on polypeptide constitution at radiation energy up to 7.5 kGy. Irradiation of wheat flour with 2.5 kGy have resulted in a slight increase in the molecular weight of wheat flour protein subunits. The increase of irradiation dose to 5.0 kGy has also induced an additional increase of molecular weight of protein subunits. The continuity in application of more radiation energy to a level of 7.5 kGy have resulted in the prevalence of degradation processes of all protein subunits more than the aggregation

  20. Sodium dodecyl sulfate-capillary gel electrophoresis of polyethylene glycolylated interferon alpha.

    Science.gov (United States)

    Na, Dong H; Park, Eun J; Youn, Yu S; Moon, Byung W; Jo, Yeong W; Lee, Sung H; Kim, Won-Bae; Sohn, Yeowon; Lee, Kang C

    2004-02-01

    Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using a hydrophilic replaceable polymer network matrix was applied to characterize the polyethylene glycol(PEG)ylated interferon alpha (PEG-IFN). The SDS-CGE method resulted in a clearer resolution in both the PEG-IFN species and the native IFN species. The distribution profile of PEGylation determined by SDS-CGE was consistent with that obtained by SDS-polyacrylamide gel electrophoresis (PAGE) with Coomassie blue or barium iodide staining. The result was also compared using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. SDS-CGE was also useful for monitoring the PEGylation reaction to optimize the reaction conditions, such as reaction molar ratio. This study shows the potential of SDS-CGE as a new method for characterizing the PEGylated proteins with advantages of speed, minimal sample consumption and high resolution.

  1. Syntheses of Labeled Dimethyl Phthalate-D6

    Directory of Open Access Journals (Sweden)

    XU Zhong-jie;LU Wei-jing;SUN Wen;JIANG Zhe;LI Bing-yao;PAN Jie

    2014-02-01

    Full Text Available The synthesis of labeled standard dimethyl phthalate-D6,with CD3OD and benzene anhydride as raw materials by an efficient and no-dilution of isotopic enrichment method was presented, under the catalysis of condensing agent to generate dimethyl phthalate-D6。The yield of dimethyl phthalate-D6 was 88.0% based on CD3OD consumed.The product was confirmed by NMR and MS to be target compound.Its chemical purity was 99.0% and isotopic enrichment was 99.1 atom % D.The result showed that It could be used as internal standard in the field of food safety testing.

  2. Photo Catalytic Removal of Sodium Dodecyl Sulfate From Aquatic Solutions With Prepared ZnO Nanocrystals and UV Irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2014-12-01

    Full Text Available In this study, ZnO Nano catalyst has been synthesized and examined as photo catalyst for UV-induced removal of Sodium Dodecyl Sulfate (SDS from aquatic solutions. This anionic surfactant was selected based upon its toxicity, wide use in industrial laundry and as a primary pollutant in municipal waste water systems.This study aimed to investigate removal of surfactant, SDS, in a batch photo catalytic reactor under various operating conditions including ZnO suspension concentration, initial surfactant concentration and initial pH of solution to find out the desired condition for removal of surfactant. ZnO Nano crystals were synthesized using the precipitation method and ZnSO4.7H2O was used as the starting material and NaOH as precipitant. The removal of SDS reactions by UV/ZnO process was performed into a batch photo reactor. In addition, various operating conditions including ZnO suspension concentration, initial surfactant concentration and initial pH of solution were investigated. In total, 98% of surfactant was removed at 40 minute and removal efficiency of SDS increased with increasing pH up to nine and after that with increase in pH, efficiency decreased. Possible roles of inorganic oxidant on the reaction were discussed. The removal of SDS follows pseudo-first order kinetics. Based on the results of this study, ZnO-UV photo catalytic process can be used as an efficient method for further study in detergents removal.

  3. Immobilization of surface active compounds on polymer supports using glow discharge processess. 1. Sodium dodecyl sulfate on poly(propylene)

    NARCIS (Netherlands)

    Terlingen, J.G.A.; Terlingen, Johannes G.A.; Feijen, Jan; Hoffman, Allan S.

    1993-01-01

    A new method has been developed in which a reversibly adsorbed layer of a surfactant (sodium dodecyl sulfate, SDS) is covalently immobilized in one step onto a hydrophobic substrate (poly(propylene), PP) by applying an argon plasma treatment. The adsorption of SDS from aqueous solutions onto PP

  4. Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Bos, T.A.; Rutten, A.A.J.J.L.

    1995-01-01

    Epidermal cell proliferation and differentiation were investigated in vitro after exposure to the anionic surfactant sodium dodecyl sulfate (SDS). Human skin organ cultures were exposed topically to various concentrations of SDS for 22 h, after which the irritant was removed. Cell proliferation was

  5. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    Science.gov (United States)

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  6. Reduced photoinactivation of 10-dodecyl acridine orange-sensitized yeast cells at high fluence rates measurements and computer simulations

    NARCIS (Netherlands)

    Keij, J.F.; Jansen, J.Th.M.; Schultz, F.W.; Visser, J.W.M.

    1994-01-01

    During the development of a photodamage cell sorter several photosensitizers were tested for their ability to photoinactivate more than 90% of the sensitized cells after a brief irradiation with a fluence of 10 kJ/m2. In pilot experiments, yeast cells sensitized with 10-dodecyl acridine orange (DAO)

  7. Dynamic viscosities of the ternary liquid mixtures (dimethyl carbonate + methanol + ethanol) and (dimethyl carbonate + methanol + hexane) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain); Pereiro, A.B. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain); Canosa, J. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain); Tojo, J. [Chemical Engineering Department, Vigo University, 36310 Vigo (Spain)]. E-mail: jtojo@uvigo.es

    2006-05-15

    Densities, {rho} speeds of sound, u and dynamic viscosities, {eta} of the ternary mixtures {l_brace}dimethyl carbonate (DMC) + methanol + ethanol{r_brace} and (dimethyl carbonate + methanol + hexane) were gathered at T = (293.15, 298.15, 308.15, and 313.15) K. From experimental data viscosity deviations, {delta}{eta} of the ternary mixtures were evaluated. These results have been correlated using the Cibulka equation. The fitting parameters and the standard deviations of the ternary viscosity deviations are given. UNIFAC-VISCO group contribution method was used to predict the dynamic viscosities of the ternary mixtures at several temperatures.

  8. 21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium mono- and dimethyl naphthalene sulfonates... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.824 Sodium mono- and dimethyl naphthalene sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in...

  9. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values.

    Science.gov (United States)

    Wang, Hao; Wang, Yilin; Yan, Haike; Zhang, Jin; Thomas, Robert K

    2006-02-14

    Isothermal titration microcalorimetry (ITC), conductivity, and turbidity measurements have been carried out to study the interaction of sodium dodecyl sulfate (SDS) with polyethyleneimines (PEI) including linear PEI and branched PEI at different pH values of 3, 7, and 10. In all cases, the polymers show a remarkable affinity toward SDS. At pH 3, the polymer PEI is a strong polycation, and the binding is dominated by electrostatic 1:1 charge neutralization with the anionic surfactant. At pH 7, the electrostatic attraction between SDS and PEI is weak, and the hydrophobic interaction becomes stronger. At the natural pH of 10, PEI is essentially nonionic and binds SDS in the form of polymer-bound surfactant aggregates. The charge neutralization concentration (C1) of SDS for the PEI-SDS complex can be derived from the curves of variation of the enthalpy, conductivity, and turbidity with SDS concentration. There is good agreement between the results from the three methods and all show a decrease with increasing pH. The total interaction enthalpies (deltaH(total)) of PEI with SDS are obtained from the observed enthalpy curves and the difference enthalpy (deltaH*) between the total enthalpy of branched PEI with SDS, and the total enthalpy of linear PEI with SDS can be derived from the obtained deltaH(total). The difference deltaH* increases dramatically as pH increases, which indicates that the interactions are different for linear PEI and branched PEI at high pH values. A schematic map of the different states of aggregation is presented.

  10. Hexafluoroisopropanol-modified cetyltrimethylammonium bromide/sodium dodecyl sulfate vesicles as a pseudostationary phase in electrokinetic chromatography.

    Science.gov (United States)

    Tian, Yu; Li, Yunfang; Mei, Jie; Deng, Bin; Xiao, Yuxiu

    2015-07-24

    A novel catanionic surfactant vesicle system, formulated from hexafluoroisopropanol (HFIP), cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), was developed as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). HFIP, as an organic modifier with the prominent properties of ionization, hydrogen bond donor and hydrophobicity, was used to effectively promote the spontaneous vesicle formation from CTAB/SDS mixed aqueous solutions, where precipitates are easy to occur due to long carbon chains, and adjust the performance of CTAB/SDS vesicles. The physical features (size and viscosity) and electrophoretic parameters (electroosmotic mobility, electrophoretic mobility and elution range) of HFIP-modified CTAB/SDS vesicles were characterized as HFIP volume content (0-4%, v/v), CTAB/SDS molar ratio (2:8-7:3mol/mol) and total surfactant concentration (10-50mM) varying, respectively. The 3% v/v HFIP-modified CTAB/SDS (3:7mol/mol, 50mM) vesicle system proves to have the largest mean diameter (288.20nm) and the widest elution range (12.41), which is also much wider than that of the corresponding other four PSP systems including trifluoroethanol (TFE)-modified CTAB/SDS vesicles (5.69), isopropanol-modified CTAB/SDS micelles (2.03), HFIP-modified SDS micelles (4.86) and unmodified SDS micelles (3.12). The chromatographic performance of the HFIP-modified vesicle system was evaluated by separating eight polycyclic aromatic hydrocarbons, nitrotoluene positional isomers, five positively charged and five negatively charged/neutral drugs, respectively. Baseline or near-baseline separation was achieved for each series of solutes. Compared with the TFE-modified vesicle system, as well as the HFIP-modified and unmodified SDS micelle systems, the HFIP-modified vesicle system shows the best separation selectivity, the highest or comparable efficiency, and the lowest retention. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dimethyl ether in diesel engines - progress and perspectives

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    2001-01-01

    A review of recent developments related to the use of dimethyl ether (DME) in engines is presented Research work discussed is in the areas of engine performance and emissions, fuel injection systems, spray and ignition delay, and detailed chemical kinetic modeling. DME's properties and safety...

  12. Binary mixtures of carbon dioxide and dimethyl ether as alternative ...

    African Journals Online (AJOL)

    Vapor-liquid equilibrium (VLE) data were predicted for the binary mixture of carbon dioxide (CO2) and dimethyl ether (DME) at ten temperatures ranging from 273.15 to 386.56 K and pressure upto 7.9 MPa to observe this mixture's potential of COP enhancement and capacity modulation as a working fluid in a refrigeration ...

  13. Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Růžička, M.

    2011-01-01

    Roč. 303, č. 2 (2011), s. 205-216 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : thiophene sulfolane * dimethyl sulfoxide * vapor pressure * heat capacity * vaporization enthalpy * recommended vapor pressure equation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  14. Effects of dimethyl sulfoxide on the hydrogen bonding structure and ...

    Indian Academy of Sciences (India)

    Keywords. Aqueous NMA-DMSO solution; hydrogen-bond lifetime; structural relaxation times; self- diffusion coefficients; orientational relaxation times. 1. Introduction. Dimethyl sulfoxide (DMSO) is an important organic solvent, with immense significance in chemical and biological systems.1 In addition to being an effective.

  15. Kinetics and mechanism of oxidation of dimethyl sulphoxide by ...

    Indian Academy of Sciences (India)

    Unknown

    evaluated in the temperature range 308–323 K. Activation parameters have also been determined while the orders in [DMSO] are unity and zero. The reaction product has been identified as dimethyl sulphone (DMSO2). Keywords. Oxidation of DMSO; sodium bromate–sodium bisulphite reagent. 1. Introduction. Kinetic ...

  16. Effects of dimethyl sulfoxide on the hydrogen bonding structure

    Indian Academy of Sciences (India)

    Effects of dimethyl-sulfoxide (DMSO) on the hydrogen bonding structure and dynamics in aqueousN-methylacetamide (NMA) solution are investigated by classical molecular dynamics simulations. Themodifications of structure and interaction between water and NMA in presence of DMSO molecules are calculatedby ...

  17. Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Khoeini Sharifabadi

    2014-02-01

    Full Text Available A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD % of the method at two concentrations (5 and 50µg.mL-1 was in the range of (3.14–3.75 % (n = 8. The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99.

  18. Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Khoeini Sharifabadi

    2013-04-01

    Full Text Available A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD % of the method at two concentrations (5 and 50µg.mL-1 was in the range of (3.14–3.75 % (n = 8. The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99.

  19. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on

  20. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    Science.gov (United States)

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-07

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.

  1. Sodium dodecyl sulphate (SDS) induced changes in propensity and kinetics of α-lactalbumin fibrillation.

    Science.gov (United States)

    Kumar, E Kiran; Qumar, Shamsul; Prabhu, N Prakash

    2015-11-01

    Understanding surfactants induced changes on protein folding, aggregation, and fibrillation has a lot of implications in their laboratory and industrial applications. The effect of an anionic surfactant, sodium dodecyl sulphate (SDS), on fibrillation of an acidic protein α-lactalbumin (α-LA) at neutral pH condition was investigated. SDS at lower concentrations increased the lag time by nearly two-fold whereas the fibril elongation rate was not significantly altered. At the concentrations above 0.2mM, SDS lengthened the lag time by many-fold (∼60), but fibril elongation was accelerated by 3-6 fold. At the concentrations above 2mM, SDS inhibited α-LA fibrillation and led it to the formation of amorphous aggregates. These results were compared with the effect of SDS on the fibrillation of lysozyme, a basic protein. Though fibril inhibition was observed on both the proteins at the micellar concentrations of SDS, there were differences in the effect on lag time and elongation rate at the lower concentrations of SDS. This suggests that the inhibition of protein fibrillation by SDS-micelles might be a common mechanism irrespective of the surface charges on protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Structural changes of a sodium dodecyl sulfate (SDS) micelle induced by alcohol molecules.

    Science.gov (United States)

    Méndez-Bermúdez, Jose G; Dominguez, Hector

    2016-01-01

    Coarse-grained dynamical simulations have been performed to investigate the behavior of a surfactant micelle in the presence of six different alcohols: hexanol, octanol, decanol, dodecanol, tetradecanol, and hexadecanol. The self-assembly of sodium dodecyl sulfate (SDS) is modified by the alcohol molecules into cylindrical and bilayer micelles as a function of the alcohol/SDS mass ratio. Therefore, in order to understand, from a molecular point of view, how SDS and alcohol molecules self-organize to form the new micelles, different studies were carried out. Analysis of micelle structures, density profiles, and parameters of order were conducted to characterize the shape and size of those micelles. The density profiles revealed that the alcohol molecules were located at the water-micelle interface next to the SDS molecules at low alcohol/SDS mass ratio. At high alcohol/SDS mass ratios, alcohol molecules moved to the middle of the micelle by increasing their size and by producing a structural change. Moreover, micelle structures and sizes were influenced not only by the alcohol/SDS mass ratio but also by the order of the SDS and alcohol tails. Finally, the size of the micelles and enthalpy calculations were used as order parameters to determine a structural phase diagram of alcohol/SDS mixtures in water. Graphical Abstract Structural transition of SDS/alcohol mixtures.

  3. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin.

    Science.gov (United States)

    Liu, Renyu; Bu, Weiming; Xi, Jin; Mortazavi, Shirin R; Cheung-Lau, Jasmina C; Dmochowski, Ivan J; Loll, Patrick J

    2012-05-01

    Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin-SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein-SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins. © 2012 International Union of Crystallography

  4. Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Katharina Hahn

    2017-12-01

    Full Text Available l-Amino acid oxidases (l-AAO catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids. The non-covalently bound cofactor FAD is reoxidized by oxygen under formation of hydrogen peroxide. We expressed an active l-AAO from the fungus Rhizoctonia solani as a fusion protein in E. coli. Treatment with small amounts of the detergent sodium dodecyl sulfate (SDS stimulated the activity of the enzyme strongly. Here, we investigated whether other detergents and amphiphilic molecules activate 9His-rsLAAO1. We found that 9His-rsLAAO1 was also activated by sodium tetradecyl sulfate. Other detergents and fatty acids were not effective. Moreover, effects of SDS on the oligomerization state and the protein structure were analyzed. Native and SDS-activated 9His-rsLAAO1 behaved as dimers by size-exclusion chromatography. SDS treatment induced an increase in hydrodynamic radius as observed by size-exclusion chromatography and dynamic light scattering. The activated enzyme showed accelerated thermal inactivation and an exposure of additional protease sites. Changes in tryptophan fluorescence point to a more hydrophilic environment. Moreover, FAD fluorescence increased and a lower concentration of sulfites was sufficient to form adducts with FAD. Taken together, these data point towards a more open conformation of SDS-activated l-amino acid oxidase facilitating access to the active site.

  5. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  6. A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin

    International Nuclear Information System (INIS)

    Bordbar, A.K.; Moosavi-Movahedi, A.A.; Amini, M.K.

    2003-01-01

    The thermodynamic parameters for the binding of dodecyl trimethylammonium bromide (DTAB) with wigeon hemoglobin (Hb) in aqueous solution at various pH and 27 deg. C have been measured by equilibrium dialysis and titration microcalorimetry techniques. The Scatchard plots represent unusual features at neutral and alkaline pH and specific binding at acidic pH. This leads us to analyze the binding data by fitting the data to the Hill equation for multiclasses of binding sites. The best fit was obtained with the equation for one class at acidic pH and two classes at neutral and alkaline pH. The thermodynamic analysis of the binding process shows that the strength of binding at neutral pH is more than these at other pH values. This can be related to the more accessible hydrophobic surface area of wigeon hemoglobin at this pH. The endothermic enthalpy data which was measured by microcalorimetry confirms the binding data analysis and represents the more regular and stable structure of wigeon hemoglobin at neutral pH

  7. Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS in Phosphate Beneficiation

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-02-01

    Full Text Available Phosphate ore is a valuable strategic resource. Most phosphate ore in China is collophane. Utilization of mid-low grade collophane is necessary to maintain social sustainable development. The gravity-flotation combination separation process can be utilized to separate mid-low grade collophane, but the process consumes a large quantity of acid in the reverse stage. Sodium dodecyl sulfate (SDS was used as a dolomite collector in this study to reduce the acid consumption of collophane flotation. SDS effectively removed dolomite from the gravity concentrate when no other reagents were present. Flotation test results showed that, compared to the conventional gravity-flotation process, the proposed SDS-based process reduced phosphoric acid dosage from 6.1 kg/t to 3.9 kg/t with similar separation results. The SDS action mechanisms on dolomite were further investigated by zeta potential analysis, single mineral flotation tests, infrared spectrum detection, and theoretical analysis. The results indicate that the SDS adsorption on dolomite is mainly physical adsorption, and that favorable separation effects between collophane and dolomite may be attributed to physical adsorption and entrainment. In addition, it also indicates that the physical adsorption can be utilized to remove dolomite from phosphate on account of zeta potential differences when the separate feed is coarse.

  8. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration.

    Science.gov (United States)

    Leng, Ling; Wang, Jian; Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai; Shih, Kaimin; Zhou, Zhengyuan; Lee, Po-Heng

    2016-11-15

    This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C14TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C14HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C14TAB and C14HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Microfluidic integration of Western blotting is enabled by electrotransfer-assisted sodium dodecyl sulfate dilution.

    Science.gov (United States)

    Hou, Chenlu; Herr, Amy E

    2013-01-07

    We integrate sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent antibody probing in a single, monolithic microdevice to realize microfluidic Western blotting. A hurdle to successful on-chip Western blotting lies in restoring antibody recognition of previously sized (denatured, reduced) proteins. To surmount this hurdle, we locally dilute free SDS from SDS-protein complexes using differential electromigration of the species during electrotransfer between SDS-PAGE and blotting regions of a microchamber. Local dilution of SDS minimizes re-association of SDS with proteins offering means to restore antibody binding affinity to proteins after SDS-PAGE. To achieve automated, programmable operation in a single instrument, we utilize a 1 × 2 mm(2) glass microchamber photopatterned with spatially distinct, contiguous polyacrylamide regions for SDS-PAGE, electrotransfer, and antibody blotting. Optimization of both the SDS-PAGE and electrotransfer conditions yields transfer distances of Western blot is completed in 180 s, with fully automated assay operation using programmable voltage control. After SDS-PAGE and electrotransfer, we observe ~80% capture of protein band mass on the blotting region for a model protein, C-reactive protein. This novel microfluidic Western blot approach introduces fine transport control for in-transit protein handling to form the basis for an automated, rapid alternative to conventional slab-gel Western blotting.

  10. High Dispersion Barium Sulfate Nanoparticles Prepared with Dodecyl Benzene Sulfonic Acid

    Science.gov (United States)

    Li, Ying; Wang, Xuanjun; Cui, Yibin; Ma, Wenxin; Guo, Heng

    2012-01-01

    Production of nanoparticles by precipitation is a relatively simple process but the control of product particle size distribution is difficult. In this paper, nanosize barium sulfate (BaSO4) particles are prepared with dodecyl benzene sulfonic acid (DBSA) in ethanol-water reaction system at room temperature. The BaSO4 nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), powder X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA), respectively. The results indicated that the average diameter of spherical BaSO4 is about 46 nm modified with 5 wt.% DBSA, which have good dispersion in the presence of a certain concentration NH3 ṡ H2O. It suggests that the high dispersion is attributed to presence of a thin layer of barium alkyl sulfate, which is formed and coated onto the surface of BaSO4 particles during the reaction process. The thin films on the surface of the BaSO4 effectively modified the surface and properties, which also control the particle size and morphology.

  11. An investigation of chitosan and sodium dodecyl sulfate interactions in acetic media

    Directory of Open Access Journals (Sweden)

    Petrović Lidija B.

    2016-01-01

    Full Text Available Polymer/surfactant association is a cooperative phenomenon where surfactant binds to the polymer in the form of aggregates, usually through electrostatic or hydrophobic forces. As already known, polyelectrolytes may interact with oppositely charged surfactants through electrostatic attraction that results in polymer/surfactant complex formation. This behavior could be desirable in wide range of application of polymer/surfactant mixtures, such as improving colloid stability, gelling, emulsification and microencapsulation. In the present study surface tension, turbidity, viscosity and electrophoretic mobility measurements were used to investigate interactions of cationic polyelectrolyte chitosan (Ch and oppositely charged anionic surfactant, sodium dodecyl sulfate (SDS, in buffered water. Obtained results show the presence of interactions that lead to Ch/SDS complexes formation at all investigated pH and for all investigated polymer concentrations. Mechanisms of interaction, as well as characteristics of formed Ch/SDS complexes, are highly dependent on their mass ratio in the mixtures, while pH has no significant influence. [Projekat Ministarstva nauke Republike Srbije, br. II46010

  12. Chamber simulation of photooxidation of dimethyl sulfide and isoprene in the presence of NOx

    Directory of Open Access Journals (Sweden)

    M. Jang

    2012-11-01

    Full Text Available To improve the model prediction for the formation of H2SO4 and methanesulfonic acid (MSA, aerosol-phase reactions of gaseous dimethyl sulfide (DMS oxidation products [e.g., dimethyl sulfoxide (DMSO] in aerosol have been included in the DMS kinetic model with the recently reported gas-phase reactions and their rate constants. To determine the rate constants of aerosol-phase reactions of both DMSO and its major gaseous products [e.g., dimethyl sulfone (DMSO2 and methanesulfinic acid (MSIA], DMSO was photooxidized in the presence of NOx using a 2 m3 Teflon film chamber. The rate constants tested in the DMSO kinetic mechanisms were then incorporated into the DMS photooxidation mechanism. The model simulation using the newly constructed DMS oxidation mechanims was compared to chamber data obtained from the phototoxiation of DMS in the presence of NOx. Within 120-min simulation, the predicted concentrations of MSA increase by 200–400% and those of H2SO4, by 50–200% due to aerosol-phase chemistry. This was well substantiated with experimental data. To study the effect of coexisting volatile organic compounds, the photooxidation of DMS in the presence of isoprene and NOx has been simulated using the newly constructed DMS kinetic model integrated with the Master Chemical Mechanism (MCM for isoprene oxidation, and compared to chamber data. With the high concentrations of DMS (250 ppb and isoprene (560–2248 ppb, both the model simulation and experimental data showed an increase in the yields of MSA and H2SO4 as the isoprene concentration increased.

  13. DFT investigations for the reaction mechanism of dimethyl carbonate synthesis on Pd(II)/β zeolites.

    Science.gov (United States)

    Shen, Yongli; Meng, Qingsen; Huang, Shouying; Gong, Jinlong; Ma, Xinbin

    2013-08-21

    Density functional theory (DFT) calculations have been used to investigate the oxidative carbonylation of methanol on Pd(II)/β zeolite. Activation energies for all the elementary steps involved in the commonly accepted mechanism, including the formation of dimethyl carbonate, methyl formate and dimethoxymethane, are presented. Upon conducting the calculations, we identify that the Pd(2+) cation bonded with four O atoms of the zeolite framework acts as the active site of the catalyst. Molecularly adsorbed methanol starts to react with oxygen molecules to produce a methanediol intermediate (CH2(OH)2) and O atom. Then, another methanol can react with the O atom to produce the (CH3O)(OH)-Pd(II)/β zeolite species. (CH3O)(OH)-Pd(II)/β zeolite can further react with carbon monoxide or methanol to give monomethyl carbonate or di-methoxide species ((CH3O)2-Pd(II)/β zeolite). Dimethyl carbonate can form via two distinct reaction pathways: (I) methanol reacts with monomethyl carbonate or (II) carbon monoxide inserts into di-methoxide. Our calculation results show the activation energy of reaction (I) is too high to be achieved. The methanediol intermediate is unstable and can decompose to formaldehyde and H2O immediately. Formaldehyde can either react with an O atom or methanol to form formic acid or a CH3OCH2OH intermediate. Both of them can react with methanol to form the secondary products (methyl formate or dimethoxymethane). Upon conducting calculations, we confirmed that the activation energies for the formation of methyl formate and dimethoxymethane are higher than that of dimethyl carbonate. All these conformations were characterized at the same calculation level.

  14. The removal of Tartrazine dye by modified Alumina with sodium dodecyl sulfate from aqueous solutions: equilibrium and thermodynamic studies

    OpenAIRE

    A. Parchebaf Jadid; S. Sadeghi

    2017-01-01

    Edible colors are materials which in the case of adding to food and drinks cause transferring color to them. Most of these colors are not acceptable in terms of applying in human food and underlies various diseases like gastrointestinal disorders, renal, liver and blood toxicity. The goal of this study was investigating the efficiency of improved alumina by sodium dodecyl sulfate (SDS) in eliminating Tartrazine from aqueous environments. In this research, the impact of effective parameters su...

  15. Soil Fumigant Labels - Dimethyl Disulfide (DMDS)

    Science.gov (United States)

    Search by EPA registration number, product name, or company and follow the link to the Pesticide Product Labeling System (PPLS) for label details. Updated labels include new safety requirements for buffer zones and related measures.

  16. Methylation of Eugenol Using Dimethyl Carbonate and Bentonite as Catalyst

    Directory of Open Access Journals (Sweden)

    Dina Asnawati

    2015-11-01

    Full Text Available Eugenol is a compound with a variety of reactive functional groups such as allyl, hydroxy and methoxy. The presence of the functional groups brings eugenol possible to undertake the transformation into various derivative compounds with diverse activities. One of the simple and possible transformations is methylation or alkylation. Commonly, methyl halides and dimethyl sulphate are used as methylation agent. However, those kinds of methylation agents are toxic and carcinogenic. In this research dimethyl carbonate, an alternative methylation agent is used, because of its low toxicity, green, and economic. The synthesis has been carried out by using a catalyst. Bentonite was activated by heating to a temperature using 300 °C. Methylation was shown by the formation of a light yellow liquid (25.71% yield. The structures of products were characterized by GC-MS and obtained a compound, namely bis eugenol (4-allyl-2-methoxyphenoxy methane (2.37% yield.

  17. Detonation characteristics of dimethyl ether and ethanol-air mixtures

    Science.gov (United States)

    Diakow, P.; Cross, M.; Ciccarelli, G.

    2015-05-01

    The detonation cell structure in dimethyl ether vapor and ethanol vapor-air mixtures was measured at atmospheric pressure and initial temperatures in the range of 293-373 K. Tests were carried out in a 6.2-m-long, 10-cm inner diameter tube. For more reactive mixtures, a series of orifice plates were used to promote deflagration-to-detonation transition in the first half of the tube. For less reactive mixtures prompt detonation initiation was achieved with an acetylene-oxygen driver. The soot foil technique was used to capture the detonation cell structure. The measured cell size was compared to the calculated one-dimensional detonation reaction zone length. For fuel-rich dimethyl ether mixtures the calculated reaction zone is highlighted by a temperature gradient profile with two maxima, i.e., double heat release. The detonation cell structure was interpreted as having two characteristic sizes over the full range of mixture compositions. For mixtures at the detonation propagation limits the large cellular structure approached a single-head spin, and the smaller cells approached the size of the tube diameter. There is little evidence to support the idea that the two cell sizes observed on the foils are related to the double heat release predicted for the rich mixtures. There was very little influence of initial temperature on the cell size over the temperature range investigated. A double heat release zone was not predicted for ethanol-air detonations. The detonation cell size for stoichiometric ethanol-air was found to be similar to the size of the small cells for dimethyl ether. The measured cell size for ethanol-air did not vary much with composition in the range of 30-40 mm. For mixtures near stoichiometric it was difficult to discern multiple cell sizes. However, near the detonation limits there was strong evidence of a larger cell structure similar to that observed in dimethyl ether air mixtures.

  18. Radioprotection by dimethyl sulfoxide on two biological system

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.; Villavicencio, A.L.C.H.; Del Mastro, N.L.

    1990-01-01

    The effects of dimethyl sulfoxide treatment on two biological systems are examined: a) In vivo, the level of albinic mouse survive from IPEN, when irradiated with 9 Gy of 60 Co., 1 hour after the injection ip of DMSO 0,025M. b) In vivo, molecular level, when DMSO 1M, is added 10 min. before the irradiation with 25.000 Gy of 60 Co, from an aqueous solution of proteins from crystalline bovine. (C.G.C.) [pt

  19. Regioselective synthesis of chiral dimethyl-bis(ethylenedithiotetrathiafulvalene sulfones

    Directory of Open Access Journals (Sweden)

    Flavia Pop

    2015-07-01

    Full Text Available Enantiopure (R,R and (S,S-dimethyl-bis(ethylenedithiotetrathiafulvalene monosulfones have been synthesized by the aerial oxidation of the chiral dithiolates generated from the propionitrile-protected precursors. Both enantiomers crystallize in the orthorhombic chiral space group P212121. They show a boat-type conformation of the TTF moiety, a rather rigid dithiin sulfone ring and the methyl groups in a bisequatorial conformation. Cyclic voltammetry measurements indicate fully reversible oxidation in radical cation and dication species.

  20. Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS).

    Science.gov (United States)

    Chaturvedi, V; Kumar, A

    2011-03-01

    Sodium Dodecyl Sulfate (SDS) is one of the most widely used anionic detergents. The present study deals with isolation and identification of SDS-degrading bacteria from a detergent contaminated pond situated in Varanasi city, India. Employing enrichment technique in minimal medium (PBM), SDS-degrading bacteria were isolated from pond water sample. Rate of degradation of SDS was studied in liquid PBM and also degradation of different concentrations of SDS was also studied to find out maximum concentration of SDS degraded by the potent isolates. Alkyl sulfatase activity (key enzyme in SDS degradation) was estimated in crude cell extracts and multiplicity of alkyl sulfatase was studied by Native PAGE Zymography. The potent isolate was identified by 16S rRNA sequence analysis. Using enrichment technique in minimal medium containing SDS as a sole carbon source, initially three SDS degrading isolates were recovered. However, only one isolate, SP3, was found to be an efficient degrader of SDS. It was observed that this strain could completely metabolize 0.1% SDS in 16 h, 0.2% SDS in 20 h and 0.3% SDS in 24 h of incubation. Specific activity of alkyl sulfatase was 0.087±0.004 µmol SDS/mg protein/min and Native PAGE Zymography showed presence of alkyl sulfatase of Rf value of 0.21. This isolate was identified as Pseudomonas putida strain SP3. This is the report of isolation of SDS-degrading strain of P. putida, which shows high rate of SDS degradation and can degrade up to 0.3% SDS. It appears that this isolate can be exploited for bioremediation of this detergent from water systems.

  1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE of urinary protein in acute kidney injury

    Directory of Open Access Journals (Sweden)

    Sufi M Suhail

    2011-01-01

    Full Text Available Recent experimental and clinical studies have shown the importance of urinary proteomics in acute kidney injury (AKI. We analyzed the protein in urine of patients with clinical AKI using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE for its diagnostic value, and followed them up for 40 months to evaluate prognosis. Urine from 31 consecutive cases of AKI was analyzed with SDS-PAGE to determine the low, middle and high molecular weight proteins. Fractional excretion of sodium (FENa was estimated from serum and urine creatinine and sodium (Na. The cases were followed-up for 40 months from the end of the recruitment of study cases. Glomerular protein was higher in the hematuria group when compared with the non-hematuria group (P <0.04 and in the AKI group than in the acute on chronic renal failure (AKI-on-CRF group (P <0.002. Tubular protein was higher in the AKI-on-CRF group (P <0.003 than in the AKI group. Tubular protein correlated with FENa in groups with diabetes mellitus (DM, AKI-on-CRF, and without hematuria (P <0.03, P <0.02 and P <0.004, respectively. Pattern of protein did not differ between groups with and without DM and clinical acute tubular necrosis (ATN. At the end of 40 months follow-up, category with predominantly glomerular protein progressed to chronic renal failure (CRF or end-stage renal failure in higher proportion (P <0.05. In clinical AKI, we observed that glomerular protein dominated in cases with glomerular insult, as indicated by hematuria. Tubular protein was common in the study cases with CRF, DM and cases without hematuria. This indicates tubulo-interstitial injury for AKI in these cases. Patients with predominantly glomerular protein had an adverse outcome.

  2. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Ling; Wang, Jian [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai [Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Shih, Kaimin; Zhou, Zhengyuan [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR (China); Lee, Po-Heng, E-mail: poheng76@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China)

    2016-11-15

    Highlights: • A thermodynamic approach to select a functional agent for adsorbent is proposed. • ITC and QCS were used to interpret the interaction between adsorbate and agent. • The interaction identifies the adsorption mechanism and performance. • This approach enables the manipulation of adsorption capacity optimization. - Abstract: This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C{sub 14}TAB and C{sub 14}HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  3. Diapause prevention effect of Bombyx mori by dimethyl sulfoxide.

    Directory of Open Access Journals (Sweden)

    Takayuki Yamamoto

    Full Text Available HCl treatment has been, for about 80 years, the primary method for the prevention of entry into embryonic diapauses of Bombyx mori. This is because no method is as effective as the HCl treatment. In this study, we discovered that dimethyl sulfoxide (DMSO prevented entry into the diapause of the silkworm, Bombyx mori. The effect of diapause prevention was 78% as a result of treatment with 100% DMSO concentration, and the effect was comparable to that of the HCl treatment. In contrast, in the case of non-diapause eggs, hatchability was decreased by DMSO in a concentration-dependent manner. The effect of DMSO was restricted within 24 hours after oviposition of diapause eggs, and the critical period was slightly shorter than the effective period of the HCl treatment. DMSO analogs, such as dimethyl formamide (DMF and dimethyl sulfide (DMS, did little preventive effect against the diapause. Furthermore, we also investigated the permeation effects of chemical compounds by DMSO. When treated with an inhibitor of protein kinase CK2 (CK2 dissolved in DMSO, the prevention rate of the diapause was less than 40%. This means that the inhibition effect by the CK2 inhibitor was the inhibition of embryonic development after diapause prevention by DMSO. These data suggest that DMSO has the effects of preventing from entering into the diapause and permeation of chemicals into diapause eggs.

  4. Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl-4-(4-methoxylphenylpyridine-3,5-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Qingjian Liu

    2009-12-01

    Full Text Available Dimethyl 1,4-dihydro-2,6-dimethyl-1-(4-methylphenyl-4-(4-methoxylphenyl–pyridine-3,5-dicarboxylate has been synthesized via Hantzsch condensation reaction of p-methoxybenzaldehyde, methyl acetoacetate and p-toluidine promoted by microwave irradiation (MWI in the presence of iodine under solvent-free conditions.

  5. Pressure and temperature dependence of excess enthalpies of methanol + tetraethylene glycol dimethyl ether and methanol + polyethylene glycol dimethyl ether 250

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E.R.; Coxam, J.Y.; Fernandez, J.; Grolier, J.P.E.

    1999-12-01

    The excess molar enthalpies at 323.15 K, 373.15 K, and 423.15 K, at 8 MPa, are reported for the binary mixtures methanol + tetraethylene glycol dimethyl ether (TEGDME) and methanol + poly(ethylene glycol) dimethyl ether 250 (PEGDME 250). Excess molar enthalpies were determined with a Setaram C-80 calorimeter equipped with a flow mixing cell. For both systems, the excess enthalpies are positive over the whole composition range, increasing with temperature. The H{sup E}(x) curves are slightly asymmetrical, and their maxima are skewed toward the methanol-rich region. The excess enthalpies slightly change with the pressure, the sign of this change being composition-dependent. In the case of mixtures with TEGDME, the experimental H{sup E} values have been compared with those predicted with the Gmehling et al. version of UNIFAC (Dortmund) and the Nitta-Chao and DISQUAC group contribution models.

  6. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the

  7. (Liquid + liquid) equilibria of (water + ethanol + dimethyl glutarate) at several temperatures[(Liquid+liquid) equilibria; Ethanol; Dimethyl glutarate; UNIFAC method

    Energy Technology Data Exchange (ETDEWEB)

    Ince, Erol. E-mail: erolince@istanbul.edu.tr; Kirbaslar, S. Ismail. E-mail: krbaslar@istanbul.edu.tr

    2003-10-01

    (Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  8. Chloro-1,4-dimethyl-9H-carbazole Derivatives Displaying Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Carmela Saturnino

    2018-01-01

    Full Text Available Background: Despite the progress achieved by anti-retroviral drug research in the last decades, the discovery of novel compounds endowed with selective antiviral activity and reduced side effects is still a necessity. At present, the most urgent requirement includes the improvement of HIV (Human Immunodeficiency Virus prevention and sexual transmission and the development of new drugs to treat the chronic lifelong infection. Methods: Six chloro-1,4-dimethyl-9H-carbazoles (2a,b–4a,b have been prepared following opportunely modified known chemical procedures and tested in luciferase and Escherichia coli β-galactosidase expressing CD4+, CXCR4+, CCR5+ TZM-bl cells. Results and Conclusion: a preliminary biological investigation on the synthesized small series of chloro-1,4-dimethyl-9H-carbazoles has been carried out. Among all tested compounds, a nitro-derivative (3b showed the most interesting profile representing a suitable lead for the development of novel anti-HIV drugs.

  9. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    Science.gov (United States)

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  10. Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ewa M. Furmanczyk

    2017-11-01

    Full Text Available Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS. We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher, and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band

  11. Performance of long straw tubes using dimethyl ether

    International Nuclear Information System (INIS)

    Benussi, L.; Bertani, M.; Bianco, S.; Fabbri, F.L.; Gianotti, P.; Giardoni, M.; Guaraldo, C.; Lanaro, A.; Lucherini, V.; Mecozzi, A.; Passamonti, L.; Russo, V.; Sarwar, S.

    1995-01-01

    A cylindrical tracking detector with an inner radius of one meter employing straw tubes is being envisaged for the FINUDA experiment aimed at hyper-nuclear physics at DAΦNE, the Frascati φ-factory. A prototype using several 10 mm and 20 mm diameter, two meter long aluminized mylar straws has been assembled and tested with a one GeV/c pion beam. While operating with dimethyl ether, gas gain, space resolution, and device systematics have been studied. A simple method of correction for systematics due to straw eccentricity has been developed and, once applied, a space resolution better than 40 μm can be reached. (orig.)

  12. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  13. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  14. Dimethyl(4-methylphenylammonium naphthalene-1,5-disulfonate dihydrate

    Directory of Open Access Journals (Sweden)

    Bin Wei

    2011-10-01

    Full Text Available The asymmetric unit of the organic–inorganic hybrid salt, 2C9H14N+·C10H6O6S22−·2H2O, consists of one dimethyl(4-methylphenylammonium cation, one half of a naphthalene-1,5-disulfonate anion lying on a crystallographic centre of inversion, and one water molecule. In the crystal, O—H...O(S and N—H...OH2 hydrogen bonds link the cations and anions forming ring motifs.

  15. (2E-3-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-04-01

    Full Text Available The title compound, (2E-3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl-1-(2,5-dimethyl-3-thienylprop-2-en-1-one (3 was synthesized in high yield by aldol condensation of 3-acetyl-2,5-dimethylthiophene and 3,5-dimethyl-1-phenylpyrazole-4-carboxaldehyde in ethanolic NaOH at room temperature. Its structure was fully characterized by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  16. Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system

    International Nuclear Information System (INIS)

    Wang Feng; Huang Wei; Wang Yanwei

    2008-01-01

    It is found that the fluorescence of curcumin is greatly enhanced by yttrium(III) (Y 3+ ) in the presence of sodium dodecyl benzene sulfonate. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the potassium hydrogen phthalate (KHP) buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 7.37x10 -4 -0.18, 0.18-2.95 μg mL -1 and the detection limit is 0.1583 ng mL -1 . The actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied

  17. Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián César

    2018-04-01

    Entropy generation minimization is a method that helps improve the efficiency of real processes and devices. In this article, we study the entropy production (due to chemical reactions, heat exchange and friction) in a conventional reactor that synthesizes dimethyl ether and minimize it by modifying different operating variables of the reactor, such as composition, temperature and pressure, while aiming at a fixed production of dimethyl ether. Our results indicate that it is possible to reduce the entropy production rate by nearly 70 % and that, by changing only the inlet composition, it is possible to cut it by nearly 40 %, though this comes at the expense of greater dissipation due to heat transfer. We also study the alternative of coupling the reactor with another, where dehydrogenation of methylcyclohexane takes place. In that case, entropy generation can be reduced by 54 %, when pressure, temperature and inlet molar flows are varied. These examples show that entropy generation analysis can be a valuable tool in engineering design and applications aiming at process intensification and efficient operation of plant equipment.

  18. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate

    International Nuclear Information System (INIS)

    Usman, Muhammad; Rashid, Muhammad Abid; Mansha, Asim; Siddiq, Mohammad

    2013-01-01

    Graphical abstract: - Highlights: • Free energy of adsorption is more negative than free energy of micellization. • Micellization becomes more spontaneous at high temperature. • There is strong interaction between PFM and SDS. - Abstract: This manuscript reports the physicochemical behavior of antibiotic amphiphilic drug pefloxacin mesylate (PFM) and its interaction with anionic surfactant, sodium dodecyl sulfate (SDS). The data of surface tension and electrical conductivity are helpful to detect the CMC as well as to calculate surface parameters, i.e. surface pressure, π, surface excess concentration, Γ, area per molecule of drug and standard Gibbs free energy of adsorption, ΔG ads and thermodynamic parameters like standard free energy of micellization, ΔG m , standard enthalpy of micellization, ΔH m and standard entropy of micellization, ΔS m . The interaction of this drug with anionic surfactant, sodium dodecyl sulfate (SDS) was studied by electrical conductivity and UV/visible spectroscopy. This enabled us to compute the values of partition coefficient (K x ), free energy of partition, ΔG p , binding constant, K b , free energy of binding, ΔG b , number of drug molecules per micelle, n, and thermodynamic parameters of drug–surfactant interaction

  19. The removal of Tartrazine dye by modified Alumina with sodium dodecyl sulfate from aqueous solutions: equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    A. Parchebaf Jadid

    2017-11-01

    Full Text Available Edible colors are materials which in the case of adding to food and drinks cause transferring color to them. Most of these colors are not acceptable in terms of applying in human food and underlies various diseases like gastrointestinal disorders, renal, liver and blood toxicity. The goal of this study was investigating the efficiency of improved alumina by sodium dodecyl sulfate (SDS in eliminating Tartrazine from aqueous environments. In this research, the impact of effective parameters such as initial concentration of Tartrazine, time, pH, alumina dose and SDS value were studied in order to approach an optimal condition for eliminating the color. Also, absorption behavior was evaluated by Freundlich and Langmuir isotherms. The highest efficiency of Tartrazine elimination in the solution resulted in optimal pH of 2, the amount of adsorbent 1.5 g/L, 16 min duration and value 0.04 SDS g/l which was obtained for dye concentration 5 mg/L about 94.13%. Also, results suggested that Tartrazine absorption follows Langmuir isotherm (R2 = 0.9867. Obtained results from thermodynamic studies such as Gibbs free energy (-5.728 Kj/mol and enthalpy (-85.86 Kj/mol and entropy (-271.102 J/mol.K also suggested that the absorption process was exothermic. The results of this research suggested that improved alumina by sodium dodecyl sulfate had a relative good capability in Tartrazine elimination from aqueous environments. Thus

  20. 21 CFR 524.981d - Fluocinolone acetonide, dimethyl sulfoxide solution.

    Science.gov (United States)

    2010-04-01

    ... solution. 524.981d Section 524.981d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... NEW ANIMAL DRUGS § 524.981d Fluocinolone acetonide, dimethyl sulfoxide solution. (a) Specifications. Each milliliter of solution contains 0.01 percent fluocinolone acetonide and 20 percent dimethyl...

  1. Efficient and Simple Synthesis of 6-Aryl-1,4-dimethyl-9H-carbazoles

    Directory of Open Access Journals (Sweden)

    Sylvain Rault

    2008-06-01

    Full Text Available A synthetic method for the preparation of 6-aryl-1,4-dimethyl-9H-carbazoles involving a palladium catalyzed coupling reaction of 1,4-dimethyl-9H-carbazole-6-boronic acids and (heteroaryl halides is described.

  2. Direct dimethyl ether fueling of a high temperature polymer fuel cell

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vassiliev, Anton; Olsen, M.I.

    2012-01-01

    Direct dimethyl ether (DME) fuel cells suffer from poor DME–water miscibility and so far peak powers of only 20–40 mW cm−2 have been reported. Based on available literature on solubility of dimethyl ether (DME) in water at ambient pressure it was estimated that the maximum concentration of DME at...

  3. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. DME fueled engines emit virtually no particulate matter even at low NOx levels. DME has thereby the potential of reducing the diesel engine emissions without filters or other devices...... oil. Fueling diesel engines with DME presents two significant problems: The injection equipment can break down due to extensive wear and DME attacks nearly all known elastomers. The latter problem renders dynamic sealing diƣult whereas the first one involves the poor lubrication qualities of DME which...... that jeopardise the high efficiency of the engine and increase the manufacturing costs. DME has a low toxicity and can be made from anything containing carbon including biomass. If DME is produced from cheap natural gas from remote locations, the price of this new fuel could even become lower than that of diesel...

  4. Speciation in Solutions of Lithium Salts in Dimethyl Sulfoxide, Propylene Carbonate, and Dimethyl Carbonate from Raman Data: A Minireview

    Directory of Open Access Journals (Sweden)

    M. I. Gorobets

    2016-01-01

    Full Text Available Our recent Raman studies of cation and anion solvation and ion pairing in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate, and dimethyl carbonate are briefly overviewed. Special attention is paid to differences in our and existing data and concepts. As follows from our results, cation solvation numbers in solutions are low (~2 and disagree with previous measurements. This discrepancy is shown to arise from correct accounting for dimerization, hydrogen bonding, and conformation equilibria in the solvents disregarded in early studies. Another disputable question touches upon the absence of free ions in solutions of lithium salts in carbonate solvents and the statement that the charge transfer in carbonate solutions is caused by SSIPs. Direct proofs of the nature of charge carriers in the solvents studied have been obtained by means of analyses of vibrational dynamics. It has been found that collision times for free anions are short and evidence weak interactions between anions and solvent molecules. In SSIPs, collision times are an order of magnitude longer thus signifying strong interactions between anions and cations. In CIPs, collision times become shorter than in SSIPs reflecting the transformation of the structure of concentrated solutions to that of molten salts.

  5. Efficacy of a Levulinic Acid Plus Sodium Dodecyl Sulfate (SDS)-Based Sanitizer on Inactivation of Influenza A Virus on Eggshells.

    Science.gov (United States)

    Aydin, Ali; Cannon, Jennifer L; Zhao, Tong; Doyle, Michael P

    2013-10-17

    Influenza A virus poses a major public health concern and is associated with annual epidemics and occasional pandemics. Influenza A H3N2 viruses, which are an important cause of human influenza, can infect birds and mammals. Contaminated undercooked poultry products including eggs with avian influenza virus constitute a possible risk of transmission to humans. In this study, a novel levulinic acid plus sodium dodecyl sulfate (SDS) sanitizer was evaluated for eggshell decontamination. Influenza A H3N2 virus-inoculated chicken eggshells were treated with a 5 % levulinic acid plus 2 % SDS, 2 % levulinic acid plus 1 % SDS, and 0.5 % levulinic acid plus 0.5 % SDS liquid solution for 1 min. Log reductions of viable viruses were observed by plaque assay. The 5 % levulinic acid plus 2 % SDS sanitizer provided the greatest level of influenza A H3N2 virus inactivation (2.23 log PFU), and differences in virus inactivation were observed for the various levulinic acid plus SDS concentrations tested (P ≤ 0.05). To the best of our knowledge, this is the first study demonstrating influenza A H3N2 virus inactivation on eggshells using a novel levulinic acid plus SDS sanitizer. The sanitizer may be useful for reducing egg contamination and preventing the spread of avian influenza virus to humans.

  6. Use of PCR and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Techniques for Differentiation of Prevotella intermedia Sensu Stricto and Prevotella nigrescens

    Science.gov (United States)

    Premaraj, Thyagaseely; Kato, Naoki; Fukui, Katsuhito; Kato, Haru; Watanabe, Kunitomo

    1999-01-01

    Primers were designed from 16S rRNA sequences of Prevotella intermedia sensu stricto and Prevotella nigrescens and were used to discriminate these two species by PCR. The results were compared with those from the PCR technique using primers designed from arbitrarily primed PCR products by Guillot and Mouton (E. Guillot and C. Mouton, J. Clin. Microbiol. 35:1876–1882, 1997). The specificities of both assays were studied by using P. intermedia ATCC 25611, P. nigrescens ATCC 33563, 174 clinical isolates of P. intermedia sensu lato, and 59 reference strains and 58 clinical isolates of other Prevotella species and/or common oral flora. In addition, the usefulness and reliability of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the differentiation of the two species were examined by comparing the results with those from PCR assays. The controversial lipase test for distinguishing these species was also carried out. Unambiguous differentiation was made by both PCR assays, and the results matched each other. The SDS-PAGE assay was found to misidentify a few strains tested, compared with the results of PCR assays. The lipase test was positive for both species, including the reference strains of P. intermedia and P. nigrescens. We conclude that both PCR assays are simple, rapid, reliable, and specific methods which could be used in clinical studies and that the lipase test is not valuable in the differentiation. The reliable discrimination of the two species by SDS-PAGE is questionable. PMID:10074526

  7. Exposure of RML scrapie agent to a sodium percarbonate-based product and sodium dodecyl sulfate renders PrPSc protease sensitive but does not eliminate infectivity.

    Science.gov (United States)

    Smith, Jodi D; Nicholson, Eric M; Foster, Gregory H; Greenlee, Justin J

    2013-01-11

    Prions, the causative agents of the transmissible spongiform encephalopathies, are notoriously difficult to inactivate. Current decontamination recommendations by the World Health Organization include prolonged exposure to 1 N sodium hydroxide or > 20,000 ppm sodium hypochlorite, or autoclaving. For decontamination of large stainless steel surfaces and equipment as in abattoirs, for example, these methods are harsh or unsuitable. The current study was designed to evaluate the effectiveness of a commercial product containing sodium percarbonate to inactivate prions. Samples of mouse brain infected with a mouse-adapted strain of the scrapie agent (RML) were exposed to a sodium percarbonate-based product (SPC-P). Treated samples were evaluated for abnormal prion protein (PrPSc)-immunoreactivity by western blot analysis, and residual infectivity by mouse bioassay. Exposure to a 21% solution of SPC-P or a solution containing either 2.1% or 21% SPC-P in combination with sodium dodecyl sulfate (SDS) resulted in increased proteinase K sensitivity of PrPSc. Limited reductions in infectivity were observed depending on treatment condition. A marginal effect on infectivity was observed with SPC-P alone, but an approximate 2-3 log10 reduction was observed with the addition of SDS, though exposure to SDS alone resulted in an approximate 2 log10 reduction. This study demonstrates that exposure of a mouse-adapted scrapie strain to SPC-P does not eliminate infectivity, but does render PrPSc protease sensitive.

  8. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  9. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Science.gov (United States)

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  10. 40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,2-dimethyl-, poly-propene... Significant New Uses for Specific Chemical Substances § 721.1225 Benzene, 1,2-dimethyl-, poly-propene... reporting. (1) The chemical substance identified as benzene, 1,2-dimethyl-, polypropene derivatives...

  11. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide.

    Science.gov (United States)

    Ge, Jun; Lu, Diannan; Wang, Jun; Liu, Zheng

    2009-06-08

    The present work showed that Candida rugosa lipase, which is inactive in anhydrous dimethyl sulfoxide (DMSO), has been granted its original catalytic activity and greatly enhanced stability when encapsulated into a polyacrylamide nanogel. The molecular simulation and structural analysis suggested that the polyacrylamide nanogel shielded the extraction of essential water and maintained the native configuration of encapsulated lipase in anhydrous DMSO at an elevated temperature. The electron and fluorescence microscopy showed that the lipase nanogel would be well dispersed in anhydrous DMSO where its native counterpart aggregated. The encapsulated lipase behaved as a stable catalyst for transesterification between dextran and vinyl decanoate in anhydrous DMSO at 60 degrees C for 240 h and yielded a dextran-based polymeric surfactant with regioselectivity toward the C-2 hydroxyl group in the glucopyranosyl unit of dextran. All these indicated a high potential of enzyme nanogel for nonaqueous biocatalysis.

  12. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  13. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  14. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  15. Application of Dimethyl Ether in Compression Ignition Engines

    DEFF Research Database (Denmark)

    Hansen, Kim Rene

    . The elastomer seals that provided the sealing instead of the metal-to-metal contact could do that because of the low injection pressure. The engine developed in this way was based on a 50cc Peugeot two-stroke engine. The fuel injector used was a Bosch HDEV originally developed for direct injection of gasoline......This study has its roots in two separate events at the Department of Mechanical Engineering at DTU. In 1995 the first attempt to operate a diesel engine on dimethyl ether (DME) was successfully concluded. In 2004 the department decided to compete in the vehicle fuel efficiency competition Shell Eco......-Marathon. The diesel engine test results from 1995 showed that DME is a superb diesel fuel. DME is easy to ignite by compression ignition and it has a molecular structure that results in near-zero emission of particulates when burned. These are features of a fuel that are highly desirable in a diesel engine...

  16. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    Science.gov (United States)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  17. NANOSIZE STRUCTURE OF SELF-ASSEMBLY SODIUM DODECYL SULFATE: A STUDY BY SMALL ANGLE NEUTRON SCATTERING (SANS

    Directory of Open Access Journals (Sweden)

    Edy Giri Rachman Putra

    2010-06-01

    Full Text Available Small Angle Neutron Scattering (SANS investigation on the self-assembly sodium dodecyl sulfate (SDS molecules as a function of concentration and additives has been carried out. SANS spectrometer which has been completely installed at the neutron scattering laboratory (NSL BATAN in Serpong, Indonesia has played most important role to determine the growth (size and also the shapes of a micelle structure. In this works we report that spherical micelle structure with a radius of 16.7 Å will transform to ellipsoidal or rod-like micelle structure with the long axis extends up to 50 Å by increasing the concentration of SDS. Similar to that the micelle structures change by addition of salt in SDS micellar solutions.   Keywords: nanostructure, micelle, self-assembly

  18. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    Science.gov (United States)

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Occurrence of photoluminescence and onion like structures decorating graphene oxide with europium using sodium dodecyl sulfate surfactant

    Science.gov (United States)

    Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.

    2017-07-01

    Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.

  20. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ali Kamal Attia

    2017-04-01

    Full Text Available Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0 using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10-6-3.475 x 10-5 mol L-1. The limits of detection and quantification were found to be 5.160 x 10-7 and 1.720 x 10-6 mol L-1, respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  1. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate.

    Science.gov (United States)

    Attia, Ali Kamal; Abo-Talib, Nisreen Farouk; Tammam, Marwa Hosny

    2017-04-01

    Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH) based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0) using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10 -6 -3.475 x 10 -5 mol L -1 . The limits of detection and quantification were found to be 5.160 x 10 -7 and 1.720 x 10-6 mol L -1 , respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  2. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    Science.gov (United States)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  3. Adsorption of sodium dodecyl sulfate onto precipitate in treatment of vat dark blue BO by dissolved air flotation.

    Science.gov (United States)

    Xia, Hongyun; Zhao, Xuyun; Zhao, Xiang; Yao, Ping; Zhang, Haoyu

    2017-07-03

    Vat dark blue BO-simulated wastewater was treated by dissolved air flotation (DAF). In this process, the interactions of sodium dodecyl sulfate (SDS) and resulting DAF process precipitates were investigated by infrared spectroscopy and kinetic methods. Fourier transform infrared analysis revealed that γ values (cm -1 ) for asymmetric and symmetric stretching vibrations of CH 2 groups for SDS-treated precipitation shifted toward higher in comparison to pure SDS, showing strong SDS and precipitate interactions. This showed the chemical adsorption of SDS onto precipitate surfaces. Adsorption data were well described by a pseudo-second-order model, with an adsorption activation energy of 42.602 kJ mol -1 , further predicting an SDS chemisorption uptake process by the precipitate. SDS could be considered as one of the most efficient flotation agents for the removal of vat dark blue BO in DAF processing.

  4. High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure

    Science.gov (United States)

    Jing, Zhao; Lin, Guo; Jing, Liu; Yang, Yang; Rong-Zheng, Che; Lei, Zhou

    2000-02-01

    Structural transformation in γ-Fe2O3 nanocrystals (about 10 nm) with dodecyl benzene sulfonic (DBS) coated is studied by using high-pressure energy dispersive x-ray diffraction of synchrotron radiation and high-resolution transmission electron microscopy (HRTEM). Relative to the bulk crystal, the transition pressure showed a decrease while the compressibility increases significantly up to 375 (±9 GPa). HRTEM picture confirmed that there is surface cladding surrounding nanocrystals due to DBS, which formed new special boundaries between nanocrystals and should be different from the ordinary grain boundaries. The experimental results imply that the surface layers of γ-Fe2O3 nanocrystals have strong effect on the compressibility.

  5. Improving sodium dodecyl sulfate polyacrylamide gel electrophoresis detection of low-abundance protein samples by rapid freeze centrifugation.

    Science.gov (United States)

    Virgen-Ortíz, J J; Ibarra-Junquera, V; Escalante-Minakata, P; Osuna-Castro, J A; Ornelas-Paz, J de J; Mancilla-Margalli, N A; Castañeda-Aguilar, R L

    2013-12-15

    This work presents a rapid and simple freeze centrifugation method to concentrate dilute protein solutions for detection by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) Coomassie blue staining. Moreover, a simple way to assemble a cryoconcentration device is presented, and its use is discussed. Commercial purified protein standard and an enzyme with high fructosyltransferase (FTase) activity, coming from target fractions obtained by chromatographic separation, were used as an example. FTase, coming directly from the chromatographic fractions, was difficult to view through SDS-PAGE analysis; however, it was easily visualized, and its activity was enhanced, after the application of the freeze centrifugation protocol presented here. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Fragrance material review on 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one when used as a fragrance ingredient is presented. 1-(2,4-Dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, sensitization, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Natural 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®)

    OpenAIRE

    Wilfried Schwab

    2013-01-01

    4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these c...

  8. SODIUM DI-N-DODECYL PHOSPHATE VESICLES IN AQUEOUS-SOLUTION - EFFECTS OF ETHANOL, PROPANOL, AND TETRAHYDROFURAN ON THE GEL TO LIQUID-PHASE TRANSITION

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; BUTT, MD; WATERS, M; CULLIS, PM; ENGBERTS, JBFN; HOEKSTRA, D; MOHANTY, RK

    1994-01-01

    For aqueous solutions containing vesicles formed by sodium di-n-dodecyl phosphate, the gel to liquid-crystal transition occurs near 35 degrees C, the temperature T-m. When ethanol is added, T-m decreases, but the scan shows evidence of several transitions as more alcohol is added. The effect of

  9. 40 CFR 180.1130 - N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false N-(n-octyl)-2-pyrrolidone and N-(n... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1130 N-(n-octyl)-2-pyrrolidone and N-(n-dodecyl)-2-pyrrolidone; exemptions from the requirement of a tolerance. N-(n-octyl)-2...

  10. SODIUM DODECYL-SULFATE INDUCED ENHANCEMENT OF THE VISCOSITY AND VISCOELASTICITY OF AQUEOUS-SOLUTIONS OF POLY(ETHYLENE OXIDE) - A RHEOLOGICAL STUDY ON POLYMER MICELLE INTERACTION

    NARCIS (Netherlands)

    BRACKMAN, JC

    A large enhancement of the viscosity and the viscoelasticity of aqueous solutions of high molecular weight poly(ethylene oxide) (PEO) has been observed upon addition of sodium dodecyl sulfate (SDS). The changes in apparent viscosity, in the parameters for the power law model of non-Newtonian

  11. Phosphate-Doped Carbon Black as Pt Catalyst Support: Co-catalytic Functionality for Dimethyl Ether and Methanol Electro-oxidation

    DEFF Research Database (Denmark)

    Yin, Min; Huang, Yunjie; Li, Qingfeng

    2014-01-01

    Niobium-phosphate-doped (NbP-doped) carbon blacks were prepared as the composite catalyst support for Pt nanoparticles. Functionalities of the composite include intrinsic proton conductivity, surface acidity, and interfacial synergistic interactions with methanol and dimethyl ether (DME). The sup......Niobium-phosphate-doped (NbP-doped) carbon blacks were prepared as the composite catalyst support for Pt nanoparticles. Functionalities of the composite include intrinsic proton conductivity, surface acidity, and interfacial synergistic interactions with methanol and dimethyl ether (DME......). The supported Pt catalysts show significant improvement in catalytic activity towards the direct oxidation of methanol and DME, attributable to the enhanced adsorption and dehydrogenation of methanol and DME, as well as the presence of activated OH species in the catalysts. The latter is demonstrated...

  12. Discovery and widespread occurrence of polyhalogenated 1,1'-dimethyl-2,2'-bipyrroles (PDBPs) in marine biota

    International Nuclear Information System (INIS)

    Hauler, Carolin; Martin, René; Knölker, Hans-Joachim; Gaus, Caroline; Mueller, Jochen F.; Vetter, Walter

    2013-01-01

    Polyhalogenated 1,1′-dimethyl-2,2′-bipyrroles (PDBPs) are halogenated natural products (HNPs) previously shown to bioaccumulate in marine mammals and birds. Since their discovery in 1999, six hexahalogenated and a few lesser halogenated congeners have been identified in diverse marine mammal samples. Here we report the identification of 17 additional hexahalogenated PDBPs in the blubber extract of a humpback dolphin (Sousa chinensis) from Queensland, Australia. Thirteen of these new PDBPs were also detected in an Australian sea cucumber (Holothuria sp.). Additional samples were also tested positive on several new PDBPs, including an Australian venus tuskfish (Choerodon venustus) as well as a white whale (Delphinapterus leucas) and a sperm whale (Physeter macrocephalus) from the Northern Hemisphere. GC/ECNI-MS-SIM quantification of the molecular ions was carried out with the help of synthesized standards. The sum concentration of PDBPs was 1.1 mg/kg lipid in the humpback dolphin and 0.48 mg/kg lipid in the sea cucumber. -- Highlights: •Polyhalogenated 1,1′-dimethyl-2,2′-bipyrroles (PDBPs) are natural products. •17 New hexahalogenated PDBPs were identified in marine biota from Australia. •A humpback dolphin (Sousa chinensis) contained 1.1 mg/kg lipid PDBPs. •New PDBPs were also detected in marine mammals from the Northern Hemisphere. -- Detection of new polyhalogenated 1,1′-dimethyl-2,2′-bipyrroles indicates a higher toxic risk of these halogenated natural products in the marine environment than previously known

  13. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae)

    OpenAIRE

    Zheoat, Ahmed M.; Gray, Alexander I.; Igoli, John O.; Kennedy, Alan R.; Ferro, Valerie A.

    2017-01-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carb?oxy?lic acid dimethyl sulfoxide monosolvate], C6H6O7?C2H6OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carboxyl?ate], C8H10O7, (II). Compound (I) forms a layered structure with alternating laye...

  14. Kinetics of periodate oxidation of tris -(4,4'-dimethyl-2,2'-bipyridine ...

    African Journals Online (AJOL)

    dimethyl-2,2'-bipyridine) iron(II) in acid medium was investigated. The complex undergoes extensive protonation in acid medium. Both protonated and the unprotonated species undergo electron transfer reaction with the active periodate species ...

  15. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Science.gov (United States)

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  16. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  17. Oxovanadium and oxouranium complexes of 3-7 dimethyl 7-hydroxy octane-1-al

    International Nuclear Information System (INIS)

    Nagar, Meena; Baslas, R.K.

    1980-01-01

    The present communication deals with the preparation and characterisation of metal complexes of vanadyl and uranyl ions with 3-7 dimethyl 7-hydroxy octane 1-al and their stabilities were calculated by Job's and Bjerrum methods. (author)

  18. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Data.gov (United States)

    U.S. Environmental Protection Agency — A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon...

  19. Modeling of a Reaction-Distillation-Recycle System to Produce Dimethyl Ether through Methanol Dehydration

    Science.gov (United States)

    Muharam, Y.; Zulkarnain, L. M.; Wirya, A. S.

    2018-03-01

    The increase in the dimethyl ether yield through methanol dehydration due to a recycle integration to a reaction-distillation system was studied in this research. A one-dimensional phenomenological model of a methanol dehydration reactor and a shortcut model of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to the system increases the dimethyl ether yield by 8%.

  20. The stability study of myristyl dimethyl amine oxide as an amphoteric ...

    African Journals Online (AJOL)

    The stability study of myristyl dimethyl amine oxide as an amphoteric surfactant in strong oxidant media containing 5 % m/m sodium hypochlorite through measurement of decomposing rate using high performance liquid chromatography and two phase titration.

  1. Synthesis of Dimethyl Aryl Acylsulfonium Bromides from Aryl Methyl Ketones in a DMSO-HBr System

    Directory of Open Access Journals (Sweden)

    Zhiling Cao

    2013-12-01

    Full Text Available A new, simplified method for the synthesis of dimethyl aryl acylsulfonium salts has been developed. A series of dimethyl aryl acylsulfonium bromides were prepared by the reaction of aryl methyl ketones with hydrobromic acid and dimethylsulfoxide (DMSO. This sulfonium salt confirms that bromine production and the bromination reaction take place in the DMSO-HBr oxidation system. What’s more, it is also a key intermediate for the synthesis of arylglyoxals.

  2. Synthesis of dimethyl aryl acylsulfonium bromides from aryl methyl ketones in a DMSO-HBr system.

    Science.gov (United States)

    Cao, Zhiling; Shi, Dahua; Qu, Yingying; Tao, Chuanzhou; Liu, Weiwei; Yao, Guowei

    2013-12-16

    A new, simplified method for the synthesis of dimethyl aryl acylsulfonium salts has been developed. A series of dimethyl aryl acylsulfonium bromides were prepared by the reaction of aryl methyl ketones with hydrobromic acid and dimethylsulfoxide (DMSO). This sulfonium salt confirms that bromine production and the bromination reaction take place in the DMSO-HBr oxidation system. What's more, it is also a key intermediate for the synthesis of arylglyoxals.

  3. Quantification of Whey Protein Content in Infant Formulas by Sodium Dodecyl Sulfate-Capillary Gel Electrophoresis (SDS-CGE): Single-Laboratory Validation, First Action 2016.15.

    Science.gov (United States)

    Feng, Ping; Fuerer, Christophe; McMahon, Adrienne

    2017-03-01

    Protein separation by sodium dodecyl sulfate-capillary gel electrophoresis, followed by UV absorption at 220 nm, allows for the quantification of major proteins in raw milk. In processed dairy samples such as skim milk powder (SMP) and infant formulas, signals from individual proteins are less resolved, but caseins still migrate as one family between two groups of whey proteins. In the first group, α-lactalbumin and β-lactoglobulin migrate as two distinct peaks. Lactosylated adducts show delayed migration times and interfere with peak separation, but both native and modified forms as well as other low-MW whey proteins still elute before the caseins. The second group contains high-MW whey proteins (including bovine serum albumin, lactoferrin, and immunoglobulins) and elutes after the caseins. Caseins and whey proteins can thus be considered two distinct nonoverlapping families whose ratio can be established based on integrated areas without the need for a calibration curve. Because mass-to-area response factors for whey proteins and caseins are different, an area correction factor was determined from experimental measurement using SMP. Method performance assessed on five infant formulas showed RSDs of 0.2-1.2% (within day) and 0.5-1.1% (multiple days), with average recoveries between 97.4 and 106.4% of added whey protein. Forty-three different infant formulas and milk powders were analyzed. Of the 41 samples with manufacturer claims, the measured whey protein content was in close agreement with declared values, falling within 5% of the declared value in 76% of samples and within 10% in 95% of samples.

  4. Dimethyl ether. A fuel for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, T.H.; Basu, A.; Gradassi, M.J.; Masin, J.G. [Gas Transportation and Upgrading Division, Amoco, Exploration and Production Technology Group, Naperville, IL (United States)

    1997-12-31

    For several years Amoco has been involved in research and development work on the synthesis of liquid fuels from natural gas. In a recent collaborative work with Haldor Topsoe S/A, AVL LIST GmbH and Navistar, Amoco has identified Dimethyl Ether (DME) as a new, ultraclean alternative fuel for diesel engines. DME can be handled like LPG, an important alternative transportation fuel. Preliminary engine test data for DME, showing emission levels better than the California 1998 ULEV standards, were recently reported at the 1995 SAE conference in Detroit, Michigan. DME is today manufactured from methanol and is primarily used as an aerosol propellant due to its environmentally benign characteristics. Haldor Topsoe has developed a process for direct production of DME from natural gas, coal or biomass. The process can be used for large scale (about 40.000 BSD diesel equivalent) manufacture of DME from natural gas using predominantly single-train process units. In this paper, we will provide an overview of the attractiveness of DME as an environmentally and customer-friendly diesel fuel option. 14 refs.

  5. Electrochemical degradation of dimethyl phthalate ester on a DSA® electrode

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fernanda L.; Aquino, Jose M.; Miwa, Douglas W.; Motheo, Artur J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Rodrigo, Manuel A., E-mail: artur@iqsc.usp.br [Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Ciudad Real (Spain)

    2014-03-15

    The electrochemical degradation of dimethyl phthalate (DMP) using a one-compartment filter press flow cell and a commercial dimensionally stable anode (DSA®) is presented. The best electrolysis conditions were determined by the analysis of the influence of the nature and concentration of the support electrolyte, pH, current density and temperature. The abatement of DMP concentration and total organic carbon (TOC) removal were superior in the presence of NaCl, as well as the apparent first order kinetic constants. Using constant ionic strength at 0.15 mol dm{sup -3} by adding Na{sub 2}SO{sub 4}, DMP concentration decreases faster at relative low NaCl concentrations while the TOC removal after 1 h of electrolysis increases with NaCl concentration. The DMP removal was very similar for all the current densities investigated at acidic solutions. When electric energy saving is considered, since the electrochemical system was under mass transport conditions, the best operational option is to use low current density values. (author)

  6. Removal of dimethyl phthalate from water by ozone microbubbles.

    Science.gov (United States)

    Jabesa, Abdisa; Ghosh, Pallab

    2017-08-01

    This work investigates the removal of dimethyl phthalate (DMP) from water using ozone microbubbles in a pilot plant of 20 dm 3 capacity. Experiments were performed under various reaction conditions to examine the effects of the initial concentration of DMP, pH of the medium, ozone generation rate, and the role of H 2 O 2 on the removal of DMP. The DMP present in water was effectively removed by the ozone microbubbles. The removal was effective in neutral and alkaline media. Increase in the initial concentration of the target pollutant negatively affected its removal efficiency. The removal efficiency dramatically increased from 1% to 99% when the ozone generation rate was increased from 0.28 to 1.94 mg s -1 at pH 7. The total organic carbon measurements revealed that a complete mineralization of DMP was achieved within 1.8 ks at the high ozone feed rate. The use of t-butyl alcohol as the hydroxyl radical scavenger confirmed that the reaction between the target organic compound and ·OH radical dominated over its direct reaction with ozone. The reaction between DMP and ozone followed an overall second-order kinetics. The volumetric mass transfer coefficient of ozone in the reacting system and the enhancement factor increased with increasing initial concentration of DMP. Very low values of Hatta number were obtained at all initial concentrations of DMP and pH, which show that the mass transfer resistance was small.

  7. Photoluminescence of 1,3-dimethyl pyrazoloquinoline derivatives

    International Nuclear Information System (INIS)

    Koscien, E.; Gondek, E.; Pokladko, M.; Jarosz, B.; Vlokh, R.O.; Kityk, A.V.

    2009-01-01

    This paper presents absorption and photoluminescence of 6-F, 6-Br, 6-Cl, 7-TFM and 6-COOEt derivatives of 1,3-dimethyl-1H-Pyrazolo[3,4-b]quinoline (DMPQ). The measured absorption and emission spectra are compared with the quantum chemical calculations performed by means of the semi-empirical methods (AM1 or PM3) that are applied either to the equilibrium conformations in vacuo (T = 0 K) or combined with the molecular dynamics simulations (T = 300 K). The spectra calculated by the AM1 method appear to be for all dyes in practically excellent agreement with the measured ones. In particular, the position of the first absorption band is obtained with the accuracy up to a few nanometers, whereas the calculated photoluminescence spectra predict the positions of the emission maxima for a gas phase with the accuracy up to 10-18 nm. The photoemission spectra of DMPQ dyes are considerably less solvatochromic comparing to phenyl-containing pyrazoloquinoline derivatives. According to the quantum chemical analysis the reason for such behaviour lies in a local character of the electronic transitions of DMPQ dyes which are characterized by a relatively small difference between the excited state and ground state dipole moments. Importantly that the rotational dynamics of both methyl subunits does not change this situation

  8. Aeration tank odour by dimethyl sulphoxide (DMSO) waste in sewage.

    Science.gov (United States)

    Glindemann, D; Novak, J T; Witherspoon, J

    2007-01-01

    Sewage plants can experience dimethyl sulphide (DMS) odour problems by at least one mg/L dimethylsulphoxide (DMSO) waste residue in plant influent, through a DMSO/DMS reduction mechanism. This bench-scale batch study simulates in bottles the role of poor aeration in wastewater treatment on the DMSO/DMS and sulphate/H2S reduction. The study compares headspace concentrations of sulphide odorants developed by activated sludge (closed bottles, half full) after six hours under anoxic versus anaerobic conditions, with 0 versus 2 mg/L DMSO addition. Anoxic sludge (0.1 - 2 mg/L dissolved oxygen, DO) with DMSO resulted in about 50 ppmv DMS and no other sulphide, while DMSO-free sludge was free of detectable sulphides. Anaerobic sludge (no measurable DO to the point of sulphate reduction) with DMSO resulted in 22/4/37 ppmv of H2S/methanethiol (MT)/DMS, while DMSO-free sludge resulted in 44/8/2 ppmv of H2S/MT/DMS. It is concluded that common "anoxic" aeration tank zones with measurable DO in bulk water but immeasurable DO inside sludge flocs (nitrate reducing) experience DMSO reduction to DMS that is oxidation resistant and becomes the most important odorant. Under anaerobic conditions, H2S from sulphate reduction becomes an additional important odorant. A strategy is developed that allows operators to determine from the quantity of different sulphides whether the DMSO/DMS mechanism is important at their wastewater plant.

  9. Examining Dimethyl Sulfide Emissions in California's San Joaquin Valley

    Science.gov (United States)

    Huber, D.; Hughes, S.; Blake, D. R.

    2017-12-01

    Dimethyl Sulfide (DMS) is a sulfur-containing compound that leads to the formation of aerosols which can lead to the formation of haze and fog. Whole air samples were collected on board the NASA C-23 Sherpa aircraft during the 2017 Student Airborne Research Program (SARP) over dairies and agricultural fields in the San Joaquin Valley. Analysis of the samples indicate average DMS concentrations of 23 ± 9 pptv, with a maximum concentration of 49 pptv. When compared with DMS concentrations from previous SARP missions (2009-2016), 2017 by far had the highest frequency of elevated DMS in this region. For this study, agricultural productivity of this region was analyzed to determine whether land use could be contributing to the elevated DMS. Top down and bottom up analysis of agriculture and dairies were used to determine emission rates of DMS in the San Joaquin Valley. Correlations to methane and ethanol were used to determine that DMS emissions were strongly linked to dairies, and resulted in R2 values of 0.61 and 0.43, respectively. These values indicate a strong correlation between dairies and DMS emissions. Combined with NOAA HySPLIT back trajectory data and analysis of ground air samples, results suggest that the contribution of dairies to annual DMS emissions in the San Joaquin Valley exceeds those from corn and alfalfa production.

  10. Dimethyl sulfoxyde diethyl fumarate solution for high dose dosimetry

    International Nuclear Information System (INIS)

    Al-Kassiri, H.; Kattan, M.; Daher, Y.

    2007-06-01

    Dosimetric characterization of diethyl fumarate DEF in dimethyl sulfoxyde DMSO solution has been studied spectrophotometrically for possible application at high dose radiation dosimetry in the range (0-225 kGy). The absorption spectra of irradiated solution showed broad absorption bands between (325-400 nm) with a shoulder at 332 nm. The absorption increases as the dose is increased. Absorbance at 332 nm were measured and plotted against absorbed dose. Linear relationship and good response were found between absorbed dose and absorbance of 20% DEF concentration in the range (0-225 kGy) at the wave length, and linearity up to 250 kGy of absorbance at 332 nm .Good dose rate independence was observed in the range (14-33 kGy/h). The effect of post irradiation storage in darkness and indirect daylight conditions were not found to influence the absorption up to 700 h after irradiation. The effect of irradiation temperature within the range (0 to 60 centigrade degree) on the dosimetry performance was discussed.(author)

  11. Dimethyl Sulfide is a Chemical Attractant for Reef Fish Larvae.

    Science.gov (United States)

    Foretich, Matthew A; Paris, Claire B; Grosell, Martin; Stieglitz, John D; Benetti, Daniel D

    2017-05-31

    Transport of coral reef fish larvae is driven by advection in ocean currents and larval swimming. However, for swimming to be advantageous, larvae must use external stimuli as guides. One potential stimulus is "odor" emanating from settlement sites (e.g., coral reefs), signaling the upstream location of desirable settlement habitat. However, specific chemicals used by fish larvae have not been identified. Dimethyl sulfide (DMS) is produced in large quantities at coral reefs and may be important in larval orientation. In this study, a choice-chamber (shuttle box) was used to assess preference of 28 pre-settlement stage larvae from reef fish species for seawater with DMS. Swimming behavior was examined by video-tracking of larval swimming patterns in control and DMS seawater. We found common responses to DMS across reef fish taxa - a preference for water with DMS and change in swimming behavior - reflecting a switch to "exploratory behavior". An open water species displayed no response to DMS. Affinity for and swimming response to DMS would allow a fish larva to locate its source and enhance its ability to find settlement habitat. Moreover, it may help them locate prey accumulating in fronts, eddies, and thin layers, where DMS is also produced.

  12. Synthesis of dimethyl carbonate from urea and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, M.; Kalevaru, V.N.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis; Mueller, K.; Arlt, W. [Erlangen-Nuernberg Univ. (Germany); Strautmann, J.; Kruse, D. [Evonik Industries AG, Marl (Germany). Creavis Technologies and Innovation

    2012-07-01

    Alcoholation of urea with methanol to produce dimethyl carbonate (DMC) is an interesting approach from both the ecological and economical points of view because the urea synthesis usually occurs by the direct use of carbon dioxide. Literature survey reveals that metal oxide catalysts for instance MgO, ZnO, etc. or polyphosphoric acids are mostly used as catalysts for this reaction. In this contribution, we describe the application of ZnO, MgO, CaO, TiO{sub 2}, ZrO{sub 2} or Al{sub 2}O{sub 3} catalysts for the above mentioned reaction. The catalytic activity of different metal oxides towards DMC synthesis was checked and additionally a comparison of achieved conversions with that of predictions made by thermodynamic calculations was also carried out. The achieved conversions are in good agreement with those of calculated ones. The test results reveal that the reaction pressure and temperature have a strong influence on the formation of DMC. Higher reaction pressure improved the yield of DMC. Among different catalysts investigated, ZnO displayed the best performance. The conversion of urea in most cases is close to 100 % and methyl carbamate MC is the major product of the reaction. A part of MC is subsequently converted to DMC, which however depends upon the reaction conditions applied and nature of catalyst used. From the best case, a DMC yield of ca. 8 % could be successfully achieved over ZnO catalyst. (orig.)

  13. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria.

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei; Xu, Shiguo; Luo, Feng

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.

  14. Dimethyl sulfoxyde diethyl fumarate solution for high dose dosimetry

    International Nuclear Information System (INIS)

    Al-Kassiri, H.; Kattan, M.; Daher, Y.

    2009-01-01

    Dosimetric characterization of diethyl fumarate DEF in dimethyl sulfoxyde DMSO solution has been studied spectrophotometrically for possible application at high dose radiation dosimetry in the range (0-225 kGy). The absorption spectra of irradiated solution showed broad absorption bands between (325-400 nm) with a shoulder at 332 nm. The absorption increases as the dose is increased. Absorbance at 332 nm were measured and plotted against absorbed dose. Linear relationship and good response were found between absorbed dose and absorbance of 20% DEF concentration in the range (0-225 kGy) at the wave length, and linearity up to 250 kGy of absorbance at 332 nm .Good dose rate independence was observed in the range (14-33 kGy/h). The effect of post irradiation storage in darkness and indirect daylight conditions were not found to influence the absorption up to 700 h after irradiation. The effect of irradiation temperature within the range (0 to 60 centigrade degree) on the dosimetry performance was discussed. (author)

  15. Bio-Based Production of Dimethyl Itaconate From Rice Wine Waste-Derived Itaconic Acid.

    Science.gov (United States)

    Joo, Young-Chul; You, Seung Kyou; Shin, Sang Kyu; Ko, Young Jin; Jung, Ki Ho; Sim, Sang A; Han, Sung Ok

    2017-11-01

    Dimethyl itaconate is an important raw material for copolymerization, but it is not synthesized from itaconic acid by organisms. Moreover, Corynebacterium glutamicum is used as an important industrial host for the production of organic acids, but it does not metabolize itaconic acid. Therefore, the biosynthetic route toward dimethyl itaconate from itaconic acid is highly needed. In this study, a biological procedure for dimethyl itaconate production is developed from rice wine waste-derived itaconic acid using the engineered C. glutamicum strain. The first step is to investigate the effect of the co-overexpression of the codon-optimized cis-aconitic acid decarboxylase (CadA*) and a transcriptional regulator of genes involved in acetic acid metabolism (RamA) on itaconic acid production. The second step is to convert itaconic acid into dimethyl itaconate by lipase-catalyzed esterification. The CadA* and RamA-overexpressing CG4 strain increases the itaconic acid concentration under N-starvation with glucose and acetic acid compared with the concentration produced in the base mCGXII medium with glucose. Furthermore, the rice wine waste-derived itaconic acid is successfully converted into dimethyl itaconate using lipase from Rhizomucor miehei and a methanol substrate. This study is the first trial for bio-based production of dimethyl itaconate from rice wine waste-derived itaconic acid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ecotoxicological assessment of the pharmaceutical fluoxetine hydrochloride and the surfactant dodecyl sodium sulfate after their submission to ionizing radiation treatment

    International Nuclear Information System (INIS)

    Santos, Dymes Rafael Alves dos

    2011-01-01

    The use of pharmaceuticals and personal care products and the consequent and continuous input of this substances in the environment generates an increasing need to investigate the presence, behavior and the effects on aquatic biota, as well as new ways to treat effluents containing such substances. Fluoxetine hydrochloride is an active ingredient used in the treatment of depressive disorders and anxiety. As the surfactant sodium dodecyl sulfate is present in many cleaning and personal care products. The present study aimed on assessing the acute toxicity of fluoxetine hydrochloride, sodium dodecyl sulfate and the mixture of both to the aquatic organisms Hyalella azteca, Daphnia similis and Vibrio ficheri. Reducing the toxicity of fluoxetine and the mixture after treatment with ionizing radiation from industrial electron beam accelerator has also been the focus of this study. For Daphnia similis the average values of CE50-4 8h found for the non-irradiated drug, surfactant and mixture were 14.4 %, 9.62 % and 13.8 %, respectively. After irradiation of the substances, the dose 5 kGy proved itself to be the most effective dose for the treatment of the drug and the mixture as it was obtained the mean values for CE50 48h 84.60 % and > 90 %, respectively. For Hyalella azteca the acute toxicity tests were performed for water column with duration of 96 hours, the mean values for CE50 96h found for the drug, the surfactant and the mixture non-irradiated were 5.63 %, 19.29 %, 6.27 %, respectively. For the drug fluoxetine and the mixture irradiated with 5 kGy, it was obtained 69.57 % and 77.7 %, respectively. For Vibrio ficheri the acute toxicity tests for the untreated drug and the drug irradiated with 5 kGy it was obtained CE50 15min of 6.9 % and 32.88 % respectively. These results presented a reduction of the acute toxicity of the test-substances after irradiation. (author)

  17. ISOLATION OF EGG DROP SYNDROME VIRUS AND ITS MOLECULAR CHARACTERIZATION USING SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS

    Directory of Open Access Journals (Sweden)

    M. H. Rasool, S. U. Rahman and M. K. Mansoor

    2005-10-01

    Full Text Available Six isolates of egg drop syndrome (EDS virus were recovered from five different outbreaks of EDS in commercial laying hens in and around Faisalabad. The aberrant eggs were fed to the susceptible laying hens for experimental induction of infection. The samples from infected birds (egg washing, cloacal swabs, oviducts and spleens were collected, processed and inoculated into 11-day old duck embryos. The presence of virus in harvested allanto-amniotic fluid was monitored by spot and microhaemagglutination tests and confirmed by haemagglutination inhibition and agar gel precipitation tests. The EDS virus grew well in duck embryos and agglutinated only avian but not mammalian red blood cells. These isolates were purified through velocity density gradient centrifugation. Protein concentration was determined through Lowry method and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE was conducted by loading 300 µg protein concentration on 12.5% gel using discontinuous buffer system. All the six isolates showed 13 polypeptides, which were identical to those described in the referral EDS-76 virus (strain-127. The molecular weights of the polypeptides ranged from 6.5 KDa to 126 KDa.

  18. Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate

    Science.gov (United States)

    Feng, Jiayu; Jin, Weiwei; Huang, Pengcheng; Wu, Fangying

    2017-09-01

    We report a dual-ligand strategy based on silver nanoparticles (AgNPs) for highly selective detection of Ni2+ using colorimetric techniques. Adenosine monophosphate (AMP) and sodium dodecyl sulfonate (SDS) were both used as ligands to modify AgNPs. The presence of Ni2+ induces the aggregation of AgNPs through cooperative electrostatic interaction and metal-ligand interaction, resulting in a color change from bright yellow to orange. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by AMP or SDS in terms of selectivity. Under the optimized conditions, this sensing platform for Ni2+ works in the concentration range of 4.0 to 60 μM and has a low detection limit of 0.60 μM. In addition, the colorimetric assay is very fast, and the whole analysis can be completed within a few minutes. Thus, it can be directly used in tap water and lake water samples. [Figure not available: see fulltext.

  19. Structural Studies on Nonequilibrium Microstructures of Dioctyl Sodium Dodecyl Sulfosuccinate (Aerosol-OT in p-Toluenesulfonic Acid and Phosphatidylcholine

    Directory of Open Access Journals (Sweden)

    M. K. Temgire

    2012-01-01

    Full Text Available Several microstructures are evolved at the interface when sparingly soluble solid surfactants come in contact with water. One class of these microstructures is termed as “myelin figures”; these were observed when phosphatidylcholine came in contact with water. Although the myelins are initially simple rod-like, complex forms like helices, coils and so forth. appear in the later stage. Finally, the myelins fuse together to form a complex mosaic-like structure. When studied by taking a cross-section using cryoscanning electron microscopy, it revealed concentric circular pattern inside the myelin figures. The cross-sections of (dioctyl sodium dodecyl sulfosiccinate AOT/water system myelin internal structures were lost. When p-toluenesulfonic acid (PTS 2 wt% was present in the water phase, AOT myelins revealed the internal microstructures. It has annular concentric ring-like structure with a core axon at the centre. Further investigation revealed new microstructures for the first time having multiple axons in the single-myelin strand.

  20. The influence of aqueous sodium dodecyl sulphate solution in the photoresponsivity of nitrogen doped graphene oxide photodetector

    Science.gov (United States)

    Ahmad, H.; Thandavan, T. M. K.

    2017-11-01

    The homogeneity and agglomeration in graphene based photodetector plays an important role in the photoconduction. The influence of sodium dodecyl sulphate (SDS) solution in nitrogen doped graphene oxide (N-GO) is studied based on the photoresponsivity behaviour. One step hydrothermal method and drop casting technique are utilized to obtain N-GO photodetectors. High photoresponsivity about 1000 folds is achieved in N-GO prepared with SDS solution (N-GO/SDS) compared to the N-GO prepared without SDS solution. Raman spectrum also revealed a high intense D and G band as well as a slightly broaden 2D band due to sp2 hybridization. The fabricated device has exhibited wide range of responsivity to infrared (IR) laser 974 nm pulse and illumination. Real time current measurement in N-GO and current-voltage (I-V) characteristics in N-GO/SDS showed a significant photoconduction due to laser 974 nm illumination. The external quantum efficiency (EQE) in the N-GO/SDS solution is about 394830% compared to N-GO prepared without SDS, which is only 272%. The evaluated fall time at frequency modulation of 0.1 and 1 Hz for direct current (dc) bias voltage of 5.0 V found to be shorter compared to that of 2.5 V, whereas the fall time at high frequency modulation at 5000 Hz exhibited similar time around 77 μs.

  1. Cytochrome P450 102A2 Catalyzes Efficient Oxidation of Sodium Dodecyl Sulphate: A Molecular Tool for Remediation

    Directory of Open Access Journals (Sweden)

    Irene Axarli

    2010-01-01

    Full Text Available Bacterial cytochrome P450s (CYPs constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. In the present work we report the characterization of CYP102A2 from B. subtilis with a focus on its substrate specificity. CYP102A2 is more active in oxidation of sodium dodecyl sulphate (SDS than any other characterized CYP. The effect of SDS and NADPH concentration on reaction rate showed nonhyperbolic and hyperbolic dependence, respectively. The enzyme was found to exhibit a bell-shaped curve for plots of activity versus pH, over pH values 5.9–8.5. The rate of SDS oxidation reached the maximum value approximately at pH 7.2 and the pH transition observed controlled by two pas in the acidic (pa=6.7±0.08 and basic (pa=7.3±0.06 pH range. The results are discussed in relation to the future biotechnology applications of CYPs.

  2. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    Directory of Open Access Journals (Sweden)

    M. I. E. Halmi

    2013-01-01

    Full Text Available Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS- degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v, between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.

  3. Evidence of β-sheet structure induced kinetic stability of papain upon thermal and sodium dodecyl sulphate denaturation

    Directory of Open Access Journals (Sweden)

    Rašković Brankica

    2015-01-01

    Full Text Available Papain is a protease that consists of α-helical and β-sheet domains which unfold almost independently. Both, papain considerable thermal stability and sodium dodecyl sulphate (SDS resistance have been shown. However, the ability of each domain to unfold upon thermal and SDS denaturation has never been studied. This work shows that fruit papain has slightly higher thermal inactivation resistance when it is compared to stem papain with rather high activation energy (Ea of 223 ± 16 kJmol-1 and Tm50 value of 79 ± 2 °C. SDS resistance of fruit papain was estimated by SDS-PAGE analysis and activity staining. It has been noted that, in the presence of SDS, unless heat energy was applied in order to unfold papain, the protein remained active. Furthermore, it has been proven via Fourier transform infrared spectroscopy (FT-IR that α-helical domain of fruit papain is more prone to unfolding at elevated temperatures and in the presence of SDS then β-sheet rich domain. Thermal denaturation of papain without detergent present led to accelerated formation of aggregation specific intermolecular β-sheets as compared to native protein. Presented results are both, of fundamental and application importance. [Projekat Ministarstva nauke Republike Srbije, br. 172049

  4. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis.

    Science.gov (United States)

    Xin, Fengxue; Geng, Anli; Chen, Ming Li; Gum, Ming Jun Marcus

    2010-10-01

    Fermentation of enzymatic hydrolysate of waste newspaper was investigated for cellulosic ethanol production in this study. Various nonionic and ionic surfactants were applied for waste newspaper pretreatment to increase the enzymatic digestibility. The surfactant-pretreated newspaper was enzymatically digested in 0.05 M sodium citrate buffer (pH 4.8) with varying solid content, filter paper unit loading (FPU/g newspaper), and ratio of filter paper unit/beta-glucosidase unit (FPU/CBU). Newspaper pretreated with the anionic surfactant sodium dodecyl sulphate (SDS) demonstrated the highest sugar yield. The addition of Tween-80 in the enzymatic hydrolysis process enhanced the enzymatic digestibility of newspaper pretreated with all of the surfactants. Enzymatic hydrolysis of SDS-pretreated newspaper with 15% solid content, 15 FPU/g newspaper, and FPU/CBU of 1:4 resulted in a newspaper hydrolysate conditioning 29.07 g/L glucose and 4.08 g/L xylose after 72 h of incubation at 50 degrees C. The fermentation of the enzymatic hydrolysate with Saccharomyces cerevisiae, Pichia stipitis, and their co-culture produced 14.29, 13.45, and 14.03 g/L of ethanol, respectively. Their corresponding ethanol yields were 0.43, 0.41, and 0.42 g/g.

  5. Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes.

    Science.gov (United States)

    Wang, Jing; Wang, Jiaxi; Xu, Chi; Liu, Rutao; Chen, Yadong

    2016-04-15

    Sodium dodecyl sulfate (SDS) contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via changing the activity of antioxidant enzyme catalase (CAT). But the underlying molecular mechanisms still remain unclear. This study characterized the harmful effects of SDS-induced oxidative stress on the mouse primary hepatocytes as well as the structure and function of CAT molecule and investigated the underlying molecular mechanism. After 12h SDS (0.1μM to 0.2mM) exposure, no significant change was observed in CAT activity of the hepatocytes. After 0.5 and 0.8mM SDS exposure, the state of oxidative stress stimulated CAT production in the hepatocytes. The inhibition of CAT activity induced by directly interacting with SDS was unable to catch the synthesis of CAT and therefore resulted in the increased activity and elevated ROS level. Further molecular experiments showed that SDS prefers to bind to the interface with no direct effect on the active site and the structure of heme groups of CAT molecule. When the sites in the interface is saturated, SDS interacts with VAL 73, HIS 74, ASN 147 and PHE 152, the key residues of the enzyme activity, and leads to the decrease of CAT activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples

    Directory of Open Access Journals (Sweden)

    Mahnaz Adeli

    2017-02-01

    Full Text Available In the present study, sodium dodecyl sulphate-coated Fe3O4 nanoparticles (SDS–Fe3O4 NPs were applied to remove Cu(II, Ni(II and Zn(II ions from water and wastewater samples. The effects of pH of solution, SDS, Fe3O4 NPs and salt addition on removal efficiency of the metal ions were investigated and optimized. Salt addition has a negative effect on the removal efficiency of the metal ions, thus extraction follows the ion exchange mechanism. The results showed that the adsorption process onto the adsorbent is very fast under optimum conditions and nearly 1 min of contact time was found to be sufficient for completion of the metal ions' adsorption. Adsorption equilibrium of the metal ions reveals that data were fitted well to the Langmuir isotherm. Also, the maximum monolayer capacity, qmax, obtained from the Langmuir isotherm was 24.3, 41.2 and 59.2 mg g−1 for Cu(II, Ni(II and Zn(II, respectively. Desorption experiments by elution of the adsorbent with methanol show that the SDS-Fe3O4 NPs could be reconditioned without significant loss of its initial properties even after three adsorption–desorption cycles. Finally, application of the SDS-Fe3O4 NPs as efficient adsorbent material for removal of the metal ions from Iran Khodro's wastewater samples was investigated and satisfactory results were obtained.

  7. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.

  8. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    2016-07-01

    Full Text Available In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS and β-cyclodextrin (β-CD embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles–chitosan hydrogel (IVG improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution–chitosan hydrogel (ISG. In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  9. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    Science.gov (United States)

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  10. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  11. Fluorometric determination of proteins using the terbium (III)-2-thenoyltrifluoroacetone-sodium dodecyl benzene sulfonate-protein system

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhen [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Department of Chemistry, Dezhou University, Dezhou 253023 (China); Yang Jinghe [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)]. E-mail: yjh@sdu.edu.cn; Wu Xia [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang Fei [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Guo Changying [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Liu Shufang [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2006-12-15

    It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH=8.00, proteins can enhance the fluorescence of terbium (III) (Tb{sup 3+})-2-thenoyltrifluoroacetone (TTA)-sodium dodecyl benzene sulfonate (SDBS) system. Based on this, a sensitive method for the determination of proteins is proposed. The experiments indicate that under the optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of proteins in the range of 4.0x10{sup -9}-7.5x10{sup -6}g/mL for bovine serum albumin (BSA), 5.0x10{sup -9}-1.5x10{sup -5}g/mL for human serum albumin (HSA), 1.0x10{sup -8}-7.5x10{sup -6}g/mL for egg albumin (EA). Their detection limits (S/N=3) are 0.5, 0.8 and 2.0ng/mL, respectively. The interaction mechanism is also studied.

  12. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation.

    Science.gov (United States)

    Pang, Yuxia; Wang, Shengwen; Qiu, Xueqing; Luo, Yanling; Lou, Hongming; Huang, Jinhao

    2017-12-20

    Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.

  13. Temporal and geographical distributions of epilithic sodium dodecyl sulfate-degrading bacteria in a polluted South Wales river

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J.; Day, M.J.; Russell, N.J.; White, G.F.

    1988-02-01

    Epilithic bacteria were isolated nonselectively from riverbed stones and examined by gel zymography for their ability to produce alkylsulfatase (AS) enzymes and thus to metabolize alkyl sulfate surfactants such as sodium dodecyl sulfate. The percentages of AS+ isolates from stone epilithon at five sites from the source to the river mouth were measured on five sampling days spread over 1 year. The results showed that (i) the prevalence of epilithic AS+ strains (as a percentage of all isolates) was much higher at polluted sites than at the source; (ii) when averaged over the whole river, percentages of AS+ strains were significantly higher at the end of summer compared with either the preceding or the following winter; (iii) analysis of site-sampling time interactions indicated that water quality factors (e.g., biochemical oxygen demand and dissolved oxygen concentration) rather than climatic factors determined the distributions of epilithic AS+ isolates; (iv) constitutive strains were the most prevalent (7.2% of all isolates), with smaller numbers of isolates with inducible (4.5%) and repressible (1.7%) enzymes.

  14. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    Science.gov (United States)

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Determination of antihypertensive drug moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate at carbon paste electrode.

    Science.gov (United States)

    Attia, Ali K

    2010-04-15

    Herein, an electrochemical differential pulse voltammetric method was developed for the determination of moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate. The oxidation process has been carried out in Britton-Robinson buffer. Moexipril hydrochloride exhibits a well-defined irreversible oxidation peak over the entire pH range (2-11). The peak current varied linearly over the range from 4.0 x 10(-7) to 5.2 x 10(-6) mol L(-1). The limits of detection and quantification were 6.87 x 10(-8) mol L(-1) and 2.29 x 10(-7) mol L(-1), respectively. The recovery was found in the range from 99.65% to 100.76%. The relative standard deviation was found in the range from 0.429% to 0.845%. The proposed method possesses high sensitivity, accuracy and rapid response. Finally, this method was successfully used to determine moexipril hydrochloride in tablets. (c) 2009 Elsevier B.V. All rights reserved.

  16. Inactivation of salmonella in biofilms and on chicken cages and preharvest poultry by levulinic Acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; Cannon, Jennifer L; Doyle, Michael P

    2011-12-01

    Surface contamination (skin and feathers) of broilers with Salmonella occurs primarily during growth and transportation. Immediately after transporting chickens, chicken cage doors were sprayed with a foam containing 3% levulinic acid plus 2% sodium dodecyl sulfate (SDS). Samples were collected for Salmonella assay after 45 min. Salmonella on cage doors was reduced from 19% (19 of 100 doors) before treatment to 1% (1 of 100 doors) after treatment, coliform counts were reduced from 6 to 8 to 2 to 4 log CFU/9 cm(2), and aerobic plate counts were reduced from 7 to 9 to 4 to 6 log CFU/9 cm(2). Whole chicken carcasses with feathers were inoculated with 10(8) CFU of Salmonella Enteritidis, soaked for 5 min at 21°C in 72 liters of a treatment or control solution, and assayed for Salmonella. Salmonella counts on chickens treated with water were 6.8 to 8.5 log CFU/9 cm(2), those treated with 50 ppm of calcium hypochlorite were 7.6 to 8.9 log CFU/9 cm(2), and those treated with 3% levulinic acid plus 2% SDS were 4-log reduction). Results of biofilm studies on surfaces of various materials revealed that a 3% levulinic acid plus 2% SDS treatment used as either a foam or liquid for 10 min effectively reduced Salmonella populations by 5 and >6 log CFU/cm(2), respectively.

  17. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations.

    Science.gov (United States)

    Zhao, Yapei; Lu, Pei; Li, Caiting; Fan, Xiaopeng; Wen, Qingbo; Zhan, Qi; Shu, Xin; Xu, Tieliang; Zeng, Guangming

    2013-01-01

    Surfactant solutions were propounded to remove fine and hydrophobic carbon black particles from coal-fired flue gas. The adsorption mechanisms between sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant) and carbon black particles in suspension were investigated. The influence of inorganic salt (NaCl) was also considered. As results showed, hydrophobic interactions contributed to the strong adsorption between SDBS and carbon black particles in the absence of NaCl, and adding NaCl affected the adsorption process. The adsorption amount of SDBS significantly increased when NaCl was added into the SDBS solution; however, when SDBS was in low concentration, the amount of adsorbed SDBS, which was responsible for the shift of zeta potentials, varied little under different concentrations of NaCl. This indicated that the adsorption of SDBS was mainly caused by hydrophobic interaction and Na+ could not change the adsorption of SDBS on adsorption site when SDBS was in low concentration. Moreover, the adsorbed SDBS and Na+ were retained in the Stern layer.

  18. Poly(dodecyl methacrylate) as solvent of paraffins for phase change materials and thermally reversible light scattering films.

    Science.gov (United States)

    Puig, Julieta; Williams, Roberto J J; Hoppe, Cristina E

    2013-09-25

    Paraffins are typical organic phase change materials (PCM) used for latent heat storage. For practical applications they must be encapsulated to prevent leakage or agglomeration during fusion. In this study it is shown that eicosane (C20H42 = C20) in the melted state could be dissolved in the hydrophobic domains of poly(dodecyl methacrylate) (PDMA) up to concentrations of 30 wt %, avoiding the need of encapsulation. For a 30 wt % solution, the heat of phase change was close to 69 J/g, a reasonable value for its use as a PCM. The fully converted solution remained transparent at 80 °C with no evidence of phase separation but became opaque by cooling as a consequence of paraffin crystallization. Heating above the melting temperature regenerated a transparent material. A high contrast ratio and abrupt transition between opaque and transparent states was observed for the 30 wt % blends, with a transparent state at 35 °C and an opaque state at 23 °C. This behavior was completely reproducible during consecutive heating/cooling cycles, indicating the possible use of this material as a thermally reversible light scattering (TRLS) film.

  19. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  20. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    International Nuclear Information System (INIS)

    Miller, J.H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first α-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25 0 C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA 3 (HA) 5 and (NdA 3 ) 2 (HA)/sub q/. Very small amounts of (NdA 3 ) 2 and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid

  1. Evaluation of the dimethyl sulphide distribution in the ECHAM model

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, P.; Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology, Arrhenius Lab.; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1997-02-01

    The three-dimensional model ECHAM has been used to simulate dimethyl sulphide (DMS) concentrations in the global troposphere. Emission of DMS from natural sources and a simple scheme for the oxidation of DMS have been introduced in the ECHAM sulphur model developed at the Max-Planck-Institute for meteorology in Hamburg. In this study we focus on the contribution to the atmospheric sulphur burden of DMS emissions from the oceans. Calculation with the ECHAM model, based on prescribed ocean water concentrations, gives a global annual oceanic emission of 13 Tg DMS-S. This figure has been adjusted to 16 Tg in order to bring it in better agreement with other estimates. The calculated turn-over time for DMS is 2.2 days globally, which is in the range of previous estimates. For DMS in the atmospheric surface layer, the agreement between simulated and observed concentrations is within a factor of {+-} 2 at low latitudes. However, in the southern hemisphere a significant overestimate of the simulated DMS occurs at high latitudes in summer and at mid and high latitudes in winter. Comparing with long-term measurements at Cape Grim and Amsterdam Island in the Southern Ocean during winter gives a difference of one order of magnitude and a factor of 3, respectively. At Drake Passage in the Antarctic Ocean during November the model predicts a factor of 5 higher concentrations than measurements performed over this area. The limited number of observations of DMS concentrations in sea-water indicates that the concentrations prescribed in the model might be nearly a factor of 2 too high in the southern hemisphere during fall, winter and spring. The results indicate the need for future model refinements with respect both to the biogenic emission and possibly also oxidants. 48 refs, 6 figs, 3 tabs

  2. Photochemical transformation of dimethyl phthalate (DMP) with N(iii)(H2ONO+/HONO/NO2-) in the atmospheric aqueous environment.

    Science.gov (United States)

    Lei, Yu; Zhu, Chengzhu; Lu, Jun; Chen, Rong; Xiao, Jun; Peng, Shuchuan

    2018-03-14

    The photochemical transformation of dimethyl phthalate (DMP) with N(iii)(NO 2 - /HONO/H 2 ONO + ) was investigated using 365 nm steady-state irradiation and 355 nm laser flash photolysis (LFP) techniques. The results showed that N(iii) concentration, DMP initial concentration and pH values all strongly affected the oxidation efficiency of DMP. The primary step of the reaction was the attack of ˙OH radicals on the aromatic ring to form a DMP-OH adduct, and the bimolecular rate constant was determined to be (5.5 ± 0.4) × 10 9 M -1 s -1 . The DMP-OH adduct not only underwent monomolecular self-decay with a rate constant of (1.6 ± 0.3) × 10 4 s -1 but also interacted with HONO, H 2 ONO + and O 2 with rate constants of (6.4 ± 0.4) × 10 6 M -1 s -1 , (8.8 ± 0.5) × 10 6 M -1 s -1 and (1.6 ± 0.1) × 10 8 M -1 s -1 , respectively. Major transformation products including methyl salicylate, monomethyl phthalate, dimethyl 4-hydroxyphthalate and dimethyl 4-nitrophthalate were identified by GC-MS and characteristics of these secondary contaminants required extra attention.

  3. Onychomycosis treated with a dilute povidone–iodine/dimethyl sulfoxide preparation

    Directory of Open Access Journals (Sweden)

    Capriotti K

    2015-10-01

    Full Text Available Kara Capriotti,1,2,* Joseph A Capriotti1,3,*1ALC Therapeutics, LLC, Springhouse, PA, 2Bryn Mawr Skin and Cancer Institute, Rosemont, PA, 3Plessen Ophthalmology Consultants, Christiansted, VI, USA*These authors are related through marriage Background: Povidone–iodine (PVP-I 10% aqueous solution is a well-known, nontoxic, commonly used topical antiseptic with no reported incidence of fungal resistance. We have been using a low-dose formulation of 1% PVP-I (w/w in a solution containing dimethyl sulfoxide (DMSO in our clinical practice for a variety of indications. Presented here is our clinical experience with this novel formulation in a severe case of onychomycosis that was resistant to any other treatment. Findings: A 49-year-old woman who had been suffering from severe onychomycosis for years presented after failing to find any remedy including over the counter (OTC, topical, and systemic oral prescribed therapies. Conclusion: The topical povidone–iodine/DMSO system was very effective in this case at alleviating the signs and symptoms of onychomycosis. This novel combination warrants further investigation in randomized, controlled trials to further elucidate its clinical utility. Keywords: onychomycosis, povidone–iodine, fungus, nail

  4. Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane

    Directory of Open Access Journals (Sweden)

    Wendong Zhang

    2013-03-01

    Full Text Available In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal, the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements.

  5. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge

    Science.gov (United States)

    Hong, ZHAO; Chengwu, YI; Rongjie, YI; Huijuan, WANG; Lanlan, YIN; I, N. MUHAMMAD; Zhongfei, MA

    2018-03-01

    The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet-visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions ({{{{CO}}}3}2-) and bicarbonate ions ({{{{HCO}}}3}-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.

  6. Use of Dimethyl Pimelimidate with Microfluidic System for Nucleic Acids Extraction without Electricity.

    Science.gov (United States)

    Jin, Choong Eun; Lee, Tae Yoon; Koo, Bonhan; Choi, Kyung-Chul; Chang, Suhwan; Park, Se Yoon; Kim, Ji Yeun; Kim, Sung-Han; Shin, Yong

    2017-07-18

    The isolation of nucleic acids in the lab on a chip is crucial to achieve the maximal effectiveness of point-of-care testing for detection in clinical applications. Here, we report on the use of a simple and versatile single-channel microfluidic platform that combines dimethyl pimelimidate (DMP) for nucleic acids (both RNA and DNA) extraction without electricity using a thin-film system. The system is based on the adaption of DMP into nonchaotropic-based nucleic acids and the capture of reagents into a low-cost thin-film platform for use as a microfluidic total analysis system, which can be utilized for sample processing in clinical diagnostics. Moreover, we assessed the use of the DMP system for the extraction of nucleic acids from various samples, including mammalian cells, bacterial cells, and viruses from human disease, and we also confirmed that the quality and quantity of the nucleic acids extracted were sufficient to allow for the robust detection of biomarkers and/or pathogens in downstream analysis. Furthermore, this DMP system does not require any instruments and electricity, and has improved time efficiency, portability, and affordability. Thus, we believe that the DMP system may change the paradigm of sample processing in clinical diagnostics.

  7. Dimethyl sulfoxide alterations of macromolecular synthesis by chick limb mesenchymal cells in vitro

    International Nuclear Information System (INIS)

    Major, F.W.; Parker, C.L.; Patterson, R.M.

    1986-01-01

    Earlier the authors reported that dimethyl sulfoxide (DMSO) inhibited the chondrogenesis of chick limb cells in vitro at concentrations of 30 mg/ml or greater. The present study was undertaken to determine if inhibition by DMSO might be due to an alteration in protein and/or DNA synthesis by the treated cells. Micromass cultures were prepared from stage 23-25 chick limb mesenchyme. The cells were treated with either 30 or 40 mg of DMSO/ml of culture medium for 24, 48, and 72 hr. After each treatment, protein and DNA synthesis were analyzed by the incorporation of [ 3 H]-leucine and [ 3 H]-thymidine, respectively. Cell cultures exposed to 40 mg DMSO/ml for 24 hr showed a significant decrease in protein synthesis, while there was no decrease in protein synthesis for cells treated with 30 mg DMSO/ml. At both 48 and 72 hr treatment with 30 mg of DMSO, there was a decrease in [ 3 H]-leucine incorporation. The thymidine studies indicated that there was a significant decrease in DNA synthesis as early as 24 hr for both DMSO concentrations. These findings suggest that the inhibition of chondrogenesis following DMSO treatment may be related to alterations in macromolecular synthesis possibly including extracellular cartilage matrix production

  8. Utilization of dimethyl fumarate and related molecules for treatment of multiple sclerosis, cancer, and other diseases

    Directory of Open Access Journals (Sweden)

    Azzam Maghazachi

    2016-07-01

    Full Text Available Several drugs have been approved for treatment of multiple sclerosis. Dimethyl fumarate (DMF is utilized as an oral drug to treat this disease and is proven to be potent with less side effects than several other drugs. On the other hand, monomethyl fumarate (MMF, a related compound has not been examined in greater details although it has the potential as a therapeutic drug for multiple sclerosis and other diseases. The mechanism of action of DMF or MMF is related to their ability to enhance the antioxidant pathways and to inhibit reactive oxygen species. However, other mechanisms have also been described which include effects on monocytes, dendritic cells, T cells, and natural killer cells. It is also reported that DMF might be useful for treating psoriasis, asthma, aggressive breast cancers, hematopoeitic tumors, inflammatory bowel disease, intracerebral hemorrhage, osteoarthritis, chronic pancreatitis, and retinal ischemia. In this article we will touch on some of these diseases with an emphasis on the effects of DMF and MMF on various immune cells.

  9. Dimethyl sulfoxide alterations of macromolecular synthesis by chick limb mesenchymal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Major, F.W.; Parker, C.L.; Patterson, R.M.

    1986-03-01

    Earlier the authors reported that dimethyl sulfoxide (DMSO) inhibited the chondrogenesis of chick limb cells in vitro at concentrations of 30 mg/ml or greater. The present study was undertaken to determine if inhibition by DMSO might be due to an alteration in protein and/or DNA synthesis by the treated cells. Micromass cultures were prepared from stage 23-25 chick limb mesenchyme. The cells were treated with either 30 or 40 mg of DMSO/ml of culture medium for 24, 48, and 72 hr. After each treatment, protein and DNA synthesis were analyzed by the incorporation of (/sup 3/H)-leucine and (/sup 3/H)-thymidine, respectively. Cell cultures exposed to 40 mg DMSO/ml for 24 hr showed a significant decrease in protein synthesis, while there was no decrease in protein synthesis for cells treated with 30 mg DMSO/ml. At both 48 and 72 hr treatment with 30 mg of DMSO, there was a decrease in (/sup 3/H)-leucine incorporation. The thymidine studies indicated that there was a significant decrease in DNA synthesis as early as 24 hr for both DMSO concentrations. These findings suggest that the inhibition of chondrogenesis following DMSO treatment may be related to alterations in macromolecular synthesis possibly including extracellular cartilage matrix production.

  10. Cryopreservation of buffy-coat-derived platelet concentrates in dimethyl sulfoxide and platelet additive solution.

    Science.gov (United States)

    Johnson, L N; Winter, K M; Reid, S; Hartkopf-Theis, T; Marks, D C

    2011-04-01

    Platelets prepared in plasma can be frozen in 6% dimethyl sulfoxide (Me(2)SO) and stored for extended periods at -80°C. The aim of this study was to reduce the plasma present in the cryopreserved product, by substituting plasma with platelet additive solution (PAS; SSP+), whilst maintaining in vitro platelet quality. Buffy coat-derived pooled leukoreduced platelet concentrates were frozen in a mixture of SSP+, plasma and 6% Me(2)SO. The platelets were concentrated, to avoid post-thaw washing, and frozen at -80°C. The cryopreserved platelet units (n=9) were rapidly thawed at 37°C, reconstituted in 50% SSP+/plasma and stored at 22°C. Platelet recovery and quality were examined 1 and 24h post-thaw and compared to the pre-freeze samples. Upon thawing, platelet recovery ranged from 60% to 80%. However, there were differences between frozen and liquid-stored platelets, including a reduction in aggregation in response to ADP and collagen; increased CD62P expression; decreased viability; increased apoptosis and some loss of mitochondrial membrane integrity. Some recovery of these parameters was detected at 24h post-thaw, indicating an extended shelf-life may be possible. The data suggests that freezing platelets in 6% Me(2)SO and additive solution produces acceptable in vitro platelet quality. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine.

    Science.gov (United States)

    Guangxin, Gao; Zhulin, Yuan; Apeng, Zhou; Shenghua, Liu; Yanju, Wei

    2013-12-01

    To investigate the effects of fuel temperature on the injection process in the fuel-injection pipe and the combustion characteristics of compression ignition (CI) engine, tests on a four stroke, direct injection dimethyl ether (DME) engine were conducted. Experimental results show that as the fuel temperature increases from 20 to 40 °C, the sound speed is decreased by 12.2%, the peak line pressure at pump and nozzle sides are decreased by 7.2% and 5.6%, respectively. Meanwhile, the injection timing is retarded by 2.2 °CA and the injection duration is extended by 0.8 °CA. Accordingly, the ignition delay and the combustion duration are extended by 0.7 °CA and 4.0 °CA, respectively. The cylinder peak pressure is decreased by 5.4%. As a result, the effective thermal efficiency is decreased, especially for temperature above 40 °C. Before beginning an experiment, the fuel properties of DME, including the density, the bulk modulus, and the sound speed were calculated by "ThermoData." The calculated result of sound speed is consistent with the experimental results.

  12. Polyelectrolyte-surfactant complexes formed by poly[3,5-bis(trimethylammoniummethyl)4-hydroxystyrene iodide]-block-poly(ethylene oxide) and sodium dodecyl sulfate in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, M.; Matějíček, P.; Procházka, K.; Filippov, Sergey K.; Angelov, Borislav; Šlouf, Miroslav; Mountrichas, G.; Pispas, S.

    2011-01-01

    Roč. 27, č. 9 (2011), s. 5275-5281 ISSN 0743-7463 R&D Projects: GA MŠk ME09059; GA ČR GCP205/11/J043; GA ČR GAP208/10/0353 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte-surfactant complexes * sodium dodecyl sulfate * small-angle X-ray scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.186, year: 2011

  13. (4Z-1-Dodecyl-4-(2-oxopropylidene-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one

    Directory of Open Access Journals (Sweden)

    Jihad Sebhaoui

    2016-11-01

    Full Text Available In the title compound, C24H36N2O2, the orientation of the 2-oxopropylidene substituent is determined by the formation of an intramolecular N—H...O hydrogen bond. The benzodiazepine seven-membered ring adopts a slightly twisted boat conformation. The molecules pack in a bilayer fashion with the dodecyl chains intercalated to form the inner portion, and the benzodiazepine moieties on the outer surfaces.

  14. Reaction parameters for the synthesis of N,N-dimethyl fatty hydrazides from oil.

    Science.gov (United States)

    Ahmad, Norashikin; Azizul Hasan, Zafarizal Aldrin; Hassan, Hazimah Abu; Ahmad, Mansor; Zin Wan Yunus, Wan Md

    2015-01-01

    Hydrazide derivatives have been synthesized from methyl esters, hydrazones and vegetable oils. They are important due to their diverse applications in pharmaceutical products, detergents as well as in oil and gas industries. The chemical synthesis of fatty hydrazides is well-established; however, only a few publications described the synthesis of fatty hydrazide derivatives, particularly, when produced from refined, bleached and deodorized palm olein. Here, the synthesis and characterization of N,N-dimethyl fatty hydrazides are reported. The N,N-dimethyl fatty hydrazides was successfully synthesized from fatty hydrazides and dimethyl sulfate in the presence of potassium hydroxide with the molar ratio of 1:1:1, 6 hours reaction time and 80℃ reaction temperature in ethanol. The product yield and purity were 22% and 89%, respectively. The fatty hydrazides used were synthesized from refined, bleached and deodorized palm olein with hydrazine monohydrate at pH 12 by enzymatic route. Fourier transform infrared, gas chromatography and nuclear magnetic resonance (NMR) spectroscopy techniques were used to determine the chemical composition of N,N-dimethyl fatty hydrazides. Proton NMR confirmed the product obtained were N,N-dimethyl fatty hydrazides.

  15. A self-healing poly(dimethyl siloxane) elastomer

    Science.gov (United States)

    Keller, Michael Wade

    2007-12-01

    In this work, self-healing functionality is imparted to a poly(dimethyl siloxane) (PDMS) elastomer with low modulus and high strain-to-failure behavior. This material utilizes a two-microcapsule system to provide a mechanism for autonomic repair of damage. One microcapsule type contains a functionalized high-molecular-weight resin and organometallic catalyst compounds. The second microcapsule type contains a functional copolymer (initiator) that facilitates the crosslinking of the resin via the action of the catalyst. The healing response is triggered when damage, in the form of a tear, puncture, or crack, propagates through the material and ruptures a resin and initiator capsule. Ruptured capsules release their contents onto the crack plane, initiating polymerization. The polymerized material bonds the two crack faces together regaining much of the original strength, of the matrix material. The mechanical behavior of the microcapsules is studied using a combination of individual microcapsule compression tests and in-situ microscopic analysis. Single-capsule compression tests are performed to extract the modulus of the capsule shell wall and to investigate the behavior of microcapsules under large deformations. The capsules are shown to survive matrix deformation in excess of 45%. Although the microcapsules are robust and endure large matrix deformations, an approaching tear does successfully rupture the capsules. A tear test protocol is adopted to assess the healing efficiency of this new material. Self-healing PDMS specimens with 5 wt% initiator and 5 wt% resin microcapsules recover 97% of the original tear strength. Complete recovery of tear strength is possible under certain conditions. Addition of microcapsules to the PDMS matrix increases the tear strength of the material by 25%. Embedded microcapsules also increase the elastic stiffness by as much as 57%. The self-healing performance of the elastomer is also investigated under torsional fatigue loading. The

  16. Treatment with dimethyl fumarate ameliorates liver ischemia/reperfusion injury.

    Science.gov (United States)

    Takasu, Chie; Vaziri, Nosratola D; Li, Shiri; Robles, Lourdes; Vo, Kelly; Takasu, Mizuki; Pham, Christine; Farzaneh, Seyed H; Shimada, Mitsuo; Stamos, Michael J; Ichii, Hirohito

    2017-07-07

    To investigate the hypothesis that treatment with dimethyl fumarate (DMF) may ameliorate liver ischemia/reperfusion injury (I/RI). Rats were divided into 3 groups: sham, control (CTL), and DMF. DMF (25 mg/kg, twice/d) was orally administered for 2 d before the procedure. The CTL and DMF rats were subjected to ischemia for 1 h and reperfusion for 2 h. The serum alanine aminotransferase (ALT) and malondialdehyde (MDA) levels, adenosine triphosphate (ATP), NO × metabolites, anti-oxidant enzyme expression level, anti-inflammatory effect, and anti-apoptotic effect were determined. Histological tissue damage was significantly reduced in the DMF group (Suzuki scores: sham: 0 ± 0; CTL: 9.3 ± 0.5; DMF: 2.5 ± 1.2; sham vs CTL, P < 0.0001; CTL vs DMF, P < 0.0001). This effect was associated with significantly lower serum ALT (DMF 5026 ± 2305 U/L vs CTL 10592 ± 1152 U/L, P = 0.04) and MDA (DMF 18.2 ± 1.4 μmol/L vs CTL 26.0 ± 1.0 μmol/L, P = 0.0009). DMF effectively improved the ATP content (DMF 20.3 ± 0.4 nmol/mg vs CTL 18.3 ± 0.6 nmol/mg, P = 0.02), myeloperoxidase activity (DMF 7.8 ± 0.4 mU/mL vs CTL 6.0 ± 0.5 mU/mL, P = 0.01) and level of endothelial nitric oxide synthase expression (DMF 0.38 ± 0.05-fold vs 0.17 ± 0.06-fold, P = 0.02). The higher expression levels of anti-oxidant enzymes (catalase and glutamate-cysteine ligase modifier subunit and lower levels of key inflammatory mediators (nuclear factor-kappa B and cyclooxygenase-2 were confirmed in the DMF group. DMF improved the liver function and the anti-oxidant and inflammation status following I/RI. Treatment with DMF could be a promising strategy in patients with liver I/RI.

  17. Determination of Protein by Fluorescence Enhancement of Curcumin in Lanthanum-Curcumin-Sodium Dodecyl Benzene Sulfonate-Protein System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Zaozhuang University, People' s Republic of China; Huang, Wei [Zaozhuang University, People' s Republic of China; Zhang, Yunfeng [Zaozhuang University, People' s Republic of China; Wang, Mingyin [Zaozhuang University, People' s Republic of China; Sun, Lina [Zaozhuang University, People' s Republic of China; Tang, Bo [Shandong University, Jinan, China; Wang, Wei [ORNL

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1)for human serum albumin (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N 3) are as low as 5.368, 0.573, 0.049, 0.562 g mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.

  18. Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates.

    Science.gov (United States)

    Cannon, Jennifer L; Aydin, Ali; Mann, Amy N; Bolton, Stephanie L; Zhao, Tong; Doyle, Michael P

    2012-08-01

    Human noroviruses are the most common etiologic agent of foodborne illness in the United States. The inability to culture human noroviruses in the laboratory necessitates the use of surrogate viruses such as murine norovirus (MNV-1) and feline calicivirus (FCV) for inactivation studies. In this study, a novel sanitizer of organic acid (levulinic acid) plus the anionic detergent sodium dodecyl sulfate (SDS) was evaluated. Viruses were treated with levulinic acid (0.5 to 5%), SDS (0.05 to 2%), or combinations of levulinic acid plus SDS (1:10 solution of virus to sanitizer). MNV-1 inoculated onto stainless steel also was treated with a 5% levulinic acid plus 2% SDS liquid or foaming solution. Log reductions of viruses were determined with a plaque assay. Neither levulinic acid nor SDS alone were capable of inactivating MNV-1 or FCV, resulting in a ≤0.51-log reduction of the infectious virus titer. However, the combination of 0.5% levulinic acid plus 0.5% SDS inactivated both surrogates by 3 to 4.21 log PFU/ml after 1 min of exposure. Similarly, MNV-1 inoculated onto stainless steel was reduced by >1.50 log PFU/ml after 1 min and by >3.3 log PFU/ml after 5 min of exposure to a liquid or foaming solution of 5% levulinic acid plus 2% SDS. The presence of organic matter (up to 10%) in the virus inoculum did not significantly affect sanitizer efficacy. The fact that both of the active sanitizer ingredients are generally recognized as safe to use as food additives by the U.S. Food and Drug Administration further extends its potential in mitigating foodborne disease.

  19. Evaluation of levulinic acid and sodium dodecyl sulfate as a sanitizer for use in processing Georgia-grown cantaloupes.

    Science.gov (United States)

    Webb, Cathy C; Davey, Lindsey E; Erickson, Marilyn C; Doyle, Michael P

    2013-10-01

    Freshly harvested Georgia-grown cantaloupes (Cucumis melo L. var. reticulatus cv. Athena and Atlantis) were spot inoculated with 100 μl of a five-strain mixture of Salmonella enterica serovar Poona (9 log CFU/ml) at the stem scar and on the netted rind and then subjected to no treatment (control) or a 6-min treatment (tank only) in water, 120 ppm of chlorine (pH 7.0), 1% levulinic acid plus 0.1% sodium dodecyl sulfate (SDS; pH 3.0), or 2% levulinic acid plus 0.2% SDS (pH 3.0). The log reduction for the tank-only treatments was 0.31, 0.59, 1.32, and 1.37 log CFU/g at the stem scar and 0.97, 1.59, 2.06. and 3.37 log CFU/g on the netted rind for water, chlorine, 1% levulinic acid plus 0.1% SDS, and 2% levulinic acid plus 0.2% SDS, respectively. A greater log reduction was observed for the cantaloupe surface tissue with the water, chlorine, and 2% levulinic acid plus 0.2% SDS treatments when additional sanitizer (2 ml) and brushing (to simulate cantaloupes tumbling over brushes on the processing line) were added to the dump tank treatment. The stem scar tissue reductions were 0.90, 1.69, and 1.53 log CFU/g, whereas the netted rind reductions were 1.56, 2.50, and 4.47 log CFU/g after treatment with water, chlorine, and 2% levulinic acid plus 0.2% SDS, respectively. These data suggest that 2% levulinic acid plus 0.2% SDS is effective for reducing Salmonella on the netted rind surface of cantaloupes. However, neither 2% levulinic acid plus 0.2% SDS nor 120 ppm of chlorine substantially reduced Salmonella on stem scar tissue.

  20. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies.

    Science.gov (United States)

    Wang, C; Tam, K C

    2005-03-24

    Interaction between a monodispersed poly(acrylic acid) (PAA) (M(W) = 5670 g/mol, M(w)/M(n) = 1.02) with sodium dodecyl sulfate (SDS) was investigated using isothermal titration calorimetry (ITC), ion-selective electrode (ISE), and dynamic light scattering measurements. Contrary to previous studies, we report for the first time evidence of interaction between SDS and PAA when the degree of neutralization (alpha) of PAA is lower than 0.2. Hydrocarbon chains of SDS cooperatively bind to apolar segments of PAA driven by hydrophobic interaction. The interaction is both enthalpy and entropy favored (deltaH is negative but deltaS is positive). In 0.05 wt % PAA solution, the SDS concentration corresponding to the onset of binding (i.e., CAC) is approximately 2.4 mM and the saturation concentration (i.e., C(S)) is approximately 13.3 mM when alpha = 0. When PAA was neutralized and ionized, the binding was hindered by the enhanced electrostatic repulsion between negatively charged SDS and PAA chains and improved solubility of the polymer. With increasing alpha to 0.2, CAC increases to approximately 6.2 mM, C(S) drops to 8.6 mM, and the interaction is significantly weakened where the amount of bound SDS on PAA is reduced considerably. The values of CAC and C(S) derived from different techniques are in good agreement. The binding results in the formation of mixed micelles on apolar PAA coils, which then expands and dissociates into single PAA chains. The majority of unneutralized PAA molecules exist as single polymer chains stabilized by bound SDS micelles in solution after the saturation concentration.

  1. Efficacy of levulinic acid-sodium dodecyl sulfate against Encephalitozoon intestinalis, Escherichia coli O157:H7, and Cryptosporidium parvum.

    Science.gov (United States)

    Ortega, Ynes R; Torres, Maria P; Tatum, Jessica M

    2011-01-01

    Foodborne parasites are characterized as being highly resistant to sanitizers used by the food industry. In 2009, a study reported the effectiveness of levulinic acid in combination with sodium dodecyl sulfate (SDS) in killing foodborne bacteria. Because of their innocuous properties, we studied the effects of levulinic acid and SDS at various concentrations appropriate for use in foods, on the viability of Cryptosporidium parvum and Encephalitozoon intestinalis. The viability of Cryptosporidium and E. intestinalis was determined by in vitro cultivation using the HCT-8 and RK-13 cell lines, respectively. Two Escherichia coli O157:H7 isolates were also used in the present study: strain 932 (a human isolate from a 1992 Oregon meat outbreak) and strain E 0018 (isolated from calf feces). Different concentrations and combinations of levulinic acid and SDS were tested for their ability to reduce infectivity of C. parvum oocysts (10(5)), E. intestinalis spores (10(6)), and E. coli O157:H7 (10(7)/ml) when in suspension. Microsporidian spores were treated for 30 and 60 min at 20 ± 2°C. None of the combinations of levulinic acid and SDS were effective at inactivating the spores or oocysts. When Cryptosporidium oocysts were treated with higher concentrations (3% levulinic acid-2% SDS and 2% levulinic acid-1% SDS) for 30, 60, and 120 min, viability was unaffected. E. coli O157:H7, used as a control, was highly sensitive to the various concentrations and exposure times tested. SDS and levulinic acid alone had very limited effect on E. coli O157:H7 viability, but in combination they were highly effective at 30 and 60 min of incubation. In conclusion, Cryptosporidium and microsporidia are not inactivated when treated for various periods of time with 2% levulinic acid-1% SDS or 3% levulinic acid-2% SDS at 20°C, suggesting that this novel sanitizer cannot be used to eliminate parasitic contaminants in foods.

  2. Aplikasi Metode SDS-PAGE (Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis untuk Mengidentifikasi Sumber Asal Gelatin pada Kapsul Keras

    Directory of Open Access Journals (Sweden)

    Sandra Hermanto

    2016-08-01

    Full Text Available Gelatin as the main ingredient of capsules is still a problem for a moslem. Most of gelatin production remains largely derived from non-halal materials. One of gelatin source is came from collagen of the skin and bones of bovine or pork. The main of study is determine the source of gelatin used in hard capsules by using SDS-PAGE (Sodium Dodecyl Sulphate Gel electrophoresis Poly Acrylamide method. In the early stages, optimization of standards bovine and pork gelatin were hydrolyzed by pepsin at pH 4.5 and 60°C for 1 hour, 2 hours, and 3 hours. Gelatin hydrolyzateswere analyzed by SDS-PAGE to determine the optimal hydrolysis time. Identification of gelatin hydrolyzate fragments were carried by molecular weight. Hydrolysis time optimization throught applied to identify the source of hard gelatin capsules in the samples obtained from market and compared with the simulation of hard gelatin capsules. The results showed there were of specific bands of bovine gelatin with a molecular weight of 11,4 kDa; 34 kDa; 47kDa and specific bands of pork gelatin with a molecular weight of 24.7 kDa; 28 kDa; and 60 kDa. Similar results were obtained on a sample of hard capsules with bands of protein fragments that were identical to bovine gelatinstandard. Based on the results,each of the samples were tested contain of bovine gelatin respectively. DOI :http://dx.doi.org/10.15408/jkv.v0i0.3150

  3. Antigenic profile of heat-killed versus thimerosal-treated Leishmania major using sodium dodecyl sulfate-polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Reza Arjmand

    2015-01-01

    Full Text Available Background: Leishmania is a parasitic protozoan of trypanosomatidae family which causes a wide spectrum of diseases ranging from self-healing cutaneous lesions to deadly visceral forms. In endemic areas, field trials of different preparations of Leishmania total antigen were tested as leishmaniasis vaccine. Two preparations of killed Leishmania major were produced In Iran, which were heat-killed vaccine called autoclaved L. major (ALM and thimerosal-treated freeze-thawed vaccine called killed L. major (KLM. In this study, the protein content of both ALM and KLM were compared with that of freshly harvested intact L. major promastigotes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Materials and Methods: L. major (MRHO/IR/75/ER from pre-infected Balb/c mice was isolated with modified Novy-MacNeal-Nicolle (NNN medium and then subcultured in liquid RPMI 1640 medium supplemented with fetal calf serum (FCS 20% for mass production. Two preparations of KLM and ALM were produced by Razi Vaccine and Serum Research Institute, Iran, under WHO/TDR supervision. Electrophoresis was performed by SDS-PAGE method and the gel was stained by Coomassie brilliant blue dye. The resultant unit bands were compared using standard molecular proteins. Results: Electrophoresis of the two preparations produced many bands from 10 kDa to 100 kDa. KLM bands were much like those of freshly harvested intact L. major. Conclusion: It is concluded that although there are similar bands in the three forms of Leishmania antigens, there are some variations which might be considered for identification and purification of protective immunogens in a total crude antigen, and detection of their stability is essential for the production and marketing of a putative vaccine.

  4. Identification of oxygenated ions in premixed flames of dimethyl ether and oxygen

    DEFF Research Database (Denmark)

    Frøsig Østergaard, L.; Egsgaard, H.; Hammerum, S.

    2003-01-01

    dimethyl ether, (CH3)(2)OH+. The flame-ion m/z 61 is a mixture of the trimethyloxonium ion, (CH3)(3)O+ and lesser amounts of protonated methyl formate and/or protonated ethyl methyl ether. The viability of an ionic mechanism to soot formation for dimethyl ether-oxygen flames is discussed on the background......The structure of characteristic flame-ions in premixed flames of dimethyl ether and oxygen was studied by ion-molecule reactions with ammonia and collision activation with argon. The results obtained show that the flame-ions m/z 45 and m/z 47 are the methoxymethyl cation, CH3OCH2+, and protonated...

  5. Gas chromatographic--mass spectrometric quantitation of 16, 16-dimethyl-trans-delta 2-PGE1

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, V.; Green, K.; Bygdeman, M.; Konishi, Y.; Imaki, K.; Hayashi, M.

    1983-02-01

    Di-deuterated and di-tritiated 16,16-dimethyl-trans-delta 2-PGE1 has been synthesized and used for development of a GC-MS method for quantitation of corresponding unlabelled drug in patient plasma. Although these carrier/internal standard molecules only contain 2 deuterium atoms the lower limit of detection at each injection is as low as about 40 pg. The maximum plasma levels of this drug following administration of vaginal suppositories used in clinical studies (1 mg 16,16-dimethyl-trans-delta 2-PGE1 methyl ester in 0.8 g Witepsol S-52) were 100-350 pg/ml i.e. in the same order of magnitude as earlier seen for 16,16-dimethyl-PGE2.

  6. Gas chromatographic--mass spectrometric quantitation of 16, 16-dimethyl-trans-delta 2-PGE1

    International Nuclear Information System (INIS)

    Dimov, V.; Green, K.; Bygdeman, M.; Konishi, Y.; Imaki, K.; Hayashi, M.

    1983-01-01

    Di-deuterated and di-tritiated 16,16-dimethyl-trans-delta 2-PGE1 has been synthesized and used for development of a GC-MS method for quantitation of corresponding unlabelled drug in patient plasma. Although these carrier/internal standard molecules only contain 2 deuterium atoms the lower limit of detection at each injection is as low as about 40 pg. The maximum plasma levels of this drug following administration of vaginal suppositories used in clinical studies (1 mg 16,16-dimethyl-trans-delta 2-PGE1 methyl ester in 0.8 g Witepsol S-52) were 100-350 pg/ml i.e. in the same order of magnitude as earlier seen for 16,16-dimethyl-PGE2

  7. Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid

    International Nuclear Information System (INIS)

    Yuan Dandan; Yan Cuihong; Lu Bin; Wang Hongxia; Zhong Chongmin; Cai Qinghai

    2009-01-01

    The direct synthesis of dimethyl carbonate from methanol and carbon dioxide is challenging due to the thermodynamic stability and kinetic inertness of CO 2 . Electrochemical technique can overcome this challenge by providing a method for preliminary activation of CO 2 . Electrocatalytic activation and conversion of carbon dioxide to dimethyl carbonate with platinum electrodes in a dialkylimidazolium ionic liquids-basic compounds-methanol system was conducted under ambient conditions. Among the basic compounds and ionic liquids, CH 3 OK acts as a co-catalyst and 1-butyl-3-methylimidazolium bromide (bmimBr) acts as an electrolyte. In the bmimBr-CH 3 OK-methanol system, the absence of CH 3 I and/or any other organic additives allows dimethyl carbonate to be effectively synthesized. The reaction mechanism proposed here is different from those previously reported

  8. Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®).

    Science.gov (United States)

    Schwab, Wilfried

    2013-06-13

    4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these compounds have been published and are applied by industry, but for the development of a biotechnological process the knowledge and availability of biosynthetic enzymes are required. During the last years substantial progress has been made in the elucidation of the biological pathway leading to HDMF and DMMF. This review summarizes the latest advances in this field.

  9. Natural 4-Hydroxy-2,5-dimethyl-3(2H-furanone (Furaneol®

    Directory of Open Access Journals (Sweden)

    Wilfried Schwab

    2013-06-01

    Full Text Available 4-Hydroxy-2,5-dimethyl-3(2H-furanone (HDMF, furaneol® and its methyl ether 2,5-dimethyl-4-methoxy-3(2H-furanone (DMMF are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these compounds have been published and are applied by industry, but for the development of a biotechnological process the knowledge and availability of biosynthetic enzymes are required. During the last years substantial progress has been made in the elucidation of the biological pathway leading to HDMF and DMMF. This review summarizes the latest advances in this field.

  10. Obtaining tabular silver bromide crystals using double-jet method in the presence of dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Dyonizy, A.; Nowak, P. [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze St., Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2010-11-15

    Water-gelatine suspensions containing tabular crystals of silver bromide were obtained using the modified double-jet method, in the presence of dimethyl sulfoxide and an excess of bromide ions, used to increase silver bromide solubility. The size and morphology of crystals obtained depend mostly on the constant concentration of complexing agents in the dispersive solution, during nucleation and crystal growth. The influence of excessive bromide ions concentration and volumetric concentration of dimethyl sulfoxide in the crystallising mixture on the formation of tabular - triangular or hexagonal thin plates - of high aspect ratio has been analysed. During experiment, optimal ranges of dimethyl sulfoxide and excessive bromide ions concentrations for obtaining interesting forms of flat silver bromide crystals were determined. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. sodium dodecyl sulphate (SDS)

    Indian Academy of Sciences (India)

    Unknown

    Addition of NaCl during the dye–surfactant complex formation converted the complex into ... homogeneous aqueous system, the photochemical devices show very poor power- conversion efficiency due to slow ... reactions in a suitable micellar media.4 Cresyl violet, a phenoxazine dye is of current interest particularly for ...

  12. Synthesis, crystal structure, and spectra of 3,3- dimethyl-1-N-(1'-phenyl-2',3'-dimethyl-5'-oxo-3'- pyrazolin-4'-yl)imino-1,2,3,4-tetrahydroisoquinoline

    International Nuclear Information System (INIS)

    Sokol, V.I.; Ryabov, M.A.; Merkur'eva, N.Yu.; Davydov, V.V.; Zaitsev, B.E.; Shklyaev, Yu.V.; Sergienko, V.S.; Zaitsev, B.E.

    1996-01-01

    The synthesis and the crystal and molecular structure of 3,3-dimethyl-1-N-(1'-phenyl-2',3'- dimethyl-5'-oxo-3'-pyrazolin-4'-yl)imino-1,2,3,4-tetrahydroisoquinoline are reported. As is evidenced by the 1H NMR, IR, and electron spectra, the tautomeric form of the compounds observed in the crystal is also retained in solutions

  13. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Atsushi Wada

    Full Text Available BACKGROUND: For precise diagnosis of urinary tract infections (UTI, and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. METHODOLOGY/PRINCIPAL FINDINGS: We employed the NaOH-sodium dodecyl sulfate (SDS solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. CONCLUSIONS/SIGNIFICANCE: Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history

  14. Absolute rate parameters for the reaction of ground state atomic oxygen with dimethyl sulfide and episulfide

    Science.gov (United States)

    Lee, J. H.; Timmons, R. B.; Stief, L. J.

    1976-01-01

    It is pointed out that the investigated reaction of oxygen with dimethyl sulfide may play an important role in photochemical smog formation and in the chemical evolution of dense interstellar clouds. Kinetic data were obtained with the aid of the flash photolysis-resonance fluorescence method. The photodecomposition of molecular oxygen provided the oxygen atoms for the experiments. The decay of atomic oxygen was studied on the basis of resonance fluorescence observations. Both reactions investigated were found to be fast processes. A negative temperature dependence of the rate constants for reactions with dimethyl sulfide was observed.

  15. Conversion of dimethyl ether--boron trifluoride complex to potassium fluoborate

    Science.gov (United States)

    Eberle, A.R.

    1957-06-18

    A method of preparing KBF/sub 4/ from the dimethyl ether complex of BF/sub 3/ is given. This may be accomplished by introducing the dimethyl ether complex of BF/sub 3/ into an aqueous solution of KF and alcohol, expelling the ether liberated from the complex by heating or stirring and recovering the KBF/sub 4/ so formed. The KBF/sub 4/ is then filtered from the alcohol-water solution, which may be recycled, to reduce the loss of KBF/sub 4/ which is not recovered by filtration.

  16. Data on hepatobiliary examination by sup(99m)Tc dimethyl IDA

    International Nuclear Information System (INIS)

    Herry, J.Y.; Messner, M.; Le Jeune, J.J.; Moisan, A.

    1980-01-01

    Hepatobiliary elimination of sup(99m)Tc dimethyl IDA was studied by scintiphotographic detection in 16 normal subjects. Normal criterion were established. Scintiphotographic modifications due to the principal hepatobiliary disease were described. Abnormal scintiphotographic sequences can be described in terms of accumulative figures in the biliary tract, of deficit of hepatocytary collecting, of figures of hepatocytary retention of deficit of local fixation, of absence of gallbladder illumination. Examination by sup(99m)Tc dimethyl IDA is a precious help for diagnosis of icterus, of disease of the gallbladder. An interesting indication is control of biliarydigestive anastomosis [fr

  17. A new monoclinic polymorph of dichloridotetrakis(dimethyl sulfoxideruthenium(II

    Directory of Open Access Journals (Sweden)

    Galina Gencheva

    2008-08-01

    Full Text Available The title compound, cis,fac-dichloridotetrakis(dimethyl sulfoxide-κ3S,κO-ruthenium(II, [RuCl2(C2H6OS4], was obtained from newly synthesized ruthenium complexes of 3-amino-2-chloropyridine. The Ru atom has a distorted octahedral coordination with two cis-oriented chloride ligands and four dimethyl sulfoxide ligands. Three of the sulfoxide ligands are S-bonded in a fac configuration, while the fourth is O-bonded. The title compound represents a new, and fourth, polymorph of the complex. Two other monoclinic forms and an orthorhombic modification have been reported previously.

  18. trans-Dichlorido­bis(3,4-dimethyl­pyridine)platinum(II)

    Science.gov (United States)

    Chernyshev, Alexander N.; Bokach, Nadezhda A.; Izotova, Youlia A.; Haukka, Matti

    2009-01-01

    In the title compound, trans-[PtCl2(C7H9N)2], the PtII atom is located on an inversion center and is coordinated by two 3,4-dimethyl­pyridine ligands and two chloride ligands, resulting in a typical slightly distorted square-planar geometry. The crystallographic inversion centre forces the value of the C—N—N—C torsion angle to be linear and the 3,4-dimethyl-pyridine ligands to be coplanar. PMID:21581530

  19. Studies on the influence of tris(pentafluorophenyl)borane on the properties of ethylene carbonate, dimethyl carbonate and poly(ethylene oxide) dimethyl ether lithium trifluoromethanesulfonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zukowska, Grazyna Z.; Marcinek, Marek; Drzewiecki, Stanislaw; Kryczka, Jolanta; Syzdek, Jaroslaw; Adamczyk-Wozniak, Agnieszka; Wieczorek, Wladyslaw; Sporzynski, Andrzej [Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-11-15

    In this paper we present our studies on the properties of battery electrolyte based on EC/DMC (ethylene carbonate/dimethyl carbonate, w/w ratio 2:5) and PEODME (poly(ethylene oxide) dimethyl ether) (M{sub w} = 500) doped with LiCF{sub 3}SO{sub 3}-lithium trifluoromethanesulfonate (LiTf) and modified with TPFPB (tris(pentafluorophenyl)borane) as a potential anion trapping agent. We were particularly interested how this compound behaves in different solvents, e.g. battery mixture EC/DMC and model polymeric matrix PEODME. We also verified stability of the proposed solutions by means of DSC and FTIR, determined influence on conductivity and lithium transference numbers by impedance spectroscopy, and finally attempted to define mechanism of influence of boron addition on different systems. (author)

  20. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Science.gov (United States)

    2010-04-01

    ... of a primary dressing, and as a wound packing. (b) Classification. Class II (special controls). The... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wound dressing with poly (diallyl dimethyl... DEVICES Surgical Devices § 878.4015 Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC...

  1. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  2. Measurement of (vapor + liquid) equilibrium for the systems {methanol + dimethyl carbonate} and {methanol + dimethyl carbonate + tetramethylammonium bicarbonate} at p = (34.43, 67.74) kPa

    International Nuclear Information System (INIS)

    Yang Changsheng; Zeng Hao; Yin Xia; Ma Shengyong; Sun Feizhong; Li Yafei; Li Jiao

    2012-01-01

    Highlights: ► VLE data for the binary system and the ternary system were measured. ► Methanol, dimethyl carbonate, and tetramethylammonium bicarbonate were studied. ► Isobaric experimental data were measured at p = (34.43, 67.74) kPa. ► VLE data of binary system were correlated with the Wilson, NRTL, and UNIQUAC models. ► The salt effect of TMAB on the VLE of {methanol + DMC} system was investigated. - Abstract: Isobaric (vapor + liquid) equilibrium (VLE) data for the binary system (methanol + dimethyl carbonate) and the ternary system (methanol + dimethyl carbonate + tetramethylammonium bicarbonate) have been measured at p = (34.43, 67.74) kPa using a modified Rose–Williams still. The experimental data for the binary system were well correlated by Wilson, NRTL, and UNIQUAC activity-coefficient models at the two reduced pressures. All the experimental results of the binary system passed the thermodynamic consistency test by the area test of Redlich–Kister and the point test of Van Ness et al. The experimental results of ternary system show that the salt tetramethylammonium bicarbonate has a salting-in effect on methanol. And this effect enhances when the salt concentration increases.

  3. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel

    International Nuclear Information System (INIS)

    Park, Su Han; Lee, Chang Sik

    2014-01-01

    Highlights: • Overall characteristics of DME fueled engine are reviewed. • Fuel properties characteristics of DME are introduced. • New technologies for DME vehicle are systemically reviewed. • Research trends for the development of DME vehicle in the world are introduced. - Abstract: From the perspectives of environmental conservation and energy security, dimethyl-ether (DME) is an attractive alternative to conventional diesel fuel for compression ignition (CI) engines. This review article deals with the application characteristics of DME in CI engines, including its fuel properties, spray and atomization characteristics, combustion performance, and exhaust emission characteristics. We also discuss the various technological problems associated with its application in actual engine systems and describe the field test results of developed DME-fueled vehicles. Combustion of DME fuel is associated with low NO x , HC, and CO emissions. In addition, PM emission of DME combustion is very low due to its molecular structure. Moreover, DME has superior atomization and vaporization characteristics than conventional diesel. A high exhaust gas recirculation (EGR) rate can be used in a DME engine to reduce NO x emission without any increase in soot emission, because DME combustion is essentially soot-free. To decrease NO x emission, engine after-treatment devices, such as lean NO x traps (LNTs), urea-selective catalytic reduction, and the combination of EGR and catalyst have been applied. To use DME fuel in automotive vehicles, injector design, fuel feed pump, and the high-pressure injection pump have to be modified, combustion system components, including sealing materials, have to be rigorously designed. To use DME fuel in the diesel vehicles, more research is required to enhance its calorific value and engine durability due to the low lubricity of DME, and methods to reduce NO x emission are also required

  4. Pump apparatus including deconsolidator

    Energy Technology Data Exchange (ETDEWEB)

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  5. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    Science.gov (United States)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  6. Effect of Sodium Dodecyl Sulfate (SDS) and Tween 80 on Cell Viability in an Air-Cathode Microbial Fuel Cell

    KAUST Repository

    Fregoso, Luisa

    2011-07-01

    Microbial fuel cells (MFCs) generate current via electrochemical reactions produced by bacteria attached to the anode that oxidize organic matter. Due to their high volume use in household products, some concentration of surfactant will reach wastewater treatment plants. The average surfactant concentration in wastewater ranges from 10 to 20 mg L-1, and up to 300 mg L-1, for domestic and industrial wastewaters, respectively. This study aimed to demonstrate the feasibility of enhancing power production by adding Tween 80 and SDS surfactants to air-cathode MFCs, and their effect in cell viability at the anodic biofilm. In order to analyze the effect of anionic and nonionic surfactants in MFCs performance, eight MFCs were spiked with two types of surfactants, the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant Tween® 80 at two different concentrations 10 and 100 mg L-1. Cell viability at the anodic biofilms was examined using the LIVE/DEAD BacLight viability assay and images were visualized with a confocal laser scanning microscope. The electrochemical results demonstrate that, for an air-cathode MFC operating on 1 g L-1 acetate in a fed-batch mode, reactors where SDS was added show a lower overall performance, maximum PD of 544 mW m-2, CE of 12.3%, Rint of 322 Ω (10 mg L-1) and maximum PD of 265 mW m-2, CE of 9.4%, Rint of 758 Ω (100 mg L-1). Reactors where Tween 80 was added show quite stable performance, maximum PD of 623 mW m-2, CE of 15.4%, Rint of 216 Ω (10 mg L-1) and maximum PD of 591 mW m-2, CE of 10.8%, Rint of 279 Ω (100 mg L-1), compared with reactors operating at only acetate as a substrate, maximum PD of 574 mW m-2. Confocal microscopy images confirm this observation and biofilm viability appeared severely compromised in SDS reactors, especially at high concentrations. This study has opened up a whole new research area in determining which types of surfactants are toxic to the anodic biofilm and to further investigate the

  7. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    Science.gov (United States)

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide

  8. Optical modulator including grapene

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  9. Electrochemical stability and transformations of fluorinated poly(2,6-dimethyl-1,4-phenylene oxide)

    NARCIS (Netherlands)

    Pud, A.A.; Rogalsky, S.P.; Ghapoval, G.S.; Kharitonov, A.P.; Kemperman, Antonius J.B.

    2000-01-01

    Fluorination of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) leads to narrowing of its window of electrochemical stability in a cathodic range of potentials. It is found this is connected with appearance of both perfluorinated and incompletely fluorinated units in the polymer. The former units are

  10. On the Origin of Microheterogeneity : A Mass Spectrometric Study of Dimethyl Sulfoxide-Water Binary Mixture

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2001-01-01

    We have studied the microscopic solvent structure of dimethyl sulfoxide-water mixtures and its influence on the solvation structure of solute from a clustering point of View, by means of a specially designed mass spectrometric system. It was observed that the propensity to the cluster formation is

  11. 21 CFR 524.981e - Fluocinolone acetonide, dimethyl sulfoxide otic solution.

    Science.gov (United States)

    2010-04-01

    ... solution. 524.981e Section 524.981e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... NEW ANIMAL DRUGS § 524.981e Fluocinolone acetonide, dimethyl sulfoxide otic solution. (a) Specifications. Each milliliter of solution contains 0.01 percent of fluocinolone acetonide in 60 percent...

  12. Structural and spectroscopic studies of 2,9-dimethyl-1,10 ...

    African Journals Online (AJOL)

    The crystal structures of the pronated ligand, 2,9-dimethyl-1,10-phenanthrolinium (DPH) cation with selected counter anions (chloride (1), triflate (2), and gold dicyanide (3)) are reported. The role of a hydrogen bond interaction in influencing the solid state p-p stacking found in all three compounds has been investigated.

  13. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3

    DEFF Research Database (Denmark)

    Cloos, Paul A C; Christensen, Jesper; Agger, Karl

    2006-01-01

    Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation...

  14. Direct synthesis of dimethyl carbonate from CO 2 and methanol over ...

    Indian Academy of Sciences (India)

    The direct synthesis of dimethyl carbonate (DMC) from carbon dioxide CO2 and methanol is an attractive approach towards conversion of the greenhouse gas - CO2 into value-added chemicals and fuels.Ceria CeO2 catalyzes this reaction. But the conversion efficiency of CeO2 is enhanced when the byproductwater in the ...

  15. The process of dimethyl carbonate to diphenyl carbonate: Thermodynamics, reaction kinetics and conceptional process design

    NARCIS (Netherlands)

    Haubrock, J.

    2007-01-01

    Diphenyl carbonate (DPC) is a precursor in the production of Polycarbonate (PC), a widely employed engineering plastic. To overcome the drawbacks of the traditional PC process - e.g. phosgene as a reactant and methylene chloride as solvent- a new process route starting from Dimethyl carbonate (DMC)

  16. Investigation of Dimethyl Ether Solubility in Liquid Hexadecane by UNIFAC Method

    OpenAIRE

    F. Raouf; M. Taghizadeh

    2012-01-01

    It is shown that a modified UNIFAC model can be applied to predict solubility of hydrocarbon gases and vapors in hydrocarbon solvents. Very good agreement with experimental data has been achieved. In this work we try to find best way for predicting dimethyl ether solubility in liquid paraffin by using group contribution theory.

  17. The industrial production of dimethyl carbonate from methanol and carbon dioxide

    NARCIS (Netherlands)

    De Groot, Frank F T; Lammerink, Roy R G J; Heidemann, Casper; Van Der Werff, Michiel P M; Garcia, Taiga Cafiero; Van Der Ham, Louis A G J; Van Den Berg, Henk

    2014-01-01

    This work discusses the design of a dimethyl carbonate (DMC) production plant based on methanol and CO2 as feed materials, which are a cheap and environment-friendly feedstock. DMC is a good alternative for methyl-tert-butyl ether (MTBE) as a fuel oxygenating agent, due to its low toxicity and fast

  18. Thermodynamicy of Catalytic Formation of Dimethyl Ether from Methanol in Acidic Zeolites

    Czech Academy of Sciences Publication Activity Database

    Hyťha, Marek; Štich, I.; Gale, J. D.; Terakura, K.; Payne, M.

    2001-01-01

    Roč. 7, č. 12 (2001), s. 2521-2527 ISSN 0947-6539 Institutional research plan: CEZ:AV0Z1010914 Keywords : dimethyl ether * formation * theoretical study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.614, year: 2001

  19. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  20. On-board conversion of methanol to dimethyl ether as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H.; Heinzelmann, G.; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytic dehydration of methanol to dimethyl ether was investigated for application on-board a methanol fuelled vehicle. Several catalysts have been tested in a fixed bed reactor. Our approach is to develop a small and efficient reactor converting liquid MeOH under pressure and at low reaction temperatures. (author) 2 figs., 5 refs.

  1. Controls of dimethyl sulphide in the Bay of Bengal during BOBMEX ...

    Indian Academy of Sciences (India)

    The air-sea exchange is one of the main mechanisms maintaining the abundances of trace gases in the atmosphere. Some of these, such as carbon dioxide and dimethyl sulphide (DMS), will have a bearing on the atmospheric heat budget. While the former facilitates the trapping of radiation (greenhouse effect) the latter ...

  2. Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold

    OpenAIRE

    Wang, Ya-nan; Duan, Xinping; Zheng, Jianwei; Lin, Haiqiang; Yuan, Youzhu; Ariga, Hiroko; Takakusagi, Satoru; Asakura, Kiyotaka

    2012-01-01

    The performance of an SBA-15 supported Cu catalyst for hydrogenation of dimethyl oxalate to ethylene glycol is markedly promoted with Au. A key genesis of the high activity of the catalyst is ascribed to the formation of Cu-Au alloy nanoparticles which stabilize the active species and retard their agglomeration during the hydrogenation process.

  3. Kinetic studies on substitution of cis-diaqua-chloro-tris-(dimethyl ...

    Indian Academy of Sciences (India)

    4, July 2012, pp. 801–807. c Indian Academy of Sciences. Kinetic studies on substitution of cis-diaqua-chloro-tris-(dimethyl sulphoxide)-ruthenium(II) complex with some dipeptides in aqueous medium. ARUP MANDAL, PARNAJYOTI KARMAKAR, SUBHASIS MALLICK, BIPLAB K BERA,. SUBALA MONDAL, SUMON RAY ...

  4. 5,5-Dimethyl-2-methylseleno-1,3,2-dioxaphosphorinan-2-one

    Directory of Open Access Journals (Sweden)

    Grzegorz Cholewinski

    2010-04-01

    Full Text Available The title compound, C6H13O3PSe, was obtained in the reaction of 5,5-dimethyl-2-oxo-2-seleno-1,3,2-dioxaphosphorinane potassium salt with methyl iodide. The selenomethyl group is in the axial position in relation to the six-membered dioxaphosphorinane ring.

  5. Direct synthesis of dimethyl carbonate from CO2 and methanol over ...

    Indian Academy of Sciences (India)

    Catalytic activity correlates with the concentration of acid and base sites of medium strength as well as defect sites. Ce - S has an optimum number of these active sites and thereby shows superior catalytic performance. Keywords. CO2 utilization; dimethyl carbonate; ceria; acid-base catalysis; influence of morphology. 1.

  6. Effect of cotton pectin content and bioscouring on alkyl-dimethyl-benzyl-ammonium chloride adsorption

    Science.gov (United States)

    Our previous research has shown both the rate and the total amount of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC) exhausted from a bulk solution of ADBAC are significantly greater for greige cotton nonwovens than cotton nonwovens that have been both scoured and bleached. The presence of pectin ...

  7. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  8. CCSD(T) Study of Dimethyl-Ether Infrared and Raman Spectra

    Science.gov (United States)

    Villa, Mauro; Senent, Maria L.; Doménguez-Gómez, R.; Carvajal, Miguel

    2011-11-01

    CCSD(T) state-of-the-art ab initio calculations are used to determine a vibrationally corrected three-dimensional potential energy surface of dimethyl-ether depending on the two methyl torsions and the COC bending angle. The surface is employed to obtain variationally the lowest vibrational energies that can be populated at very low temperatures. The interactions between the bending and the torsional coordinates are responsible for the displacements of the torsional overtone bands and several combination bands. The effect of these interactions on the potential parameters is analyzed. Second order perturbation theory is used as a help for the understanding of many spectroscopic parameters and to obtain anharmonic fundamentals for the 3N - 9 neglected modes as well as the rotational parameters. To evaluate the surface accuracy and to verify previous assignments, the calculated vibrational levels are compared with experimental data corresponding to the most abundant isotopologue. The surface has been empirically adjusted for understanding the origin of small divergences between ab initio calculations and experimental data. Our calculations confirm previous assignments and show the importance of including the COC bending degree of freedom for computing with a higher accuracy the excited torsional term values through the Fermi interaction. Besides, this work shows a possible lack of accuracy of some available experimental transition frequencies and proposes a new assignment for a transition line. As an example, the transition 100-120 has been computed at 445.93 cm(-1), which is consistent with the observed transition frequency in the Raman spectrum at 450.5 cm(-1).

  9. Analysis of Soluble Proteins in NaturalCordyceps sinensisfrom Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    Science.gov (United States)

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.

  10. Enhanced removal of detergent and recovery of enzymatic activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis: UUse of casein in gel wash buffer

    International Nuclear Information System (INIS)

    McGrew, B.R.; Green, D.M.

    1990-01-01

    The inclusion of 1% casein or bovine serum albumin in buffer used to reactivate enzymes subjected to sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis resulted in accelerated removal of SDS and restoration of nuclease and beta-galactosidase enzyme activities. Nuclease and beta-galactosidase activities which are absent from gels after longer wash procedures are detectable with this technique. Enzyme activity in gels prepared with SDS which contained inhibitory contaminants was partially restored by the casein wash procedure. The threshold of detection of two-dimensionally separated deoxyribonuclease I using the casein wash procedure was 1 picogram

  11. catena-Poly[[bis-[2-(2,3-dimethyl-anilino)benzoato-κO]cadmium(II)]-di-μ-3-pyridylmethanol-κN:O;κO:N].

    Science.gov (United States)

    Moncol, Jan; Mikloš, Dušan; Segľa, Peter; Koman, Marian; Lis, Tadeusz

    2008-02-06

    In the crystal structure of the title compound, [Cd(C(15)H(14)NO(2))(2)(C(6)H(7)NO)(2)](n), the Cd atom displays a distorted octa-hedral geometry, including two pyridine N atoms and two hydroxyl O from four symmetry-related 3-pyridylmethanol (3-pyme) ligands and two carboxylate O atoms from mefenamate [2-(2,3-dimethyl-anilino)benzoate] anions. The Cd atoms are connected via the bridging 3-pyme ligands into chains, that extend in the a-axis direction. The Cd atom is located on a center of inversion, whereas the 3-pyme ligands and the mefenamate anions occupy general positions.

  12. Effects of buffered vinegar and sodium dodecyl sulfate plus levulinic acid on Salmonella Typhimurium survival, shelf-life, and sensory characteristics of ground beef patties.

    Science.gov (United States)

    Stelzleni, Alexander M; Ponrajan, Amudhan; Harrison, Mark A

    2013-09-01

    The inclusion of two sources of buffered vinegar and sodium dodecyl sulfate plus levulinic acid were studied as interventions for Salmonella Typhimurium and for their effect on shelf-life and sensory characteristics of ground beef. For the Salmonella challenge, beef trimmings (80/20) were inoculated then treated with 2% (w/v) liquid buffered vinegar (LVIN), 2.5% (w/w) powdered buffered vinegar (PVIN), a solution containing 1.0% levulinic acid plus 0.1% sodium dodecyl sulfate (SDLA) at 10% (w/v), or had no intervention applied (CNT). The same trim source and production methods were followed during production of patties for shelf-life and sensory testing without inoculation. SDLA patties had the largest reduction (P<0.05; 0.70 log CFU/g) of Salmonella. However, LVIN and PVIN had the least (P<0.05) psychrotrophic growth. SDLA patties had more purge (P<0.05) and lower (P<0.05) subjective color scores. There were not large differences in sensory characteristics, except PVIN exhibited stronger off-flavor (P<0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    Science.gov (United States)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  14. Assessment of anticancer effect of chlorin e6 dimethyl ether for photodynamic therapy

    Directory of Open Access Journals (Sweden)

    M. A. Kaplan

    2014-01-01

    Full Text Available Results of the study for anticancer efficacy of photodynamic therapy with chlorin e6 dimethyl ether for treatment of outbread rats with sarcoma M-1 are represented. The drug was given intravenously or intraperitonealy at a dose of 1.25 mg/kg body weight (light dose – 300 J/cm2 or 2,5 mg/kg body weight (light dose – 150 J/cm2. The spectrometry showed that maximal drug accumulation in tumor was in 2 h after intravenous injection or 3 h after intraperitoneal injection of photosensitizer, thus, sensitized tumors were irradiated according to these time intervals. Intraperitoneal injection of chlorin е6 dimethyl ether at a dose of 1.25 mg/kg body weight with treatment session in 3 h and light dose of 300 J/cm2 was the most effective (the complete response in animals – 86%.

  15. Tabular silver halide crystals prepared by controlled Ostwald growth in the presence of dimethyl sulphoxide

    Energy Technology Data Exchange (ETDEWEB)

    Dyonizy, A.; Nowak, P.; Mora, C.; Krol-Gracz, A.; Michalak, E. [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2010-03-15

    The results of research in the size and shape of silver bromide crystals precipitated by the Ostwald controlled growth method at the presence of dimethyl sulphoxide were presented in the paper. The silver bromide crystals were produced in the form of microcrystal suspension stabilised by gelatine. In the course of the synthesis of crystals, the constant concentration of dimethyl sulphoxide, concentration of excessive bromide ions and the constant ionic strength were achieved. The tabular crystals of silver bromide with their average size of 50 {mu}m and their aspect ratio equal to 100 were obtained by means of this method. The suspensions of flat silver bromide crystals produced in this manner can be used in the production of high-sensitivity materials. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  17. Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

    OpenAIRE

    M. Venkatesan; N. Shenbaga Vinayaga Moorthi; R. Karthikeyan; A. Manivannan

    2014-01-01

    Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous me...

  18. (Liquid + liquid) equilibria of (water + propionic acid + dimethyl phthalate) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Oezmen, Dilek [Engineering Faculty, Department of Chemical Engineering, Istanbul University, 34320 Istanbul (Turkey); Cehreli, Sueheyla [Engineering Faculty, Department of Chemical Engineering, Istanbul University, 34320 Istanbul (Turkey)]. E-mail: cehreli@istanbul.edu.tr; Dramur, Umur [Engineering Faculty, Department of Chemical Engineering, Istanbul University, 34320 Istanbul (Turkey)

    2005-08-15

    (Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + dimethyl phthalate) were measured under atmospheric pressure and at T (298.2, 303.2, 308.2 and 313.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.

  19. Synthesis of dimethyl carbonate from methyl carbamate and methanol over lanthanum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dengfeng; Zhang, Xuelan; Gao, Yangyan [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 (China); Graduate university of Chinese, Academy of Sciences, Beijing, 100049 (China); Xiao, Fukui; Wei, Wei; Sun, Yuhan [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 (China)

    2010-09-15

    Various lanthanum compounds were used as the catalyst for the synthesis of dimethyl carbonate (DMC) from methyl carbamate and methanol. Among them, La(NO{sub 3}){sub 3} presented the best catalytic performance with the DMC yield of 53.7% under suitable reaction conditions. Based on the results of X-ray diffraction, Fourier transform infrared spectroscopy and element analysis, a possible reaction mechanism over lanthanum nitrate was proposed for this reaction. (author)

  20. Direct dimethyl ether synthesis from synthesis gas: The influence of methanol dehydration on methanol synthesis reaction

    OpenAIRE

    Dadgar, Farbod; Myrstad, Rune; Pfeifer, Peter; Holmen, Anders; Venvik, Hilde Johnsen

    2016-01-01

    Direct dimethyl ether (DME) synthesis from synthesis gas is studied with regard to potential effects of methanol dehydration on methanol formation and copper-based catalyst performance. For this, the influence of the operating conditions (space velocity, temperature, pressure, time-on-stream and syngas composition) on activity, selectivity and stability of the catalyst was studied and compared for methanol synthesis and direct DME synthesis. The advantage of the direct over the two-step DME s...

  1. Crystal structure of hexakis(dimethyl sulfoxide-κOmanganese(II diiodide

    Directory of Open Access Journals (Sweden)

    Mathias Glatz

    2016-07-01

    Full Text Available The asymmetric unit of the title salt, [Mn(C2H6OS6]I2, consists of one MnII ion, six O-bound dimethyl sulfoxide (DMSO ligands and two I− counter-anions. The isolated complex cations have an octahedral configuration and are grouped in hexagonally arranged rows extending parallel to [100]. The two I− anions are located between the rows and are linked to the cations through two weak C—H...I interactions.

  2. Nano-Structured Crystalline Te Films by Laser Gas-Phase Pyrolysis of Dimethyl Tellurium

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Pokorná, Veronika; Boháček, Jaroslav; Bastl, Zdeněk; Ouchi, A.

    2004-01-01

    Roč. 71, č. 2 (2004), s. 739-746 ISSN 0165-2370 R&D Projects: GA AV ČR IAA4072107; GA MŠk OC 523.60 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : dimethyl tellurium * tellurium films * laser Subject RIV: CA - Inorganic Chemistry Impact factor: 1.352, year: 2004

  3. 21 CFR 177.2460 - Poly(2,6-dimethyl-1,4-phenylene) oxide resins.

    Science.gov (United States)

    2010-04-01

    ... for Use Only as Components of Articles Intended for Repeated Use § 177.2460 Poly(2,6-dimethyl-1,4... this section may be used as an article or as a component of an article intended for use in contact with... will pass through a U.S. Standard Sieve No. 6 and 100 percent of the pellets will be held on a U.S...

  4. Effect of thermodynamic history on secondary relaxation in glassy phenolphthalein-dimethyl-ether

    Science.gov (United States)

    Prevosto, D.; Capaccioli, S.; Lucchesi, M.; Rolla, P. A.; Paluch, M.; Pawlus, S.

    2006-03-01

    We present a study of the intermediate secondary relaxation process of phenolphthalein-dimethyl-ether. Though this process is intramolecular in nature, it reveals pronounced pressure dependence. Moreover, its relaxation frequency and intensity exhibit pronounced dependence on the thermal history followed during vitrification. These results suggest that the nonequilibrium nature of the glassy state influences this secondary relaxation principally through the dependence on the specific volume.

  5. Interomolecular interactions in diluted solutions of potassium iodocuprates (1) in dimethyl ether of diethylene glycol

    International Nuclear Information System (INIS)

    Gorodinskaya, Eh.Ya.; Mel'nikova, N.B.; Yurin, K.V.

    1991-01-01

    The role of donor solvent in the formation of potassium mononuclear iodocuprates (1) in the system CuI-KI-dimethyl ether of diethylene glycol has been considerd. The calculated values of enthalpy, free energy and entropy of viscous flow activation in the range of temperatures 298-318 K for the solutions testify to decomposition of the solvent structure. Negative deviations of mole volumes from the additivity rule characterized strong molecular interaction

  6. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  7. Gamma-radiolysis of dimethyl sulfoxide. II. Radiolysis yields and possible mechanisms

    International Nuclear Information System (INIS)

    Gutierrez, M. C.; Barrera, R.

    1978-01-01

    As result of quantitative studies on gamma-radiolysis of DMSO at a dose range of 90-850 Mrads, constant G values have been obtained for the following radiolysis compounds: G(-DMSO) - 6.7 ±0.2; G(dimethyl sulphide) - 3.4 ±0.3; G(methane) - 0,75 ± 0.04; G(dimethyl disulphide) -0.33 ±0,03; G(tri methylsulphonium methanesulphonate) - 0.26 ± 0,01; G(methyl methanethiosulphonate) - 0,25 ±0.02; G(dimethyl sulphona)-0.21±0.02; G(H 2 )-0.18±0.02; and G(propane)--0.0092±0.0007. Initial G values have been obtained for other identified compounds: Gi(ethane)-0,46; Gi(CO)-0.052; and Gi(CO 2 )-0.030. Possible mechanisms on the radiolysis process are proposed. (Author) 17 refs

  8. [Determination of dimethyl fumarate in bakery food by d-SPE-HPLC-PDA].

    Science.gov (United States)

    Yang, Jie; Luo, Mengtian; Feng, Di; Miao, Hong; Song, Shufeng; Zhao, Yunfeng

    2015-05-01

    To establish a simple and rapid pretreatment method with dispersive solid phase extraction ( d-SPE) by HPLC for determination of dimethyl fumarate in bakery foods. Dimethyl fumarate in samples was ultrasonically extracted by methanol, and cleaned up with d-SPE. Then, it was separated on C18 chromatographic column (4.6 mm x 25 mm, 5 μm) with a mixture of methanol--0.03 mol/L sodium acetate and 0.008 mol/L tetrabutyl ammonium bromide (40: 60, V/V) as mobile phase. The photodiode array detector was used in the determination under λ = 220 nm. In the linear range of 0.1 -25 μg/ml, the correlation coefficients was r > 0.999, and the average recoveries of the spiked samples were in the range of 82.8% - 107.5% with relative standard deviations (RSD) in the range of 3.30% - 7.30% (n = 6). The limit of detection ( LOD) was 0.4 mg/kg, and the limit of quantification was 1.0 mg/kg. The method is simple, rapid, sensitive and accurate, and suitable for determine dimethyl fumarate in bakery foods.

  9. The synergistic effects of 2,4-D dimethyl amine and propanil herbicides on weed population in rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ramli Ishak; Sabri Junoh; Ismail Sahid

    2002-01-01

    Four treatments with the herbicides 2,4-D dimethyl amine and propanil were carried out in two consecutive rice planting seasons, to study the synergistic effect of 2,4-D dimethyl amine and propanil on rice weed populations at Pasir Panjang, the Northwest Selangor Project (PBLS), Projek Barat Laut Selangor) rice granary area. The treatments were control, 1x recommended rate (single dose), 2x recommended rate (double dose) of 2,4-D dimethyl amine and farmer practice. In all plots, propanil herbicide was applied at similar rate. Among the ecological indices measured were Simpson Index of diversity and importance (I.V.). A total number of 19 weed species was identified and the most common important weed was Najas graminae Del. The second most commonly found important weed was Scirpus lateriflorus Gmel. Other important weeds frequently found were Echinochloa crus-galli (L.) Beauv. and Fimbristylis miliacea (L.) Vahl. In the rice agroecosystem, species diversity of weeds was affected but total weed biomass was not affected synergistically by the mixture of 2,4-D dimethyl amine and propanil. The negative synergistic effect of 2,4-D dimethyl amine and propanil was to increase the total biomass of Scirpus lateriflorus, at 2x recommended dose rate of 2,4-D dimethyl amine. (Author)

  10. Ion Clusters in Nucleation Experiments in the CERN Cloud Chamber: Sulfuric Acid + Ammonia + Dimethyl Amine + Oxidized Organics

    Science.gov (United States)

    Worsnop, D. R.; Schobesberger, S.; Bianchi, F.; Ehrhart, S.; Junninen, H.; Kulmala, M. T.

    2012-12-01

    Nucleation from gaseous precursors is an important source of aerosol particles in the atmosphere. The CLOUD experiment at CERN provides exceptionally clean and well-defined experimental conditions for studies of atmospheric nucleation and initial growth, in a 26 m3 stainless-steel chamber. In addition, the influence of cosmic rays on nucleation and nanoparticle growth can be simulated by exposing the chamber to a pion beam produced by the CERN Proton Synchrotron. A key to understanding the mechanism by which nucleation proceeds in the CLOUD chamber is the use of state-of-the-art instrumentation, including the Atmospheric Pressure interface Time-Of-Flight (APi-TOF) mass spectrometer. The APi-TOF is developed by Tofwerk AG, and Aerodyne Research, Inc., and typically obtains resolutions between 4000 and 6000 Th/Th and mass accuracies APi-TOF detected ion clusters that could directly be linked to nucleation. The composition of these ion clusters could be determined based on their exact masses and isotopic patterns. Aided by the chamber's cleanliness and the possibility of enhancing ion concentrations by using CERN's pion beam, a remarkably large fraction of the ion spectra could be identified, even for more complex chemical systems studied. For the ammonia-sulfuric acid-water system, for instance, growing clusters containing ammonia (NH3) and sulfuric acid (H2SO4) were observed up to 3300 Th. Adding dimethyl amine and/or pinanediol into the CLOUD chamber, altered the chemical compositions of the observed ion clusters accordingly. Cluster growth then included mixtures of sulfuric acid and dimethyl amine and/or a wide range of pinanediol oxidation products. The initial growth of clusters/particles was studied from smallest clusters upwards, using a range of employed instrumentation. Condensation particle counters (such as the Particle Size Magnifier, PSM, by Airmodus Oy), for instance, were specially modified to obtain aerosol number size distributions down to the size

  11. Conformational studies of human [15-2-aminohexanoic acid]little gastrin in sodium dodecyl sulfate micelles by 1H NMR

    International Nuclear Information System (INIS)

    Mammi, S.; Peggion, E.

    1990-01-01

    Human little gastrin is a 17 amino acid peptide that adopts a random conformation in water and an ordered structure in sodium dodecyl sulfate (SDS) micelles as well as in trifluoroethanol (TFE). The circular dichroism spectra in these two media have the same shape, indicative of a similar preferred conformation. The authors describe here the assignment of the proton NMR resonances and the conformational analysis of [Ahx 15 ] little gastrin in SDS micelles. Two-dimensional correlation techniques form the basis for the assignment. The conformational analysis utilizes NOE's, NH to C α H coupling constants, and the temperature coefficients of the amide chemical shifts. The NMR data indicate a helical structure in the N-terminal portion of the peptide. These results are compared with the conformation that the authors recently proposed for a minigastrin analogue (fragment 5-17 of [Ahx 15 ] little gastrin) in TFE

  12. Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Jagd, M.; Sørensen, B.K.

    2004-01-01

    The resolving power of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) combined with isoelectric focusing in two-dimensional gel electrophoresis has made it one of the most important techniques for resolving complex mixtures, and it is of great importance for proteome mapping...... for recovering intact proteins from polyacrylamide gels and electroblotting membranes to define efficient methods compatible with MS. These methods complement in situ digestion protocols and allow determination of the molecular mass of whole proteins separated by SDS-PAGE. Passive elution of proteins from SDS......-PAGE gels was efficient only in the presence of SDS, whereas electroelution was achieved using butTers without SDS. Surface-enhanced laser desorption/ionization MS (SELDI-MS) analysis of proteins eluted in the presence of SIDS was possible using ion exchange ProteinChip arrays for concentration of sample...

  13. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress.

    Science.gov (United States)

    Messina, Concetta Maria; Faggio, Caterina; Laudicella, Vincenzo Alessandro; Sanfilippo, Marilena; Trischitta, Francesca; Santulli, Andrea

    2014-12-01

    In this study the effects of an anionic surfactant, sodium dodecyl sulfate (SDS), are assessed on the Mediterranean mussel (Mytilus galloprovincialis), exposed for 18 days at a concentration ranging from 0.1 mg/l to 1 mg/l. The effects are monitored using biomarkers related to stress response, such as regulatory volume decrease (RVD), and to oxidative stress, such as reactive oxygen species (ROS), endogenous antioxidant systems and Hsp70 levels. The results demonstrate that cells from the digestive gland of M. galloprovincialis, exposed to SDS were not able to perform the RVD owing to osmotic stress. Further, SDS causes oxidative stress in treated organisms, as demonstrated by the increased ROS production, in comparison to the controls (pSDS, under the tested concentrations, exerts a toxic effect in mussels in which the disruption of the osmotic balance follows the induction of oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dielectric study of aqueous solutions of sodium dodecyl sulfate in the frequency span 20 Hz to 2 MHz

    Science.gov (United States)

    Kadve, A. M.; Vankar, H. P.; Rana, V. A.

    2017-05-01

    Dielectric measurements were carried out for aqueous solutions of Sodium Dodecyl Sulfate (SDS) in the frequency span of 20 Hz to 2 MHz at 300.15 K temperature using precision LCR meter. Also the refractive indices were measured for the solutions at 300.15 K temperature using Abbe's refractometer. The measurements were done for ten different concentrations of SDS in distilled water. Determined values of complex permittivity as a function of frequency were used to evaluate other parameters like loss tangent and electric modulus for the liquid samples. The permittivity at optical frequency were also calculated from the measured refractive indices for the aqueous solutions. The effect of concentration variation of SDS in the aqueous solutions on the determined parameters is discussed.

  15. The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method

    Science.gov (United States)

    Ramimoghadam, Donya; Hussein, Mohd Zobir Bin; Taufiq-Yap, Yun Hin

    2012-01-01

    ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed. PMID:23202952

  16. Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Vararattanavech, Ardcharaporn; Plasencia, Inés

    2011-01-01

    This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study...... aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane...... to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed....

  17. Characterization of Sm14 related components in different helminths by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis

    Directory of Open Access Journals (Sweden)

    Nilton Thaumaturgo

    2002-10-01

    Full Text Available Sm14 was the first fatty acid-binding protein homologue identified in helminths. Thereafter, members of the same family were identified in several helminth species, with high aminoacid sequence homology between them. In addition, immune crossprotection was also reported against Fasciola hepatica infection, in animals previously immunized with the Schistosoma mansoni vaccine candidate, r-Sm14. In the present study, data on preliminary sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis of nine different helminth extracts focusing the identification of Sm14 related proteins, is reported. Out of these, three extracts - Ascaris suum (males and females, Echinostoma paraensei, and Taenia saginata - presented components that comigrated with Sm14 in SDS-PAGE, and that were recognized by anti-rSm14 policlonal serum, in Western blotting tests.

  18. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  19. Determination of albumins by its quenching effect on the fluorescence of Tb{sup 3+}-oxolinic acid complex in presence of sodium dodecyl sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xia [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zheng Jinhua [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Guo Changying [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Yang Jinghe [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)]. E-mail: yjh@sdu.edu.cn; Ding Honghong [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Hu Zhiyong [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Li Chao [Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2007-09-15

    It is found that the fluorescence intensity of Tb{sup 3+}-oxolinic acid (OA) complex can be greatly quenched by albumins in sodium dodecyl sulphate (SLS). Under optimum conditions, the quenched fluorescence intensity is in proportion to the concentration of proteins in the range of 5.0x10{sup -8}-1.0x10{sup -5} g ml{sup -1} for bovine serum albumin (BSA), 1.0x10{sup -7}-1.0x10{sup -5} g ml{sup -1} for human serum albumin (HSA) and 4.0x10{sup -7}-1.0x10{sup -5} g ml{sup -1} for egg albumin (EA). Their detection limits (S/N=3) are 2.1x10{sup -8}, 2.5x10{sup -8} and 5.0x10{sup -8} g ml{sup -1}, respectively. In addition, the interaction mechanism is also investigated.

  20. Conductometric study of sodium dodecyl sulfate - nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 mixed micelles in aqueous solution

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M.

    2012-01-01

    Full Text Available The present study is concerned with the determination of the critical micelle concentration (cmc of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 from conductance measurements. Based on the calculated values of the β parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail show stronger interactions with hydrophobic part of SDS, thus expressing stronger synergism. In SDS-Tween 80 binary system the strongest synergistic effect was noticed. SDS-Tween 85 micellar system showed antagonistic effect, most probably because the presence of the double bond in its three hydrophobic tails (three C18 tails makes it sterically rigid.

  1. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    Science.gov (United States)

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  2. Experimental Analysis for the Use of Sodium Dodecyl Sulfate as a Soluble Metal Cutting Fluid for Micromachining with Electroless-Plated Micropencil Grinding Tools

    Directory of Open Access Journals (Sweden)

    Peter A. Arrabiyeh

    2017-11-01

    Full Text Available Microgrinding with micropencil grinding tools (MPGTs is a flexible and economic process to machine microstructures in hard and brittle materials. In macrogrinding, cooling and lubrication are done with metal cutting fluids; their application and influence is well researched. Although it can be expected that metal cutting fluids also play a decisive role in microgrinding, systematic investigations can hardly be found. A metal cutting fluid capable of wetting the machining process, containing quantities as small as 0.02% of the water-soluble fluid sodium dodecyl sulfate was tested in microgrinding experiments with MPGTs (diameter ~50 µm; abrasive grit size 2–4 µm. The workpiece material was hardened 16MnCr5.

  3. Coarse-Grain Molecular Dynamics Simulations to Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.

    Science.gov (United States)

    Ruiz-Morales, Yosadara; Romero-Martínez, Ascencion

    2018-03-13

    The first critical micelle concentration (CMC) of the ionic surfactant sodium dodecyl sulfate (SDS), in diluted aqueous solution, has been determined at room temperature from the investigation of the bulk viscosity, at several concentrations of SDS, by means of coarse grain molecular dynamics simulations. The coarse-grained model molecules at the mesoscale level are adopted. The bulk viscosity of SDS was calculated at several millimolar concentrations of SDS in water using the MARTINI force field by means of NVT shear Mesocite molecular dynamics. The definition of each bead in the MARTINI force field is established, as well as their radius, volume, and mass. The effect of the size of the simulation box on the obtained CMC has been investigated as well as the effect of the number of SDS molecules, in the simulations, on the formation of aggregates. The CMC, which was obtained from a graph of the calculated viscosities versus concentration, is in good agreement with reported experimental data, and do not depend on the size of the box used in the simulation. The formation of a spherical micelle-like aggregate is observed, where the dodecyl sulfate tails point inwards and the heads point outwards the aggregation micelle, in accordance with experimental observations. The advantage of using coarse grain molecular dynamics is the possibility of treating explicitly charged beads, applying a shear flow for viscosity calculation, as well as to process much larger spatial and temporal scales than atomistic molecular dynamics can. Furthermore, the CMC of SDS obtained with the coarse-grained model is in much better agreement with the experimental value than the value obtained with atomistic simulations.

  4. Characterization and quantification of N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine biocide by NMR, HPLC/MS and titration techniques.

    Science.gov (United States)

    Mondin, Andrea; Bogialli, Sara; Venzo, Alfonso; Favaro, Gabriella; Badocco, Denis; Pastore, Paolo

    2014-01-01

    The present paper reports the determination of the tri-amine N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) present in a raw material called LONZABAC used to formulate various, widely used commercial biocides. The active principle, TA, is present in LONZABAC together with other molecules at lower concentration levels. Three independent analytical approaches, namely solution NMR spectroscopy, liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and acid-base titration in mixed solvent, were used to overcome the problem of the non-availability of the active principle as high purity standard. NMR analysis of raw material, using a suitable internal standard, evidenced in all analyzed lots the presence of the active principle, the N-dodecyl-1,3-propanediamine (DA) and the n-dodecylamine (MA) and the absence of non-organic, NMR-inactive species. NMR peak integration led to a rough composition of the MA:DA:TA as 1:9:90. The LC/HRMS analysis allowed the accurate determination of DA and MA and confirmed in all samples the presence of the TA, which was estimated by difference: MA=1.4±0.3%, DA=11.1±0.7%, TA=87.5±1.3%. The obtained results were used to setup an easy, rapid and cheap acid-base titration method able to furnish a sufficiently accurate evaluation of the active principle both in the raw material and in diluted commercial products. For the raw material the results were: TA+MA=91.1±0.8% and DA-MA=8.9±0.8%, statistically coherent with LC/MS ones. The LC/MS approach demonstrated also its great potentialities to recognize trace of the biocide components both in environmental samples and in the formulated commercial products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    Science.gov (United States)

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Potentiometric investigation of acid dissociation and anionic homoconjugation equilibria of substituted phenols in dimethyl sulfoxide[Substituted phenols; Acid-base equilibria; Dimethyl sulfoxide (DMSO); Potentiometry

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Malgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech. E-mail: lech@chemik.chem.univ.gda.pl

    2003-10-01

    Standard acidity constants, K{sub a}{sup DMSO} (HA), expressed as pK{sub a}{sup DMSO} (HA) values, and anionic homoconjugation constants, K{sup DMSO}{sub AHA{sup -}}, (in the form of lg K{sup DMSO}{sub AHA{sup -}} values) have been determined for 11 substituted phenol-phenolate systems a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO) with a potentiometric titration. A linear relationship has been determined between lg K{sup DMSO}{sub AHA{sup -}} and pK{sub a}{sup DMSO} (HA). The tendency towards anionic homoconjugation in these systems increases with increasing pK{sub a}{sup DMSO} (HA) that is with declining phenol acidity. The pK{sub a}{sup DMSO} (HA) are correlated with both pK{sub a}{sup W} (HA) water and other polar non-aqeous solvents.

  7. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    Science.gov (United States)

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-06-01

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide and ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, 34S, and three 13C species of the DMS-DME and a-type and b-type rotational transitions for the normal, 34S, and two 13C species of the EO-ES. The observed transitions were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)---O and one S---H-C(DME) hydrogen bonds. The barrier height V3 to internal rotation of the "free" methyl group in the DME was determined to be 915.4 (23) wn, which is smaller than that of the DME monomer, 951.72 (70) wn, and larger than that of the DME dimer, 785.4 (52) wn. For the EO-ES complex the observed data were interpreted in the terms of an antiparallel Cs geometry with the EO bound to the ES by two C-H(ES)---O and two S---H-C(EO) hydrogen bonds. We have applied a natural bond orbital (NBO) analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which were closely correlated with the binding energy EB, as found for other related complexes. Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003). Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, W. Caminati, and J. L. Alonso, J. Am. Chem. Soc. 124, 2739-2743 (2002).

  8. Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the north-east WPCP plant of Philadelphia.

    Science.gov (United States)

    Glindemann, Dietmar; Novak, John; Witherspoon, Jay

    2006-01-01

    This study shows for the first time that overlooked mg/L concentrations of industrial dimethyl sulfoxide (DMSO) waste residues in sewage can cause "rotten cabbage" odor problems bydimethyl sulfide (DMS) in conventional municipal wastewater treatment. In laboratory studies, incubation of activated sludge with 1-10 mg/L DMSO in bottles produced dimethyl sulfide (DMS) at concentrations that exceeded the odor threshold by approximately 4 orders of magnitude in the headspace gas. Aeration at a rate of 6 m3 air/m3 sludge resulted in emission of the DMS into the exhaust air in a manner analogous to that of an activated sludge aeration tank. A field study atthe NEWPCP sewage treatment plant in Philadelphia found DMSO levels intermittently peaking as high as 2400 mg/L in sewage near an industrial discharger. After 3 h, the DMSO concentration in the influent to the aeration tank rose from a baseline level of less than 0.01 mg/L to a level of 5.6 mg/L and the DMS concentration in the mixed liquor rose from less than 0.01 to 0.2 mg/L. Finding this link between the intermittent occurrence of DMSO residues in influent of the treatment plant and the odorant DMS in the aeration tank was the keyto understanding and eliminating the intermittent "canned corn" or "rotten cabbage" odor emissions from the aeration tank that had randomly plagued this plant and its city neighborhood for two decades. Sewage authorities should consider having wastewater samples analyzed for DMSO and DMS to check for this possible odor problem and to determine whether DMSO emission thresholds should be established to limit odor generation at sewage treatment plants.

  9. On-line mixing and emission characteristics of diesel engine with dimethyl ether injected into fuel pipeline

    Directory of Open Access Journals (Sweden)

    Li Xiaolu

    2017-01-01

    Full Text Available This article presents a new on-line dimethyl ether/diesel mixing method, researches its blend characteristics, and also validates combustion and emission effects on a light-duty direct injection engine. This new blend concept is that dimethyl ether is injected into the fuel pipeline to mix with local diesel as the injector stops injection, and this mixing method has some advantages, such as utilization of the original fuel system to mix dimethyl ether with diesel intensively, flexibility on adjustable mixing ratio varying with the engine operating condition, and so on. A device was designed to separate dimethyl ether from the blends, and its mixing ratios and injection quantity per cycle were also measured on a fuel pump bench. The results show that compared with the injected diesel, the percentages of dimethyl ether injected into fuel pipeline are 13.04, 9.74, 8.55, and 7.82% by mass as the fuel pump speeds increase, while dimethyl ether injected into fuel pipeline are 45.46, 35.53, 31.45, and 28.29% of wasting dimethyl ether. The power outputs of engine fueled with the blends are slight higher than those of neat diesel at low speeds, while at high speeds, its power outputs are a little lower. Smoke emissions of the blends are lower about 30% than that of neat diesel fuel at medium and high loads with hardly any penalty on smoke and NOx emissions at light loads. The NOx and HC emissions of the blends are slight lower than that of neat diesel fuel at all loads.

  10. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Science.gov (United States)

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  11. Dimethyl sulfoxide-sodium bicarbonate infusion for palliative care and pain relief in patients with metastatic prostate cancer.

    Science.gov (United States)

    Hoang, Ba X; Le, Bao T; Tran, Hau D; Hoang, Cuong; Tran, Hung Q; Tran, Dao M; Pham, Cu Q; Pham, Tuan D; Ha, Trung V; Bui, Nga T; Shaw, D Graeme

    2011-01-01

    Prostate cancer (adenocarcinoma of the prostate) is the most widespread cancer in men. It causes significant suffering and mortality due to metastatic disease. The main therapy for metastatic prostate cancer (MPC) includes androgen manipulation, chemotherapy, and radiotherapy and/or radioisotopes. However, these therapeutic approaches are considered palliative at this stage, and their significant side effects can cause further decline in patients' quality of life and increase non-cancer-related morbidity/mortality. In this study, the authors have used the infusion of dimethyl sulfoxide-sodium bicarbonate (DMSO-SB) to treat 18 patients with MPC. The 90-day follow-up of the patients having undergone the proposed therapeutic regimen showed significant improvement in clinical symptoms, blood and biochemistry tests, and quality of life. There were no major side effects from the treatment. In searching for new and better methods for palliative treatment and pain relief, this study strongly suggested therapy with DMSO-SB infusions could provide a rational alternative to conventional treatment for patients with MPC.

  12. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus.

    Science.gov (United States)

    Breckels, Mark N; Bode, Nikolai W F; Codling, Edward A; Steinke, Michael

    2013-07-15

    Chemical interactions play a fundamental role in the ecology of marine foodwebs. Dimethyl sulfide (DMS) is a ubiquitous marine trace gas that acts as a bioactive compound by eliciting foraging behavior in a range of marine taxa including the copepod Temora longicornis. Production of DMS can rapidly increase following microzooplankton grazing on phytoplankton. Here, we investigated whether grazing-induced DMS elicits an increase in foraging behavior in the copepod Calanus helgolandicus. We developed a semi-automated method to quantify the effect of grazing-mediated DMS on the proportion of the time budget tethered females allocate towards slow swimming, typically associated with feeding. The pooled data showed no differences in the proportion of the 25 min time budget allocated towards slow swimming between high (23.6 ± 9.74%) and low (29.1 ± 18.33%) DMS treatments. However, there was a high degree of variability between behavioral responses of individual copepods. We discuss the need for more detailed species-specific studies of individual level responses of copepods to chemical signals at different spatial scales to improve our understanding of chemical interactions between copepods and their prey.

  13. Dimethyl Fumarate Protects Pancreatic Islet Cells and Non-Endocrine Tissue in L-Arginine-Induced Chronic Pancreatitis

    Science.gov (United States)

    Robles, Lourdes; Vaziri, Nosratola D.; Li, Shiri; Masuda, Yuichi; Takasu, Chie; Takasu, Mizuki; Vo, Kelly; Farzaneh, Seyed H.; Stamos, Michael J.; Ichii, Hirohito

    2014-01-01

    Background Chronic pancreatitis (CP) is a progressive disorder resulting in the destruction and fibrosis of the pancreatic parenchyma which ultimately leads to impairment of the endocrine and exocrine functions. Dimethyl Fumarate (DMF) was recently approved by FDA for treatment of patients with multiple sclerosis. DMF's unique anti-oxidant and anti-inflammatory properties make it an interesting drug to test on other inflammatory conditions. This study was undertaken to determine the effects of DMF on islet cells and non-endocrine tissue in a rodent model of L-Arginine-induced CP. Methods Male Wistar rats fed daily DMF (25 mg/kg) or vehicle by oral gavage were given 5 IP injections of L-Arginine (250 mg/100 g×2, 1 hr apart). Rats were assessed with weights and intra-peritoneal glucose tolerance tests (IPGTT, 2 g/kg). Islets were isolated and assessed for islet mass and viability with flow cytometry. Non-endocrine tissue was assessed for histology, myeloperoxidase (MPO), and lipid peroxidation level (MDA). In vitro assessments included determination of heme oxygenase (HO-1) protein expression by Western blot. Results Weight gain was significantly reduced in untreated CP group at 6 weeks. IPGTT revealed significant impairment in untreated CP group and its restoration with DMF therapy (P L-Arginine-induced CP and islet function in rats. DMF treatment could be a possible strategy to improve clinical outcome in patients with CP. PMID:25198679

  14. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; North, S.W.; Stranges, D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  15. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  16. Divergent mechanistic routes for the formation of gem-dimethyl groups in the biosynthesis of complex polyketides.

    Science.gov (United States)

    Poust, Sean; Phelan, Ryan M; Deng, Kai; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2015-02-16

    The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSs are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module 8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of methyl prednisolone, dimethyl sulphoxide and naloxone in experimental spinal cord injuries in rats.

    Science.gov (United States)

    Zileli, M; Ovül, I; Dalbasti, T

    1988-12-01

    The effects of methyl prednisolone (MPD), dimethyl sulphoxide (DMSO), and naloxone were examined in 38 albino rats after making an impact spinal cord injury on the midthoracic segments with a modified Allen's weight dropping trauma method. Somatosensorial evoked potentials (SEPs) were recorded before and 12 h and 14 d after the injury from epidurally inserted electrodes on the parietal cortex with sciatic nerve stimulations. Lower extremity motor functions of the animals were also examined. It may be concluded that in this study model, DMSO has a moderate effect which can be demonstrated clinically and through SEPs. Naloxone has no effect on the clinical outcome but causes reasonable improvement electrophysiologically.

  18. Selective and efficient synthesis of ethanol from dimethyl ether and syngas

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn

    an important role as a gasoline additive or substitute and a catalytic process has been demonstrated, in which dimethyl ether (DME) produced from synthesis gas is converted to methyl acetate (MA), which is subsequently converted to EtOH and methanol (MeOH). MeOH can afterwards be easily converted to DME, using...... well-established processes. Syngas can be produced from biomass, making the entire process sustainable and environmentally friendly. The main benefit of this method is its unprecedented selectivity towards EtOH, while MeOH, the primary by-product, and the unreacted syngas are easily recycled...

  19. Extraction of U(VI) with N,N'-dimethyl-N,N'-dioctylsuccinylamide in toluene

    International Nuclear Information System (INIS)

    Cui Yu; Shandong University, Jinan; Sun Guoxin; Zhang Zhenwei; Hu Yufen; Sun Sixiu

    2007-01-01

    The extraction of uranyl nitrate by the novel extractant N,N'-dimethyl-N,N'-dioctylsuccinylamide (DMDOSA) from aqueous nitric/nitrate solutions was investigated. The effects of concentration of HNO 3 and DMDOSA on the U(VI) extraction distribution was studied. The extraction mechanism was established and the stoichiometry of the main extracted species was confirmed to be UO 2 (NO 3 ) 2 x 2DMDOSA. The value of ΔH of the extraction is -23.9±1.7 kJ x mol -1 . A IR spectral study of the U(VI) extracted species was also made. (author)

  20. Potentiometric investigations of molecular heteroconjugation equilibria of substituted phenol+n-butylamine systems in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Baginska, Katarzyna; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    Molecular heteroconjugation constants, K BHA DMSO and K AHB DMSO , expressed as their logarithms, have been determined by potentiometric titration for eleven substituted phenol+n-butylamine systems in a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO). An increasing tendency towards molecular heteroconjugation in these systems without proton transfer has been found with increasing pK a DMSO (HA), i.e., with decreasing phenol acidity. Moreover, a linear correlation has been established between the determined lgK BHA DMSO values and pK a DMSO (HA). Furthermore, overall stability constants, lgK o DMSO , could be correlated linearly with pK a DMSO (HA) values

  1. Dimethyl ether reviewed: New results on using this gas in a high-precision drift chamber

    International Nuclear Information System (INIS)

    Basile, M.; Bonvicini, G.; Cara Romeo, G.; Cifarelli, L.; Contin, A.; D'Ali, G.; Del Papa, C.; Maccarrone, G.; Massam, T.; Motta, F.; Nania, R.; Palmonari, F.; Rinaldi, G.; Sartorelli, G.; Spinetti, M.; Susinno, G.; Villa, F.; Voltano, L.; Zichichi, A.

    1985-01-01

    Two years ago, dimethyl ether (DME) was presented, for the first time, as a suitable gas for high-precision drift chambers. In fact our tests show that resolutions can be obtained which are better by at least a factor of 2 compared to what one can get with conventional gases. Moreover, DME is very well quenched. The feared formation of whiskers on the wires has not occurred, at least after months of use with a 10 μCi 106 Ru source. (orig.)

  2. Control and interannual variability of dimethyl sulfide in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoy, D.M.; Joseph, S.; DileepKumar, M.; George, M.D.

    sweater, Nature, 345, 702–705, 1990. Malin, G., Sulfur, climate and microbial maze, Nature, 387, 857–859, 1997. Niki, T., M. Kunugi, and A. Otsuki, DMSP-lyase activity in five marine phytoplankton species: Its potential importance in DMS production, Mar... radiation budget, because these gases absorb energy in the thermal infrared. Sulfur gases such as dimethyl sulfide (DMS) have an indirect effect on climate through forming sulfate-based aerosols [Andreae, 1990], which have poten- tial to change Earth’s...

  3. Qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian; Zhang Xianye; Hu Jingxin; Ye Guoan

    2004-01-01

    This paper reports the qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine. These analyses were performed on the gas chromatograph, in which porous layer open tubular column coated with aluminum oxide and flame-ionization detector are used. For the doses between 10 and 1000 kGy, the light hydrocarbons produced by radiation degradation of N,N-dimethyl hydroxylamine are methane, ethane, ethene, propane, propene and n-butane. When the concentration of N,N-dimethyl hydroxylamine is 0.2 mol/L, the volume fraction of methane is (9.996-247.5) x 10 -6 , the volume fraction of ethane, propane and n-butane is lower and that of ethene and propene is much lower. With the increase of dose the volume fraction of methane is increased but the volume fraction of ethane, ethene, propane, propene and n-butane is not obviously changed. (authors)

  4. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  5. Synthesis and structure of Bis(3,3-dimethyl-3,4-dihydroisoquinolyl-1) ketoxime

    International Nuclear Information System (INIS)

    Sokol, V.I.; Davydov, V.V.; Shklyaev, Yu.V.; Kartashova, I.V.; Sergienko, V.S.; Zaitsev, B.E.

    1997-01-01

    The reaction of bis(3,3-dimethyl-3,4-dihydroisoquinolyl-1)methane with NaNO 2 resulted in the formation of bis(3,3-dimethyl-3,4-dihydroisoquinolyl-1) ketoxime (I). The crystal and molecular structure of I was determined (x-ray structure analysis, Enraf-Nonius CAD-4, MoK α -radiation, graphite monochromator, θ/2θ scan, 2θ max =58 deg. , 4800 unique reflections; a=10.327(4), b=9.070(5), and c=21.62(1) A; β=94.02(3) deg.; V=2020(1) A 3 ; Z=4; and sp. gr. Pn). In the crystal, I exists in the oxime tautomeric form. Two symmetry-independent molecules are bound into a dimer through the intermolecular N=OH···N cycl 3 hydrogen bond. Both molecules are nonplanar; the dihedral angles between the mean planes of their 3,4-dihydroisoquinoline moieties are 72 deg. and 74 deg. According to IR and electron absorption spectra, the tautomeric form of compound I is also retained in solutions, and the π-conjugation between the 3,4-dihydroisoquinoline fragments of I is actually absent

  6. γ-ray dosimetry using pararosaniline cyanide in dimethyl sulfoxide solutions

    International Nuclear Information System (INIS)

    El-Assy, N.B.; Roushdy, H.M.; Rageh, M.; McLaughlin, W.L.; Levine, H.

    1982-01-01

    A chemical radiochromic dosimeter using pararosaniline cyanide in dimethyl sulfoxide can be used over a wide absorbed dose range. Experiments show that the dosimeter has a main optical absorption maximum at 554nm, which is 5nm higher than that of other polar solvents. Millimolar solutions of leucodye containing small amounts of carboxylic acid or nitrobenzene show a linear response for absorbed doses up to 11.75kGy. The yield of dye is linear with concentration up to 5mM. At that concentration the upper limit of linear response range can be extended to about 40kGy. The lower dose limit for 50mM concentration of the dye precursor hexahydroxyethyl pararosaniline (lambdasub(max)=608nm) is about 3Gy, with +-5%SD at a 95% confidence level, when using a 5cm pathlength cell. Dye formation yield varies not only with concentration of the leucocyanide, but also with type of oxidizing agent and temperature during irradiation. The latter parameter is especially critical, as dimethyl sulfoxide freezes at 17 0 C. The effect of storage temperature on the color produced after irradiation at different dose levels was also studied. (author)

  7. Study of the role of microbes as source and sink of Dimethyl Sulphide in Dona Paula bay

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.S.

    ) The biological production of dimethyl sulfide in the ocean and its role in the global atmospheric sulfur budget. Ecological Bulletin 35:167 – 77 Andreae MO, Ferek RJ, Bermond F, Byrd KP, Engstrom RT, Hardin S, Houmere PD, LeMarec F, Raemdonk H, Chatfield RB... production in marine surface waters: evaluation and field results. Marine Biology 66: 109 - 120 Fuse H, Takimura O, Murakami K, Yamaoka Y, Omori T (2000) Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp strain...

  8. N-(4-Bromobenzyl-2-(5,6-dimethyl-1H-benzo[d]imid-azol-2-ylbenzeneamine

    Directory of Open Access Journals (Sweden)

    Monika Dziełak

    2018-01-01

    Full Text Available N-(4-Bromobenzyl-2-(5,6-dimethyl-1H-benzo[d]imidazol-2-ylbenzeneamine was obtained by condensation of N-(4-bromobenzyl-3,1-benzoxazine-2,4-dione (N-(4-bromobenzylisatoic anhydride with 4,5-dimethyl-1,2-phenylenediamine in refluxing acetic acid. This is a rare example of condensation of N-substituted 3,1-benzoxazine-2,4-dione with 1,2-phenylenediamine, which resulted in the formation of a benzimidazole derivative with a moderate yield. Crystallographic studies and initial biological screening were performed for the obtained product.

  9. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation

    NARCIS (Netherlands)

    Wei, Ying; de Jongh, Petra E.|info:eu-repo/dai/nl/186125372; Bonati, Matteo L. M.; Law, David J.; Sunley, Glenn J.; de Jong, Krijn P.|info:eu-repo/dai/nl/06885580X

    2015-01-01

    Zeolite ZSM-5 (MFI) due to its excellent hydrothermal stability and high catalytic activity for methanol dehydration to dimethyl ether (MID) has been considered for use in combination with a methanol synthesis catalyst, such as Cu/ZnO/Al2O3, in the conversion of syngas to dimethyl ether. However,

  10. Selective entrapment of the cationic form of norfloxacin within anionic sodium dodecyl sulfate micelles at physiological pH and its effect on the drug photodecomposition.

    Science.gov (United States)

    Sortino, Salvatore

    2006-01-01

    The binding of the photosensitizing fluoroquinolone (FQ) antibiotic norfloxacin (NX) to sodium dodecyl sulfate (SDS) micelles and the photoreactivity of the NX/SDS complex under physiological pH conditions are investigated by means of absorption and emission spectroscopy, steady-state and laser flash photolysis. It is shown that the photolabile zwitterionic form of NX, which is dominant at physiological pH, is not the most abundant species in the presence of SDS micelles. This medium exhibits a high preference for the cationic form of the drug, which is selectively and successfully entrapped within the micellar cage (K(ass) = 6 x 10(4) M(-1) +/- 3000), becoming the largely dominant species at neutral pH. The effect of this trapping is drastically reflected on both efficiency and nature of the drug photodecomposition. It is observed that the photostability of NX incorporated in the micellar pseudophase increases of more than one order of magnitude if compared to that of the "free" drug. Furthermore, the radical photodecomposition mechanism occurring in phosphate buffered solution is suppressed by the micellar medium and the low photodegradation observed seems to take place preferentially through an ionic pathway. Hopefully, the results presented herein may contribute to a better understanding of the bio-distribution of NX in biological systems and provide helpful and stimulating information in order to get the control of FQ photoreactivity under physiological pH conditions.

  11. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-01-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations

  12. Thermodynamic characteristics of the dissolution of glycine, glycylglycine, and glycylglycylglycine in aqueous solutions of sodium dodecyl sulfate at T = 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2017-09-01

    the enthalpies of dissolution of glycine (Gly), glycylglycine (GlyGly), and glycylglycylglycine (GlyGlyGly) are measured in aqueous solutions of sodium dodecyl sulfate (SDS) at SDS concentrations m = 0-0.7 mol kg-1 and T = 298.15 K by means of calorimetry. The obtained data are used to calculate the standard values of enthalpies of dissolution (Δsol H m ) and enthalpies of transfer (Δtr H m ) of glycine and its oligomers from water to SDS aqueous solutions. The dependences of Δsol H m and Δtr H m on SDS concentration in an aqueous solution at a constant concentration of glycine and its oligomers are determined. A comparative analysis of the thermodynamic characteristics of Gly, GlyGly, and GlyGlyGly transfer within the studied range of SDS concentrations is performed. The results are interpreted in terms of ion-ion, ion-polar, and hydrophobic interactions between SDS and molecules of glycine and its oligomers.

  13. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Majid Jafari

    Full Text Available Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD simulations of human lysozyme in sodium dodecyl sulfate (SDS at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures.

  14. Inactivation of Escherichia coli O157:H7 and Salmonella during washing of contaminated gloves in levulinic acid and sodium dodecyl sulfate solutions.

    Science.gov (United States)

    Erickson, Marilyn C; Liao, Jye-Yin; Habteselassie, Mussie Y; Cannon, Jennifer L

    2018-08-01

    Field workers often wear gloves harvesting ready-to-eat produce; however, fields are not sterile environments and gloves may become contaminated numerous times during a working shift. This study explored the potential for inactivation of Escherichia coli O157:H7 and Salmonella when contaminated gloves were washed in levulinic acid (LV) and sodium dodecyl sulfate (SDS) solutions. Washing nitrile gloves with increasing concentrations of LV above 1.0% led to a decreased prevalence of glove contamination by Salmonella (P = 0.0000). A higher level of prevalence occurred for solid agar-cultured pathogens than liquid broth-cultured pathogens after nitrile gloves were washed in LV/SDS (P = 0.0000). Pathogens residing on latex gloves were more likely to be completely inactivated by washing in 0.5% LV/0.1% SDS solutions than nitrile or Canners gloves that exhibited inconsistent responses dependent on the pathogen strain. However, drying after washing nitrile gloves in 0.5% LV/0.1% SDS led to additional pathogen inactivation (P = 0.0394). Pathogen transfer from gloves to produce was implied as the pathogen prevalence on cantaloupe rind handled by LV/SDS-washed gloves was not statistically different from the prevalence on gloves (P = 0.7141). Hence, the risk of produce contamination may still exist but would be reduced by washing gloves in LV/SDS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A., E-mail: sarabi@aut.ac.ir [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2011-06-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  16. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  17. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. (Louisiana State Univ. Medical Center, New Orleans (USA))

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  18. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    Science.gov (United States)

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermochemistry of the Dissolution of Dipeptides Containing DL-α-Alanine in Aqueous Solutions of Sodium Dodecyl Sulfate at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2018-05-01

    Enthalpies of the dissolution of DL-α-alanylglycine (AlaGly), DL-α-alanyl-DL-α-alanine (AlaAla), DL-α-alanyl-DL-α-valine (AlaVal), and DL-α-alanyl-DL-norleucine (AlaNln) in an aqueous solution of sodium dodecyl sulfate (SDS) at SDS concentration of m = 0-0.07 mol kg-1 and temperature T = 298.15 K are measured via calorimetry. The standard values of the enthalpy of dissolution (Δsol H m ) and the transfer of dipeptides (Δtr H m ) from water to aqueous SDS solutions are calculated using the experimental data. The dependences of Δsol H m and Δtr H m the SDS concentration at a constant concentration of dipeptide are established. Thermochemical characteristics of the transfer of AlaGly, AlaAla, AlaVal, and AlaNln in the investigated range of SDS concentrations are compared. The results are interpreted by considering ion-ion, ion-polar, and hydrophobic-hydrophobic interactions between SDS and dipeptide molecules.

  20. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug.

    Science.gov (United States)

    Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan

    2009-01-01

    The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.

  1. Biophysical characterization of the interaction between human serum albumin and n-dodecyl β-D-maltoside: A multi-technique approach.

    Science.gov (United States)

    Ali, Mohd Sajid; Al-Lohedan, Hamad A

    2015-10-01

    We have studied the effect of biocompatible sugar based surfactant n-dodecyl β-D-maltoside (DDM) on the conformation of human serum albumin (HSA). A multi-technique approach was applied in order to understand the type of interaction and effect of DDM on the secondary and tertiary structure of HSA. Surface tension measurement showed that HSA shifted the critical micelle concentration (cmc) of the surfactant to the higher side that clarifies the complex formation between DDM and HSA which was also confirmed by UV absorption spectroscopy. Fluorescence quenching measurements showed that fluorescence of HSA was quenched by the addition of DDM with a prominent blue shift indicative of the involvement of hydrophobic interaction which was further confirmed by extrinsic fluorescence of organic dye 1-anilino-8-naphthalenesulfonate. Synchronous fluorescence measurement trends suggested that the hydrophobicity increases near the tryptophan residue while an increase in the polarity was observed near tyrosine residues. A collective information obtained by circular dicroism (CD) and Fourier-transform infra-red (FTIR) spectroscopies along with dynamic light scattering revealed the partial unfolding of the protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-D-maltoside using small-angle neutron scattering and molecular dynamics simulation.

    Science.gov (United States)

    Le, Rosemary K; Harris, Bradley J; Iwuchukwu, Ifeyinwa J; Bruce, Barry D; Cheng, Xiaolin; Qian, Shuo; Heller, William T; O'Neill, Hugh; Frymier, Paul D

    2014-05-15

    Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-β-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein-detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI-DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANS data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI-DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Sodium dodecyl sulfate coated γ-alumina support modified by a new Schiff base for solid phase extraction and flame-AAS determination of lead and copper ions

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS-coated γ-alumina modified with bis(2-hydroxy acetophenone-1,6-hexanediimine (BHAH ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS. The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

  4. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    Science.gov (United States)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  5. Micellization, interaction and thermodynamic study of butylated hydroxyanisole (synthetic antioxidant and sodium dodecyl sulfate in aqueous-ethanol solution at 25, 30 and 35 °C

    Directory of Open Access Journals (Sweden)

    Varun Bhardwaj

    2016-09-01

    Full Text Available Surfactants are found to enhance the diffusion significantly depending on hydrophobic/hydrophilic group lengths and the structure of the surfactant molecule. Aggregation properties of sodium dodecyl sulfate (SDS in the presence of butylated hydroxyanisole (synthetic antioxidant, at a range of temperatures (25, 30 and 35 °C have been measured by the conductometric study in aqueous-ethanolic composite solution. The experimental data of aqueous-ethanolic solutions as a function of SDS concentration ranging from 1 to 14 mM dm−3 show the presence of inflexion points indicating micellization and interaction mechanisms. Effect of temperature was also observed in increasing the CMC (Critical Micelle Concentration in the narrow composition. From the CMC values as a function of temperature, various thermodynamic parameters have been evaluated viz: (a the standard enthalpy change (ΔHm°, (b standard entropy change (ΔSm°, and (c standard Gibbs energy change (ΔGm°. The results showed that the presence of alcohol, as well as the composition of water + ethanol may have effect on thermodynamic parameters. The variation in these parameters with the concentration of surfactant or with the change in temperature suggests the manifestation of hydrophobic interactions in the studied system.

  6. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    Science.gov (United States)

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  7. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations.

    Science.gov (United States)

    Jafari, Majid; Mehrnejad, Faramarz

    2016-01-01

    Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD) simulations of human lysozyme in sodium dodecyl sulfate (SDS) at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC) [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures.

  8. Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on alfalfa seeds by levulinic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; Doyle, Michael P

    2010-11-01

    Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21°C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21°C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21°C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21°C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21°C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella.

  9. Inactivation of Salmonella and Escherichia coli O157:H7 on lettuce and poultry skin by combinations of levulinic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; Doyle, Michael P

    2009-05-01

    Four organic acids (lactic acid, acetic acid, caprylic acid, and levulinic acid) and sodium dodecyl sulfate (SDS) were evaluated individually or in combination for their ability to inactivate Salmonella and Escherichia coli O157:H7. Results from pure culture assays in water with the treatment chemical revealed that 0.5% organic acid and 0.05 to 1% SDS, when used individually, reduced pathogen cell numbers by acids at 0.5% with 0.05% SDS resulted in > 7 log CFU/ml inactivation of Salmonella and E. coli O157:H7 within 10 s at 21 degrees C. A combination of levulinic acid and SDS was evaluated at different concentrations for pathogen reduction on lettuce at 21 degrees C, on poultry (wings and skin) at 8 degrees C, and in water containing chicken feces or feathers at 21 degrees C. Results revealed that treatment of lettuce with a combination of 3% levulinic acid plus 1% SDS for 6.7 log CFU/g on lettuce. Salmonella and aerobic bacterial populations on chicken wings were reduced by > 5 log CFU/g by treatment with 3% levulinic acid plus 2% SDS for 1 min. Treating water heavily contaminated with chicken feces with 3% levulinic acid plus 2% SDS reduced Salmonella populations by > 7 log CFU/ml within 20 s. The use of levulinic acid plus SDS as a wash solution may have practical application for killing foodborne enteric pathogens on fresh produce and uncooked poultry.

  10. Synthesis of Terpolymers with Homogeneous Composition by Free Radical Copolymerization of Maleic Anhydride, Perfluorooctyl and Butyl or Dodecyl Methacrylates: Application of the Continuous Flow Monomer Addition Technique

    Directory of Open Access Journals (Sweden)

    Marian Szkudlarek

    2017-11-01

    Full Text Available Terpolymers of homogeneous composition were prepared by free radical copolymerization of butyl or dodecyl methacrylate, 1H,1H,2H,2H-perfluorodecyl methacrylate and maleic anhydride using the continuous monomer addition technique. The copolymerization reactions were performed at 65 °C in the presence of azobisisobutyronitrile as an initiator in a mixture of methyl ethyl ketone and 1,3-bis (trifluoromethylbenzene. The monomers and initiator are added to the reaction mixture with the same rate they are consumed in 5- and 10-fold excess compared to the initial monomer stock. The obtained terpolymers with molecular weights Mn = 50,000–70,000 are of uniform composition, close to the composition determined in low conversion experiments, proving the principle of the chosen concept. The kinetic data necessary for the design of the continuous addition experiment were obtained from binary copolymerization experiments at low monomer conversion (to avoid compositional drift. In addition, the so-called terpolymerization parameter was determined from ternary copolymerization experiments.

  11. Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Zhang Peiqun; Chai Zhifang; He Wei; Huang Yuying

    2003-01-01

    An improved method of analysis of metals in protein bands with synchrotron radiation X-ray fluorescence (SRXRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation is introduced and applied to human liver cytosol. Through a step of drying the gel before SRXRF determination, the continuous background resulting mainly from the Compton-scattering of X-rays by the gel matrix was substantially reduced, and the detection of biological trace elements, such as Cu, Fe, and Zn in protein bands was thereby made possible. With the new procedure, six Zn-containing proteins with molecular weights (MWs) of 17.5, 20.5, 27, 35, 55, and 63 kDa, respectively were found in human liver cytosol, among which the 63 kDa Zn-containing band was shown to be the dominant form of zinc. In addition, at least four Fe containing proteins with MWs of 20, 23, 43, and 83.5 kDa, respectively, were present in the samples. The metal contents in some metalloproteins, such as the 63 kDa Zn-containing protein, the 23 and 83.5 kDa Fe-containing proteins, and a 22 kDa Cu-containing protein were more closely related to the metal level in the sample. It is demonstrated that the procedure could be widely used to further investigate metal-binding proteins in biological samples

  12. Voltammetric determination of sudan ii in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Ma, X.; Chen, M.; Chao, M.

    2013-01-01

    Summary: Herein, a novel electrochemical method was de veloped for the determination of Sudan II based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GME) and the enhancement effect of sodium dodecyl sulfate (SDS). In a pH 6.0 phosphate buffer solution, Sudan II exhibited a pair of well-defined quasi reversible redox peaks at the GME in the presence of 5.0x10/sup -5/ mol L/sup 1/ SDS. The oxidation peak current of Sudan II was linearly proportional to its concentration in a range from 4.0x10/sup -8/ to 4.0x10/sup -6/ mol L/sup 1/, with a linear regression equation of ipa (A) = 3.35 c + 5.96 x 10/sup -6/, r = 0.9988 and a detection limit of 8.0x10/sup -9/ mol L/sup 1/. The recoveries from the standards fortified blank samples were in the range of 94.7% to 97.5% with RSD lower than 4.0%. The novel method has been successfully used to determine Sudan II in food products with satisfactory results. (author)

  13. Removal Efficiency of Different Gemini Surfactants and Related Modified Clay toChattonella marina.

    Science.gov (United States)

    Wang, Wen-Wen; Yan, Xin-Ya; Li, Yun-Hui; Yu, De-Ren; Li, Hong-Ye; Yang, Wei-Dong; Liu, Jie-Sheng

    2017-11-01

      To obtain new modified clays with excellent algae removal efficiency, three gemini surfactants including ethylene bis (dodecyl dimethyl ammonium chloride), ethylene bis (octadecyl dimethyl ammonium chloride) and ethylene bis (dodecyl dimethyl ammonium bromide) (EDAB), and a poly quaternary ammonium salt, poly dimethyl diallyl ammonium chloride, were screened with Chattonella marina. The four chemicals all exhibited high removal efficiencies against C. marina, with EDAB achieving the highest. A series of organ-clays with different ratios of EDAB were prepared, and the associated removal efficiencies were evaluated. The removal efficiencies of the organ-clays were improved by the EDAB intercalation and the organ-clay with 15% EDAB had the highest removal efficiency. The LC50 of EDAB intercalated clay for zebrafish and shrimp was much higher than the values of intercalated clay required to obtain a desirable removal efficiency of algae. Taken together, EDAB intercalated clay might be a potential alternative to control harmful algal blooms (HABs).

  14. Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane.

    Science.gov (United States)

    Itami, Kenichiro; Mitsudo, Koichi; Nishino, Akira; Yoshida, Jun-ichi

    2002-04-19

    Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane is described. The hydrosilylation of alkenes using dimethyl(2-pyridyl)silane (2-PyMe(2)SiH) proceeded well in the presence of a catalytic amount of RhCl(PPh(3))(3) with virtually complete regioselectivity. By taking advantage of the phase tag property of the 2-PyMe(2)Si group, hydrosilylation products were isolated in greater than 95% purity by simple acid-base extraction. Strategic catalyst recovery was also demonstrated. The hydrosilylation of alkynes using 2-PyMe(2)SiH proceeded with a Pt(CH(2)=CHSiMe(2))(2)O/P(t-Bu)(3) catalyst to give alkenyldimethyl(2-pyridyl)silanes in good yield with high regioselectivity. A reactivity comparison of 2-PyMe(2)SiH with other related hydrosilanes (3-PyMe(2)SiH, 4-PyMe(2)SiH, and PhMe(2)SiH) was also performed. In the rhodium-catalyzed reaction, the reactivity order of hydrosilane was 2-PyMe(2)SiH > 3-PyMe(2)SiH, 4-PyMe(2)SiH, PhMe(2)SiH, indicating a huge rate acceleration with 2-PyMe(2)SiH. In the platinum-catalyzed reaction, the reactivity order of hydrosilane was PhMe(2)SiH, 3-PyMe(2)SiH > 4-PyMe(2)SiH > 2-PyMe(2)SiH, indicating a rate deceleration with 2-PyMe(2)SiH and 4-PyMe(2)SiH. It seems that these reactivity differences stem primarily from the governance of two different mechanisms (Chalk-Harrod and modified Chalk-Harrod mechanisms). From the observed reactivity order, coordination and electronic effects of dimethyl(pyridyl)silanes have been implicated.

  15. Synthesis and characterisation of telechelic poly(2,6-dimethyl-1,4-phenylene ether) for copolymerisation

    NARCIS (Netherlands)

    Krijgsman, J.; Feijen, Jan; Gaymans, R.J.

    2003-01-01

    Telechelic poly(2,6-dimethyl-1,4-phenylene ether) (PPE) segments are interesting starting materials, for example for copolymerisation. A good method to make partly bifunctional PPE-2OH is by redistribution or depolymerisation of high molecular weight commercial PPE with tetramethyl bisphenol A. The

  16. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices

    NARCIS (Netherlands)

    Goncalves, Sara; Leiros, Ana; Van Kooten, Theo; Dourado, Fernando; Rodrigues, Ligia R.

    2013-01-01

    Poly(dimethyl siloxane) (PDMS) was surface-polymerized with poly(ethylene glycol)methacrylate (PEGMA) by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous media at room temperature. Modification of the PDMS surface followed a three-step procedure: (i) PDMS surface

  17. An exploration towards a more sustainable process for dimethyl naphthalene-2,6-dicarboxylate over acidic zeolites

    NARCIS (Netherlands)

    Bouvier, C.P.

    2008-01-01

    This thesis describes the challenge to apply a breakthrough in the synthesis of acidic zeolitic catalysts in the development of a sustainable process for dimethyl naphthalene-2,6-dicarboxylate. BiModal POrous Materials (BIPOMs) are zeolitic materials, which provide highway access to confined

  18. Compound instability in dimethyl sulphoxide, case studies with 5-aminopyrimidines and the implications for compound storage and screening

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Jansa, Petr; Březinová, Anna; Čechová, Lucie; Mertlíková-Kaiserová, Helena; Holý, Antonín; Dračínský, Martin

    2012-01-01

    Roč. 22, č. 20 (2012), s. 6405-6409 ISSN 0960-894X Institutional support: RVO:61388963 Keywords : 5-aminopyrimidines * dimethyl sulphoxide * oxidation * self-condensation * pyrimidopteridines Subject RIV: CC - Organic Chemistry Impact factor: 2.338, year: 2012

  19. Voltammetric Determination of N,N-Dimethyl-4-amine-carboxyazobenzene at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Dodova, E.; Navrátil, Tomáš; Josypčuk, Bohdan; Novotný, Ladislav; Zima, J.

    2003-01-01

    Roč. 15, č. 22 (2003), s. 1778-1781 ISSN 1040-0397 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : N,N-dimethyl-4-amino-carboxyazobenzene * differential pulse voltammetry * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.811, year: 2003

  20. Perfluoroalkylation of Aryl-N,N-dimethyl Hydrazones Using Hypervalent Iodine(III) Reagents or Perfluoroalkyl Iodides.

    Science.gov (United States)

    Janhsen, Benjamin; Studer, Armido

    2017-11-17

    Radical trifluoromethylation of aryl N,N-dimethyl hydrazones using TBAI as an initiator and Togni's reagent as a trifluoromethyl radical source is described. Cascades proceed via electron-catalysis; this approach is generally more applicable to hydrazone perfluoroalkylation using perfluoroalkyl iodides as the radical precursors in combination with a base under visible-light initiation.

  1. A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Norby, Poul; Vegge, Tejs

    2014-01-01

    Dimethyl sulfoxide (DMSO) and acetonitrile (MeCN) have recently been highlighted as promising electrolyte solvents for Li-O2 batteries. Possible reactions between these two solvents and Li2O2 are here discussed using X-ray photoelectron spectroscopy to analyze surface of the Li2O2 powder after...

  2. Identification of a potent antibacterial factor isolated from bronchoalveolar lavage fluid: guanidine, N-[3-[(aminoiminomethyl)amino]propyl]-N-dodecyl-, a potential source of error in the analysis of antibacterial agents.

    Science.gov (United States)

    Abraham-Nordling, Mirna; Gudmundsson, Gudmundur H; Grunewald, Johan; Agerberth, Birgitta; Griffiths, William J

    2003-01-01

    The widespread use of antibiotics in modern society has encouraged the search for new antibacterial compounds. In this laboratory investigations are being made to identify and characterise novel antibacterial peptides. With this in mind, the antibacterial properties of human bronchoalveolar lavage (BAL) fluid from sarcoidosis patients is being investigated. In this communication we report on the identification and characterisation of a highly active non-peptide antibacterial compound isolated from BAL fluid. The structure of this active compound was elucidated by high-resolution accurate mass and tandem mass spectrometry to be guanidine, N-[3-[(aminoiminomethyl)amino]propyl]-N-dodecyl-. This compound does not appear to be endogenous, and its presence in BAL fluid extracts presents a potential source of error in analysis of antibacterial agents. The biological effects of guanidine, N-[3-[(aminoiminomethyl)amino]propyl]-N-dodecyl- have not previously been described in the literature. Copyright 2002 John Wiley & Sons, Ltd.

  3. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul

    2015-01-01

    In this work, several chemical processes for production of dimethyl carbonate (DMC) based on CO2 utilization are evaluated. Four CO2-based processes for production of DMC are considered: (1) direct synthesis from CO2 and methanol; (2) synthesis from urea; (3) synthesis from propylene carbonate......; and (4) synthesis from ethylene carbonate. The processes avoid the use of toxic chemicals such as phosgene, CO and NO that are required in conventional DMC production processes. From preliminary thermodynamic analysis, the yields of DMC are found to have the following order (higher to lower): ethylene...... carbonate route > urea route > propylene carbonate route > direct synthesis from CO2. Therefore, only the urea and ethylene carbonate routes are further investigated by comparing their performances with the commercial BAYER process on the basis of kg of DMC produced at a specific purity. The ethylene...

  4. Chemiluminescence of curcumin and quenching effect of dimethyl sulfoxide on its peroxyoxalate system

    Energy Technology Data Exchange (ETDEWEB)

    Yari, Abdollah, E-mail: a.yari@ymail.co [Lorestan University, Department of Chemistry, Flakalaflak Street, 68178-17133 Khorramabad (Iran, Islamic Republic of); Saidikhah, Marzieh [Lorestan University, Department of Chemistry, Flakalaflak Street, 68178-17133 Khorramabad (Iran, Islamic Republic of)

    2010-04-15

    The chemiluminescence behavior of the reaction between bis(2,4,6-trichlorophenyl)oxalate (TCPO) and hydrogen peroxide, in the presence of curcumin as fluorophore, has been investigated. Experimental factors such as TCPO, sodium salicylate (SS), hydrogen peroxide and curcumin concentration were optimized. The chemiluminescence signal showed a linear decay while dimethyl sulfoxide (DMSO) was added to the peroxyoxalate (PO-CL) system. The reaction resulted in a Stern-Volmer plot with a K{sub q} value of 7.3x10{sup 4}. The evaluated lower and upper detection limits of measurable concentrations of DMSO are 3.50x10{sup -5} and 1.53x10{sup -4} M, respectively. The PO-CL parameters were estimated by computer fitting of the experimental CL intensity to proper models.

  5. C-4 Gem-Dimethylated Oleanes of Gymnema sylvestre and Their Pharmacological Activities

    Directory of Open Access Journals (Sweden)

    Giovanni Di Fabio

    2013-12-01

    Full Text Available Gymnema sylvestre R. Br., one of the most important medicinal plants of the Asclepiadaceae family, is a herb distributed throughout the World, predominantly in tropical countries. The plant, widely used for the treatment of diabetes and as a diuretic in Indian proprietary medicines, possesses beneficial digestive, anti-inflammatory, hypoglycemic and anti-helmentic effects. Furthermore, it is believed to be useful in the treatment of dyspepsia, constipation, jaundice, hemorrhoids, cardiopathy, asthma, bronchitis and leucoderma. A literature survey revealed that some other notable pharmacological activities of the plant such as anti-obesity, hypolipidemic, antimicrobial, free radical scavenging and anti-inflammatory properties have been proven too. This paper aims to summarize the chemical and pharmacological reports on a large group of C-4 gem-dimethylated pentacyclic triterpenoids from Gymnema sylvestre.

  6. Dimethyl Sulfoxide Enhances Effectiveness of Skin Antiseptics and Reduces Contamination Rates of Blood Cultures

    Science.gov (United States)

    LaSala, Paul R.; Han, Xiang-Yang; Rolston, Kenneth V.; Kontoyiannis, Dimitrios P.

    2012-01-01

    Effective skin antisepsis is of central importance in the prevention of wound infections, colonization of medical devices, and nosocomial transmission of microorganisms. Current antiseptics have a suboptimal efficacy resulting in substantial infectious morbidity, mortality, and increased health care costs. Here, we introduce an in vitro method for antiseptic testing and a novel alcohol-based antiseptic containing 4 to 5% of the polar aprotic solvent dimethyl sulfoxide (DMSO). The DMSO-containing antiseptic resulted in a 1- to 2-log enhanced killing of Staphylococcus epidermidis and other microbes in vitro compared to the same antiseptic without DMSO. In a prospective clinical validation, blood culture contamination rates were reduced from 3.04% for 70% isopropanol–1% iodine (control antiseptic) to 1.04% for 70% isopropanol–1% iodine–5% DMSO (P antiseptics containing strongly polarized but nonionizing (polar aprotic) solvents. PMID:22378911

  7. Crystal structure of hexakis(dimethyl sulfoxide-κO)manganese(II) tetraiodide

    KAUST Repository

    Haque, Mohammed

    2016-11-15

    The title salt, [Mn(C2H6OS)6]I4, is made up from discrete [Mn(DMSO)6]2+ (DMSO is dimethyl sulfoxide) units connected through non-classical hydrogen bonds to linear I4 2- tetraiodide anions. The MnII ion in the cation, situated on a position with site symmetry -3., is octahedrally coordinated by O atoms of the DMSO molecule with an Mn - O distance of 2.1808(12)Å. The I4 2- anion contains a neutral I2 molecule weakly coordinated by two iodide ions, forming a linear centrosymmetric tetraiodide anion. The title compound is isotypic with the Co, Ni, Cu, and Zn analogues.

  8. Potentiometric investigation of acid dissociation and anionic homoconjugation equilibria of substituted phenols in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Czaja, Malgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech.

    2003-01-01

    Standard acidity constants, K a DMSO (HA), expressed as pK a DMSO (HA) values, and anionic homoconjugation constants, K DMSO AHA - , (in the form of lg K DMSO AHA - values) have been determined for 11 substituted phenol-phenolate systems a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO) with a potentiometric titration. A linear relationship has been determined between lg K DMSO AHA - and pK a DMSO (HA). The tendency towards anionic homoconjugation in these systems increases with increasing pK a DMSO (HA) that is with declining phenol acidity. The pK a DMSO (HA) are correlated with both pK a W (HA) water and other polar non-aqeous solvents

  9. Methyl 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl-4-nitrobenzoate

    Directory of Open Access Journals (Sweden)

    S. F. Jenkinson

    2012-08-01

    Full Text Available The six-membered boronate ester ring of the title compound, C13H16BNO6, adopts an envelope conformation with the C atom bearing the dimethyl substituents at the flap. The O—B—C—C torsion angles between the boronate group and the benzene ring are 72.5 (2 and 81.0 (2°. The 4-nitrobenzoate unit adopts a slightly twisted conformation, with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2 and 14.4 (3°, respectively. In the crystal, inversion-related pairs of molecules show weak π–π stacking interactions [centroid–centroid distance = 4.0585 (9 Å and interplanar spacing = 3.6254 (7 Å].

  10. Establishing a green platform for biodiesel synthesis via strategic utilization of biochar and dimethyl carbonate.

    Science.gov (United States)

    Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Sik Ok, Yong; Kwon, Eilhann E

    2017-10-01

    To establish a green platform for biodiesel production, this study mainly investigates pseudo-catalytic (non-catalytic) transesterification of olive oil. To this end, biochar from agricultural waste (maize residue) and dimethyl carbonate (DMC) as an acyl acceptor were used for pseudo-catalytic transesterification reaction. Reaction parameters (temperature and molar ratio of DMC to olive oil) were also optimized. The biodiesel yield reached up to 95.4% under the optimal operational conditions (380°C and molar ratio of DMC to olive oil (36:1)). The new sustainable environmentally benign biodiesel production introduced in this study is greener and faster than conventional transesterification reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. XPS and NEXAFS analysis of dimethyl sulfide adsorbed on the Rh(PVP) nanoparticle surface

    International Nuclear Information System (INIS)

    Niwa, Hironori; Ogawa, Satoshi; Yagi, Shinya; Kutluk, Galif

    2010-01-01

    We have studied the adsorption reaction of dimethyl sulfide (DMS: (CH 3 ) 2 S) on the surface of Rh(PVP) nanoparticles by using AFM, XPS and NEXAFS techniques. The AFM images show the degree of dispersion of the Rh(PVP) nanoparticles depends on the amount of them. The in-situ XPS results indicate that the dissociation reaction of DMS into atomic S does not depend upon the existence of the Rh(PVP) nanoparticles. The NEXAFS results show that there is a strong chemical bonding between Rh(PVP) nanoparticle and atomic S. The ex-situ XPS results show the atomic S adsorbed on the Rh(PVP) nanoparticles partially desorb by exposing to the air. (author)

  12. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of SVI-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury.

  13. Dimethyl Ether: New Advances in Wear Testing: Theoretical and Experimental Results

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2003-01-01

    ) on the ball. Up to now, all analyses indicated that fuel viscosity influences the wear scar size and fuel performance in full-scale pumps. The wear scar size could then be a result of hydrodynamic lubrication (at least a significant part of it) and not of boundary lubrication as it was the original intention...... of the test. The appearance of an excellent volatile fuel for diesel engines, Dimethyl Ether (DME), has resulted in new wear tests such as the Medium Frequency Pressurised Reciprocating Rig (MFPRR), a pressurised version of the HFRR. DME has a about 25 times lower viscosity than diesel oil so the MFPRR...... viscosity sensibility issue is seriously aggravated for this fuel. Molecular dynamics calculations involving straight alkanes with lengths from 3 to 14 carbon atoms have been performed. The model is based on simple inter-atomic and surface interactions and it simulates an asperity contact between curved...

  14. Potentiometric investigations of molecular heteroconjugation equilibria of substituted phenol+n-butylamine systems in dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, MaIgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Baginska, Katarzyna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2005-08-15

    Molecular heteroconjugation constants, K{sub BHA}{sup DMSO} and K{sub AHB}{sup DMSO}, expressed as their logarithms, have been determined by potentiometric titration for eleven substituted phenol+n-butylamine systems in a polar protophilic aprotic solvent, dimethyl sulfoxide (DMSO). An increasing tendency towards molecular heteroconjugation in these systems without proton transfer has been found with increasing pK{sub a}{sup DMSO} (HA), i.e., with decreasing phenol acidity. Moreover, a linear correlation has been established between the determined lgK{sub BHA}{sup DMSO} values and pK{sub a}{sup DMSO} (HA). Furthermore, overall stability constants, lgK{sub o}{sup DMSO}, could be correlated linearly with pK{sub a}{sup DMSO} (HA) values.

  15. Vapor pressure, density, viscosity and refractive index of dimethyl sulfoxide + 1,4-dimethylbenzene system

    Directory of Open Access Journals (Sweden)

    OANA CIOCIRLAN

    2008-01-01

    Full Text Available This paper reports the experimental results of isothermal vapor–liquid equilibrium data between 303.15 and 333.15 K, and densities, viscosities, refractive indices from 298.15 to 323.15 K of the dimethyl sulfoxide + 1,4-dimethylbenzene system over the entire range of mixture composition. The obtained PTX data were correlated by the Wilson and NRTL models and estimated by the UNIFAC model. The excess Gibbs energy and activity coefficients were calculated and compared with others excess properties. Excess molar volumes, viscosity deviations and deviations in refractivity were calculated from the experimental data; all the computed quantities were fitted to the Redlich–Kister equation. The resulting excess functions were interpreted in terms of structure and interactions.

  16. Assessment of Lubricity Properties of Dimethyl Ether Using the Medium Frequency Reciprocating Rig

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C

    2001-01-01

    Adequate lubricity of a fuel is an important issue when the wear in diesel engine injection equipment is to be minimised. For conventional diesel oils, there exist methods capable of measuring the lubricity of the fuels. These methods cannot handle Dimethyl Ether (DME), as it has to be pressurised...... exceptionally low. By mixing the DME with very small quantities of additives the lubricity can be redressed. Only one additive was capable of giving DME a lubricity higher than the one of diesel oil. Even at such high lubricities it cannot be concluded that wear in the diesel injection pumps....... The calibration was achieved by using both the standard method for diesel oil and the MFPRR, to test three liquid fuels of varying lubricities. The result was that the MFPRR discriminated just as well between the fuel lubricities as did the standard method. The lubricity of DME was measured and was found...

  17. Dimethyl fumarate protects pancreatic islet cells and non-endocrine tissue in L-arginine-induced chronic pancreatitis.

    Directory of Open Access Journals (Sweden)

    Lourdes Robles

    Full Text Available Chronic pancreatitis (CP is a progressive disorder resulting in the destruction and fibrosis of the pancreatic parenchyma which ultimately leads to impairment of the endocrine and exocrine functions. Dimethyl Fumarate (DMF was recently approved by FDA for treatment of patients with multiple sclerosis. DMF's unique anti-oxidant and anti-inflammatory properties make it an interesting drug to test on other inflammatory conditions. This study was undertaken to determine the effects of DMF on islet cells and non-endocrine tissue in a rodent model of L-Arginine-induced CP.Male Wistar rats fed daily DMF (25 mg/kg or vehicle by oral gavage were given 5 IP injections of L-Arginine (250 mg/100 g × 2, 1 hr apart. Rats were assessed with weights and intra-peritoneal glucose tolerance tests (IPGTT, 2 g/kg. Islets were isolated and assessed for islet mass and viability with flow cytometry. Non-endocrine tissue was assessed for histology, myeloperoxidase (MPO, and lipid peroxidation level (MDA. In vitro assessments included determination of heme oxygenase (HO-1 protein expression by Western blot.Weight gain was significantly reduced in untreated CP group at 6 weeks. IPGTT revealed significant impairment in untreated CP group and its restoration with DMF therapy (P <0.05. Untreated CP rats had pancreatic atrophy, severe acinar architectural damage, edema, and fatty infiltration as well as elevated MDA and MPO levels, which were significantly improved by DMF treatment. After islet isolation, the volume of non-endocrine tissue was significantly smaller in untreated CP group. Although islet counts were similar in the two groups, islet viability was significantly reduced in untreated CP group and improved with DMF treatment. In vitro incubation of human pancreatic tissue with DMF significantly increased HO-1 expression.Administration of DMF attenuated L-Arginine-induced CP and islet function in rats. DMF treatment could be a possible strategy to improve clinical

  18. Remarkable activity of nitrogen-doped hollow carbon spheres encapsulated Cu on synthesis of dimethyl carbonate: Role of effective nitrogen

    Science.gov (United States)

    Li, Haixia; Zhao, Jinxian; Shi, Ruina; Hao, Panpan; Liu, Shusen; Li, Zhong; Ren, Jun

    2018-04-01

    A critical aspect in the improvement of the catalytic performance of Cu-based catalysts for the synthesis of dimethyl carbonate (DMC) is the development of an appropriate support. In this work, nitrogen-doped hollow carbon spheres (NHCSs), with 240 nm average diameter, 17 nm shell thickness, uniform mesoporous structure and a specific surface area of 611 m2 g-1, were prepared via a two-step Stӧber method. By varying the quantity of nitrogen-containing phenols used in the preparation it has been possible to control the nitrogen content and, consequently, the sphericity of the NHCSs. It was found that perfect spheres were obtained for nitrogen contents below 5.4 wt.%. The catalysts (Cu@NHCSs) were prepared by the hydrothermal impregnation method. The catalytic activity towards DMC synthesis was notably enhanced due to the immobilization effect on Cu particles and the enhanced electron transfer effect exercised by the effective nitrogen species, including pyridinic-N and graphitic-N. When the average size of the copper nanoparticles was 7.4 nm and the nitrogen content was 4.0 wt.%, the values of space-time yield of DMC and of turnover frequency (TOF) reached 1528 mg/(g h) and 11.0 h-1, respectively. The TOF value of Cu@NHCSs was 6 times higher than non-doped Cu@Carbon (2.1 h-1). The present work introduces the potential application of nitrogen-doped carbon materials and presents a novel procedure for the preparation of catalysts for DMC synthesis.

  19. Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline.

    Science.gov (United States)

    Moradi, Zohreh; Khorasani-Motlagh, Mozhgan; Rezvani, Ali Reza; Noroozifar, Meissam

    2018-02-01

    In order to evaluate biological potential of a novel synthesized complex [Nd(dmp) 2 Cl 3 .OH 2 ] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (K b ) for interaction of Nd(III) complex and FS-DNA is calculated by UV-Vis (K b  = 2.7 ± 0.07 × 10 5 ) and fluorescence spectroscopy (K b  = 1.13 ± 0.03 × 10 5 ). The Stern-Volmer constant (K SV ), thermodynamic parameters including free energy change (ΔG°), enthalpy change (∆H°), and entropy change (∆S°), are calculated by fluorescent data and Vant' Hoff equation. The experimental results show that the complex can bind to FS-DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ∆S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.

  20. LETHAL EFFECTS OF 2,2-DICHLOROVINYL DIMETHYL PHOSPHATE (DDVP ON FINGERLING AND JUVENILE Clarias gariepinus (BURCHELL, 1822

    Directory of Open Access Journals (Sweden)

    Isaac Tunde Omoniyi

    2013-04-01

    Full Text Available This study investigated the lethal toxicity of 2,2-dichlorovinyl dimethyl phosphate (DDVP on African mud catfish, Clarias gariepinus fingerlings (mean weight 7.02 ± 2.56 g and juveniles (mean weight 13.54 ± 1.46 g in a static renewable bioassay. DDVP, also known as Dichlorvos is an organophosphate pesticide. Each treatment in the lethal test was in triplicates with bioassay media concentrations (fingerlings: 0, 250, 275, 300, 325 µgL-1 and (juveniles: 0, 400, 450, 500, 600 µgL-1. Data on fish mortality as well as the physico-chemical parameters (temperature, pH, dissolved oxygen and electrical conductivity, EC of water were collected and subsequently subjected to a one way analysis of variance (ANOVA at 5% probability level. Duncan Multiple Range Test (DMRT was used to separate differences between means. The median lethal concentration (LC50 and median lethal time (LT50 were determined by probit analysis. The water quality parameters of the treatment tanks showed no significant difference with those of the control except for conductivity and pH. Behavioural responses in the fishes included erratic and uncoordinated swimming which were observed to be more pronounced in the juveniles. Bleached body was the only external change observed and this was more pronounced in the fingerlings. The 96-hr LC50 for fingerlings and juveniles were 275.2 and 492.0 µgL-1 respectively. The LT50 values for fingerlings were 48.10 and 7.77 hrs for concentrations 250 and 325 µgL-1 respectively; while those of juveniles were 25.54 and 5.34 hrs for 400 and 600 µgL-1 respectively. The results indicated that DDVP was 1.79 times more toxic to the fingerlings than the juveniles.

  1. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean

    International Nuclear Information System (INIS)

    Gabric, Albert J.; Cropp, Roger; Marchant, Harvey

    2003-01-01

    Dimethyl sulfide (DMS) is a radiatively active trace gas produced by enzymatic cleavage of its precursor compound, dimethyl sulfoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. Once ventilated to the atmosphere, DMS is oxidised to form non-sea-salt sulfate and methane sulfonate (MSA) aerosols, which are a major source of cloud condensation nuclei (CCN) in remote marine air and may thus play a role in climate regulation. Here we simulate the change in DMS flux in the Eastern Antarctic ocean from 1960-2086, corresponding to equivalent CO 2 tripling relative to pre-industrial levels. Calibration to contemporary climate conditions was carried out using a genetic algorithm to fit the model to surface chlorophyll from the 4-yr SeaWiFs satellite archive and surface DMS from an existing global database. Following the methodology used previously in the Subantarctic Southern Ocean, we then simulated DMS emissions under enhanced greenhouse conditions by forcing the DMS model with output from a coupled atmospheric-ocean general circulation model (GCM). The GCM was run in transient mode under the IPCC/IS92a radiative forcing scenario. By 2086, the change simulated in annual integrated DMS flux is around 20% in ice-free waters, with a greater increase of 45% in the seasonal ice zone (SIZ). Interestingly, the large increase in flux in the SIZ is not due to higher in situ production but mainly because of a loss of ice cover during summer-autumn and an increase in sea-to-air ventilation of DMS. These proportional changes in areal mean flux (25%) are much higher than previously estimated for the Subantarctic Southern Ocean (5%), and point to the possibility of a significant DMS-climate feedback at high Southern latitudes. Due to the nexus between ice cover and food-web structure, the potential for ecological community shifts under enhanced greenhouse conditions is high, and the implications for DMS production are discussed

  2. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    Science.gov (United States)

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  4. Inactivation of viruses and bacteria on strawberries using a levulinic acid plus sodium dodecyl sulfate based sanitizer, taking sensorial and chemical food safety aspects into account.

    Science.gov (United States)

    Zhou, Zijin; Zuber, Sophie; Cantergiani, Frédérique; Butot, Sophie; Li, Dan; Stroheker, Thomas; Devlieghere, Frank; Lima, Anthony; Piantini, Umberto; Uyttendaele, Mieke

    2017-09-18

    The efficacy of levulinic acid (LVA) in combination with sodium dodecyl sulfate (SDS) in removal of foodborne viruses, enteric bacterial pathogens and their surrogates on fresh strawberries was investigated. Inoculated strawberries were treated with potable water, sodium hypochlorite solution (50ppm), 0.5% LVA plus 0.5% SDS solution, and 5% LVA plus 2% SDS solution respectively for 2min, followed by spray-rinsing with potable water. Water washing removed at least 1.0-log of the tested viral and bacterial strains from the strawberries' surfaces. The 50ppm chlorine wash induced 3.4, 1.5 and 2.1-log reductions for hepatitis A virus (HAV), murine norovirus-1 (MNV-1) and MS2 bacteriophage, respectively. In comparison, the tested bacterial strains showed uniform reductions around 1.6-log CFU/ml. The 0.5% LVA plus 0.5% SDS wash induced 2.7, 1.4 and 2.4-log reductions for HAV, MNV-1 and MS2, which were comparable with the reductions induced by chlorine (P>0.05). For bacteria, over 2.0-log reductions were obtained for Enterococcus faecium, Listeria monocytogenes and Salmonella, while Escherichia coli O157:H7 and Escherichia coli P1 showed reductions of 1.9 and 1.8-log CFU/ml. Higher concentration of LVA plus SDS showed no significantly higher reductions (P>0.05). Sensory tests of washed strawberries and chemical residue analysis of LVA on strawberries after washing were also performed. In conclusion, this study demonstrates good performance of 0.5% LVA plus 0.5% SDS to reduce the levels of enteric pathogens if present on strawberries without altering taste and introducing chemical safety issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inactivation of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 on tomatoes using sodium dodecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ademola Ijabadeniyi

    2017-04-01

    Full Text Available The effectiveness of sodium dodecyl sulphate (SDS, sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05 among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  6. Thiol-reactive drug substrates of human P-glycoprotein label the same sites to activate ATPase activity in membranes or dodecyl maltoside detergent micelles.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2017-07-08

    P-glycoprotein (P-gp, ABCB1) is an ABC drug pump that is clinically important because it is involved in multidrug resistance. Many studies have used purified P-gp in detergent (n-dodecyl-β-D-maltoside; DM) micelles to map the locations of the drug-binding sites. A potential problem is that DM could be a substrate and affect binding of drugs to P-gp. To test whether DM was a substrate of P-gp, we used an assay involving drug-rescue of the immature 150 kDa misprocessed P-gp mutant (L1260A) to show that DM is not substrate. By contrast, the detergents Triton X-100 or NP-35 were substrates because they rescued the L1260A P-gp mutant such that the major product was the mature 170 kDa protein. Cross-linking of mutant A80C/R741C in membranes can only be inhibited by the P-gp substrate tariquidar. We show that cross-linking A80C/R741C mutant was also inhibited by tariquidar in the presence of excess DM. This result suggests that the presence of DM did not affect the tariquidar-binding site. Similarly, the presence of DM did not alter the locations of other drug-binding sites since the thiol reactive forms of the substrates verapamil or rhodamine labeled the same sites in transmembrane segments 5 (I306C for verapamil) and 6 (F343C for rhodamine) whether P-gp was in native membranes or in detergent micelles. These results suggest that the presence of DM does not alter the locations of the P-gp drug-binding sites and that the detergent purified protein is suitable for mapping their locations using biochemical or structural assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceberg lettuce during storage in modified atmosphere package.

    Science.gov (United States)

    Guan, Wenqiang; Huang, Lihan; Fan, Xuetong

    2010-10-01

    Recent studies showed that sodium acid sulfate (SAS) and levulinic acid (LA) in combination with sodium dodecyl sulfate (SDS) was effective in inactivating human pathogens on Romaine lettuce. The present study investigated the effects of LA and SAS in combination with SDS (as compared with citric acid and chlorine) on the inactivation of E. coli O157:H7 and sensory quality of fresh-cut Iceberg lettuce in modified atmosphere packages during storage at 4 °C. Results showed that LA (0.5% to 3%) and SAS (0.25% to 0.75%) with 0.05% SDS caused detrimental effects on visual quality and texture of lettuce. LA- and SAS-treated samples were sensorially unacceptable due to development of sogginess and softening after 7 and 14 d storage. It appears that the combined treatments caused an increase in the respiration rate of fresh-cut lettuce as indicated by higher CO(2) and lower O(2) in modified atmosphere packages. On the positive side, the acid treatments inhibited cut edge browning of lettuce pieces developed during storage. LA (0.5%), SAS (0.25%), and citric acid (approximately 0.25%) in combination with SDS reduced population of E. coli OH157:H7 by 0.41, 0.87, and 0.58 log CFU/g, respectively, while chlorine achieved a reduction of 0.94 log CFU/g without damage to the lettuce. Therefore, compared to chlorine, LA and SAS in combination with SDS have limited commercial value for fresh-cut Iceberg lettuce due to quality deterioration during storage.

  8. Synthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II ions from an aqueous solution

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2016-09-01

    Full Text Available Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II ions from an aqueous solution. Methods: A selective adsorbent for Hg(II was synthesized by coating Fe3O4 nanoparticles with sodium dodecyl sulfate which was further functionalized with 2,4-dinitrophenylhydrazine (2,4-DNPH. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR, x-ray diffraction (XRD, scanning electron microscopy (SEM and SEM–EDXSt. The effects of pH, dose of adsorbent and shaking time on adsorption capacity were investigated. The kinetics and equilibrium of adsorption of the metal ions were thoroughly studied. Results: SEM showed that the size of the nanoparticles was 20 to 35 nm. The maximum adsorption capacity for Hg(II was 164.0 mg g-1 for an adsorbent dose of 0.04 g at pH 7.0, 25°C and the initial metal concentration was 25 mg L-1,which was greater than for most adsorbents previously examined for Hg(II adsorption. Adsorption experimental data showed good correlation with the pseudo-secondorder model and Langmuir isotherm model. Conclusion: The results indicated that the DNPH@SDS@Fe3O4 nanoparticles are an efficient adsorbent for removal of heavy metal from wastewater.

  9. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  10. Inactivation of Heat Adapted and Chlorine AdaptedListeria MonocytogenesATCC 7644 on Tomatoes Using Sodium Dodecyl Sulphate, Levulinic Acid and Sodium Hypochlorite Solution.

    Science.gov (United States)

    Ijabadeniyi, Oluwatosin Ademola; Mnyandu, Elizabeth

    2017-04-13

    The effectiveness of sodium dodecyl sulphate (SDS), sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU)/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05) among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  11. Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Atta, Nada F.; Galal, Ahmed; El-Ads, Ekram H.

    2012-01-01

    For the first time, a novel electrochemical sensor; gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) polymer modified gold electrode in presence of SDS (Au/PEDOT-Au nano …SDS) was developed by the electrodeposition of gold nanoparticles on poly(3,4-ethylene-dioxythiophene) (PEDOT) modified gold electrode for the selective determination of dopamine (DA) in presence of uric acid (UA) and ascorbic acid (AA) in presence of sodium dodecyl sulfate (SDS). Synergism between the composite of conducting polymer matrix and gold nanoparticles in presence of SDS for electron transfer enhancement of DA is explored. Electrochemical investigation and characterization of the modified electrode are achieved using cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron, and atomic force microscopies. The oxidation current signal of DA is remarkably stable via repeated cycles and has unique long term stability. Very small peak potential separation (ΔE p ), almost zero or 15 mV is also obtained by repeated cycles indicating unusual high reversibility. The use of SDS in the electrochemical determination of DA using linear sweep voltammetry at Au/PEDOT-Au nano modified electrode resulted in determining DA at very low concentrations. The DA concentration could be measured in the linear range of 0.5–20 μmol L −1 and 25–140 μmol L −1 with correlation coefficients of 0.9978, and 0.9987, and detection limits of 0.39 nmol L −1 and 1.55 nmol L −1 , respectively. The validity of using this method in the determination of DA in human urine was also demonstrated. It has been shown that modified electrode can be used as a sensor with high reproducibility, sensitivity, selectivity, and long term stability.

  12. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Waller, F.J.

    1997-11-01

    Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

  13. 2,3-Dimethyl-5-(2-methylpropyl)pyrazine, a trail pheromone component of Eutetramorium mocquerysi Emery (1899) (Hymenoptera: Formicidae)

    Science.gov (United States)

    Tentschert, J.; Bestmann, H.-J.; Hölldobler, B.; Heinze, J.

    The ant Eutetramorium mocquerysi (Myrmicinae) is endemic to the island of Madagascar. During foraging and nest emigration the ants lay recruitment trails with secretions from the poison gland. We identified three pyrazine compounds in the poison gland secretion: 2,3-dimethyl-5-(2-methylpropyl)pyrazine 1, 2,3-dimethyl-5-(3-methylbutyl)pyrazine 3, 2,3-dimethyl-5-(2-methylbutyl)pyrazine 4. Only the first component elicited trail-following behavior in the ants. We were unable to investigate whether the other pyrazine components have a synergistic function.

  14. Bis[6-(3,5-dimethyl-1H-pyrazol-1-ylpicolinato]nickel(II–aqua[6-(3,5-dimethyl-1H-pyrazol-1-ylpicolinic acid]dithiocyanatonickel(II (1/1

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2008-01-01

    Full Text Available In the title cocrystal, [Ni(C11H10N3O22]·[Ni(NCS2(C11H11N3O2(H2O], both NiII ions are in disorted octahedral coordination environments. One NiII ion is coordinated by four N atoms and two O atoms from two tridentate 6-(3,5-dimethyl-1H-pyrazol-1-ylpicolinate (DPP ligands, while the other NiII ion is coordinated by a tridentate 6-((3,5-dimethyl-1H-pyrazol-1-ylpicolinic acid (DPPH ligand and by two N atoms and one O atom from two thiocyanate and one water ligand, respectively. In the crystal structure, molecules are linked by intermolecular O—H...O and O—H...S hydrogen bonds, forming extended chains along [010].

  15. A novel route to synthesis of glycerol dimethyl ether from epichlorohydrin with high selectivity

    International Nuclear Information System (INIS)

    Ding, Xiaoshu; Liu, Hao; Yang, Qiusheng; Li, Naihua; Dong, Xiangmo; Wang, Shufang; Zhao, Xinqiang; Wang, Yanji

    2014-01-01

    The effective utilization of glycerol, a by-product in the production of biodiesel, into useful chemicals is desirable from the viewpoint of green chemistry. With this in mind, a novel and highly selective route to synthesizing glycerol dimethyl ether (2,3-dimethoxy-1-propanol), a potential fuel additive, from glycerol was proposed. This route uses both glycerol and methanol as starting materials, takes epichlorohydrin as an intermediate product, and utilizes HCl as a recycling agent. Hereinto, the key step of this route is the reaction between epichlorohydrin and methanol to produce 2,3-dimethoxy-1-propanol which is identified by GC–MS, ESI-MS, IR and NMR. The thermodynamics of this reaction was analyzed and the result showed that the thermodynamics of a reaction was favorable and a high product yield was expected. The effect of various parameters such as kind of acid catalyst, molar ratio of epichlorohydrin to methanol, reaction temperature and reaction time was studied. Among various acid catalysts investigated, the acidic ionic liquid [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 exhibited the highest activity and selectivity: conversion of epichlorohydrin of 100% and selectivity of 2,3-dimethoxy-1-propanol of 99% at 393 K, 10 h, an initial pressure of 0.1 MPa and a molar ratio of catalyst:ECH:CH 3 OH of 0.01:1:5. After the reaction, [HSO 3 -b-N(CH 3 ) 3 ]HSO 4 was separated by vacuum distillation and then reused for the next cycle directly. The results showed that the product selectivity remained at about 94% but the conversion of epichlorohydrin dropped to 75% after being used five times. Subsequently, a reaction mechanism for the synthesis of 2,3-dimethoxy-1-propanol from epichlorohydrin and methanol was proposed. - Highlights: • Epichlorohydrin was converted effectively into glycerol dimethyl ether used as potential fuel additive. • The selectivity of 99% and the conversion of 100% under the mild reaction condition. • The reaction was high product selectivity and

  16. Bis(5,7-dimethyl-8-hydroxyquinolinato)beryllium(II) complex as optoelectronic material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Devender, E-mail: devjakhar@gmail.com; Singh, Kapoor; Bhagwan, Shri; Saini, Raman Kumar; Kadyan, Pratap Singh; Singh, Ishwar

    2016-01-15

    Metal complex bis(5,7-dimethyl-8-hydroxyquinolinato)beryllium(II) as a light emissive material had been synthesized and characterized by various spectral techniques. The beryllium complex had high thermal stability (>250 °C) as well as high glass transition temperature (>115 °C). The prepared metal chelate had a strong photoluminescence (PL) emission at 558 nm (FWHM=72 nm) and electroluminescence (EL) at 561 nm (FWHM=55 nm) with good efficiency. Density functional theoretical calculations have been performed to demonstrate the three-dimensional geometries and the frontier molecular orbital energy levels of this metal complex. Sublimed metal chelate formed thin transparent film and found appropriate material for exploring their opto-electronic applications. OLED device was fabricated using this metal complex by vacuum deposition technique with the device configuration of ITO/TPD(30 nm)/Be-complex(30 nm)/BCP(6 nm)/Alq{sub 3}(28 nm)/LiF(1 nm)/Al(100 nm). The emitted color of the EL device showed Commission Internationale d'Eclairage (CIE) color coordinates as x=0.625, y=0.366 corresponding to greenish yellow color. The maximum luminescence of the fabricated device was reported 1364 Cd/m{sup 2} at 22 V. The maximum current efficiency and power efficiency were 1.75 Cd/A and 0.51 lm/W at 10 V respectively for the fabricated OLED device. - Highlights: • Novel greenish yellow light emitting beryllium complex with 5,7-dimethyl-8-hydroxyquinoline was prepared. • The prepared metal complex were characterized by elemental analysis, infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy ({sup 1}H NMR), thermogravimetric analysis (TGA) as well as differential scanning calorimetry (DSC) techniques. • Electron density distribution and the frontier molecular orbital energy levels of resulting metal complex were computed by density functional theory in the course of DFT/B3LYP/6-31G(d,p) studies. • Sublimed synthesized metal complex of beryllium

  17. A comparison of extracted proteins of isolates of Dermatophilus congolensis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting.

    Science.gov (United States)

    Makinde, A A; Gyles, C L

    1999-07-01

    Antigenic diversity within a collection of 18 isolates of Dermatophilus congolensis from different Continents was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blotting with sera from cattle with clinical dermatophilosis using whole cell extracts obtained by three methods and one extract of extracellular products of D. congolensis. One of the methods involving the release of a lysostaphin-solubilized protein (LSP) of whole cells of D. congolensis revealed a number of discrete and easily-identifiable bands in SDS-PAGE which were found suitable for characterizing protein patterns and was, therefore, subsequently used for a comparative analysis of the proteins of all the D. congolensis isolates. Six electropherotypes (ET) of D. congolensis were identified among the 18 isolates using the protein profiles based on the presence of four protein bands at Molecular weights (MW) 62, 28, 17.4 and 16.4 kDa. The ETs were found among isolates from different animal species and from different sources with ET1 consisting of three bovine and two equine isolates; ET2, two bovine and three ovine isolates; ET3, two bovine isolates; ET4, two bovine isolates; ET5, one bovine and one ovine isolates and ET6, two bovine isolates. Immunoblotting of the extracts of D. congolensis isolates with sera from cattle with clinical dermatophilosis infection demonstrated protein bands of MW ranging from 9 kDa to 188 kDa. Sera from chronic dermatophilosis infection demonstrated a 28 kDa protein which was immunodominant in the LSP extracts of all the 18 isolates of D. congolensis tested while sera from mild infections demonstrated mainly the 62 kDa protein in the same extracts. However, many protein bands were demonstrated in surface membrane (TSMP) and extracellular protein extracts with sera from only mildly infected animals. The protein patterns observed in all isolates of D. congolensis revealed global antigenic similarities and distinct differences

  18. Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods.

    Science.gov (United States)

    Esterman, Abbie L; Katiyar, Amit; Krishnamurthy, Girija

    2016-09-05

    Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is widely used for purity analysis of monoclonal antibody therapeutics for release and stability to demonstrate product consistency and shelf life during the manufacturing and life cycle of the product. CE-SDS method development is focused on exploring the method capability to provide the information about the product purity and product related degradants (fragmentation, aggregation etc.). In order to establish the functionality of the instrumentation, software, and sample preparation; system suitability criteria need to be defined for analytical methods using a well characterized reference standard run under the same protocol and analysis as the test articles. Typically the reference standard is produced using a manufacturing process representative of the clinical material. The qualification, control, and maintenance of in-house reference standards are established through rigorous quality and regulatory guidelines. The U.S. Pharmacopeia (USP) has developed a monoclonal IgG System Suitability Reference Standard to be utilized for assessment of system suitability in CE-SDS methods. In this communication, we evaluate the system suitability acceptance criteria performance of the USP IgG standard using two methods, the recommended USP protocol provided in monograph and a molecule specific Bristol-Myers Squibb (BMS) CE-SDS method. The results from USP IgG standard were compared with two in-house monoclonal antibody reference standards. The data suggest that the USP CE-SDS method may not be suitable for CE-SDS analysis for release and stability of monoclonal antibody therapeutics due to the high level of method induced partial reduction observed for all molecules tested. This high level of fragmentation observed utilizing the USP method will result in reporting lower purity levels, which will impact the overall quality assessment of the molecule. The system suitability criteria recommended by the USP method can be

  19. Reductions of Shiga toxin-producing Escherichia coli and Salmonella typhimurium on beef trim by lactic acid, levulinic acid, and sodium dodecyl sulfate treatments.

    Science.gov (United States)

    Zhao, Tong; Zhao, Ping; Chen, Dong; Jadeja, Ravirajsinh; Hung, Yen-Con; Doyle, Michael P

    2014-04-01

    Studies were done at 21 °C to determine the bactericidal activity of lactic acid, levulinic acid, and sodium dodecyl sulfate (SDS) applied individually and in combination on Shiga toxin-producing Escherichia coli (STEC) in pure culture and to compare the efficacy of lactic acid and levulinic acid plus SDS treatments applied by spray or immersion to inactivate STEC and Salmonella (10(7) CFU/cm2) on beef trim pieces (10 by 10 by 7.5 cm). Application of 3% lactic acid for 2 min to pure cultures was shown to reduce E. coli O26:H11, O45:H2, O111:H8, O103:H2, O121:H2, O145:NM, and O157:H7 populations by 2.1, 0.4, 0.3, 1.4, 0.3, 2.1, and 1.7 log CFU/ml, respectively. Treatment with 0.5% levulinic acid plus 0.05% SDS for 6 log/ml reduction). Beef surface temperature was found to affect the bactericidal activity of treatment with 3 % levulinic acid plus 2% SDS (LV-SDS). Treating cold (4 °C) beef trim with LV-SDS at 21, 62, or 81 °C for 30 s reduced E. coli O157:H7 by 1.0, 1.1, or 1.4 log CFU/cm2, respectively, whereas treating beef trim at 8 °C with LV-SDS at 12 °C for 0.1, 1, 3, or 5 min reduced E. coli O157:H7 by 1.4, 2.4, 2.5, or 3.3 log CFU/cm(2), respectively. Spray treatment of beef trim at 4 °C with 5 % lactic acid only reduced the E. coli O157:H7 population by 1.3 log CFU/cm2. Treating beef trim at 8 °C with LV-SDS for 1, 2, or 3 min reduced Salmonella Typhimurium by 2.1, 2.6, and >5.0 log CFU/cm2, respectively. Hand massaging the treated beef trim substantially reduced contamination of both pathogens, with no detectable E. coli O157:H7 or Salmonella Typhimurium (<5 CFU/cm2) on beef trim pieces treated with LV-SDS. Reduction of E. coli O157:H7 and Salmonella Typhimurium populations was enhanced, but bactericidal activity was affected by the meat temperature.

  20. Use of 2-mercaptopyridine for the determination of alkylating agents in complex matrices: application to dimethyl sulfate.

    Science.gov (United States)

    Hoogerheide, J G; Scott, R A

    2005-01-30

    A rapid and sensitive method for the determination of alkylating agents in complex reaction mixtures was developed and characterized. Analyses are based on the alkylation of 2-mercaptopyridine by the analyte; the derivative is separated by RP-HPLC and measured by fluorescence detection. When applied to the determination of dimethyl sulfate, the method is linear over four orders of magnitude: 0.01-10mugmL(-1). By using recrystallized 2-mercaptopyridine, quantitation limits of 10ngmL(-1) can be achieved. Precision of the assay is 2% R.S.D. in the 1-10mugmL(-1) range and about 15% R.S.D. at 10ngmL(-1). Studies on the pH dependence of the derivatization reaction were key to minimizing interference from the dimethyl sulfate degradation product, monomethyl sulfate, in quenched reaction samples.

  1. trans-Chlorido(dimethyl sulfoxide-κS(pyridine-2-carboxylato-κ2N,Oplatinum(II

    Directory of Open Access Journals (Sweden)

    Kwang Ha

    2010-03-01

    Full Text Available In the title complex, [Pt(C6H4NO2Cl(C2H6OS], the PtII ion is in a distorted square-planar environment defined by the N and O atoms from the chelating pyridine-2-carboxylate (pic anionic ligand, one S atom of the dimethyl sulfoxide molecule and one Cl ion. The complex is disposed about a crystallographic mirror plane parallel to the ac plane passing through all the atoms of the complex except the methyl atoms of the dimethyl sulfoxide. The molecules are stacked in columns along the b axis with a Pt...Pt distance of 4.9508 (5 Å. Within the column, intermolecular C—H...O hydrogen bonds and weak π–π interactions between adjacent pyridine rings are present, the shortest centroid–centroid distance being 5.153 (4 Å.

  2. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    Science.gov (United States)

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  3. N-(2,2-Dimethyl-1-(quinolin-2-yl)propylidene) arylaminonickel Complexes and Their Ethylene Oligomerization.

    Science.gov (United States)

    Suo, Hongyi; Zhao, Tong; Wang, Yiqing; Ban, Qing; Sun, Wen-Hua

    2017-04-13

    A series of N -(2,2-dimethyl-1-(quinolin-2-yl)propylidene) arylamines was sophisticatedly synthesized and reacted with nickel(II) bromine for the formation of the corresponding nickel complexes. All the organic compounds were characterized by IR, NMR spectra and elemental analysis, while all the nickel complexes were characterized by IR spectra and elemental analysis. On activation with ethylaluminium sesquichloride (EASC) and modified methylaluminoxane (MMAO), all nickel precatalysts exhibited good activities toward ethylene oligomerization, indicating the positive efficiency of gem-dimethyl substitutents; in which major hexenes were obtained with MMAO. The catalytic parameters were verified, and the steric and electronic influences of substituents with ligands were observed, with a slight change of activities under different ethylene pressures.

  4. Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil

    OpenAIRE

    Keon Hee Kim; Eun Yeol Lee

    2017-01-01

    Due to the increasing emission of carbon dioxide (CO2), the development of fuels and chemicals based on renewable resources has attracted much attention. Bio-oil, as a carbon rich material, has been considered as a feedstock for biodiesel production. In conventional methanol-mediated transesterification of bio-oil for biodiesel production, significant amounts of glycerol are being generated as a byproduct. In order to overcome these issues, dimethyl carbonate (DMC) has been recently used as a...

  5. Historical perspectives and the future of adverse reactions associated with haemopoietic stem cells cryopreserved with dimethyl sulfoxide

    DEFF Research Database (Denmark)

    Cox, Michael A; Kastrup, Jens; Hrubiško, Mikulas

    2012-01-01

    A retrospective review of the published literature identified several hundred adverse reactions (e.g. nausea, chills, cardiac arrhythmias, neurological symptoms and respiratory arrest) associated with the transplantation of stem cells cryopreserved with dimethyl sulfoxide. The occurrences...... of these are generally accepted as commonplace, as the majority of reactions are transient, whilst a few patients may require clinical treatment. This exploratory study is a collation of the historical data and the expectations for the notification of serious adverse reactions. Outline information is presented...

  6. Variation of Spectral Characteristics of Coelenteramide-Containing Fluorescent Protein from Obelia Longissima Exposed to Dimethyl Sulfoxide

    Science.gov (United States)

    Petrova, A. S.; Alieva, R. R.; Belogurova, N. V.; Tirranen, L. S.; Kudryasheva, N. S.

    2016-08-01

    Effect of dimethyl sulfoxide (DMSO), a widespread biomedical agent, on spectral-luminescent characteristics of coelenteramide-containing fluorescent protein - discharged obelin - is investigated. Contributions of violet and blue-green spectral components to fluorescence of discharged obelin are elucidated and characterized at different photoexcitation energies. Dependences of these contributions on the DMSO concentration are presented. Spectral changes are related to the destructive effect of DMSO on fluorescent protein and decreasing efficiency of proton transfer to electronically excited states of fluorophore.

  7. The effect of dimethyl fumarate (Tecfidera™) on lymphocyte counts: A potential contributor to progressive multifocal leukoencephalopathy risk.

    Science.gov (United States)

    Khatri, Bhupendra O; Garland, Jeffery; Berger, Joseph; Kramer, John; Sershon, Lisa; Olapo, Tayo; Sesing, Jean; Dukic, Mary; Rehn, Eileen

    2015-07-01

    Dimethyl fumarate (Tecfidera™) is an effective therapy for relapsing forms of multiple sclerosis (MS). Our study suggests that this drug may have immunosuppressive properties evidenced by significant sustained reduction in CD8 lymphocyte counts and, to a lesser extent, CD4 lymphocyte counts. This observation is relevant in light of the recent case of progressive multifocal leukoencephalopathy in a patient receiving this drug. Copyright © 2015. Published by Elsevier B.V.

  8. Energy-Saving Lipid Extraction from Wet Euglena gracilis by the Low-Boiling-Point Solvent Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Hideki Kanda

    2015-01-01

    Full Text Available We tested a wet extraction method for lipid extraction from Euglena gracilis water slurry at 0.51 MPa and 20 °C using liquefied dimethyl ether (DME. The yields, proximate analyses, elemental composition, and molecular weight distribution properties of the extracts from E. gracilis and the remaining residues obtained by DME extraction were compared with those of the extracts obtained by hexane Soxhlet extraction.

  9. catena-Poly[[dimethyl­tin(IV)]-μ-cis-cyclo­hexane-1,2-dicarboxyl­ato

    Science.gov (United States)

    Wang, Yuerong; Zhang, Rufen; Li, Yongxin

    2009-01-01

    The title complex, [Sn(CH3)2(C8H10O4)]n, was synthesized from cis-cyclo­hexane-1,2-dicarboxylic acid and dimethyl­tin dichloride. The complex has a bridging bis-bidentate carboxyl­ate group resulting in a zig-zag chain structure parallel to [001]. The Sn atom is six-coordinated and displays a distorted octa­hedral geometry. PMID:21582052

  10. Toxicity of the organophosphorous insecticide metamidophos (o,s-dimethyl phosphoramidothioate) to larvae of the freshwater prawn and the blue shrimp

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, L.M.; Sanchez, J. (Monterrey Institute of Technology, Sonora (Mexico))

    1989-08-01

    The organophosphorous insecticide O,S-dimethyl phosphoramidothioate (Metamidophos, Tamaron, Monitor, Hamidop) is widely used for pest control in tropical crops. If washed down to streams and estuaries its residues could adversely affect populations of commercially important crustaceans, like those of the palaemonid prawn Macrobrachium rosenbergii and the penaeid shrimp Penaeus stylirostris. This paper presents information on the toxicity of O,S-dimethyl phosphoramidothioate to larvae of M. rosenbergii and P. stylirostris.

  11. 40 CFR 721.10175 - 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd...

    Science.gov (United States)

    2010-07-01

    ...-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd. acyl) derivs., inner salts. 721.10175 Section 721... 1-Propanaminium, N-(3-aminopropyl)-2-hydroxy-N,N-dimethyl-3-sulfo-, N-(C12-18 and C18-unsatd. acyl...-18 and C18-unsatd. acyl) derivs., inner salts (PMN P-04-141; CAS No. 691400-36-9) is subject to...

  12. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  13. Simulation of a multi-stage adiabatic reactor with inter-stage quenching for dimethyl ether synthesis

    Directory of Open Access Journals (Sweden)

    Bai Ziyang

    2014-01-01

    Full Text Available Adiabatic fixed-bed reactor has proven commercially successful in large scale production of catalytic dehydration of methanol to dimethyl ether. A one dimensional pseudo-homogeneous model of an industrial reactor of dimethyl ether synthesis has been established. To verify the proposed model, the simulation results have been compared to available data from an industrial reactor. A good agreement has been found between them. The distribution of the catalyst bed temperature and concentration of each component was obtained under conditions of inlet temperature 260°C, reaction pressure 1.2MPa and gaseous hourly space velocity 950.7 h-1. With inlet catalyst bed temperature 240-280°C, operating pressure 0.6-1.8MPa and gaseous hourly space velocity 831.8-1069.5 h-1, the influence of these reaction conditions on temperature distribution of the reactor catalytic bed, outlet methanol conversion and the dimethyl ether yield were calculated. The results show that, with the rise of inlet temperature (240-280°C and operating pressure (0.6-1.8MPa, the outlet conversion of methanol, the hot spot temperature and the DME yield increased. The increase of gaseous hourly space velocity (831.8-1069.5 h-1 leads to a decrease in the hot spot temperature of catalytic bed and the outlet conversion of methanol. But the DME yield rise initially and then descend.

  14. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  15. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    International Nuclear Information System (INIS)

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-01-01

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b 1 , 6a 1 , 4b 2 , and 1a 2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A 1 , B 1 , and B 2 symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing

  16. Dimethyl sulfide emission behavior from landfill site with air and water control.

    Science.gov (United States)

    Long, Yuyang; Zhang, Siyuan; Fang, Yuan; Du, Yao; Liu, Weijia; Fang, Chengran; Shen, Dongsheng

    2017-12-01

    Municipal solid waste landfills are responsible for odors affecting the environment and human health. Dimethyl sulfide (DMS) is one of the major odorous compounds known for its low odor threshold and wide distribution. This study examined the generation, migration and emission of DMS in four artificial landfill-simulating reactors: Reactor 1 and Reactor 2, running under anaerobic and semi-aerobic conditions, respectively, without leachate recirculation; and Reactor 3 and Reactor 4, running under anaerobic and semi-aerobic conditions, respectively, with leachate recirculation. From the odor control perspective, aeration can efficiently inhibit maximum DMS headspace concentration by 31.7-93.7%, especially with the functioning of leachate recirculation. However, leachate recirculation in anaerobic conditions may double the DMS emission concentration but may also shorten the period over which DMS is effective because of the upward migration of liquid DMS in the recirculated leachate. The DMS generation was active in the acidification and methane fermentation phase of the simulated landfill and was possibly affected by the volatile fatty acid concentration, chemical oxygen demand, total organic carbon concentration and pH of the leachate, as well as total organic carbon in the refuse. Most significantly, DMS emission can be effectually dealt with by aeration along with leachate recirculation.

  17. CO₂ Recycling to Dimethyl Ether: State-of-the-Art and Perspectives.

    Science.gov (United States)

    Catizzone, Enrico; Bonura, Giuseppe; Migliori, Massimo; Frusteri, Francesco; Giordano, Girolamo

    2017-12-24

    This review reports recent achievements in dimethyl ether (DME) synthesis via CO₂ hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (bio)fuel as DME. In this view, the production of DME from catalytic hydrogenation of CO₂ appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO₂ are presented along with a survey of the most innovative catalytic systems developed in this field. During the last years, special attention has been paid to the role of zeolite-based catalysts, either in the methanol-to-DME dehydration step or in the one-pot CO₂-to-DME hydrogenation. Overall, the productivity of DME was shown to be dependent on several catalyst features, related not only to the metal-oxide phase-responsible for CO₂ activation/hydrogenation-but also to specific properties of the zeolites (i.e., topology, porosity, specific surface area, acidity, interaction with active metals, distributions of metal particles, …) influencing activity and stability of hybridized bifunctional heterogeneous catalysts. All these aspects are discussed in details, summarizing recent achievements in this research field.

  18. Innovative Catalyst Development for Synthesis of Dimethyl Ether (DME): A Renewable Diesel Substitute

    Science.gov (United States)

    Taveras, Elizabeth

    As a way to manage increasing levels of atmospheric carbon dioxide, advanced research has focused on efficient and sustainable biofuel production from catalytic carbon dioxide conversion. Furthermore, atmospheric levels of methane remain the second largest greenhouse gas emitted globally. Methane can be used as a feedstock to produce dimethyl ether (DME), a clean fuel that is a substitute for fossil diesel. Production of DME as an alternative diesel fuel is a two-step process: methanol synthesis followed by methanol dehydration. Research has shown that supported Cu-ZnO with gamma alumina is a promising catalyst for DME production. The focus of this research is catalytic dehydration of methanol over catalysts based on nano-sized Ni, Co and Cu. The catalysts were prepared by depositing nano-sized metal particles onto a mesoporous alumina support using sonolysis in a hexadecane solvent. The catalysts were separated from solution by centrifuge, dried and then evaluated for methanol dehydration reaction in a 300-mL Parr batch reactor. Initial reaction conditions were 260 ?C and 150 psig under nitrogen. The data demonstrated that Cu achieved the highest methanol conversion for DME production. DME was identified using FT-IR.

  19. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.

    2015-05-09

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  20. A Preliminary Study Of The Effect Of Some Pressurising Gasses On The Viscosity Of Dimethyl Ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2006-01-01

    -micro glass viscometers, size 25, submerged completely in a constant temperature bath. A kinematic viscosity of 0,188 cSt  0,001 cSt @ 25 C, was found, consistent with the previous and initial result 0,186 cSt   0,002 cSt. Key words: Dimethyl Ether (DME), a clean substitute for diesel oil. DME viscosity......, of glass, has been used. No significant change of the efflux time was found for all the pressurising gasses, except for the gas CO2. A reduction of efflux times was found for the CO2 of about 9 %   0,6 %. The measurement accuracy for all these series was found for this very low viscosity fluid...... to be in the range 0,2 % up to more than 1 %. The previously reported viscosity of DME has been corrected for the surface tension effect. Viscosity determination was initially based on a direct comparison of efflux times of DME with efflux times of distilled water. Assuming an upper limit for the variation...

  1. Process simulation of single-step dimethyl ether production via biomass gasification.

    Science.gov (United States)

    Ju, Fudong; Chen, Hanping; Ding, Xuejun; Yang, Haiping; Wang, Xianhua; Zhang, Shihong; Dai, Zhenghua

    2009-01-01

    In this study, we simulated the single-step process of dimethyl ether (DME) synthesis via biomass gasification using ASPEN Plus. The whole process comprised four parts: gasification, water gas shift reaction, gas purification, and single-step DME synthesis. We analyzed the influence of the oxygen/biomass and steam/biomass ratios on biomass gasification and synthesis performance. The syngas H(2)/CO ratio after water gas shift process was modulated to 1, and the syngas was then purified to remove H(2)S and CO(2), using the Rectisol process. Syngas still contained trace amounts of H(2)S and about 3% CO(2) after purification, which satisfied the synthesis demands. However, the high level of cold energy consumption was a problem during the purification process. The DME yield in this study was 0.37, assuming that the DME selectivity was 0.91 and that CO was totally converted. We performed environmental and economic analyses, and propose the development of a poly-generation process based on economic considerations.

  2. The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether

    Directory of Open Access Journals (Sweden)

    Sanaa M. Solyman

    2014-09-01

    Full Text Available The catalytic activity of modified natural kaolinite as a solid acid catalyst for dimethyl ether (DME preparation was investigated by following up the conversion% of methanol and the yield% of DME. Natural kaolinite (KN was treated chemically with H2O2 (KT followed by thermal treatment at 500 °C (KC and then mechano-chemically by ball milling with and without CaSO4 (KB-Ca and KB, respectively. These samples were characterized by XRD, FTIR, SEM, HRTEM, TGA and NH3-TPD techniques. The different techniques showed that the chemical treatment of kaolinite with H2O2 resulted in partial exfoliation/delamination of kaolinite, decreased the amount of acidic sites which is accompanied by increasing their strength. Calcination only decreased the acidic strength and slightly enlarged the particle size mostly due to heat effect. Ball milling resulted in multitude randomly-oriented crystals and increased the amount of acidic sites with the same strength of KT sample. CaSO4 mostly produced ordered monocrystalline kaolinite and created new acidic sites with slightly lower strength relative to KB. The catalytic activity and selectivity depend on the reaction temperature, the space velocity and the strength of acid sites. The most active sample is KB-Ca, which gives 84% DME due to its high amount and strength of acidic sites. The different modification methods resulted in 100% selectivity for DME.

  3. Changes in bronchoalveolar lavage cells after intratracheal instillation of dimethyl selenide in mice.

    Science.gov (United States)

    Cherdwongcharoensuk, Duangrudee; Upatham, Suchart; Oliveira, José Carlos; Sousa Pereira, António; AGuas, Artur P

    2004-01-01

    CD-1 mice were exposed to a single intratracheal instillation of either 0.025 or 0.075 mg Se/kg wt of dimethyl selenide (DMSe). They were studied over 4 weeks to define the cellular inflammatory response of the airways to DMSe. Bronchoalveolar (BAL) lavage was used to collect the DMSe-induced inflammatory exudates. The DMSe instillation resulted in phlogistic responses that had the neutrophil as the main leukocyte; they were present in BAL samples, mostly at days 1 and 7. Macrophages were also increased during DMSe-induced inflammation. The lower DMSe dose resulted in an inflammatory reaction lasting for 2 weeks. Mice treated with the higher DMSe dose still showed elevated numbers of neutrophils and macrophages 4 weeks after instillation. DMSe did not change the number of lymphocytes harvested from the airways. An early increase in total protein of BAL, and late enhancement in lactate dehydrogenase was observed in mice treated with the high DMSe dose. We conclude that inhalation of DMSe triggers a moderate and dose-dependent inflammatory reaction in the mouse airways, and that this phlogistic reaction is likely to participate in the damage of respiratory epithelia that occurs upon DMSe inhalation.

  4. Dimethyl sulfoxide and sodium bicarbonate in the treatment of refractory cancer pain.

    Science.gov (United States)

    Hoang, Ba X; Tran, Dao M; Tran, Hung Q; Nguyen, Phuong T M; Pham, Tuan D; Dang, Hong V T; Ha, Trung V; Tran, Hau D; Hoang, Cuong; Luong, Khue N; Shaw, D Graeme

    2011-01-01

    Pain is a major concern of cancer patients and a significant problem for therapy. Pain can become a predominant symptom in advanced cancers. In this open-label clinical study, the authors have treated 26 cancer patients who have been declared as terminal without the option of conventional treatment. These patients suffered from high levels of pain that was poorly managed by all available interventional approaches recommended by World Health Organization (WHO) guideline. The results indicate that intravenous infusion of dimethyl sulfoxide (DMSO) and sodium bicarbonate (SB) solution can be a viable, effective, and safe treatment for refractory pain in cancer patients. These patients had pain due to the disease progression and complication of chemotherapy and radiation. Moreover, the preliminary clinical outcome of 96-day follow-up suggests that the application of DMSO and SB solution intravenously could lead to better quality of life for patients with nontreatable terminal cancers. The data of this clinical observation indicates that further research and application of the DMSO and SB combination may help the development of an effective, safe, and inexpensive therapy to manage cancer pain.

  5. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  6. A model to predict the permeation kinetics of dimethyl sulfoxide in articular cartilage.

    Science.gov (United States)

    Yu, Xiaoyi; Chen, Guangming; Zhang, Shaozhi

    2013-02-01

    Cryopreservation of articular cartilage (AC) has excited great interest due to the practical surgical importance of this tissue. Characterization of permeation kinetics of cryoprotective agents (CPA) in AC is important for designing optimal CPA addition/removal protocols to achieve successful cryopreservation. Permeation is predominantly a mass diffusion process. Since the diffusivity is a function of temperature and concentration, analysis of the permeation problem would be greatly facilitated if a predictive method were available. This article describes, a model that was developed to predict the permeation kinetics of dimethyl sulfoxide (DMSO) in AC. The cartilage was assumed as a porous medium, and the effect(s) of composition and thermodynamic nonideality of the DMSO solution were considered in model development. The diffusion coefficient was correlated to the infinite dilution coefficients through a binary diffusion thermodynamic model. The UNIFAC model was used to evaluate the activity coefficient, the Vignes equation was employed to estimate the composition dependence of the diffusion coefficient, and the Siddiqi-Lucas correlation was applied to determine the diffusion coefficients at infinite dilution. Comparisons of the predicted overall DMSO uptake by AC with the experimental data over wide temperature and concentration ranges [1~37°C, 10~47% (w/w)] show that the model can accurately describe the permeation kinetics of DMSO in AC [coefficient of determination (R(2)): 0.961~0.996, mean relative error (MRE): 2.2~9.1%].

  7. Degradation of dimethyl disulphide in soil with or without biochar amendment.

    Science.gov (United States)

    Han, Dawei; Yan, Dongdong; Cao, Aocheng; Fang, Wensheng; Liu, Pengfei; Li, Yuan; Ouyang, Canbin; Wang, Qiuxia

    2017-09-01

    Dimethyl disulphide (DMDS) is a new and effective alternative to methyl bromide for soil fumigation. The effect of biochar on the fate of DMDS in soil is not fully understood. The objective of this study was to determine the degradation kinetics of DMDS in different soils and evaluate the effect of biochar amendment on DMDS degradation using incubation experiments. The degradation half-life of DMDS was between 1.05 and 6.66 days under non-sterile conditions, and 12.63 to 22.67 days under sterile conditions in five types of soil. Seven out of the eight tested biochar amendments (BC-2 to BC-8) delayed the degradation of DMDS in soil, increasing the half-life of DMDS in Fangshan soil from 1.05 to 1.16-5.87 days following amendment with 1% (w/w) biochar. The degradation rate of DMDS in Fangshan soil accelerated as the amendment rate of BC-1 increased, and decreased as the amendment rate of BC-7 increased. Biodegradation is an important degradation route for DMDS in soil, and DMDS degraded faster in alkaline soil. The effects of biochar amendments on DMDS degradation in soil are determined by complex multiple factors (such as surface area, pH and physicochemical composition), rather than by any single property of biochar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Study of RF-excited Diethylene Glycol Dimethyl Ether Plasmas by Mass Spectrometry

    International Nuclear Information System (INIS)

    Algatti, M A; Mota, R P; Júnior, P W P Moreira; Honda, R Y; Kayama, M E; Kostov, K G

    2012-01-01

    This paper deals with the study of the fragmentation process of diethylene glycol dimethyl ether (CH 3 O(CH 2 CH 2 O) 2 CH 3 ) (diglyme here in) molecule in low pressure RF excited plasma discharges. The study was carried out using mass spectrometry. The results showed that for a fixed pressure, the increase of the RF power coupled to the plasma chamber from 1 to 35 W produced a plasma environment much more reactive which increases the population of the ionized species like CH 2 + (15 amu), C 2 H 4 + (28 amu), CH 3 O + (31 amu), C 2 H 4 O + (44 amu), CH 3 OCH 2 CH 2 + (59 amu) and CH 3 OCH 2 CH 2 O + (75 amu). This fact may be attributed to the increase of the electronic temperature that makes predominant the occurrence of inelastic processes that promotes molecular fragmentation. For a fixed value of RF power the increase of pressure from 50 mTorr to 100 mTorr produces the decreasing of the above mentioned chemical species due the lower electronic mean free path. These results suggest that if one wants to keep the monomer's functionality within the plasma deposited films resulting from such kind of discharges one must operate in low power conditions.

  9. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia

    International Nuclear Information System (INIS)

    Jung, Kyeong Taek; Bell, Alexis T.

    2001-01-01

    The mechanism of dimethyl carbonate (DMC) synthesis from methanol and carbon dioxide over monoclinic zirconia has been investigated using in situ infrared spectroscopy. The dissociative adsorption of methanol occurs more slowly than the adsorption of carbon dioxide, but the species formed from methanol are bound more strongly. Upon adsorption, the oxygen atom of methanol binds to coordinately unsaturated Zr4+ cations present at the catalyst surface. Rapid dissociation of the adsorbed methanol leads to the formation of a methoxide group (Zr-OCH3) and the release of a proton, which reacts with a surface hydroxyl group to produce water. Carbon dioxide inserts in the Zr-O bond of the methoxide to form a mondentate methyl carbonate group (Zr-OC(O)OCH3). This process is facilitated by the interactions of C and O atoms in CO2 with Lewis acid-base pairs of sites (Zr4+O2-) on the surface of the catalyst. Methyl carbonate species can also be produced via the reaction of methanol with carbon dioxide adsorbed in the form of bicarbonate species with methanol, a process that results in the transfer of a methyl group to the carbonate and restores a hydroxyl group to the zirconia surface. The decomposition of DMC on monoclinic zirconia has also been investigated and has been observed to occur via the reverse of the processes described for the synthesis of DMC

  10. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Enrico Catizzone

    2017-12-01

    Full Text Available This review reports recent achievements in dimethyl ether (DME synthesis via CO2 hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (biofuel as DME. In this view, the production of DME from catalytic hydrogenation of CO2 appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO2 are presented along with a survey of the most innovative catalytic systems developed in this field. During the last years, special attention has been paid to the role of zeolite-based catalysts, either in the methanol-to-DME dehydration step or in the one-pot CO2-to-DME hydrogenation. Overall, the productivity of DME was shown to be dependent on several catalyst features, related not only to the metal-oxide phase—responsible for CO2 activation/hydrogenation—but also to specific properties of the zeolites (i.e., topology, porosity, specific surface area, acidity, interaction with active metals, distributions of metal particles, … influencing activity and stability of hybridized bifunctional heterogeneous catalysts. All these aspects are discussed in details, summarizing recent achievements in this research field.

  11. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    Science.gov (United States)

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intravesical Dimethyl Sulfoxide Inhibits Acute and Chronic Bladder Inflammation in Transgenic Experimental Autoimmune Cystitis Models

    Directory of Open Access Journals (Sweden)

    Ronald Kim

    2011-01-01

    Full Text Available New animal models are greatly needed in interstitial cystitis/painful bladder syndrome (IC/PBS research. We recently developed a novel transgenic cystitis model (URO-OVA mice that mimics certain key aspects of IC/PBS pathophysiology. This paper aimed to determine whether URO-OVA cystitis model was responsive to intravesical dimethyl sulfoxide (DMSO and if so identify the mechanisms of DMSO action. URO-OVA mice developed acute cystitis upon adoptive transfer of OVA-specific OT-I splenocytes. Compared to PBS-treated bladders, the bladders treated with 50% DMSO exhibited markedly reduced bladder histopathology and expression of various inflammatory factor mRNAs. Intravesical DMSO treatment also effectively inhibited bladder inflammation in a spontaneous chronic cystitis model (URO-OVA/OT-I mice. Studies further revealed that DMSO could impair effector T cells in a dose-dependent manner in vitro. Taken together, our results suggest that intravesical DMSO improves the bladder histopathology of IC/PBS patients because of its ability to interfere with multiple inflammatory and bladder cell types.

  13. Dimethyl sulfoxide (DMSO) as intravesical therapy for interstitial cystitis/bladder pain syndrome: A review.

    Science.gov (United States)

    Rawls, William F; Cox, Lindsey; Rovner, Eric S

    2017-09-01

    The purpose of this review is to update the current understanding of dimethyl sulfoxide (DMSO) and its role in the treatment of interstitial cystitis (IC). A systematic review was conducted using the PRIMSA checklist to identify published articles involving intravesical DMSO for the treatment of IC. Thirteen cohort studies and three randomized-controlled trials were identified. Response rates relying on subjective measurement scores range from 61 to 95%. No increased efficacy was found with "cocktail" DMSO therapy. Great variation existed in diagnostic criteria, DMSO instillation protocols and response measurements. The current evidence backing DMSO is a constellation of cohort studies and a single randomized-controlled trial versus placebo. The optimal dose, dwell time, type of IC most likely to respond to DMSO, definitions of success/failure and the number of treatments are not universally agreed upon. Improvements in study design, phenotyping patients based on symptoms, as well as the emergence of reliable biomarkers of the disease may better guide the use of DMSO in the future. © 2017 Wiley Periodicals, Inc.

  14. Shaping Gold Nanocrystals in Dimethyl Sulfoxide: Toward Trapezohedral and Bipyramidal Nanocrystals Enclosed by {311} Facets.

    Science.gov (United States)

    Niu, Wenxin; Duan, Yukun; Qing, Zikun; Huang, Hejin; Lu, Xianmao

    2017-04-26

    The remarkable synthetically tunable structural, electronic, and optical properties of gold nanocrystals have attracted increasing interest and enabled multidisciplinary applications. Over the past decades, nearly all the possible fundamental shapes of faceted Au nanocrystals have been synthesized, except for only one missing-the trapezohedron enclosed by {hkk} facets. In this report, the unprecedented synthesis of trapezohedral Au nanocrystals with {311} crystal facets was realized. Dimethyl sulfoxide (DMSO) was discovered as a solvent for shaping Au nanocrystals with {311} crystal facets for the first time. Mechanistic studies, together with previous DFT and STM studies, attribute the unique role of DMSO to its ambidentate nature, where both sulfur and oxygen of DMSO can coordinate to gold surface, endowing its unique role in stabilizing high-index {311} facets through a "two center bonding" mode. The DMSO-based synthesis provides a new synthetic tool toward the synthesis of a series of unreported Au nanocrystals with new structures. In particular, a new type of gold bipyramids, the octagonal bipyramids, was first synthesized with additional plasmonic tunability while simultaneously retaining their {311} facets. The application of these new Au nanocrystals in surface-enhanced Raman scattering spectroscopy was investigated, and their shape-dependent performances were demonstrated. These results highlight the tremendous potential of using ambidentate molecules as shape- and surface-directing agents for metal nanocrystals and offer the promise of enabling new synthetic tools toward atomically precise control of surface structures of metal nanocrystals.

  15. Microwave Assisted Condensation Reactions of 2-Aryl Hydrazonopropanals with Nucleophilic Reagents and Dimethyl Acetylenedicarboxylate

    Directory of Open Access Journals (Sweden)

    Rita M. Borik

    2007-08-01

    Full Text Available The reaction of methyl ketones 1a-g with dimethylformamide dimethylacetal (DMFDMA afforded the enaminones 2a-g, which were coupled with diazotized aromatic amines 3a,b to give the corresponding aryl hydrazones 6a-h. Condensation of compounds 6a-h with some aromatic heterocyclic amines afforded iminoarylhydrazones 9a-m. Enaminoazo compounds 12a,b could be obtained from condensation of 6c with secondary amines. The reaction of 6e,h with benzotriazolylacetone yielded 14a,b. Also, the reaction of 6a,b,d-f,h with glycine and hippuric acid in acetic anhydride afforded pyridazinone derivatives 17a-f. Synthesis of pyridazine carboxylic acid derivatives 22a,b from the reaction of 6b,e with dimethyl acetylenedicarboxylate (DMAD in the presence of triphenylphosphine at room temperature is also reported. Most of these reactions were conducted under irradiation in a microwave oven in the absence of solvent in an attempt to improve the product yields and to reduce the reaction times.

  16. Surface conjugation of poly (dimethyl siloxane) with itaconic acid-based materials for antibacterial effects

    Science.gov (United States)

    Birajdar, Mallinath S.; Cho, Hyunjoo; Seo, Youngmin; Choi, Jonghoon; Park, Hansoo

    2018-04-01

    Poly (dimethyl siloxane) (PDMS) is widely used in various biomedical applications. However, the PDMS surface is known to cause bacterial adhesion and protein absorption issues due to its high hydrophobicity. Therefore, the development of antibacterial and anti-protein products is necessary to prevent these problems. In this study, to improve its antibacterial property and prevent protein adsorption, PDMS surfaces were conjugated with itaconic acid (IA) and poly (itaconic acid) (PIA) via a chemical method. Additionally, IA and PIA were physically blended with PDMS to compare the antibacterial properties of these materials with those of the chemically conjugated PDMS surfaces. The successful synthesis of the PIA polymer structure was confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy. The successful conjugation of IA and PIA on PDMS was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle measurements, and microbicinchoninic acid (BCA) protein assay analyses. The PDMS surfaces functionalized with IA and PIA by the conjugation method better prevented protein adsorption than the bare PDMS. Therefore, these surface-conjugated PDMS can be used in various biomedical applications.

  17. Poly (dimethyl siloxane) micro/nanostructure replication using proton beam written masters

    International Nuclear Information System (INIS)

    Shao, P.G.; Kan, J.A. van; Ansari, K.; Bettiol, A.A.; Watt, F.

    2007-01-01

    Proton beam writing (PBW) has been proven to be a powerful tool for fabricating micro and nanostructures with high aspect ratio. However, being a direct-write technique, and therefore, a serial process, PBW is not economic for low cost multiple component production. Techniques for replicating PBW structures with low cost are necessary for applications in for example nanofluidics, tissue engineering and optical devices. We have investigated casting poly (dimethyl siloxane) (PDMS Sylgard 184, Dow Corning Corp.) with PBW structures as masters. First, a 2MeV focused H 2 + beam was written into a 2μm thick PMMA layer spin coated onto 50μm thick Kapton film substrate. Next, these PMMA structures, with details down to 700nm, were replicated with PDMS. Without any release coating treatment, PDMS circular pillars, 700nm in diameter were successfully replicated. We also fabricated a nickel master with nanofeature dimensions and 2μm depth using proton beam writing and sulfamate electroplating. The nickel master was used to successfully replicate a prototype DNA separation chip using PDMS

  18. Study on calcination of bi-layered films produced by anodizing iron in dimethyl sulfoxide electrolyte

    International Nuclear Information System (INIS)

    Jagminas, Arūnas; Klimas, Vaclovas; Mažeika, Kęstutis; Mickevičius, Sigitas; Balakauskas, Saulius

    2012-01-01

    Research on well adherent, thick and nanoporous oxide film formation onto the metal substrates underwent a major burst throughout the last decade. In the current study, thick bi-layered films produced onto a pure iron surface by anodizing way in dimethyl sulfoxide (DMSO) electrolyte containing silica hexafluoride acid have been investigated upon the annealing in air. Compositional, phase and structural transformations of the film material to hematite, α-Fe 2 O 3 , were studied using Mössbauer spectroscopy at room to cryogenic temperatures, thermogravimetry (TG), differential thermal analysis (DTA), photoemission spectroscopy, scanning electron microscopy (SEM), and wave dispersive X-ray spectroscopy (WDX). Experimental findings indicated that much longer heating in air is required for these films to be fully transformed to hematite. This effect is linked here with the complex nature of DMSO films. Based on the combined WDX, photoemission and Mössbauer spectroscopy results, the transformations taken place during calcination of such amorphous films by heat-treatment in air to crystalline hematite have been determined. Investigations on the calcination effects of thick iron anodic films reported here offer opportunities for both fundamental research and practical applications.

  19. Capability of the Direct Dimethyl Ether Synthesis Process for the Conversion of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Ainara Ateka

    2018-04-01

    Full Text Available The direct synthesis of dimethyl ether (DME is an ideal process to achieve the environmental objective of CO2 conversion together with the economic objective of DME production. The effect of the reaction conditions (temperature, pressure, space time and feed composition (ternary mixtures of H2 + CO + CO2 with different CO2/CO and H2/COx molar ratios on the reaction indices (COx conversion, product yield and selectivity, CO2 conversion has been studied by means of experiments carried out in a fixed-bed reactor, with a CuO-ZnO-MnO/SAPO-18 catalyst, in order to establish suitable ranges of operating conditions for enhancing the individual objectives of CO2 conversion and DME yield. The optimums of these two objectives are achieved in opposite conditions, and for striking a good balance between both objectives, the following conditions are suitable: 275–300 °C; 20–30 bar; 2.5–5 gcat h (molC−1 and a H2/COx molar ratio in the feed of 3. CO2/CO molar ratio in the feed is of great importance. Ratios below 1/3 are suitable for enhancing DME production, whereas CO2/CO ratios above 1 improve the conversion of CO2. This conversion of CO2 in the overall process of DME synthesis is favored by the reverse water gas shift equation, since CO is more active than CO2 in the methanol synthesis reaction.

  20. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    Science.gov (United States)

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Adsorption of dimethyl trisulfide from aqueous solution on a low-cost adsorbent: thermally activated pinecone

    Science.gov (United States)

    Shang, Jingge; He, Wei; Fan, Chengxin

    2015-01-01

    Thermally activated pinecone (TAP) was used for the adsorption of dimethyl trisulfide (DMTS) from aqueous solutions, which was proved to be the main odorous in algae-caused black bloom. The effects of adsorbent dosage, adsorbate concentration and contact time on DMTS biosorption were studied. The TAP produced at 600°C exhibited a relatively high surface area (519.69 m2/g) and excellent adsorption capacity. The results show that the adsorption of DMTS was initially fast and that the equilibrium time was 6 h. Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity. The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of DMTS is more appropriately described by the Freundlich isotherm ( R 2 =0.996 1) than by the Langmuir isotherm ( R 2 =0.916 9). The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.

  2. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W. B.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  3. Neuroprotective dimethyl fumarate synergizes with immunomodulatory interferon beta to provide enhanced axon protection in autoimmune neuroinflammation.

    Science.gov (United States)

    Reick, Christiane; Ellrichmann, Gisa; Thöne, Jan; Scannevin, Robert H; Saft, Carsten; Linker, Ralf A; Gold, Ralf

    2014-07-01

    Despite recent advances in development of treatments for multiple sclerosis, there is still an unmet need for more effective and also safe therapies. Based on the modes of action of interferon-beta (IFN-β) and dimethyl fumarate (DMF), we hypothesized that anti-inflammatory and neuroprotective effects may synergize in experimental autoimmune encephalomyelitis (EAE). EAE was induced in C57BL/6 mice by immunization with MOG35-55-peptide. Murine IFN-β was injected s.c. every other day at 10.000IU, and DMF was provided at 15mg/kg by oral gavage twice daily. Control mice received PBS injections and were treated by oral gavage with the vehicle methylcellulose. Mice were scored daily by blinded observers and histological, FACS and cytokine studies were performed to further elucidate the underlying mechanism of action. Combination therapy significantly ameliorated EAE disease course in comparison to controls and monotherapy with IFN-β. Histological analyses showed a significant effect on axon preservation with almost twice as much axons present in inflamed lesions as compared to control. Remarkably, the effect on axonal preservation was more pronounced under combination therapy than with both monotherapies. Neither monotherapy nor combination therapy demonstrated modulation of cytokines and frequency of antigen presenting cells. Combination of IFN-β and DMF resulted in greater beneficial effects with improved tissue protection as compared to the respective monotherapies. Further combination studies of these safe therapies in human disease are warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    Science.gov (United States)

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-01

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  5. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-11-01

    Full Text Available A hierarchical zeolite CaA with microporous, mesoporous and macroporous structure was hydrothermally synthesized by a ”Bond-Blocking” method using organo-functionalized mesoporous silica (MS as a silica source. The characterization by XRD, SEM/TEM and N2 adsorption/desorption techniques showed that the prepared material had well-crystalline zeolite Linde Type A (LTA topological structure, microspherical particle morphologies, and hierarchically intracrystalline micro-meso-macropores structure. With the Bond-Blocking principle, the external surface area and macro-mesoporosity of the hierarchical zeolite CaA can be adjusted by varying the organo-functionalized degree of the mesoporous silica surface. Similarly, the distribution of the micro-meso-macroporous structure in the zeolite CaA can be controlled purposely. Compared with the conventional microporous zeolite CaA, the hierarchical zeolite CaA as a catalyst in the conversion of methanol to dimethyl ether (DME, exhibited complete DME selectivity and stable catalytic activity with high methanol conversion. The catalytic performances of the hierarchical zeolite CaA results clearly from the micro-meso-macroporous structure, improving diffusion properties, favoring the access to the active surface and avoiding secondary reactions (no hydrocarbon products were detected after 3 h of reaction.

  6. Lack of effect of deferoxamine, dimethyl sulfoxide, and catalase on monocrotaline pyrrole pulmonary injury

    International Nuclear Information System (INIS)

    Bruner, L.H.; Johnson, K.; Carpenter, L.J.; Roth, R.A.

    1987-01-01

    Monocrotaline pyrrole (MCTP) is a reactive metabolite of the pyrrolizidine alkaloid monocrotaline. MCTP given intravenously to rats causes pulmonary hypertension and right ventricular hypertrophy. Lesions in lungs after MCTP treatment contain macrophages and neutrophils, which may contribute to the damage by generation of reactive oxygen metabolites. Rats were treated with MCTP and agents known to protect against oxygen radical-mediated damage in acute models of neutrophil-dependent lung injury. Rats received MCTP and deferoxamine mesylate (DF), dimethyl sulfoxide (DMSO), or polyethylene glycol-coupled catalase (PEG-CAT). MCTP/vehicle-treated controls developed lung injury manifested as increased lung weight, release of lactate dehydrogenase into the airway, and sequestration of 125 I-labeled bovine serum albumin in the lungs. Cotreatment of rats with DF, DMSO, or PEG-CAT did not protect against the injury due to MCTP. These results suggest that toxic oxygen metabolites do not play an important role in the pathogenesis of MCTP-induced pulmonary injury

  7. Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

    International Nuclear Information System (INIS)

    Adhikary, Keshab Kumar; Lee, Hai Whang

    2011-01-01

    Kinetic studies of the reactions of N-methyl-Y-α-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at 25.0 .deg. C. The Hammett plots for substituent X variations in the nucleophiles (log k N vs σ X ) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log k N vs pK a ) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log k N vs σ Y ) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant ρ XY values are all negative: ρ XY = -0.32 for X = Y = electron-donating: -0.22 for X = electron-withdrawing and Y = electron-donating: -1.80 for X = electron-donating and Y = electronwithdrawing: -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal (k H /k D > 1) for Y = electron-donating, while secondary inverse (k H /k D < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-α-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the α-carbon for Y = electronwithdrawing substituents

  8. Recovery of Bio-Oil from Industrial Food Waste by Liquefied Dimethyl Ether for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Kiyoshi Sakuragi

    2016-02-01

    Full Text Available The development of new energy sources has become particularly important from the perspective of energy security and environmental protection. Therefore, the utilization of waste resources such as industrial food wastes (IFWs in energy production is expected. The central research institute of electric power industry (CRIEPI, Tokyo, Japan has recently developed an energy-saving oil-extraction technique involving the use of liquefied dimethyl ether (DME, which is an environmentally friendly solvent. In this study, three common IFWs (spent coffee grounds, soybean, and rapeseed cakes were evaluated with respect to oil yield for biodiesel fuel (BDF production by the DME extraction method. The coffee grounds were found to contain 16.8% bio-oil, whereas the soybean and rapeseed cakes contained only approximately 0.97% and 2.6% bio-oil, respectively. The recovered oils were qualitatively analysed by gas chromatography-mass spectrometry. The properties of fatty acid methyl esters derived from coffee oil, such as kinematic viscosity, pour point, and higher heating value (HHV, were also determined. Coffee grounds had the highest oil content and could be used as biofuel. In addition, the robust oil extraction capability of DME indicates that it may be a favourable alternative to conventional oil extraction solvents.

  9. Thermophysical properties of 2,2,2-trifluoroethanol + tetraethylene glycol dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.; Olive, F.; Zhu, S.; Shen, S.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Mechanical Engineering

    1999-07-01

    Isothermal P,x data from 303.15 K to 423.15 K, liquid densities from 283.15 K to 423.15 K, and dynamic viscosities from 343.15 K to 393.15 K for the binary system 2,2,2-trifluoroethanol + tetraethylene glycol dimethyl ether were measured. The vapor-liquid equilibrium (VLE) data were measured. The vapor-liquid equilibrium (VLE) data were measured using a static apparatus. VLE data were correlated by the five-parameter NRTL equation, while density and kinematic viscosity data were correlated with temperature and liquid composition using empirical equations. The viscosity data used in the correlation cover the range of 293.15--393.15 K. VLE data indicate that this binary system exhibits large negative deviations from Raoult`s law. These mixtures present large exothermic excess molar enthalpies. The excess molar enthalpy calculated using the Gibbs-Helmholtz equation and the NRTL parameters was compared with experimental data existing in the literature.

  10. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes.

    Directory of Open Access Journals (Sweden)

    Chan Yuan

    Full Text Available Dimethyl sulfoxide (DMSO is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.

  11. Thermodynamic parameters of the complexation of uranyl(VI) by diethylenetriamine in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Cassol, A.; Bernardo, P. di; Portanova, R.; Tolazzi, M.; Tomat, G.; Zanonato, P.L.

    1993-01-01

    The changes in free energy, enthalpy, and entropy for the complex formation reactions between uranyl(VI) ion and diethylenetriamine (dien) in dimethyl sulfoxide have been determined by potentiometric and calorimetric measurements at 25 C in a medium of ionic strength 0.1 mol dm -3 . The amine forms a very stable 1:1 complex which results stabilized only by the highly favourable enthalpy change. Entropy change is negative and opposes the reaction. The comparison of the thermodynamic data concerning complexation of uranyl(VI) by charged and uncharged ligands reveals that in this case (uncharged ligand) the enthalpy contribution is mainly related to the formation of the metal-ligand bonds while the entropy term might be associated with the decrease in the translational and conformational entropy occurring in the complexation of the ligand. FTIR and calorimetric measurements have been carried out to study the effect of traces of water on the equilibria in solution. It has been found that water can interfere in the complexation reaction giving rise to the formation of a dinuclear hydroxo complex in which probably two μ 2 -OH bridges link two monomer moieties. (orig.)

  12. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.

    Science.gov (United States)

    Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin

    2013-03-19

    Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.

  13. Malignant lymphomas (including myeloproliferative disorders)

    International Nuclear Information System (INIS)

    Todd, I.D.H.

    1985-01-01

    This chapter deals with the radiotherapy and cytotoxic chemotherapy of the malignant lymphomas. Included within this group are Hodgkin's disease, non-Hodgkin's lymphoma, mycosis fungoides, and chronic lymphatic leukaemia. A further section deals with the myeloproliferative disorders, including granulocytic leukaemia, polycythaemia vera, and primary thrombocythaemia. Excluded are myeloma and reticulum cell sarcoma of bone and acute leukaemia. With regard to Hodgkin's disease, the past 25 years have seen general recognition of the curative potential of radiotherapy, at least in the local stages, and, more recently, awareness of the ability to achieve long-term survival after combination chemotherapy in generalised or in recurrent disease. At the same time the importance of staging has become appreciated and the introduction of procedures such as lymphography, staging laparotomy, and computer tomography (CT) has enormously increased its reliability. Advances have not been so dramatic in the complex group of non-Hodgkins's lymphomas, but are still very real

  14. Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Tianfeng; Lu, Xiaofeng; Wang, Quanhai; Huang, Xiaomei; Peng, Shini; Yang, Dong; Ji, Xuanyu; Song, Yangfan

    2016-01-01

    Highlights: • Oxygen content in the flame base increased due to the prolonged ignition delay time. • Flow field in the furnace affected thermal/chemical structure of the flame partially. • Preheating and dilution facilitated moderate or intense low-oxygen dilution regime. • Dominant pollutant formation ways of dimethyl ether in hot dilution were clarified. • Preheating and dilution reduced nitrogen oxide emission of dimethyl ether. - Abstract: Experiments and numerical simulations were conducted in this paper to study the combustion behavior of dimethyl ether in the moderate or intense low-oxygen dilution regime, in terms of thermal/chemical structure and chemical kinetics associated with nitrogen oxide and carbon monoxide emissions. Several co-flow temperatures and oxygen concentrations were involved in the experiments to investigate their impacts on the flame behavior systematically. The results show that in the moderate or intense low-oxygen dilution regime, oxygen concentrations in the flame base slightly increased because of the prolonged ignition delay time of the reactant mixture due to oxidizer dilution, which changed the local combustion process and composition considerably. The oxidation rates of hydrocarbons were significantly depressed in the moderate or intense low-oxygen dilution regime, such that a fraction of unburned hydrocarbons at the furnace outlet were recirculated into the outer annulus of the furnace, which changed the local radial profiles of carbon monoxide, methane, and hydrogen partially. Moreover, with the increment in co-flow temperature or oxygen mole fraction, flame temperature, and hydroxyl radical, carbon monoxide, and hydrogen mole fractions across the reaction zone increased gradually. For the dimethyl ether-moderate or intense low-oxygen dilution flame, temperature homogeneity was improved at higher co-flow temperature or lower oxygen mole fraction. The carbon monoxide emission depended on the levels of temperature and

  15. Development of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis reference method for the analysis and identification of fish species in raw and heat-processed samples : A collaborative study

    DEFF Research Database (Denmark)

    Pineiro, C.; Barros-Velazquez, J.; Perez-Martin, R.I.

    1999-01-01

    A collaborative study was carried out in seven European labs with the aim of achieving a sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) standard operation procedure to identify fish species in raw and cooked samples. Urea and SDS-containing solutions were evaluated...... as extractants. Several preelectrophoretic operations - such as treatment with RNase/DNase, ultrafiltration and desalting - and up to ten types of gels and three SDS-PAGE systems were considered. The SDS-containing solution allowed a higher protein extractability than urea. Unlike urea extraction, SDS extraction...

  16. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of cantilever arms (12) contacting the surface of the test sample when performing the movement....... arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area...

  17. Dimethyl adipimidate/Thin film Sample processing (DTS); A simple, low-cost, and versatile nucleic acid extraction assay for downstream analysis.

    Science.gov (United States)

    Shin, Yong; Lim, Swee Yin; Lee, Tae Yoon; Park, Mi Kyoung

    2015-09-15

    Sample processing, especially that involving nucleic acid extraction, is a prerequisite step for the isolation of high quantities of relatively pure DNA for downstream analyses in many life science and biomedical engineering studies. However, existing methods still have major problems, including labor-intensive time-consuming methods and high costs, as well as requirements for a centrifuge and the complex fabrication of filters and membranes. Here, we first report a versatile Dimethyl adipimidate/Thin film based Sample processing (DTS) procedure without the limitations of existing methods. This procedure is useful for the extraction of DNA from a variety of sources, including 6 eukaryotic cells, 6 bacteria cells, and 2 body fluids in a single step. Specifically, the DTS procedure does not require a centrifuge and has improved time efficiency (30 min), affordability, and sensitivity in downstream analysis. We validated the DTS procedure for the extraction of DNA from human body fluids, as well as confirmed that the quality and quantity of the extracted DNA were sufficient to allow robust detection of genetic and epigenetic biomarkers in downstream analysis.

  18. Oral Decontamination of Orthodontic Patients Using Photodynamic Therapy Mediated by Blue-Light Irradiation and Curcumin Associated with Sodium Dodecyl Sulfate.

    Science.gov (United States)

    Panhóca, Vitor Hugo; Esteban Florez, Fernando Luis; Corrêa, Thaila Quatrini; Paolillo, Fernanda Rossi; de Souza, Clovis Wesley Oliveira; Bagnato, Vanderlei Salvador

    2016-09-01

    The aim of this study was to investigate the effects of the antimicrobial photodynamic therapy (aPDT) using the association of curcumin with the surfactant sodium dodecyl sulfate (SDS) for oral decontamination in orthodontic patients. The installation of the orthodontic appliances promotes an increase in the retentive area that is available for microbial aggregation and makes difficult the oral health promotion. However, aPDT is one possible approach that is used for the reduction of oral microbial load. Twenty-four patients (n = 24) were randomly distributed into four groups: Light group: which was treated only with the blue light, no drug; PDT group, which was treated with curcumin and blue light; PDT + S group, which was treated with curcumin plus surfactant and irradiated with blue light; and Chlorhex group, which was treated with chlorhexidine. The photosensitizer agent was prepared by adding 0.1% of SDS to a curcumin solution of 1 g/L. Two distinct LED devices emitting blue light (450 ± 10 nm) were used as follows: extra-oral irradiation (200 mW, 80 mW/cm(2), 36 J and 14 J/cm(2)) and intra-oral irradiation (1200 mW, 472 mW/cm(2), 216 J and 85 J/cm(2)).The collection of nonstimulated saliva (n = 3; 3 mL/collection) was performed at the following steps: (1) immediately before swishing (curcumin, chlorhexidine, or water); (2) after swishing; and (3) after performing aPDT treatments. The colony-forming units (CFU) were counted visually, and the values were adjusted to CFU/mL. There was significant Log reduction for PDT (from 6.33 ± 0.92 to 5.78 ± 0.96, p < 0.05), PDT + S (from 5.44 ± 0.94 to 3.83 ± 0.71, p < 0.01), and Chlorhex (from 5.89 ± 0.97 to 2.55 ± 1.80, p < 0.01) groups. The survival rate was significantly reduced in both PDT + S and Chlorhex groups compared with all situations (p < 0.05). However, there was no significant difference between PDT + S and

  19. Effectiveness of levulinic acid and sodium dodecyl sulfate employed as a sanitizer during harvest or packing of cantaloupes contaminated with Salmonella Poona.

    Science.gov (United States)

    Webb, Cathy C; Erickson, Marilyn C; Davey, Lindsey E; Doyle, Michael P

    2015-08-17

    Freshly harvested Eastern variety cantaloupes (Cucumis melo L. var. reticulatus cv. Athena) were subjected to three different harvest and wash treatments to examine conditions under which the efficacy of the sanitizer, levulinic acid (LV) plus sodium dodecyl sulfate (SDS), could be enhanced to reduce Salmonella contamination. In treatment set one, cantaloupes were spot inoculated with Salmonella enterica serovar Poona (prepared from solid or liquid media cultures) before or after a 1-min dip treatment in LV (2.5, 5.0, 7.5, or 10%) and 2.5% SDS. S. Poona initial populations on rind tissue (4.26-5.04 log CFU/sample) were reduced to detection by enrichment culture when cantaloupes were subsequently exposed to any of the LV/SDS solutions. When S. Poona was introduced after cantaloupes had been dip-treated, greater decreases in pathogen populations at the stem scar were observed when cantaloupes were treated with increasing concentrations of LV. In treatment set two, the response of S. Poona dip-treated with 5% LV/2.5% SDS was compared to a simulated commercial dump tank treatment incorporating 200 ppm chlorine as well as a two-stage treatment employing both the chlorine tank and LV/SDS dip treatments. S. Poona levels (log CFU/sample or # positive by enrichment culture/# analyzed) after treatments were 5.25, 3.07, 7/10, 5/10 (stem scar) and 3.90, 25/40, 28/40, 20/40 (rind) for non-treated, chlorine tank, LV/SDS dip, and tank plus dip treatments, respectively. In treatment set three, freshly harvested cantaloupes were first treated in the field using a needle-free stem scar injection (200 μl, 7.5% LV/1.0% SDS, 60 psi) and a cantaloupe spray (30 ml, 7.5% LV/0.5% SDS). Cantaloupe stem scar and rind tissue were then spot-inoculated with S. Poona using either a liquid or soil-based medium followed by a simulated dump tank treatment incorporating either 200 ppm chlorine or 5% LV/2% SDS. S. Poona inoculated on field-treated cantaloupe rind decreased by 4.7 and 5.31 (liquid

  20. Tocolytic action and underlying mechanism of galetin 3,6-dimethyl ether on rat uterus.

    Science.gov (United States)

    Carreiro, Juliana da Nóbrega; Souza, Iara Leão Luna de; Pereira, Joedna Cavalcante; Vasconcelos, Luiz Henrique César; Travassos, Rafael de Almeida; Santos, Barbara Viviana de Oliveira; Silva, Bagnólia Araújo da

    2017-12-02

    Galetin 3,6-dimethyl ether (FGAL) is a flavonoid isolated from aerial parts of Piptadenia stipulacea. Previously, FGAL was shown to inhibit both carbachol- and oxytocin-induced phasic contractions in the rat uterus, which was more potent with oxytocin. Thus, in this study, we aimed to investigate the tocolytic action mechanism of FGAL on the rat uterus. Segments of rat uterus ileum were suspended in organ bath containing modified Locke-Ringer solution at 32 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer. FGAL was more potent in relaxing uterus pre-contracted with oxytocin than with KCl. Additionally, FGAL shifted oxytocin-induced cumulative contractions curves to the right in a non-parallel manner, with E max reduction, indicating a pseudo-irreversible noncompetitive antagonism of oxytocin receptors (OTR) or a downstream pathway target. Moreover, FGAL shifted CaCl 2 -induced cumulative contraction curves to the right in a non-parallel manner in depolarizing medium, nominally without Ca 2+ , with E max reduction, suggesting the inhibition of Ca 2+ influx through Ca V . The relaxant potency of FGAL was reduced by CsCl, a non-selective K + channel blocker, suggesting positive modulation of these channels. Furthermore, in presence of apamin, 4-aminopyridine, glibenclamide or 1 mM TEA + , the relaxant potency of FGAL was attenuated, indicating the participation of SK Ca , K V , K ATP and highlighting BK Ca . Aminophylline, a non-selective phosphodiesterase (PDE) blocker, did not affect the FGAL relaxant potency, excluding the modulation of cyclic nucleotide PDEs pathway by FGAL. Tocolytic effect of FGAL on rat uterus occurs by pseudo-irreversible noncompetitive antagonism of OTR and activation of K + channels, primarily BK Ca , leading to calcium influx reduction through Ca V .

  1. Pancreatic excretion of 5, 5-dimethyl-2, 4-oxazolidinedione in normal subjects.

    Science.gov (United States)

    Noda, A; Hayakawa, T; Nakajima, S; Suzuki, T; Toda, Y

    1975-11-01

    Pancreatic excretion of 5,5-dimethyl-2,4-oxazolidinedione (DMO) was studied in 25 normal subjects using the technique of the traditional pancreatic secretory test. The pancreozymin-secretin test was performed 4 days after the oral administration of trimethadione (3,5,5-trimethyl-2,4-oxazolidinedione, the precursor of DMO) for 3 consecutive days. When a dose of 1 unit/kg of pancreozymin was administered intravenously, both DMO concentration and output of a 10-min fractional specimen were rapidly increased and then decreased gradually. When a dose of 1 unit/kg of secretin was injected 30 min after pancreozymin, DMO concentration in duodenal aspirate showed no significant alteration, while DMO output of the aspirate was remarkably increased and then diminished in parallel to flow rate. DMO concentration in plasma varied widely from subject to subject, but was fairly constant during the course of the test in the same subject. Total DMO output in the postpancreozymin 30-min and postsecretin 60-min periods was linearly related to plasma DMO concentration. The output of DMO, when expressed as the output at a level of 10 mg/100 ml of plasma DMO, was linearly related to secretory volume and bicarbonate and amylase outputs in the postsecretin period. These results led to the conclusion that the human pancreas was capable of excreting a week organic acid of DMO with a molecular weight of 129.1 and that the excretion of DMO in normal subjects was a funciton of two factors: plasma DMO concentration and pancreatic secretory volume.

  2. Hydroxymethylnitrofurazone:dimethyl-beta-cyclodextrin inclusion complex: a physical-chemistry characterization.

    Science.gov (United States)

    Grillo, Renato; Melo, Nathalie Ferreira Silva; Moraes, Carolina Morales; Rosa, André Henrique; Roveda, José Arnaldo Frutuoso; Menezes, Carla M S; Ferreira, Elizabeth Igne; Fraceto, Leonardo Fernandes

    2007-12-01

    Hydroxymethylnitrofurazone (NFOH) is active against Trypanosoma cruzi; however, its low solubility and high toxicity precludes its current use in treatment of parasitosis. Cyclodextrin can be used as a drug carrier system, as it is able to form inclusion (host-guest) complexes with a wide variety of organic (guest) molecules. Several reports have shown the interesting use of modified beta-cyclodextrins in pharmaceutical formulation, to improve the bioavailability of drugs and to decrease their toxicity. The aim of this work was to characterize inclusion complexes formed between NFOH and dimethyl-beta-cyclodextrin (DM-beta-CD) by complexation/release kinetics and solubility isotherm experiments using ultraviolet (UV)-visible spectrophotometry and by the measurement of the dynamics information obtained from T(1) relaxation times and diffusion (DOSY) experiments using nuclear magnetic resonance (NMR) spectroscopy. The complex was prepared at different NFOH and DM-beta-CD molar ratios. The UV-visible measurements were recorded in a spectrophotometer, and NMR experiments were recorded at 20 degrees C on a NMR spectrometer (Varian Inova) operating at 500 MHz. Longitudinal relaxation times were obtained by the conventional inversion-recovery method and the DOSY experiments were carried out using the BPPSTE sequence. The kinetics of complexation revealed that 30 h is enough for stabilization of the NFOH absorbance in presence of cyclodextrin. Solubility isotherm studies show a favorable complexation and increase in solubility when NFOH interacts with cyclodextrin. The analysis of the NMR-derived diffusion coefficients and T(1) relaxation times shows that in the presence of DM-beta-CD, NFOH decreases its mobility in solution, indicating that this antichagasic compound interacts with the cyclodextrin cavity. The release kinetics assays showed that NFOH changes its release profile when in the presence of cyclodextrin due to complexation. This study was focused on the

  3. Environmental assessment of an alkyl dimethyl benyzl ammonium chloride (ADBAC) based mollusicide using laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, M.G.; Cherry, D.S.; Scott, J.C. [Virginia Tech, Blacksburg, VA (United States); Petrille, J.C. [Betz Water Management Center, Trevose, PA (United States)

    1995-06-01

    A series of acute and chronic toxicity tests were conducted to estimate the potential environmental impact of n-alkyl dimethyl benzyl ammonium chloride (ADBAC) when used to control zebra mussels and other types of macrofouling organism in industrial cooling systems. The ADBAC-based molluscicide was tested as pure product and often detoxification with bentonite clay. Six flow-through acute tests were conducted to estimate the toxicity of ADBAC. In addition three chronic toxicity tests using Pimephales promelas, Daphnia magna and Selenastrum capricornutum were carried out to evaluate the efficacy of complexing the ADBAC-based molluscicide with a bentonite clay as a detoxification strategy. A 29-day CO{sub 2} Production test was also conducted to evaluate the biodegradability of the molluscicide. Of the six species tested in acute flow-through experiments, D. magna (LC{sub 50} = 0.02 mg ADBAC/L) was the most sensitive species followed by Mysidopsis bahia (LC{sub 50} = 0.08 mg ADBAC/L), Menidia beryllina (LC{sub 50} = 0.88 mg ADBAC/L), P. promelas (LC{sub 50} = 0.36 mg ADBAC/L), Cyprinodon variegatus (LC{sub 50} = 0.88 mg ADBAC/L), and Oncorhynchus mykiss (LC{sub 50} = 1.01 mg ADBAC/L). In the detoxification studies the three test species were exposed to treatment levels of: 0:0, 2.5:0, 2.5:25, 2.5:37.5, 2.5:50, 2.5:75, and 0:75 as mg/L ADBAC:clay. Bentonite clay was found to be an effective detoxification agent for this molluscicide at all treatment levels, except for the 2.5:25 treatment. In addition, a biodegradation study showed that the ADBAC-based molluscicide was readily biodegradable by unacclimated activated sludge microorganisms releasing 65.9% of the theoretical possible CO{sub 2} after 29 days.

  4. Boundary layer and free-tropospheric dimethyl sulfide in the Arctic spring and summer

    Science.gov (United States)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Croft, Betty; Martin, Randall V.; Pierce, Jeffrey R.; Burkart, Julia; Rempillo, Ofelia; Bozem, Heiko; Kunkel, Daniel; Thomas, Jennie L.; Aliabadi, Amir A.; Wentworth, Gregory R.; Levasseur, Maurice; Staebler, Ralf M.; Sharma, Sangeeta; Leaitch, W. Richard

    2017-07-01

    Vertical distributions of atmospheric dimethyl sulfide (DMS(g)) were sampled aboard the research aircraft Polar 6 near Lancaster Sound, Nunavut, Canada, in July 2014 and on pan-Arctic flights in April 2015 that started from Longyearbyen, Spitzbergen, and passed through Alert and Eureka, Nunavut, and Inuvik, Northwest Territories. Larger mean DMS(g) mixing ratios were present during April 2015 (campaign mean of 116 ± 8 pptv) compared to July 2014 (campaign mean of 20 ± 6 pptv). During July 2014, the largest mixing ratios were found near the surface over the ice edge and open water. DMS(g) mixing ratios decreased with altitude up to about 3 km. During April 2015, profiles of DMS(g) were more uniform with height and some profiles showed an increase with altitude. DMS reached as high as 100 pptv near 2500 m. Relative to the observation averages, GEOS-Chem (www.geos-chem.org) chemical transport model simulations were higher during July and lower during April. Based on the simulations, more than 90 % of the July DMS(g) below 2 km and more than 90 % of the April DMS(g) originated from Arctic seawater (north of 66° N). During April, 60 % of the DMS(g), between 500 and 3000 m originated from Arctic seawater. During July 2014, FLEXPART (FLEXible PARTicle dispersion model) simulations locate the sampled air mass over Baffin Bay and the Canadian Arctic Archipelago 4 days back from the observations. During April 2015, the locations of the air masses 4 days back from sampling were varied: Baffin Bay/Canadian Archipelago, the Arctic Ocean, Greenland and the Pacific Ocean. Our results highlight the role of open water below the flight as the source of DMS(g) during July 2014 and the influence of long-range transport (LRT) of DMS(g) from further afield in the Arctic above 2500 m during April 2015.

  5. Enhancement by dimethyl myleran of donor type chimerism in murine recipients of bone marrow allografts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidot, T.; Terenzi, A.; Singer, T.S.; Salomon, O.; Reisner, Y. (Weizmann Institute of Science, Rehovot (Israel))

    1989-05-15

    A major problem in using murine models for studies of bone marrow allograft rejection in leukemia patients is the narrow margin in which graft rejection can be analyzed. In mice irradiated with greater than 9 Gy total body irradiation (TBI) rejection is minimal, whereas after administration of 8 Gy TBI, which spares a significant number of clonable T cells, a substantial frequency of host stem cells can also be detected. In current murine models, unlike in humans, bone marrow allograft rejection is generally associated with full autologous hematopoietic reconstitution. In the present study, we investigated the effect of the myeloablative drug dimethyl myleran (DMM) on chimerism status following transplantation of T cell-depleted allogenic bone marrow (using C57BL/6 donors and C3H/HeJ recipients, conditioned with 8 Gy TBI). Donor type chimerism 1 to 2 months post-transplant of 1 to 3 x 10(6) bone marrow cells was markedly enhanced by using DMM one day after TBI and prior to transplantation. Conditioning with cyclophosphamide instead of DMM, in combination with 8 Gy TBI, did not enhance engraftment of donor type cells. Artificial reconstitution of T cells, after conditioning with TBI plus DMM, by adding mature thymocytes, or presensitization with irradiated donor type spleen cells 1 week before TBI and DMM, led to strong graft rejection and consequently to severe anemia. The anti-donor responses in these models were proportional to the number of added T cells and to the number of cells used for presensitization, and they could be neutralized by increasing the bone marrow inoculum.

  6. Synthesis and Characterization of ω-Halogenated Poly(dimethyl siloxane

    Directory of Open Access Journals (Sweden)

    Mojtaba Farrokhi

    2014-02-01

    Full Text Available Poly(dimethyl siloxane (PDMS has received special attention due to its unique properties such as high surface tension, high gas permeability, high hydrophobicity, high chain flexibility at room temperature, good biocompatibility and very low glass transition temperature. One of the simplest methods to impart these properties in copolymers is to use PDMS as a macroinitiator in the controlled radical polymerization. In the present study, hydroxyl-ω PDMS was characterized by FTIR, 1H NMR and GPC analyses. The results showed that there is an impurity present in the commercial hydroxyl-ω PDMS. Functionalization reactions were used to investigate the reactivity of the impurities. Hydroxyl-terminated PDMS was brominated via 2-bromopropionyl bromide and α-bromoisobutyryl bromide. Brominated PDMS, used as a macroinitiator in the atom transfer radical polymerization, was then iodinated by sodium iodide in anhydrous acetone as a solvent to prepare iodinated PDMS. Bromination and iodination were verified by FTIR, 1H NMR and GPC analyses. GPC results showed that a high molecular weight impurity present in the sample can be removed after functionalization and purification of PDMS though there may be still impurities remain in the purified product. 1H NMR spectrum of the brominated and iodinated PDMS showed that the peaks related to the impurity do not show any change in intensity and chemical shift in comparison with those appeared in the 1H NMR spectrum of the hydroxyl-ω PDMS, indicating that impure species are not reactive in chemical modifications. In other words, these impurity species do not have any hydroxyl reactive functional group.

  7. Enhancement by dimethyl myleran of donor type chimerism in murine recipients of bone marrow allografts

    International Nuclear Information System (INIS)

    Lapidot, T.; Terenzi, A.; Singer, T.S.; Salomon, O.; Reisner, Y.

    1989-01-01

    A major problem in using murine models for studies of bone marrow allograft rejection in leukemia patients is the narrow margin in which graft rejection can be analyzed. In mice irradiated with greater than 9 Gy total body irradiation (TBI) rejection is minimal, whereas after administration of 8 Gy TBI, which spares a significant number of clonable T cells, a substantial frequency of host stem cells can also be detected. In current murine models, unlike in humans, bone marrow allograft rejection is generally associated with full autologous hematopoietic reconstitution. In the present study, we investigated the effect of the myeloablative drug dimethyl myleran (DMM) on chimerism status following transplantation of T cell-depleted allogenic bone marrow (using C57BL/6 donors and C3H/HeJ recipients, conditioned with 8 Gy TBI). Donor type chimerism 1 to 2 months post-transplant of 1 to 3 x 10(6) bone marrow cells was markedly enhanced by using DMM one day after TBI and prior to transplantation. Conditioning with cyclophosphamide instead of DMM, in combination with 8 Gy TBI, did not enhance engraftment of donor type cells. Artificial reconstitution of T cells, after conditioning with TBI plus DMM, by adding mature thymocytes, or presensitization with irradiated donor type spleen cells 1 week before TBI and DMM, led to strong graft rejection and consequently to severe anemia. The anti-donor responses in these models were proportional to the number of added T cells and to the number of cells used for presensitization, and they could be neutralized by increasing the bone marrow inoculum

  8. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-02-06

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.

  9. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

    Directory of Open Access Journals (Sweden)

    Aneeshkumar G Arimbasseri

    2015-12-01

    Full Text Available Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(22G26 modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(22G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(22G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(22G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(22G26 modification and that this response is conserved among highly divergent yeasts and human cells.

  10. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-01-01

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF. PMID:29507676

  11. Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates

    International Nuclear Information System (INIS)

    Wnuk, Joshua D.; Gorham, Justin M.; Rosenberg, Samantha G.; Fairbrother, D. Howard; Dorp, Willem F. van; Madey, Theodore E.; Hagen, Cornelis W.

    2010-01-01

    Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in this way, the electron stimulated decomposition of the organometallic precursors must be better understood. To address this issue, we have employed an ultrahigh vacuum-surface science approach to study the electron induced reactions of dimethyl-(acetylacetonate) gold(III) [Au III (acac)Me 2 ] adsorbed onto solid substrates. Using thin molecular films adsorbed onto cooled substrates, surface reactions, reaction kinetics, and gas phase products were studied in the incident energy regime between 40 and 1500 eV using a combination of x-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), and mass spectrometry (MS). XPS and RAIRS data indicate that electron irradiation of Au III (acac)Me 2 is accompanied by the reduction in Au III to a metallic Au 0 species embedded in a dehydrogenated carbon matrix, while MS reveals the concomitant evolution of methane, ethane, carbon monoxide, and hydrogen. The electron stimulated decomposition of Au III (acac)Me 2 is first-order with respect to the surface coverage of the organometallic precursor, and exhibits a rate constant that is proportional to the electron flux. At an incident electron energy of 520 eV, the total reaction cross section was ≅3.6x10 -16 cm 2 . As a function of the incident electron energy, the maximum deposition yield was observed at ≅175 eV. The structure of discrete Au-containing deposits formed at room temperature by rastering an electron beam across a highly ordered pyrolytic graphite substrate in the presence of a constant partial pressure of Au III (acac)Me 2 was also investigated by atomic force microscopy.

  12. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  13. Pro-oxidant status and Nrf2 levels in psoriasis vulgaris skin tissues and dimethyl fumarate-treated HaCaT cells.

    Science.gov (United States)

    Lee, Yoon Jin; Bae, Jin Ho; Kang, Sang-Gue; Cho, Sung Woo; Chun, Dong-Il; Nam, Seung Min; Kim, Chul Han; Nam, Hae Seon; Lee, Seon Hwa; Lee, Sang Han; Cho, Moon Kyun

    2017-09-01

    Reactive oxygen species (ROS) contribute to pathogenesis of many inflammatory skin diseases, including psoriasis. The aim of this study is to compare antioxidant protein expression in psoriasis vulgaris (PV) skin tissues with that in normal skin tissues in vivo and to evaluate the effects of dimethyl fumarate (DMF), used for the treatment of psoriasis, on ROS generation and apoptosis in a human keratinocyte cell line HaCaT. Compared with normal skin tissues, PV skin tissues showed increased protein oxidation as well as down-regulation of Nrf2 and its regulatory proteins such as HO-1 and AKR1C3. Using HaCaT cells to model DMF-induced pro-oxidant effects in the skin cells, we found that DMF treatment induced increased ROS levels and apoptotic cell death, as signified by increased proportion of cells with Annexin V-PE(+) staining and a sub-G 0 /G 1 peak in the cell cycle. Preceding these changes, DMF treatment resulted in up-regulation of Nrf2, HO-1, and AKR1C3 proteins in these cells. Collectively, increased oxidative stress and impaired cellular anti-oxidant enzyme systems may participate in the pathogenesis of PV. DMF may exert an additive therapeutic efficacy in PV by attenuating the redox burden and subsequent oxidative damage to normal keratinocytes through activation of Nrf2 pathway relative to PV.

  14. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  15. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2016-09-17

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015, 119, 7361–7374] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450–1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  16. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an anticancer agent, exerts an anti-inflammatory effect in activated human mast cells.

    Science.gov (United States)

    Nam, Sun-Young; Han, Na-Ra; Yoon, Kyoung Wan; Kim, Hyung-Min; Jeong, Hyun-Ja

    2017-10-01

    Inflammation has been closely associated with the development and progression of cancer. Previously, we reported that mast cells play a critical role in tumor growth. The purpose of this study is to investigate the anti-inflammatory effect of an anticancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), on an activated human mast cell line, in this case HMC-1 cells. We evaluated the effect and specific molecular mechanism of Dp44mT on phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI) using HMC-1 cells. Here, we demonstrated that Dp44mT significantly decreased the protein levels of hypoxia-inducible factor-1α and vascular endothelial growth factor without exposing activated HMC-1 cells to any cytotoxicity. In activated mast cells, Dp44mT mitigated the strong production and mRNA expression of inflammatory cytokines, in this case, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and thymic stromal lymphopoietin, through a blockade of caspase-1 and nuclear factor-κB activities. Furthermore, phosphorylations of the mitogen-activated protein kinase family included in inflammatory signaling cascades were significantly inhibited by a Dp44mT treatment. Overall, our results indicate that the anticancer agent Dp44mT has an anti-inflammatory effect and may be of therapeutic importance for the treatment of mast cell-mediated inflammatory diseases.

  17. Plasma Homocysteine and Asymmetrical Dimethyl-l-Arginine (ADMA) and Whole Blood DNA Methylation in Early and Neovascular Age-Related Macular Degeneration: A Pilot Study.

    Science.gov (United States)

    Pinna, Antonio; Zinellu, Angelo; Tendas, Donatella; Blasetti, Francesco; Carru, Ciriaco; Castiglia, Paolo

    2016-01-01

    To compare the plasma levels of homocysteine and asymmetrical dimethyl-l-arginine (ADMA) and the degree of whole blood DNA methylation in patients with early and neovascular age-related macular degeneration (AMD) and in controls without maculopathy of any sort. This observational case-control pilot study included 39 early AMD patients, 27 neovascular AMD patients and 132 sex- and age-matched controls without maculopathy. Plasma homocysteine and ADMA concentrations and the degree of whole blood DNA methylation were measured. Quantitative variables were compared by Student's t-test or Mann-Whitney test. Logistic regression models were used to investigate the significance of the association between early or wet AMD and some variables. There were no significant differences in mean plasma homocysteine and ADMA concentrations and in the degree of whole blood DNA methylation between patients with early or neovascular AMD and their controls. Similarly, logistic regression analysis disclosed that plasma homocysteine and ADMA levels were not associated with an increased risk for early or neovascular AMD. We failed to demonstrate an association between early or neovascular AMD and increased plasma homocysteine and/or ADMA. Results also suggest that the degree of whole blood DNA methylation is not a marker of AMD.

  18. A green approach towards adoption of chemical reaction model on 2,5-dimethyl-2,5-di-(tert-butylperoxy)hexane decomposition by differential isoconversional kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Mitali; Shu, Chi-Min, E-mail: shucm@yuntech.edu.tw

    2016-01-15

    Highlights: • Thermally degraded DBPH products are identified. • An appropriate mathematical model was selected for decomposition study. • Differential isoconversional analysis was performed to obtain kinetic parameters. • Simulation on thermal analysis model was conducted for the best storage conditions. - Abstract: This study investigated the thermal degradation products of 2,5-dimethyl-2,5-di-(tert-butylperoxy) hexane (DBPH), by TG/GC/MS to identify runaway reaction and thermal safety parameters. It also included the determination of time to maximum rate under adiabatic conditions (TMR{sub ad}) and self-accelerating decomposition temperature obtained through Advanced Kinetics and Technology Solutions. The apparent activation energy (E{sub a}) was calculated from differential isoconversional kinetic analysis method using differential scanning calorimetry experiments. The E{sub a} value obtained by Friedman analysis is in the range of 118.0–149.0 kJ mol{sup −1}. The TMR{sub ad} was 24.0 h with an apparent onset temperature of 82.4 °C. This study has also established an efficient benchmark for a thermal hazard assessment of DBPH that can be applied to assure safer storage conditions.

  19. Infrared spectra of complex organic molecules in astronomically relevant ice matrices. I. Acetaldehyde, ethanol, and dimethyl ether

    Science.gov (United States)

    Terwisscha van Scheltinga, J.; Ligterink, N. F. W.; Boogert, A. C. A.; van Dishoeck, E. F.; Linnartz, H.

    2018-03-01

    Context. The number of identified complex organic molecules (COMs) in inter- and circumstellar gas-phase environments is steadily increasing. Recent laboratory studies show that many such species form on icy dust grains. At present only smaller molecular species have been directly identified in space in the solid state. Accurate spectroscopic laboratory data of frozen COMs, embedded in ice matrices containing ingredients related to their formation scheme, are still largely lacking. Aim. This work provides infrared reference spectra of acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) recorded in a variety of ice environments and for astronomically relevant temperatures, as needed to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations. Methods: Fourier transform transmission spectroscopy (500-4000 cm-1/20-2.5 μm, 1.0 cm-1 resolution) was used to investigate solid acetaldehyde, ethanol and dimethyl ether, pure or mixed with water, CO, methanol, or CO:methanol. These species were deposited on a cryogenically cooled infrared transmissive window at 15 K. A heating ramp was applied, during which IR spectra were recorded until all ice constituents were thermally desorbed. Results: We present a large number of reference spectra that can be compared with astronomical data. Accurate band positions and band widths are provided for the studied ice mixtures and temperatures. Special efforts have been put into those bands of each molecule that are best suited for identification. For acetaldehyde the 7.427 and 5.803 μm bands are recommended, for ethanol the 11.36 and 7.240 μm bands are good candidates, and for dimethyl ether bands at 9.141 and 8.011 μm can be used. All spectra are publicly available in the Leiden Database for Ice.

  20. Novel method to prepare multiwalled carbon nanotube/poly(dimethyl siloxane) (MWCNT/PDMS) non-conducting composites

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Daugaard, Anders Egede; Skov, Anne Ladegaard

    In this study a new method of carbon nanotube (CNT) incorporation was employed for the preparation of ultraviolet (UV) curable CNT filled poly (dimethyl siloxane) (PDMS) composites. The composites were designed to contain loadings of CNT above the percolation threshold without becoming conductive...... due to a localized distribution of CNT. Ultrasonicated and dispersed multiwalled CNTs were mixed with short chain ,- vinyl terminated PDMS. When the whole mixture containing dispersed CNT and short chain PDMS was irradiated with UV radiation in presence of deficient amount of hexa functional thiol...