WorldWideScience

Sample records for included conservation tillage

  1. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage

    Directory of Open Access Journals (Sweden)

    Teodor Rusu

    2014-12-01

    Full Text Available The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed was the best in no-tillage — 10.44 MJ ha−1 for maize, 6.49 MJ ha−1 for soybean, and 5.66 MJ ha−1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable

  2. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    OpenAIRE

    S. M Hosseini; S Afzalinia; K Mollaei

    2016-01-01

    Introduction: Conservation tillage system was recommended for soil erosion control in North America for the first time 60 years ago (Wang et al., 2006). Using this tillage system including minimum and zero tillage has been rapidly developed in recent years. Thearea covered by zero tillage in 2006 was 95 million ha all over the world (Dumanski et al., 2006). In addition to saving soil and water resources, conservation tillage system reduces energy consumption and improves energy indices by com...

  3. Potential effect of conservation tillage on sustainable land use : a review of global long-term studies

    NARCIS (Netherlands)

    Wang Xiaobin,; Cai, D.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2006-01-01

    Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on

  4. Evaluation of Conservation Tillage Techniques for Maize Production ...

    African Journals Online (AJOL)

    Conservation tillage as an approach to reduce surface runoff and soil degradation and reduced tillage systems may offer a compromise solution. The objective of the study is to test different conservation tillage techniques and evaluate the impacts of the system on conserving water, labor requirement for pre and post ...

  5. Soil organic carbon sequestration potential of conservation vs. conventional tillage

    Science.gov (United States)

    Meurer, Katharina H. E.; Ghafoor, Abdul; Haddaway, Neal R.; Bolinder, Martin A.; Kätterer, Thomas

    2017-04-01

    Soil tillage has been associated with many negative impacts on soil quality, especially a reduction in soil organic carbon (SOC). The benefits of no tillage (NT) on topsoil SOC concentrations have been demonstrated in several reviews, but the effect of reduced tillage (RT) compared to conventional tillage (CT) that usually involves soil inversion through moldboard ploughing is still unclear. Moreover, the effect of tillage on total SOC stocks including deeper layers is still a matter of considerable debate, because the assessment depends on many factors such as depth and method of measurement, cropping systems, soil type, climatic conditions, and length of the experiments used for the analysis. From a recently published systematic map database consisting of 735 long-term field experiments (≥ 10 years) within the boreal and temperate climate zones (Haddaway et al. 2015; Environmental Evidence 4:23), we selected all tillage studies (about 80) reporting SOC concentrations along with dry soil bulk density and conducted a systematic review. SOC stocks were calculated considering both fixed soil depths and by using the concept of equivalent soil mass. A meta-analysis was used to determine the influence of environmental, management, and soil-related factors regarding their prediction potential on SOC stock changes between the tillage categories NT, RT, and CT. C concentrations and stocks to a certain depth were generally highest under NT, intermediate under RT, and lowest under CT. However, this effect was mainly limited to the first 15 cm and disappeared or was even reversed in deeper layers, especially when adjusting soil depth according to the equivalent soil mineral mass. Our study highlights the impact of tillage-induced changes in soil bulk density between treatments and shows that neglecting the principles of equivalent soil mass leads to overestimation of SOC stocks for by conservation tillage practices.

  6. Conservation Tillage Impacts on Soil Quality

    Science.gov (United States)

    Hake, K.

    2012-04-01

    As recent as the 1970's in University lecture halls cotton production was vilified for being "hard on the soil". This stigma is still perpetuated today in the popular press, deserving a close scrutiny of its origin and its reality as soil quality is an essential but unappreciated component of cotton's unique tolerance to heat and drought. The objective of expanding food, feed and fiber production to meet the global demand, during forecast climate disruption requires that scientists improve both the above and below ground components of agriculture. The latter has been termed the "final frontier" for its inaccessibility and complexity. The shift to conservation tillage in the U.S.A. over the previous three decades has been dramatic in multiple crops. Cotton and its major rotation crops (corn, soybean, and wheat) can be grown for multiple years without tillage using herbicides instead to control weeds. Although pesticide resistant insects and weeds (especially to Bt proteins and glyphosate) are a threat to Integrated Pest Management and conservation tillage that need vigilance and proactive management, the role of modern production tools in meeting agricultural objectives to feed and clothe the world is huge. The impact of these tools on soil quality will be reviewed. In addition ongoing research efforts to create production practices to further improve soil quality and meet the growing challenges of heat and drought will be reviewed.

  7. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  8. Conservation and conventional tillage effects on soil properties and ...

    African Journals Online (AJOL)

    Four conservation tillage practices and two conventional tillage practices were evaluated for two years to determine their effects on soil properties (moisture content, bulk density, porosity, shear strength, cone index), weed control, germination, growth and yield of soybean (Glycine max (L) Merril). The soil was sandy loam ...

  9. Application of Projection Pursuit Model in Soilevaluation of Conservation Tillage

    Science.gov (United States)

    Yuan, Junjing; Li, Hongwen

    This paper established a conservation tillage evaluation model based on projection pursuit to evaluate the soil composite achievement of conservation tillage. After optimizing the project direction, the multi-dimension data of the seven evaluation indices are synthesized to one dimension, and the author could evaluate each item with the projection data easily, which avoided the jamming of weight matrix. The results of the evaluation mode in Linfen, Shouyang and Linghai are accordant with the production, which indicated that the model was available and provided a new method or thought to evaluate the composite achievement of conservation tillage.

  10. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    Directory of Open Access Journals (Sweden)

    S. M Hosseini

    2016-04-01

    Full Text Available Introduction: Conservation tillage system was recommended for soil erosion control in North America for the first time 60 years ago (Wang et al., 2006. Using this tillage system including minimum and zero tillage has been rapidly developed in recent years. Thearea covered by zero tillage in 2006 was 95 million ha all over the world (Dumanski et al., 2006. In addition to saving soil and water resources, conservation tillage system reduces energy consumption and improves energy indices by combining different tillage and planting operations. Results of research conducted in Fars province shows that conservation tillage saves fuel consumption for 77% compared to the conventional system (Afzalinia et al., 2009. Conservation tillage also reduces energy consumption from 23.6 to 42.8% in comparison to the conventional tillage (Rusu, 2005. Since energy indices would be affected by reduced input energies in conservation tillage, this research was conducted to evaluate the effect of different tillage and planting methods on energy inputs and energy indices in irrigated wheat production in Eghlid region. Materials and Methods: This research was performed to evaluate and compare the energy indices in irrigated wheat production under different tillage and planting methods. The study was conducted in the form of a randomized complete block experimental design with five treatments and three replications in Eghlid region. The treatments were included, conventional tillage and seed broadcasting (A, conventional tillage and planting with Machine Barzegar grain drill (B, reduced tillage and seeding with Roto-seeder (C, direct seeding with Jairan Sanaat grain drill (D, and direct seeding with Sfoggia direct drill (E. Experimental plots with 10 by 50 m dimensions were used in this study. Loss crop residues were taken out of the experimental plots and standing crop residues were retained in the plots. In the conventional tillage method, primary tillage was performed

  11. Influence of conservation tillage and zero tillage on arable weeds in organic faba bean production

    Directory of Open Access Journals (Sweden)

    Jung, Rüdiger

    2016-02-01

    Full Text Available The field experiments were conducted in 2008, 2009 and 2010 on a Gleyic Cambisol near Goettingen, Lower Saxony, Germany. A crop sequence of summer barley, winter cover crops (intercropped oat and sunflower and summer faba bean was examined under organic farming conditions. Emphasis was given to the studying of arable weeds in faba beans. However, enhancing symbiotic nitrogen fixation of summer faba beans by accumulation of soil-nitrogen by winter cover crops was a second objective in these experiments. The faba bean field plots had been cultivated with three different tillage systems: 1. zero tillage, sowing with cross-slottechnique, 2. conservation tillage (wing share cultivator, rotary harrow sowing with cross-slot-technique and 3. conventional tillage with mouldboard plough followed by rotary harrow, sowing with precision monoseeder. In plots with zero tillage preceding cover crops were left as mulch on the soil surface. Cover crops accumulated adequate nitrogen amounts and following faba beans reacted with significant increase (up to 10% in symbiotic nitrogen fixation. Maximum of arable weed biomass was observed in zero tillage-plots at the end of May or early in June. The abundance of the predominant weed wild mustard (Sinapis arvensis increased with tillage intensity, whereas the abundance of creeping thistle (Cirsium arvense increased in 2010 with decreasing tillage intensity. Average grain yield of faba beans was low with only 3.0 and 2.4 t ha-1 in 2009 and 2010, respectively.

  12. Mulch tillage for conserving soil water

    Science.gov (United States)

    Mulching is the practice of maintaining organic or inorganic materials on or applying them to the soil surface. It is an ancient practice, but through the years clean tillage that incorporated crop residues and also controlled weeds became the norm. Frequent and deep tillage often was promoted to co...

  13. Evaluation of Conservation Tillage Techniques for Maize Production ...

    African Journals Online (AJOL)

    Evaluation of Conservation Tillage Techniques for Maize. Production in the Central Rift Valley of Ethiopia. Bisrat Getnet1, Laike Kebede1 and Hae Koo Kim2. 1 Department of Agricultural Mechanization Research, Ethiopian Institute of Agricultural Research, Melkassa. Agricultural Research Center, P.O. Box 436, Adama, ...

  14. Developments in conservation tillage in rainfed regions of North China

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2007-01-01

    Dryland regions in northern China account for over 50% of the nation's total area, where farming development is constrained by adverse weather, topography and water resource conditions, low fertility soils, and poor soil management. Conservation tillage research and application in dryland regions of

  15. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  16. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM

  17. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    Full Text Available Introduction: In recent years, production techniques and equipment have been developed for conservation of tillage systems that have been adopted by many farmers. With proper management, overall yield averages for conventional and reduced tillage systems are nearly identical. Sometimes, field operations can be combined by connecting two or more implements. Combined operations reduce both fuel consumption, and time and labor requirements by eliminating at least one individual trip over the field. Light tillage, spraying, or fertilizing operations can be combined with either primary or secondary tillage or planting operations. Tillage helps seed growth and germination through providing appropriate conditions for soil to absorb sufficient temperature and humidity. Moreover, it helps easier development of root through reducing soil penetration resistance. Tillage is a time-consuming and expensive procedure. With the application of agricultural operations, we can save substantial amounts of fuel, time and energy consumption. Conservation tillage loosens the soil without turning, but by remaining the plant left overs, stems and roots. Bulk density reflects the soil’s ability to function for structural support, water and solute movement, and soil aeration. Bulk densities above thresholds indicate impaired function. Bulk density is also used to convert between weight and volume of soil. It is used to express soil physical, chemical and biological measurements on a volumetric basis for soil quality assessment and comparisons between management systems. This increases the validity of comparisons by removing the error associated with differences in soil density at the time of sampling. The aim of conservation tillage is to fix the soil structure. This investigation was carried out considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country

  18. The development and adoption of conservation tillage systems on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    L. Awada

    2014-03-01

    Full Text Available One of the major agricultural innovations on the Canadian Prairies over the last 40 years has been the introduction of conservation tillage (CT. Conservation tillage-a system that includes minimum and zero tillage (ZT -was introduced as an alternative to traditional (conventional tillage (TT to control soil degradation and to promote agricultural sustainability. The development and adoption of CT systems involved pioneer farmers, engineers, scientists, and farmer associations. By the end of the 1970s, CT started to take shape on the Prairies, but for a number of economic, technical, political and social reasons, the adoption of CT did not occur on any major scale before the 1990s. Today, more than 75% of the Prairie's cropland is under some form of CT with more than 50% under ZT. In this paper, the factors behind the development and adoption of conservation tillage technology on the Prairies in the period between 1930 and 2011 are reviewed. Then, some of the benefits of the adoption of CT on the Prairies are highlighted. The data show that CT and ZT became profitable for the majority of farmers during and after the 1990s, and that the increased use of CT contributed to the dramatic decrease in the area under summerfallow and to the increase in the area sown to canola and pulse crops. These changes contributed to the reduction of all forms of land degradation and to decreases in agricultural greenhouse gas (GHG emissions.

  19. The Role of Government Policies in the Adoption of Conservation Tillage in China: A Theoretical Model

    Science.gov (United States)

    Ding, Ya

    2018-01-01

    In recent years, many areas of China have been facing increasing problems of soil erosion and land degradation. Conservation tillage, with both economic and ecological benefits, provides a good avenue for Chinese farmers to conserve land as well as secure food production. However, the adoption rate of conservation tillage systems is very low in China. In this paper, the author constructs a theoretical model to explain a farmer’s adoption decision of conservation tillage. The goal is to investigate potential reasons behind the low adoption rate and explores alternative policy tools that can help improve a farmer’s incentive to adopt conservation tillage in China.

  20. Residue Management: A Computer Program About Conservation Tillage Decisions.

    Science.gov (United States)

    Thien, Steve J.

    1986-01-01

    Describes a computer program, Residue Management, which is designed to supplement discussions on the Universal Soil Loss Equation and the impact of tillage on soil properties for introductory soil courses. The program advances the user through three stages of residue management. Information on obtaining the program is also included. (ML)

  1. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  2. Effect of conservation tillage and peat application on weed infestation on a clay soil

    Directory of Open Access Journals (Sweden)

    P. VANHALA

    2008-12-01

    Full Text Available Amendment of soil with peat is an attempt to avoid crop yield variation in the transition to conservation tillage, as it improves seedbed conditions and crop growth in drought-sensitive clay soils. Weed infestations were compared in 1999-2000 between the original and peat-amended clay (Typic Cryaquept, very fine, illitic or mixed under different autumn tillage systems in an oats-barley rotation. In a field experiment, sphagnum peat (H = 4 had been spread (0.02 m 3 m -2 on the soil surface in August 1995. Tillage treatments included mouldboard ploughing (to 20 cm and stubble cultivations of different working depths (8 or 15 cm and intensity (once or twice. Weed biomass and density were assessed by an area of 1 m 2 per field plot in August 1999-2000 and June 2000. The 1999 season was dry, but soil moisture conditions were more favourable in 2000. Peat application tended to increase the number of volunteer oats and Chenopodium album in 1999, while decreasing Galium spurium biomass. Ploughing significantly increased the abundance of Chenopodium album and Lamium purpureum in barley (Hordeum vulgare in 1999. Weed infestation was much lower in 2000, and tillage effect on Chenopodium album was minor in oats (Avena sativa. Growth of Lamium purpureum and Fumaria officinalis was stimulated in ploughed soils both years. Intensity and working depth of stubble cultivation had no significant effect on weeds.;

  3. Strip-tillage: A conservation alternative to full-width tillage systems

    Science.gov (United States)

    Wolkowski, Richard

    2015-04-01

    Historically no-till management has been a challenge for maize production in the Midwestern USA because crop residue slows the warming of the soil in the spring and can physically impair planting by plugging the planter. After trying no-till, producers often return to more aggressive tillage operations to address residue concerns; however these systems can cause soil erosion and can increase the cost of production. An alternative system known as strip-tillage has been suggested as a compromise between no-till and full-width tillage. This practice utilizes implements that loosen the soil and allow warming in the row area, yet maintain nearly as much residue as no-till. Strip-tillage is generally understood to be a single pass with a separate implement in the fall, although spring strip-tillage is possible if soil moisture and conditions permit. Strip-tillage can be accomplished in a shorter time, with lower energy and equipment inputs compared to full-width tillage. The first of two studies that examined the merits of strip-tillage was conducted the University of Wisconsin Lancaster Agricultural Research Station (42.84, -90.80). Natural runoff collectors were installed in a field having a silt loam soil with an 8% slope in fall chisel and fall strip-tillage system. The measured soil loss in a year that experienced substantial rainfall prior to canopy closure was 10.6 Mg ha-1 in chisel vs. 0.64 Mg ha-1 in strip-tillage. Soil loss was much less for both systems in the second year when early season rainfall was minimal. A second, ten year study was conducted at the University of Wisconsin Arlington Agricultural Research Station (43.30, -89.36) that compared fall strip-tillage with fall chisel/spring field cultivator and no-till systems in both a continuous maize and soybean-maize rotation. This work showed equal maize grain yield in maize after soybean when comparing chisel and strip-tillage. No-till yield was about 5 % lower. Yield in continuous maize was highest in

  4. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, USA

    Science.gov (United States)

    Conservation tillage (CsT) involves management that reduces soil erosion by maintaining crop residue cover on farm fields. Typically, both infiltration and soil organic matter increase over time with CsT practices. We compared the impact of a commonly used CsT practice, strip tillage (ST), to conven...

  5. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    Infiltration into soils is strongly correlated with macroporosity. Under agricultural land use, the properties of the macropore network are governed by the applied management and tillage system. On an experimental site with a silt loam soil partly under conventional and conservation tillage, the ...

  6. Conservation tillage systems and water productivity implications for smallholder farmers in semi-arid Ethiopia

    NARCIS (Netherlands)

    Temesgen, M.L.

    2007-01-01

    Conservation tillage systems have been adopted by farmers in many countries to solve the problem of land degradation and declining water productivity. However, direct application of such tillage systems was not possible among resource poor smallholder farmers in semi arid areas of Ethiopia. Problems

  7. [Conservation tillage systems in North America and their significance for China].

    Science.gov (United States)

    Yang, Xueming; Zhang, Xiaoping; Fang, Huajun; Liang, Aizhen; Qi, Xiaoning; Wang, Yang

    2004-02-01

    Soil degradation through erosion and desertification reduces soil productivity, and is a serious problem in agricultural production of China. To avert our arable land from further degradation, soil management must be shifted from degrading tillage to conservation practices. Over viewing the technology used in the 20th century for controlling soil degradation from erosion, conservation tillage developed in the United States and adopted in South America and Africa is one of the most successful measures to overcome soil degradation problems. This paper reviewed the historical development and the current situation of conservation tillage systems used in North and South America, with special reference to their effects on soil erosion control and soil quality. The increasing adoption of conservation tillage systems in North and South America and Africa followed an enhanced awareness of the increasing risk of soil erosion and the high cost of fuel associated with conventional tillage. Many crucial points for successfully adopting conservation tillage systems were emphasized, such as equipment/tool development and chemical weed control. Adopting conservation tillage could provide China with low-priced means of reducing soil degradation and improving soil and water quality.

  8. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2016-09-01

    Full Text Available Introduction Nowadays, agricultural systems are seeking economic, ecological and bioenvironmental goals for production of agricultural crops with protection and sustainability of the environment. Therefore, there is need to extend sustainable agricultural systems such as conservation agriculture. One of the principles of conservation agriculture is conservation tillage. Conservation tillage is a kind of tillage that retains crop residues on the soil surface or mixes it with soil using related machines. It could also affect on machine performance parameters. Energy consumption for producing one kilogram crop could be studied for conservation tillage. Several researchers have conducted studies on this issue for production of different crops including wheat, sunflower and forage crops. This study conducted to assess machine performance parameters and energy indices of conservation tillage systems for soybean cultivation in Golestan province. Materials and Methods This study was conducted to investigate the effects of conservation tillage systems on machine performance and energy indices in soybean production at the Gorgan research station of Golestan Agricultural and Natural Resource Research Center in 2012. The precipitation was 450 mm. Soil texture was silty clay loam. Treatments were four tillage methods, including no-till using row crop direct planter, no-till using grain direct drill, conventional tillage usin a disk harrow with working depth of 10-15 cm and minimum tillage using chisel packer with a working depth of 20 cm. Machine performance parameters and energy indices studied in a farm covered by wheat residues in a randomized complete block design (RCBD with four treatments and four replications. Machine performance parameters consisted of field efficiency, field capacity, total field capacity and planting uniformity index were measured. Energy indices such as energy ratio, energy productivity, energy intensity and net energy gain were

  9. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  10. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    OpenAIRE

    A Sharifi; H. R Sadeghnezhad; A Faraji

    2016-01-01

    Introduction Nowadays, agricultural systems are seeking economic, ecological and bioenvironmental goals for production of agricultural crops with protection and sustainability of the environment. Therefore, there is need to extend sustainable agricultural systems such as conservation agriculture. One of the principles of conservation agriculture is conservation tillage. Conservation tillage is a kind of tillage that retains crop residues on the soil surface or mixes it with soil using rela...

  11. [Soil respiration and carbon balance in wheat field under conservation tillage].

    Science.gov (United States)

    Zhang, Sai; Wang, Long-Chang; Huang, Zhao-Cun; Jia, Hui-Juan; Ran, Chun-Yan

    2014-06-01

    In order to study the characteristics of carbon sources and sinks in the winter wheat farmland ecosystem in southwest hilly region of China, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Chongqing. The soil respiration and plant growth dynamics were analyzed during the growth period of wheat in the triple intercropping system of wheat-maize-soybean. Four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching), and RS (ridge tillage + straw mulching) were designed. Root biomass regression (RR) and root exclusion (RE) were used to compare the contribution of root respiration to total soil respiration. The results showed that the average soil respiration rate was 1.71 micromol x (m2 x s)(-1) with a variation of 0.62-2.91 micromol x (m2 x s)(-1). Significant differences in soil respiration rate were detected among different treatments. The average soil respiration rate of T, R, TS and RS were 1.29, 1.59, 1.99 and 1.96 micromol x (m2 x s)(-1), respectively. R treatment did not increase the soil respiration rate significantly until the jointing stage. Straw mulching treatment significantly increased soil respiration, with a steadily high rate during the whole growth period. During the 169 days of growth, the total soil respiration was 2 266.82, 2799.52, 3 483.73 and 3 443.89 kg x hm(-2) while the cumulative aboveground biomasses were 51 800.84, 59 563.20, 66 015.37 and 7 1331.63 kg x hm(-2). Compared with the control, the yield of R, TS and RS increased by 14.99%, 27.44% and 37.70%, respectively. The contribution of root respiration to total soil respiration was 47.05% by RBR, while it was 53.97% by RE. In the early growth period, the carbon source was weak. The capacity of carbon sink started to increase at the jointing stage and reached the maximum during the filling stage. The carbon budget of wheat field was 5 924.512, 6743.807, 8350

  12. The effect of conservation tillage forward speed and depth on farm fuel consumption

    Directory of Open Access Journals (Sweden)

    A Jalali

    2015-09-01

    Full Text Available Introduction: In recent years, production techniques and equipment have been developed for conservation tillage systems that have been adopted by many farmers. With proper management, overall yield averages for conventional and reduced tillage systems are nearly identical. Sometimes, field operations can be combined by connecting two or more implements. Much research has focused on either reducing or eliminating tillage operations to develop sustainable crop production methods. The greatest costs in farm operations are associated with tillage due to greater specific energy requirement in tillage and the high fuel costs. Combined operations reduce both fuel consumption and time and labor requirements by eliminating at least one individual trip over the field. Light tillage, spraying, or fertilizing operations can be combined with eitherprimary or secondary tillage or planting operations. The amount of fuel saved depends on the combined operations. Generally, light tillage, spraying, and fertilizing operations consume between 0.25 and 0.50 gallons of diesel fuel per acre. Fuel savings of 0.12 to 0.33 gallons per acre can usually be expected from combining operations. Eliminating one primary tillage operation and combining one light tillage, spraying, or fertilizing operation with another tillage or planting operation can usually save at least a gallon of diesel fuel per acre. Combining operations has the added benefit of reducing wheel traffic and compaction. To improve the tillage energy efficiency, implementing effective and agronomic strategies should be improved. Different tillage systems should be tested to determine the most energy efficient ones. Tillage helps seed growth and germination through providing appropriate conditions for soil to absorb sufficient temperature and humidity. Tillage is a time consuming and expensive procedure. With the application of agricultural operations, we can save considerable amounts of fuel, time and

  13. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  14. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  15. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  16. Tillage and vegetative barrier effects on soil conservation and short-term economic benefits in the Central Kenya highlands

    NARCIS (Netherlands)

    Guto, S.N.; Pypers, P.; Vanlauwe, B.; Ridder, de N.; Giller, K.E.

    2011-01-01

    Minimum tillage and vegetative barriers can conserve soil and water resources in the steep-sloping highlands of East Africa but there has been little adoption by smallholder farmers. Soil conservation efficiency and short-term economic benefits provided by tillage and vegetative barriers were

  17. Distributed soil loss estimation system including ephemeral gully development and tillage erosion

    Directory of Open Access Journals (Sweden)

    D. A. N. Vieira

    2015-03-01

    Full Text Available A new modelling system is being developed to provide spatially-distributed runoff and soil erosion predictions for conservation planning that integrates the 2D grid-based variant of the Revised Universal Soil Loss Equation, version 2 model (RUSLER, the Ephemeral Gully Erosion Estimator (EphGEE, and the Tillage Erosion and Landscape Evolution Model (TELEM. Digital representations of the area of interest (field, farm or entire watershed are created using high-resolution topography and data retrieved from established databases of soil properties, climate, and agricultural operations. The system utilizes a library of processing tools (LibRaster to deduce surface drainage from topography, determine the location of potential ephemeral gullies, and subdivide the study area into catchments for calculations of runoff and sheet-and-rill erosion using RUSLER. EphGEE computes gully evolution based on local soil erodibility and flow and sediment transport conditions. Annual tillage-induced morphological changes are computed separately by TELEM.

  18. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Science.gov (United States)

    2010-07-01

    ... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110... the ground for a proper seedbed or building terraces on farmland to check soil erosion are included... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in âcultivation and tillage of the soil...

  19. Soil structure, microbial biomass and carbon and nitrogen stocks as influenced by conventional tillage and conservation techniques

    Science.gov (United States)

    Abrougui, Khaoula; Khemis, Chiheb; Cornelis, Wim; Chehaibi, Sayed

    2017-04-01

    To evaluate the impact of tillage systems on soil environment, it is necessary to quantify the modifications to physical, chemical and biological properties. The objective of this study was to evaluate the short-term impact of different tillage systems in organic farming on soil resistance to penetration, bulk density, microbial biomass, organic matter, and carbon and nitrogen stocks. The tillage systems included conventional tillage (CT), 'agronomic' tillage (AT) and superficial (shallow) tillage (ST), with ST being a non-inversion practice. Tests were carried out on alluvial poorly developed soil (10% clay, 57% silt, 33% sand) in the Higher Institute of Agronomy of Chott Meriem (Tunisia). The soil resistance to penetration was measured with a penetrologger till 50 cm depth along with soil water content measurements. Bulk density (g cm-3) was measured by a cylinder densimeter on samples collected every 10 cm till 30 cm depth. Microbial biomass is a determining factor in soil biological quality because of its role in the regulation, transformation and storage of nutrients. To count the germs, we used the method of enumeration after incorporation into agar. The Walkley and Black method was used for the determination of soil organic matter, and Kjeldahl's for the analysis of total nitrogen content. Carbon and nitrogen stocks (t ha-1) were then calculated as a function of carbon and nitrogen contents, bulk density and the horizon depth. Shallow tillage without inversion ST showed the best values in terms of soil resistance and bulk density. Indeed, soil resistance was 3.1, 2.4 and 2 MPa under CT, AT and ST respectively at 40 cm depth. By adopting this conservation technique, we noted an increase in organic matter with 53% as compared to CT (from 1.9% to 2.9%) and thus a significant increase in C (from 12.5 to 14.5 g kg-1) and N (from 5 to 8 g kg-1) stocks, particularly in the topsoil. In fact, the increase of organic matter in the topsoil constituted a reserve of

  20. Conservation tillage versus conventional tillage on carbon stock in a Mediterranean dehesa (southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    Understanding soil dynamics is essential for making appropriate land management decisions, as soils can affect the carbon content from the atmosphere, emitting large quantities of CO2 or storing carbon. This property is essential for climate change mitigation strategies as agriculture and forestry soil management can affect the carbon cycle. The dehesa is a Mediterranean silvopastoral system formed by grasslands with scattered oaks (Quercus ilex or Q. suber). The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. In addition, the dehesa is a practice dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork, as well as hunting. The dehesa is characterized by the preservation of forest oaks. In this work, we compared two management practices such as organic farming (OF) and conventional tillage (CT) on soil organic carbon stocks (SOC-S) in Cambisols (CM) and Leptosols (LP), and we analyzed the quality of these soils based on stratification ratio (SR) in a Mediterranean dehesa. MATERIAL AND METHODS An analysis of 85 soil profiles was performed in 2009 in Los Pedroches Valley (Cordoba, southern Spain). Two soil management practices were selected: OF (isolated trees of variable densities —15-25— trees ha-1, mostly holm and cork oaks, and patches of shrubs — cistaceae, fabaceae and lamiaceae— with a herbaceous pasture layer mostly composed of therophytic species and livestock are introduced to provide organic fertilizer to the soil, without ploughing and animal manure from the farms may be incorporated) for 20 years and CT (similar to OF, with ploughing —annual passes with a disc harrow and/or cultivator— is aimed at growing grain for livestock or at clearing the encroaching shrubs) in CM and LP. The dehesas studied were silvopastoral systems without cropping. Soil properties

  1. Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Gergely Jakab

    2017-09-01

    Full Text Available Decreased water retention and increased runoff and soil loss are of special importance concerning soil degradation of hilly crop fields. In this study, plots under ploughing (conventional tillage (PT and conservation tillage (CT; 15 years were compared. Rainfall simulation on 6 m2 plots was applied to determine infiltration and soil loss during the growing season. Results were compared with those measured from 1200 m2 plots exposed to natural rainfalls in 2016. Infiltration was always higher under CT than PT, whereas the highest infiltration was measured under the cover crop condition. Infiltration under seedbed and stubble resulted in uncertainties, which suggests that natural pore formation can be more effective at improving soil drainage potential than can temporary improvements created by soil tillage operations. Soil erodibility was higher under PT for each soil status; however, the seedbed condition triggered the highest values. For CT, soil loss volume was only a function of runoff volume at both scales. Contrarily, on PT plots, some extreme precipitation events triggered extremely high soil loss owing to linear erosion, which meant no direct connection existed between the scales. Improved soil conditions due to conservation practice are more important for decreasing soil loss than the better surface conditions.

  2. Water pressure head and temperature impact on isoxaflutole degradation in crop residues and loamy surface soil under conventional and conservation tillage management.

    Science.gov (United States)

    Alletto, Lionel; Coquet, Yves; Bergheaud, Valérie; Benoit, Pierre

    2012-08-01

    Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied (14)C in soil samples and from 0.0% to 2.4% of applied (14)C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied (14)C remained extractable during the experiment and, after 21d, less than 15% of applied (14)C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied (14)C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    Science.gov (United States)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    Climate change is expected to affect food security globally and increase the variability in food supply. At the same time, agricultural practices offer a great potential for mitigating and adapting to climate change. In China, food security has increased in the last decades with the number of undernourished people declining from 21% in 1990 to 12% today. However, the limited relative amount of arable land and scarce water supplies will remain a challenge. The Loess Plateau of China, located in the mid-upper reaches of the Yellow River and has an area of some 630000 km2 with a high agricultural potential. However, due to heavy summer rainstorms, steep slopes, low vegetation cover, and highly erodible soils, the Loess Plateau has become one of the most severely eroded areas in the world. Up to 70% of arable land is affected by an annual soil loss of 20-25 ton ha-1, far exceeding the threshold for sustainable use (10 ton ha-1). Rainfed farming systems are dominant on the Loess Plateau, and the farmers in this area have been exposed to a steadily increasing temperature as well as an erratic, but slightly decreasing rainfall since 1970. Therefore, adaptation of the regional agriculture is required to adapt to climate change and may be even engaged in mitigation. This study analyzed the potential contribution of conservation tillage to adaptation and mitigation of climate change on the Loess Plateau. In total, 15 papers published in English were reviewed, comparing two tillage practices, conventional tillage (CT) and conservation tillage typically represented by no-tillage (NT). Soil organic carbon (SOC) stock across soil depths as well yields and the inter-annual variations with regards to and their annual rainfall precipitation were compared for NT and CT. Our results show that: 1) The benefit of NT compared to CT in terms of increasing total SOC stocks diminishes with soil depth, questioning the use of average SOC stocks observed in topsoil to estimate the potential

  4. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  5. Organic weed conrol and cover crop residue integration impacts on weed control, quality, and yield and economics in conservation tillage tomato - A case study

    Science.gov (United States)

    The increased use of conservation tillage in vegetable production requires more information be developed on the role of cover crops in weed control, tomato quality and yield. Three conservation-tillage systems utilizing crimson clover, brassica and cereal rye as winter cover crops were compared to ...

  6. Conservation tillage, irrigation and variety selection impacts on cotton quality premiums, discounts and profitability: evidence from the gin

    Science.gov (United States)

    Fluctuating market prices, increasing production costs, and shifting mill demand, has made cotton markets more uncertain, making cotton quality a more important aspect of the profitability of cotton. The purpose of this research project is to examine the effect conservation tillage systems and varie...

  7. Resurrection of glyphosate resistant palmer amaranth control in conservation tillage dicamba tolerant cotton; soil health salvation using herbicide technology

    Science.gov (United States)

    Conservation agriculture hecterage in the mid-south and southeastern US has decreased because of herbicide resistant and other hard to control weeds. Producers have increasingly utilized tillage, the majority either using a moldboard plow to deeply bury weed seed and decrease emergence, or ‘vertica...

  8. N{sub 2}O and CH{sub 4} emissions from a fallow–wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Tellez-Rio, Angela, E-mail: angela.tellez@upm.es [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); García-Marco, Sonia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Navas, Mariela; López-Solanilla, Emilia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Centro de Biotecnología y Genómica de Plantas UPM-INIA. Dpto Biotecnología. E.T.S.I. Agrónomos. Technical University of Madrid. Campus Montegancedo, UPM. Autovía M-40, Salida 38 N, 36S. 28223 Pozuelo de Alarcón. Madrid (Spain); Tenorio, Jose Luis [Dpto. de Medio Ambiente, INIA. Ctra. de La Coruña km. 7.5, 28040 Madrid (Spain); Vallejo, Antonio [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-03-01

    Conservation agriculture that includes no tillage (NT) or minimum tillage (MT) and crop rotation is an effective practice to increase soil organic matter in Mediterranean semiarid agrosystems. But the impact of these agricultural practices on greenhouse gases (GHGs), such as nitrous oxide (N{sub 2}O) and methane (CH{sub 4}), is variable depending mainly on soil structure and short/long-term tillage. The main objective of this study was to assess the long-term effect of three tillage systems (NT, MT and conventional tillage (CT)) and land-covers (fallow/wheat) on the emissions of N{sub 2}O and CH{sub 4} in a low N input agricultural system during one year. This was achieved by measuring crop yields, soil mineral N and dissolved organic C contents, and fluxes of N{sub 2}O and CH{sub 4}. Total cumulative N{sub 2}O emissions were not significantly different (P > 0.05) among the tillage systems or between fallow and wheat. The only difference was produced in spring, when N{sub 2}O emissions were significantly higher (P < 0.05) in fallow than in wheat subplots, and NT reduced N{sub 2}O emissions (P < 0.05) compared with MT and CT. Taking into account the water filled pore space (WFPS), both nitrification and denitrification could have occurred during the experimental period. Denitrification capacity in March was similar in all tillage systems, in spite of the higher DOC content maintained in the topsoil of NT. This could be due to the similar denitrifier densities, targeted by nirK copy numbers at that time. Cumulative CH{sub 4} fluxes resulted in small net uptake for all treatments, and no significant differences were found among tillage systems or between fallow and wheat land-covers. These results suggest that under a coarse-textured soil in low N agricultural systems, the impact of tillage on GHG is very low and that the fallow cycle within a crop rotation is not a useful strategy to reduce GHG emissions. - Highlights: • Tillage systems and land-covers with low N

  9. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  10. Application of Multio-bjective Fuzzy Goal Programming to Optimize Cropping Pattern with Emphasis on Using Conservation Tillage Methods

    Directory of Open Access Journals (Sweden)

    samad erfanifar

    2014-10-01

    Full Text Available In this study, the optimal cropping patterns based on individual aims are presented and followed by a multi-objective cropping pattern with emphasize on the use of conservation tillage methods in Darab region presented. Individual goals consisted of maximizing gross margin and food secIn this study, the optimal cropping patterns based on individual aims were presented and followed by using a multi-objective fuzzy goal programming with emphasize on the use of conservation tillage methods in the Darab region. Individual goals consisted of maximizing gross margin and food security and minimizing water consumption and urea fertilizer use. The results showed that in the multi-objective cropping pattern, gross margin and food security increased by 23.5% and 6.1% , while water and energy consumption decreased by 4% and 5.1%, respectively as compared to the current cropping pattern. The fuzzy composite distance improved by %36, as compared to the current condition. Moreover, having replaced the conventional tillage methods with conservation tillage methods in the cropping pattern, the diesel fuel consumption reduced by 27%. Therefore, replacing multi-objective cropping pattern ,on which the conservation tillage methods are emphasized, with the conventional cropping patterns improves economic and environmental conditions. urity index and minimizing water and urea fertilizer.The results showed that in the multi-objective cropping pattern, gross margin and food security index respectively increase by 23.5% and 6.1% and water and energy consumption decrease by 4% and 5.1% respectively as compared to current cropping pattern. The fuzzy composite distance improves by %36 compares to current condition and represents better cropping pattern than the others. Morever in this cropping pattern, conventional tillage method will be replaced by conservation tillage practices, therefore the amount of diesel fuel consumption reduces by 27% that is equivalent to an

  11. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  12. What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis

    NARCIS (Netherlands)

    Aravindakshan, S.; Rossi, F.J.; Krupnik, T.J.

    2015-01-01

    Escalating energy costs are an increasing concern for South Asian farmers growing rice and wheat in rotation. Millions of people in the IGP (Indo-Gangetic Plains) depend on this cropping system for food and income security. CT (conservation tillage) practices, including mechanical BP (bed planting),

  13. Conservation tillage systems and water productivity implications for smallholder farmers in semi-arid Ethiopia

    NARCIS (Netherlands)

    Temesgen, M.

    2007-01-01

    This book describes the unique problems faced by smallholder farmers in semi arid regions of Ethiopia. It is the result of years of on-farm research that involved farmers and incorporated their indigenous knowledge to develop appropriate tillage systems and implements. It describes tillage

  14. Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation

    Directory of Open Access Journals (Sweden)

    Iraj Eskandari

    2016-06-01

    CAI had a linear relationship with crop residue cover, which the comparative intensity of cellulose and lignin absorption features near 2100 nm can be measure by it. Coefficients of determination (r2 for crop residue cover as a function of CAI and LCA were 0.89 and 0.79 respectively. Absorption specifications near 2.1 and 2.3 µm in the reflectance spectra of crop residues in minimum and no- tillage systems were related to cellulose and lignin. These specifications were not evident in the spectra of conventional tillage system. In this study the best index to use was CAI, which showed complete separation tillage systems, followed by LCA and NDTI. Four tillage intensity classes, corresponding to intensive (60% cover tillage, were recognized in this study.

  15. Assessment of Micro-Basin Tillage as a Soil and Water Conservation Practice in the Black Soil Region of Northeast China.

    Science.gov (United States)

    Sui, Yuanyuan; Ou, Yang; Yan, Baixing; Xu, Xiaohong; Rousseau, Alain N; Zhang, Yu

    2016-01-01

    Micro-basin tillage is a soil and water conservation practice that requires building individual earth blocks along furrows. In this study, plot experiments were conducted to assess the efficiency of micro-basin tillage on sloping croplands between 2012 and 2013 (5°and 7°). The conceptual, optimal, block interval model was used to design micro-basins which are meant to capture the maximum amount of water per unit area. Results indicated that when compared to the up-down slope tillage, micro-basin tillage could increase soil water content and maize yield by about 45% and 17%, and reduce runoff, sediment and nutrients loads by about 63%, 96% and 86%, respectively. Meanwhile, micro-basin tillage could reduce the peak runoff rates and delay the initial runoff-yielding time. In addition, micro-basin tillage with the optimal block interval proved to be the best one among all treatments with different intervals. Compared with treatments of other block intervals, the optimal block interval treatments increased soil moisture by around 10% and reduced runoff rate by around 15%. In general, micro-basin tillage with optimal block interval represents an effective soil and water conservation practice for sloping farmland of the black soil region.

  16. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  17. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion.

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  18. Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay) river basin

    NARCIS (Netherlands)

    Temesgen, M.; Uhlenbrook, S.; Simane, B.; Van der Zaag, P.; Mohamed, Y.; Wenninger, Y.; Savenije, H.H.G.

    2012-01-01

    Adoption of soil conservation structures (SCS) has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage

  19. Tillage for soil and water conservation in the semi-arid Tropics

    NARCIS (Netherlands)

    Hoogmoed, W.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In

  20. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2013-01-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow; and the sub subplots were four secondary spring tillage methods: disking followed by (fb cultivator (DCU, disking fb chisel plow (DCH, disking fb disking (DD and no tillage (NT. Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1 fb cereal rye (3698 kg ha−1 and winter fallow (777 kg ha−1. Two weeks after planting (WAP and before the postemergence (POST application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1, DD following crimson clover (2213 kg ha−1 and DD following winter fallow (2153 kg ha−1. On average, IT cotton yields (2133 kg ha−1 were 21% higher than NIT (1766 kg ha−1. Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer

  1. Combining Old and New Stable Isotope Techniques to Evaluate the Impact of Conservation Tillage on Soil Organic Carbon Dynamics and Stability

    International Nuclear Information System (INIS)

    De Clercq, T.; Xu, H.; Mercklx, R.; Heiling, M.; Dercon, G.; Resch, C.

    2016-01-01

    Soil organic matter (SOM) is a major carbon pool. It is a crucial factor for soil quality including several soil physical properties and a major nutrient source for crops. It also plays a significant role in the global carbon cycle. Soils can act as a carbon sink or source depending on land use and agricultural management practices. Some practices such as conservation tillage or no-tillage could increase SOM stocks, particularly in the topsoil, but in the long term it remains to be seen if and how this SOM is stabilized (De Clercq et al., 2015; Govaerts et al., 2009). In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on SOM stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. But alternative methods based on stable carbon and nitrogen isotopes, can provide this information at a fraction of the cost

  2. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  3. Effect of Conservation Tillage Practices on Soil Phosphorus Nutrition in an Apple Orchard

    Directory of Open Access Journals (Sweden)

    Xiaozhu YANG

    2016-11-01

    Full Text Available Soil phosphorus (P is an essential and limiting element for plant growth, which is significantly affected by different approaches to soil management. In order to reveal the effect of different management approaches on soil P and phosphatase activity in 0–20 cm and 20–40 cm soil, this research was conducted to study variations in the characteristics of P and phosphatase activity under 3-year tillage without mulching (CK, no-tillage with corn straw mulching (NTSM and no-tillage with grass (NTG in Liaoning apple orchard. The results showed that NTSM and NTG could significantly increase soil P content (P < 0.05 as compared with CK. However, the effect was different between NTSM and NTG; with the NTSM approach, the improvement in the P content in 20–40 cm was remarkable, and in the NTG approach, the improvement in the soil surface P content was significant. At the same time, soil phosphatase activity significantly increased (P < 0.05 under NTSM and NTG. The soil surface and 20–40 cm phosphodiesterase (PD activity was enhanced under the two management approaches, however, the effect of NTG was stronger than NTSM. In addition, NTSM was more conducive to increasing alkaline phosphomonoesterase (AlP, and NTG was more conducive to increasing acid phosphomonoesterase (AcP. Our findings highlight the variation of dominant mechanisms involved in soil P with different mulching materials application. NTSM and NTG could have the potential to increase P content and phosphatase activity, and provide a basis for using this method to improve P phytoavailability and reduce the application of soil fertilizer.

  4. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  5. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.-Wheat (Triticum aestivum L. Cropping System in Central China.

    Directory of Open Access Journals (Sweden)

    Li-Jin Guo

    Full Text Available Investigating microbial metabolic characteristics and soil organic carbon (SOC within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT and no tillage (NT] as main plots and straw returning methods [preceding crop residue returning (S, 2100-2500 kg C ha-1 and removal (NS, 0 kg C ha(-1] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC fractions within aggregates and their relationships under a rice-wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%, and 0.25 mm aggregate, and 0.25 mm aggregate, and 0.25 and 0.25 mm aggregate in the upper (0-5 cm soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in <0.25 mm aggregate. Our results suggested that conservation tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities.

  6. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study.

    Science.gov (United States)

    Cade-Menun, Barbara J; Carter, Martin R; James, Dean C; Liu, Corey W

    2010-01-01

    In many regions, conservation tillage has replaced conventional tilling practices to reduce soil erosion, improve water conservation, and increase soil organic matter. However, tillage can have marked effects on soil properties, specifically nutrient redistribution or stratification in the soil profile. The objective of this research was to examine soil phosphorus (P) forms and concentrations in a long-term study comparing conservation tillage (direct drilling, "No Till") and conventional tillage (moldboard plowing to 20 cm depth, "Till") established on a fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island, Canada. No significant differences in total carbon (C), total nitrogen (N), total P, or total organic P concentrations were detected between the tillage systems at any depth in the 0- to 60-cm depth range analyzed. However, analysis with phosphorus-31 nuclear magnetic resonance spectroscopy showed differences in P forms in the plow layer. In particular, the concentration of orthophosphate was significantly higher under No Till than Till at 5 to 10 cm, but the reverse was true at 10 to 20 cm. Mehlich 3-extractable P was also significantly higher in No Till at 5 to 10 cm and significantly higher in Till at 20 to 30 cm. This P stratification appears to be caused by a lack of mixing of applied fertilizer in No Till because the same trends were observed for pH and Mehlich 3-extractable Ca (significantly higher in the Till treatment at 20 to 30 cm), reflecting mixing of applied lime. The P saturation ratio was significantly higher under No Till at 0 to 5 cm and exceeded the recommended limits, suggesting that P stratification under No Till had increased the potential for P loss in runoff from these sites.

  7. Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay river basin

    Directory of Open Access Journals (Sweden)

    H. H. G. Savenije

    2012-12-01

    Full Text Available Adoption of soil conservation structures (SCS has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.

  8. Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed

    Science.gov (United States)

    Baker, Nancy T.

    2011-01-01

    This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.

  9. Long-term N fertilization and conservation tillage practices conserve surface but not profile SOC stocks under semi-arid irrigated corn

    Science.gov (United States)

    No tillage (NT) and N fertilization can increase surface soil organic C (SOC) stocks, but the effects deeper in the soil profile are uncertain. Subsequent tillage could counter SOC stabilized through NT practices by disrupting soil aggregation and promoting decomposition. We followed a long-term ti...

  10. The Potential for Conservation Tillage Adoption in the San Joaquin Valley, California: A Qualitative Study of Farmer Perspectives and Opportunities for Extension

    Science.gov (United States)

    Bossange, Anne V.; Knudson, Kandace M.; Shrestha, Anil; Harben, Ronald; Mitchell, Jeffrey P.

    2016-01-01

    Conservation tillage (CT) systems have a number of potential benefits including lower crop production costs and the ability to reduce soil erosion that have made them common in several regions of the world. Although CT systems have been researched and successfully implemented on some farms in California’s San Joaquin Valley (SJV), overall adoption is low and the reasons for the region’s comparatively low rates of adoption are not known. In 2011, we conducted written surveys and interviews with SJV farmers to identify characteristics of farmers who adopt or do not adopt CT, to determine reasons for non-adoption of CT, and to learn how successful CT adoption takes place in the SJV. We found that a universally acceptable definition of CT needs to be developed in order for effective research, outreach and communication on CT. Our research, which examined CT adoption within the expected progression of the diffusion of innovation model, suggested that larger and less diverse farms were more likely to use CT. Most farmers expressed transition to CT as a continuous learning process. Further, we conclude that gaining meaningful experience with CT practices by researchers in the local context is also a large component of successful adoption. PMID:27907196

  11. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    Science.gov (United States)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  12. Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.–Rice System in North Eastern Region of India

    Directory of Open Access Journals (Sweden)

    Gulab Singh Yadav

    2017-10-01

    Full Text Available Over centuries and even today, traditional farming practices are well performed without any ecological degradation. However, management practice such as conservative tillage combined with nutrient and residue could increase the crop production as well as soil fertility. A three-year replicated study was conducted to assess the effects of agronomic modification of traditional farming practices on productivity and sustainability of rice (wet season–rice (dry season system (RRS. The replacement of farmers practice (T2 with conservation effective tillage (no-till (NT and integrated nutrient management (INM practice along with 30% residue retention (T5 enhanced the straw, root and biomass yield of both wet season rice (WR, dry season rice (DR and system as a whole over T2. Treatment T5 recorded significantly lower soil bulk density (ρb and higher pH than the T2 after three years of the experiment. Further, treatment T5 increased total soil organic carbon (2.8%, total soil organic carbon stock (2.8%, carbon sequestration rate (336.5 kg ha−1 year−1, cumulative carbon stock (142.9% and carbon retention efficiency (141.0% over T2 of 0–20 cm depth after three year. The soil microbial biomass carbon concentration was significantly the highest under T5. Similarly, the dehydrogenase activity was the maximum under T5. Adoption of conservation tillage and nutrient management practice involving NT and INM along with residue retention can enhance the system productivity, and C and N sequestration in paddy soils is thereby contributing to the sustainability of the RRS.

  13. An Assessment of the Economic Impacts of NSW Agriculture Research and Extension - Conservation Farming and Reduced Tillage in Northern NSW

    OpenAIRE

    Scott, J. Fiona; Farquharson, Robert J.

    2004-01-01

    This assessment of research and extension in conservation farming in northern NSW was done as part of a systematic process of evaluating the economic, social and environmental impacts of major research, extension and education programs. The conservation farming program was a key area of investment by NSW Agriculture and an evaluation process fulfils accountability and resource allocation requirements. This analysis evaluates the investments by the former NSW Agriculture in conservation farmin...

  14. Oral mucosal melanoma: conservative treatment including laser surgery.

    Science.gov (United States)

    Luna-Ortiz, Kuauhyama; Campos-Ramos, Eunice; Pasche, Philippe; Mosqueda-Taylor, Adalberto

    2011-05-01

    To discuss the convenience of laser surgery as optimal treatment for melanoma of the oral mucosa. A retrospective evaluation of four patients with primary oral melanomas treated at a single Cancer Institution in Mexico City. Two patients were treated with resection of the melanoma with CO2 laser together with extraction of the involved dental organs and curettage of the alveolar walls. These two cases had melanoma in situ with multiple isolated foci. The third patient had a lesion with vertical growth, who was submitted to partial maxillectomy along with selective dissection of bilateral neck levels I-V with a negative report and the fourth patient had a history of oral nodular melanoma and presented with lymph node metastasis. According to follow-up status, there was no distant metastasis in any of the patients reported here. In our experience, conservative management with CO2 laser is adequate for melanomas of the oral mucosa with extraction of the dental organs and curettage of the alveoli to achieve complete surgical resection microscopically without sacrifice of the quality of life. Management of the neck is controversial. We recommend selective therapeutic resection of the neck only if it is found to be clinically positive. Elective dissection has not shown to have an impact in overall survival.

  15. Effect of stubble management, tillage and cropping sequence on the ...

    African Journals Online (AJOL)

    2 mai 2001 ... The adoption of conservation tillage practices for wheat production in Ethiopia should not be hindered for fear of spreading these specific trash-borne diseases, although, full stubble retention could increase the severity of eyespot. Key Words: Conservation tillage, Pseudocercosporella herpotrichoides ...

  16. Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops.

    Science.gov (United States)

    Hatten, Timothy D; Bosque-Pérez, Nilsa A; Labonte, James R; Guy, Stephen O; Eigenbrode, Sanford D

    2007-04-01

    The effects of tillage regimen (conventional [CT] and no-tillage [NT]) on the activity density and diversity of carabid beetles (Coleoptera: Carabidae) was studied by pitfall trapping within a rain-fed cropping system in northwestern Idaho, 2000-2002. The cropping rotation consisted of a spring cereal (barley, Hordeum vulgare L., in 2000 and 2001; and wheat, Triticum aestivum L., in 2002), spring dry pea (Pisum sativum L.) 2000-2002, and wheat (T. aestivum), spring in 2000 and 2001, and winter in 2002. A total of 14,480 beetles comprised of 30 species was captured, with five numerically dominant species [Poecilus scitulus L., Poecilus lucublandus Say, Microlestes linearis L., Pterostichus melanarius Ill., and Calosoma cancellatum (Eschscholtz)], accounting for 98% of all captures. All species including the dominants responded idiosyncratically to tillage regimen. Adjusting for trapping biases did not significantly change seasonal activity density of Poecilus spp. or Pt. melanarius to tillage. More beetles were captured in CT than in NT crops because of the dominance of P. scitulus in CT, whereas species richness and biological diversity were generally higher in NT crops. Observed patterns suggest that direct effects of tillage affected some species, whereas indirect effects related to habitat characteristics affected others. CT may provide habitat preferable to xerophilic spring breeders. A relationship was found between beetle species size and tillage regimen in pea and to a lesser extent across all spring crops, with large species (>14 mm) conserved more commonly in NT, small species (tillage systems.

  17. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  18. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia

    Science.gov (United States)

    Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...

  19. Water availability for winter wheat affected by summer fallow tillage practices in sloping dryland

    NARCIS (Netherlands)

    Wang, X.B.; Cai, D.X.; Jin, K.; Wu, H.J.; Bai, Z.G.; Zhang, C.J.; Yao, Y.Q.; Lu, J.J.; Wang, Y.H.; Yang, B.; Hartman, R.; Gabriels, D.

    2003-01-01

    The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang,Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods inclu-ding reduced tillage (RT), no-till (NT), 2 crops/year (2C), subsoiling(SS), and conventional tillage

  20. Tillage Effects on Maize Performance and Physical Properties of a ...

    African Journals Online (AJOL)

    The effects of six tillage methods on soil physical properties maize (Zea mays L.) germination, growth and yield were evaluated in field experiments during 1995 and 1996 cropping seasons. The selected treatments represented both conventional and conservation tillage practices common within the study area. The soil ...

  1. Tillage Effects on Maize Performance and Physical Properties of a ...

    African Journals Online (AJOL)

    Abstract. The effects of six tillage methods on soil physical properties maize (Zea mays L.) germination, growth and yield were evaluated in field experiments during 1995 and 1996 cropping seasons. The selected treatments represented both conventional and conservation tillage practices common within the study area.

  2. The effects of one-time inversion tillage on soil physical properties after long-term reduced tillage

    Science.gov (United States)

    Kuhwald, Michael; Augustin, Katja; Duttmann, Rainer

    2017-04-01

    The positive effects of reduced tillage on soil stability and on various soil functions such as infiltrability or saturated hydraulic conductivity are known in general. However, long-term employment of conservation tillage can increase weed pressure, damage by mice and soil compaction. Thus, the application of one-time inversion tillage (occasional or strategic tillage) is customarily used as a method for overcoming these drawbacks. Hitherto, the effects of one-time inversion tillage on soil physical properties have not been investigated. This study focuses on analysing whether the improved soil physical properties derived by long-term reduced tillage remain after one-time inversion tillage by mouldboard plough. The study was carried out in a 5.5 ha field in the southern part of Lower Saxony, Germany. Since 1996, this field has been subdivided into three plots, one managed conventionally by using a mouldboard plough (CT), while in the others a chisel plough (RT1) and a disk harrow (RT2) were employed. In October 2014, the entire field was ploughed by mouldboard plough to a depth of 30 cm. During the following year, four field studies were conducted to analyse the effects of this one-time inversion tillage on volumetric soil water content, bulk density, saturated hydraulic conductivity and infiltration rate. Additionally, penetration resistance measurements taken across the entire field were interpolated by kriging to analyse the spatial distribution of soil characteristics. The surveys of RT1 and RT2 were compared with CT and with analyses conducted before the one-time inversion tillage. This study shows that positive effects of long-term conservation tillage on several soil physical characteristics still remain after one-time mouldboard ploughing. Throughout the entire cropping season, the topsoil tilled under former conservation tillage practices revealed significantly higher (p < 0.05) values of saturated hydraulic conductivities and infiltration rates compared

  3. Crop response to deep tillage - a meta-analysis

    Science.gov (United States)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  4. Effect of tillage system and straw management on organic matter dynamics

    OpenAIRE

    Hazarika , Samarendra; Parkinson , Robert; Bol , Roland; Dixon , Liz; Russell , Peter; Donovan , Sarah; Allen , Debbie

    2009-01-01

    International audience; The choice of cultivation system in arable agriculture exerts a strong influence not only on soil health and crop productivity but also on the wider environment. Conservation tillage using non-inversion methods conserves soil carbon, reduces erosion risk and enhances soil quality. In addition, conservation tillage has been shown to sequester more carbon within the soil than inversion tillage, reducing carbon dioxide losses to the atmosphere. Stable, well structured top...

  5. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  6. Carbon Storage and Carbon Dioxide Emission as Influenced by Long-term Conservation Tillage and Nitrogen Fertilization in Corn-Soybean Rotation

    Directory of Open Access Journals (Sweden)

    Rahmat Saleh

    2012-01-01

    Full Text Available Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes toglobal greenhouse gas (GHG emission. The objective of this experiment was to determine the influence of long-termconservation tillage and N fertilization on soil carbon storage and CO2 emission in corn-soybean rotation system. Afactorial experiment was arranged in a randomized completely block design with four replications. The first factorwas tillage systems namely intensive tillage (IT, minimum tillage (MT and no-tillage (NT. While the second factorwas N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybeanproduction. Samples of soil organic carbon (SOC after 23 year of cropping were taken at depths of 0-5 cm, 5-10cm and 10-20 cm, while CO2 emission measurements were taken in corn season (2009 and soybean season (2010.Analysis of variance and means test (HSD 0.05 were analyzed using the Statistical Analysis System package. At 0-5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no Nfertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.Throughout the corn and soybean seasons, CO2-C emissions from IT were higher than those of MT and NT, whileCO2-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates. With any Nrate treatments, MT and NT could reduce CO2-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT,respectively. While in soybean season, MT and NT could reduce CO2-C emission to 17.6%-46.7% and 42.0%-74.3% as much of IT, respectively. Prior to generative soybean growth, N fertilization with rate of 50 kg N ha-1could reduce CO2-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.

  7. [Effects of tillage and mulching on orchard soil moisture content and temperature in Loess Plateau].

    Science.gov (United States)

    Huang, Jin-Hui; Liao, Yun-Cheng; Gao, Mao-Sheng; Yin, Rui-Jing

    2009-11-01

    A field experiment was conducted to study the effects of different tillage system (no-tillage, rotary tillage, and plow tillage) and mulching (straw mulch, sod mulch, and film mulch) on the orchard soil moisture content and temperature in Loess Plateau. Under different tillage system, the soil moisture content in 0-1 m layer differed significantly in May, with the sequence of no-tillage (14.28%) > rotary tillage (14.13%) > plow tillage (13.57%), but had less difference in September. Straw mulch induced significantly higher soil moisture content than sod mulch, film mulch, and no-mulch. Among the treatments tillage plus mulching, no-tillage plus straw mulch resulted in the greatest soil water storage. The average soil temperature at daytime was in order of film mulch > no-mulch > sod mulch > straw mulch, and the change range of soil temperature was no-mulch > film mulch > sod mulch > straw mulch. Soil water storage under different mulching treatments was not always negatively correlated with soil temperature, but depended on the water conservation effect and heat-preserved capacity of mulching material. Above all, the main conservation tillage system for the orchards in Loess Plateau would be no tillage plus straw mulch.

  8. Soil water retention as affected by tillage and residue management in semiarid Spain

    NARCIS (Netherlands)

    Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B.

    2006-01-01

    Conservation tillage preserves soil water and this has been the main reason for its rapid dissemination in rainfed agriculture in semiarid climates. We determined the effects of conservation versus conventional tillage on available soil water capacity (AWC) and related properties at the end of 5

  9. Pesticide Interactions with N source and Tillage: Effects on soil biota and ecosystem services

    DEFF Research Database (Denmark)

    Jensen, John; Petersen, Søren O; Elsgaard, Lars

    Pesticide effects on soil biota must be interpreted in the context of the specific management practice, including rotation, fertilization, tillage, and pest control. Tillage, foe example, has been shown to reduce earthworm populations by up to 80%, depending on timing and specific tillage techniq...

  10. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  11. Assessing Energy Flow in Rainfed and Irrigated Wheat Fields of Shahrekourd Township under two Tillage Systems

    Directory of Open Access Journals (Sweden)

    hossein kazemi

    2016-11-01

    Full Text Available Introduction Energy analysis of agricultural ecosystem is essential for sustainable production. The relation between agriculture and energy is very close. Agriculture is an energy consumer and the energy supplier. Agriculture’s use of energy is recognized in three external inputs: labor, machines, and fertilizers (Connor et al., 2011. Significant gains in energy efficiency were arisen in agriculture following the phenomenal increase in energy prices in the 1970s. Greater use of diesel motors, larger tractors, using conservation tillage methods and optimized fertilizer use efficiency were the main causes (Ozkan et al., 2004. Safa & Samarasinghe (2013 were reported that fuel consumption in tillage and harvesting was more than other operations in wheat fields of Canterbury, New Zealand. Effective application of agricultural techniques and efficient use of support inputs can minimize environmental problems and in consequence promote sustainable agricultural intensification. In this study, the energy flow investigated in irrigated and rain-fed wheat cropping systems under two tillage and no-tillage methods in the Shahrekourd city, during 2013. Materials and methods The study was carried out in the Sharekourd city (Chaharmahal Bakhteyari province. This region is located within 32º 20' and 32º 21' Lat. N, 50º 48' and 50º 50' Lon. E. Data were collected from 40 farmers with questionnaire method. In this study, a randomized complete design with four scenarios (rain-fed and irrigated farming with tillage and no-tillage systems was used, that 10 farms were considered as a replication in each scenario. All data detail information on the questionnaire were averaged and arranged. First, all inputs and outputs of wheat production were determined, quantified and entered into Microsoft Excel spreadsheets, and then transformed into energy units and expressed in MJ.ha-1. Based on the total energy equivalents of the inputs and output and the energy use

  12. [Effects of different tillage measures on upland soil respiration in Loess Plateau].

    Science.gov (United States)

    Sun, Xiao-hua; Zhang, Ren-zhi; Cai, Li-qun; Chen, Qiang-qiang

    2009-09-01

    A field experiment was conducted in Lijiabu Town of Dingxi City, Gansu Province to study the soil respiration and its relations with the canopy temperature and soil moisture content in a rotation system with spring wheat and pea under effects of different tillage measures. Six treatments were installed, i.e., tillage with no straw- or plastic mulch (conventional tillage, T), tillage with straw mulch (TS), tillage with plastic mulch (TP), no-tillage (NT), no-tillage with straw mulch (NTS), and no-tillage with plastic mulch (NTP). During the growth periods of spring wheat and pea, soil respiration had different change patterns, with the peaks appeared at the early jointing, grain-filling, and maturing stages of spring wheat, and at the 5-leaf, silking, flowering and poding, in spring wheat field between treatments NTS and T, and the soil respiration rate was significantlyand maturing stages of pea. There was an obvious difference in the diurnal change of soil respiration lower in NTS than in T; while the soil respiration in pea field had less diurnal chan ge. Soil respiration rate had a significant linear relationship with the canopy temperature of both spring wheat andpea, the correlation coefficient being the highest at booting stage of spring wheat and at flowering and poding stage of pea, followed by at grain-filling stage of spring wheat and at branching stage of pea. There was also a significant parabola relationship between soil respiration rate and soil moisture content, the correlation coefficient being higher under conservation tillage than under conventional tillage, with the highest under NTS. The moisture content in 10-30 cm soil layer of spring wheat field and that in 5-10 cm soil layer of pea field had the greatest effects on soil respiration. Comparing with conventional tillage, all the five conservation tillage measures decreased soil respiration, with the best effects of no-tillage with straw mulch.

  13. Fabrication and evaluation of a reservoir tillage machine to reduce runoff from farms with sprinkler irrigation systems

    Directory of Open Access Journals (Sweden)

    M. A Rostami

    2016-09-01

    Full Text Available Introduction Nowadays, in a lot of farm land due to reasons such as high density, heavy textured soils, steep terrain and a large body of water at each irrigation, rapid and complete absorption of water in the soil does not happen and runoff will be accrued. Improvement of infiltration reduces runoff and thus increases available water capacity. The main methods used to increase the infiltration area: The use of soil amendments, soil management by tillage and conservation farming. These methods may be used separately or together. Reservoir tillage is the process by which small holes or depressions are punched in the soil to prevent runoff of water from irrigation or rainfall. The objective of this study was to develop and evaluate a new reservoir tillage machine for runoff control in the fields. Materials and Methods Fabricated machine has four main units include three-point hitch, toolbar, frame and tillage unit. Tillage unit was a spider wheel with 6 arms that has 6 Wedge-shaped blades, mounted on them. Each tillage unit mounted on a frame and the frame is attached to the toolbar with a yoke. The toolbar was attached to the tractor by three-point hitch. The movement of tractor caused blades impact soil and spider wheel was rotating. Spider wheel rotation speed was depended on the forward speed of the tractor. Blades were created mini-reservoirs on the soil surface for "In situ" irrigation water or rainwater harvesting. Theoretically distance between basins, created by reservoir tillage machine, fabricated in this study was 57 and 68 cm for Arm's length of 30 and 40 cm respectively. For the construction of machine, first the plan was drawn with SolidWorks software and then the parts of the machine were built based on technical drawings. First tillage unit was constructed and its shaft was based in two bearings. Six of the arms were positioned at 60 degrees from each other around tillage units and connected by welding. For evaluation of machine

  14. Determinants of tillage frequency among smallholder farmers in two semi-arid areas in Ethiopia

    NARCIS (Netherlands)

    Temesgen, M.; Rockstrom, J.; Savenije, H.H.G.; Hoogmoed, W.B.; Alemu, D.

    2008-01-01

    Traditional tillage systems practiced by farmers in semi-arid regions of Ethiopia are characterized by repeated and cross plowing with an indigenous plow called Maresha. Repeated and cross plowing have led to land degradation. Conservation tillage systems that advocate minimum soil disturbance can

  15. Tillage effects on physical qualities of a vertisol in the central ...

    African Journals Online (AJOL)

    user

    In the highlands of Ethiopia, tillage methods and frequency affect drainage, soil erosion, moisture conservation, weeding and harvesting of crops. This is through their effects on soil physical, chemical and biological qualities. In this study, four tillage methods for land preparation, “broad bed and furrows”,” green manure” ...

  16. Tillage effects on physical qualities of a vertisol in the central ...

    African Journals Online (AJOL)

    In the highlands of Ethiopia, tillage methods and frequency affect drainage, soil erosion, moisture conservation, weeding and harvesting of crops. This is through their effects on soil physical, chemical and biological qualities. In this study, four tillage methods for land preparation, “broad bed and furrows”,” green manure”, ...

  17. Sustainable semiarid dryland production in relation to tillage effects on Hydrology: 1983-2013

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch tillage, SM, as a result of improved soil conditions or water conservation, but knowledge of long-term tillage effects on the comprehensive field hydrology and sustained crop production is needed. ...

  18. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol

    NARCIS (Netherlands)

    Margenot, Andrew; Paul, B.K.; Pulleman, M.M.; Parikh, Sanjai; Fonte, Steven J.

    2017-01-01

    The widespread promotion of conservation agriculture (CA) in regions with weathered soils prone to phosphorus (P) deficiency merits explicit consideration of its effect on P availability. A long-term CA field trial located on an acid, weathered soil in western Kenya was evaluated for effects of

  19. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  20. RESEARCH REGARDING THE INFLUENCE WEED CONTROL TREATMENTS ON PRODUCTION AND QUALITATIVE INDICATORS SOYBEAN CULTIVATED IN MINIMUM TILLAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Cornel Chetan

    2016-11-01

    Full Text Available The use of herbicides abused, without a thorough knowledge can be dangerous for the environment through the introduction of toxic waste in agricultural ecosystems. It is necessary to reduce the doses used in relation to the use of conservative technology, finding solutions optimized for effective weed control. Research conducted at ARDS Turda in the years 2013 and 2014 have followed the effect of 12 variants of herbicides used to control weeds in soybean crop, sown in two tillage systems (classical system and minimal tillage system, on the soybean production and quality indicators. Tillage system significantly influenced both qualitative indices and soybean crop production (being 2635 kg/ha to the classical and 2131 kg/ha minimum tillage system. The significant influence of tillage soybeans in fat content (20.34% in minimum tillage system; 19.94% to the classical and on protein (39.89% minimum tillage system; 40.56% in the classic.

  1. N-utilization in non-inversion tillage systems

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2011-01-01

    clay kg−1. The tillage treatments were stubble cultivating to 8–10 cm or 3–4 cm, direct drilling, or ploughing to 20 cm. Five different fertilizer N treatments were included: 1:50% (0.50N), 2:75% (0.75N), 3:100% (1.00N), 4:125% (1.25N) of recommended N rates, respectively, and 5: application of 15...... by soil compaction in plots with non-inversion tillage. Applying some of the N allocation in autumn cannot be recommended for stimulation of growth of winter cereals or winter oilseed rape with either non-inversion tillage or ploughing...

  2. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    Science.gov (United States)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  3. Evaluating energy efficiency of site-specific tillage in maize in NE Italy.

    Science.gov (United States)

    Bertocco, M; Basso, B; Sartori, L; Martin, E C

    2008-10-01

    This paper examine the efficiency of energy use of three conservation tillage practices (SST - sub-soil tillage; MT - minimum tillage; and NT - no tillage) performed within two management zones, previously identified in a field according to the stability of yield variability. Experiments were carried out in 2003 in NE Italy, on a farm near Rovigo, on a 8-ha field with clay soil, in maize (Zea mays, L.). The purpose of the paper is (i) to investigate the energy variability due to these tillage practices performed spatially within two management zones and (ii) to analyze the long-term energetic efficiency for each tillage practice. The energy balance was highest for SST with respect to MT and NT, due to labor and fuel consumption rates. The energy balance was influenced by the spatial pattern of yield, with appreciable differences between practices in terms of both the conversion index of energy for tillage (9.0, 12.6 and 22.8GJha(-1) for SST, MT and NT, respectively) and the energy use efficiency for tillage (8.0, 11.6, 21.8GJha(-1) for SST, MT and NT, respectively). Based on the simulated data and the calibration results, SALUS model proved to be a good tool for analyzing long-term effects of tillage practices on yield. The NT treatment showed the best efficiency over years, due to the low inputs in comparison with the output level.

  4. Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-01-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259–7898 kg ha−1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic. PMID:26192158

  5. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau.

    Science.gov (United States)

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-07-20

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha(-1) for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  6. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-Fang; Shangguan, Zhou-Ping

    2015-07-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha-1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  7. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P temperature. Higher residue coverage caused lower soil temperature; the effect was greater for maize than soybean residue. Residue type had significant effect on soil temperature in 9 of 15 weekly periods with 0-1.9 °C lower soil temperature under maize than soybean residue. Both tillage and residue had small but inconsistent effect on soil temperature following planting in Northeast China representative of a cool to temperate zone.

  8. Determinants of adoption of soil conservation practices in Oyo State ...

    African Journals Online (AJOL)

    The farmers commonly adopt fertilizers, minimum tillage and bush fallow practices. The truncated negative binomial Count Data model was used to identify factors influencing adoption of the practices. Factors identified as determinants of their adoption of soil conservation practices include: farm size, land tenure, extension ...

  9. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    Science.gov (United States)

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  10. How does tillage intensity affect soil organic carbon? A systematic review

    Science.gov (United States)

    Haddaway, Neal Robert; Hedlund, Katarina; E Jackson, Louise; Kätterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid; Bracht Jørgensen, Helene; Isberg, Per-Erik

    2017-04-01

    Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common agricultural practice that provides a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta-analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review of the topic. Methods: We systematically review relevant research in warm temperate and boreal regions using, as a basis, evidence identified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original systematic map searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were coded and subject to meta-data extraction. Quantitative study findings were then extracted and meta-analyses performed to investigate the impact of reducing tillage (from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT) for SOC concentration and SOC stock in the upper soil and at lower depths. Results: A total of 351 studies were included in the systematic review: some 18% coming from an update of research published in the 2 years following searches performed for the systematic map. SOC concentration was found to be significantly higher in NT relative to both IT (1.18 g/kg ± 0.34 (SE)) and HT (2.09 g/kg ± 0.34 (SE)) in the upper soil layer (0-15 cm). IT was also found to be significant higher (1.30 g/kg ± 0.22 (SE)) in SOC concentration than HT for the upper soil layer (0-15 cm). At lower depths, only IT SOC compared with HT at 15-30 cm showed a significant difference; being 0.89 g/kg (± 0.20 (SE)) lower in intermediate intensity tillage. For stock data NT had significantly higher SOC

  11. Tillage practices and identity formation in High Plains farming

    DEFF Research Database (Denmark)

    Strand, Katherine; Arnould, Eric; Press, Melea

    2014-01-01

    farming, recognition and denunciation of other farmers’ practices, and recognition and justification of their own contribute to identity formation. This research contributes to the ongoing discussion of how identity is formed through day-to-day activities in the material world. The plow creates divisions...... landscape. Specifically, they compare conservation tillage wedded to ‘modern’ ideologies of scientific farming with conventional tillage newly linked to beliefs about both organic and traditional farming, and examine how farmers use these different forms of tillage to create their identities. Roadside...... in the High Plains community between organic farmers who continue to rely on this implement in their material engagement with the land and the chemical farmers who distance their practices from the plow as they distinguish themselves as stewards of the soil....

  12. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  13. Sugarcane field renovation: influence of tillage and no-tillage in the emission of greenhouse gases (GHG).

    Science.gov (United States)

    Packer, Ana Paula; Degaspari, Iracema A. M.; Ramos, Nilza Patricia; Vilela, Viviane A. A.; do Carmo, Janaina B.; Cabral, Osvaldo M. R.; Rossi, Paulo; de Andrade, Cristiano A.

    2015-04-01

    The management of agricultural soils can play an important role in the greenhouse gases (GHG) balance, depending on the adopted practices. In the agricultural system, current GHG emissions generated by anthropogenic activities include land use, land use change and management practices, which have contributed to disrupt the C and N cycles in terrestrial ecosystems. The GHG (CO2, N2O and CH4) emissions from agricultural soils depend on the biophysical processes, and the incorporation/decomposition of organic residues. Agricultural soils preparation requires a combination of several implements, which can produce great soil disturbance as is the case of conventional tillage or minimum soil mobilization in the reduced tillage or no-tillage. Tillage breaks soil aggregates leading to enhanced organic matter decomposition and reduced C and N concentrations and no-tillage increases the stability of soil macroaggregates, reducing the emissions of CO2. In this study, we evaluated the CO2 emissions from different management practices widely used in the renewal of sugarcane fields previously planted with soybean, in an Acric Oxisol plantation in the southeast region of Brazil. The conventional tillage (CT) operation consisted of an offset disk harrowing using a tool with 36 disks x 26" and a subsoiling with an implement reaching nearly 50 cm depth. The reduced tillage (RT) was carried out with subsoiling operation in the row planting and in the no-tillage (NT), the soybean trash from the last harvest was left on the soil. The soil preparation and the establishment of four experimental plots (30 m x 30 m each) occurred within two days. During the studied period, two CO2 and N2O emission peaks were observed after the soil preparation, the first one on day 4 and the second on day 35 after a 55 mm rain. The cumulative emissions were measured during 40 days after soil preparation. We observed higher emissions in the conventional tillage (CT), and lower values in the reduced tillage

  14. Conservation Agriculture in North America

    Science.gov (United States)

    Conservation agriculture (CA) is a production paradigm that groups reduced tillage, mulching with crop residues or cover crops, and diversified crop rotations, especially those that incorporate leguminous crops. In North America, reduced tillage is the most widely-adopted practice that seeks the ide...

  15. Conservation tillage for dryland farming in China

    NARCIS (Netherlands)

    Cai, D.X.; Ke, J.; Wang, X.B.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D.

    2006-01-01

    Dryland regions account for above 70% of total nation's farmland in China. These dryland are vital contributors to the total national production of grains, cash crops and animal products. However, the development of dryland farming is constrained by harsh climate, bad economic situation and poor

  16. Appraisal of economic impact of zero tillage, laser land levelling and bed-furrow interventions in punjab, pakistan

    International Nuclear Information System (INIS)

    Latif, A.; Shakir, A.S.

    2013-01-01

    irrigation is inevitable for profitable farming in arid and semi-arid regions. Water shortage is augmenting all over the world including Pakistan, due to which agriculture sector is facing critical challenges. For sustainable and feasible agriculture production, the cost of crop inputs needs to be reduced and at the same time the efficiency of resources must be enhanced. Resource conservation interventions (RCIs) play a vital role to achieve these goals. The RCIs include laser land levelling (LLL), zero tillage (ZT) and bed-furrow (BF). A survey was conducted in year 2011-12 in ten districts of Punjab for data collection regarding the agriculture inputs and outputs of RCIs and traditional irrigation system. The study area lies in rice-wheat cropping zone in Punjab, Pakistan. The analysis of data concluded that these interventions have enhanced the crop yield; saved significant irrigation water and increased the income of the farmers. Irrigation water saved by laser land levelling, zero tillage and bed-furrow was 31, 49 and 40 percent per hectare respectively in the selected irrigated areas. Water productivity was higher for zero tillage farms (2.02 kg/m/sup 3/) followed by bed-furrow (1.59 kg/m/sub 3/) and laser land levelling farms (1.58 kg/m/sub 3/). Fertilizer use efficiency by zero tillage, bed-furrow and laser land levelling was 19.1, 18.19 and 17.7 percent per hectare respectively as compared to traditional farming (13.98 percent). Therefore, the resource conservation interventions provide excellent tool for making development towards improving and sustaining agriculture production, ensure food security and poverty empowerment in Pakistan and elsewhere under similar socio-environmental conditions. (author)

  17. The Effect on Soil Erosion of Different Tillage Applications

    Science.gov (United States)

    Gür, Kazım

    2016-04-01

    The Effects on Soil Erosion of Different Tillage Applications Kazım Gür1, Kazim Çarman2 and Wim M.Cornelis3 1Bahri Daǧdaş International Agricultural Research Instıtute, 42020 Konya, Turkey 2Faculty of Agriculture, Department of Agricultural Machinery, University of Selçuk, 42031 Konya, Turkey 3Department of Soil Management, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, 9000 Gent, Belgium Traditional soil cultivation systems, with excessive and inappropriate soil tillage, will generally lead to soil degradation and loss of soil by wind erosion. Continuous reduced tillage and no-till maintaining soil cover with plant residues called Conservation Agriculture that is considered as effective in reducing erosion. There exist a wide variety of practices using different tools that comply with reduced tillage principles. However, few studies have compared the effect of several of such tools in reducing wind erosion and related soil and surface properties. We therefore measured sediment transport rates over bare soil surfaces (but with under stubbles of wheat, Triticum aestivum L.) subjected to three tillage practices using two pulling type machines and one type of power takeoff movable machines and generated with a portable field wind tunnel. At 10 ms-1, sediment transport rates varied from 107 to 573 gm-1h-1, and from 176 to 768 gm-1h-1 at 13 ms-1. The lowest transport rates were observed for N(no-tillage) and the highest for Rr(L-type rototiller). After tillage, surface roughness, mean weighted diameter, wind erodible fraction, mechanical stability and soil water content were measured as well and varied from 5.0 to 15.9%, 6.9 to 13.8 mm, 14.3 to 29.7%, 79.5 to 93.4% and 8.6 to 15.1%, respectively, with again N is being the most successful practice. In terms of conservation soil tillage technique, it can be said that the applications compared with each other; direct sowing machine is more appropriate and cause to the less erosion.

  18. Effect of tillage practices on least limiting water range in Northwest India

    Science.gov (United States)

    Kahlon, Meharban S.; Chawla, Karitika

    2017-04-01

    Tillage practices affect mechanical and hydrological characteristics of soil and subsequently the least limiting water range. This quality indicator under the wheat-maize system of northwest India has not been studied yet. The treatments included four tillage modes, namely conventional tillage, no-tillage without residue, no-tillage with residue, and deep tillage as well as three irrigation regimes based on the irrigation water and pan evaporation ratio i.e. 1.2, 0.9, and 0.6. The experiment was conducted in a split plot design with three replications. At the end of cropping system, the mean least limiting water range (m3 m-3) was found to be highest in deep tillage (0.26) and lowest in notillage without residue (0.15). The field capacity was a limiting factor for the upper range of the least limiting water range beyond soil bulk density 1.41 Mg m-3 and after that 10% air filled porosity played a major role. However, for the lower range, the permanent wilting point was a critical factor beyond soil bulk density 1.50 Mg m-3 and thereafter, the penetration resistance at 2 MPa becomes a limiting factor. Thus, deep tillage under compaction and no-tillage with residue under water stress is appropriate practice for achieving maximum crop and water productivity.

  19. Earthworms influenced by reduced tillage, conventional tillage and energy forest in Swedish agricultural field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jan (SLU, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden)), Email: Jan.Lagerlof@ekol.slu.se; Paalsson, Olof; Arvidsson, Johan (SLU, Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala (Sweden))

    2012-03-15

    We compared earthworm density, depth distribution and species composition in three soil cultivation experiments including the treatments ploughless tillage and mouldboard ploughing. Sampling was done in September 2005 and for one experiment also in 1994. By yearly sampling 1995-2005, earthworms in an energy forest of Salix viminalis were compared with those in an adjacent arable field. Sampling method was digging of soil blocks and hand sorting and formalin sampling in one cultivation experiment. Both methods were used in the energy forest and arable land comparison. In two soil cultivation experiments, highest abundances or biomass were found in ploughless tillage. Earthworm density was higher in the upper 10 cm, especially in the ploughless tillage. Earthworm density was significantly higher in the energy forest than in the arable field. Formalin sampling revealed c. 36% of the earthworm numbers found by digging in the energy forest and gave almost no earthworms in the arable field. In all treatments with soil cultivation, species living and feeding in the rhizosphere and soil dominated. One such species, Allolobophora chlorotica, was more abundant under mouldboard ploughing than ploughless tillage. Lumbricus terrestris, browsing on the surface and producing deep vertical burrows, was more common in the ploughless tillage. Species living and feeding close to the soil surface were almost only found in the energy forest, which had not been soil cultivated since 1984. The findings support earlier studies pointing out possibilities to encourage earthworms by reduced soil cultivation. This is one of the first published studies that followed earthworm populations in an energy forest plantation during several years. Explanation of earthworm reactions to management and environmental impacts should be done with consideration of the ecology of species or species groups. Earthworm sampling by formalin must always be interpreted with caution and calibrated by digging and

  20. Tillage and herbicide reduction mitigate the gap between conventional and organic farming effects on foraging activity of insectivorous bats.

    Science.gov (United States)

    Barré, Kévin; Le Viol, Isabelle; Julliard, Romain; Chiron, François; Kerbiriou, Christian

    2018-02-01

    The increased use of pesticides and tillage intensification is known to negatively affect biodiversity. Changes in these agricultural practices such as herbicide and tillage reduction have variable effects among taxa, especially at the top of the trophic network including insectivorous bats. Very few studies compared the effects of agricultural practices on such taxa, and overall, only as a comparison of conventional versus organic farming without accurately accounting for underlying practices, especially in conventional where many alternatives exist. Divergent results founded in these previous studies could be driven by this lack of clarification about some unconsidered practices inside both conventional and organic systems. We simultaneously compared, over whole nights, bat activity on contiguous wheat fields of one organic and three conventional farming systems located in an intensive agricultural landscape. The studied organic fields (OT) used tillage (i.e., inversion of soil) without chemical inputs. In studied conventional fields, differences consisted of the following: tillage using few herbicides (T), conservation tillage (i.e., no inversion of soil) using few herbicides (CT), and conservation tillage using more herbicide (CTH), to control weeds. Using 64 recording sites (OT = 12; T = 21; CT = 13; CTH = 18), we sampled several sites per system placed inside the fields each night. We showed that bat activity was always higher in OT than in T systems for two ( Pipistrellus kuhlii and Pipistrellus pipistrellus ) of three species and for one ( Pipistrellus spp.) of two genera, as well as greater species richness. The same results were found for the CT versus T system comparison. CTH system showed higher activity than T for only one genus ( Pipistrellus spp.). We did not detect any differences between OT and CT systems, and CT showed higher activity than CTH system for only one species ( Pipistrellus kuhlii ). Activity in OT of Pipistrellus spp. was

  1. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  2. Soil respiration in a long-term tillage treatment experiment

    Science.gov (United States)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  3. Developing a sustainable agro-system for central Nepal using reduced tillage and straw mulching.

    Science.gov (United States)

    Atreya, Kishor; Sharma, Subodh; Bajracharya, Roshan M; Rajbhandari, Neeranjan P

    2008-08-01

    In Nepal, soil erosion under maize (Zea mays) agro-ecosystems is most critical during the pre-monsoon season. Very few field experiments have been conducted on reduced tillage and rice straw (Oryza sativa) mulching, although these conservation approaches have been recommended. Thus, a five replicate field experiment was established in 2001 at Kathmandu University (1500 m above sea level) on land with 18% slope to evaluate the efficiency of reduced tillage and mulching on soil and nutrient losses and maize yield. The results showed non-significant differences among conservation approaches on runoff and maize yield. Mulching and reduced tillage significantly lowered annual and pre-monsoon soil and nutrient losses compared to conventional tillage. Soil organic matter (SOM) and nitrogen losses associated with eroded sediment were significantly higher in conventional tillage. However, due to limited availability and high opportunity cost of rice straw, reduced tillage would be a better option for soil and nutrient conservation without sacrificing economic yield in upland maize agro-ecosystems.

  4. Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling

    Science.gov (United States)

    Singh, Komudi; Ju, Jennifer Y.; Walsh, Melissa B.; DiIorio, Michael A.; Hart, Anne C.

    2014-01-01

    Objectives: Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. Measurements and Results: During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. Conclusions: The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry. Citation: Singh K, Ju JY, Walsh MB, Dilorio MA, Hart AC. Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for

  5. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community.

    Science.gov (United States)

    Wang, Yi; Li, Chunyue; Tu, Cong; Hoyt, Greg D; DeForest, Jared L; Hu, Shuijin

    2017-12-31

    Intensive tillage and high inputs of chemicals are frequently used in conventional agriculture management, which critically depresses soil properties and causes soil erosion and nonpoint source pollution. Conservation practices, such as no-tillage and organic farming, have potential to enhance soil health. However, the long-term impact of no-tillage and organic practices on soil microbial diversity and community structure has not been fully understood, particularly in humid, warm climate regions such as the southeast USA. We hypothesized that organic inputs will lead to greater microbial diversity and a more stable microbial community, and that the combination of no-tillage and organic inputs will maximize soil microbial diversity. We conducted a long-term experiment in the southern Appalachian mountains of North Carolina, USA to test these hypotheses. The results showed that soil microbial diversity and community structure diverged under different management regimes after long term continuous treatments. Organic input dominated the effect of management practices on soil microbial properties, although no-tillage practice also exerted significant impacts. Both no-tillage and organic inputs significantly promoted soil microbial diversity and community stability. The combination of no-tillage and organic management increased soil microbial diversity over the conventional tillage and led to a microbial community structure more similar to the one in an adjacent grassland. These results indicate that effective management through reducing tillage and increasing organic C inputs can enhance soil microbial diversity and community stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glyphosate resistant weeds - a threat to conservation agriculture

    Science.gov (United States)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  7. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  8. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Directory of Open Access Journals (Sweden)

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  9. Expanding Canadian renewable and conservation expenses class 43.1 to include solar

    International Nuclear Information System (INIS)

    2005-01-01

    Class 43.1 is a tax measure that allows for accelerated write-offs of renewable energy products for business use. Technologies that are included in the class for accelerated write off include renewable energy sources such as wind, small hydro, geo-thermal, fuel cells, bio-gas, cogeneration systems, and district heating and solar. In 2005, the federal budget announced 2 changes to class 43.1 The write off rate has been increased from 30 per cent to 50 per cent. This change would reduce the effective cost of solar energy for business owners. The class has also been extended to include distribution assets for district energy assets and biogas equipment. However, no changes to the restrictions for solar were announced. The Canadian Solar Industries Association (CanSIA) argues that class 43.1 currently does not help the solar industries, nor do the proposed changes solve this situation. The restrictions placed on solar eliminate about 90 per cent of the industrial applications for solar that class 43.1 should support. Class 43.1 currently covers only 1 per cent of photovoltaic applications, 2 per cent of solar hot water applications, and 9 per cent of solar air heating applications. CanSIA claims that an increase in tax write-offs for photovoltaic systems, solar hot water, and solar air heating would help increase the solar market from 1,060 kW to a market size of 11,600 kW. CanSIA has made recommendations to the federal government to remove the size restrictions for PV systems and to remove the restrictions on applications for solar thermal systems. 2 tabs

  10. Effect of tillage and planting date on seasonal abundance and diversity of predacious ground beetles in cotton.

    Science.gov (United States)

    Shrestha, R B; Parajulee, M N

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  11. The effects of mulching, tillage, and herbicides on weed control and watermelon yield

    Science.gov (United States)

    Currently few producers in the Southeast US have adopted conservation tillage practices in specialty crop production. The lack of conservation adoption is likely due to the added challenges in producing vegetables in cover crop residues, especially high biomass cover crop systems. The objective of t...

  12. [Priming Effects of Soil Moisture on Soil Respiration Under Different Tillage Practices].

    Science.gov (United States)

    Zhang, Yan; Liang, Ai-zhen; Zhang, Xiao-ping; Chen, Sheng-long; Sun, Bing-jie; Liu, Si-yi

    2016-03-15

    In the early stage of an incubation experiment, soil respiration has a sensitive response to different levels of soil moisture. To investigate the effects of soil moisture on soil respiration under different tillage practices, we designed an incubation trial using air-dried soil samples collected from tillage experiment station established on black soils in 2001. The tillage experiment consisted of no-tillage (NT), ridge tillage (RT), and conventional tillage (CT). According to field capacity (water-holding capacity, WHC), we set nine moisture levels including 30%, 60%, 90%, 120%, 150%, 180%, 210%, 240%, 270% WHC. During the 22-day short-term incubation, soil CO₂ emission was measured. In the early stage of incubation, the priming effects occurred under all tillage practices. There were positive correlations between soil respiration and soil moisture. In addition to drought and flood conditions, soil CO₂ fluxes followed the order of NT > RT > CT. We fitted the relationship between soil moisture and soil CO₂ fluxes under different tillage practices. In the range of 30%-270% WHC, soil CO₂ fluxes and soil moisture fitted a quadratic regression equation under NT, and linear regression equations under RT and CT. Under the conditions of 30%-210% WHC of both NT and RT, soil CO₂ fluxes and soil moisture were well fitted by the logarithmic equation with fitting coefficient R² = 0.966 and 0.956, respectively.

  13. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....... was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...

  14. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...... tillage and tractor fuel consumption. Draught force was measured for tillage with conventional spring tillage tines, as well as bulk density, soil texture and SOC content in the CRUCIAL field experiment, Denmark in which diverse types of OWP had been applied annually for 11 years. The OWP included...... for different organic wastes influenced the specific draught. Overall, the decrease in draught force could lead to a decrease in tractor fuel consumption for soil tillage of up to 25% for compost applied at an accelerated rate and up to 14% for compost applied at a normal rate. This reduced fuel consumption...

  15. Conservation.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  16. Improvement of native grassland by legumes introduction and tillage techniques

    Directory of Open Access Journals (Sweden)

    Syamsu Bahar

    1999-10-01

    Full Text Available A factorial design using three species of legumes (Siratro, Centro and Stylo and three different of tillage techniques (no-tillage, minimum tillage and total tillage was applied in this experiment. The results showed that there was no interaction between species and tillage techniques. There was significant reductions on bulk density from 1.23±0.03 g/cm3 (no-tillage to 1.07±0.02 g/cm3 (minimum tillage and 1.05±0.03 g/cm3 (total tillage. Also reductions on penetration resistance from 17.47±3.84 kg/cm2 (no-tillage to 3.31±0.43 kg/cm2 (minimum tillage and 3.19±0.45 kg/cm2 (total tillage. Otherwise significant increasing on aeration porosity from 12.80±0.80% vol. (no-tillage to 21.70±0.95% vol. (minimum tillage and 20.70±0.35% vol. (total tillage. Total tillage gives increased dry matter yield. Also both total tillage and minimum tillage give yields with a higher percentage of legumes compared with no-tillage. It was concluded that total tillage and minimum tillage could be used for improving native grassland.

  17. Effects zero tillage on cassava ( Manihot esculentsa crantz ) in ...

    African Journals Online (AJOL)

    A field study was conducted on a sandy clay loamy soil (Alfisol) at Owo, Southwest Nigeria to evaluate the effects of four tillage methods on soil physical and chemical properties and cassava performance. Tillage treatments were: zero tillage, Conventional tillage, manual mounding and manual ridging. Zero tillage had ...

  18. Influence of Conservation Tillage and Soil Water Content on Crop Yield in Dryland Compacted Alfisol of Central Chile Influencia de la Labranza de Conservación y el Contenido de Agua sobre el Rendimiento del Cultivo en un Alfisol compactado del Secano Central de Chile

    Directory of Open Access Journals (Sweden)

    Ingrid Martinez G

    2011-12-01

    Full Text Available Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat (Avena sativa L. cv. Supernova-INIA - wheat (Triticum aestivum L. cv. Pandora-INIA crop rotation was established under the following conservation systems: no tillage (Nt, Nt + contour plowing (Nt+Cp, Nt + barrier hedge (Nt+Bh, and Nt + subsoiling (Nt+Sb, compared to conventional tillage (Ct to evaluate their influence on soil water content (SWC in the profile (10 to 110 cm depth, the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p En Chile, las zonas de clima mediterráneo se caracterizan por suelos altamente degradados y compactados por erosión, lo que requiere el uso de sistemas de labranza conservacionista para mitigar la erosión hídrica, así como incrementar el contenido de agua en el suelo. Se evaluó una rotación avena (Avena sativa L. cv. Supernova-INIA - trigo (Triticum aestivum L. cv. Pandora-INIA establecida bajo los siguientes sistemas conservacionistas: cero labranza (Nt, Nt + curvas de nivel (Nt+Cp, Nt + franjas vivas (Nt+Bh y Nt + subsolado (Nt+Sb, las que fueron comparadas al sistema de labranza convencional (Ct, para evaluar su influencia en el contenido de agua en el suelo (SWC en el perfil (10 a 110 cm profundidad, la compactación del suelo y su interacción con el rendimiento del cultivo. Las parcelas experimentales fueron establecidas 3 años seguidos (2007 al 2009 en un Alfisol compactado. Al final de la temporada, el SWC disminuyó 44 a 51% en los sistemas conservacionistas y 60% en el sistema convencional. El sistema de

  19. Glyphosate-resistant palmer amaranth: a threat to conservation agriculture

    Science.gov (United States)

    Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. Adoption of conservation tillage increased dramatically with the advent of transgenic, glyphosate-resistant crops that permitted in-season, over-the-top use of glyphosate, a broa...

  20. Conservation Agriculture and its contribution to the achievement of agri-environmental and economic challenges in Europe

    Directory of Open Access Journals (Sweden)

    Emilio J. González-Sánchez

    2016-10-01

    Full Text Available Conservation Agriculture is an ecosystem approach to farming capable of providing solutions for numerous of the agri-environmental concerns in Europe. Certainly, most of the challenges addressed in the Common Agriculture Policy (CAP could be tackled through Conservation Agriculture (CA. Not only the agri-environmental ones, but also those concerning farmer and rural communities’ prosperity. The optimisation of inputs and similar yields than conventional tillage, make Conservation Agriculture a profitable system compared to the tillage based agriculture. Whereas this sustainable agricultural system was conceived for protecting agrarian soils from its degradation, the numerous collateral benefits that emanate from soil conservation, i.e., climate change mitigation and adaptation, have raised Conservation Agriculture as one of the global emerging agrosciences, being adopted by an increasing number of farmers worldwide, including Europe.

  1. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  2. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  3. Effects of Tillage on Yield and Economic Returns of Maize and Cowpea in Semi-Arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Nyamwaro, S.O; Heng, K.L

    2014-01-01

    Crop yields and financial returns are important criteria for adoption of conservation tillage by farmers. A study was conducted between 2007-2010 to compare the financial returns of subsoiling-ripping and tied-ridge tillage with the conventional ox-plough tillage in the production of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) under semi-arid subsistence farming conditions in lower eastern Kenya. Four cropping systems namely maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure were evaluated in a split-plot treatments arrangement with tillage practices as the main plots and cropping systems as the sub-plots. The grain yields of maize and cowpea, prevailing market prices for cowpea and maize grains, labour, inputs applied and other relevant socio-economic data were collected every season, to enable estimation of economic returns and acceptability of the technologies. The results showed that average grain yield for maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure cropping systems under tied-ridge were 5, 9, 97 and 27% greater than the yields under oxplough tillage, respectively. Crop yields produced under subsoiling-ripping and ox-plough tillage were generally similar. However, land preparation and weeding labour expenses (KES 4240 / ha) for ox-plough tillage were 34% greater than those for subsoiling-ripping tillage but 40% lower than those for tied-ridge tillage. When averaged across seasons and tillage systems, the highest gross margins (KES 8567 / ha) were obtained in sole cowpea cropping system, followed by sole maize with manure (KES 4070 / ha), intercrop (KES 864 / ha) and least (loss of KES 1330 / ha) in sole maize without manure cropping system. (author)

  4. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  5. Global achievements in soil and water conservation: The case of Conservation Agriculture

    OpenAIRE

    A. Kassam; R. Derpsch; T. Friedrich

    2014-01-01

    In response to the dust bowls of the mid-thirties in the USA, soil and water conservation programmes involving reduced tillage were promoted to control land degradation, particularly soil erosion. The farming and land management practices that were considered to adequately address soil and water conservation objectives were based on no-till seeding and maintenance of soil mulch cover. This collection of practices led to what became known as conservation tillage, although no-till systems by de...

  6. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    studies of Bt corn and a glufosinate ammonium tolerant corn and included a reduced tillage treatment (RT) and a conventional tillage treatment (CT) as examples of a likely concomitant change in the agricultural practise. At a French study site at Varois, (Bourgogne), a field grown with the Bt...

  7. EFFECT OF CONSERVATION AGRICULTURE ON YIELD AND PROTECTING ENVIRONMENTAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2015-10-01

    Full Text Available Conservative soil tillage (minimum tillage and no-tillage are considered among the most important components of conservation agriculture. Their research and extension was imposed especially in hilly areas with specific problems of desertification (erosion, drought as bioremedial measures. Our research follows the effects of the three tillage systems: conventional systems, minimum tillage and no-tillage on soil properties (bulk density, penetration resistance, temperature and moisture, soil respiration and on the production of wheat, maize and soybean, obtained on an Argic Faeoziom from the Somes Plateau. Average soil bulk density grows, compared to the conventional system (1.20-1.24 g/cm3 , in all variants with minimum tillage (1.22-1.32 g/cm3 ; the highest growth is recorded at no-tillage, being 1.35- 1.38 g/cm3 with statistically significant positive differences. Soil moisture increases in all variants with minimum and no-tillage with different percentages, ranging from 1-15% v/v, compared to the conventional system. This is also reflected in the values of resistance to penetration. Tillage appeared to affect the timing rather than the total amount of CO2 production: the daily average is lower at no-tillage (315-1914 mmoles m-2s -1, followed by minimum tillage (318- 2395 mmoles m-2s -1 and is higher in the conventional system (321-2480 mmoles m-2s -1. Productions obtained at minimum tillage and no-tillage did not have significant differences for the wheat culture but were higher for soybean. The differences in crop yields were recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.

  8. The impact of tillage on Pinto bean cultivar response to drought induced by deficit irrigation

    Science.gov (United States)

    Drought stress is a major factor limiting yield of dry bean (Phaseolus vulgaris) and drought tolerant cultivars are being developed. Reducing tillage in row crops has advantages of conserving moisture and increasing water infiltration, and may alter the response of dry bean cultivars to drought stre...

  9. Continuum of risk analysis methods to assess tillage system sustainability at the experimental plot level

    Science.gov (United States)

    The primary goal of this study was to evaluate the efficacy of stochastic dominance and stochastic efficiency with respect to a function (SERF) methodology for ranking conventional and conservation tillage systems using 14 years (1990-2003) of economic budget data collected from 36 plots at the Iowa...

  10. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.

    Science.gov (United States)

    Elias, Daniel; Wang, Lixin; Jacinthe, Pierre-Andre

    2018-01-12

    Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.

  11. Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils

    Directory of Open Access Journals (Sweden)

    Drake N. Mubiru

    2017-06-01

    Full Text Available The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays and common bean (Phaseolus vulgaris L. to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC. Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP; permanent planting basins (PPB; and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11% of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security.

  12. Influence of Tillage and Mulch on Soil Physical Properties and ...

    African Journals Online (AJOL)

    A randomized complete block design in a split plot arrangement was used with four tillage methods [conventional tillage, (CT); deep tillage, (DT); zero tillage with zone disc tiller, (ZDT); and happy seeder, (HS)] in main plots and five mulch materials [no mulch, (M0); rice straw, (MRice); wheat straw, (MWheat); plastic sheet, ...

  13. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage by soil scarifying with IR12 tool and T3 = conventional tillage with animals drawn plough) were compared and combined to four crops rotation systems, in a split-plot experimental design. Soil chemical ...

  14. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; Pulleman, M.M.

    2013-01-01

    Conservation agriculture is widely promoted for soil conservation and crop productivity increase, although rigorous empirical evidence from sub-Saharan Africa is still limited. This study aimed to quantify the medium-term impact of tillage (conventional and reduced) and crop residue management

  15. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  16. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    , penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K...... benefit of using a combination of cover crops and direct drilling to produce a better soil friability. The usefulness of the VESS method for soil structural evaluation was supported by the high positive correlation of MWD with VESS scores.......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  17. Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils

    Directory of Open Access Journals (Sweden)

    Craig Anderson

    2017-10-01

    Full Text Available In arable cropping systems, reduced or conservation tillage practices are linked with improved soil quality, C retention and higher microbial biomass, but most long-term studies rarely focus on depths greater than 15 cm nor allow comparison of microbial community responses to agricultural practices. We investigated microbial community structure in a long-term field trial (12-years, Lincoln, New Zealand established in a silt-loam soil over four depth ranges down to 30 cm. Our objectives were to investigate the degree of homogenisation of soil biological and chemical properties with depth, and to determine the main drivers of microbial community response to tillage. We hypothesised that soil microbiological responses would depend on tillage depth, observed by a homogenisation of microbial community composition within the tilled zone. Tillage treatments were mouldboard plough and disc harrow, impacting soil to ∼20 and ∼10 cm depth, respectively. These treatments were compared to a no-tillage treatment and two control treatments, both permanent pasture and permanent fallow. Bacterial and fungal communities collected from the site were not impacted by the spatial location of sampling across the study area but were affected by physicochemical changes associated with tillage induced soil homogenisation and plant presence. Tillage treatment effects on both species richness and composition were more evident for bacterial communities than fungal communities, and were greater at depths <15 cm. Homogenisation of soil and changing land management appears to redistribute both microbiota and nutrients deeper in the soil profile while consequences for soil biogeochemical functioning remain poorly understood.

  18. Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate

    Directory of Open Access Journals (Sweden)

    D. Martín-Lammerding

    2013-02-01

    Full Text Available In semiarid areas, traditional, intensive tillage has led to the depletion of soil organic matter, which has resulted in reduced soil fertility. The aim of the present work was to evaluate the effects of different soil management systems, practised over 12 years, on soil organic carbon (SOC, nitrogen (SN and biologically active organic matter (particulate organic matter [POM]; potentially mineralisable nitrogen [PMN]; microbial biomass [MB]. A Mediterranean Alfisol, located in central Spain, was managed using combinations of conventional tillage (CT, minimum tillage (MT or no-tillage (NT, plus a cropping background of either continuous wheat (WW or a fallow/wheat/pea/barley rotation (FW. Soil was sampled at two depths on four occasions during 2006-2007. The results showed the sampling date and the cropping background to significantly affect the SOC (p<0.0057 and p<0.0001 respectively. Tillage practice, however, had no effect on SOC or SN. The C-and N-POM contents were significantly influenced by the date, tillage and rotation. These variables were significantly higher under NT than CT and under WW than FW. The PMN was influenced by date, tillage and rotation, while C-MB was significantly affected by tillage (p< 0.0063, but not by rotation. The NT plots accumulated 66% C-POM, 60% N-POM, 39% PMN and 84% C-MB more than the CT plots. After more than 12 years, the benefits of conservation practices were found in the considered soil properties, mainly under no tillage. In order to obtain a consistent data set to predict soil biological status, it is necessary further study over time.

  19. Impacto de técnicas de mobilização na conservação do solo e na produtividade de milho regado por rampa rotativa num Fluvissolo Tillage techniques impact on soil conservation and on maize yield irri­gated by center pivot in a Fluvisol

    Directory of Open Access Journals (Sweden)

    T. B. Ramos

    2010-01-01

    Full Text Available Num Fluvissolo com textura mediana e declive In a maize growing area, with a medium textured Fluvisol, a slope <0.2 %, irrigated by center-pivot, and subjected to different soil tillage techniques (conventional tillage, reduced tillage, and tillage reservoirs soil water content, runoff, soil loss, and yield production values were compared, from 2002 to 2004. The plots with tillage reser­voirs presented significantly (P<0.001 higher soil water content, minimal runoff and soil loss, and a yield production 4 Mg/ha higher (P<0.05 than in the other plots. Runoff medium values in the plots with conventional and reduced tillage were 46 and 57 % of the water application, re­spectively. Soil loss was very similar in these two tillage practices, presenting me­dium values per irrigation, during the 3 years, of 100 kg/ha. CRESP methodology provided reasonable predictions of potential runoff considering the water application conditions and soil type.

  20. Determinants of tillage frequency among smallholder farmers in two semi-arid areas in Ethiopia

    Science.gov (United States)

    Temesgen, Melesse; Rockstrom, J.; Savenije, H. H. G.; Hoogmoed, W. B.; Alemu, Dawit

    Traditional tillage systems practiced by farmers in semi-arid regions of Ethiopia are characterized by repeated and cross plowing with an indigenous plow called Maresha. Repeated and cross plowing have led to land degradation. Conservation tillage systems that advocate minimum soil disturbance can alleviate land degradation problems. However, before introducing reduced tillage systems, it was found necessary to study why farmers undertake repeated plowing. The study was undertaken in two semi-arid areas called Melkawoba and Wulinchity located in the central rift valley of Ethiopia and on two major crops; Tef ( Eragrostis Tef (Zucc.)) and maize ( Zea mays XX). Fifty farmers from each area were randomly selected and interviewed using a structured questionnaire. The results showed that farmers in the study area plow repeatedly in order to completely disturb unplowed strips of land left between adjacent furrows. Unplowed strips are the results of the V-shaped furrows created by the Maresha plow. Farmers generally do not plow before the soil is wetted by rainfall. Wetting and drying cycles due to dry spells occurring between rainfall events force farmers to plow frequently to avoid moisture losses through surface runoff, evaporation and weed transpiration. Tef fields are plowed 4-5 times while maize fields are plowed 3-4 times. Tillage frequency increased with the education level and experience of farmers; with their perception about the purpose of tillage such as moisture conservation, weed control and soil warming; and with resource availability such as area of land and family labor. Tillage frequency was higher for Tef than for maize and in heavy soils than in light soils.

  1. Hardpan and maize root distribution under conservation and ...

    African Journals Online (AJOL)

    Hardpan and maize root distribution under conservation and conventional tillage in agro-ecological zone IIa, Zambia. ... There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas. Key Words: Soil ...

  2. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    Science.gov (United States)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high

  3. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...

  4. Infiltration capacity and macroporosity of a silty-loamy soil under different tillage systems

    Science.gov (United States)

    Wahl, N. A.; Buczko, U.; Bens, O.; Hüttl, R. F.

    2003-04-01

    For soils under both agricultural and forest use, management and tillage practice have significant influence on different hydraulic properties. Under agricultural land use, the properties of the macropore system are, amongst others, a function of the applied management and tillage system (i.e. conventional vs. conservation tillage). Macropores are crucial to rapid infiltration of surface water and aeration of the soil. Low macroporosity will give rise to higher surface flow rates especially on sloping areas, thus enhancing the risk for higher erosion. Investigations were carried out near the town of Adenstedt (52^o00', 9^o56'), app. 50 km S of Hannover in Lower Saxony. The predominant soil in the study area is an eroded orthic Luvisol from glacial deposits with a predominant silty-loamy texture. The experimental site with two crop rotations has been run with two different tillage systems (e.g. conventional and conservative tillage) since 1990. In this study, the minimum radius of a macropore is set to r = 0.5 cm. Dye tracer experiments were performed with methylene blue that was sprayed on a confined irrigation plot. Staining patterns were recorded two hours later at defined depth increments and results of stained and unstained areas were manually digitized and processed with an appropriate GIS-software. Tension infiltrometer experiments were performed simultaneously with the dye tracer experiments using a tension infiltrometer (hood infiltrometer) at different hydraulic supply potentials and soils depths. Dye tracer experiments with methylene blue indicate a penetration depth of 120 cm on the reduced tilled plot as compared to the conventionally tilled plot (60 cm). Both tillage systems exhibit the highest density of macropores in the topsoil, ranging between 100 and 1.000 macropores per square meter. The conventionally tilled plot exhibits a higher number of macropores in the upper 20 cm than the reduced tilled plot while at greater soil depth, this holds true

  5. TILLAGE EFFECTS ON SUNFLOWER (HELIANTHUS ANNUUS, L. EMERGENCE, YIELD, QUALITY, AND FUEL CONSUMPTION IN DOUBLE CROPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    ABDULLAH SESSIZ

    2009-06-01

    Full Text Available The relation between crop growing and soil tillage treatment are play important role in agricultural production. Soils under conventional tillage (CT generally have lower bulk density and associated higher total porosity within the plough layer than under no tillage (NT. No-till farming can reduce soil erosion, conserve soil moisture and minimize labor and fuel consumption. The aim of this study were to investigate the effects of conventional, reduced and notillage methods on soil physical properties, sunfl ower yield and yield components, protein and oil content and fuel consumption in Southeastern of Turkey. Six tillage methods for the second crop sunfl ower were tested and compared each other within after lentil harvesting at 2003 and 2004 years in a clay loam soil. According to results, the fi rst year, the bulk density had decreased from 1.29 to 1.09 g cm-3, the second year the δb had decreased from 1.41 to 1.23 g cm-3. Differences between years and tillage methods in terms of yield were found signifi cant (p<0.05. However, no differences were found between the NT and CT. There were also no signifi cance differences in content of protein, oil and ash among six tillage methods. The highest fuel consumption was measured in conventional method (CT whereas the lowest value was found in direct seeding method as 33.48 L ha-1 and 6.6 L ha-1, respectively.

  6. Impacts of the conventional tillage tools and reduced tillage on the ...

    African Journals Online (AJOL)

    Objective: The long-term impacts of conventional tillage through compaction, soil erosion and loss of soil fertility have led to evaluation of this system. To mitigate these problems, simplified cultivation techniques (SCT) are increasingly practiced. The objective of this review is to clarify the effects of conventional tillage and ...

  7. Manure and tillage use in remediation of eroded land and impacts on soil chemical properties.

    Science.gov (United States)

    Mikha, Maysoon M; Benjamin, Joseph G; Vigil, Merle F; Poss, David J

    2017-01-01

    Soil loss through wind and water erosion is an ongoing problem in semiarid regions. A thin layer of top soil loss over a hectare of cropland could be corresponding to tons of productive soil loss per hectare. The objectives of this study were to evaluate the influence of beef feedlot manure, tillage and legume grass mixtures on changes in soil quality and nutrient components. The study was initiated in 2006 on an eroded site near Akron, Colorado, on a Norka-Colby very-fine sandy loam (fine-silty, mixed, mesic, Aridic, Argiustolls). Tillage treatments were no-tillage, shallow tillage (sweeps operations with V-blade) and deep tillage (DT; moldboard plow operations). In one set of plots, DT was implemented biannually (DT-2); and in another set the DT was done once at the initiation of the experiment in 2006. Amendments consisted of beef manure and urea (46-0-0), N fertilizer. Both amendments were added at low and high rates. A control treatment, with no fertilizer or manure added, was included with no-tillage and shallow tillage only. Six years of manure addition and tillage significantly altered soil chemical properties compared with fertilizer and grass legume mixtures. Across all the tillage treatments, at the 0-30 cm depth, soil pH from 2006 to 2012, was reduced 1.8 fold with high-manure compared with high-fertilizer treatment. Soil EC, Na, and SAR increased by 2.7 fold while soil P increase by 3.5 fold with high-manure treatment compared with low-manure from 2006 to 2012 across all the tillage treatments at the surface 0-30 cm. Soil organic carbon associated with high-manure was 71% higher than low-manure and 230% higher than high-fertilizer treatments in the 0-60 cm depth. Similar patterns were observed with soil total N. Overall, manure amendments greatly improved the soil nutrient status on this eroded site. However, the legume grass mixtures showed little effect on improving soils chemical properties. The micronutrients supplied by manure improved the soil

  8. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean?

    Science.gov (United States)

    Maetens, W.; Poesen, J.; Vanmaercke, M.

    2012-10-01

    The effects of soil and water conservation techniques (SWCTs) on annual runoff (Ra), runoff coefficients (RCa) and annual soil loss (SLa) at the plot scale have been extensively tested on field runoff plots in Europe and the Mediterranean. Nevertheless, a comprehensive overview of these effects and the factors controlling the effectiveness of SWCTs is lacking. Especially the effectiveness of SWCT in reducing Ra is poorly understood. Therefore, an extensive literature review is presented that compiles the results of 101 earlier studies. In each of these studies, Ra and SLa was measured on field runoff plots where various SWCTs were tested. In total, 353 runoff plots (corresponding to 2093 plot-years of data) for 103 plot-measuring stations throughout Europe and the Mediterranean were considered. SWCTs include (1) crop and vegetation management (i.e. cover crops, mulching, grass buffer strips, strip cropping and exclosure), (2) soil management (i.e. no-tillage, reduced tillage, contour tillage, deep tillage, drainage and soil amendment) and (3) mechanical methods (i.e. terraces, contour bunds and geotextiles). Comparison of the frequency distributions of SLa rates on cropland without and with the application of SWCTs shows that the exceedance probability of tolerable SLa rates is ca. 20% lower when SWCT are applied. However, no notable effect of SWCTs on the frequency distribution of RCa is observed. For 224 runoff plots (corresponding to 1567 plot-year data), SWCT effectiveness in reducing Ra and/or SLa could be directly calculated by comparing measured Ra and/or SLa with values measured on a reference plot with conventional management. Crop and vegetation management techniques (i.e. buffer strips, mulching and cover crops) and mechanical techniques (i.e. geotextiles, contour bunds and terraces) are generally more effective than soil management techniques (i.e. no-tillage, reduced tillage and contour tillage). Despite being generally less effective, no-tillage

  9. In-field experiment of electro-hydraulic tillage depth draft-position mixed control on tractor

    Science.gov (United States)

    Han, Jiangyi; Xia, Changgao; Shang, Gaogao; Gao, Xiang

    2017-12-01

    The soil condition and condition of the plow affect the tillage resistance and the maximum traction of tractor. In order to improve the adaptability of tractor tillage depth control, a multi-parameter control strategy is proposed that included tillage depth target, draft force aim and draft–position mixed ratio. In the strategy, the resistance coefficient was used to adjust the draft force target. Then, based on a JINMA1204 tractor, the electro-hydraulic hitch prototype is constructed that could set control parameters.. The fuzzy controller of draft–position mixed control is designed. After that, in-field experiments of position control was carried on, and the result of experiment shows the error of tillage depth was less than ±20mm. The experiment of draft-position control shown that the draft force and the tillage depth could be adjust by multi-parameter such as tillage depth, resistance coefficient and draft-position mixed coefficient. So that, the multi-parameter control strategy could improve the adaptability of tillage depth control in various soils and plow condition.

  10. Water Use Efficiency under Different Tillage and Irrigation Systems for Tomato Farming in Southeastern Brazil

    Science.gov (United States)

    Bhering, S. B.; Fernandes, N. F.; Macedo, J. R.

    2009-04-01

    highly degrade the environment, applied without practices of soil and water conservation. Such production systems are associated with a variety of environmental problems, such as soil erosion, the extensive pumping of groundwater, the partial obstruction of surface drainage to form artificial lakes, the contamination of groundwater, among others. The environmental impacts generated by all these problems assume a greater importance due to the complete absence of monitoring the continuous lowering of the water table and the changes in water quality. We consider that the main management strategies for developing sustainable production systems for the tomato farming in this area should be based on monitoring water use efficiency, increasing water availability in the root zone and also preventing runoff, leaching and evaporation of water from the soil. Therefore, techniques were applied as green manures with legumes without incorporation of the biomass, non-mechanized and curve-level soil preparation, planting in level, soil cover with crop residues, fertirrigation with solid fertilization of low value, the conduct of tomato especially supported by plastic string attached to a trellis, drip irrigation, and monitoring soil water potential (SWP) with Watermak sensors. At the end of the tomato cycle, water use efficiency and the productivity were compared at 8 micro-plots installed in the 3 studied production systems: conventional tillage (CT-H), minimum tillage (MT-H), both with "wetting irrigation with garden hose", and no-tillage with drip irrigation (NT-D). For each production system, soil physical properties were characterized and soil water potential (SWP) and soil temperature were continuously monitored at different depths (20, 40, 60 and 80 cm), as well as the total water volume used in each irrigation. In parallel, we also compared the development of the root system and the final productivity for each one of the three production systems. The results obtained in this

  11. Modern concepts of soil conservation

    OpenAIRE

    J. Dumanski; R. Peiretti

    2013-01-01

    Approaches to soil conservation are in constant evolution and improvement. This paper summarizes some of the modern approaches, ranging from no till to conservation agriculture to sustainable land management. These approaches are not separate, but components of a continuum of conservation approaches applicable at different levels and different scales. No tillage is important at the detailed, farm level, while CA and SLM are important at the farming systems and corporate levels. The successes ...

  12. Soil microbial community composition changes according to the tillage practice and plant development stage

    Science.gov (United States)

    Degrune, Florine; Dufrêne, Marc; Colinet, Gilles; Taminiau, Bernard; Hiel, Marie-Pierre; Daube, Georges; Vandenbol, Micheline

    2015-04-01

    Soil microorganisms are abundant and diverse and can have both beneficial and adverse effects on crop growth. Some, such as plant-growth-promoting rhizobacteria and mycorrhizae, are well known to favor crop productivity and plant health. They are notably involved in key processes such as improving plant nutrient acquisition, and they also play major roles in stimulating plant growth and protecting plants against pathogens by producing bioactive substances. Conversely, both agricultural practices and the plant development stage are known to influence the physical and chemical properties of the soil and hence the abundance and diversity of soil microorganisms. Here we investigated the impact of both tillage practice (conventional versus reduced tillage) and plant development stage (germination versus flowering) on the microbial community composition of an agricultural soil supporting a faba bean crop. Samples were taken at a depth of 15-20 cm from a silty soil in Belgium. For bacteria, we observed significant shifts in community composition according to both factors. Some changes were strongly related to the plant development stage and others to the tillage practice. Some taxa, including Gemmatimonas, Xanthomonadaceae, and Sinobacteraceae, showed a higher relative abundance at the flowering stage than at the germination stage, but no effect of tillage practice. Other taxa, including Flovobacterium, Chitinophaga, and Luteolibacter, showed a higher relative abundance under conventional tillage than under reduced tillage, but no change according to the stage of plant development. For fungi, significant shifts in community composition were observed according to the plant development stage. No effect of tillage practice was observed. The relative abundances of certain taxa, including Chaetomium and Clavicipitaceae, were higher during germination than during flowering, whereas other taxa, including Minimedusa and Teberdinia, showed a higher relative abundance during

  13. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  14. Inadequate evaluation and management of threats in Australia's Marine Parks, including the Great Barrier Reef, misdirect Marine conservation.

    Science.gov (United States)

    Kearney, Bob; Farebrother, Graham

    2014-01-01

    The magnificence of the Great Barrier Reef and its worthiness of extraordinary efforts to protect it from whatever threats may arise are unquestioned. Yet almost four decades after the establishment of the Great Barrier Reef Marine Park, Australia's most expensive and intensely researched Marine Protected Area, the health of the Reef is reported to be declining alarmingly. The management of the suite of threats to the health of the reef has clearly been inadequate, even though there have been several notable successes. It is argued that the failure to prioritise correctly all major threats to the reef, coupled with the exaggeration of the benefits of calling the park a protected area and zoning subsets of areas as 'no-take', has distracted attention from adequately addressing the real causes of impact. Australia's marine conservation efforts have been dominated by commitment to a National Representative System of Marine Protected Areas. In so doing, Australia has displaced the internationally accepted primary priority for pursuing effective protection of marine environments with inadequately critical adherence to the principle of having more and bigger marine parks. The continuing decline in the health of the Great Barrier Reef and other Australian coastal areas confirms the limitations of current area management for combating threats to marine ecosystems. There is great need for more critical evaluation of how marine environments can be protected effectively and managed efficiently.

  15. Atmospheric LiDAR coupled with point measurement air quality samplers to measure fineparticulate matter (PM) emissions from agricultural operations. Part 2 of the California 2007 - 2008 Tillage Campaigns: Spring 2008 Data Analysis

    Science.gov (United States)

    Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...

  16. Effect of Tillage and Mulch Combination on Soil Physical Properties ...

    African Journals Online (AJOL)

    The effect of tillage method and mulching on selected soil physical properties and performance of sorghum (Sorghum bicolor) was studied in rainforest zone of South West Nigeria. Treatments were 4 x 2 factorial combination of tillage methods (zero tillage, manual clearing, heap, ridge), 12t/ha dry plant residue mulch, and ...

  17. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso

    NARCIS (Netherlands)

    Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B.

    2005-01-01

    The effects of vegetation barriers and tillage on runoff and soil loss were evaluated in an alley crop system at a research station in central Burkina Faso. On a 2% slope of a sandy loam various local species (grasses, woody species and a succulent) were planted as conservation barriers in order to

  18. Comparison of conventional and no-tillage corn and soybean production on runoff and erosion in the southeastern US Piedmont

    Science.gov (United States)

    Because of expected climatic changes, it is important to understand how effective conservation tillage systems are at protecting against soil erosion. Of particular importance is to determine how these systems perform during high intensity rains that generate significant runoff. This study was condu...

  19. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  20. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  1. Tillage and herbicide reduction mitigate the gap between conventional and organic farming effects on foraging activity of insectivorous bats

    OpenAIRE

    Barré, Kévin; Le Viol, Isabelle; Julliard, Romain; Chiron, François; Kerbiriou, Christian

    2018-01-01

    International audience; The increased use of pesticides and tillage intensification is known to negatively affect biodiversity. Changes in these agricultural practices such as herbicide and tillage reduction have variable effects among taxa, especially at the top of the trophic network including insectivorous bats. Very few studies compared the effects of agricultural practices on such taxa, and overall, only as a comparison of conventional versus organic farming without accurately accounting...

  2. A multiple soil ecosystem services approach to evaluate the sustainability of reduced tillage systems

    Science.gov (United States)

    Pérès, Guénola; Menasseri, Safya; Hallaire, Vincent; Cluzeau, Daniel; Heddadj, Djilali; Cotinet, Patrice; Manceau, Olivier; Pulleman, Mirjam

    2017-04-01

    In the current context of soil degradation, reduced tillage systems (including reduced soil disturbance, use of cover crops and crop rotation, and improved organic matter management) are expected to be good alternatives to conventional system which have led to a decrease of soil multi-functionality. Many studies worldwide have analysed the impact of tillage systems on different soil functions, but overran integrated view of the impact of these systems is still lacking. The SUSTAIN project (European SNOWMAN programme), performed in France and the Netherlands, proposes an interdisciplinary collaboration. The goals of SUSTAIN are to assess the multi-functionality of soil and to study how reduced-tillage systems impact on multiple ecosystem services such as soil biodiversity regulation (earthworms, nematodes, microorganisms), soil structure maintenance (aggregate stability, compaction, soil erosion), water regulation (run-off, transfer of pesticides) and food production. Moreover, a socio-economic study on farmer networks has been carried out to identify the drivers of adoption of reduced-tillage systems. Data have been collected in long-term experimental fields (5 - 13 years), representing conventional and organic farming strategies, and were complemented with data from farmer networks. The impact of different reduced tillage systems (direct seeding, minimum tillage, non-inverse tillage, superficial ploughing) were analysed and compared to conventional ploughing. Measurements (biological, chemical, physical, agronomical, water and element transfer) have been done at several dates which allow an overview of the evolution of the soil properties according to climate variation and crop rotation. A sociological approach was performed on several farms covering different production types, different courses (engagement in reduced tillage systems) and different geographical locations. Focusing on French trials, this multiple ecosystem services approach clearly showed that

  3. Characterization of Leaf Photosynthetic Properties for No-Tillage Rice

    Directory of Open Access Journals (Sweden)

    Song CHEN

    2007-12-01

    Full Text Available A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou, and Xiaoshan, Zhejiang Province, China for two years (2005 and 2006. Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr and SPAD value of rice leaf was dependent on the location and year.

  4. Modeling Edge Effects of Tillage Erosion

    Science.gov (United States)

    Tillage erosion has been recognized as an important factor in redistribution of soil over time and in the development of morphological changes within agricultural fields. Field borders, fences, and vegetated strips that interrupt soil fluxes lead to the creation topographic discontinuities or lynche...

  5. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  6. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  7. Continuum of Risk Analysis Methods to Assess Tillage System Sustainability at the Experimental Plot Level

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kanwar

    2011-07-01

    Full Text Available This study applied a broad continuum of risk analysis methods including mean-variance and coefficient of variation (CV statistical criteria, second-degree stochastic dominance (SSD, stochastic dominance with respect to a function (SDRF, and stochastic efficiency with respect to a function (SERF for comparing income-risk efficiency sustainability of conventional and reduced tillage systems. Fourteen years (1990–2003 of economic budget data derived from 35 treatments on 36 experimental plots under corn (Zea mays L. and soybean (Glycine max L. at the Iowa State University Northeast Research Station near Nashua, IA, USA were used. In addition to the other analyses, a visually-based Stoplight or “probability of target value” procedure was employed for displaying gross margin and net return probability distribution information. Mean-variance and CV analysis of the economic measures alone provided somewhat contradictive and inconclusive sustainability rankings, i.e., corn/soybean gross margin and net return showed that different tillage system alternatives were the highest ranked depending on the criterion and type of crop. Stochastic dominance analysis results were similar for SSD and SDRF in that both the conventional and reduced tillage system alternatives were highly ranked depending on the type of crop and tillage system. For the SERF analysis, results were dependent on the type of crop and level of risk aversion. The conventional tillage system was preferred for both corn and soybean for the Stoplight analysis. The results of this study are unique in that they highlight the potential of both traditional stochastic dominance and SERF methods for distinguishing economically sustainable choices between different tillage systems across a range of risk aversion. This study also indicates that the SERF risk analysis method appears to be a useful and easily understood tool to assist farm managers, experimental researchers, and potentially policy

  8. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  9. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  10. Long and Midterm Effect of Conservation Agriculture on Soil Properties in Dry Areas of Morocco

    Directory of Open Access Journals (Sweden)

    Malika Laghrour

    2016-01-01

    Full Text Available In Morocco, conservation agriculture, particularly no tillage systems, has become an alternative strategy to mitigate land degradation caused by conventional tillage in semiarid to arid regions. This paper is based on behaviour to tillage treatments of two Vertisols in Morocco. After 11 years of testing, soil organic matter content results showed a significant difference (P<0.05 only at soil surface (0–10 cm in favour of no tillage and a variation of 30% at this depth. The results obtained after 32 years of testing showed a significant soil profile difference (P<0.05, up to 40 cm under no tillage compared to conventional tillage, and a variation of 54% at 5–10 cm. For total nitrogen, there was no significant effect between no tillage and conventional tillage at the soil surface after 11 years unlike the result obtained after 32 years. There are no significant differences in bulk density between tillage treatments at soil surface for both sites. The measurement of soil structural stability showed a significant effect (P<0.05 for all three tests and for both sites. This means that no tillage helped Vertisols to resist different climatic constraints, preserving environmental soil quality.

  11. Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data

    Science.gov (United States)

    Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...

  12. Response of Yield and Yield Components of Field Pea to Tillage ...

    African Journals Online (AJOL)

    The results indicated a highly significant positive response of mean field pea seed yield, total biomass and number of pods per plant to tillage frequency, phosphorus fertilizer and weeding treatments. Plowing twice, three and four times including the last pass for seed covering resulted in mean seed yield advantages of 38, ...

  13. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    Conservation tillage and diversified crop rotations have been suggested as appropriate alternative soil management systems to sustain soil quality. The purpose of this study was to quantify the effect of implementing three crop rotations (R2–R4) on soil structural changes and the “productivity...... function” of soil. R2 is a winter-dominated crop rotation (winter wheat was the main crop) with straw residues incorporated. R3 is a mix of winter and spring crops with straw residues removed. R4 is the same mix of crops as in R3, but with straw residues incorporated. Three tillage systems were used...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...

  14. Glyphosate Resistant Palmer Amaranth - A Threat To Conservation Agriculture

    Science.gov (United States)

    Glyphosate resistant Palmer amaranth is now present in throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity til...

  15. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  16. Effect of Tillage on Soil Properties and Yield of Sorghum ( Sorghum ...

    African Journals Online (AJOL)

    season 2005 and lateseason 2006 on an Alfisol of southwest Nigeria to assess the effect of five tillage methods on soil properties and yield of sorghum. The tillage treatments were zero tillage, manual clearing, ploughing, ploughing plus ...

  17. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    Gholamreza Heidari

    2016-11-01

    Full Text Available Tillage operation and fertilizer type play important roles in soil properties as far as soil microbial condition is concerned. Information regarding the simultaneous evaluation of the effect of long-term tillage and fertilization on the soil microbial traits of soybean farms is not available. Accordingly, it was hypothesized that, the microbial biomass and enzyme activity, more often than not, respond quickly to changes in soil tillage and fertilization. Therefore, the experiments were aimed at analyzing the responses of soil microbial traits to tillage and fertilization in a soybean field in Kurdistan University, Iran. The field soil is categorized into coarse Loamy, mixed, superactive, calcareous, and mesic Typic Xerorthents. The experiments were arranged in split plot, based on randomized complete block design with three replications. Main plots consisted of long-term (since 2002 tillage systems including conventional tillage (CT, minimum tillage (MT and no-tillage (NT. Eight fertilization methods were employed in the sub-plots, including (F1: farmyard manure (FYM; (F2: compost; (F3: chemical fertilizers; (F4: FYM + compost; (F5: FYM + chemical fertilizers; (F6: compost + chemical fertilizers; (F7: FYM + compost + chemical fertilizers and (F8: Control (without fertilizer. The highest microbial biomass carbon (385.1 μg was observed in NT-F4 treatment. The NT treatment comparatively recorded higher values of acid phosphatase (189.1 μg PNP g-1 h-1, alkaline phosphatase (2879.6 μg PNP g-1 h-1 and dehydrogenase activity (68.1 μg PNP g-1 h-1. The soil treated with a mixture of compost and FYM inputs had the maximum urease activity of all tillage treatments. Organically manured treatment (F4 showed more activity in dehydrogenase (85.7 μg PNP g-1 h-1, acid phosphatase (199.1 µg PNP g-1 h-1 and alkaline phosphatase (3183.6 µg PNP g-1 h-1 compared to those treated with chemical fertilizers. In NT-F4 treatment, using on-farm inputs is most

  18. Field trial assessment of biological, chemical, and physical responses of soil to tillage intensity, fertilization, and grazing.

    Science.gov (United States)

    Vargas Gil, Silvina; Becker, Analia; Oddino, Claudio; Zuza, Mónica; Marinelli, Adriana; March, Guillermo

    2009-08-01

    Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.

  19. Suitability of technical materials for machinery subsoilers for soil tillage

    Directory of Open Access Journals (Sweden)

    Radek Bednář

    2013-01-01

    Full Text Available Agricultural soil processing belongs to the basic elements in the process of crop production. Currently classic tillage method is decreasing and the only trend has stated as a shallow plowing. Suitable post harvest soil tillage greatly affects yields in the next cycle. The aim of the study is the analysis of abrasive wear of selected construction materials and their subsequent use for DXRV-HD cultivator. The performed tests are focused on monitoring the mechanical properties of the materials and their use for variable cutting tip of cultivator body. Tested materials are divided into four categories. These materials include tool steel (19436, carbon steel (12050, cast iron with globular graphite and welding material supplied as a functional complex on low carbon steel by the Abraweld company. These materials are tested together with the original part of share cultivator. The present experiment is focused on metallorgraphic, mechanical and abrasive analysis. Structural component of the material is identified by metallographic photos and then compared with the impact strength tested on Charpy hammer. Followed the abrasion resistance according to CSN 01 5084 and the total evaluation of the tested samples are done.

  20. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    Science.gov (United States)

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may

  1. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    Directory of Open Access Journals (Sweden)

    Belén Carbonetto

    Full Text Available Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional

  2. Temperatura do solo em função do preparo do solo e do manejo da cobertura de inverno Soil temperature as affected by soil tillage and management of winter cover crops

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Angeli Furlani

    2008-02-01

    Full Text Available Com o objetivo de avaliar o efeito do preparo do solo e do manejo da cobertura de inverno (consórcio aveia-preta + nabo forrageiro sobre a temperatura do solo, realizou-se um experimento em um Nitossolo em Botucatu-SP no outono/inverno de 2000. Utilizou-se um delineamento em blocos casualizados em esquema fatorial 3 x 3 (três preparos e três manejos. O preparo do solo constou de: preparo convencional, preparo conservacionista com escarificação e plantio direto, e o manejo da cobertura: consórcio dessecado, rolado e triturado. Foram avaliados a temperatura do solo (termopares a 5 cm de profundidade, de hora em hora, aos 7, 14, 30, 45 e 60 dias após a emergência das plantas do consórcio; o teor de água do solo na profundidade de 10 cm, nas mesmas épocas; e a cobertura do solo (massa seca e índice de cobertura, imediatamente após aplicação dos tratamentos. O sistema plantio direto apresentou temperaturas do solo menores que as do preparo convencional, até o 14º dia após emergência (DAE das plantas. A partir do 30° DAE das plantas, a temperatura não foi mais influenciada pelos tratamentos, devido à cobertura do consórcio e ocorrência de boa disponibilidade de água no solo. Os manejos da cobertura com rolo-faca, triturador e herbicida não influenciaram a temperatura do solo. A temperatura do solo não interferiu no crescimento e desenvolvimento das culturas de cobertura.To evaluate the effect of soil tillage and management of winter cover crops (black oat + radish intercrop on the soil temperature, an experiment was conducted in a Nitossol (Alfisol in Botucatu, state of São Paulo, Brazil, in the 2000 fall/winter season. A design in randomized blocks was used in a 3 x 3 factorial scheme (three tillage and three cover crop managements. Soil tillage consisted of: conventional tillage, conservation tillage with chiseling, and no-tillage. The cover crops managements included plant killing with post-emergence herbicide, rolling

  3. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    Science.gov (United States)

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  4. Selected soil physical and hydraulic properties for different crop successions under no tillage

    Science.gov (United States)

    Sasal, M. C.; Castiglioni, M.; Paz-Ferreiro, J.; Wilson, M. G.; Oszust, J.

    2009-04-01

    No tillage is now widely widespread in Argentina in response to several circumstances, including limited runoff and a drop in soil erosion. Crop residues left on the soil surface help both natural rainfall and irrigation water infiltrate and also limits evaporation, conserving water for plant growth. This notwithstanding, wide differences in runoff rates between crop succession have been observed under no tillage. The aim of this work was to assess the effect of the main crop successions of Entre Ríos province, Argentina on selected soil physic and hydraulic properties. Results obtained on no-till plots were compared with those recorded on a 10-years old grassland plot and on a conventionally tilled plot left bare, both of them taken as references. The study soil was classified as an Aquic Argiudoll. Treatments were: maize and soybean, both cropped as monoculture, succession wheat/soybean or wheat/maize, grassland and conventionally tilled soil left bare. Soil runoff was recorded on experimental plots 100 m2 in surface. Saturated hydraulic conductivity (Khc) and sorptivity were measured in field conditions using a disc permeameter. Bulk density (Bd), saturated hydraulic conductivity (Kh) total porosity (TP) and pore size distributions were determined on undisturbed cores sampled at the 0-4 and 4-8 cm depth with five replications. Maximum water losses were recorded in bare soils conventionally tilled. Under maize and soybean monocultures water losses were six time higher than under grassland. Water losses under successions wheat/soybean-maize were lower than under monoculture but not significantly different. Field saturated hydraulic conductivity (Khc) was highest under grassland and the remaining treatments don't showed significant differences. Differences in sorptivity between plots were not significantly different. A significant relationship was found between saturated hydraulic conductivity measured in field conditions (Khc) and determined in soil cores (Kh

  5. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  6. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  7. Growth and yield of rain fed wheat as affected by different tillage system integrated with glyphosate herbicide

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M.A.; Khan, M.A.

    2016-01-01

    In rainfed areas, tillage is primarily done for moisture conservation and weed control. However, excessive tilling not only harms the soil health but also increases the cost of production. To find out the sustainable and economical tillage combination, response of wheat was studied under different tillage systems integrated with glyphosate herbicide through field experiments conducted at University Research Farm of Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan during 2012-2014 for two consecutive seasons. Principal component analysis proved that the plant height, biological yield, grain yield and harvest index of wheat were highest in treatment where one moldboard plowing was done followed by eight cultivations without using glyphosate in fallow period, which might be due to vigorous growth of wheat in this tillage system having enhanced root proliferation and moisture conservation, thus allowing plants to extract more nutrients and water from the deeper soil layers; whereas, the number of tillers per square meter, number of spikelets per spike, 1000 grain weight and number of grains per spike of wheat were maximum where one moldboard plowing was done followed by two applications of glyphosate herbicide in fallow period, which might be due to vigorous growth of wheat in this tillage system during 1st year of experiment when unexpected high rainfall was occurred during crop growth stage. Cluster analysis also categorized these two treatments into same category on the base of all agronomic parameters studied. The highest yield (3.5132 t ha-1) and (3.1242 t ha-1) was obtained from where one moldboard plowing was done following eight cultivations without using glyphosate followed by the treatment where one moldboard plowing was done following four cultivations without using glyphosate, respectively and were statistically at par with each other. Therefore one moldboard plowing following four cultivations is recommended for taking higher and

  8. Impacts of the conventional tillage tools and reduced tillage on the ...

    African Journals Online (AJOL)

    SARAH

    2017-09-30

    Sep 30, 2017 ... ABSTRACT. Objective: The long-term impacts of conventional tillage through compaction, soil erosion and loss of soil fertility have led to evaluation of this system. To mitigate these problems, simplified cultivation techniques (SCT) are increasingly practiced. The objective of this review is to clarify the effects ...

  9. Tillage and manure effect on soil physical and chemical properties ...

    African Journals Online (AJOL)

    ... tillage and liquid manure applications on some physical and chemical properties and also on the carbon and nitrogen mineralization potential from a meadow soil. Our results indicated that tillage and manure applications had no effect on the concentration of Cu, Mn, total N and organic C in the 0 - 15 cm layer of soil after ...

  10. Soil Failure Crescent Radii Measurement for Draft in Tillage Study ...

    African Journals Online (AJOL)

    Field clay loam and sandy loam soils were tilled with a chisel shaped tine at different tillage geometries. Soil cracks and the extent of their propagations in the front and to the sides of the tillage tool were observed and measured. These measurements provided the failure crescent radii and the soil furrow geometry used in ...

  11. Tillage and manure effect on soil microbial biomass and respiration ...

    African Journals Online (AJOL)

    The objective of this study was to determine the influence of both tillage and liquid pig manure application on soil microbial biomass, enzyme activities and microbial respiration in a meadow soil. The results obtained did not show any significant effect of tillage and manure on microbial biomass carbon (C) and nitrogen (N) ...

  12. Improving maize productivity through tillage and nitrogen management

    African Journals Online (AJOL)

    Continuous cultivation of fields with same implement (cultivator) creates a hard pan in the subsoil which adversely affects crop productivity. In addition to tillage, nitrogen management is a key factor for better crop growth and yield. Impact of different tillage systems and nitrogen management on yield attributes and grain yield ...

  13. Tillage effects on soil. Physical properties and sunflower ...

    African Journals Online (AJOL)

    Soil physical properties and sunflower (Helianthus annuus) yield under convectional tillage (CT) and zero-tillage (Z,TJ. was monitored for 3 consecutive years in Ilorin, Southern Guinea Savannah zone of Nigeria (SGSZN). While bulk density of CT increased slightly over the years, significant decrease of 12 and 8% were ...

  14. Tillage and manure effect on soil physical and chemical properties ...

    African Journals Online (AJOL)

    The objective of this work was to study the effects of tillage and liquid manure applications on some physical and chemical properties and also on the carbon and nitrogen mineralization potential from a meadow soil. Our results indicated that tillage and manure applications had no effect on the concentration of Cu, Mn, total ...

  15. Tillage and Farmyard Manure Effects on Crusting and Compacting ...

    African Journals Online (AJOL)

    Field investigations on rainfall characteristics, surface runoff, soil loss, soil bulk density and soil shear strength covered two rainy seasons (short and long rains) and were done on a Chromic Luvisol. The field treatments were zero tillage and conventional tillage, and two farmyard manure applications (5 and 10 Mg ha-1).

  16. The effect of soil extracts from a monoculture of spring wheat (Triticum aestivum L. grown under different tillage systems on the germination of its seeds

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present experiment was carried out in the period 2006-2008. The aim of this study was to determine the effect of aqueous soil extracts from the soil of a spring wheat monoculture on seed germination energy and capacity, the length of the first leaf and of the longest radicle as well as the number of radicles. Moreover, the content of 0-dihydroxyphenols in the soil was compared in the last year of the study. The soil used to prepare the solutions came from a field experiment established on medium heavy mixed rendzina soil. Spring wheat, cv. Zebra, was grown using plough tillage and two conservation tillage methods in the presence of undersown crops (red clover, Westerwolds ryegrass and stubble crops (lacy phacelia, white mustard. Germination energy of the seeds watered with the soil extracts from the ploughed plots was significantly higher than this trait in the seeds watered with the extracts from the conservation tillage treatments with spring disking of the catch crops. Germination energy and capacity of spring wheat in the control treatment watered with distilled water were significantly higher compared to the other treatments under evaluation. Spring wheat watered with the aqueous extract prepared from the soil obtained from the plough tillage treatment produced a significantly longer first leaf compared to the treatments in which both conservation tillage methods had been used. The shortest leaf and the lowest number of radicles were produced by the seedlings watered with the soil extract from the treatment with the white clover stubble crop. Radicle length was not significantly differentiated by the soil extracts under consideration. The content of 0-dihydroxyphenols in the rendzina soil determined during the spring period was higher than that determined in the autumn. The content of 0-dihydroxyphenols in the soil was lower in the conservation tillage treatments with autumn incorporation of the catch crops than in the plots in which

  17. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  18. Midwest Climate and Agriculture - Monitoring Tillage Practices with NASA Remote Sensors

    Science.gov (United States)

    Makar, N. I.; Archer, S.; Rooks, K.; Sparks, K.; Trigg, C.; Lourie, J.; Wilkins, K.

    2011-12-01

    Concerns about climate change have driven efforts to reduce or offset greenhouse gas emissions. Agricultural activity has drawn considerable attention because it accounts for nearly twelve percent of total anthropogenic emissions. Depending on the type of tillage method utilized, farm land can be either a source or a sink of carbon. Conventional tillage disturbs the soil and can release greenhouse gases into the atmosphere. Conservational tillage practices have been advocated for their ability to sequester carbon, reduce soil erosion, maintain soil moisture, and increase long-term productivity. If carbon credit trading systems are implemented, a cost-effective, efficient tillage monitoring system is needed to enforce offset standards. Remote sensing technology can expedite the process and has shown promising results in distinguishing crop residue from soil. Agricultural indices such as the CAI, SINDRI, and LCA illuminate the unique reflectance spectra of crop residue and are thus able to classify fields based on percent crop cover. The CAI requires hyperspectral data, as it relies on narrow bands within the shortwave infrared portion of the electromagnetic spectrum. Although limited in availability, hyperspectral data has been shown to produce the most accurate results for detecting crop residue on the soil. A new approach to using the CAI was the focus of this study. Previously acquired field data was located in a region covered by a Hyperion swath and is thus the primary study area. In previous studies, ground-based data were needed for each satellite swath to correctly calibrate the linear relationship between the index values and the fraction of residue cover. We hypothesized that there should be a standard method which is able to convert index values into residue classifications without ground data analysis. To do this, end index values for a particular data set were assumed to be associated with end values of residue cover percentages. This method may prove

  19. Agronomic performance of common bean in straw mulch systems and topdressing nitrogen rates in no-tillage

    Directory of Open Access Journals (Sweden)

    Tatiana Pagan Loeiro da Cunha

    2015-10-01

    Full Text Available ABSTRACTIn no-tillage systems, straw coverage on soil surface is the key to success, and the choice of crops for rotation is crucial to achieve the sustainability and quality that conservation agriculture requires. The objective of this study was to evaluate the agronomic performance of the common bean cultivar IAC Formoso sown in succession to three straw mulch systems (corn alone, corn/Urochloa ruziziensisintercrop and U. ruziziensisalone and topdress nitrogen rates (0; 40; 80; 120 and 160 kg ha-1N, at the four-leaf stage, three years after the implementation of no-tillage. The experiment was arranged in a randomized block split plot design, with three replications. Common bean highest yields were achieved in succession to U. ruziziensisalone and intercropped with corn. The corn/U. ruziziensisintercrop provided both straw and seed production, allowing for quality no-tillage. Topdressed nitrogen influenced the common bean yield when in succession to corn alone, U. ruziziensisalone and corn/U. ruziziensisintercrop in no-tillage.

  20. Modern concepts of soil conservation

    Directory of Open Access Journals (Sweden)

    J. Dumanski

    2013-06-01

    Full Text Available Approaches to soil conservation are in constant evolution and improvement. This paper summarizes some of the modern approaches, ranging from no till to conservation agriculture to sustainable land management. These approaches are not separate, but components of a continuum of conservation approaches applicable at different levels and different scales. No tillage is important at the detailed, farm level, while CA and SLM are important at the farming systems and corporate levels. The successes achieved with no till in Argentina (also Brazil, Paraguay, Uruguay, Mexico, Canada, Australia, and others illustrate how these concepts relate to each other.

  1. Optimize the cost of cultivation with using low-tillage in the wheat fields of Tehran province

    OpenAIRE

    KAMALI, Hossein; PARHIZGAR, Mohammad Mahdi

    2015-01-01

    Abstract. In appropriate patterns of tillage in wheat, three methods commonly cultivated as a maximum for tillage, planting a multifunctional device as minimum tillage and direct seeding cultivation system as no tillage operations together are comparable. Analysis of variance and mean cost of land preparation and time spent on the three methods of tillage operations shows that maximum conventional tillage and planting allocated to the most and direct seeding without tillage operations allocat...

  2. Effects of six primary tillage implements on energy inputs and residue cover in Central Italy

    Directory of Open Access Journals (Sweden)

    Roberto Fanigliulo

    2016-09-01

    Full Text Available The use of agricultural machinery represents the main aspect contributing to the total energy input in the agricultural system. The study evaluated the energy requirements and the work quality of two conventional (threefurrow plough and spading machine and of four conservation implements (rotary harrow, subsoiler, disk harrow, combined cultivator for mediumdeep primary tillage in a silty-clay soil, widespread in Central Italy. The tests were carried out with the aim of selecting the most energy-efficient implement. Working speed, force of traction, fuel consumption and energy demands were measured, using a 205 kW instrumented tractor. Cloddiness and roughness of the tilled soil, biomass coverage index and burying degree were evaluated. The conservation tillage implements gave the best results in fuel consumption and energy requirements respect to the conventional implements, with energy savings up to 86% in the case of disk harrow. The rotary harrow showed intermediate values and the best soil refinement. Among the conservation implements, the disk harrow showed the best performance on biomass coverage index (43.8%, while the combined cultivator showed the highest value of biomass burying (87.8% and the best performance on fuel consumption per hour (25.8 kg h–1.

  3. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  4. Effectiveness of conservative interventions including exercise, manual therapy and medical management in adults with shoulder impingement: a systematic review and meta-analysis of RCTs

    Science.gov (United States)

    Steuri, Ruedi; Sattelmayer, Martin; Elsig, Simone; Kolly, Chloé; Tal, Amir; Taeymans, Jan

    2017-01-01

    Objective To investigate the effectiveness of conservative interventions for pain, function and range of motion in adults with shoulder impingement. Design Systematic review and meta-analysis of randomised trials. Data sources Medline, CENTRAL, CINAHL, Embase and PEDro were searched from inception to January 2017. Study selection criteria Randomised controlled trials including participants with shoulder impingement and evaluating at least one conservative intervention against sham or other treatments. Results For pain, exercise was superior to non-exercise control interventions (standardised mean difference (SMD) −0.94, 95% CI −1.69 to −0.19). Specific exercises were superior to generic exercises (SMD −0.65, 95% CI −0.99 to −0.32). Corticosteroid injections were superior to no treatment (SMD −0.65, 95% CI −1.04 to −0.26), and ultrasound guided injections were superior to non-guided injections (SMD −0.51, 95% CI −0.89 to −0.13). Nonsteroidal anti-inflammatory drugs (NSAIDS) had a small to moderate SMD of −0.29 (95% CI −0.53 to −0.05) compared with placebo. Manual therapy was superior to placebo (SMD −0.35, 95% CI −0.69 to −0.01). When combined with exercise, manual therapy was superior to exercise alone, but only at the shortest follow-up (SMD −0.32, 95% CI −0.62 to −0.01). Laser was superior to sham laser (SMD −0.88, 95% CI −1.48 to −0.27). Extracorporeal shockwave therapy (ECSWT) was superior to sham (−0.39, 95% CI −0.78 to –0.01) and tape was superior to sham (−0.64, 95% CI −1.16 to −0.12), with small to moderate SMDs. Conclusion Although there was only very low quality evidence, exercise should be considered for patients with shoulder impingement symptoms and tape, ECSWT, laser or manual therapy might be added. NSAIDS and corticosteroids are superior to placebo, but it is unclear how these treatments compare to exercise. PMID:28630217

  5. Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems

    International Nuclear Information System (INIS)

    Alletto, Lionel; Benoit, Pierre; Bergheaud, Valerie; Coquet, Yves

    2008-01-01

    Laboratory studies were conducted to evaluate the effects of temperature and water pressure head on the degradation of the diketonitrile metabolite (DKN) of isoxaflutole during 84 d in samples collected in a loamy soil under conventional (CT) and conservation (MT) tillage systems. Soil temperature was the major factor controlling DKN degradation in the two tillage systems. The shortest half-lives (T 1/2 ) were measured in the seedbed samples under MT at 25 deg. C and -33 cm water pressure head. We found that mouldboard ploughing under CT was responsible for the spatial variability of herbicide degradation properties, whereas under MT herbicide degradation was associated to the vertical distribution of organic matter. - Tillage practices influence the spatial variability of diketonitrile degradation in soil and its sensitivity to pedoclimatic conditions

  6. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    Science.gov (United States)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  7. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    Science.gov (United States)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  8. The effect of tillage system and herbicide application on weed infestation of crops of winter spelt wheat (Triticum aestivum ssp. spelta L. cultivars

    Directory of Open Access Journals (Sweden)

    Sylwia Andruszczak

    2014-01-01

    Full Text Available Based on a 3-year field experiment conducted on medium heavy mixed rendzina soil, the present study evaluated the effect of chemical plant protection on the species composition, number and air-dry weight of weeds infesting crops of winter spelt wheat cultivars (‘Frankenkorn’, ‘Badengold’, ‘Schwaben- speltz’, and ‘Oberkulmer Rotkorn’ sown under ploughing and ploughless tillage systems. Ploughing tillage involved skim- ming done after harvest of the previous crop and pre-sowing ploughing, while in the ploughless tillage system ploughing was replaced with cultivating. Chemical weed control included the application of the herbicides Mustang 306 SE and Attribut 70 WG. Plots where the herbicides were not used were the control treatment. On average, from 21 to 30 weed species colonised the winter spelt wheat crops compared. Galium aparine and Apera spica-venti occurred in greatest numbers and their percentage in the total number of weeds was estimated at 26–35% and 17–25%, respectively. The cultivar ‘Frankenkorn’ was the least weed-infested. Both the number of weeds in the crop of this cultivar and their above-ground dry weight were lower compared to the other cultivars. The use of reduced tillage significantly increased the air-dry weight of weeds compared to ploughing tillage. Nevertheless, it should be indicated under ploughless tillage conditions the application of chemical crop protection reduced weed biomass by 59% compared to the control treatments without crop protection.

  9. Impact of tillage on N2O and CO2 efflux in an agricultural crop

    Science.gov (United States)

    Lognoul, Margaux; Theodorakopoulos, Nicolas; Hiel, Marie-Pierre; Heinesch, Bernard; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    In an experiment conducted in the Belgian loess belt between June and October 2015, the effect of two tillage treatments (CT - conventional tillage and RT - reduced tillage) on CO2 and N2O fluxes exchanged by a maize crop were compared. The experimental site included two parcels subjected to crop residues incorporation and to their respective tillage treatment (CT and RT) since 2008. Fluxes were measured using two fully automated sets of dynamic closed chambers, allowing a 4.5h temporal resolution. Soil water content and temperature were also monitored as well as pH, total N (TN) and total organic C (TOC) content. Results suggest that tillage practices significantly impacted emissions of both gases, with average soil respiration twice as large for RT than CT (91 μg C.m-2.s-1 versus 44.5 μg C.m-2.s-1) and N2O fluxes 8 times greater for RT than CT (5.55 ng N2O_N.m-2.s-1 versus 0.68 ng N2O_N.m-2.s-1). These observations could be explained by an effect of tillage treatment on stratification of crop residues within the soil profile, as shown in our experiment. Indeed significantly higher TN and TOC content were measured in the surface layer (0-10cm) under RT and that might have enhanced microbial activity responsible for CO2 and N2O production. A single N2O emission burst was observed in both treatments, most likely triggered by a sudden and important increase of soil moisture with a time delay of 4.5h for RT and 27h for CT. Here again, peak mean emissions were 9 times larger for RT than for CT (13.3 ng N2O_N.m-2.s-1 versus 1.43 ng N2O_N.m-2.s-1 for CT). The absence of peak emissions later during the experiment, despite the occurrence of similar soil moisture increases suggests that such increase is not the sole condition to generate N2O bursts. In the present case, it is possible that the absence of further peaks was due to a non-availability of soil N caused by increased competition for N because of maize growth. The system of automated chambers proved it

  10. The apotheosis of conservation agriculture- A review

    OpenAIRE

    Hossain, M.M.

    2013-01-01

    This paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till) and crop residue retention (mulch) combined with crop rotations. The paper then describes the principles based on which CA runs with briefing suggested improvement on conservation tillage, where no-till, mulch and rotations significantly improve soil properties and other biotic factors. This paper also describes some cons of CA with its future strategies. A Case study from the rice-wheat areas o...

  11. A simplified modelling approach for quantifying tillage effects on soil carbon stocks

    DEFF Research Database (Denmark)

    Chatskikh, Dmitri; Hansen, Søren; Olesen, Jørgen E.

    2009-01-01

    all decomposition and maintenance parameters in the model. An initial value of TF = 0.57 (parameter uncertainty, PU = 0.15) for NT (with TF set to 1.0 for CT) was used on the basis of a previous study with observations of soil CO2 respiration. The simulated and observed changes in SOC were......Soil tillage has been shown to affect long-term changes in soil organic carbon (SOC) content in a number of field experiments. This paper presents a simplified approach for including effects of tillage in models of soil C turnover in the tilled-soil layer. We used an existing soil organic matter...... (SOM) model (CN-SIM) with standard SOC data for a homogeneous tilled layer from four long-term field experiments with conventionally tilled (CT) and no-till (NT) treatments. The SOM model was tested on data from long-term (>10 years) field trials differing in climatic conditions, soil properties...

  12. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2015-01-01

    Crop management factors, such as tillage, rotation, and straw retention, need to be long-term to allow conclusions on effects on crop yields, nitrate leaching, and carbon sequestration. In 2002, two field experiments, each including four cash crop rotations, were established on soils with 9 and 15......% clay, under temperate, coastal climate conditions. Direct drilling and harrowing to two different depths were compared to plowing with respect to yield, nitrate N leaching, and carbon sequestration. For comparison of yields across rotations, grain and seed dry matter yields for each crop were converted...... fodder radish due to the efficient catch crop. Soil organic carbon (SOC) did not increase significantly after 7 yr of straw incorporation or noninversion tillage. There was no correlation between N balances calculated for each growing season and N leaching measured in the following percolation period....

  13. Artificial neural network approach for mapping contrasting tillage practices

    Science.gov (United States)

    Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensi...

  14. Tillage and manure effect on soil physical and chemical properties ...

    African Journals Online (AJOL)

    ajl yemi

    , Quebec, Canada, G1K 7P4. Accepted 21 September, 2009 ..... Furthermore, both tillage and manure influence soil organic matter dynamics and quality. REFERENCES. Anderson JPE (1982). Soil respiration.. In Page AL ed. Methods of ...

  15. Haplic Chernozem Properties as Affected by Different Tillage Systems

    Directory of Open Access Journals (Sweden)

    Magdalena Hábová

    2016-01-01

    Full Text Available During 2007–2011 we assessed content and quality of humic substances with relationship to soil structure. Object of study was Haplic Chernozem (Hrušovany nad Jevišovkou, Czech Republic under three different tillage systems: – conventional ploughing to a depth of 0.22 m (CP; – reduced tillage with shallow harrowing to a depth of 0.15 m (RTSH; – reduced tillage with subsoiling to a depth of 0.35–0.40 m (RTS. Isolation of humic acids was made according to IHSS standard method using spectrometer Shimadzu 8700. Aggregates stability was determined by wet sieving method. Results showed that macrostructure stability was directly connected with time of sampling and content and quality of humic substances. After five years of experiment statistically significant differences in humic substances content were found. The highest structure stability, quantity and quality of humic substances were achieved under reduced tillage with shallow harrowing.

  16. MEAN INFILTRATION SPEED IN A VERTISOL UNDER DIFFERENT TILLAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Juan José Martínez Villanueva

    2015-01-01

    Full Text Available Soil compaction is regarded as the most serious environmental problem caused by conventional agriculture. Few studies are concerned with the assessment of soil compaction using infiltration speed, specifically in the Vertisol soil characteristic of the main maize producing area of the Toluca-Atlacomulco Valley in central Mexico. The aim of this research was to examine the effect on infiltration speed and penetration resistance of a Vertisol soil when compacted by wheeled agricultural traffic in three different types of tillage systems: zero, minimal and conventional. Penetration resistance was measured on the wheel track with a portable digital penetrometer, and the mean infiltration speed was determined according to the double cylinder infiltrometer method. The pressure exerted by the number of wheeled traffic passes increased Vertisol soil compaction at 30 cm depth. Even though the benefits of zero tillage were similar to those showed by minimum tillage during the experimental period, minimum tillage reported the highest infiltration speed.

  17. Precise tillage systems for enhanced non-chemical weed management

    NARCIS (Netherlands)

    Kurstjens, D.A.G.

    2007-01-01

    Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides,

  18. GRANULOMETRIC AND HUMIC FRACTIONS CARBON STOCKS OF SOIL ORGANIC MATTER UNDER NO-TILLAGE SYSTEM IN UBERABA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2011-12-01

    Full Text Available The cover plant use preceding grain crops in Cerrado soil can increase the carbon stocks of chemical and physical fractions of soil organic matter (SOM. The present study aimed to quantify the carbon stocks of SOM granulometric and humic fractions in a Cerrado area under no-tillage system with different cover plant, and compare the results with those from conventional tillage and fallow areas, in Uberaba, MG, Brazil. The implemented cover crops were: millet, tropical grass and sunn hemp. Furthermore, an area was used in fallow and another as a control area (conventional tillage. After cover crop removal, the areas were subdivided for the corn and soybean plantation. Soil samples were collected in the 0.0-0.025, 0.025-0.05, 0.05-0.10 and 0.10-0.20 m depths, with posterior quantification of total organic carbon (TOC levels and chemical and granulometric fractionation of SOM. Humic acid carbon (C-HAF, fulvic acids (C-FAF and humin (C-HUM were quantified through these fractionations. The granulometric fractions consisted in particulate organic matter (POM and mineral organic matter (MOM. Using the carbon levels for each fraction, the respective stocks for each depth were calculated, including the 0.0-0.20 m layer. In the 0.0-0.20 m layer, TOC had the highest stocks for the millet area. The highest POM stocks were found for the corn plantation over sunn hemp and the fallow and soybean area over millet and tropical grass (0.0-0.20 m. In relation to the MOM stocks, the highest values were observed in the areas with millet, sunn hemp and tropical (palisade grass, all superior to those found in the conventional tillage and fallow areas, independent of evaluated culture (0.10-0.20 m. The highest C-HUM stocks were observed in the area with tropical grass (0.025-0.05 m and areas with tropical grass and sunn hemp (0.10-0.20 m, when compared to conventional tillage, independent of evaluated culture (corn and soybean. The highest C-FAH stocks in the depth of 0

  19. A systemic view of biodiversity and its conservation: processes, interrelationships, and human culture: presentation of a systemic view of biodiversity and its conservation that emphasizes complex interrelationships among subsystems and includes human culture.

    Science.gov (United States)

    Sterling, Eleanor J; Gómez, Andrés; Porzecanski, Ana L

    2010-12-01

    Historically, views and measurements of biodiversity have had a narrow focus, for instance, characterizing the attributes of observable patterns but affording less attention to processes. Here, we explore the question: how does a systems thinking view - one where the world is seen as elements and processes that connect and interact in dynamic ways to form a whole - affect the way we understand biodiversity and practice conservation? We answer this question by illustrating the systemic properties of biodiversity at multiple levels, and show that biodiversity is a collection of dynamic systems linking seemingly disparate biological and cultural components and requiring an understanding of the system as a whole. We conclude that systems thinking calls traditional views of species, ecosystem function, and human relationships with the rest of biodiversity into question. Finally, we suggest some of the ways in which this view can impact the science and practice of conservation, particularly through affecting our conservation targets and strategies. Copyright © 2010 WILEY Periodicals, Inc.

  20. Effects of hand-hoe tilled conservation farming on soil quality and carbon stocks under on-farm conditions in Zambia

    DEFF Research Database (Denmark)

    Martinsen, V; Shitumbanuma, V; Mulder, J

    2017-01-01

    Conservation farming (CF) has been promoted in Zambia since the 1980s. Despite long-term practice of CF in Zambia, its effect on soil fertility, including the storage of soil organic matter (SOM), on smallholder farms are inconclusive. Here, we assess the effect of CF as compared to conventional....... Overall, our results show small differences in the soil quality parameters between the CF and conventional practices at smallholder farms after maximum 12 years since adoption of CF....... tillage on soil quality parameters on smallholder farms in the Eastern province (EP, 20 sites, two to six years of CF) and Central province (CP, 20 sites, four to twelve years of CF) in Zambia. Soils under CF (minimum tillage hoe basins, crop rotation and residue retention) were compared with adjacent...

  1. Comparison of agricultural soils' structure depending on tillage system using X-ray microtomography

    Science.gov (United States)

    Beckers, Eléonore; Degré, Aurore; Ly, Sarann; Léonard, Angélique

    2010-05-01

    This study aims at characterizing agricultural soils' structure depending on the tillage system: conventional tillage or conservational tillage. Tillage reduction is an increasing practice, but the micro-structural effects on soils and on their hydrodynamic parameters are still not well described. Recent research shows non-converging results. Our point is to highlight fundamental differences in structure through characterization of soils porosity's parameters using X-ray microtomography measurements coupled to image analysis. This attempt is in line with a more integrated experiment of which the aim is to quantify the effects of tillage intensity on lateral flow production, and finally on global water balance. Parameters' measurements consist in a combined approach, based on two different space-time scales of exploration: fundamental scale, with soil sampling campaign for microtomography analysis, and field scale, with continuous flow measurements (plots' dimensions: 18*28 m). For their part, parameters for water balance determination (precipitation, evapotranspiration…) are monitored on the field. All of these measurements have the main objective of hydrological modeling enhancement by taking into account a better lateral flow description. Discussion in this paper will focus on the first results obtained by X-ray microtomography measurements. Our experiment takes place in Gentinnes (Walloon Brabant, Belgium), on a field organized in a split-plot scheme. Since 2004, plots have been cultivated in conventional tillage or in reduced tillage. The latter consists in sowing after stubble ploughing of about 10cm. The crop rotation is sugar beet followed by winter wheat. The soil is mainly composed of silt loam. Soils samples, with a 3 cm diameter and a 5 cm height, were removed from the upper layer (Ap horizon) for both management practices. Samples are scanned by X-ray microtomography using a Skyscan-1172 high-resolution desk-top micro-CT system (Skyscan, Kontich

  2. The selection of best tillage implements in terms of energy use efficiency using simple additive weighting methodology

    Directory of Open Access Journals (Sweden)

    K Andekaeizadeh

    2017-05-01

    Full Text Available Introduction Main part of energy consumption in agricultural mechanization is tillage operations therefore optimization of energy consumption in tillage operation is very important. A management method for system to optimize in agriculture is Simple Additive Weighting (SAW methodology that this method can operate according to criteria of the systems. This method states that, which system has better performance? (for example the system for agricultural tractors, type of implements, methods of tillage, planting and harvesting, and etc. Fuel consumption is the most important factor in terms of energy consumption in tractor because the fuel energy contributes to help tractor to work . Specific draught is important force that measured for investigation of energy consumption of tillage implements, it can show the amount of drawbar force that optimized (for work width 1 meter implements tillage by using this method. The multiplication of the drawbar force in forward speed factor resulted drawbar power. The most common method is using of tractors drawbar power in mechanized agriculture. Important factor for assessment and determination performance of tractor is drawbar power. Several studies have been showed that about 20 to 55%of available drawbar power was wasting by implements tillage. Another important parameters that affect on traction efficiency pull’s machine is slip. A simple additive weighting two-step procedure involving basic weighted as follows: (1 scale the values of all attributes to make them comparable; (2 sum up the values of the all attributes for each alternative. Materials and Methods In this study, three implements tillage were studied including moldboard plow, disk plow and disk harrow and they called A, B and C , respectively. Three different forward speeds of 3, 4, 5, 6 Km/h for each implements were selected according to the type of work at various depths. In this study fuel consumption factor was measured by means of micro

  3. Effects of Tillage Practices on Soil Penetration Resistance, Technical Parameters and Wheat Yield

    Directory of Open Access Journals (Sweden)

    S.M.j Afzali

    2013-02-01

    Full Text Available This study was carried out to evaluate the effects of tillage practices (with different depths on soil penetration resistance, technical parameters and grain yield of wheat crop. The experiment was conducted as a randomized complete block design with three replications for two years. Treatments included: moldboard plow fallowed by two passes of disc harrow and leveler (CT, two passes of disc harrow plus leveler (RT, subsoiler fallowed by two passes of disc harrow and leveler (S1D and subsoiler fallowed by rotivator (S1R. The results showed that soil compaction and penetration resistance increased at the end of growth stages because of irrigation operations and cohesion force of soil particles. However due to increasing of cumulative infiltration, it can be concluded that subsoiler caused the formation of micro cracks in different depths of soil. From technical indices viewpoint comparing to CT treatment, S1D and S1R treatments saved fuel consumption up to 2.2 and 10.44 lit ha 1 and tillage operation time up to 0.58 and 1.54 h ha-1, respectively. The result of grain yield assessment showed an increase of 8.5% in grain yield after replacing moldboard plow with annual subsoiling. Subsoiling has advantages such as, good technical indices, elimination of preplanting irrigation and fewer operations in planting time. Finally, subsoiling increased grain yield by 22% as compared to reduced tillage practice

  4. Response of Yield and Yield Components of Tef [Eragrostis tef (Zucc.) Trotter] to Tillage, Nutrient, and Weed Management Practices in Dura Area, Northern Ethiopia

    Science.gov (United States)

    Tesfahunegn, Gebreyesus Brhane

    2014-01-01

    The low average grain yield (0.7 ton ha−1) of tef in Ethiopia is mainly attributed to low soil fertility, and inappropriate tillage and weeds control practices. Despite this, limited scientific information has been documented so far on their interaction effects on tef crop productivity in northern Ethiopia. The objective of this study was to assess the separate and interaction effects of tillage, fertilizer, and weed control practices on tef yield and yield components in the conditions of northern Ethiopia. A two-year study (2008-2009) was conducted using split-split-plot design with three replications. In the main plot, three tillage treatments: conventional tillage (6 times tillage passes) (T1), four times tillage passes (T2), and reduced tillage (single tillage pass at sowing) (T3) were applied. The fertilizer treatments in the subplots were: no fertilizer (F1); 23 kg N ha−1 (F2); 23 kg N ha−1 and 10 kg P ha−1 (F3); 23 kg N ha−1 and 2.5 ton manure ha−1 (F4); and 2.5 ton manure ha−1 (F5). The sub-subplot weed control treatments included farmer weed control practice or hand weeding (W1); 2,4 D at 0.75 kg ha−1 at five-leaf stage; 2,4 D at 0.75 kg ha−1 at six-leaf stage; 2,4 D at 1.5 kg ha−1 at five-leaf stage; and 2,4 D at 1.5 kg ha−1 at six-leaf stage. This study showed that the separate and interaction effects of tillage, fertilizer, and weed control practices significantly affected tef crop yield and yield components in both crop seasons. T2 increased tef yield by >42% over the other tillage and F3 increased yield by >21% over the other fertilizer treatments. Grain yield increased by >23% due to W1. This study thus suggested that promising treatments such as T2, F3, and W1 should be demonstrated at on-farm fields in order to evaluate their performance at farmers' conditions. PMID:27379271

  5. Particulate emissions calculations from fall tillage operations using point and remote sensors.

    Science.gov (United States)

    Moore, Kori D; Wojcik, Michael D; Martin, Randal S; Marchant, Christian C; Bingham, Gail E; Pfeiffer, Richard L; Prueger, John H; Hatfield, Jerry L

    2013-07-01

    Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP. Emissions were measured from conventional tillage methods and from a "combined operations" CMP, which combines several implements to reduce tractor passes. Measurements were made of soil moisture, bulk density, meteorological profiles, filter-based total suspended PM (TSP), concentrations of PM with an equivalent aerodynamic diameter ≤10 μm (PM) and PM with an equivalent aerodynamic diameter ≤2.5 μm (PM), and aerosol size distribution. A mass-calibrated, scanning, three-wavelength light detection and ranging (LIDAR) procedure estimated PM through a series of algorithms. Emissions were calculated via inverse modeling with mass concentration measurements and applying a mass balance to LIDAR data. Inverse modeling emission estimates were higher, often with statistically significant differences. Derived PM emissions for conventional operations generally agree with literature values. Sampling irregularities with a few filter-based samples prevented calculation of a complete set of emissions through inverse modeling; however, the LIDAR-based emissions dataset was complete. The CMP control effectiveness was calculated based on LIDAR-derived emissions to be 29 ± 2%, 60 ± 1%, and 25 ± 1% for PM, PM, and TSP size fractions, respectively. Implementation of this CMP provides an effective method for the reduction of PM emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Effect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil.

    Science.gov (United States)

    Ramirez, Norma E; Wang, Ping; Lejeune, Jeff; Shipitalo, Martin J; Ward, Lucy A; Sreevatsan, Srinand; Dick, Warren A

    2009-01-01

    Most waterborne outbreaks of cryptosporidiosis have been attributed to agricultural sources due to the high prevalence of Cryptosporidium oocysts in animal wastes and manure spreading on farmlands. No-till, an effective conservation practice, often results in soil having higher water infiltration and percolation rates than conventional tillage. We treated six undisturbed no-till and six tilled soil blocks (30 by 30 by 30 cm) with 1 L liquid dairy manure containing 10(5) C. parvum oocysts per milliliter to test the effect of tillage and rainfall on oocyst transport. The blocks were subjected to rainfall treatments consisting of 5 mm or 30 mm in 30 min. Leachate was collected from the base of the blocks in 35-mL increments using a 64-cell grid lysimeter. Even before any rain was applied, approximately 300 mL of water from the liquid manure (30% of that applied) was transported through the no-till soil, but none through the tilled blocks. After rain was applied, a greater number and percentage of first leachate samples from the no-till soil blocks compared to the tilled blocks tested positive for Cryptosporidium oocysts. In contrast to leachate, greater numbers of oocysts were recovered from the tilled soil, itself, than from the no-till soil. Although tillage was the most important factor affecting oocyst transport, rainfall timing and intensity were also important. To minimize transport of Cryptosporidium in no-till fields, manure should be applied at least 48 h before heavy rainfall is anticipated or methods of disrupting the direct linkage of surface soil to drains, via macropores, need to be used.

  7. Fate and effects of clothianidin in fields using conservation practices.

    Science.gov (United States)

    de Perre, Chloé; Murphy, Tracye M; Lydy, Michael J

    2015-02-01

    Despite the extensive use of the neonicotinoid insecticide clothianidin, and its known toxicity to beneficial insects such as pollinators, little attention has been given to its fate under agricultural field conditions. The present study investigated the fate and toxicity of clothianidin applied every other year as a corn seed-coating at 2 different rates, 0.25 mg/seed and 0.50 mg/seed, in an agricultural field undergoing a corn-soybean annual rotation, and conservation tillage. Concentrations were measured in soil, surface runoff, infiltration, and groundwater from 2011 to 2013. Clothianidin was detected at low concentrations in soil and water throughout the 2-yr corn and soybean rotation. Low and no-tillage had little or no effect on clothianidin concentrations. Laboratory toxicity bioassays were performed on nontarget species, including Daphnia magna, Hyalella azteca, Chironomus dilutus, Pimephales promelas and Eisenia fetida. Risk quotients were calculated from clothianidin concentrations measured in the field and compared with the laboratory toxicity bioassay results to assess the environmental risk of the insecticide. The risk quotient was found to be lower than the level of concern for C. dilutus, which was the most sensitive species tested; therefore, no short-term environmental risk was expected for the species investigated in the present study. © 2014 SETAC.

  8. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    Full Text Available Introduction Due to the development of sustainable agriculture and the reduction of utilizing chemical fertilizers, it is essential to use organic fertilizer. Organic matter is vital to soil fertility and its productivity. To maintain the level of fertility and the strength of soil, organic matter levels should be maintained at an appropriate level. Unfortunately, the level of organic matter in soil is generally less than 1%. One solution to increase the soil’s organic matter content is to use organic fertilizers such as animal manure, green manure, and vermicompost (Nuralvandy, 2011. As a correction factor, green manure can increase water supply and nutrient soil conservation (Tajbakhsh et al., 2005. Materials and methods In order to assess the effects of fertilizer sources (green manure, cow manure, and chemical fertilizer on maize yield and yield components (KSC 704 under tillage management, a field experiment was carried out at Zahak Agricultural and Natural Resource Research Station in two years (from 2013 to 2014. Before corn planting, barley was planted as green manure in the fall of each year. The experiment was conducted as a split plot arranged in a completely randomized block design with three replications. The main plots were tillage and no tillage, whereas the sub plots were: 1-barley green manure (without application of fertilizer, 2-barley green manure with applying 100% chemical fertilizer (NPK to the barley during cultivation, tillering and stemming stages, 3- green manure with 2/3 of chemical fertilizer to the barley and 1/3 to the maize, 4- green manure with 1/3 of chemical fertilizer to the barley and 2/3 to the maize, 5- barley green manure with 50% animal and chemical manures, 6- barley green manure with 40 t ha-1 of animal manure, 7-control (non-fertilizer application. Corn was planted on 15 March each year. Phosphorus, potassium fertilizer, and animal manure were added to the soil as the base fertilizers. At full

  9. Comparative Economic and Gender, Labor Analysis of Conservation Agriculture Practices in Tribal Villages in India

    OpenAIRE

    Lai, Cynthia; Chan, Catherine; Halbrendt, Jacqueline; Shariq, Linsey; Roul, Pravat; Idol, Travis; Ray, Chittanrajan; Evensen, Carl

    2012-01-01

    Marginal land use and subsequent natural resource degradation is a common issue among tribal villages in the Kendujhar district of India. In this study, Conservation Agriculture (CA) technologies at an experimental site, specifically the practices of intercropping and minimum tillage, were compared to conventional tillage practices of three tribal villages (145 households total) in this district. The impacts of CA implementation on gender, labor, and economic (yield and profitability) factors...

  10. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Carolina Gavazzi

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  11. Comparison of soil surface arthropod populations in conventional tillage, no-tillage and old field systems

    Energy Technology Data Exchange (ETDEWEB)

    Blumberg, A Y; Crossley, Jr, D A

    1980-08-01

    Soil surface arthropod populations in conventional tillage (CT) and no-tillage (NT) sorghum and adjacent old field (OF) were compared using pitfall trap captures. Total numbers of individuals and species, overall diversity (anti H), richness (D), evenness (J'), dominance (C) and similarity quotients (QS) between systems were calculated for each of seven 24 hour sampling periods throughout the season. Although each system was distinct (any two of the systems had less than 30 percent of their species in common), NT was most similar to OF and least similar to CT during a period of stress (drought) and after heading of the sorghum. Percentages of individuals and species represented by spiders were similar in NT and OF; percentages were substantially less in CT. Yields (biomass of sorghum) in CT and NT were not significantly different despite the generally predicted higher pest populations in NT. Results suggest that insecticide stress may lower the stability of NT systems, thus allowing an increase in pest species.

  12. Impact of conservation agriculture on harnessing sustainability and building resilience against land degradation in the northern Ethiopian highlands

    Science.gov (United States)

    Araya, Tesfay; Cornelis, Wim M.; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Nyssen, Jan

    2013-04-01

    Conservation Agriculture (CA) aims at improving soil quality and crop yield whilst reducing runoff and topsoil erosion which raises the soil resilience to combat soil degradation. Different chemical, physical, and biological properties of a soil interact in complex ways that determine the crop productivity potential of the soil. Hence, a medium-term tillage experiment was carried out (2005 to 2011) on a Vertisol to evaluate changes in soil quality, runoff and soil loss due to CA-based field conservation practices in northern Ethiopia. The experimental layout was implemented in a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were derdero+ (DER+) with a furrow and permanent raised bed planting system, plowed once at planting by refreshing the furrow and with 30% standing crop residue retention, terwah+ (TER+) with plowing once at planting with 30% standing crop residue retention and contour furrows made at 1.5 m distance interval, and conventional tillage (CT) with a minimum of three tillage operations and removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plow mahresha. Local crop rotation practices followed during the seven years sequentially from the first to the seventh year included wheat-teff-wheat-barley-wheat-teff-grass pea. Glyphosate was sprayed starting from the third year (2007) at 2 l ha-1 before planting to control pre-emergent weed in DER+ and TER+. Significantly different (pindex, consistency index, cone index, air capacity and macroporosity were shown to significantly increase in soils subjected to DER+ planting system compared to CT, specifically at 0-10 cm depth. Aggregate instability index, crack size at harvest, relative water capacity and plastic limit were significantly larger in CT compared to CA treatments. Adoption of improved local practices of DER+ and TER+ planting systems that employ conservation agriculture principles

  13. Tillage, fertilization systems and chemical attributes of a Paleudult

    Directory of Open Access Journals (Sweden)

    Evelyn Penedo Dorneles

    2015-02-01

    Full Text Available Tillage and fertilization methods may affect soil fertility. With the aim of assessing changes in soil chemical properties over a period of ten years, soil samples of a Paleudult were collected over nine seasons at three layer depths (0-5, 5-10, 10-20 cm and were chemically analyzed. Grain yield and nutrient export in two summer crops, soybean (Glycine max and corn (Zea mays, in a field experiment set in Eldorado do Sul, in the state of Rio Grande do Sul, Brazil, were determined. Three soil tillage systems were evaluated, conventional (CT, reduced (RT and no-tillage (NT, combined with mineral (lime and fertilizers and organic (poultry litter fertilization. The no-tillage system stood out as compared to the others, especially in the surface layer, in terms of values of organic matter, soil pH, available phosphorus, cation exchange capacity and base saturation. Phosphorus content was higher under organic than mineral fertilization due to the criteria used for the establishment of fertilizer doses. Under organic fertilization, soil pH values were similar to those obtained in limed soil samples because of the cumulative effect of the organic fertilizer. Soybean yield was lower under NT in comparison to the RT and CT systems. Consequently, soybean grain exported a lower content of nutrients than maize grain. Maize yield was not affected by either tillage or fertilization systems.

  14. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  15. New Concept of Cultivation Using Limited Strip-Tillage with Strip Shallow Irrigation

    Directory of Open Access Journals (Sweden)

    Yazid Ismi Intara

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE Dry land is one of land resources which potentially used for food crop cultivation, especially in the areas which have light to medium technical obstacles. The development of technology to improve soil quality in marginal lands to be productive lands is still widely open for agricultural development in Indonesia. Rooting medium quality can be improved by changing soil tillage method and observing the proper crop irrigation technology. It can be the solution for crop cultivation in clay loam soil. This study aimed to obtain water movement model in a minimally-tilled clay soil with strip shallow irrigation. The concept is limited soil-tillage with strip shallow irrigation method, water supply technique, and crop water requirement. Method used in this study includes developing water movement model (software development in a minimally-tilled clay soil with subsurface irrigation. In the final stages, research also conducted water movement analysis testing apparatus in the laboratory, field validation of the subsurface irrigation performance, and cultivation technique testing to chili pepper growth (Capsicum annuumL.. The development of water movement simulation on a limited strip-tillage with subsurface irrigation uses the concept to quantify the amount of water in the soil. The analysis of movement pattern was demonstrated on contour patterns. It showed that the wetting process can reach depth zone – 5 cm to the rooting zone. It was an important discovery on the development of minimum stripe tillage soil with subsurface irrigation. Specifically, it can be concluded that: the result of fitting by eyes to diffusivity graphic and water content obtained the required parameter values for soil physical properties. It was then simulated on horizontal water movement model on a minimum strip-tillage with strip shallow irrigation /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso

  16. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  17. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa)

    OpenAIRE

    Sarah Gegner-Kazmierczak; Harlene Hatterman-Valenti

    2016-01-01

    Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND), USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa) to eliminate the standard use of a barley (Hordeum vulgare) companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage) as the main plot and herbicide treatments (bromoxynil, DCPA...

  18. Effects of tillage systems on physical properties of a cohesive yellow argisol in the northern state of Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Valmir José Zuffo

    2013-10-01

    Full Text Available Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1 disk plow (twice + disk harrow + ridge-furrow tillage (raising a ridge along the planting row, 135 days after transplanting (DP + RID; 2 disk plow (twice + disk harrow (DP no RID; 3 subsoiler (SB; 4 disk plow (twice + disk harrow + scarification with three shanks along the plant row (DP + SPR; and 5 disk plow (twice + disk harrow + scarification with three shanks in the total area (DP + STA. In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD, geometric mean diameter (GMD, bulk density (BD, macroporosity (Ma, microporosity (Mi, and number of fruits per plant. There were differences in penetration resistance (PR between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m, improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD

  19. The effects of no-tillage practice on soil physical properties ...

    African Journals Online (AJOL)

    As a result of soil agitation, the soil aggregate rate under conventional tillage cropland was generally lower than that under the no-tillage practiced cropland. The studies of no-tillage on soil temperature and on crop yield also have conflicting results because of the absence of systemically long term monitoring, and there was ...

  20. Effect of different tillage practices and fertilizer on soil physical and ...

    African Journals Online (AJOL)

    The assessment of selected soil properties under different tillage practices and fertilizer in Imo State, Nigeria, was carried out at the Agro-Forestry centre, Umuokanne Ohaji-Egbema. The treatments consisted of fallow (control); zero tillage and manure (ZM); conventional tillage, fertilizer and manure (CFM); conventional ...

  1. Comparison of tillage systems for paddy rice in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    Nguyen, V.L.; Hoogmoed, W.B.; Perdok, U.D.

    2007-01-01

    In the Mekong delta of Vietnam, wetland rice is the main crop. The traditional rice cropping system with one crop per year changed to a system with two or three crops per year, and mechanised tillage replaced traditional tillage by water buffaloes. Currently, three tillage systems can be

  2. Influence of Tillage and Poultry Manure on the Physical Properties of ...

    African Journals Online (AJOL)

    User

    with split plot arrangement, keeping the tillage practices in the main plots; zero tillage (direct seed sowing with ... data trend regarding maize grain length was observed in 2011, with the longer grain in the tilled crop and ... fashion was in 2011, with the maximum area in the deep tillage sown crop (91. 30 mm2) statistically at ...

  3. Effect of tillage and poultry manure application on soil infiltration rate ...

    African Journals Online (AJOL)

    This study was carried out in Abeokuta, South-western Nigeria in 2008 and 2009 to assess the impact of tillage and poultry manure (PM) on soil infiltration rate and maize root growth. The experiment was a split-plot design with three replications. The main plot consisted of three tillage treatments: zero tillage (ZT), minimum ...

  4. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC, and its storage. The stratification ratio (SR can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L. and summer maize (Zea mays L. systems in the North China Plain (NCP. Three tillage treatments, including no till (NT, rotary tillage (RT, and plow tillage (PT, were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm but was higher under PT for the deeper soil (30-50 cm. Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001. Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  5. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    Science.gov (United States)

    Zhao, Xin; Xue, Jian-Fu; Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm) but was higher under PT for the deeper soil (30-50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (Pstorage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  6. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  7. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  8. Nitrogen gas emissions and nitrate leaching dynamics under different tillage practices based on data synthesis and process-based modeling

    Science.gov (United States)

    Huang, Y.; Ren, W.; Tao, B.; Zhu, X.

    2017-12-01

    Nitrogen losses from the agroecosystems have been of great concern to global changes due to the effects on global warming and water pollution in the form of nitrogen gas emissions (e.g., N2O) and mineral nitrogen leaching (e.g., NO3-), respectively. Conservation tillage, particularly no-tillage (NT), may enhance soil carbon sequestration, soil aggregation and moisture; therefore it has the potential of promoting N2O emissions and reducing NO3- leaching, comparing with conventional tillage (CT). However, associated processes are significantly affected by various factors, such as soil properties, climate, and crop types. How tillage management practices affect nitrogen transformations and fluxes is still far from clear, with inconsistent even opposite results from previous studies. To fill this knowledge gap, we quantitatively investigated gaseous and leaching nitrogen losses from NT and CT agroecosystems based on data synthesis and an improved process-based agroecosystem model. Our preliminary results suggest that NT management is more efficient in reducing NO3- leaching, and meanwhile it simultaneously increases N2O emissions by approximately 10% compared with CT. The effects of NT on N2O emissions and NO3- leaching are highly influenced by the placement of nitrogen fertilizer and are more pronounced in humid climate conditions. The effect of crop types is a less dominant factor in determining N2O and NO3- losses. Both our data synthesis and process-based modeling suggest that the enhanced carbon sequestration capacity from NT could be largely compromised by relevant NT-induced increases in N2O emissions. This study provides the comprehensive quantitative assessment of NT on the nitrogen emissions and leaching in agroecosystems. It provides scientific information for identifying proper management practices for ensuring food security and minimizing the adverse environmental impacts. The results also underscore the importance of suitable nitrogen management in the NT

  9. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis.

    Science.gov (United States)

    Briones, María Jesús I; Schmidt, Olaf

    2017-10-01

    The adoption of less intensive soil cultivation practices is expected to increase earthworm populations and their contributions to ecosystem functioning. However, conflicting results have been reported on the effects of tillage intensity on earthworm populations, attributed in narrative reviews to site-dependent differences in soil properties, climatic conditions and agronomic operations (e.g. fertilization, residue management and chemical crop protection). We present a quantitative review based on a global meta-analysis, using paired observations from 165 publications performed over 65 years (1950-2016) across 40 countries on five continents, to elucidate this long-standing unresolved issue. Results showed that disturbing the soil less (e.g. no-tillage and conservation agriculture [CA]) significantly increased earthworm abundance (mean increase of 137% and 127%, respectively) and biomass (196% and 101%, respectively) compared to when the soil is inverted by conventional ploughing. Earthworm population responses were more pronounced when the soil had been under reduced tillage (RT) for a long time (>10 years), in warm temperate zones with fine-textured soils, and in soils with higher clay contents (>35%) and low pH (earthworm population responses to RT. Additional meta-analyses confirmed that epigeic and, more importantly, the bigger-sized anecic earthworms were the most sensitive ecological groups to conventional tillage. In particular, the deep burrower Lumbricus terrestris exhibited the strongest positive response to RT, increasing in abundance by 124% more than the overall mean of all 13 species analysed individually. The restoration of these two important ecological groups of earthworms and their burrowing, feeding and casting activities under various forms of RT will ensure the provision of ecosystem functions such as soil structure maintenance and nutrient cycling by "nature's plough." © 2017 John Wiley & Sons Ltd.

  10. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels...... tracked soil at T1 (9 mm). We conclude that precise combination of operation and rotation speeds will result in optimum seedbed in terms of permeability and stability of soil structure....

  11. Comparison of energy of tillage systems in wheat production

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabaeefar, A.; Varnamkhasti, M. Ghasemi; Karimi, M. [Agricultural Machinery Engineering Department, Faculty of Biosystems Engineering, University of Tehran, Karaj (Iran); Emamzadeh, H. [Agricultural Machinery Engineering Department, Faculty of Agriculture, Islamic Azad University, Science and Research Campus, Tehran (Iran); Rahimizadeh, R. [Iranian Drylands Research Institute (Iran)

    2009-01-15

    Reducing tillage practices results in lower energy consumption as well as soil erosion protection, structural damage control, and a reduction in time and energy required for seedbed preparation. This research was conducted at the Dryland Agricultural Research Institute in Maragheh region of Iran to determine the amount of input energy for different tillage systems. The study was planned as a completely randomized block design with five tillage systems in four replications. The tillage treatments were: moldboard plow+roller+drill (T1); chisel+roller+drill (T2); cyclo-tiller+roller+drill (T3); sweep+roller+drill (T4); and no-till (T5). Wheat yield parameters and energy indices (net energy gain, energy productivity) were recorded. There were significant differences (1% probability level) among the treatments in terms of energy indices and for wheat yield and biomass values. It was found that T3 had the highest yield and biomass and T1 had the lowest. There were also significant differences (1% probability level) among tillage systems for the energy indices. T1 had the lowest energy productivity and energy ratios and T3 had the highest. The least energy consumed for wheat produced was 8.8 MJ kg{sup -1} for T5 and the most was 11.8 MJ kg{sup -1} for T1. Energy consumed for tillage using T1 was 32.5% of the total energy and using T5 was found to be 19% of total energy. It was concluded that T3 was the most efficient overall in the region studied. (author)

  12. Influence of crop rotation and tillage intensity on soil physical properties and functions

    Science.gov (United States)

    Krümmelbein, Julia

    2013-04-01

    Soil tillage intensity can vary concerning tillage depth, frequency, power input into the soil and degree of soil turn-over. Conventional tillage systems where a plough is regularly used to turn over the soil can be differentiated from reduced tillage systems without ploughing but with loosening the upper soil and no tillage systems. Between conventional tillage and no tillage is a wide range of more or less reduced tillage systems. In our case the different tillage intensities are not induced by different agricultural machinery or techniques, but result from varying crop rotations with more or less perennial crops and therefore lower or higher tillage frequency. Our experimental area constitutes of quite unstructured substrates, partly heavily compacted. The development of a functioning soil structure and accumulation of nutrients and organic matter are of high importance. Three different crop rotations induce varying tillage intensities and frequencies. The first crop rotation (Alfalfa monoculture) has only experienced seed bed preparation once and subsequently is wheeled once a year to cut and chaff the biomass. The second crop rotation contains perennial and annual crops and has therefore been tilled more often, while the third crop rotation consists only of annual crops with annual seedbed preparation. Our results show that reduced tillage intensity/frequency combined with the intense root growth of Alfalfa creates the most favourable soil physical state of the substrate compared to increased tillage and lower root growth intensity of the other crop rotations. Soil tillage disturbs soil structure development, especially when the substrate is mechanically unstable as in our case. For such problematic locations it is recommendable to reduce tillage intensity and/or frequency to allow the development of soil structure enhanced by root growth and thereby the accumulation of organic matter and nutrients within the rooting zone.

  13. Effect of cover crops on emergence and growth of carrot (Daucus carota L. in no-plow and traditional tillage

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2015-03-01

    Full Text Available The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: Secale cereale, Avena sativa, Vicia sativa, Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, and Helianthus annuus.  Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass

  14. Effect of Tillage Technology on Species Composition of Weeds in Monoculture of Maize

    OpenAIRE

    S. Chovancova; F. Illek; J. Winkler

    2014-01-01

    The effect of tillage technology of maize on intensity of weed infestation and weed species composition was observed at experimental field. Maize is grown consecutively since 2001. The experimental site is situated at an altitude of 230 m above sea level in the Czech Republic. Variants of tillage technology are CT: plowing – conventional tillage 0.22 m, MT: loosening – disc tillage on the depth of 0.1 – 0.12 m, NT: direct sowing – without tillage. The evaluation of weed infestation was carrie...

  15. Soy Culture in Minimum Tillage and the Influence on Soil Attributes, ARDS Turda, 2005-2014

    Directory of Open Access Journals (Sweden)

    Felicia Cheţan

    2016-11-01

    Full Text Available The system of agriculture conservative comes must halt this process of degradation and soil protection with carpets plant debris and intervention minimal on the ground shall be avoided the process of compaction erosion by increasing fertility. Excessive processing of agricultural land with mechanical equipment and primarily the work of basic-till that mobilizes soil in depth damage to a greater extent pests and diseases in the soil but it also has negative effect by losses mineralization weaker plant debris, breaking continuity capillarity and if an angry crowd on side slopes should be done after the line of the greatest slope will promote erosion. By applying minimum tillage system soil at ARDS Turda, is intended primarily to combat soil erosion, keeping the water in the soil, increasing fertility, protection of the environment.

  16. YIELD OF MAIZE (ZEA MAYS L. ON DIFFERENT SOIL TILLAGE VARIANTS

    Directory of Open Access Journals (Sweden)

    Danijel Jug

    2006-12-01

    Full Text Available Reduced tillage, as well as the most reduced tillage – No-till – every year are becoming more important in our region. Unfortunately, the areas under reduced tillage are still very small. In order to establish optimal system of reduced soil tillage, the experimental trials were set on Chernozem soil type in northern Baranja during three vege¬tation seasons (1998/1999-2000/2001 and five soil tillage systems: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 30-35 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, CH Chiseling and diskharrowing (chiseling at 30-35 cm and diskharrowing at 10-15 cm as primary tillage, PD One diskharro-wing pass (diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. The highest yields were recor¬ded at CT with three-year average of 9.29 t/ha, followed by CH with 8.37 t/ha, DH with 8.07 t/ha, PD with 6.99 t/ha, whereas the lowest yields were recorded at NT treatment, with three-year average of 5.94 t/ha. The highest profit was achieved at CT treatment (665,34 HRK/ha, followed by CH (189,24 HRK/ha, DH (77,20 HRK/ha, PD (-334,95 HRK/ha and NT (-459,81 HRK/ha.

  17. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    D. Jug

    2005-12-01

    Full Text Available The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth, together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage. Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.

  18. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas

    2015-04-01

    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been

  19. Study Modules for Calculus-Based General Physics. [Includes Modules 8-10: Conservation of Energy; Impulse and Momentum; and Rotational Motion].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  20. Fourth report on birds from the Cape Verde Islands, including notes on conservation and records of 11 taxa new to the archipelago

    NARCIS (Netherlands)

    Hazevoet, Cornelis J.

    1999-01-01

    Recent data on status and distribution of resident and migrant birds in the Cape Verde Islands are presented, including records of 11 taxa new to the archipelago, viz. Lesser Scaup Aythya affinis, White-tailed Tropicbird Phaethon lepturus, Great White Egret Casmerodius albus, Semipalmated Plover

  1. Notes on distribution, conservation, and taxonomy OF birds from the Cape Verde Islands, including records of six species new to the archipelago

    NARCIS (Netherlands)

    Hazevoet, Cornelis J.

    1997-01-01

    Recent data on the distribution of birds in the Cape Verde Islands are presented, including records of six species new to the archipelago, viz. Pintail Anas acuta, Least Sandpiper Calidris minutilla, Snipe Gallinago gallinago, Red-rumped Swallow Hirundo daurica, African Sand Martin Riparia

  2. [Effects of returning straw to soil and different tillage methods on paddy field soil fertility and microbial population].

    Science.gov (United States)

    Ren, Wan-Jun; Liu, Dai-Yin; Wu, Jin-Xiu; Wu, Ju-Xian; De, Chen-Chun; Yang, Wen-Yu

    2009-04-01

    A field experiment was conducted on a paddy field to study the effects of returning straw to soil and different tillage methods (no-tillage + returning straw, no-tillage, tillage + returning straw, and tillage) on the fertility level and microbial quantities of different soil layers. The results showed that in upper soil layer, the organic matter content in treatment 'no-tillage + returning straw' was 5.33, 2.79, and 5.37 g x kg(-1) higher than that in treatments 'no-tillage', 'tillage + returning straw', and 'tillage', respectively, and the contents of total and available N, P and K in treatment 'no-tillage + returning straw' were also the highest, followed by in treatments 'no-tillage' and 'tillage + returning straw', and in treatment 'tillage'. In deeper soil layer, all the fertility indices were higher in treatment 'tillage + returning straw'. Treatments of 'returning straw to soil' had the highest quantities of soil microbes. The quantities of bacteria, fungi, and actinomycetes in upper soil layer were the highest in treatment 'no-tillage + returning straw', and thus, the cellulose decomposition intensity in this treatment at maturity period was 26.44%, 79.01%, and 98. 15% higher than that in treatments 'tillage + returning straw', 'no-tillage', and 'tillage', respectively. In deeper soil layer, the quantities of bacteria, fungi, and actinomycetes were the highest in treatment 'tillage + returning straw'. Treatment 'no-tillage + returning straw' had the features of high fertility and abundant microbes in surface soil layer. The quantities of soil bacteria and actinomycetes and the decomposition intensity of soil cellulose were significantly positively correlated with soil fertility level.

  3. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  4. Low disturbance seeding suppresses weeds in no-tillage soyabean

    NARCIS (Netherlands)

    Theisen, Giovani; Bastiaans, L.

    2015-01-01

    Germination is a key process in the dynamics of weed populations. In no-tillage systems, crop seeding is often found to induce seed germination in the seeding strip. In this research, experiments to investigate options for reducing weed seedling establishment were conducted in no-till soyabean

  5. Economic assessment of tillage systems and weed control methods ...

    African Journals Online (AJOL)

    This study was conducted to appraise the economics of different land preparation systems and weed management options in maize cultivation in three ecological zones (Ikenne, Ibadan and Ilorin) of southwestern Nigeria. Four tillage systems as main treatments and six weed control methods as sub-treatments were ...

  6. Effect Of Tillage And Mulching Practices On Soil Properties And ...

    African Journals Online (AJOL)

    This paper reports the field evaluation of the effect of tillage [tilled (MT) and untilled, (NT)], mulching material [Panicum maximum (p) and Chromolaena odorata (c)] and mulching method [incorporated (b), surface (s) and no mulch (o)] on soil properties and growth and yield of cowpea (Vigna unquiculata) in 2000 and 2001 ...

  7. Phosphorus Uptake and Partitioning in Maize as Affected by Tillage ...

    African Journals Online (AJOL)

    Higher phosphorus concentrations were found in the ears than in the shoots and leaves at physiological maturity. Tillage x phospho-rus interactions influenced phosphorus partitioning in the ears and the leaves on the Dystric Cam-bisol but not on the Ferric Acrisol. PUE in the plant parts were significantly higher under ...

  8. The effect of tillage systems and mulching on soil microclimate ...

    African Journals Online (AJOL)

    This paper examines the effect of tillage systems and mulching on soil microclimatic conditions, growth and yield of yellow yam. To generate the needed data, the physiological approach was employed. An experimental farm that measured 35 x 47 m was established at Agbor, Delta State, Nigeria, for two planting seasons ...

  9. Effects of tillage and fertilizer application methods on the ...

    African Journals Online (AJOL)

    A field experiment was conducted at the Teaching and Research Farm of the University of Ibadan, Nigeria, in 2002 and 2003 cropping seasons to evaluate the effects of tillage, fertilizer application method, and the interaction between these two factors on the performance of maize. The experiment was laid out in a ...

  10. Predicting Suitable Field Workdays for Soil Tillage in North Central ...

    African Journals Online (AJOL)

    A simulation model was developed to predict suitable field workdays for tillage operations in North Central Nigeria. Predictions were made from a computer model which simulates daily soil moisture in the top 30 cm of soil depth using 6 years of daily meteorological records. The model was tested and validated by ...

  11. Effect of Winged Subsoiler and Traditional Tillage Integrated with ...

    African Journals Online (AJOL)

    Effect of Winged Subsoiler and Traditional Tillage Integrated with Fanya Juu on Selected Soil Physico-Chemical and Soil Water Properties in the Northwestern ... Soil evaporation was estimated by a conceptual model whereby leaf area index, canopy cover, crop root length, moisture at saturation and field capacity were ...

  12. Soil Tillage Systems and Wheat Yield under Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Pieranna Servadio

    2016-09-01

    Full Text Available In this study, the effects of three different main preparatory tillage operations: ploughing at 0.4 m (P40 and 0.20 m (P20 depth and harrowing at 0.20 m depth (MT were investigated. The tillage operations were carried out at two different times, as the soil water content increased over time from rainfall: (low, 58% (LH and high, 80% (HH of field capacity. Results obtained from the soil monitoring carried out before and after tillage showed high values of soil strength in terms of Penetration resistance and shear strength particularly in deeper soil layers at lower water content. During tillage, fossil-fuel energy requirements for P40 LH and P20 LH were 25% and 35% higher, respectively, with respect to the HH treatments and tractor slip was very high (P40 LH = 32.4% with respect to the P40 HH treatment (16%. Soil water content significantly influenced tractor performance during soil ploughing at 0.40 m depth but no effect was observed for the MT treatment. The highly significant linear relations between grain yield and soil penetration resistance highlight how soil strength may be good indicator of soil productivity. We conclude that ploughing soil to a 0.20 m depth or harrowing soil to a 0.20 m depth is suitable for this type of soil under climate change scenarios.

  13. Minimum tillage for cassava production in Khon Kaen Province, Thailand

    Directory of Open Access Journals (Sweden)

    Chindarat Chuenrung

    2003-05-01

    Full Text Available This research paper study on the comparison between no-tillage (NT and conventional tillage (CT incorporated with 3 levels of nitrogen fertilizer application rate (0, 50 and 100 kg N/ha on the fresh root yield of cassava (var. Rayong 72. The field trial has been established since 2000 on the Satuk soil series (fine loamy, silicious, Oxic Paleustults Khon Kaen, Thailand. Under no-tillage practices, the physical soil properties were improved compared to the conventional tillage system and the original soil properties at the start of the trial. The soil structure parameters such as total porosity, soil saturated hydraulic conductivity (Ksat increased in NT plot, whilst soil bulk density (ρb decreased compared to CT plot. Results indicated that the higher yield of fresh root of cassava was observed in the NT plot (P0.05. For the nitrogen application, the yield increased as nitrogen supply increased but the increment was not significant statistically (P>0.05.

  14. Effect of tillage, rhizobium inoculation in maize-soybean based ...

    African Journals Online (AJOL)

    Field experiment was conducted at Research Farm of Institute for Agricultural Research, Ahmadu Bello University, Samaru, Nigeria, to investigate the effect of tillage, rhizobium inoculation in maize-soybeanbased cropping systems and nitrogen fertilizer application on chemical fertility status of a savanna Alfisol. The study ...

  15. Effect of Tillage and Fertilizer Practices on Sorghum Production in ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor L. Moench) production is mainly constrained by soil water and nutrient deficits in northern Ethiopia. The aim of this research was to evaluate the effects of tillage and fertilizer practices on productivity of two sorghum varieties in Abergelle area, northern Ethiopia. The experimental design was ...

  16. Tillage and Fertilizer Effects on Maize Production in Northern ...

    African Journals Online (AJOL)

    Maize (Zea mays L.) is a major food crop in Ghana but grain yield is often constrained by low soil fertility and water deficits during grain fill. Response of maize to tillage and fertilizer treatments was evaluated in a field experiment from 2000 through 2002 on a sandy loam soil (Typic-plinthic Paleustalf) in Wa in the northern ...

  17. Soil workability as a basis for advice on tillage activities

    NARCIS (Netherlands)

    Cadena Zapata, M.

    1999-01-01

    In the tropical area of Mexico, when and how to carry out tillage is a qualitative decision. There is no quantified information about the interaction between a chosen process of cultivation, soil type and weather, which dictate the tool and power requirements. Waste of energy and soil

  18. Influence of Tillage and Mulch on Soil Physical Properties and ...

    African Journals Online (AJOL)

    User

    1Department of Agronomy, University College of Agriculture, University of Sargodha,. Pakistan. 2Department of ... fertile tillers, grain yield and water use efficiency were significantly higher in HS compared with other tillage treatments while root length ...... financially supported by Higher Education. Commission Islamabad ...

  19. Weed seed germination in winter cereals under contrasting tillage systems

    DEFF Research Database (Denmark)

    Scherner, Ananda

    2015-01-01

    Grass weeds and Gallium aparine are major weed problems in North European arable cropping systems with high proportions of winter crops, especially winter wheat (Clarke et al., 2000; Melander et al., 2008). Problems are accentuated where inverting tillage is omitted, as weed seeds tend to accumul...

  20. A comparative study on zero tillage with bulldozing as land ...

    African Journals Online (AJOL)

    A comparative study on zero tillage and bulldozing, as land preparations for oil palm seedling transplanted into the field was conducted at Ayip Eku Oil Palm Estate between 1993 and 1997. The experimental site was a five-year fallow land in which Panicum maximum (Guinea grass) and Centresoma pubescence were ...

  1. Tillage as a driver of change in weed communities

    NARCIS (Netherlands)

    Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; Kranzler, A.; Luik, A.; Mäder, P.; Peigné, J.; Stoll, E.; Delfosse, P.; Sukkel, W.; Surböck, A.; Westaway, S.; Sans, F.X.

    2016-01-01

    The adoption of non-inversion tillage practices has been widely promoted due to their potential benefits in reducing energy consumption and greenhouse emissions as well as improving soil fertility. However, the lack of soil inversion usually increases weed infestations and changes the composition

  2. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    are preferred. Otherwise no choice but to continue conventional tillage. The second objective is to assess the effects of the treatments (different tillage systems on the growth and size of the roots and to predict nutrient uptake by plants. Materials and Methods: This research was a field experiment during 2009-2010 in estates of Gorgan University of Agricultural Sciences and Natural Resources (Seyed Miran Area with 5 treatments and 4 replications which used completely randomized block design. Treatments were 5 tillage methods including moldboard-ploughing (20-25 cm depth followed by disking, rotivator (12-17 cm depth, disking (8-10 cm depth, chisel (25- 30 cm depth and no-tillage. Row spacing, distance between seeds in a rowand the amount of seeding was 20 cm 1.5 cm and 268.5 kg ha respectively (planting was done by hands. The consumption of fertilizers based on soil test results and the results reported by other researchers were added to the soil surface before planting (54. In all treatments, 350 kg per hectare of ammonium phosphate and 200 kg of potassium sulfate before planting and by hands were added. For treated moldboard,rotary cultivator, disc and chisel were used, and for no-tillage system by disc plow and sweep were used.Main parameters measured were soil mechanical resistance at 6 stages during wheat growth using a cone penetrometer (0-8 cm soil depth, soil potassium at two stages during plant growth (before heading and harvest using sodium tetraphenyl boron(12, ammonium acetate(28 and ammonium nitrate as extractents and using potassium surface excess(8 determination method and also bulk soil solution potassium concentration(2. Yield of wheat and its components were also determined at harvest. Data analysis include the analysis of variance and mean comparisons using LSD and correlations which carried out using SAS software. Results and Discussion: Results show there was a significant difference between treatments with respect to extractible soil potassium

  3. Diverse Cone-Snail Species Harbor Closely Related Streptomyces Species with Conserved Chemical and Genetic Profiles, Including Polycyclic Tetramic Acid Macrolactams

    Directory of Open Access Journals (Sweden)

    Michelle Quezada

    2017-11-01

    Full Text Available Streptomyces are Gram-positive bacteria that occupy diverse ecological niches including host-associations with animals and plants. Members of this genus are known for their overwhelming repertoire of natural products, which has been exploited for almost a century as a source of medicines and agrochemicals. Notwithstanding intense scientific and commercial interest in Streptomyces natural products, surprisingly little is known of the intra- and/or inter-species ecological roles played by these metabolites. In this report we describe the chemical structures, biological properties, and biosynthetic relationships between natural products produced by Streptomyces isolated from internal tissues of predatory Conus snails, collected from the Great Barrier Reef, Australia. Using chromatographic, spectroscopic and bioassays methodology, we demonstrate that Streptomyces isolated from five different Conus species produce identical chemical and antifungal profiles – comprising a suite of polycyclic tetramic acid macrolactams (PTMs. To investigate possible ecological (and evolutionary relationships we used genome analyses to reveal a close taxonomic relationship with other sponge-derived and free-living PTM producing Streptomyces (i.e., Streptomyces albus. In-depth phylogenomic analysis of PTM biosynthetic gene clusters indicated PTM structure diversity was governed by a small repertoire of genetic elements, including discrete gene acquisition events involving dehydrogenases. Overall, our study shows a Streptomyces-Conus ecological relationship that is concomitant with specific PTM chemical profiles. We provide an evolutionary framework to explain this relationship, driven by anti-fungal properties that protect Conus snails from fungal pathogens.

  4. ECONOMICS RESULTS OF WHEAT PRODUCTION BY DIFFERENT SOIL TILLAGE WAYS

    Directory of Open Access Journals (Sweden)

    J. Kanisek

    2001-06-01

    Full Text Available Wheat consumption in the world increases and its importers are some European countries too. The present price of wheat grain will make selling at the market difficult for manufactures from the Republic of Croatia. Conditions and results of four year organizational - economical investigations of conventional and four ways of reduced soil tillage at wheat production are displayed in this paper. Total of 9.35 hours/ha of machinery work and 114.3 l/ha of fuel are consumed at conventional soil tillage. Total costs are 1660 DM/ha. Price of grain is 276.71 DM/t and profit amounts to 187.83 DM/ha. If the soil tillage is done by a disk harrow costs of the machinery work reduce to 471.36 DM/ha and profitability amounts to 16.5%. When soil tillage is done by multitiller with classical sowing, a yield of 5.65 t/ha st price of 273.37 DM/t and investment profitability 12.7% are obtained. Direct sowing by a Rotosem, without previous tillage, requires 11.66 hours/ha of human work and 7.18 hours/ha of machinery work. to meet the total costs 4.9 t/ha of grains need. In order to get equipment, 98 t of grains from land of 17.5 ha should be given annually during the period of 8 years. Plughing and sowing by Rotosem give 5.9 t/ha grains at price of 279.36 DM/t. Total energy cost at conventional production is 30085 and at reduced one it is 27972 MJ/ha.

  5. Infiltration of surface mined land reclaimed by deep tillage treatments

    International Nuclear Information System (INIS)

    Chong, S.K.; Cowsert, P.

    1994-01-01

    Surface mining of coal leads to the drastic disturbance of soils. Compaction of replaced subsoil and topsoil resulting from hauling, grading, and leveling procedures produces a poor rooting medium for crop growth. Soil compaction results in high bulk density, low macroporosity, poor water infiltration capacity, and reduced elongation of plant roots. In the United States, Public Law 95-87 mandates that the rooting medium of mined soils have specific textural characteristics and be graded and shaped to a topography similar to premining conditions. Also, crop productivity levels equivalent to those prior to mining must be achieved, especially for prime farmland. Alleviation of compaction has been the major focus of reclamation, and recently new techniques to augment the rooting zone with deep-ripping and loosening equipment have come to the forefront. Several surface mine operators in the Illinois coal basin are using deep tillage equipment that is capable of loosening soils to greater depths than is possible with conventional farm tillage equipment. Information on the beneficial effects of these loosening procedures on soil hydrological properties, such as infiltration, runoff potential, erosion, and water retention, is extremely important for future mined land management. However, such information is lacking. In view of the current yield demonstration regulation for prime farmland and other unmined soils, it is important that as much information as possible be obtained concerning the effect of deep tillage on soil hydrologic properties. The objectives of this study are: (1) to compare infiltration rates and related soil physical properties of mined soils reclaimed by various deep tillage treatments and (2) to study the temporal variability of infiltration and related physical properties of the reclaimed mined soil after deep tillage treatment

  6. Effect of no-tillage and tillage on the ecology of mite, Acarina (Oribatida) in two different farming systems of paddy field in Cachar district of Assam.

    Science.gov (United States)

    Singh, Leimapokpam Amarjit; Ray, D C

    2015-01-01

    The present investigation was carried out in Cachar district of Assam over a period of one year (January 2011 - December 2011) to understand the seasonal ecology of Acarina (Oribatida) in rice (Oryza sativa L.) cultivated fields. Population of Oribatida was found to be maximum during August 2011, both in no-tillage (6.32 ± 0.66 No./m2 x 100(2)) and tillage (5.30 ± 0.71 No./M2 x 100(2)) sites in Dorgakona area whereas the peak was recorded during August 2011, both in no-tillage (5.38 ± 0.75 No./m(2) x 100(2)) and tillage (4.69 ± 0.77 No./m2 x 100(2)) in Durby area of study sites. Least population was encountered during January 2011, in both no-tillage (0.98 ± 0.28 ± No./m2 x 100(2)) and tillage (0.98 ± 0.30 No/m2 x 100(2)) sites in Dorgakona area whereas the same was found during November 2011 in no-tillage (0.57 ± 0.31 No.m/2 x 100(2)) and in February 2011 in tillage (0.45 ± 0.21 No./m2 x 100(2)) sites of Durby area. Linear regression analysis with all the environmental variables showed positive and significant influence on the population dynamics whereas relative humidity (R2 = 0.26 p > 0.05) in Dorgakona no-tillage and tillage (R2 = 0.19 P > 0.05) sites and relative humidity in tillage site (R2 = 0.27 P > 0.05) in Durby area showed no influence. Multiple regression analysis showed that the combined effect of climatic variables having a significant influence (p < 0.05) on the oribatid mite population in no-tillage and tillage systems in both the study sites. Rainfall, relative humidity and temperature facilitated the soil moisture, microbial activity and litter decomposition, which in turn may favour the reproduction and growth rate of the species. Among microclimatic conditions all the parameters showed positive and significant influence (P < 0.05) on the population in no-tillage and tillage system on both the sites except pH which showed negative correlation with the population. One way ANOVA revealed significant difference (F = 6.53, P < 0.01) of the

  7. Dynamics of soil carbon, nitrogen and soil respiration in farmer’s field with conservation agriculture Siem Reap, Cambodia

    Science.gov (United States)

    The years of intensive tillage in many countries, including Cambodia, have caused significant decline in agriculture’s natural resources that could threaten the future of agricultural production and sustainability worldwide. Long-term tillage system and site-specific crop management can affect chang...

  8. 3D Structure of Tillage Soils

    Science.gov (United States)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and

  9. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa

    Directory of Open Access Journals (Sweden)

    Sarah Gegner-Kazmierczak

    2016-03-01

    Full Text Available Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND, USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa to eliminate the standard use of a barley (Hordeum vulgare companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage as the main plot and herbicide treatments (bromoxynil, DCPA, oxyfluorfen, and pendimethalin as sub-plots. Neither tillage nor herbicide treatments affected onion stand counts. Common lambsquarters (Chenopodium album densities were lower in strip tillage compared to conventional tillage up to three weeks after the post-emergence applied herbicides. In general, micro-rate post-emergence herbicide treatments provided greater early-season broadleaf weed control than pre-emergence herbicide treatments. Onion yield and grade did not differ among herbicide treatments because the mid-season herbicide application provided sufficient control/suppression of the early-season weed escapes that these initial weed escapes did not impact onion yield or bulb diameter. In 2007, onion in the strip tillage treatment were larger in diameter resulting in greater total and marketable yields compared to conventional tillage. Marketable onion yield was 82.1 Mg ha−1 in strip tillage and 64.9 Mg ha−1 in conventional tillage. Results indicate that strip tillage use in direct-seeded onion production was beneficial, especially when growing conditions were conducive to higher yields and that the use of strip tillage in onion may provide an alternative to using a companion crop as it did not interfere with either early-season weed management system.

  10. Long-term effect of tillage and manure application on soil organic fractions and crop performance under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Sédogo, M.; Stroosnijder, L.; Ouattara, K.; Brussaard, L.; Vanlauwe, B.

    2005-01-01

    Human-induced degradation of natural resources in general and of soil in particular, is a major problem in many regions, including the Sudano-Sahelian zone. The combined effects of tillage and manure application on Lixisol properties and on crop performance were investigated at Saria, Burkina Faso,

  11. Predicting soil workability and fragmentation in tillage: a review

    DEFF Research Database (Denmark)

    Obour, Peter Bilson; Lamandé, Mathieu; Edwards, Gareth T. C.

    2017-01-01

    . A reliable evaluation of soil workability implies a distinctive definition of the critical water content (wet and dry limits) for tillage. In this review, we provide a comprehensive assessment of the methods for determining soil workability, and the effects of soil properties and tillage systems on soil...... workability and fragmentation. The strengths and limitations of the different methods for evaluating the water content for soil workability, such as the plastic limit, soil water retention curve (SWRC), standard Proctor compaction test, field assessment, moisture-pressure-volume diagram, air permeability...... and drop-shatter tests are discussed. Our review reveals that there is limited information on the dry limit and the range of water content for soil workability for different textured soils. We identify the need for further research to evaluate soil workability on undisturbed soils using a combination...

  12. Tillage and residue burning affects weed populations and seed banks.

    Science.gov (United States)

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898

  13. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  14. Reduced tillage and green manures for sustainable cropping systems - Overview of the TILMAN-ORG project

    OpenAIRE

    Mäder, Paul

    2013-01-01

    Reduced tillage and green manures are environmentally friendly practices that increase levels of soil organic matter and biological activity, improve soil stability, and reduce fuel consumption and may mitigate the climate impact of crop production. The avoidance of deep ploughing is successfully practiced as no-tillage agriculture in conventional farming systems. However, these no-tillage systems rely on herbicides for weed control and mineral fertilisers for plant nutrients. As these inputs...

  15. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    OpenAIRE

    D. Jug; Mihaela Blažinkov; S. Redžepović; Irena Jug; B. Stipešević

    2005-01-01

    The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth), together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage). Accordingly, the main goal of this resear...

  16. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...... depths, pore characteristics did not differ significantly among tillage treatments. At the 12- to 16-cm depth, negative effects of reduced tillage (D and H) were recorded for total porosity and air-filled porosity at −10 kPa (that is, >30-μm pores). Generally, the use of a cover crop increased air......-filled porosity at −10 kPa, air permeability, and pore organization and reduced the value of blocked air porosity at all depths for all tillage treatments. Our results show that the cover crop created continuous macropores and in this way improved the conditions for water and gas transport and root growth...

  17. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  18. Economic and energy assessment of minimalized soil tillage methods in maize cultivation

    OpenAIRE

    Piotr Szulc; Andrzej Dubas

    2014-01-01

    Grain yield of maize cultivated in the years 1997-2009 in monoculture and with annual tillage simplifications was assessed in energy and economy terms. Effects of no-tillage system and direct sowing (D) with cultivation with autumn deep (A) and shallow (B) ploughing and cultivation with spring pre-sowing ploughing (C) were compared. It was demonstrated that the 13-year maize grain yield in no-tillage system and direct sowing was lower by 10.4% than the yield obtained in conventional tillage s...

  19. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria.

    Science.gov (United States)

    Ehigiator, O A; Anyata, B U

    2011-11-01

    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Conservation endocrinology

    Science.gov (United States)

    McCormick, Stephen; Romero, L. Michael

    2017-01-01

    Endocrinologists can make significant contributions to conservation biology by helping to understand the mechanisms by which organisms cope with changing environments. Field endocrine techniques have advanced rapidly in recent years and can provide substantial information on the growth, stress, and reproductive status of individual animals, thereby providing insight into current and future responses of populations to changes in the environment. Environmental stressors and reproductive status can be detected nonlethally by measuring a number of endocrine-related endpoints, including steroids in plasma, living and nonliving tissue, urine, and feces. Information on the environmental or endocrine requirements of individual species for normal growth, development, and reproduction will provide critical information for species and ecosystem conservation. For many taxa, basic information on endocrinology is lacking, and advances in conservation endocrinology will require approaches that are both “basic” and “applied” and include integration of laboratory and field approaches.

  1. CHOICES OF SOIL CONSERVATION METHODS ON KWAZULU-NATAL COMMERCIAL SUGARCANE FARMS

    OpenAIRE

    Ferrer, Stuart R.D.; Nieuwoudt, W. Lieb

    1998-01-01

    A Principal components analysis and multiple regression techniques are used to analyse heterogeneity in 53 KwaZulu-Natal sugarcane farmers soil conservation decisions. Minimum tillage and construction of water carrying terraces are the most common methods used, whereas trash mulching is least commonly practised. Results indicate that farmers' demands for soil conservation, their demands for other attributes of soil conservation practices and interactions between practices are important to exp...

  2. Micro and macroscopic investigation to quantify tillage impact on soil hydrodynamic behaviour

    Science.gov (United States)

    Beckers, E.; Roisin, C.; Plougonven, E.; Deraedt, D.; Léonard, A.; Degré, A.

    2012-04-01

    Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil structure, but consequent changes in soil hydrodynamic behaviour at the field scale are still not well understood. Many studies focus only on macroscopic measurements which do not provide mechanistic explanations. Moreover, research shows divergent conclusions over structure modification. The aim of this work is to fill this gap by quantifying soil structure modification depending on tillage intensity through both macroscopic and microscopic measurements, the latter improving our comprehension of the fundamental mechanisms involved. Our experiment takes place in Gentinnes (Walloon Brabant, Belgium), on a field organized in a Latin square scheme. Since 2004, plots have been cultivated in conventional tillage (CT) or in reduced tillage (RT). The latter consists in sowing after stubble ploughing of about 10cm. The crop rotation is sugar beet followed by winter wheat. The soil is mainly composed of silt loam and can be classified as a Luvisol. Macroscopic investigations consist in establishing pF and K(h) curves and 3D soil strength profiles. At the microscale, 3D morphologic parameters are measured using X-ray microtomography. Because of the variation of working depth between management practices (10cm for RT vs. 25cm for CT), two horizons were investigated: H1 between 0-10cm and H2 between 12-25cm. 3D soil strength profiles were established thanks to a fully automated penetrometer (30° angle cone with a base area of 10mm2) which covered a 160 × 80cm2 area with 5cm spacing between neighbouring points. At each node, penetration was performed and soil strength measurements were collected every 1cm from 5 to 55cm depth. K(h) curves were provided by 20cm diameter tension-infiltrometer measurements (Eijkelkamp Agrisearch Equipment). Undisturbed soil samples were removed from

  3. PORE SIZE DISTRIBUTION AND SOIL HYDRO PHYSICAL PROPERTIES UNDER DIFFERENT TILLAGE PRACTICES AND COVER CROPS IN A TYPIC HAPLUSULT IN NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2017-05-01

    Full Text Available Tillage practices influence soil physical, chemical and biological qualities which in-turn alters plant growth and crop yield. In the Northern Guinea Savanna (NGS ecological zone of Nigeria, agricultural production is mainly constrained by low soil nutrient and water holding capacity, it is therefore, imperative to develop appropriate management practices that will give optimal soil hydro-physical properties for proper plant growth, effective soil and water management and environmental conservation. This study investigated the effect of three tillage practices (no till, reduced till and conventional till and four cover crops (Centrosema pascuorum, Macrotyloma uniflorum, Cucurbita maxima and Glyine max and a bare/control (no cover crop on some soil physical properties of a Typic Haplusult during the rainy seasons of 2011, 2012 and 2013 in Samaru, NGS ecological zone of Nigeria. The field trials were laid out in a split plot arrangement with tillage practices in the main plots and cover crops in the subplots, all treatments were replicated three times. Auger and core soil samples were collected at the end of each cropping season each year in three replicates from each treatment plot at four depths (0-5, 5-10, 10-15 and 15-20 cm. Particle size distribution, bulk density, total pore volume and water retention at various soil matric potentials were determined using standard methods. Data obtained were compared with optimum values and fitted into a RETC computer code for quantifying soil hydraulic behavior and physical quality. Results showed that different tillage practices had varied effect on soil physical properties. No-till had the highest water holding capacity at most suction points evaluated, it had 4.3 % and 12.9 % more soil moisture than the reduced till  and conventionally tilled systems across all matric potentials while Centrosema pascuorum (3.1% and Cucurbita maxima (5.5% were best among evaluated cover crops in retaining soil moisture

  4. Eficácia do herbicida acetochlor na semeadura direta e convencional com ou sem palha e os efeitos sobre o rendimento do milho Acetochlor herbicide efficacy on tillage and no-tillage systems on straw mulch presence or absence and effect on corn yield

    Directory of Open Access Journals (Sweden)

    Miguel Vicente Weiss Ferri

    2004-04-01

    Full Text Available O experimento foi conduzido na Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul, ano agrícola de 2000/2001, com o objetivo de avaliar a eficácia de controle das plantas daninhas com o herbicida acetochlor em Argissolo Vermelho, conduzido sob semeadura direta e preparo convencional, na presença ou ausência de palha. O delineamento experimental utilizado foi blocos casualizados com quatro repetições. Os tratamentos constaram de acetochlor nas doses de 0, 1680, 3360 e 5040g ha-1, aplicado em solo sob semeadura direta e preparo convencional, na presença (4,5t ha-1 ou ausência de palha de aveia. Foram avaliados o controle das plantas daninhas, além da altura de plantas e rendimento de grãos de milho. O acetochlor foi mais eficiente para o controle das plantas daninhas no preparo convencional, comparado à semeadura direta. A palha reduziu a eficácia de controle pelo acetochlor. A altura das plantas de milho foi maior na semeadura direta. O rendimento de grãos de milho foi maior no preparo convencional e na presença da palha devido ao melhor controle das plantas daninhas.An experiment was carried out at Federal University at Rio Grande do Sul, with the objective of avaluating herbicide acetochlor efficacy on conventional tillage and no-till soils. The soil is classified as at Paleudult. The following treatments were tested: acetochlor at 0, 1680, 3360 and 5040g ha-1, applied on tillage and no-tillage systems on oat straw mulch presence (4,5t ha-1 and absence. Assessements included crop injury, weed control at 15, 30 and 45 days after herbicide application, and corn crop yeld. The weed control with acetochlor herbicide was more efficient on tillage than on no-tillage system. Straw mulch reduced acetochlor herbicide weed control. Corn plant height was higher on no-tillage than on tillage systems, indicating lower herbicide activity on the first. Corn yield was higher on tillage system and straw mulch presence, due to

  5. Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques?

    Science.gov (United States)

    Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.

    2018-03-01

    Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost

  6. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  7. Geomorphological characterization of conservation agriculture

    Science.gov (United States)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to

  8. [Conservation Units.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  9. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian oxisol under no-tillage and tillage systems

    NARCIS (Netherlands)

    Roscoe, R.; Vasconcellos, C.A.; Furtini Neto, A.E.; Guedes, G.A.A.; Fernandes, L.A.

    2000-01-01

    We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage

  10. Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List

    Directory of Open Access Journals (Sweden)

    Maria V. Gavrilo

    2017-05-01

    Full Text Available The Russian Arctic National Park is a marine Protected Area playing a significant role in conservation of rare and protected endemic species of the Arctic fauna and flora, included in the IUCN Red List and/or in the Red Data Book of the Russian Federation. The Russian Arctic National Park is considered to be: (1 the major ground for the reproduction of the Atlantic walrus stock inhabiting the north-eastern Kara-Barents Sea Region; (2 the key area maintaining the globally threatened Svalbard population of the bowhead whale; (3 the principal denning grounds of the Barents Sea sub-population of the polar bear in Russia; (4 important summer feeding grounds of the beluga whale; (5 the key breeding ground of the ivory gull in the European Arctic; (6 the only proved breeding grounds of the light-bellied brent goose in Russia. The major efforts in studying rare species in the Russian Arctic National Park are aimed at the monitoring and research on the ivory gull, Atlantic walrus and the polar bear. These studies are performed both by the scientists and staff of the National Park and by specialists working in other scientific institutes. The data on the other species are obtained occasionally. Here, we state the major threat for the rare marine species and define the activities of high priority for further conservation, monitoring and research.

  11. Spatial 2D distribution of the proportion of soil phosphorus uptake by maize and soybean caused by tillage and fertilization

    Science.gov (United States)

    Li, Haixiao; Mollier, Alain; Ziadi, Noura; Messiga, Aimé Jean; Parent, Leon-Étienne; Morel, Christian

    2017-04-01

    Plant-available soil phosphorus (P) accumulates primarily in the topsoil due to P fertilization and P released from crop residues. In contrast with conventional tillage (moldboard plough, MP), conservation tillage [e.g. no-till, (NT)] often leads to higher P concentrations in the topsoil mainly due to the absence of mixing between soil, fertilizer, and crop residues. Our objective was to estimate the proportion of P uptake from a given soil mass across the soil profile under maize and soybean as the product of root surface density proportions and local plant-available soil P. This study was conducted on a long-term field experiment initiated in 1992 in southern Quebec, Canada, and established on a clay-loam soil under MP and NT systems. The experiment was factorially treated with three P doses (0, 17.5 and 35 kg P ha-1 applied as triple superphosphate on maize at 5 cm depth and at 5 cm on one side of the crop row). Soil was sampled at flowering stage at five depths (0-5, 5-10, 10-20, 20-30 and 30-40 cm) and three horizontal distances perpendicular to the crop row (5, 15 and 25 cm) in 2014 and 2015 to map a grid soil P availability to plants, e.g. phosphate ion concentrations in solution and the time-dependent amount of phosphate ions that can equilibrate- solution by diffusion, root distribution, and consequently crop P uptake, which was calculated as the fraction of plant-available soil P intercepted by surface roots. In general, NT tended to have higher soil P status in the upper soil layer and lower soil P status in the deeper soil layer compared to MP ; confirming previous results obtained from the same experimental site. This variation along the soil profile was significantly affected by sampling distance to crop row with higher concentration observed at 5-cm distance mainly because of the placement of P fertilizers. The 2D distribution of P uptake depended on tillage practice and P fertilization. There was higher proportions of P uptake from the 0-10 and 0

  12. Tillage and residue effects on rainfed wheat and corn production in the Semi-Arid Regions of Northern China

    NARCIS (Netherlands)

    Wang, X.B.; Hoogmoed, W.B.; Perdok, U.D.; Cai, D.X.

    2003-01-01

    Field studies on tillage and residue management for spring corn were conducted at two sites, in Tunliu (1987-1990), and Shouyang (1992-1995) counties of Shanxi province in the semihumid arid regions of northern China. This paper discusses the effects of different fall tillage (winter fallow tillage)

  13. Disentangling the Effects of Tillage Timing and Weather on Weed Community Assembly

    Directory of Open Access Journals (Sweden)

    Stéphane Cordeau

    2017-08-01

    Full Text Available The effect of tillage timing on weed community assembly was assessed at four locations in the Northeastern United States by tilling the soil every two weeks from April to September and quantifying the emerged weed community six weeks after each tillage event. Variance partitioning analysis was used to test the relative importance of tillage timing and weather on weed community assembly (106 weed species. At a regional scale, site (75.5% of the explained inertia—and to a lesser extent, timing—of tillage (18.3%, along with weather (18.1%, shaped weed communities. At a local scale, the timing of tillage explained approximately 50% of the weed community variability. The effect of tillage timing, after partitioning out the effect of weather variables, remained significant at all locations. Weather conditions, mainly growing degree days, but also precipitation occurring before tillage, were important factors and could improve our ability to predict the impact of tillage timing on weed community assemblages. Our findings illustrate the role of disturbance timing on weed communities, and can be used to improve the timing of weed control practices and to maximize their efficacy.

  14. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    Science.gov (United States)

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  15. Tillage effects on selected properties of an ultisol and adaptability of ...

    African Journals Online (AJOL)

    Tillage experiment was conducted for two years (2006-2007) to monitor the effect of selected soil physicochemical properties of an ultisol and adaptability of direct seeded upland rice in Abakaliki. The experiment was established in a randomized complete block design (RCBD). The tillage methods investigated were two ...

  16. Soil tillage, water erosion, and calcium, magnesium and organic carbon losses

    Directory of Open Access Journals (Sweden)

    Bertol Ildegardis

    2005-01-01

    Full Text Available Soil tillage influences water erosion, and consequently, losses of calcium, magnesium and organic carbon in surface runoff. Nutrients and organic carbon are transported by surface runoff in particulate form, adsorbed to soil colloids or soluble in water, depending on the soil tillage system. This study was carried out on an Inceptisol, representative of the Santa Catarina highlands, southern Brazil, between November 1999 and October 2001, under natural rainfall. The soil tillage treatments (no replications were: no-tillage (NT, minimum soil tillage with chiseling + disking (MT, and conventional soil tillage with plowing + two diskings (CT. The crop cycles sequence was soybean (Glycine max, oats (Avena sativa, beans (Phaseolus vulgaris and vetch (Vicia sativa. Conventional soil tillage treatment with plowing + two disking in the absence of crops (BS was also studied. Calcium and magnesium concentrations were determined in both water and sediments of the surface runoff, while organic carbon was measured only in sediments. Calcium and magnesium concentrations were greater in sediments than in surface runoff, while total losses of these elements were greater in surface runoff than in sediments. The greatest calcium and magnesium concentrations in surface runoff were obtained under CT, while in sediments the greatest concentration occurred under MT. Organic carbon concentration in sediments did not differ under the different soil tillage systems, and the greatest total loss was under CT system.

  17. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  18. Fertilizer placement and tillage effects on phosphorus leaching in fine-textured soils

    Science.gov (United States)

    Adoption of no-tillage in agricultural watersheds has resulted in substantial reductions in sediment and particulate phosphorus (P) delivery to surface waters. No-tillage, however, may result in increased losses of dissolved P in tile-drained landscapes due to the accumulation of P in surface soil l...

  19. Tillage and planting date effects on weed dormancy, emergence, and early growth in organic corn

    Science.gov (United States)

    Weed management is a major constraint to adoption of reduced-tillage practices for organic grain production. Tillage, cover crop management, and crop planting date are all factors that influence the periodicity and growth potential of important weed species in these systems. Therefore, we assessed...

  20. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori

    2011-02-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  1. Bird use of agricultural fields under reduced and conventional tillage in the Texas Panhandle

    Science.gov (United States)

    Flickinger, Edward L.; Pendleton, G.W.

    1994-01-01

    We conducted bird surveys in reduced-tillage and conventional tillage fields in spring, summer, fall, and winter from 1987 to 1991 in the Texas Panhandle. Eastern meadowlarks, longspurs, and savannah sparrows were more common in reduced-tillage (sorghum and wheat stubble) fields than in conventionally tilled (plowed) fields in at least 1 season. Other species also had patterns suggestive of greater abundance in reduced-tillage fields. Hornedlarks, which prefer habitat with sparse vegetation, were more abundant in plowed fields in all seasons except summer. Bird diversity was greater in reduced-tillage fields than in conventionally tilled fields in summer. Cover density and height were greater in reduced tillage fields in all seasons except spring. Cover density and height rather than cover composition (e.g.,grain stubble or live plants) seemed to be the important factors affecting bird distribution. Patterns of bird abundance between sorghum and wheat stubble fields also were dependent on cover. Herbicide use was not greater in reduced-tillage fields than in conventionally tilled fields. Reduced-tillage agriculture for sorghum and wheat farming should be encouraged in the southern Great Plains as a means of improving the attractiveness of agricultural land to many bird species.

  2. Nutrient cycling and soil biology in row crop systems under intensive tillage

    Science.gov (United States)

    Recent interest in management of the soil biological component to improve soil health requires a better understanding on how management practices (e.g., tillage) and environmental conditions influence soil organisms. Intensive tillage often results in reduced organic matter content in the surface so...

  3. Effect of deep vs. shallow tillage on onion stunting and onion bulb yield, 2012

    Science.gov (United States)

    A field experiment was conducted at a site inoculated with R. solani AG 8 at the Oregon State University Hermiston Agricultural Research and Extension Center in Hermiston, OR to determine the effect of plowing (deep tillage) vs. rototilling (shallow tillage) on onion stunting caused by R. solani AG ...

  4. Effect Of Depth Of Tillage On Soil Physical Conditions, Growth And ...

    African Journals Online (AJOL)

    Penetrometer values were 54, 66, 74 and 78 % significantly higher on 10, 20, 30 and 40cm tillage depth plots than the untilled plots. The gravimetric moisture content was 20, 33, and 43 % significantly higher in the zero than the 20, 30, and 40 cm tillage depths respectively. Tilling the soil significantly increased crop growth ...

  5. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks

    NARCIS (Netherlands)

    Cooper, Julia; Baranski, Marcin; Stewart, Gavin; Nobel-de Lange, Majimcha; Bàrberi, Paolo; Fließbach, Andreas; Peigné, Josephine; Berner, Alfred; Brock, Christopher; Casagrande, Marion; Crowley, Oliver; David, Christophe; Vliegher, De Alex; Döring, Thomas F.; Dupont, Aurélien; Entz, Martin; Grosse, Meike; Haase, Thorsten; Halde, Caroline; Hammerl, Verena; Huiting, Hilfred; Leithold, Günter; Messmer, Monika; Schloter, Michael; Sukkel, Wijnand; Heijden, van der Marcel G.A.; Willekens, Koen; Wittwer, Raphaël; Mäder, Paul

    2016-01-01

    Reduced tillage is increasingly promoted to improve sustainability and productivity of agricultural systems. Nonetheless, adoption of reduced tillage by organic farmers has been slow due to concerns about nutrient supply, soil structure, and weeds that may limit yields. Here, we compiled the

  6. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  7. Effect of tillage on earthworms over short- and medium-term in conventional and organic farming

    NARCIS (Netherlands)

    Crittenden, S.; Eswaramurthy, T.; Goede, de R.G.M.; Brussaard, L.; Pulleman, M.M.

    2014-01-01

    Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time

  8. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    investigated after 9-15 years of management. During the growing ... Key words: Tillage, Tillage systems, Soil Physical properties, Moisture storage, Physical quality ... channel. GPS etrex, courtesy GARMIN Corporation 1999-. 2002) was used in determining coordinates of the sites. Treatments and Experimental Design.

  9. Relationship between tillage intensity and initial growth of loblolly pine seedlings

    Science.gov (United States)

    M. Chad Lincoln; Rodney E. Will; Emily A. Carter; John R. Britt; Lawrence A. Morris

    2006-01-01

    To determine the relationship between changes in soil attributes associated with differing tillage intensities and growth of loblolly pine seedlings, we measured soil moisture, nitrogen (N) availability, and soil strength across a range of tillage treatments on an Orangeburg soil series near Cuthbert, GA (four replications). We then correlated these measurements to the...

  10. Effects of strip and full-width tillage on soil carbon IV oxide-carbon ...

    African Journals Online (AJOL)

    ... determine the effects of strip tillage and full-width tillage treatments on soil carbon IV oxide-carbon (CO2-C) fluxes, bacterial and fungal populations in growing period of sunflower (Helianthus annus). A row-crop rotary hoe with C type blades was used to create three strip widths by changing the connection of blades of the ...

  11. Rationally Managed Pastures Stock More Carbon than No-Tillage Fields

    Directory of Open Access Journals (Sweden)

    Hizumi L. S. Seó

    2017-12-01

    Full Text Available A significant share of Greenhouse Gases (GHG produced from agriculture comes from cattle farming. The reduction in GHG emissions from ruminants fed with grains has led some researchers to recommend such a diet as a means of mitigating emissions in the sector. A more accurate balance of emissions, however, must include the carbon (C stocked by feed crops. Within the grain production system, no-tillage (NT cultivation systems have a greater capacity to increase and store soil organic carbon (SOC. Within grazing management systems, the rotation used in Voisin's Rational Grazing (VRG allows the accumulation of SOC through root growth. The objective of this study was to assess the C stock of pasture under VRG and compare soil C stock between VRG pasture and fields under no-tillage management, in two seasons over a period of 1 year. The study included five dairy farms in Santa Catarina State, Brazil. In each property, we collected soil to quantify SOC from VRG pasture and NT fields, in summer and winter. In the pasture, to determine the total stock, we also collected samples from the aerial parts of plants and the roots. Further, we estimated how efficient would be producing milk from those pastures or from those crops. The VRG pasture showed a greater capacity to stock C in the soil than the no-tillage fields (VRG = 115.0 Mg C ha−1; NT = 92.5 Mg C ha−1; p < 0.00009, with the greatest difference at a depth of 0–10 cm (VRG = 41 Mg C ha−1; NT = 32 Mg C ha−1; p < 0.00008. In VRG, 95% of C was in the soil, 1% in the aerial part of plants, and 4% in the roots. On pasture was produced 0.15 kg of milk.kg−1 of C stored, and on NT system 0.13 kg of milk.kg−1 of C stored. In this study, we conclude that independent of season, the soil in well managed pastures had a greater stock of C, produced more milk and produced more milk.kg−1 of stored C than fields under NT management. Therefore, when comparing GHG emissions of ruminants with different

  12. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduced...... tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programmes based on integrated pest management (IPM) principles. Conventional non-inversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption...... is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  13. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy

    DEFF Research Database (Denmark)

    Mutegi, James; Munkholm, Lars Juhl; Petersen, Bjørn Molt

    2010-01-01

      Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage...... (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (-Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT......, respectively, relative to N2O emissions from CT plots (P tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P 

  14. Effects of ridge tillage on photosynthesis and root characters of rice

    Directory of Open Access Journals (Sweden)

    Yao Yuan-zhi

    2015-03-01

    Full Text Available Rice (Oryza sativa L. is an important crop and breeding has not been able to improve yield. Root characteristics of hybrid rice 'Zhuliangyou 02' under conventional tillage and ridge tillage were studied in a Calcisols in Huaihua, China, from 2011 to 2013 to find better tillage methods to resolve massive water consumption, improve yield, and enhance productivity of agricultural labor for rice cultivation. Results showed ridge tillage increased photosynthetic parameters such as photosynthetic rate (P N, stomatal conductance (g s, and water use efficiency (WUE. It also significantly enhanced rice root number, root activity, and antioxidant enzyme activities; it also increased effective panicle number and actual yield by 22.12% and 15.18%, respectively, and enhanced aerenchymae during the early growth stage. Overall, ridge tillage could promote hybrid rice yields by enhancing root absorption, gas exchange, and reducing water consumption. It could be widely used in rice cultivation.

  15. Effects of tillage practice on soil structure, N2O emissions and economics in cereal production under current socio-economic conditions in central Bosnia and Herzegovina.

    Science.gov (United States)

    Žurovec, Ognjen; Sitaula, Bishal Kumar; Čustović, Hamid; Žurovec, Jasminka; Dörsch, Peter

    2017-01-01

    Conservation tillage is expected to have a positive effect on soil physical properties, soil Carbon (C) storage, while reducing fuel, labour and machinery costs. However, reduced tillage could increase soil nitrous oxide (N2O) emissions and offset the expected gains from increased C sequestration. To date, conservation tillage is barely practiced or studied in Bosnia and Herzegovina (BH). Here, we report a field study on the short-term effects of reduced (RT) and no tillage (NT) on N2O emission dynamics, yield-scaled N2O emissions, soil structure and the economics of cereal production, as compared with conventional tillage (CT). The field experiment was conducted in the Sarajevo region on a clayey loam under typical climatic conditions for humid, continental BH. N2O emissions were monitored in a Maize-Barley rotation over two cropping seasons. Soil structure was studied at the end of the second season. In the much wetter 2014, N2O emission were in the order of CT > RT > NT, while in the drier 2015, the order was RT > CT > NT. The emission factors were within or slightly above the uncertainty range of the IPCC Tier 1 factor, if taking account for the N input from the cover crop (alfalfa) preceding the first experimental year. Saturated soils in spring, formation of soil crusts and occasional droughts adversely affected yields, particularly in the second year (barley). In 2014, yield-scaled N2O emissions ranged from 83.2 to 161.7 g N Mg-1 grain (corn) but were much greater in the second year due to crop failure (barley). RT had the smallest yield-scaled N2O emission in both years. NT resulted in economically inacceptable returns, due to the increased costs of weed control and low yields in both years. The reduced number of operations in RT reduced production costs and generated positive net returns. Therefore, RT could potentially provide agronomic and environmental benefits in crop production in BH.

  16. Effects of different tillage systems and amendments on root properties

    Science.gov (United States)

    Gao, Mengyu; Yan, Yang; Li, Na; Luo, Peiyu; Yang, Jinfeng

    2017-06-01

    The object of this study was to investigate the effect of different tillage systems and amendments on root properties. There were five treatments: maize continuous cropping, maize and peanuts rotation, peanuts continuous cropping, peanuts continuous cropping with low level of amendment and peanuts continuous cropping with high level of amendment. The results showed that maize continuous cropping increased total root length by 118.95%, projected area by 204.86%, projected area by 150.70%, total root volume by 20.66%, and average root diameter by184.53%. The amendments also improved root properties and the high level of amendment had much more better effect.

  17. Comparison of Polygonum aviculare L. seedling survival under different tillage systems in Mediterranean dryland agroecosystems

    Science.gov (United States)

    Verdú, Antoni M. C.; Teresa Mas, M.

    2004-03-01

    Weed community shifts in agroecosystems are influenced by multiple factors. Among them, tillage and crop rotation are very important. Polygonum aviculare survival at early plant stages and biomass and density at harvest time were compared under three tillage systems (conventional, CT; minimum, MT; and no tillage, NT). Field studies were conducted from 1997-1998 to 2000-2001, during a crop rotation (pea-wheat-wheat-barley). The layout of the tillage systems was not randomized, which led to confusion between the tillage effect and the site effect, although all three tillage systems were implemented as of 1993-1994 and the same agricultural practices had been employed in the entire field between 1981-1982 and 1992-1993. Seedling mortality was analysed in two monitored cohorts (2000 and 2001) using a generalized linear model of binomial probability distribution with a complementary log-log link function. Analyses of variance considering tillage system (or site) and block were performed on: (1) aboveground biomass at the harvest time of the four crops; (2) density and mean plant biomass at the end of the first two crops; (3) seedling density registered twice during the 1998-1999 campaign. The expected changes to estimated mortality showed that seedlings under NT had greater probabilities of failure than those growing under the other two tillage systems. These differences were found considering the tillage system apart from the crop and the accumulated precipitation effects, which also strongly affects seedling survival. Density, 1999-2000 biomass and 2000-2001 biomass were different under different tillage systems ( P density occurring under NT and the lowest values of biomass under MT. Mean seedling densities were similar between CT and MT, but both were higher than densities under NT.

  18. Earthworm activity and soil structural changes under conservation agriculture in central Mexico

    NARCIS (Netherlands)

    Castellanos Navarrete, A.; Rodriguez-Aragonés, C.; Goede, de R.G.M.; Kooistra, M.J.; Sayre, K.D.; Brussaard, L.; Pulleman, M.M.

    2012-01-01

    Crop residue mulching combined with zero tillage and crop rotation, known as conservation agriculture (CA), is being promoted as an alternative system to revert soil degradation in maize-based farming in the central highlands of Mexico. The goal of this paper was to determine the effects of CA vs.

  19. Soil variability and effectiveness of soil and water conservation in the Sahel.

    NARCIS (Netherlands)

    Hien, F.G.; Rietkerk, M.; Stroosnijder, L.

    1997-01-01

    Sahelian sylvopastoral lands often degrade into bare and crusted areas where regeneration of soil and vegetation is impossible in the short term unless soil and water conservation measures are implemented. Five combinations of tillage with and without mulch on three crust type/soil type combinations

  20. Vibration analysis on driver’s seat of agricultural tractors during tillage tests

    Energy Technology Data Exchange (ETDEWEB)

    Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.

    2016-07-01

    The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.

  1. The impact of different soil tillage on weed infestation of spring barley in conditions of dryer climatic areas Czech Republic

    OpenAIRE

    Jan Winkler

    2008-01-01

    The impact of soil tillage on weeds in spring barley was observed on the field trial. The field trial was established in very warm and dry climatic region (experimental field station in Žabčice, Mendel University of Agriculture and Forestry Brno, Czech Republic). In the experiment there was used 7-strip crop rotation and three variants of soil tillage: conventional tillage (CT), minimum tillage (MT), when soil is shallow loosened and no tillage (NT) what means direct sowing without any soil t...

  2. Effet des pratiques de conservation du sol sur la croissance et les ...

    African Journals Online (AJOL)

    Eight treatments were concerned in the trial as followed: Direct sowing, Minimum tillage, Tillage, Conventional tillage, Direct sowing + Mulch on surface, Minimum tillage + Mulch on surface, Tillage + Mulch on surface, Conventional tillage + Mulch on surface. Results indicated that tillage significantly affected the agronomic ...

  3. Towards Conservation Agriculture systems in Moldova

    Directory of Open Access Journals (Sweden)

    Boris Boincean

    2016-10-01

    Full Text Available As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding, maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping s involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.

  4. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  5. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    Directory of Open Access Journals (Sweden)

    Florine Degrune

    2017-06-01

    Full Text Available Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum below the seedbed (15–20 cm. Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional

  6. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes.

    Science.gov (United States)

    Degrune, Florine; Theodorakopoulos, Nicolas; Colinet, Gilles; Hiel, Marie-Pierre; Bodson, Bernard; Taminiau, Bernard; Daube, Georges; Vandenbol, Micheline; Hartmann, Martin

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas

  7. Measurement of soil water content using TDR and the neutron probe in tillage experiments in semi-arid SW Spain

    International Nuclear Information System (INIS)

    Moreno, F.; Pelegrin, F.; Fernandez, J.E.; Murillo, J.M.

    2000-01-01

    Some examples of soil water content measurements using Time Domain Reflectrometry (TDR) and the neutron probe are presented in this paper. The data are from experiments on water recharge and water conservation in the soil profile under different tillage methods. TDR is a useful technique with which to follow changes of soil water content in the top soil layers. Under sunflower, measurements showed differences in soil water content within and between the plant rows. Measurements with the neutron probe showed changes of soil water content profile down to a depth of 2 m. Soil water profile recharge and water depletion by the sunflower crop were established from measurements with both techniques. The combined use of TDR and neutron probe is very appropriate to establish the soil water balance in such experiments. (author)

  8. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    NARCIS (Netherlands)

    Rusinamhodzi, L.; Corbeels, M.; Wijk, van M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E.

    2011-01-01

    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize

  9. The impact of different soil tillage on weed infestation of spring barley in conditions of dryer climatic areas Czech Republic

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2008-01-01

    Full Text Available The impact of soil tillage on weeds in spring barley was observed on the field trial. The field trial was established in very warm and dry climatic region (experimental field station in Žabčice, Mendel University of Agriculture and Forestry Brno, Czech Republic. In the experiment there was used 7-strip crop rotation and three variants of soil tillage: conventional tillage (CT, minimum tillage (MT, when soil is shallow loosened and no tillage (NT what means direct sowing without any soil tillage. The weed infestation was evaluated by counting method before herbicide application. Analysis of va­rian­ce (ANOVA and then LSD methods, DCA (Detrended Correspondence Analysis and CCA (Canonical Correspondence Analysis were used for evaluation of results. The obtained results showed, that different soil tillage did not statistically influenced weed infestation in spring barley. The number of weed species depended on the depth of soil tillage, the variant of minimum tillage had lower number of weed species. These species were more common on the variant of conventional tillage: Chenopodium album, Silene noctiflora, Sinapis arvensis, Veronica polita. The variant of minimum tillage was more suitable for these species: Cirsium arvense, Convolvulus arvensis, Amaranthus sp., Galium aparine. On the variant of direct so­wing there appeared mainly these species: Sonchus oleraceus, Lactuca serriola, Tripleurospermum inodorum.

  10. Effect of tillage systems and permanent groundcover intercropped with orange trees on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-04-01

    Full Text Available The objective of this study was to evaluate the effect of different soil tillage systems and groundcover crops intercropped with orange trees on soil enzyme activities. The experiment was performed in an Ultisol soil in northwestern Paraná State. Two soil tillage systems were evaluated [conventional tillage (CT across the entire area and strip tillage (ST with a 2-m strip width] in combination with various groundcover vegetation management systems. Soil samples were collected after five years of experimental management at a depth of 0-15 cm under the tree canopy and in the inter-row space in the following treatments: (1 CT-Calopogonium mucunoides; (2 CT-Arachis pintoi; (3 CT-Bahiagrass; (4 CT-Brachiaria humidicola; and (5 ST-B. humidicola. The soil tillage systems and groundcover crops influenced the soil enzyme activities both under the tree canopy and in the inter-row space. The cultivation of B. humidicola provided higher amylase, arylsulfatase, acid phosphatase and alkaline phosphatase than other groundcover species. Strip tillage increased enzyme activities compared to the conventional tillage system.

  11. Tillage-induced short-term soil organic matter turnover and respiration

    Science.gov (United States)

    Fiedler, Sebastian Rainer; Leinweber, Peter; Jurasinski, Gerald; Eckhardt, Kai-Uwe; Glatzel, Stephan

    2016-09-01

    Tillage induces decomposition and mineralisation of soil organic matter (SOM) by the disruption of macroaggregates and may increase soil CO2 efflux by respiration, but these processes are not well understood at the molecular level. We sampled three treatments (mineral fertiliser: MF; biogas digestate: BD; unfertilised control: CL) of a Stagnic Luvisol a few hours before and directly after tillage as well as 4 days later from a harvested maize field in northern Germany and investigated these samples by means of pyrolysis-field ionisation mass spectrometry (Py-FIMS) and hot-water extraction. Before tillage, the Py-FIMS mass spectra revealed differences in relative ion intensities of MF and CL compared to BD most likely attributable to the cattle manure used for the biogas feedstock and to relative enrichments during anaerobic fermentation. After tillage, the CO2 effluxes were increased in all treatments, but this increase was less pronounced in BD. We explain this by restricted availability of readily biodegradable carbon compounds and possibly an inhibitory effect of sterols from digestates. Significant changes in SOM composition were observed following tillage. In particular, lignin decomposition and increased proportions of N-containing compounds were detected in BD. In MF, lipid proportions increased at the expense of ammonia, ammonium, carbohydrates and peptides, indicating enhanced microbial activity. SOM composition in CL was unaffected by tillage. Our analyses provide strong evidence for significant short-term SOM changes due to tillage in fertilised soils.

  12. Impact of tillage erosion on water erosion in a hilly landscape.

    Science.gov (United States)

    Wang, Y; Zhang, J H; Zhang, Z H; Jia, L Z

    2016-05-01

    Little has been known of the interaction between tillage erosion and water erosion, while the two erosion processes was independently studied. Can tillage-induced soil redistribution lead to exaggerated (or retarded) runoff flow and sediment concentrations in steeply sloping fields? A series of simulated tillage and artificial rainfall events were applied to rectangular runoff plots (2m×8m) with a slope of 15° to examine the impacts of tillage erosion intensities on water erosion in the Yangtze Three Gorges Reservoir Area, China. Mean flow velocity, effective/critical shear stress, and soil erodibility factor K were calculated to analyze the differences in hydrodynamic characteristics induced by tillage. Our experimental results suggest that mean runoff rates were 2.26, 1.19, and 0.65Lmin(-1) and that mean soil detachment rates were 1.53, 1.01, and 0.61gm(-2)min(-1) during the 70-min simulated rainfall events for 52-, 31-, and 10-year tillage, respectively. A significant difference (Pwater losses tended to increase with increasing tillage intensity. A significant difference in mean flow velocity occurred near the upper and lower slope boundaries of the field, while significant differences (Perosion increases soil erodibility and delivers the soil for water erosion in sloping fields, accelerating water erosion. Copyright © 2016. Published by Elsevier B.V.

  13. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  14. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Directory of Open Access Journals (Sweden)

    Judith A Odhiambo

    Full Text Available Weed competition is a significant problem in maize (Zea mays, L. production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L. during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT, no-till (NT and conventional (CT applied to three cropping systems: continuous maize/bean intercropping (TYPICAL, maize/bean intercropping with relayed mucuna after bean harvest (RELAY and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP. Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1 in MT and $149.60 ha(-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  15. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Science.gov (United States)

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  16. Tillage erosion and its effect on soil properties and crop yield in Denmark.

    Science.gov (United States)

    Heckrath, G; Djurhuus, J; Quine, T A; Van Oost, K; Govers, G; Zhang, Y

    2005-01-01

    Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.

  17. Evolution of soil and water conservation in rain-fed areas of China

    Directory of Open Access Journals (Sweden)

    Li Lingling

    2014-03-01

    Modern research on conservation tillage (No Till, although essential for reducing erosion, increasing crop productivity, and ameliorating poverty, is just beginning in China. Modern conservation tillage research started in the1990s' with support from Australia and other countries. The procedures, however, were modified to be in accord with local conditions and prevailing farmer experiences. With 10 years of experimentation, results show that the most successful conservation practice on the Western Loess Plateau is no till with stubble retention. This technique helps to conserve soil water, increases soil organic carbon, improves soil structure and water infiltration, reduces soil and water erosion, and improves crop productivity and sustainability of rain-fed farming systems. However, its adoption rate remains low due to barriers such as traditional attitude, insufficient rural extension, and so forth.

  18. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields.

    Science.gov (United States)

    Tu, Chun; Li, Fadong

    2017-04-01

    Understanding the effects of warming on greenhouse gas (GHG, such as N 2 O, CH 4 and CO 2 ) feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain (NCP). An infrared warming simulation experiment was used to assess the responses of N 2 O, CH 4 and CO 2 to warming in wheat season of 2012-2014 from conventional tillage (CT) and no-tillage (NT) systems. The results showed that warming increased cumulative N 2 O emission by 7.7% in CT but decreased it by 9.7% in NT fields (pwarming effects on GHG fluxes in two wheat seasons. However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N 2 O and CO 2 emission in warmed treatments. In contrast, warming during this time increased CH 4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential (SGWP) of N 2 O and CH 4 expressed as CO 2 equivalent in CT and NT fields, respectively. However, increase in soil CO 2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP. Copyright © 2016. Published by Elsevier B.V.

  19. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  20. On-farm tillage trials for rice-wheat cropping system in Indo-Gangetic plains of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Prasad, L.K.; Prasad, S.S.; Bhupendra Singh; Singh, S.R.; Gaunt, J.L.

    2002-05-01

    Demonstration plots of deep summer ploughing (DSP) with rice followed by wheat and other winter crops and fields of zero tilled wheat have been established and monitored at head, middle and tail sections of RP distributory Channel - 5 of Patna Canal during kharif (wet) and rabi (winter) seasons of 2001 and 2002, respectively at four different villages. The DSP plots were large (6 acres, 2.42 ha) in each village enabling farmers and researchers to see and assess a new practice at a farming scale. Zero tillage of wheat has involved a total of 181 farmers and total area of 50.4 ha. The plots were not only monitored but also information from farmers on how they view the ploughing/tillage practices was gathered. This information indicates that farmers are assessing the practices from a range of view points relative to their usual practices including land preparation and sowing costs, quality of crop establishment, weed growth and species composition, pest and disease incidence. Main findings are that DSP does not significantly only alter the yield of rice, wheat, lentil and gram and but also reduces the weed burden. Participatory budgeting indicated cost savings for land preparation and crop management costs. Over 60 percent of farmers in a total sample of 86 farmers had a positive reaction to practice during wet season. Similarly farmers recognized cost savings and potential yield gains (due to early and good crop establishment) in zero tilled wheat. After the harvest of winter crops like wheat, lentil and gram in May 2002, farmers dropped their reservation about DSP and there was a change in their attitude from reluctance to partial agreement and now they are ready for tillage operations on self-payment. For both practices, there are some limitations in respect of availability of implements and suitable tractor couplings. Findings indicate that if tractor owners perceive a demand, they would take steps to offer these new practices as land preparation services. (author)

  1. Spatial Distribution of Soil Fauna In Long Term No Tillage

    Science.gov (United States)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial

  2. Soil tillage, rice straw and flooded irrigated rice yield

    Directory of Open Access Journals (Sweden)

    Amauri Nelson Beutler

    2014-06-01

    Full Text Available The objective of this study was evaluate the effect of management systems and straw in flooded irrigated rice yield. The experimental design was a completely randomized with three experiments and, 10 replications in experiment 1 and 2 and, 6 replications in experiment 3. The experiments were: E1 – no-till system (E1PD and conventional system with two harrowings at 0.0–0.07 m layer and leveling with remaplam (E1PC, after three years of sowing rice, after fallow of rice tillage, with sowing of rye grass in winter and grazing; E2 – no-till system (E2PD and conventional system after native field (E2PC; E3 – no-till without straw on soil surface (E30P, current straw on soil surface of 3,726 kg ha-1 (E31P, two times current straw of 7,452 kg ha-1 (E32P and three times current straw of 11,178 kg ha-1 (E33P. In soil, were evaluated the average geometric diameter of aggregates, soil bulk density, soil porosity, macro and microporosity, in 0.0-0.05 and 0.05-0.10 m layer. In harvest were evaluated the panicles number in 0,25 m2 area, number of filled, empty an total grains in 10 panicles, mass of one thousand seeds and rice grains yield in 2 m2. The conventional system presented greater macroporosity and total porosity, compared with no-till system, however, does not result in differences in production components and rice grains yield. Soil tillage in no-till, with rice straw on soil surface up to 11,178 kg ha-1, before sowing, not reduces flooded irrigated rice grains yield.

  3. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    to the soil quality estimates. We found significant effect of both rotation and tillage on visual soil structure at both times of assessment. Poor soil structure was found for NT except when combined with a diverse crop rotation (R6). The soil core pore characteristics data also displayed a significant effect...... of tillage but only a weak insignificant effect of rotation. The drop shatter results were in accordance with the visual assessment data. Crop yield correlated significantly with the visual soil structure scores. We conclude that a diverse crop rotation was needed for an optimal performance of NT......Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old...

  4. Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique

    Science.gov (United States)

    Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem

    2018-03-01

    Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.

  5. Changes in the fertility of a leached chernozem under different primary tillage technologies

    Science.gov (United States)

    Korolev, V. A.; Gromovik, A. I.; Borontov, O. K.

    2016-01-01

    Changes in the fertility of a leached chernozem under different tillage technologies (moldboard, non-inversive, and combined tillage) were studied in a multifactor stationary field experiment established in 1985 in Voronezh oblast on a low-humus medium-deep light clayey leached chernozem. The nine-field rotation of cereals and sugar beet was practiced. It was found that the major parameters of soil fertility—the content and qualitative composition of humus and the physicochemical and physical properties of the chernozem—remained relatively stable independently from the applied primary tillage technologies. However, taking into account economic characteristics (crop yields, production costs, energy expenses, etc.), the combined tillage system proved to be most efficient. It can be recommended for cereals-sugar beet rotation systems in the central chernozemic region, as it ensures the highest efficiency of crop growing and preserves the fertility of leached chernozems.

  6. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  7. Peanut residue carbon and nitrogen mineralization under simulated conventional and conservation tillage

    Science.gov (United States)

    Residue management is an important aspect of crop production systems. Availability of plant residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Cooperative Extension currently recommends 22-67 kg N ha-1 credit to subsequent crops following peanut (Ar...

  8. Conservation tillage of rainfed maize in semi-arid Zimbabwe: A review

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2015-01-01

    Food security in Sub-Saharan Africa, particularly in semi-arid tropics (41% of the region; 6 months of dry season) is threatened by droughts, dry spells and infertile soils. In Zimbabwe, 74% of smallholder farming areas are located in semi-arid areas mostly in areas with soils of low fertility and

  9. A Case for Conservation Tillage Research in the Arid Zones of Nigeria

    African Journals Online (AJOL)

    Discovery and Innovation. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 1 (1998) >. Log in or Register to get access to full text downloads.

  10. Effects of Conservation Tillage Practices on the Crop Yields in the Lake Erie Basin.

    Science.gov (United States)

    1981-12-01

    stand. This combination makes obtaining a stand of no-till soybeans a fairly simple matter. Since soybeans are leguminous , they require no nitrogen ...weed control failures and loss of nitrogen in a few no-till plots. However, chisel plowing compared favorably to moldboard plowing. Corn yields in...mediocre yields, since they were the factors over which the project managers had least control. Use of urea-based nitrogen fertilizers can cause yield

  11. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems

    Science.gov (United States)

    Fangueiro, David; Becerra, Daniel; Albarrán, Ángel; Peña, David; Sanchez-Llerena, Javier; Rato-Nunes, José Manuel; López-Piñeiro, Antonio

    2017-02-01

    Paddy rice fields are an important source of greenhouse gases (GHG), especially methane. In the present work, we assessed the impact on GHG emissions of two main parameters of rice production: aerobic rice production was compared with traditional flooded rice production and conventional tillage (CT) was compared with short-term and long-term no-tillage (NT) management. A field experiment was performed over three years and the GHG emissions were measured during each year. Five treatments (3 replicates) were considered: NTS7: no-tillage over seven years and sprinkler irrigation; NTS: no-tillage and sprinkler irrigation; CTS: conventional tillage and sprinkler irrigation; NTF: no-tillage and flooding; CTF: conventional tillage and flooding. The use of sprinkler irrigation rather than flooding led to decreases in nitrous oxide and methane emissions of ∼40% and more than 99%, respectively, over the 3-year experiment. The use of sprinkler irrigation compared with flooded irrigation reduced the global warming potential (GWP) about 40% and 36% in no-tillage and conventional tillage treatments, respectively. Treatment NTF decreased CH4 emissions, relative to CTF, by ∼60% over three years but the effect of NT on N2O emissions was not clear: a decrease or no effect was mostly observed in the NT treatments, relative to CT. A decrease of ∼40% in the total GHG emissions was observed in the NT treatments, relative to CT. No or small differences between NTS and NTS7 in terms of gaseous emissions were found. The short-term no-tillage and sprinkler irrigated treatment (NTS) gave lower yields than CTF in 2011 and 2012, but reached similar yields in the third year (NTS 8229 kg ha-1;CTF 8926 kg ha-1), with average savings of 75% of the total amount of water applied in CTF. The NTS7 data showed that high yields (reaching 9805 kg ha-1 in 2012) and water savings are sustainable in the long term. Considering the yield-scaled GWP of the emissions, NT gave a decrease of up to 42

  12. ANALYSING THE SOIL STRUCTURE UNDER DIFFERENT TILLAGE SYSTEMS USING X-RAY MICROTOMOGRAPHY AND PF CURVES

    OpenAIRE

    Beekkerk van Ruth, Jöran; Degre, Aurore; Aubinet, Marc; Roisin, Christian; Léonard, Angélique; Beckers, Eléonore

    2011-01-01

    Assessing soil structure is primordial when comparing tillage systems. Whilst most conventional techniques characterize global parameters, X-ray microtomography allows a characterization of the poral space at a µm-scale. These results, combined with data from pF curves, can form a solid basis in order to quantify soil physical fertility. Soil samples were taken from the organic topsoil on two Belgian experimental sites implementing both conventional tillage (CT, ploughing) and simplified ...

  13. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

  14. Water Infiltration and Moisture in Soils under Conservation and Conventional Agriculture in Agro-Ecological Zone IIa, Zambia

    Directory of Open Access Journals (Sweden)

    Kjell B. Esser

    2017-06-01

    Full Text Available Conservation agriculture is often presented as being ‘climate smart’ due to anticipated increases in soil moisture. The extent of enhanced water availability in farmers’ fields is, however, poorly documented. This paper presents five data sets describing soil moisture in fields of small-scale conservation and conventional farmers in the Agro-ecological Zone IIa, Zambia. The data include (1 soil cover; (2 time required for visible soil surface saturation, ponding and initial runoff under artificial rainfall; (3 saturated water infiltration rates; (4 weekly soil moisture at six soil depths for two entire rain seasons; and (5 weekly rainfall in each field. Measurements were done for 15 pairs of comparable fields under conservation and conventional agriculture. Pairwise analysis showed significantly shorter time for surface saturation, ponding, and runoff in conservation fields compared to conventional fields. Saturated infiltration rates in riplines and basins of conservation fields were similar to rates in ploughed/hoed fields. Infiltration rates between riplines and between basins were 31–37% lower than those in ploughed/hoed fields. Soil moisture in riplines and basins of conservation fields was higher by an average factor of 1.08 down to 40 cm soil depth, whereas it was lower by an average factor of 0.89 between plant rows compared to fields under conventional tillage. Based on 34,000 soil moisture measurements from 0 to 60 cm depth over two seasons, soils in conservation fields contained a weighted average of 18.2% (vol. water compared to 19.9% (vol. in conventional fields (p < 0.05. The results indicate that small-scale adopters of conservation agriculture are less ‘climate smart’ than conventional farmers in terms of water infiltration and soil moisture.

  15. The role of conservation agriculture in sustainable agriculture.

    Science.gov (United States)

    Hobbs, Peter R; Sayre, Ken; Gupta, Raj

    2008-02-12

    The paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till, NT) and permanent soil cover (mulch) combined with rotations, as a more sustainable cultivation system for the future. Cultivation and tillage play an important role in agriculture. The benefits of tillage in agriculture are explored before introducing conservation tillage (CT), a practice that was borne out of the American dust bowl of the 1930s. The paper then describes the benefits of CA, a suggested improvement on CT, where NT, mulch and rotations significantly improve soil properties and other biotic factors. The paper concludes that CA is a more sustainable and environmentally friendly management system for cultivating crops. Case studies from the rice-wheat areas of the Indo-Gangetic Plains of South Asia and the irrigated maize-wheat systems of Northwest Mexico are used to describe how CA practices have been used in these two environments to raise production sustainably and profitably. Benefits in terms of greenhouse gas emissions and their effect on global warming are also discussed. The paper concludes that agriculture in the next decade will have to sustainably produce more food from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. Promoting and adopting CA management systems can help meet this goal.

  16. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  17. Effect of various tillage practices on soil properties and maize growth

    International Nuclear Information System (INIS)

    Leghari, N.

    2016-01-01

    Appropriate tillage practices are vital for good tilth that is pre-requisite for aggregate formation, soil aeration, better root development and plant growth. A field experiment of maize was carried out at the experimental site of Sindh Agriculture University Tandojam during two consecutive growing seasons 2009 and 2010. A randomized complete block design with three treatment conventional tillage (CT), reduced tillage (RT) and no tillage (NT) was used in the study. Significant differences between tillage treatments were observed in the soil properties, growth and root development of plants. The NT treatment retained higher soil water contents (15.8 and 16.0%) measured at 0-20 cm depth during 2009 and 2010, respectively. Likewise, the soil bulk density (1.4 and 1.4 cm-3) was higher at this depth consequently; it resulted in greater soil strength (81 N m-2 and 79 N m-2) during 2009 and 2010, respectively. The negative and significant correlations were recorded between root dry weight and soil strengths. On the other hand, positive and significant relationship of root dry weight with mean total dry matter production and LAI was observed. Moreover, the root development related observations were significantly enhanced under CT as compared to RT and NT treatments. The results indicate that conventional tillage improve maize growth and root development by improving soil properties. (author)

  18. Integrating high residue cover crops and weed control options for resistant weeds threatening conservation agriculture and water resources

    Science.gov (United States)

    Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. When consistently practiced as a soil and crop management system, it greatly reduces soil erosion and is recognized for the potential to improve soil quality and plant water avai...

  19. 78 FR 51139 - Notice of Proposed Changes to the National Handbook of Conservation Practices for the Natural...

    Science.gov (United States)

    2013-08-20

    ... revised the purpose to: Reduce soil particulate emissions to the air to reduce soil particulate emissions.... Deep Tillage (Code 324)--The agency deleted the purpose to reduce concentration of soil contaminants.... Livestock Shelter Structure (Code 576)--The agency created this new conservation practice standard which...

  20. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    Science.gov (United States)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  1. Re-plant problems in long-term no-tillage cropping systems : causal analysis and mitigation strategies

    OpenAIRE

    Afzal

    2016-01-01

    No-tillage is considered as a promising alternative for tillage-based conventional farming, by saving energy-input and time, reducing groundwater pollution and counteracting soil erosion and losses of the soil-organic matter. However, in the recent past, no-tillage farmers in Southwest Germany repeatedly reported problems particularly in winter wheat production, characterized by stunted plant growth in early spring, chlorosis, impaired fine root development and increased disease susceptibilit...

  2. Evaluation of Different Tillage Practices for Monocultural Cowpea (Vigna unguiculata (L.) Walp) Production in Ibadan, South Western Nigeria

    OpenAIRE

    Ndaeyo, NU.; Aiyelari, EA.

    1997-01-01

    A two-season (rainy and dry) study was conducted in 1993 at the Teaching and Research Farm, University of Ibadan, Nigeria to assess the most productive tillage practice for monocultural cowpea (Vigna unguiculata (L.) Walp) production. Completely randomised block design with four replications was used and tillage treatments were : No till-Slash and Burn (NSB), No till-Herbicide applied (NH), Conventional-ploughed and harrowed (CT), and Minimum-ploughed only (MT). Results revealed that tillage ...

  3. Long term effects of different tillage systems influencing yield and energy efficiency in maize (Zea mays L.)

    OpenAIRE

    Momirović, Nebojša; Dolijanović, Željko; Oljača, Mićo V.; Videnović, Živorad

    2011-01-01

    Adoption and improvement of different tillage systems toward agricultural sustainability has a great social, economical and environmental impact. The base of sustainability is a system productivity as ratio of output to input in a given system, measured in the same units, commonly as energy requirements. The objective of this study was to evaluate the aspect of energy requirements in the different soil tillage systems regarding total energy consumption under conventional tillage. The appropri...

  4. Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization.

    Science.gov (United States)

    Gao, Xiaopeng; Akhter, Fardausi; Tenuta, Mario; Flaten, Donald N; Gawalko, Eugene J; Grant, Cynthia A

    2010-04-15

    A 3-year field trial was conducted to investigate the effect of agricultural management practices including tillage, preceding crop and phosphate fertilization on root colonization by arbuscular mycorrhizal (AM) fungi and grain cadmium (Cd) concentration of durum wheat (Triticum turgidum L.). The relationship between grain Cd and soil and plant variables was explored to determine the primary factors affecting grain Cd concentration. Mycorrhizal colonization of the roots was reduced by conventional tillage or when the preceding crop was canola (Brassica napus L.), compared to minimum tillage or when the preceding crop was flax (Linum usitatissimum L.). In contrast, grain Cd was not consistently affected by any treatment. Grain Cd was generally below the maximum permissible concentration (MPC) of 100 microg Cd kg(-1) proposed by WHO. Grain Cd varied substantially from year to year, and could be predicted with 70% of variance accounted for by using the model: grain Cd concentration = - 321.9 + 44.5x ln(grain yield) + 0.26x soil DTPA-Cd + 182.5x soil electrical conductivity (EC)- 0.98x grain Zn concentration. These common agricultural management practices had no effect on grain Cd concentration in durum wheat though they impacted mycorrhizal colonization of roots. Grain yield and to a lesser extent soil conditions of EC and DTPA-Cd and grain Zn influenced grain Cd, whereas mycorrhizal colonization levels did not. (c) 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

  5. Spatially resolved data on sediment transport: 1) field application examining fluorescent soil particle movement from tillage

    Science.gov (United States)

    Quinton, John; Hardy, Robert; Pates, Jacqueline; James, Michael

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. Here we report on the field application of a fluorescent sand sized tracer at the hillslope scale during a tillage erosion experiment. Here we trialled both intensity based and particle counting methodologies for tracer enumeration. After simulating seven years of tillage on a hillslope we were able to precisely determine the distribution of the fluorescent tracer and also its incorporation and distribution within the soil profile. Single grains of tracer could be found over 35 m from the insertion point. In a second abstract we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the

  6. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA

    Science.gov (United States)

    Tan, Z.; Lal, R.

    2005-01-01

    Soil C sequestration through changes in land use and management is one of the important strategies to mitigate the global greenhouse effect. This study was conducted to estimate C sequestration potential of the top 20 cm depth of soil for two scenarios in Ohio, USA: (1) with reforestation of both current cropland and grassland where SOC pools are less than the baseline SOC pool under current forest; (2) with the adoption of NT on all current cropland. Based on Ohio Soil Survey Characterization Database and long-term experimental data of paired conservation tillage (CT) versus no-till (NT), we specified spatial variations of current SOC pools and C sequestration potentials associated with soil taxa within each major land resource area (MLRA). For scenario I, there would be 4.56 Mha of cropland having an average SOC sequestration capacity of 1.55 kg C m−2 and 0.80 Mha of grassland with that of 1.35 kg C m−2. Of all potential area, 73% are associated with Alfisols and 15% with Mollisols, but the achievable potential could vary significantly with individual MLRAs. Alternately, an average SOC sequestration rate of 62 g C m−2 year−1 was estimated with conversion from CT to NT for cultivated Alfisols, by which a cumulative increase of 71 Tg C resulted from reforestation of cropland could be realized in 25 years. Soils with lower antecedent C contents have higher C sequestration rates. In comparison with the results obtained at the state scale, the estimates of SOC sequestration potentials taxonomically associated with each specific MLRA may be more useful to the formulation of C credit trading programs.

  7. Ammonium sulphate on maize crops under no tillage

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves da Silva

    2012-01-01

    Full Text Available The objectives of this work were to evaluate the management of N and S (as ammonium sulphate fertilization under no-tillage system on the components of maize productivity and on N and S accumulation in the crop, as well as to evaluate the minimum value of the Nitrogen Sufficiency Index (NSI 0.95 as an indicator for side dressing requirements. The experiment had a completely randomized block design with six treatments and four replications carried out in Red Latosol dystrophic soil (Hapludox, in Campo Mourão, Paraná State, where the following treatments in summer growth maize were applied: T1- 120 kg ha-1 N in seeding; T2- 120 kg ha-1 N in side dressing; T3- 40 kg ha-1 N in seeding and 80 kg ha-1 N in side dressing; T4- 30 kg ha-1 N in seeding and 90 kg ha-1 N in side dressing, monitored by a chlorophyll meter using the Nitrogen Sufficiency Index (NSI; T5- 120 kg ha-1 N anticipated in wheat seeding; T6- without nitrogen fertilization. NSI was determined by the relationship between the leaf chlorophyll index (ICF average of T4 plants and that one in the plot fertilized with 120 kg ha-1 N at the maize seed sowing (T1. During two years, ammonium sulphate was applied to the maize crop after wheat under no tillage system. In the first year, with adequate rainfall, the maize yield was similar to the one in which the complete ammonium sulphate dose application was done in maize seeding and side dressing. The anticipated fertilization to wheat seed sowing resulted in maize yield without difference from the parceled form. In the second year, with irregular rainfall, all treatments with N were similar and they increased maize yield compared to that without N fertilization. NSI of 0.95 was not efficient to evaluate maize N requirements in side dressing, and resulted in lower maize yield. N was accumulated mainly in the grains unlike S that accumulated in the plant shoots; both were highly correlated to maize productivity.

  8. Tillage Reduces Survival of Grape Berry Moth (Lepidoptera: Tortricidae), via Burial Rather Than Mechanical Injury.

    Science.gov (United States)

    Matlock, Jason M; Isaacs, Rufus; Grieshop, Matthew

    2017-02-01

    The grape berry moth, Paralobesia viteana (Clemens), is a key pest of vineyards in eastern North America that overwinters as pupae in leaf litter on the vineyard floor. This presents an opportunity for tillage to disturb and bury the pupae, providing a potential nonchemical approach to control of this pest. Using a Lilleston-style rotary cultivator, we determined the distribution of pupae within the soil profile after single tillage passes, measured the type and severity of damage inflicted on pupae, and investigated how these effects on pupae influenced their survival. Survivorship of pupae recovered from the vineyard immediately after tillage and held until emergence was not significantly different from those recovered from an untilled control area, indicating little effect of mechanical damage on this pest. However, a single pass of the tillage implement buried three-quarters of pupae under at least 1 cm of soil. A laboratory experiment to recreate these conditions resulted in significant increase in mortality when pupae were buried in more than 1 cm of sand. We conclude that 1) interference with adult emergence of diapausing pupae via burial is the primary mechanism by which tillage controls grape berry moth, and 2) efforts to optimize the impact of tillage on grape berry moth populations should focus on maximizing the number of pupae buried. We discuss the potential integration of tillage into different vineyard management systems to enhance pest management. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  10. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods

    Directory of Open Access Journals (Sweden)

    M.A. Badshah

    2014-02-01

    Full Text Available Tillering is an important agronomic trait for rice grain production. To evaluate yield and tillering response, Liangyoupeijiu (super hybrid rice was grown in Hunan, China during 2011–2012 under different methods of tillage (conventional and no-tillage system and crop establishment methods (transplanting at a spacing of 20 cm × 20 cm with one seedling per hill and direct seeding at a seeding rate of 22.5 kg ha− 1. Our results revealed that, at maximum tillering (Max. and at maturity (MA stages, direct seeding (DS resulted in 22% more tillers than transplanting (TP irrespective of tillage system. Tiller mortality reached a peak between panicle initiation (PI and booting (BT stages, and was 16% higher under conventional tillage (CT than under no-tillage (NT. Transplanting required 29% more time for the completion of tillering and less for DS. Tillering rate was 43% higher in DS than TP under either CT or NT. There was a positive correlation between panicle number per m2 and maximum tiller number per m2, but not panicle-bearing tiller rate. The panicle bearing tiller rate was higher under DS than TP and higher under NT than CT. Tiller dry weight gradually increased up to heading (HD stage, and was 14% higher under TP than DS. Leaf area (cm2 tiller− 1 gradually increased from Max. to HD stage and then decreased by 34% in conventional tillage transplanting (CTTP and 45% in no-tillage transplanting (NTTP from 12DAH–24DAH (days after heading, but was similar (35% under DS under either CT or NT. Grain yield was higher under CTTP owing to the larger sink size (heavier panicle, more spikelets in per cm length of panicle than under DS.

  11. Conservation: Toward firmer ground

    Science.gov (United States)

    1975-01-01

    The following aspects of energy conservation were discussed: conservation history and goals, conservation modes, conservation accounting-criteria, and a method to overcome obstacles. The conservation modes tested fall into one of the following categories: reduced energy consumption, increased efficiency of energy utilization, or substitution of one or more forms of energy for another which is in shorter supply or in some sense thought to be of more value. The conservation accounting criteria include net energy reduction, economic, and technical criteria. A method to overcome obstacles includes (approaches such as: direct personal impact (life style, income, security, aspiration), an element of crisis, large scale involvement of environmental, safety, and health issues, connections to big government, big business, big politics, involvement of known and speculative science and technology, appeal to moral and ethical standards, the transient nature of opportunities to correct the system.

  12. Handbook on energy conservation

    International Nuclear Information System (INIS)

    1989-12-01

    This book shows energy situation in recent years, which includes reserves of energy resource in the world, crude oil production records in OPEC and non OPEC, supply and demand of energy in important developed countries, prospect of supply and demand of energy and current situation of energy conservation in developed countries. It also deals with energy situation in Korea reporting natural resources status, energy conservation policy, measurement for alternative energy, energy management of Korea, investment in equipment and public education for energy conservation.

  13. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  14. Conservation genetics in transition to conservation genomics

    DEFF Research Database (Denmark)

    Ouborg, N. Joop; Pertoldi, Cino; Loeschcke, Volker

    2010-01-01

    in conservation biology. This has allowed assessment of the impact of genetic drift on genetic variation, of the level of inbreeding within populations, and of the amount of gene flow between or within populations. Recent developments in genomic techniques, including next generation sequencing, whole genome scans...... and gene-expression pattern analysis, have made it possible to step up from a limited number of neutral markers to genome-wide estimates of functional genetic variation. Here, we focus on how the transition of conservation genetics to conservation genomics leads to insights into the dynamics of selectively...

  15. Soil structure and greenhouse gas production differences between row and interrow positions under no-tillage

    Directory of Open Access Journals (Sweden)

    Alvaro Pires da Silva

    2014-04-01

    Full Text Available No-tillage in Brazil is an efficient agricultural system that improves crop productivity whilst controlling erosion caused to the soil by degradation. However, there is some concern regarding soil compaction. Our objective was to determine whether the function of soil structure in sustaining crop growth was dependent on row and interrow positions in long-term no-tillage. We took soil samples from a field in a commercial farm under long-term no-tillage since 1979 on a clayey Oxisol in Southern Brazil. We assessed soil physical quality using the revised Peerlkamp technique and measured bulk density, air-filled porosity and air permeability of intact soil cores. Samples were incubated to assess in vitro N2O and CO2 production. The soil physical and structural properties showed consistent differences between interrow and row positions, where the properties measured were more favorable. The revised Peerlkamp technique proved as efficient as quantitative parameters in discriminating treatment differences. Overall, soil physical conditions in the interrow were less favourable than in the row. Pore continuity did not vary as regards position. This may explain why row position did not influence in vitro N2O and CO2 production. Soil physical quality under no-tillage system is enhanced, at least in the short term, by superficial disturbances in the row as a result of the action of the coulters of the no-tillage seeder.

  16. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  17. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.

    Directory of Open Access Journals (Sweden)

    Seyed Z. Hosseini

    2016-03-01

    Full Text Available Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.. The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1 were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1 also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1.

  18. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  19. Manejo integrado da brusone em arroz no plantio direto e convencional Integrated rice blast disease management under direct drilling and conventional tillage

    Directory of Open Access Journals (Sweden)

    Gisele Barata da Silva

    2003-04-01

    Full Text Available O objetivo deste trabalho foi desenvolver medidas adequadas para o manejo da brusone (Pyricularia grisea, integrando a resistência da cultivar, práticas culturais e o controle químico. Foram realizados dois experimentos no campo, um no plantio direto (PD e outro no plantio convencional (PC, nos anos agrícolas 1998/1999 e 1999/2000. Os tratamentos, num total de 16, em esquema fatorial 2(4, consistiram de duas cultivares, Carajás e Primavera, duas doses de N, 30 e 60 kg ha-1, sementes não tratadas e tratadas com fungicida pyroquilon e parcelas sem pulverização e com duas pulverizações, na parte aérea das plantas, da mistura dos fungicidas benomyl e difenoconazole. A incidência e a severidade da brusone nas folhas e nas panículas foram significativamente menores no PD em relação ao PC. A cultivar Primavera apresentou maior suscetibilidade à brusone nas folhas, independentemente do sistema de plantio. A dose de 60 kg ha-1 de N contribuiu para aumento da brusone nas folhas, no PD e no PC, no segundo ano. As pulverizações com a mistura de fungicidas reduziram a severidade da brusone nas panículas nos dois sistemas de plantio. A produtividade foi maior no PC do que no PD e a cultivar Carajás foi superior à Primavera.The objective of this work was to develop adequate measures for rice blast (Pyricularia grisea management integrating cultivar resistance, cultural practices and chemical control. Two field experiments were carried out, one under direct drilling and the other one under conventional tillage, during two consecutive rice growing seasons, 1998/1999 and 1999/2000. The treatments totaling 16, in a factorial scheme 2(4, included two cultivars, Carajás and Primavera, two levels of N, 30 and 60 kg ha-1, nontreated seed and seed treated with pyroquilon, plots nonsprayed and sprayed with two applications of fungicide mixture benomyl and difenoconazole. The incidence and severity of leaf and panicle blast were significantly lower

  20. Análise multivariada da fauna edáfica em diferentes sistemas de preparo e cultivo do solo Multivariate analysis of soil fauna under different soil tillage and crop management systems

    Directory of Open Access Journals (Sweden)

    Dilmar Baretta

    2006-11-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de sistemas de preparo e cultivo do solo sobre a diversidade de animais da fauna edáfica, por meio de técnicas de análise multivariada. Na análise canônica discriminante, os preparos conservacionistas com sucessão de culturas foram separados em relação aos tratamentos com rotação de culturas. Os grupos Acarina, Hymenoptera, Isopoda e Collembola, e o índice de Shannon (H foram os atributos que mais contribuíram para separar os tratamentos. A análise de correspondência mostrou forte associação dos grupos Acarina e Hymenoptera com o tratamento semeadura direta com sucessão de culturas, e do grupo Collembola com o preparo convencional.The objective of this work was to evaluate the effect of different soil tillage and crop management systems on soil fauna groups, by means of multivariate analysis. In the canonical discriminant analysis the conservation soil management systems with crop succession were discriminated in relation to other treatments with crop rotation. The groups Acarina, Hymenoptera, Isopoda, and Collembola, and the Shannon index (H showed the highest contribution for the discrimination between treatments. The correspondence analysis showed a strong association between Acarina and Hymenoptera groups with the treatment no-tillage with crop succession, and between Collembola group with the conventional tillage system.

  1. The influence of tillage on field scale water fluxes and maize yields in semi-arid environments: A case study of Potshini catchment, South Africa

    Science.gov (United States)

    Kosgei, J. R.; Jewitt, G. P. W.; Kongo, V. M.; Lorentz, S. A.

    Water is a limiting resource to crop production in arid and semi-arid lands (ASALs) and is responsible for substantial yield losses annually. These lands are often occupied by resource poor smallholder rainfed farmers who have little capacity to establish conventional irrigation infrastructure to mitigate recurrent droughts and dry spells. In situ water harvesting techniques in the form of conservation agriculture practices have been identified and promoted as measures that can improve soil water availability and thus enhance crop yields. Land use practices e.g. tillage influences mechanisms of lateral flow, infiltration, storage, redistribution and residence times of water at field scale. Such alterations in flow paths have not been adequately studied in ASALs where small perturbations at field scale upstream of a catchment may have significant effects downstream. Quantifying these fluxes enables better understanding of productive and non-productive water transition processes and thus to evaluate cropping and management systems. On this study the effects of tillage on water fluxes, soil physical properties and maize ( Zea mays L.) yields were examined at three sites in the Potshini catchment, South Africa. Measurements were made on plots under no-till ( NT) and conventional till ( CT) practices. Seasonal analysis indicated that nearly twice as much runoff was generated from CT treatments when compared to NT plots. However, this was not the case at the beginning of the season. The moisture content in the root zone was significantly higher in NT treatments. Maize yield was also higher in NT compared to CT plots.

  2. Contribution of tillage systems on the organic matter of Gley soil and the productivity of corn and soybean soil and the productivity of cornContribuição do sistema de cultivo sobre a matéria orgânica de um Gleissolo e a produtividade do milho e soja

    Directory of Open Access Journals (Sweden)

    Tácio Oliveira da Silva

    2011-08-01

    Full Text Available To evaluate the behavior of the organic matter in the profile of Gley soil and the productivity of corn and soybean in a temperate climate (Experimental Station of the University of Purdue - West Lafayette - Indiana - United States - Long: 86º 55' W and Lat: 40º 26' N. The effects of six treatments were studied, derived from three different tillage systems: conventional tillage, minimum tillage, and no tillage, with two successions of crops (soybean-corn and continuous corn, in an experiment conducted in the period of 1980 to 1995, with an experimental design of randomized blocks constituting six treatments arranged in subdivided parcels (split-plot, with three replications. In the experimental plots the treatments of succession of crops and the sub-plot were established with the systems of soil management. The sub-plot was constituted by three tillage systems: conventional tillage, minimum tillage, and no tillage. The soil samples originating from five depths and 11 positions and the data of productivity were analyzed, taken in a transversal line from the plot. With the results it can be concluded that: a the percentage of organic matter increases in the superficial layer as the movement of the soil diminished, in the following sequence: no tillage system > minimum tillage system > conventional system; b system of conventional tillage provided greater values of corn yield when associated to continuous crop and in succession with soybean; when compared with conservation tillage; and c in the conditions of a temperate climate and hydromorphic soil, the content of organic matter showed a relation inversely proportional to productivity, with a smaller performance for the succession of soybean and corn.O comportamento dos teores de matéria orgânica em um Gleissolo e da produtividade do milho e soja foi avaliado em condição de clima temperado (Estação Experimental da Universidade de Purdue – West Lafayette – Indiana - Estados Unidos

  3. Transformaciones de fósforo en un molisol bajo sistemas de labranza contrastantes Phosphorus transfomations in a mollisol under contrasting tillage practices

    Directory of Open Access Journals (Sweden)

    Liliana Picone

    2007-12-01

    Full Text Available Las prácticas conservacionistas pueden afectar las transformaciones de fósforo (P a través de la aplicación de este nutriente y la ubicación de residuos en la superficie del suelo. Ante esta situación se plantearon como objetivos: 1 evaluar el efecto del sistema de labranza en las fracciones de P del suelo y su interacción con la fertilización fosfatada, y 2 relacionar las variaciones en las fracciones de P con el balance de P. La siembra directa y labranza convencional se asignaron como parcelas principales y las dosis de P (0 y 30 kg P ha-1 como subparcelas, con tres repeticiones. El P inorgánico (Pi y orgánico (Po se determinaron en las siguientes fracciones: membrana de intercambio aniónico (Pi-MIA, NaHCO3, NaOH, HCl y residual, extraídas sequencialmente. Cuando la cantidad de P aplicado excedió el removido en el grano, el exceso de P se distribuyó en varias fracciones, sin incrementar el P-Bray con respecto al valor inicial. En el corto plazo, no hubo efecto significativo de la interacción entre los sistemas de labranza y tratamientos de fertilización, ni del sistema de labranza en las formas de Pi; sin embargo, las fracciones Pi-MIA y Pi-NaHCO3 fueron significativamente (pConservation tillage may affect soil phosphorus (P fractions through the application of P fertilizer and the deposition of residue on the soil surface. The objectives were to 1 evaluate the effect of tillage systems on soil P fractions, as well as the interaction with P fertilization, and 2 relate changes in P fractions with P balance. No tillage and conventional tillage were assigned as main plots and the two P rates (0 y 30 kg P ha-1 the subplots, with three replicates. Inorganic (Pi and organic (Po P were measure with the anion exchange membrane (AEM, NaHCO3, NaOH, HCl and residual fractions, extracted sequentially. When the amount of P applied exceeded that removed by grain, the P excess was converted to different fractions, but with no increases in

  4. The behavior of tillage tools with acute and obtuse lift angles

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour-Fard, M. H.; Hoseini, S. A.; Agkhani, M. H.; Sharifi, A.

    2014-06-01

    An experimental investigation was conducted to study the trend of draft force against forward speed and working depth for a range of lift angles beyond acute angles for a simple plane tillage tool. The experiments were performed in an indoor soil bin facility equipped with a tool carriage and a soil preparation unit propelled by an integrated hydraulic power system. The system was also equipped with electronic instrumentation including an Extended Octagonal Ring Transducer (EORT) and a data logger. The factorial experiment (4 × 3 × 3) with three replications was used based on Randomized Complete Block Design (RCBD). The independent variables were lift angle of the blade (45, 70, 90 and 120 degree centigrade), forward speed (2, 4 and 6 km h{sup -}1) and working depth (10, 25 and 40 cm). The variance analysis for the draft force shows that all independent variables affect the draft force at 1% level of significance. The trend of the draft force against working depth and forward speed had almost a linear increase. However, the trend of the draft force against the lift angle is reversed for lift angles > 90 degree centigrade. This finding, conflicts with the results of analytical and numerical studies which extrapolate the results achieved for acute lift angles to obtuse lift angles and have not been reported experimentally. (Author)

  5. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage

    Directory of Open Access Journals (Sweden)

    Caio Fortes

    2013-01-01

    Full Text Available The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009. Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application. In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows. In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH, and samples were collected in the field for analysis of sugar content (TSH. Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.

  6. Conservation in transportation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-30

    A nationwide examination was made of grassroots energy conservation programs related to transportation. Information compiled from civic groups, trade associations, and corporations is included on driver awareness/mass transit; travel; and ride sharing. It is concluded that a willingness by the public to cooperate in transportation energy conservation exists and should be exploited. (LCL)

  7. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  8. Conservation Value

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    This paper outlines the significance of the concept of conservation value and discusses ways in which it is determined paying attention to views stemming from utilitarian ethics and from deontological ethics. The importance of user costs in relation to economic decisions about the conservation and use of natural resources is emphasised. Particular attention is given to competing views about the importance of conserving natural resources in order to achieve economic sustainability. This then l...

  9. Catch crop biomass production, nitrogen uptake and root development under different tillage systems

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller

    2012-01-01

    ). Above-ground biomass production and N uptake were measured in the catch crops and the main crop. Catch crop root growth was studied using both minirhizotron and core methods. Soil penetration resistance was recorded to 60 cm depth. Fodder radish and RG produced up to 1800 kg/ha dry matter and DW 900 kg...... tinctoria L.), perennial ryegrass (RG) (Lolium perenne L.) and fodder radish (FR) (Raphanus sativus L.) under three tillage systems. For that, we used a tillage experiment established in 2002 on a Danish sandy loam. The tillage treatments were direct drilling (D), harrowing to 8–10 cm (H) and ploughing (P...... significant in 2008. The minirhizotron root measurements showed that the crucifers FR and DW achieved better subsoil rooting than RG. In contrast, the soil core data showed no significant difference between FR and RG in subsoil root growth. Our study highlights the need for further studies on subsoil root...

  10. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... in field using a visual method, measured unsaturated hydraulic conductivity at -4 hPa in field and determined aggregate size distribution after a drop shatter test for soil taken from 10-20 cm depth. The drop shatter test data showed significantly lowest mean weight diameter (MWD) for P than for H and D...

  11. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  12. Water Well Locations - Conservation Wells

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The conservation well layer identifies the permitted surface location of oil and gas conservation wells that have not been plugged. These include active, regulatory...

  13. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  14. Effects of crop rotation and soil tillage on weeds in organic farming

    Directory of Open Access Journals (Sweden)

    Schulz, Franz

    2014-02-01

    Full Text Available An organic long-term field experiment with two factors has been carried out since 1998 at the experimental station Gladbacherhof, University of Giessen. Effects of 3 different farm types (with lifestock raising, stockless farming with rotational set-aside, stockless farming only cash crops combined with 4 tillage treatments (mouldboard plough, two-layer-plough, reduced tillage depth and tillage without plough on plants, soil and environment have been investigated. This article presents results on the coverage rate of arable wild plants (weed coverage, the range of weed species, the abundance of C. arvense (L. Scop. (Canada thistle and the weed phytomass during harvest time of the main crops dependent on farm type and soil tillage. It can be concluded that, compared to conventional economic weed thresholds, the weed coverage was generally relatively low and only limited ranges of species were found. Wild arable plants probably did not have any impact on yields of the cultivated plants due to intensive mechanical regulatory measures. In stockless organic farming without alfalfa-grass in the crop rotation Cirsium arvense (L. Scop. (Canada thistle might become a problem whereas this perennial root-weed does not seem to raise a long term problem in a soil tillage system without ploughing. In all treatments the abundance of weeds like Galium aparine L. (catchweed bedstraw and Stellaria media L. (chickweed was high. However, none of the farm types or soil tillage systems succeeded in providing evidence of promoting rare species or encouraging biodiversity. In order to achieve this special support measures should be implemented.

  15. Impact of tillage, plant population and mulches on phenological characters of maize

    International Nuclear Information System (INIS)

    Gul, B.; Khan, M.A.; Khan, H.

    2014-01-01

    Field experiments were conducted during 2006 and 2007 in Peshawar, using open pollinated maize variety Azam in RCB design having 3 factors viz., tillage, maize populations and mulches with split-split plot arrangements. Tillage levels (zero and conventional) were assigned to the main plots, populations (90000, 60000 and 30000 plants ha/sup -1/) to sub-plots and four types of mulches (weeds mulch, black plastic mulch, white plastic mulch and mungbean as living mulch), a hand weeding and a weedy check were allotted to sub-sub plots, respectively. Data were recorded on days to tasseling, days to silking, days to maturity, leaf area of maize plant-1 (cm/sub 2/) and plant height (cm). Tillage affected leaf area of maize, where zero tillage resulted lower leaf area of 4094 cm/sub 2/ compared to conventional tillage (4722 cm/sub 2/). Different levels of plant populations affected all the physiological parameters. Days to tasseling, silking and maturity were more in higher plant population as compared to medium and lower plant population. Similarly, minimum leaf area plant-1 was recorded in higher plant population (3894 cm/sub 2/) than medium and lower plant population of 4398 and 4932 cm/sub 2/, respectively. Maximum plant height was recorded in hand weeding treatment (173 cm). However, it was statistically at par with black plastic mulch (171 cm), followed by weeds mulch (162 cm) and white plastic mulch (161 cm) as compared to weedy check (152 cm). Based on two years study it is suggested that even if tillage options and plant populations are a part of the weed management program, it should not be used as a sole management tool, as both have a negative impact on the phenological parameters of maize which subsequently affected the final yield and must be integrated and supplemented with other control methods. (author)

  16. A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity

    NARCIS (Netherlands)

    Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C.

    2014-01-01

    Intensification of agricultural systems in sub-Saharan Africa (SSA) is considered a pre-condition for alleviation of rural poverty. Conservation Agriculture (CA) has been promoted to achieve this goal, based on three principles: minimum tillage, soil surface cover, and diversified crop rotations. CA

  17. The Effects of Reduced Tillage on Phosphate Transport from Agricultural Land.

    Science.gov (United States)

    1981-01-01

    spring rains contribute much of the annual r ,olf, the rotughness and surface storage capacity provided by fall moldboard plowing may be more...Research Center, Columbia. 60 pp. Triplett, G.R., I).M. Van Doren and B.L. Schmidt. 1968. Effect of corn ( Zea mays L.) ILovtr mulch on no tillage corn yield and water infiltration. Agron, J, 60:236-239. i I SI i ...which probably control the effect of tillage on runoff: Soils which have restricted drainage may be saturated during periods of high precipitation

  18. Translocation of Soil Particles during Secondary Soil Tillage along Contour Lines

    Directory of Open Access Journals (Sweden)

    Novák Petr

    2018-04-01

    Full Text Available A high percentage of arable land and erosion risk on agricultural land are typical of current agriculture. While tillage erosion is a less frequently studied issue, it impacts vast areas of agricultural land. Not all relationships between cultivation equipment, the gradient of the plot and other factors have been known until now. Intensive soil tillage can be a crucial erosive factor mainly when the cultivation equipment moves in a fall line direction. Nevertheless, even when the equipment moves along contour lines, soil particles can be translocated perpendicular to the direction of the equipment movement (in a fall line direction. This phenomenon has not yet been adequately studied. For measurements, a field trial with secondary tillage of soil was laid out (a seedbed preparation implement was used. The objective of the trial was to evaluate the effect of the working tools of the cultivation equipment on the crosswise and lengthwise translocation of soil particles during soil tillage. Aluminium cubes, with a side length of 16 mm, were used as tracers. Before the operation, the tracers were inserted in a row perpendicular (at a right angle to a direction of the equipment passes. After the equipment passes, position of tracers was evaluated within a two-axis grid. The trial was performed at three gradients of the plot (2°, 6° and 11°. For each gradient, the 1-pass, 2-pass and 3-pass treatments were tested. The equipment always moved along the plot contour line. After the equipment passes in all treatments, all tracers were localized on an orthogonal grid. The results of the trial demonstrate the effect of the slope gradient on the crosswise translocation of particles during secondary tillage of soil in the slope direction. The tillage equipment translocated particles in the fall line direction even if it passed along the contour line. With the increasing intensity of passes, the effect of the equipment on crosswise translocation increases

  19. Sediment yield control in vineyards covered with cereal. Effect of tillage

    International Nuclear Information System (INIS)

    Ruiz-Colmenero, M.; Bienes, R.; Marques, M. J.

    2009-01-01

    A study has been carried out about the use of plant cover treatment to avoid land degradation in a hillside rainfed vineyard in Madrid under Mediterranean semiarid climate. Three treatments were tested: traditional tillage (lab) soil covered by Brachypodium distrachyon (bra) with self-sowing, soil covered by Scale cereale (sec) mown in Spring. Three erosion plots per treatment were placed in the middle of the strips and 2 simulated rainfalls were carried out at each plot in autumn, before and after the tillage. (Author) 7 refs.

  20. Soil Conservation Practices for Sustainability of Rice-wheat System in Nepal : A Review

    OpenAIRE

    Khanal, Narayan Prasad; Maharjan, Keshav Lall; Dangol, Dharma Raj

    2012-01-01

    Declining crop productivity and environmental pollution are two key issues associated with sustainability of rice-wheat system in Nepal. The former one is related to declining soil organic matter and shortage of water as well as laborer; whereas, the latter is due to emission of greenhouse gases (GHGs) from this system. This article reviews the potential of soil conservation practices, especially organic matter and zero-tillage, against these two issues in rice-wheat system of Nepal. Farm Yar...

  1. Evolution of physical properties of soils according to tillage systems on annual crops/ Evolução de propriedades físicas do solo em função dos sistemas de manejo em culturas anuais

    Directory of Open Access Journals (Sweden)

    Rogério R. M. Ferreira

    2006-06-01

    Full Text Available Soil management must keep the soil physical properties next to the original conditions in natural systems to assure the sustainability of agricultural systems. This review synthesizes the effects of conventional tillage, minimum tillage and no-tillage systems of annual crops, on soil physical properties as bulk density, porosity, soil resistance to root penetration, infiltration speed, hydraulic conductivity,compressibility, organic matter level, soil aggregate size and stability. No-tillage presents advantages on organic matter level, size and stability of aggregates, compressibility and hydraulic conductivity but has limitations on bulk density and resistance to root penetration. Minimum tillage with chisel plow is specially efficient in relation to infiltration speed and hydraulic conductivity, and intermediate between conventional and no-tillage in other aspects. Conventional tillage with total pulverization of soil surface,mainly on tropical conditions, presents the less favorable scores on soil physical properties, close to minimum tillage and no-till only in few circumstances, and frequently the most different from the natural conditions. The conservation systems by their side, despite of similarities in some aspects with natural conditions, are not able to reproduce the conditions of natural forests, savannas or natural pastures, but are in the sustainability direction.Para assegurar a sustentabilidade do sistema produtivo, o manejo do solo deve manter as propriedades físicas do solo o mais próximo das condições originais em que este se encontrava na natureza. Esta revisão sintetiza os efeitos de três sistemas de manejo de solo (convencional, mínimo e direto em culturas anuais sobre as propriedades físicas do solo como densidade, porosidade, resistência à penetração, velocidade de infiltração, condutividade hidráulica, compressibilidade, nível de matéria orgânica, tamanho e estabilidade de agregados. O plantio direto

  2. Reshaping conservation

    DEFF Research Database (Denmark)

    Funder, Mikkel; Danielsen, Finn; Ngaga, Yonika

    2013-01-01

    members strengthen the monitoring practices to their advantage, and to some extent move them beyond the reach of government agencies and conservation and development practitioners. This has led to outcomes that are of greater social and strategic value to communities than the original 'planned' benefits......, although the monitoring scheme has also to some extent become dominated by local 'conservation elites' who negotiate the terrain between the state and other community members. Our findings suggest that we need to move beyond simplistic assumptions of community strategies and incentives in participatory...... conservation and allow for more adaptive and politically explicit governance spaces in protected area management....

  3. Tillage and crop residue effects on rainfed wheat and maize production in Northern China

    NARCIS (Netherlands)

    Wang Xiaobin,; Wu Huijin,; Dai Kuai,; Zhang Dingchen,; Feng Donghui,; Zhao Quansheng,; Wu Xueping,; Jin Ke,; Cai Diangxiong,; Oenema, O.; Hoogmoed, W.B.

    2012-01-01

    Dryland farming in the dry semi-humid regions of northern China is dominated by mono-cropping systems with mainly maize (Zea mays L.) or wheat (Triticum aestivum), constrained by low and variable rainfall, and by improper management practices. Addressing these problems, field studies on tillage and

  4. 35-40 The Effect of Tillage Frequency and Weed Control on Yield of ...

    African Journals Online (AJOL)

    The objective of the experiment was to determine the optimum tillage frequency, time and weeding frequency for tef production in the Yielmana ... post-harvest management cost, low risk crop and the straw provides better animal feed than ..... Kalyani publishers, New Delhi- 110 002, India. Rezene, F. and Zerihun, T. 2001.

  5. Effects of mulching, staking and tillage on weed growth in yam plots ...

    African Journals Online (AJOL)

    The effects of two levels each of mulching (mulch, no mulch), staking, no stakes) and tillage (bed, mound) on weed infestation were studied in the 1994/95 and 1995/96 dry season. Data collected at the peak of yam foliation and at tuber maturity showed that mulching had no significant effect on total fresh weight of weeds.

  6. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage

    NARCIS (Netherlands)

    Groenigen, van K.J.; Bloem, J.; Baath, E.; Boeckx, P.; Rousk, J.; Bodé, S.; Forristal, P.D.; Jones, M.B.

    2010-01-01

    Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be

  7. Morphology and stability of aggregates of an Oxisol according to tillage system and gypsum application

    Directory of Open Access Journals (Sweden)

    Fábio Régis de Souza

    2012-12-01

    Full Text Available Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots with 0 and 2000 kg ha-1 of gypsum (subplots and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.

  8. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    Science.gov (United States)

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  9. Effects of strip and full-width tillage on soil carbon IV oxide-carbon ...

    African Journals Online (AJOL)

    Yomi

    carbon IV oxide-carbon (CO2-C) fluxes, bacterial and fungal populations in growing period of sunflower. (Helianthus annus). A row-crop .... Tillage accelerates soil CO2 emission by improving soil aeration, disaggregating soil .... Schleibler calcimeter (Tee et al., 1993), total nitrogen (N) was determined by using the micro ...

  10. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  11. Comparative effect of ridge furrow and zero tillage on cowpea at ...

    African Journals Online (AJOL)

    Trials were carried out to compare effect of different seedbeds on cowpea at Abeokuta and Akure in different microclimates of Nigeria. The values of selected soil physical properties, plant nutrient status and growth and yield of cowpea given by zero tillage, manual clearing, ridge top, ridge side, ridge base, and furrow were ...

  12. Effect of Tillage Practices and Neem Leaves(Azadirachta indica A ...

    African Journals Online (AJOL)

    Termites have been identified as one of the major pests of cassava in Nigeria especially on infested soils. Effect of different tillage practices and rates of neem leaves on the incidence and severity of termites on cassava field was investigated in this study. Field experiment was conducted in 2007 at the teaching and research ...

  13. Tillage Effect on Soil Moisture Storage and Wheat Yield on the ...

    African Journals Online (AJOL)

    Choice-Academy

    2008. 1 Department of Land Resource Management and Environmental Protection, Mekelle University, Mekelle, Ethiopia. fassil@ethionet.et. 2District Disaster Prevention and preparedness Commission, North Wello Zone, Delanta Dawunt Woreda, Ethiopia. 49. Tillage Effect on Soil Moisture Storage and Wheat Yield on the ...

  14. Effect of tillage on the efficacy of CGA362622 on weed control in maize

    African Journals Online (AJOL)

    The subplots were herbicide (H) and no herbicide (NH). Weed regeneration was significantly higher under NT compared with other methods of land preparation. The herbicide treatment depressed maize yield. Grain yields were 1619.58 and 277.46 kg/ha for H and NH, respectively. Tillage treatment significantly affected ...

  15. The Utilisation of Tractor-Mounted Primary Tillage Implements in the ...

    African Journals Online (AJOL)

    The study was primarily aimed at determining the utilization of tractor-mounted primary tillage implements in Swaziland using 14 case study forms in the Malkerns Valley. Being descriptive in nature, the study employed scheduled personal interviews and questionnaires that were developed, pre-tested and administered by ...

  16. Influence of Tillage and Poultry Manure on the Physical Properties of ...

    African Journals Online (AJOL)

    Grains are the economical part of maize that demand proper management practices to achieve the crop potential. The study explored the influence of different tillage practices and poultry manure levels on the grain length, breadth, area, grains weight per cob and grains yield per m2of maize at Agronomic Research Area, ...

  17. Tillage and farmyard manure efects on crusting and compacting soils at Katumani, Semi-arid Kenya

    NARCIS (Netherlands)

    Biamah, E.K.; Sterk, G.; Stroosnijder, L.

    2008-01-01

    In semi-arid Kenya, the most dominatn soil types are of limited agricultural productivity due to crusting and compaction. The occurence of soil crusting and compaction is attributed to seasonal rainfall characteristics, physical soil properties and bad tillage practices. Soil crusting and compaction

  18. Effects of the Tillage Technology and the Forecrop on Weeds in Stands of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2015-01-01

    Full Text Available The semipilot-scale field experiment was established in the cadastre of the village Letkovice in the South Moravian Region (Czech Republic. The study area was situated in a warm climatic region T2. Winter wheat was cultivated in two variants of tillage, viz. conventional tillage (CT and minimum tillage (MT and after three different forecrops (fodder beet, late potatoes, and broad (faba bean. Weed infestation of wheat stands was evaluated in spring seasons of 2007 and 2008, always before the application of herbicides. Numbers of weed specimens and their species were defined by means of a calculation method. Recorded data were processed by means of multidimensional analyses of ecological data, viz. Data Correspondence Analysis (DCA and Redundancy Analysis (RDA. Within the study period, altogether 22 weed species were identified in all variants with different tillage technologies and different forecrops. In the MT variant, the degree of winter wheat stand infestation with weeds was lower. As far as the forecrops were concerned, the most and the least intensive degrees of infestation were recorded on plots with faba bean and late potatoes, respectively.

  19. TILLAGE AND DYNAMICS OF INORGANIC NITROGEN IN ECOLOGICAL AND INTEGRATION MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    J SMATANA

    2002-05-01

    Full Text Available During the period of 1991-1993 in the field experiment, the effect of different soil management (tillage 0,24 m and tillage 0,12-0,15 m in ecological and integration management system on changes of inorganic nitrogen (Nan = N-NH4 + + N-NO3 - content in the soil layer from 0 up to 0,6 m of the soil depth (0,00-0,30 m and 0,30- 0,60 m were studied. Trials were held in a warm climatic zone of the South – Western Slovakia on the brown soil. Different soil management systems (tillage 0,24 m and tillage 0,12-0,15 m considerably did not affected ammonification and nitrification processes in the soil. The sustainability of minimalization via shallow ploughing is not excluded, on the contrary this minimalization may have high a positive influence on economic saving the energy, labour costs, etc. The quantitative and qualitative changes of studied form of N were significantly effected by weather and soil depth. Soil content of N-NH4 + and N-NO3 - was in negative correlation with soil depth.

  20. Water use efficiency of dryland cowpea, sorghum and sunflower under reduced tillage

    Science.gov (United States)

    Drought-adapted, early maturing crops combined with reduced tillage systems have the potential to stabilize and increase dryland crop yields in the Southern High Plains. The objective of this study was to evaluate dryland grain yield response and soil water use for cowpea [Vigna Unguiculata (L.) Wal...

  1. Malt barley yield and quality affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little is known about the comparison of management practices on malt barley (Hordeum vulgare L.) yield and quality in irrigated and non-irrigated cropping systems. We evaluated the effects of irrigation, tillage, cropping system, and N fertilization on malt barley yield and quality in a sandy loam s...

  2. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  3. Tillage System Affects Soil Organic Carbon Storage and Quality in Central Morocco

    Directory of Open Access Journals (Sweden)

    R. Moussadek

    2014-01-01

    Full Text Available Stabilizing or improving soil organic carbon content is essential for sustainable crop production under changing climate conditions. Therefore, soil organic carbon research is gaining momentum in the Mediterranean basin. Our objective is to quantify effects of no tillage (NT and conventional tillage (CT on soil organic carbon stock (SOCs in three soil types (Vertisol, Cambisol, and Luvisol within Central Morocco. Chemical analyses were used to determine how tillage affected various humic substances. Our results showed that, after 5 years, surface horizon (0–30 cm SOC stocks varied between tillage systems and with soil type. The SOCs was significantly higher in NT compared to CT (10% more in Vertisol and 8% more in Cambisol, but no significant difference was observed in the Luvisol. Average SOCs within the 0–30 cm depth was 29.35 and 27.36 Mg ha−1 under NT and CT, respectively. The highest SOCs (31.89 Mg ha−1 was found in Vertisols under NT. A comparison of humic substances showed that humic acids and humin were significantly higher under NT compared to CT, but fulvic acid concentrations were significantly lower. These studies confirm that NT does have beneficial effects on SOCs and quality in these soils.

  4. Reducing tillage intensity affects the cumulative emergence dynamics of annual grass weeds in winter cereals

    DEFF Research Database (Denmark)

    Scherner, A; Melander, B; Jensen, P K

    2017-01-01

    Annual grass weeds such as Apera spica-venti and Vulpia myuros are promoted in non-inversion tillage systems and winter cereal-based crop rotations. Unsatisfactory weed control in these conditions is often associated with a poor understanding of the emergence pattern of these weed species. The ai...

  5. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol

    NARCIS (Netherlands)

    Roscoe, R.; Buurman, P.

    2003-01-01

    Reclamation of Brazilian cerrados (savannas) has been intensified in the last decades, with implications for soil quality and soil organic matter (SOM) dynamics. Studying the impact of different tillage systems is essential to define better strategies for land use in Cerrado, which may favor C

  6. Influence of tillage practices on physical properties of a sandy loam ...

    African Journals Online (AJOL)

    15 cm and 15-30 cm), for determination of volumetric (.v) moisture content, bulk density (Bd), and total porosity (TP) of the soil at selected dates, while soil penetration resistance (PR) was determined using hand held digital penetrometer. Tillage systems significantly (p = 0.05) affected. Bd and TP of the soil at two of the four ...

  7. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    In this study the effects of no-tillage and eight crop rotations (established in 1985) on chemical properties of a Rhodic Ferralsol (Typic Haplorthox, Soil Taxonomy) and on nutrient uptake by maize (Zea mays L.) and soybean (Glycine max L. Merrill) leaves were assessed in the state of São Paulo, Brazil, using a randomized ...

  8. Friction velocity and aerodynamic roughness of conventional and undercutter tillage within the Columbia Plateau, USA

    Science.gov (United States)

    Friction velocity and aerodynamic roughness are characteristics of the soil-plant-atmosphere interface which affect wind erosion. Although exchange of momentum at the interface can be altered by land management practices, no attempts have been made to quantify the effect of tillage on friction veloc...

  9. A survey of reliability of tillage equipment in Osun State, Nigeria ...

    African Journals Online (AJOL)

    Reliability of tillage equipment in Osun State, Nigeria was investigated by using Weibull function. Frequencies of breakdown and time of failure of the implements were collected and analyzed using Weibull method. Results obtained showed that harrows were the most reliable followed by ridger and the plough respectively.

  10. Tillage effects on soil quality after three years of irrigation in Northern Spain

    Science.gov (United States)

    Irrigation is being initiated on large areas of traditionally rainfed land to meet increasing global demand for food, feed, fiber, and fuel. However, the consequences of this transition on soil quality (SQ) have scarcely been studied. Therefore, after previously identifying the most tillage-sensitiv...

  11. Effects of tillage operations and plant density on leaf spot disease ...

    African Journals Online (AJOL)

    Two seasons experiments conducted in 2002 and 2003 revealed that Tillage operations significantly influenced leafspot disease severity; Percentage lodging 3.14; 2.08 and Grain yield 3.02; 3.84 in 2002 and 2003 respectively. Plant density also had significant difference on leafspot disease severity; Percentage lodging ...

  12. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.

    Science.gov (United States)

    Schroeder, K L; Paulitz, T C

    2008-03-01

    Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.

  13. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  14. Effects of tillage and cropping systems on yield and nitrogen fixation ...

    African Journals Online (AJOL)

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on ...

  15. Did tillage erosion play a role in millennial scale landscape development?

    NARCIS (Netherlands)

    Baartman, J.E.M.; Temme, A.J.A.M.; Schoorl, J.M.; Braakhekke, M.H.A.; Veldkamp, A.

    2012-01-01

    Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the

  16. Effects of tillage on runoff from a bare clayey soil on a semi-arid ...

    African Journals Online (AJOL)

    Effects of tillage on runoff from a bare clayey soil on a semi-arid ecotope in the Limpopo Province of South Africa. ... IRWH is a special type of no-till (NT) crop production practice that promotes runoff from a crusted runoff strip into basins where the water infiltrates beyond evaporation but is available for crop use. Runoff was ...

  17. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  18. Effects of phosphorus and four tillage mulch systems on the physico ...

    African Journals Online (AJOL)

    Effects of phosphorus and four tillage mulch systems on the physico-chemical properties of an ultisol in Eastern Nigeria. ... Micro-porosity, macro-porosity, total porosity, mean weight diameter of water stable aggregates and saturated hydraulic conductivity, however, did not show significance. The infiltration rates of the TM, ...

  19. [Effects of rotational tillage during summer fallow on wheat field soil water regime and grain yield].

    Science.gov (United States)

    Hou, Xian-qing; Wang, Wei; Han, Qing-fang; Jia, Zhi-kuan; Yan, Bo; Li, Yong-ping; Su, Qin

    2011-10-01

    In 2007-2010, a field experiment was conducted to study the effects of different rotational tillage practices during summer follow on the soil water regime and grain yield in a winter wheat field in Southern Ningxia arid area. Three treatments were installed, i.e., T1 (no-tillage in first year, subsoiling in second year, and no-tillage in third year), T2 (subsoiling in first year, notillage in second year, and subsoiling in third year), and CT (conventional tillage in the 3 years). Through the three years of the tillage practices, the soil water storage efficiency in treatments T1 and T2 was increased averagely by 15.2% and 26.5%, respectively, as compared to CT. In treatments T1 and T2, the potential rainfall use rate was higher, being 37.8% and 38.5%, respectively, and the rainfall use efficiency was increased averagely by 9.9% and 10.7%, respectively, as compared to CT. Rotational tillage during summer fallow could decrease the soil ineffective evaporation significantly, and save the soil water effectively in wheat growth season. At early growth stage, the water storage in 0-200 cm soil layer in treatments T1 and T2 was increased averagely by 6.8% and 9. 4%, as compared to CT; at jointing, heading, and filling stages, the water storage in 0-200 cm soil layer in treatments T1 and T2 had a significant increase, giving greater contribution to the wheat yield than the control. Different rotational tillage practices increased the water consumption by wheat, but in the meantime, increased the grain yield and water use efficiency. In treatments T1 and T2, the water consumption by wheat through the three years was increased averagely by 5.2% and 6.1%, whereas the grain yield and the water use efficiency were increased averagely by 9.9% and 10.6%, and by 4.5% and 4.3%, respectively, as compared to CT. Correlation analysis showed that in Southern Ningxia arid area, the soil water storage at sowing, jointing, heading, and filling stages, especially at heading stage, could

  20. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  1. Contribution of macroporosity to water flux of a soil under different tillage systems

    Directory of Open Access Journals (Sweden)

    Carlos Germán Soracco

    2012-08-01

    Full Text Available In view of the importance of the macroporosity for the water transport properties of soils, its quantitative assessment is a challenging task. Measurements of hydraulic conductivity (K at different soil water tensions and the quantification of water-conducting macropores (θM of a soil under different tillage systems could help understand the effects on the soil porous system and related hydraulic properties. The purpose of this study was to assess the effects of Conventional Tillage (CT, Chisel Plow (CP and No Tillage (NT on θM and on K; and to quantify the contribution of macroporosity to total water flux in a loam soil. A tension disc infiltrometer was used at two soil water pressure heads (-5 cm, and 0 to infer θM and K, during fallow. Macroporosity was determined based on the flow contribution between 0 and -5 cm water potentials (K0, K5, respectively, according to the Hagen-Poiseuille equation. The K0 values were statistically higher for CT than for NT and CP. The K5 values did not differ statistically among treatments. The mean K values varied between 0.20 and 3.70 cm/h. For CT, θM was significantly greater than for CP and NT, following the same trend as K0. No differences in θM were detected between CP and NT. With CT, the formation of water-conducting macropores with persistence until post-harvest was possible, while under CP preparation, the water-conducting macropores were not persistent. These results support the idea that tillage affects the soil water movement mainly by the resulting water-conducting macropores. Future studies on tillage effects on water movement should focus on macroporosity.

  2. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dandan; Chen, Bingfa; Wu, Min, E-mail: kustless@gmail.com; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-11-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  3. Productivity limits and potentials of the principles of conservation agriculture.

    Science.gov (United States)

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  4. Controle de plantas daninhas com herbicidas cloroacetamidas em sistemas convencional e de semeadura direta Weed control with chloroacetamide herbicides in conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    M.V.W. Ferri

    2003-04-01

    , s-metolachlor at 1.440 g ha-1, and s-metolachlor + protector at 1.440 and 1.800 g ha-1, respectively, besides a check plot without herbicide, applied under conventional and no-tillage systems. Assessments included weed population, weed dry matter and weed control at 30 and 50 days after herbicide application. The chloroacetamides herbicides were more effective in controlling weeds under conventional tillage, compared to no tillage, in both evaluation times. The herbicides acetochlor, alachlor at 3,600 g ha-1 and metolachlor + protector at 2,400 g ha-1 were more efficient in controlling these plants when compared to the other herbicides and formulations. Dry biomass production and weed populations were lower under conventional tillage.

  5. TECHNIQUES FOR TEACHING CONSERVATION EDUCATION.

    Science.gov (United States)

    BROWN, ROBERT E.; MOUSER, G.W.

    CONSERVATION PRINCIPLES, FIELD METHODS AND TECHNIQUES, AND SPECIFIC FIELD LEARNING ACTIVITIES ARE INCLUDED IN THIS REFERENCE VOLUME FOR TEACHERS. CONSERVATION PRINCIPLES INCLUDE STATEMENTS PERTAINING TO (1) SOIL, (2) WATER, (3) FOREST, AND (4) WILDLIFE. FIELD METHODS AND TECHNIQUES INCLUDE (1) PREPARING FOR A FIELD TRIP, (2) GETTING STUDENT…

  6. The influence of tillage systems, fertilization and plant protection levels on weed infestation in winter rye cultivated on light soil

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2013-12-01

    Full Text Available The purpose of this work was to determine the influence of conventional and ploughless tillage systems upon infestation in two differentiated fertilization and plant protection levels on light soil. Before harvest winter rye there was determined weed infestation of square-frame method. There were estimated weed species composition and air dry matter of weeds in two randomly selected place. Number of monocotyledonous weeds, total weeds and dry matter of weeds was higher on the objects with ploughless tillage system compared with conventional tillage. Intensive fertilization and plant protection decreased number of dicotyledonous weeds in canopy of winter rye. Conventional tillage system decreased Apera spica-venti occurrence in a canopy of winter rye and increased number of Plantago major plants. Intensive level of fertilization and plant protection decreased weed infestation first of all through Matricaria maritima.

  7. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  8. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  9. Homozygosity mapping of the gene for Chediak-Higashi syndrome to chromosome 1q42-q44 in a segment of conserved synteny that includes the mouse beige locus (bg)

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, Kazuyoshi; Oh, Jangsuk; Karim, M.A. [Univ. of Wisconsin Medical School, Madison, WI (United States)] [and others

    1996-09-01

    Chediak-Higashi syndrome (CHS) is an autosomal recessive disorder characterized by hypopigmentation or oculocutaneous albinism and severe immunologic deficiency with neutropenia and lack of natural killer (NK) cell function. Most patients die in childhood from pyogenic infections or an unusual lymphoma-like condition. A hallmark of the disorder is giant inclusion bodies seen in all granule-containing cells, including granulocytes, lymphocytes, melanocytes, mast cells, and neurons. Similar ultrastructural abnormalities occur in the beige mouse, which thus has been suggested to be homologous to human CHS. High-resolution genetic mapping has indicated that the bg gene region of mouse chromosome 13 is likely homologous to the distal portion of human chromosome 1q. Accordingly, we carried out homozygosity mapping using markers derived from distal human chromosome 1q in four inbred families or probands with CHS. Our results indicate that the human CHS gene maps to an 18.8-cM interval in chromosome segment 1q42-q44 and that human CHS therefore is very likely homologous to mouse bg. 43 refs., 2 figs.

  10. Colorful Conservation

    Science.gov (United States)

    Skophammer, Karen

    2011-01-01

    Some people only think about conservation on Earth Day. Being in the "art business" however, this author is always conscious of the many products she thinks get wasted when they could be reused, recycled, and restored--especially in a school building and art room. In this article, she describes an art lesson that allows students to paint…

  11. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R.P.; Aulicino, M.B.; Mónaco, C.I.; Kripelz, N.; Cordo, C.A.

    2015-07-01

    Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT) and conventional tillage (CT) with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina). Soil samples (at 0-10 cm depth) were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/gof soil). The diversity of the fungal population was studied by Shannon´s index (H). The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices. (Author)

  12. Effects of the penetration of Artemisia vulgaris L. into maize crops as a result of the use of reduced tillage

    Directory of Open Access Journals (Sweden)

    Hanna Gołębiowska

    2014-07-01

    Full Text Available In recent years, a significant increase in weed infestation of agricultural crops with Artemisia vulgaris has been observed in the south-western region of Poland. The ease of migration of this expansive species results from the fact that it does not face competition from segetal weeds and therefore poses a great threat to the ecological balance. During the period 2008–2011, a floristic study was carried out using the Braun-Blanquet method in an abandoned field adjacent to a maize monoculture grown under two tillage systems: plough and ploughless tillage. These observations allowed an evaluation of the actual risk of spread of Artemisia vulgaris depending on tillage system. The vicinity of the abandoned field had a significant effect on the penetration of Artemisia vulgaris into maize crops. Higher numbers of individuals of this species were found under ploughless tillage compared to plough tillage, regardless of the distance from the field edge, and its increased competitive effects on Viola arvensis L. and Veronica persica L. could be observed. The lowest grain yield was obtained under ploughless tillage where the strong competitive effects of Artemisia vulgaris were observed even in the plot most distant from the abandoned field adjacent to the maize crop.

  13. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  14. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Directory of Open Access Journals (Sweden)

    Romina P. Gómez

    2015-06-01

    Full Text Available Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT and conventional tillage (CT with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina. Soil samples (at 0-10 cm depth were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/g of soil. The diversity of the fungal population was studied by Shannon´s index (H. The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices.

  15. Qualidade de solo submetido a sistemas de cultivo com preparo convencional e plantio direto Soil quality under tillage and no-tillage cropping systems

    Directory of Open Access Journals (Sweden)

    Eusângela Antônia Costa

    2006-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade de um Latossolo Vermelho submetido a sistemas de cultivo com preparo convencional e plantio direto. Foram estudadas duas áreas experimentais, localizadas na Embrapa Cerrados, em Planaltina, DF, com oito e dez anos de cultivo. Foram coletadas amostras de solo, em diversas profundidades, nas parcelas experimentais e em área de cerrado nativo. Os seguintes atributos foram avaliados: densidade do solo, porosidade total, capacidade de água disponível, grau de floculação, resistência do solo à penetração, teor de matéria orgânica, capacidade de troca catiônica, fósforo remanescente, carbono da biomassa microbiana e respiração basal. Os dados obtidos foram comparados a valores referenciais quanto à qualidade do solo, mediante modelagem gráfica. Observou-se que a qualidade do solo, em ambos os sistemas de cultivo, é similar quanto aos atributos físicos; os teores de matéria orgânica e fósforo remanescente também são semelhantes, mas a capacidade de troca catiônica é mais alta no solo sob plantio direto. Em relação aos atributos biológicos, o solo sob plantio direto apresenta atividade biológica mais elevada. A qualidade do solo em ambos os sistemas é similar, em relação aos atributos avaliados.The objective of this study was to evaluate the quality of an Oxisol under tillage and no-tillage systems. Two experimental areas were studied, both located in Embrapa Cerrados, Planaltina, DF, Brazil, with eight and ten years of cropping. Soil samples were collected from different depth layers in the experimental plots and native cerrado vegetation area. The following soil atributes were evaluated: bulk density, soil porosity, available water capacity, degree of flocculation, soil resistance to penetration, organic matter content, cation exchange capacity, equilibrium phosphorus, microbial biomass carbon and basal respiration. The data obtained were compared with referential

  16. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  17. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    Science.gov (United States)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (pclimate change. For smallholder farmers in semi-arid agro-ecosystems, CA-based systems constitute a field rainwater and soil conservation improvement strategy that enhances crop and economic productivity and reduces siltation of reservoirs, especially under changing climate. The reduction in draught power requirement would enable a reduction in oxen

  18. Potential and economic efficiency of using reduced tillage to mitigate climate effects in Danish agriculture

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Jørgensen, Sisse Liv; Nainggolan, Doan

    2016-01-01

    , research also suggests that soil carbon stocks are declining. The scope of Payment for Ecosystem Service (PES) approaches to effectively and efficiently address climate regulation will depend on the spatial distribution of the carbon assimilation capacity, current land use, the value of avoided emissions...... and land owners’ objectives and preferences in terms of participating in initiatives to increase SOC. We map the carbon sequestration potential under different scenarios, value the potential sequestered carbon in terms of marginal costs of using voluntary agreements with agricultural land managers...... and compare these to the marginal abatement costs curve used in Danish climate policy. The cost effectiveness of reduced tillage as a climate mitigation PES scheme critically depends on the current debate on the net effects of carbon sequestration in reduced tillage practices. Based on existing IPCC...

  19. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... to − 1500 hPa and subjected to measurements of gas diffusivity prior to incubation at 20 °C for 31 days. Net nitrification was calculated from nitrate accumulation during incubation. The upper layer of ST and MP soil had similar physical properties in terms of bulk density, pore size distribution...

  20. Entomofauna associated to soybean [Glycine max (L. Merr.] in direct seeding and conventional tillage

    Directory of Open Access Journals (Sweden)

    Arahis Cruz Limonte

    2016-01-01

    Full Text Available The main purpose of this research work was to investigate the effect of the direct seeding and conventional tillage of soybean on the incidence of plagues and natural enemies. The study was carried out on the farm “Día y Noche” of the Basic Unit of Cooperative Production “28 de Octubre” (UBPC, for its Spanish acronym, and in the Laboratories of the Agricultural Research Center of Central University of Las Villas. Field experiments were conducted on an Inceptisol, since November 2013 to May 2014. The soybean cultivar Incasoy – 27 was used. The insects in relation to the development stages of the plant were identified and quantified. In both systems 10 species of phytophagous insects and one of entomophagous insects were quantified; Hedylepta indicata L. stands out with more presence in the direct seeding, while Diabrotica balteata LeConte and the species belong to the family Pentatomidae caused most damage to the plants in conventional tillage.