WorldWideScience

Sample records for included coastal rivers

  1. Coastal river plumes: Collisions and coalescence

    Science.gov (United States)

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas  100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and fate of river waters in these settings will be strongly influenced by these interactions. We conclude that new investigations are needed to characterize how plumes interact offshore of river mouths to

  2. Coherence between coastal and river flooding along the California coast

    Science.gov (United States)

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  3. Intertidal deposits: river mouths, tidal flats, and coastal lagoons

    NARCIS (Netherlands)

    Eisma, D.; Boer, de P.L.; Cadee, G.C.; Dijkema, K.; Ridderinkhof, H.; Phillippart, C.

    1998-01-01

    Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons combines the authors personal and professional experience with the mass of available literature to present a cohesive overview of intertidal deposits and the widely diverse conditions of their formation worldwide. This includes the

  4. U.S. Coastal Lidar Elevation Data - Including the Great Lakes and Territories, 1996 - present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Services Center manages and distributes lidar data for the coastal United States, including territorial possessions via the Digital Coast Data...

  5. Kinship and sociality in coastal river otters: are they related?

    OpenAIRE

    Gail M. Blundell; Merav Ben-David; Pamela Groves; R. Terry Bowyer; Eli Geffen

    2004-01-01

    Previous studies of coastal river otters (Lontra canadensis) in Prince William Sound, Alaska, USA, documented atypical social organization for mammals. Social groups were composed largely of males, but some males remained solitary year-round and most females were asocial. Because, in carnivores, groups are usually composed of highly related individuals but group living also provides advantages unrelated to kinship, we concurrently evaluated the role of relatedness and ecological benefits in s...

  6. 76 FR 24914 - Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers...

    Science.gov (United States)

    2011-05-03

    ... Digital River Education Services acquired Journey Education Marketing (JEM) in August 2010. Some workers... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,975] Digital River Education Services, Inc., a Division of Digital River, Inc., Including Workers Whose Unemployment Insurance (UI...

  7. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    Science.gov (United States)

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  8. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Ma, Lin

    2017-01-01

    Coastal waters of China are rich in nitrogen (N) and phosphorus (P) and thus often eutrophied. This is because rivers export increasing amounts of nutrients to coastal seas. Animal production and urbanization are important sources of nutrients in Chinese rivers. In this study we explored the

  9. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland

    Science.gov (United States)

    Ostrowski, Rafał; Schönhofer, Jan; Szmytkiewicz, Piotr

    2016-10-01

    The paper contains a brief description of selected investigations carried out in the south Baltic coastal zone, with the particular focus on the history and recent activities conducted at the Coastal Research Station in Lubiatowo (CRS Lubiatowo), Poland. These activities comprise field investigations of nearshore hydrodynamic, lithodynamic, and morphodynamic processes. The study area is a sandy multi-bar shore with a mild slope, much exposed to the impact of waves approaching from NW-NE sector. The shore has a dissipative character which means that the wave energy is subject to gradual dissipation in the nearshore zone and only a small part of this energy is reflected by the shore. Due to the big wind fetch in N-NNE direction, the location of CRS Lubiatowo is favourable to registration of the maximum values of parameters of hydrodynamic and morphodynamic processes which occur in the Baltic during extreme storms.

  10. Comparative Assessment Of Coastal Tourism Potentials Of Selected Areas In Rivers State Nigeria

    Directory of Open Access Journals (Sweden)

    Obinwanne

    2015-08-01

    Full Text Available ABSTRACT The study examined coastal tourism potentials in Rivers State with emphasis on Opobo Bonny and Port Harcourt to determine the area that has comparative advantage for tourism development to optimally utilize resources. The study was conducted in Bonny Opobo and Port Harcourt of River State Nigeria. The area occupies the land close to the Atlantic Ocean within 60km radius from the coast. A survey design was adopted for the study. The instruments used were observation checklist and interview schedule. The instruments were tested for validity and reliability using five experts drawn from the field. The data collected were analyzed using ethnographic description method of analysis to answer research questions. The natural attractions found include mangrove forest sacred forests sacred rivers lakes beaches fishing rivers natural sources of drinking water and sanctuary. The cultural heritage resources were historical monument shrines museums different cultural festivals cultural materials and slave port. The man-made attractions were recreational park zoological garden and tourism village. It was found that there were more tourism potentials in Port Harcourt study site more than Bonny and Opobo sites and therefore Port Harcourt has comparative advantage over Bonny and Opobo for tourism development. Therefore efforts should be made and scarce resources utilized towards developing those coastal areas with best potentials and comparative advantage over others.

  11. Coastal processes of the Elwha River delta: Chapter 5 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.

  12. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  13. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  14. Nutrient export by rivers to the coastal waters of China: management strategies and future trends

    NARCIS (Netherlands)

    Qu, Hong Juan; Kroeze, C.

    2012-01-01

    We analyzed past and future trends in river export of dissolved nitrogen (N) and phosphorus (P) to the coastal waters of China, for a selection of rivers, as calculated by the Global NEWS models (Nutrient Export from WaterSheds). Over the period 1970–2000, river export of dissolved nutrients

  15. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    Science.gov (United States)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  16. Coastal evolution between two giant rivers: The Chan May embayment in central Vietnam

    Science.gov (United States)

    Gouramanis, C.; Switzer, A.; Bristow, C.; Pham, D. T.; Mauz, B.; Pile, J.; Doan, L. D.; Hoang, Q. D.; Ngo, C. K.; Dao, N.; Polivka, P.; Soria, L.; Lee, Y.; Sloss, C.; Hoang, L. V.

    2015-12-01

    The coastal landscapes of Vietnam are dominated in the north and south by the very large Red and Mekong rivers. Central Vietnam, in contrast, has few large rivers that flow to the coastal zone. This coupled with the high relief (>1500 m) of the granitic Truong Son Range and shallow gradient continental shelf, has produced two different coastal geomorphologies. The first is a shallow basin infilled with a sequence of parallel, arcuate beach ridges, and the second includes the development of shore-parallel spits and coastal lagoons. All systems are Holocene in age and we present evidence of the Holocene evolution of the northward-facing, beach ridge strandplain located in the Chan May embayment, approximately 35 km north of Danang. This embayment is relatively small (5 km long at the beach and with a beach ridge sequence that spans 11 km from the modern beach to the base of the Truong Son Range) compared to other beach ridge strandplains to the north and south and serves as an analogue for the evolution of these larger systems. The Holocene evolution of the embayment was resolved using Ground Penetrating Radar (GPR), high-resolution sedimentological analysis and quartz Optically Stimulated Luminescence were used to investigate the internal stratigraphy and chronological development of the beach ridges at Chan May. The strandplain contains uniform, clean quartz-rich sediment interspersed by thin heavy mineral rich bands forming shallow-gradient beach ridges that have steadily prograded seaward during the regression after the mid-Holocene sea level highstand. As the beach ridges prograded seaward, a small river feeding directly from the Truong Son Range meandered across the strandplain and significantly modified the embayment. Recently, the river has become much reduced due to anthropogenic modification of the river and landscape. Prior to the Holocene marine highstand, the area was similarly characterized by a surface of prograding beach ridges that were eroded by

  17. Evolution of the Lian River coastal basin in response to Quaternary marine transgressions in Southeast China

    Science.gov (United States)

    Tang, Yongjie; Zheng, Zhuo; Chen, Cong; Wang, Mengyuan; Chen, Bishan

    2018-04-01

    The coastal basin deposit in the Lian River plain is among the thickest Quaternary sequences along the southeastern coast of China. The clastic sediment accumulated in a variety of environmental settings including fluvial, channel, estuary/coastal and marine conditions. Detailed investigation of lithofacies, grain-size distributions, magnetic susceptibility, microfossils and chronology of marine core CN01, compared with regional cores, and combined with offshore seismic reflection profiles, has allowed us to correlate the spatial stratigraphy in the inner and outer plain and the seismic units. Grain size distribution analysis of core CN-01 through compositional data analysis and multivariate statistics were applied to clastic sedimentary facies and sedimentary cycles. Results show that these methods are able to derive a robust proxy information for the depositional environment of the Lian River plain. We have also been able to reconstruct deltaic evolution in response to marine transgressions. On the basis of dating results and chronostratigraphy, the estimated age of the onset of deposition in the Lian River coastal plain was more than 260 kyr BP. Three transgressive sedimentary cycles revealed in many regional cores support this age model. Detailed lithological and microfossil studies confirm that three marine (M3, M2 and M1) and three terrestrial (T3, T2 and T1) units can be distinguished. Spatial correlation between the inner plain, outer plain (typical cores characterized by marine transgression cycles) and offshore seismic reflectors reveals coherent sedimentary sequences. Two major boundaries (unconformity and erosion surfaces) can be recognized in the seismic profiles, and these correspond to weathered reddish and/or variegated clay in the study core, suggesting that Quaternary sediment changes on the Lian River plain were largely controlled by sea-level variations and coastline shift during glacial/interglacial cycles.

  18. Effects of land use change and sediment mobilization on coastal contamination (Coatzacoalcos River, Mexico)

    Science.gov (United States)

    Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan-Albert; Alonso-Hernández, Carlos; Martínez-Herrera, Víctor; Pérez-Bernal, Libia Hascibe; Preda, Michel; Hillaire-Marcel, Claude; Gastaud, Janine; Quejido-Cabezas, Alberto José

    2012-04-01

    Coastal ecosystems are subject to many anthropogenic pressures, including pollution and the enhancement of sedimentation due to human activities. The lower reach of the Coatzacoalcos River is considered to be the most polluted coastal area of Mexico due to the presence of major petrochemical production centers in its watershed. In order to show the impact of land use change and industrial activities on the adjacent coastal environment of the Coatzacoalcos River, we reconstructed the historical changes of sediment transport and trace metals contamination based on the study of a 210Pb dated sediment core. Several geochemical indicators, such as clay mineral content, the concentrations of reference elements (Al, Ca, Sr, Rb) and the carbon isotope ratio (δ13C) revealed a change of sediment and contamination sources since the early 80s, in coincidence with the large industrial and urban development in the area. We conclude that the increased contaminant loads were related to terrestrial sources, likely contaminated and eroded soils from the catchment, due to extensive land use changes. Although the contaminant enrichment since the early 80s was low, As, Hg and Ni concentrations show potentially dangerous levels and exceed the USEPA-ERL concentration benchmarks, thus constituting a potential threat to marine aquatic life and humans through seafood consumption.

  19. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  20. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  1. An autonomous underwater vehicle "Maya", for monitoring coastal waters, estuaries, rivers and dams

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.A.M.Q.; Navelkar, G.S.; Madhan, R.; Dabholkar, N.A.; Prabhudesai, S.P.; Maurya, P.K.; Desa, E.; Afzulpurkar, S.; Suresh, T.; Matondkar, S.G.P.; Mahalunkar, A.

    This article demonstrates the use of Maya, Autonomous Underwater Vehicle (AUV) for monitoring coastal waters, estuaries, rivers and dams. Maya is a mono hull structure with detachable nose and tail cones. The nose cone is mission specific...

  2. Catchment2Coast: making the link between coastal resource variability and river inputs

    CSIR Research Space (South Africa)

    Monteiro, P

    2003-07-01

    Full Text Available An interdisciplinary, multi-institutional modelling research project, which will help improve scientific understanding of the linkages between river catchments and their associated coastal environments, was started in October 2002. Named...

  3. Herbicides from the Charente river and the estuarine zone (Marennes-Oleron) to the coastal seawater

    International Nuclear Information System (INIS)

    Scribe, P.; Chouakri, S.; Dupas, S.

    1999-01-01

    Spatial distribution of herbicides was investigated in the fluvial section, the estuary of the Charente river and the coastal zone (Marennes-Oleron). Monthly samplings were performed on a fluvial section from Angouleme to Saintes, at Chalonne, Nersac, Sireuil, Bourg and Brives from 1993 onwards. Estuarine and coastal sea-waters were sampled during two cruises in May 1991 and February 1992

  4. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  6. Distribution of suspended sediment in the coastal sea off the Ganges Brahmaputra River mouth: observation from TM data

    Science.gov (United States)

    Islam, Mohammad Rezwanul; Begum, Syeda Fahliza; Yamaguchi, Yasushi; Ogawa, Katsuro

    2002-05-01

    Remote sensing technique was applied to estimate suspended sediment concentration (SSC) and to understand transportation, distribution and deposition of suspended sediment in the estuary and throughout the coastal sea, off the Ganges-Brahmaputra River mouth. During low river discharge period, zone of turbidity maximum is inferred in the estuary near the shore. SSC map shows that maximum SSC reaches 1050 mg/l in this period. Magnitude of SSC is mainly owing to resuspension of the bottom surface sediments induced by tidal currents flowing over shallow water depths. The influence of depth on resuspension is farther revealed from the distribution and magnitude of SSC along the head of Swatch of No Ground (SNG) submarine canyon. During high river discharge period, huge river outflow pushed the salt wedge and flashes away the suspended sediments in the coastal sea off the river mouth. Zone of turbidity maximum is inferred in the coastal water approximately within 5-10 m depth of water, where the maximum SSC reaches 1700 mg/l. In this period, huge fluvial input of the suspended sediments including the resuspended bottom sediments and the particles remaining in suspension for longer period of time since their initial entry control mainly the magnitude of SSC. In the estuary near the shore, seasonal variation in the magnitude of SSC is not evident. In the coastal sea (>5 m water depth), seasonal influence in the magnitude of SSC could be concluded from the discrepancy between SSC values of two different seasons. Transportation and deposition of suspended sediments also experiences seasonal variations. At present, suspended sediments are being accumulated on the shallow shelf (between 5 and 10 m water depth) in low discharge period and on the mid-shelf (between 10 and 75 m water depth) during high discharge period. An empirical (exponential) relationship was found between gradual settle down of suspended sediments in the coastal sea and its lateral distance from the

  7. Nutrients Export by Rivers to the Coastal Waters of Africa: Past and Future trends

    NARCIS (Netherlands)

    Yasin, J.A.; Kroeze, C.; Mayorga, E.

    2010-01-01

    We analyze past and future trends in nitrogen (N), phosphorus (P), and carbon (C) export by rivers to the coastal waters of Africa as calculated by the Global Nutrient Export to WaterShed (NEWS) models for the period 1970–2050. Between 1970 and 2000 the total nutrient export by African rivers

  8. Past and future trends in nutrients export by rivers to the coastal waters of China

    NARCIS (Netherlands)

    Qu, H.J.; Kroeze, C.

    2010-01-01

    We analyzed the past and future trends in river export of dissolved and particulate nitrogen (N), phosphorus (P) and carbon (C) to the coastal waters of China, for sixteen rivers, as calculated by the Global NEWS models (Nutrient Export from WaterSheds). Between 1970 and 2000, the dissolved N and P

  9. Coastal circulations driven by river outflow in a variable-density 1.5-layer model

    Digital Repository Service at National Institute of Oceanography (India)

    McCreary, J.P.; Zhang, S.; Shetye, S.R.

    trapped. Immediately after the outflow is switched on, a coastal Kelvin wave is excited at the river mouth that establishes a southward current of oceanic water along the right-hand coast. In contrast, all the river water first bends to the left...

  10. The Hudson River Plume: Exploring Human Impact on the Coastal Environment

    Science.gov (United States)

    McDonnell, Janice; Duncan, Ravit; Lichtenwalner, C. Sage; Dunbar, Laura

    2010-01-01

    The Hudson River Watershed contains a variety of geologic, topographic, climatic, and hydrologic features and a diversity of land-use patterns--making it an ideal model for studying human impact on the coastal environment. In this article, the authors present the Hudson River Plume (HRP), a problem-based online module that explores nonpoint-source…

  11. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  12. Enhancing mud supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing and coastal restoration

    Science.gov (United States)

    Kemp, G. Paul; Day, John W.; Rogers, J. David; Giosan, Liviu; Peyronnin, Natalie

    2016-12-01

    Sand transport to the Mississippi River Delta (MRD) remains sufficient to build wetlands in shallow, sheltered coastal bays fed by engineered diversions on the Mississippi River (MR) and its Atchafalaya River (AR) distributary. But suspended mud (silt & clay) flux to the coast has dropped from a mean of 390 Mt y-1 in the early 1950s, to 100 Mt y-1 since 1970. This fine-grained sediment travels deeper into receiving estuarine basins and plays a critical role in sustaining existing marshes. Virtually all of the 300 Mt y-1 of missing mud once flowed from the Missouri River (MOR) Basin before nearly 100 dams were built as part of the Pick-Sloan water development project. About 100 Mt y-1 is now intercepted by main-stem Upper MOR dams closed in 1953. But the remaining 200 Mt y-1 is trapped by impoundments built on tributaries to the Lower MOR in the 1950s and 1960s. Sediment flux during the post-dam high MOR discharge years of 1973, 1993 and 2011 approached pre-dam levels when tributaries to the Lower MOR, including the Platte and Kansas Rivers, contributed to flood flows. West bank tributaries drain a vast, arid part of the Great Plains, while those entering from the east bank traverse the lowlands of the MOR floodplain. Both provinces are dominated by highly erodible loess soils. Staunching the continued decline in MR fine-grained sediment flux has assumed greater importance now that engineered diversions are being built to reconnect the Lowermost MR to the MRD. Tributary dam bypassing in the Lower MOR basin could increase mud supply to the MRD by 100-200 Mt y-1 within 1-2 decades. Such emergency measures to save the MRD are compatible with objectives of the Missouri River Restoration and Platte River Recovery Programs to restore MOR riparian habitat for endangered species. Rapid mobilization to shunt fine-grained sediments past as many as 50 Lower MOR tributary dams in several U.S. states will undoubtedly require as much regional coordination and funding in the 21st

  13. Discharge of perfluorinated compounds from rivers and their influence on the coastal seas of Hyogo prefecture, Japan.

    Science.gov (United States)

    Takemine, Shusuke; Matsumura, Chisato; Yamamoto, Katsuya; Suzuki, Motoharu; Tsurukawa, Masahiro; Imaishi, Hiromasa; Nakano, Takeshi; Kondo, Akira

    2014-01-01

    The aim of this study was to investigate 12 perfluorinated compounds (PFCs) including perfluorinated carboxylates (C4-C12) and perfluorinated alkyl sulfonates (C4, C6, and C8) in river and seawater samples to determine contamination levels in the aquatic environment of Hyogo prefecture, Japan. High levels of perfluorohexanoic acid (PFHxA; 2300-16,000 ng/L) were detected in the Samondogawa River at Tatsumi Bridge downstream of a PFC production facility; this location also had the highest mass flow rate of PFCs (3900-29,000 kg/y). Widespread contamination of coastal waters was confirmed with PFHxA as the dominant compound. Perfluorooctanoic acid was also prevalent in coastal waters. The concentration of PFHxA in coastal seawater and the distance from the mouth of the Samondogawa River were inversely related. This discharge of high concentrations of PFHxA from the Samondogawa River may have affected concentrations of PFCs in Osaka Bay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas

    Science.gov (United States)

    Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High

  15. Occurrence and specific congener profile of 40 polybrominated diphenyl ethers in river and coastal sediments from Portugal.

    Science.gov (United States)

    Lacorte, Sílvia; Guillamón, Míriam; Martínez, Elena; Viana, Paula; Barceló, Damià

    2003-03-01

    Forty polybrominated diphenyl ethers (PBDEs), from mono- through hepta-brominated, were analyzed in river and coastal sediment samples of the eight main river basins of Portugal to investigate the occurrence, geographical distribution, and detailed congener profiles. Thirty-two sediment samples taken along the different rivers from inland to the open sea revealed an increase toward the river mouth with a total PBDE concentration of 20 ng/g-dw, and levels decreased to 0.5 ng/g-dw in coastal sediments. PBDEs were detected in all samples analyzed, indicating a diffuse source of pollution in the aquatic environments. Maximum levels were encountered in sediments collected close to urban and industrial areas. Of 40 congeners included in the analytical work, 17 congeners were detected in river sediments. BDE 47 was found in all samples analyzed whereas BDEs 100 and 99 were found in more than 26 out of 32 samples analyzed at concentrations from 0.03 to 10 ng/g-dw. This study is unique in showing the presence of previously nondescribed lower brominated PBDEs in riverine and marine sediments. BDEs 7, 11, 12+13, 15, 30, 32, 17, 25, 28+33, 49, 75, and 71 were identified in two to five samples with a median of 0.03-0.55 ng/g-dw. The analytical method developed consisted of the use of Soxhlet extraction with a novel cleanup method employing alumina cartridges and analysis by gas chromatography-mass spectrometry operated in negative chemical ionization mode.

  16. The Fate and Fortune of the River Mersey Plume: Using Ocean gliders to validate and improve coupled coastal ocean models.

    Science.gov (United States)

    Palmer, M.; O'Neill, C.; Spingys, C.; Mahaffey, C.; Polton, J.

    2012-04-01

    The River Mersey is the major source of freshwater into the Liverpool Bay region of the Irish Sea. The region has been described as a region of freshwater influence (ROFI) since the dominant control on vertical stratification is local gradients in salinity. The River Mersey is fed by tributaries covering a wide variety of land uses, including heavily populated areas, arable and livestock farming, heavy industry and chemical processing plants, finally passing through the city of Liverpool. Understanding the fate of freshwater within this system is therefore vital not only to understand the physical structure of the coastal ocean but also to identify biogeochemical, pathogen and pollutant pathways. In this paper we combine data from the Liverpool Bay Coastal Observatory (cobs.pol.ac.uk) with data from a novel deployment of an ocean glider (Slocum) which was used to track the River Mersey plume over a three week period in February 2011. Glider data was successfully collected in water as shallow as 15m and provided high temporal and spatial resolution physical and biogeochemical data. This allows identification of the development and evolution of the physical structure of the plume and the biological response to nutrient rich Mersey water as it enters the coastal system. Glider and observatory data are used to test and improve the capabilities of coupled POLCOMS (3-D hydrodynamics) and ERSEM (ecosystem) models in reproducing the observed plume behavior.

  17. Assessment of risk factors in radionuclides pollution of coastal zone and river basins by numerical modelling

    International Nuclear Information System (INIS)

    Tsitskishvili, M.; Tsitskishvili, L.; Kordzakhia, G.; Diasamidze, R.; Shaptoshvili, A.; Valiaev, A.

    2006-01-01

    Full text: All types of industrial activities require the norms of protection, assessment of corresponding risks to preserve the pollution and degradation of corresponding areas. To make available the sustainable development of the country the risk assessment of possible accidents on the big enterprises is foreseen that provides preparedness of the country and possibility of the prevention measures and mitigation of the accidents. While big anthropogenic accidents in mountainous countries - the main paths for transportation of the pollution are the rivers and sea basins. Due to overpopulation of these areas assessment of the pollution risks are very important. For this aim the special deterministic models on the basis of passive admixture's turbulence diffusion equation is used. For numerical calculations Mc Kormack's predictor-corrector two steps scheme is used. The scheme is disintegrated, second order in space and time. Such scheme is established because the turbulent velocities very differ in horizontal and vertical directions and model allows implementing singular independent steps in different directions. Grid step for the model is 26.88 km in horizontal direction and 20 m m in vertical until 200 m. Time step is equal to 4 hours and computational time period - 4 months. Number of grid points is equal to 4983 for all calculation areas. Computations are carried out separately for big rivers basins as well as for Black and Caspian Seas water areas. The model calculations are made for cases with various locations of pollutant sources including accidental throws. For different realistic scenarios are calculated the concentrations of admixtures. The directions of their propagation are also determined. The risks are calculated in comparison with the Maximum Permissible Concentrations (MPC) of the pollutants according to achieved results. That gives possibility to define the most vulnerable areas in coastal zones. Realized methodology is verified by means of various

  18. Including granulometric sediment coastal data composition into the Black Sea GIS

    Science.gov (United States)

    Zhuk, Elena; Khaliulin, Alexey; Krylenko, Marina; Krylenko, Viacheslav; Zodiatis, George; Nikolaidis, Marios; Nikolaidis, Andreas

    2017-09-01

    The module structure of the Black Sea GIS allows the increasing of its functionality, including new data types and defining new procedures accessing them, their visualization and integration with existing data by their conjoint processing and representation. The Black Sea GIS is released as free software; Mapserver is used as a mapping service; MySQL DBMS works with relational data. A new additional feature provided, is the ability of including coastal data obtained in SB SIO RAS. The data represent granulometric composition of the Anapa bay-bar sediments. The Anapa bay-bar is an accumulative sand form (about 50 km long) located on the northwest Russian Black Sea coast. The entire bay-bar and especially its southern part with sand beaches 50-200 m wide is intensively used in recreation. This work is based on the results of field studies of 2010-2014 in the southern part of the Anapa bay-bar researched by scientists of the Shirshov Institute of Oceanology RAS. Since the shore under consideration has no clearly pronounced reference points, "virtual" points located within 1 km distance from each other were selected. Transversal profiles cross these points. The granulometric composition was studied along with 45 profiles. The samples taken in every profile were from the most characteristic morphological parts of the beach. In this study we used shoreline zone samples. Twenty one granule fractions (mm) were separated in the laboratory. The module which processes coastal data allows to select coastal data based on territory/region and granulometric sediment composition. Also, it allows to visualize coastal maps with user-selected features combined with other GIS data.

  19. Modeled future peak streamflows in four coastal Maine rivers

    Science.gov (United States)

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As

  20. Carbon dioxide and methane dynamics in a human-dominated lowland coastal river network (Shanghai, China)

    Science.gov (United States)

    Yu, Zhongjie; Wang, Dongqi; Li, Yangjie; Deng, Huanguang; Hu, Beibei; Ye, Mingwu; Zhou, Xuhui; Da, Liangjun; Chen, Zhenlou; Xu, Shiyuan

    2017-07-01

    Evasion of carbon dioxide (CO2) and methane (CH4) in streams and rivers play a critical role in global carbon (C) cycle, offsetting the C uptake by terrestrial ecosystems. However, little is known about CO2 and CH4 dynamics in lowland coastal rivers profoundly modified by anthropogenic perturbations. Here we report results from a long-term, large-scale study of CO2 and CH4 partial pressures (pCO2 and pCH4) and evasion rates in the Shanghai river network. The spatiotemporal variabilities of pCO2 and pCH4 were examined along a land use gradient, and the annual CO2 and CH4 evasion were estimated to assess its role in regional C budget. During the study period (August 2009 to October 2011), the overall mean pCO2 and median pCH4 from 87 surveyed rivers were 5846 ± 2773 μatm and 241 μatm, respectively. Internal metabolic CO2 production and dissolved inorganic carbon input via upstream runoff were the major sources sustaining the widespread CO2 supersaturation, coupling pCO2 to biogeochemical and hydrological controls, respectively. While CH4 was oversaturated throughout the river network, CH4 hot spots were concentrated in the small urban rivers and highly discharge-dependent. The Shanghai river network played a disproportionately important role in regional C budget, offsetting up to 40% of the regional terrestrial net ecosystem production and 10% of net C uptake in the river-dominated East China Sea fueled by anthropogenic nutrient input. Given the rapid urbanization in global coastal areas, more research is needed to quantify the role of lowland coastal rivers as a major landscape C source in global C budget.

  1. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  2. 'Building with nature' : The new Dutch approach to coastal and river works

    NARCIS (Netherlands)

    De Vriend, H.J.; Van Koningsveld, M.; Aarninkhof, S.

    2014-01-01

    The Netherlands has adopted a new, proactive approach to developing its extensive coastal and river works called ‘building with nature’. Rather than simply minimising or mitigating the environmental impact of harbours, navigation channels, land reclamation and flood defences, the idea is to make use

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Hudson River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  4. Nutrient pollution of coastal rivers, bays, and seas

    Science.gov (United States)

    Howarth, Robert; Anderson, Donald; Cloern, James; Elfring, Chris; Hopkinson, Charles; Lapointe, Brian; Malone, Tom; Marcus, Nancy; McGlathery, Karen; Sharpley , Andrew; Walker, Dan

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States.

  5. Flood protection structure detection with Lidar: examples on French Mediterranean rivers and coastal areas

    Directory of Open Access Journals (Sweden)

    Trmal Céline

    2016-01-01

    Full Text Available This paper aims at presenting different topographic analysis conducted with GIS software in order to detect flood protection structures, natural or artificial, in river floodplains but also in coastal zones. Those computations are relevant because of the availability of high-resolution lidar digital terrain model (DTM. An automatic detection permits to map the footprint of those structures. Then detailed mapping of structure crest is achieved by implementing a least cost path analysis on DTM but also on other terrain aspects such as the curvature. On coastal zones, the analysis is going further by identifying flood protected areas and the level of protection regarding sea level. This article is illustrated by examples on French Mediterranean rivers and coastal areas.

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  7. The effects of dams in rivers on N and P export to the coastal waters in Indonesia in the future

    NARCIS (Netherlands)

    Suwarno, D.; Löhr, A.; Kroeze, C.; Widianarko, B.; Strokal, M.

    2015-01-01

    We used Global NEWS to analyze the effects of dams in large rivers on nitrogen (N) and phosphorus (P) inputs to the coastal waters of Indonesia for the period 1970–2050. We model N and P export by rivers, taking into account nutrient retention on land, during river transport and in dammed

  8. Dynamics and sources of pharmaceutically active compounds in a coastal Mediterranean river during heavy rains.

    Science.gov (United States)

    Reoyo-Prats, Brice; Aubert, Dominique; Sellier, Amélie; Roig, Benoit; Palacios, Carmen

    2018-03-01

    Concentrations of pharmaceutically active compounds (PACs) in freshwater systems depend on numerous factors such as land use and hydrometeorological conditions. In the Mediterranean, heavy rain events are of particular importance as they highly influence the concentration of micropollutants found in freshwater and are a source of recurrent first foul flushes due to combined sewer overflows (CSOs). In this study, we seek to assess the dynamics of pharmaceuticals during storm events in coastal Mediterranean rivers at a fine scale and to determine their contribution to multicontamination phenomena owing to CSOs. Our results showed that, while dissolved PACs followed the same trend as other contaminants, i.e., they increased significantly during CSOs, PACs in the total fraction did not peak yet maintained their already high concentrations for slightly longer due to their release via CSOs. Pharmaceutical concentrations for both the dissolved and the total fraction were dramatically diluted during the peak river flow. A fine-scale follow-up of PACs dynamics in the total fraction, including the differentiation of sewer overflows from both the right and left river banks, as well as the analyses of a large amount of PACs molecules, allowed us to clearly identify their major sources. While domestic inputs were dominated by nicotine and caffeine, the use of gadolinium (an MRI contrast agent) as a marker, attributed the main source of medical drugs such as tramadol, ibuprofen, and diclofenac to the major public hospital of the region. Thus, identifying major sources of PACs and implementing adapted water treatments directly at those sources would be the most cost-efficient alternative to cope with pharmaceutical drugs in coastal Mediterranean aquatic environments. Moreover, PACs behavior differed depending on the molecules considered and the source of these molecules, but we could not establish a direct link between their behavior and their chemical or physical properties. Our

  9. Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf

    Science.gov (United States)

    Tarya, A.; Hoitink, A. J. F.; Vegt, M. Van der; van Katwijk, M. M.; Hoeksema, B. W.; Bouma, T. J.; Lamers, L. P. M.; Christianen, M. J. A.

    2018-02-01

    The Berau Continental Shelf (BCS) in East Kalimantan, Indonesia, harbours various tropical marine ecosystems, including mangroves, seagrass meadows and coral reefs. These ecosystem are located partly within reach of the Berau River plume, which may affect ecosystem health through exposure to land-derived sediments, nutrients and pollutants carried by the plume. This study aims (1) to assess the exposure risk of the BCS coastal ecosystems to river plume water, measured as exposure time to three different salinity levels, (2) to identify the relationships between these salinity levels and the abundance and diversity of coral and seagrass ecosystems, and (3) to determine a suitable indicator for the impacts of salinity on coral reef and seagrass health. We analysed hydrodynamic models, classified salinity levels, and quantified the correlations between the salinity model parameters and ecological metrics for the BCS systems. An Empirical Orthogonal Functions (EOF) analysis revealed three modes of river plume dispersal patterns, which strongly reflect monsoon seasonality. The first mode, explaining 39% of the variability, was associated with the southward movement of the plume due to northerly winds, while the second and third modes (explaining 29% and 26% of the variability, respectively) were associated with the northeastward migration of the plume related to southwesterly and southerly winds. Exposure to low salinity showed higher correlations with biological indicators than mean salinity, indicating that low salinity is a more suitable indicator for coastal ecosystem health. Significant correlations (R2) were found between exposure time to low salinity (days with salinity values below 25 PSU) with coral cover, coral species richness, seagrass cover, the number of seagrass species, seagrass leaf phosphorus, nitrogen, C:N ratio and iron content. By comparing the correlation coefficients and the slopes of the regression lines, our study suggests that coral reefs are

  10. The coastal landscape of the river of silver basis for management

    International Nuclear Information System (INIS)

    Martinez, A.; Fernandez, E.; Cendom, A.; Vila, L.

    2013-01-01

    A complex of morphogenic, ecologic and cultural factors converge in coastal landscape modelling. The goal of this research is to identify the coastal environment as a water-land interphase in the Rio de la Plata, Uruguay. The area of work is within Punta Gorda, Colonia Department, and Maldonado River, in the Maldonado Department. An integrated landscape approach is used to interpret the complex of natural areas. The knowledge of natural complex is the goal of this research using the vegetation dynamic as an expression of site condition. Cartography at scale 1:50.000, colour composition of Landsat images at scale 1:100.000 (1994), aerial photographs at scale 1:10.000 (1994), are the source of information. A methodology of three components was organized: a typology of the coastal border, scale 1:500.000, a littoral morphology analysis using maps and aerial photographs, scale 1:10.000 and the coastal landscape, scale 1:100.000. A land cover legend was organized to integrate: geomorphology, vegetation and human intervention. It has 12 classes y 4 subclasses of land cover. This information was integrated in an analysis of an ideal coastal outline that represents the ideal disposition of the landscape elements in a cross and vertical perspective. The final goal of this research is an inventory of coastal uniform sectors. The research was performed within an approach of environmental factors equilibrium, such as geomorphology, environment, biologic and anthropogenic, and natural’s process in progress. Specific and general coastal problems are identified. A conceptual coastal landscape approach, a coastal cartography and setting of landscape units are the final products

  11. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    assess the constraints and potentialities of these saline soils and propose sustainable soil management strategies. One transect (2.2 km) oriented ... Keywords: soil salinity, soil management, Saloum river basin, Senegal, West Africa. INTRODUCTION ...... yield of potato in eastern India. Agriculture Water Management, 94:.

  12. A multi-scale integrated modeling framework to measure comprehensive impact of coastal reclamation activities in Yellow River estuary, China.

    Science.gov (United States)

    Xu, Yan; Cai, Yanpeng; Sun, Tao; Tan, Qian

    2017-09-15

    In this paper, an improved multi-scale integrated modeling framework has been established to evaluate coastal reclamation intensity (CRI). About 7 indicators are considered, including ecological degradation intensity (EDI), hydrodynamic disturbance (IHD), engineering types, water quality, economic investment, population growth, and reclaimed land area. Meanwhile, an integrated framework enhanced methods in terms of (a) measuring intensity of ecological degradation process under multi-scale impact, (b) developing the indicator system of CRI, and discussing the driving forces and trends of coastal reclamation, (c) determining fuzzy preference relations of weight and calculating the specific value of CRI with the case study areas of Yellow River estuary from 2000 to 2015. As the result, the CRI has been expanded unceasingly in recent years. The total growth rate from 2000 to 2015 is about 37.97%. It is concluded that CRI has climbed to a higher intensity level in resent 15years. Copyright © 2017. Published by Elsevier Ltd.

  13. A methodological approach to rapid assessment of a river flood in coastal waters. First test in the Po River delta

    Science.gov (United States)

    Campanelli, Alessandra; Bellafiore, Debora; Bensi, Manuel; Bignami, Francesco; Caccamo, Giuseppe; Celussi, Mauro; Del Negro, Paola; Ferrarin, Christian; Marini, Mauro; Paschini, Elio; Zaggia, Luca

    2014-05-01

    As part of the actions of the flagship project RITMARE (Ricerca ITaliana per il MARE) a daily oceanographic survey was performed on 29th November 2013 in front of the Po River delta (Northern Adriatic Sea). The Po river affects a large part of the Northern Adriatic Sea with strong implications on the circulation and functionality of the basin. Physical-chemical and biological properties of coastal waters were investigated after a moderate flood occurred around 25th-27th November. The cruise activities, carried out using a small research boat, were mainly focused on the test of a methodological approach to investigate the environment variability after a flood event in the framework of rapid assessment. The effects of the flood on the coastal waters, have been evaluated in the field using operational forecasts and real-time satellite imagery to assist field measurements and samplings. Surface satellite chlorophyll maps and surface salinity and current maps obtained from a numerical model forced by meteorological forecast and river data were analyzed to better identify the Po plume dispersion during and after the event in order to better locate offshore monitoring stations at the sea. Profiles of Temperature, Salinity, Turbidity, Fluorescence and Colored Dissolved Organic Matter (CDOM) throughout the water column were collected at 7 stations in front of the Po River delta. Sea surface water samples were also collected for the analysis of nutrients, Dissolved Organic Carbon (DOC) and CDOM (surface and bottom). The CDOM regulates the penetration of UV light throughout the water column and mediates photochemical reactions, playing an important role in many marine biogeochemical processes. Satellite images showed a strong color front that separates the higher-chlorophyll coastal water from the more oligotrophic mid-basin and eastern boundary Adriatic waters. In front of the river mouth, the surface layer was characterized by low salinity (14-15), high turbidity (8-11 NTU

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: WETLANDS (Environmental Sensitivity Index Wetland Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal wetland habitats for the Hudson River classified according to the Environmental Sensitivity Index (ESI)...

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for the Hudson River, classified according to the Environmental...

  16. Cave Buttes Dam Master Plan, Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1982-03-01

    New River Dam (including May 1982 New River to Skunk Creek) Part 4--Skunk Creek and New and July 1984 Agua Fria Rivers below the Arizona Canal...While all of the basin is accessible to pedestrians, some areas are difficult to reach by car; vehicular access is virtually impossible when the...birds. Since there is virtually no cholla growth in the wash area and the area is relatively flat, the pointers will be able to run long distances

  17. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    Science.gov (United States)

    Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  18. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    Science.gov (United States)

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  19. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  20. Cesium-137 in deer: Savannah River Plant vs. southeastern coastal plain herds

    International Nuclear Information System (INIS)

    Watts, J.R.; Rabon, E.W.; Dicks, A.S.

    1979-01-01

    The 137 Cs content in deer killed during programmed hunts at the Savannah River Plant (SRP) has averaged 9.0 pCi/g. This value, based on measurements of 13,907 deer taken over 14 years (1965 to 1978), similar to the value obtained for 552 deer from other southeastern Coastal Plain locations, indicating the 137 Cs content is due to fallout from the atmospheric testing of nuclear weapons rather than from SRP operations. The computerized SRP data base for each harvested deer includes age, sex, weight, cesium content, kill location, date, and the hunter's name. Analysis of these data enables the estimation of population dose from ingestion of the edible meat. Consumption of all edible meat from deer killed at SRP from 1965 to 1978 gives a whole body population dose of 196 man-rem from 137 Cs. Assuming an annual consumption rate of 20 kg gives an average individual whole body dose of 13 mrem, about 10% of local annual background level. The radiation dose from 40 K of natural potassium content of deer is comparable to the radiation dose from 137 Cs

  1. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  2. Identification and Antimicrobial Resistance of Enterococcus Spp. Isolated from the River and Coastal Waters in Northern Iran

    Science.gov (United States)

    Hajiesmaili, Reza; Talebjannat, Maryam; Yahyapour, Yousef

    2014-01-01

    As fecal streptococci commonly inhabit the intestinal tract of humans and warm blooded animals, and daily detection of all pathogenic bacteria in coastal water is not practical, thus these bacteria are used to detect the fecal contamination of water. The present study examined the presence and the antibiotic resistance patterns of Enterococcus spp. isolated from the Babolrud River in Babol and coastal waters in Babolsar. Seventy samples of water were collected in various regions of the Babolrud and coastal waters. Isolated bacteria were identified to the species level using standard biochemical tests and PCR technique. In total, 70 Enterococcus spp. were isolated from the Babolrud River and coastal waters of Babolsar. Enterococcus faecalis (68.6%) and Enterococcus faecium (20%) were the most prevalent species. Resistance to chloramphenicol, ciprofloxacin, and tetracyclin was prevalent. The presence of resistant Enterococcus spp. in coastal waters may transmit resistant genes to other bacteria; therefore, swimming in such environments is not suitable. PMID:25525617

  3. Spatial Variability of Escherichia coli in Rivers of Northern Coastal Ecuador

    Directory of Open Access Journals (Sweden)

    Gouthami Rao

    2015-02-01

    Full Text Available The use of contaminated surface water continues to be a pressing issue in areas of the world where people lack improved drinking water sources. In northern coastal Ecuador, many communities rely on untreated surface water as their primary source of drinking water. We undertook a study to explore how microscale river hydrodynamics affect microbial water quality at community water collection locations at three rivers with varying stream velocity and turbidity profiles. To examine how the distance from river shore and physiochemical water quality variables affect microbial contamination levels in the rivers; we collected a total of 355 water samples within six villages on three rivers; and tested for Escherichia coli concentrations using the IDEXX Quanti-tray method. We found that log10 E. coli concentrations decreased with increasing distance from shore (β = −0.017; p = 0.003. Water in the main channel had E. coli concentrations on average 0.12 log10 lower than within eddies along the river shore and 0.27 log10 lower between the sample closest to shore and any sample >6 m from the shore. Higher E. coli concentrations were also significantly associated with increased turbidity (β = 0.003; p < 0.0001 and decreased dissolved oxygen levels (β = −0.310; p < 0.0001. The results of this study can help inform community members about the safest locations to collect drinking water and also provide information on watershed scale transport of microbial contaminants between villages.

  4. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006–2012)

    Science.gov (United States)

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-01-01

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 105, 3.1 × 106 and 2.8 × 105 tons, respectively, while in 2006, the nutrient load was 7.4 × 105, 2.2 × 106 and 1.6 × 105 tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 105 tons), 70% of TN (2.2 × 106 tons) and 87% of TP (2.5 × 105 tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger. PMID:26582206

  5. Nutrient Loads Flowing into Coastal Waters from the Main Rivers of China (2006-2012).

    Science.gov (United States)

    Tong, Yindong; Zhao, Yue; Zhen, Gengchong; Chi, Jie; Liu, Xianhua; Lu, Yiren; Wang, Xuejun; Yao, Ruihua; Chen, Junyue; Zhang, Wei

    2015-11-19

    Based on monthly monitoring data of unfiltered water, the nutrient discharges of the eight main rivers flowing into the coastal waters of China were calculated from 2006 to 2012. In 2012, the total load of NH3-N (calculated in nitrogen), total nitrogen (TN, calculated in nitrogen) and total phosphorus (TP, calculated in phosphorus) was 5.1 × 10(5), 3.1 × 10(6) and 2.8 × 10(5) tons, respectively, while in 2006, the nutrient load was 7.4 × 10(5), 2.2 × 10(6) and 1.6 × 10(5) tons, respectively. The nutrient loading from the eight major rivers into the coastal waters peaked in summer and autumn, probably due to the large water discharge in the wet season. The Yangtze River was the largest riverine nutrient source for the coastal waters, contributing 48% of the NH3-N discharges, 66% of the TN discharges and 84% of the TP discharges of the eight major rivers in 2012. The East China Sea received the majority of the nutrient discharges, i.e. 50% of NH3-N (2.7 × 10(5) tons), 70% of TN (2.2 × 10(6) tons) and 87% of TP (2.5 × 10(5) tons) in 2012. The riverine discharge of TN into the Yellow Sea and Bohai Sea was lower than that from the direct atmospheric deposition, while for the East China Sea, the riverine TN input was larger.

  6. Metal discharges by Sinaloa Rivers to the coastal zone of NW Mexico.

    Science.gov (United States)

    Frías-Espericueta, M G; Mejía-Cruz, R; Osuna López, I; Muy-Rangel, M D; Rubio-Carrasco, W; Aguilar-Juárez, M; Voltolina, D

    2014-02-01

    The aim of this work was to survey the discharges of dissolved and particulate Cd, Cu, Fe, Mn, Pb and Zn of the eight main rivers of Sinaloa State to the Mexican coastal environment. Zn was the most abundant dissolved metal and Fe was the most abundant particulate (8.02-16.90 and 51.8-1,140.3 μg/L, respectively). Only particulate Mn had significantly (p = 0.028) higher values in summer-fall (rainy season), whereas the significantly (p = 0.036) higher values of dissolved Zn were observed in winter and spring. The highest annual total discharges to Sinaloa coastal waters were those of the rivers San Lorenzo and Piaxtla (>2 × 10(3) m.t.) and the lowest those of rivers Baluarte and El Fuerte (349 and 119 m.t., respectively). Pb concentrations may become of concern, because they are higher than the value recommended for the welfare of aquatic communities of natural waters.

  7. Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation

    Directory of Open Access Journals (Sweden)

    M. Egüen

    2015-06-01

    Full Text Available Spain is one of the world's countries with a large number of reservoirs per inhabitant. This intense regulation of the fluvial network during the 20th century has resulted in a decrease in flood events, a higher availability of water resources, and a high development of the irrigated crop area, even in the drier regions. For decades, flood perception was reduced since the development of reservoirs protected the floodplains of river; this resulted in later occupation of soil by urban, agricultural and industrial uses. In recent years, an increasing perception of flood events is observed, associated to the higher damage associated to extreme events in the now occupied areas, especially in coastal watersheds. This work shows the change on flood risk in the coastal areas of three hydrographic basins in Andalusia (South Spain during the reservoir expansion period: the Guadalete, Guadalquivir and Guadalhorce river basins. The results differentiate the impact of the regulation level on both the cumulative distribution functions of the fluvial discharge near the river mouth, for different time scales, and the associated damage related to the enhanced soil occupation during this period. The different impact on the final medium and long term flood risk is also assessed in terms of the storage capacity per unit area throughout the basins, the effective annual runoff/precipitation index, the frequency of sea storms, and the human factor (change in social perception of floods, for different intervals in the flood extreme regime. The implications for adaptation actions is also assessed.

  8. Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation

    Science.gov (United States)

    Egüen, M.; Polo, M. J.; Gulliver, Z.; Contreras, E.; Aguilar, C.; Losada, M. A.

    2015-06-01

    Spain is one of the world's countries with a large number of reservoirs per inhabitant. This intense regulation of the fluvial network during the 20th century has resulted in a decrease in flood events, a higher availability of water resources, and a high development of the irrigated crop area, even in the drier regions. For decades, flood perception was reduced since the development of reservoirs protected the floodplains of river; this resulted in later occupation of soil by urban, agricultural and industrial uses. In recent years, an increasing perception of flood events is observed, associated to the higher damage associated to extreme events in the now occupied areas, especially in coastal watersheds. This work shows the change on flood risk in the coastal areas of three hydrographic basins in Andalusia (South Spain) during the reservoir expansion period: the Guadalete, Guadalquivir and Guadalhorce river basins. The results differentiate the impact of the regulation level on both the cumulative distribution functions of the fluvial discharge near the river mouth, for different time scales, and the associated damage related to the enhanced soil occupation during this period. The different impact on the final medium and long term flood risk is also assessed in terms of the storage capacity per unit area throughout the basins, the effective annual runoff/precipitation index, the frequency of sea storms, and the human factor (change in social perception of floods), for different intervals in the flood extreme regime. The implications for adaptation actions is also assessed.

  9. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    Science.gov (United States)

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  10. Environmental impact of mud volcano inputs on the anthropogenically altered Porong River and Madura Strait coastal waters, Java, Indonesia

    Science.gov (United States)

    Jennerjahn, Tim C.; Jänen, Ingo; Propp, Claudia; Adi, Seno; Nugroho, Sutopo Purwo

    2013-09-01

    Increasing human modifications of the coastal zone are endangering the integrity of coastal ecosystems. This is of particular importance in SE Asia where large parts of the population live in the coastal zone and are economically dependent on its resources. The region is also affected by a high frequency of extreme natural events like storms, earthquakes and volcanic eruptions. The eruption of a mud volcano, nicknamed "Lusi", near the city of Sidoarjo in eastern Java, Indonesia, on May 29, 2006 represents such an event. One of the measures to minimize the potential detrimental effects to the environment and the local population was to channelise part of the mud into the nearby Porong River, the major distributary of the Brantas River, which is affected by intensive land use and hydrological alterations in a densely populated catchment. Here we report for the first time on the effects of the mud volcano on the aquatic environment. The "Lusi" input more than doubled the suspended matter and particulate organic carbon load of the river. Moreover, we found decomposition of the additional organic matter worsening oxygen depletion in the river and adjacent coastal waters that can severely affect the well-being of aquatic organisms. We conclude that the mud volcano input adds to the adverse effects of human activities in the river catchment on the ecology and biogeochemistry of the estuary and Madura Strait coastal waters.

  11. Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea

    OpenAIRE

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-01-01

    In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious comm...

  12. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    One transect (2.2 km) oriented East-West, including 9 soil profiles located on three topographic units: floodplain, low terrace, and middle terrace was selected. Soil chemical properties (electrical conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each soil horizon (n = 45).

  13. Coastal habitat and biological community response to dam removal on the Elwha River

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  14. Technical Appendix for Development for Modified Streamflows 1928-1989 : Columbia River & Coastal Basin.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; A.G. Crook Company

    1993-06-01

    The report ``Adjusted Streamflow and Storage 1928-1989`` contains listings of historical flows for the sites in the Columbia River and Coastal Basins. This section of the Technical Appendix provides for the site specific procedures used to determine those historical flows. The study purpose, authority, and definitions are given in the main report. The purpose of this section of the Technical Appendix is to document the computational procedures used at each of the project sites to develop historical flows for the period July 1928--September 1989.

  15. Coastal erosion's influencing factors include development, dams, wells, and climate change

    International Nuclear Information System (INIS)

    Aubrey, D.G.

    1993-01-01

    The demographic flight to the coast, begun in early civilization, continues unabated worldwide according to latest studies. The percentage of population living on the coast is expected to remain relatively constant over the next few decades, but the total numbers will increase as the population increases. Recent coastal battering by hurricanes and extratropical storms poses questions about coastal habitability and the real economics of coastal development. Repair costs are borne by private individuals as well as the public in various direct and indirect ways. As these costs escalate, it is fitting to ask what the future portends for storm and coastal-flood damage. It is known that development pressures will continue to increase along the coast, but what will happen concurrently to natural-hazard threats to this infrastructure? Though much emphasis has been placed on sea-level rise, the broader issue is climate change in general. Here, the author considers climate change in both its natural and anthropogenic perspectives. Without becoming mired in the debate about the greenhouse effect and human influence on climatic shifts, some of the broad classes of natural hazards that might accompany climate change are examined. There are several categories of possible global-change effects on coastal erosion. In the early 1980's, an Environmental Protection Agency (EPA) report postulated increases in global sea level up to 4 meters during the next 100 years. Though balanced somewhat by other, lower estimates of sea-level rise, this higher extreme grabbed public attention. During the next decade, scientists attempted to concur on a more reasonable estimate of global sea-level rise due to climate change. Recent credible estimates suggest that approximately 10 to 20 percent of EPA's earlier maximum estimate is most reasonable

  16. Moderate effect of damming the Romaine River (Quebec, Canada) on coastal plankton dynamics

    Science.gov (United States)

    Senneville, Simon; Schloss, Irene R.; St-Onge Drouin, Simon; Bélanger, Simon; Winkler, Gesche; Dumont, Dany; Johnston, Patricia; St-Onge, Isabelle

    2018-04-01

    Rivers' damming disrupts the seasonal cycle of freshwater and nutrient inputs into the marine system, which can lead to changes in coastal plankton dynamics. Here we use a 3-D 5-km resolution coupled biophysical model and downscale it to a 400-m resolution to simulate the effect of damming the Romaine River in Québec, Canada, which discharges on average 327 m3 s-1 of freshwater into the northern Gulf of St. Lawrence. Model results are compared with environmental data obtained from 2 buoys and in situ sampling near the Romaine River mouth during the 2013 spring-summer period. Noteworthy improvements are made to the light attenuation parametrization and the trophic links of the biogeochemical model. The modelled variables reproduced most of the observed levels of variability. Comparisons between natural and regulated discharge simulation show differences in primary production and in the dominance of plankton groups in the Romaine River plume. The maximum increase in primary production when averaged over the inner part of Mingan Archipelago is 41%, but 7.1% when the primary production anomaly is averaged from March to September.

  17. Past and future trends in nutrients export by rivers to the coastal waters of China.

    Science.gov (United States)

    Qu, Hong Juan; Kroeze, Carolien

    2010-04-01

    We analyzed the past and future trends in river export of dissolved and particulate nitrogen (N), phosphorus (P) and carbon (C) to the coastal waters of China, for sixteen rivers, as calculated by the Global NEWS models (Nutrient Export from WaterSheds). Between 1970 and 2000, the dissolved N and P export increased significantly, while export of other nutrients changed less. We analyzed the future trends (2000-2050) for the Millennium Ecosystem Assessment (MEA) scenarios. In general, the largest increases of dissolved nutrients export are projected for the Global Orchestration scenario, assuming a globalized world and a reactive approach toward environmental management. Future trends in river export of nutrients vary largely among basins, nutrient forms and scenarios. We calculate both increasing and decreasing trends between 2000 and 2050. We also identify the sources contributing to the nutrient export. For selected river basins we present results for alternative scenarios, which are based on the Global Orchestration scenario, but assume more environmental management. This illustrates how the NEWS models can be useful in regional analyses for decision making. (c) 2009 Elsevier B.V. All rights reserved.

  18. Flooding Mitigation of seawalls and river embankments to storm surges in the coastal areas of Guangdong Province, China

    Science.gov (United States)

    Wang, Xianwei; Wang, Xina

    2017-04-01

    The coastal areas of Guangdong Province, China are susceptible to the destructions of tropical cyclones and storm surges. The projected global warming, coastal subsidence and sea level rise together will bring about greater flooding risk to these areas. The seawall and river embankment have played a significant role in mitigating and preventing the coastal low-land areas from the impairment of storm surges flooding and wave runup. However, few risk assessment studies in this region consider the existence of seawall and river embankment and often overestimate the risk and potential economic loss and population affected due to storm surge flooding. This study utilizes a hydraulic model to simulate the overtop flooding and compare those without seawall and river embankment using several specific tropic storm events and extreme events of tropic storm surges in different return periods of 2, 10, 20, 50, 100, 200 and 500 years. Most seawalls are 4 or 5 meters plus another meter of wave levee above the local mean sea level. The river embankments are usually 4 or 5 meter higher than the local mean sea level as well and decrease from the outer estuary to the inner riverine. The modeling results considering seawall and river embankments and from real storm surges are in agreement with on-site survey and observations, while those without infusing seawall and river embankments overestimate the inundation condition and economic loss. Modeling results demonstrate that seawall and river embankment greatly reduce the flooding risk and prevent the low-land area from inundation for most tropic storm events, e.g., for extreme events less than 20 to 50 years, in the coastal areas of Guangdong Province, China. However, the seawall and river embankment may also cause catastrophic disasters once there is an engineering failure of seawalls and river embankment, especially once encountering with an extreme typhoon event, e.g., the 1969 super typhoon Viola in Shantou China and the 2005

  19. Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons.

    Science.gov (United States)

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie

    2014-04-03

    Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.

  20. Anthropogenic Impacts on Coastal Processes at Guadiaro River Mouth (Cádiz, Spain)

    Science.gov (United States)

    Diez, J. Javier

    2014-05-01

    The mouth of Guadiaro river (Cadiz, south of Spain) opens to the Alboran basin of the Mediterranean Sea, between the Spanish and North African coasts, next to the Strait of Gibraltar, where the Spanish coastal orientation is NNE-SSW, so that the stretch is mainly affected by eastern ("Levantes") wind and wave action. The river sources are in Grazalema Sierra (Cádiz), western Penibetic ridge, and although the Spanish Mediterranean facade is climatically dry and supports a very irregular rainfall regime, rains in that "Sierra" are among the highest and homogeneous in Spain throughout the year, much more than in the rest of the ridge. Maybe that is why the Guadiaro estuary has remained functional until preset years while all other river mouths estuaries were filled to become deltas along the eighteenth century (Diez, 1996). As most of Spanish rivers, the Guadiaro had suffered a major regulatory process and an upstream transfer has been recently implemented from its basin to the Atlantic through Guadalete river basin, therefore the mouth flow is becoming reduced, especially in its peaks. The closure of its mouth, favoured by the reduced flow of the river in a low tide basin sea, has been studied several times in the last decades (Muñoz et al, 2010), mainly because the spit closing it grows in the NNE direction when alongshore transport occurs mainly, and almost permanently, in the opposite direction. This paper is mainly based on most of those documents, whose researches have used numerical models such as SMC and MIKE 21, obtaining relevant results on the refraction but not diffraction. Two successive main structural actions that can have modified coastal processes were introduced in the environment of the mouth: a couple of jetties (1973), one of which was soon removed (1975), and the marina and harbour of Sotogrande (whose breakwater was built in 1986 and extended 1n 1994)). The influence of these elements is not well reflected in the numerical models. In this

  1. Can hydrocarbons in coastal sediments be related to terrestrial flux? A case study of Godavari river discharge (Bay of Bengal)

    Digital Repository Service at National Institute of Oceanography (India)

    Rayaprolu, K.; GopalaKrishna, V.V.J.; Naik, B.G.; Mahalakshmi, G.; Rengarajan, R.; Mazumdar, A.; Sarma, N.S.

    A sediment core aged ~250 years and deposition rate of ~2.4 mm yr-1 raised from the coastal region receiving inputs from the Godavari river was examined for n-alkanes The carbon preference index (CPI) of shortchain hydrocarbons (SHC...

  2. River export of nutrients to the coastal waters of China: the MARINA model to assess sources, effects and solutions

    NARCIS (Netherlands)

    Strokal, Maryna

    2016-01-01

    Rivers export increasing amounts of nitrogen (N) and phosphorus (P) to the coastal waters of China. This causes eutrophication problems that can damage living organisms when oxygen levels drop and threaten human health through toxic algae. We know that these problems result from human activities

  3. River export of nutrients to the coastal waters of China: the MARINA model to assess sources, effects and solutions

    NARCIS (Netherlands)

    Strokal, Maryna

    2016-01-01

    Rivers export increasing amounts of nitrogen (N) and phosphorus (P) to the coastal waters of China. This causes eutrophication problems that can damage living organisms when oxygen levels drop and threaten human health through toxic algae. We know that these problems result from human activities on

  4. Sewage-derived nutrient dynamics in highly urbanized coastal rivers, western Japan

    Science.gov (United States)

    Onodera, S. I.; Saito, M.; Jin, G.; Taniguchi, M.

    2016-12-01

    Water pollution by domestic sewage is one of the critical environmental problems in the early stage of urbanization with significant growth of population. In case of Osaka metropolitan area in Japan, the pollution was significant until 1970s, while it has been improved by the development of sewage treatment systems. However, removal of nitrogen needs the advanced process therefore relatively large part of dissolved inorganic nitrogen (DIN) is usually discharged by treated sewage effluent. Besides, increase of sewage-derived pollutant loads through the combined sewage systems during rainfall events is recognized as a new problem in recent years. However, the impacts of sewage-derived loads on the water environment of river and coastal area have not been fully evaluated in previous studies. In the present research, we aimed to examine the dynamics of sewage-derived nutrients in highly urbanized coastal rivers. Study area is located on the coastal area of Osaka bay in Seto Inland Sea, western Japan. Treated sewage effluent is discharged from three sewage treatment plants (KH, SU and SA) to a river and channels. Water and sediment samples were collected and electric conductivity (EC), chlorophyll-a (Chl.-a) and dissolved oxygen concentration (DO) were measured from the discharging points to few kilometers offshore at 100-300 m intervals. Nutrients (nitrogen, phosphorus and silica), nitrogen and carbon contents and stable isotope ratios (δ15N and δ13C) of particulate organic matter (POM) and sediment, nitrogen and oxygen stable isotope ratios (δ15N and δ18O) in nitrate (NO3-) were measured. Nitrate-nitrogen (NO3-N) concentration were significantly high near the discharging point then it decreased to offshore suggesting that impact zone of sewage effluent is about 1 km from the discharging point. Significant NO3-N uptake by phytoplankton as well as dilution process were suggested in the area. However, the impact zone expanded more than twofold during the rainfall

  5. Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: relationships to carbon functionalities.

    Science.gov (United States)

    Dodla, Syam K; Wang, Jim J; Delaune, Ronald D

    2012-10-01

    Adequate characterization of labile organic carbon (LOC) is essential to the understanding of C cycling in soil. There has been very little evaluation about the nature of LOC characterizations in coastal wetlands, where soils are constantly influenced by different redox fluctuations and salt water intrusions. In this study, we characterized and compared LOC fractions in coastal wetland soils of the Mississippi River deltaic plain using four different methods including 1) aerobically mineralizable C (AMC), 2) cold water extractable C (CWEC), 3) hot water extractable C (HWEC), and 4) salt extractable C (SEC), as well as acid hydrolysable C (AHC) which includes both labile and slowly degradable organic C. Molecular organic C functional groups of these wetland soils were characterized by (13)C solid-state nuclear magnetic resonance (NMR). The LOC and AHC increased with soil organic C (SOC) regardless of wetland soil type. The LOC estimates by four different methods were positively and significantly linearly related to each other (R(2)=0.62-0.84) and with AHC (R(2)=0.47-0.71). The various LOC fractions accounted for ≤4.3% of SOC whereas AHC fraction represented 16-49% of SOC. AMC was influenced positively by O/N-alkyl and carboxyl C but negatively by alkyl C, whereas CWEC and SEC fractions were influenced only positively by carboxyl C but negatively by alkyl C in SOC. On the other hand, HWEC fraction was found to be only influenced positively by carbonyl C, and AHC positively by O/N-alkyl and alkyl C but negatively by aromatic C groups in SOC. Overall these relations suggested different contributions of various molecular organic C moieties to LOC in these wetlands from those often found for upland soils. The presence of more than 50% non-acid hydrolysable C suggested the dominance of relatively stable SOC pool that would be sequestered in these Mississippi River deltaic plain coastal wetland soils. The results have important implications to the understanding of the

  6. Temporal patterns of migration and spawning of river herring in coastal Massachusetts

    Science.gov (United States)

    Rosset, Julianne; Roy, Allison; Gahagan, Benjamin I.; Whiteley, Andrew R.; Armstrong, Michael P.; Sheppard, John J.; Jordaan, Adrian

    2017-01-01

    Migrations of springtime Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, collectively referred to as river herring, are monitored in many rivers along the Atlantic coast to estimate population sizes. While these estimates give an indication of annual differences in the number of returning adults, links to the subsequent timing and duration of spawning and freshwater juvenile productivity remain equivocal. In this study, we captured juvenile river herring at night in 20 coastal Massachusetts lakes using a purse seine and extracted otoliths to derive daily fish ages and back-calculate spawn dates. Estimates of spawning dates were compared with fishway counts of migrating adults to assess differences in migration timing and the timing and duration of spawning. We observed a distinct delay between the beginning of the adult migration run and the start of spawning, ranging from 7 to 28 d across the 20 lakes. Spawning continued 13–48 d after adults stopped migrating into freshwater, further demonstrating a pronounced delay in spawning following migration. Across the study sites the duration of spawning (43–76 d) was longer but not related to the duration of migration (29–66 d). The extended spawning period is consistent with recent studies suggesting that Alewives are indeterminate spawners. The long duration in freshwater provides the opportunity for top-down (i.e., predation on zooplankton) and bottom-up (i.e., food for avian, fish, and other predators) effects, with implications for freshwater food webs and nutrient cycling. General patterns of spawn timing and duration can be incorporated into population models and used to estimate temporal changes in productivity associated with variable timing and density of spawning river herring in lakes.

  7. Including ecosystem dynamics in risk assessment of radioactive waste in coastal regions

    International Nuclear Information System (INIS)

    Kumblad, L.; Kautsky, U.; Gilek, M.

    2000-01-01

    Radiation protection has mainly focused on assessing and minimising risks of negative effects on human health. Although some efforts have been made to estimate effects on non-human populations, modelling of radiation risks to other components of the ecosystem have often lead to more or less disappointing results. In this paper an ecosystem approach is suggested and exemplified with a preliminary 14 C model of a coastal Baltic ecosystem. Advantages with the proposed ecosystem approach are for example the possibility to detect important but previously neglected pathways to humans since the whole ecosystem is analysed. The results from the model indicate that a rather small share of hypothetical released 14 C would accumulate in biota due to large water exchange in the modelled area. However, modelled future scenarios imply opposite results, i.e. relatively high doses in biota, due to changes of the physical properties in the area that makes a larger accumulation possible. (author)

  8. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    Science.gov (United States)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  9. Impact of wet season river flood discharge on phytoplankton absorption properties in the southern Great Barrier Reef region coastal waters

    Science.gov (United States)

    Cherukuru, Nagur; Brando, Vittorio E.; Blondeau-Patissier, David; Ford, Phillip W.; Clementson, Lesley A.; Robson, Barbara J.

    2017-09-01

    Light absorption due to particulate and dissolved material plays an important role in controlling the underwater light environment and the above water reflectance signature. Thorough understanding of absorption properties and their variability is important to estimate light propagation in the water column. However, knowledge of light absorption properties in flood impacted coastal waters is limited. To address this knowledge gap we investigated a bio-optical dataset collected during a flood (2008) in the southern Great Barrier Reef (GBR) region coastal waters. Results presented here show strong impact of river flood discharges on water column stratification, distribution of suspended substances and light absorption properties in the study area. Bio-optical analysis showed phytoplankton absorption efficiency to reduce in response to increased coloured dissolved organic matter presence in flood impacted coastal waters. Biogeophysical property ranges, relationships and parametrisation presented here will help model realistic underwater light environment and optical signature in flood impacted coastal waters.

  10. Linking benthic biodiversity to the functioning of coastal ecosystems subjected to river runoff (NW Mediterranean

    Directory of Open Access Journals (Sweden)

    Harmelin–Vivien, M. L.

    2009-12-01

    Full Text Available Continental particulate organic matter (POM plays a major role in the functioning of coastal marine ecosystems as a disturbance as well as an input of nutrients. Relationships linking continental inputs from the Rhone River to biodiversity of the coastal benthic ecosystem and fishery production were investigated in the Golfe du Lion (NW Mediterranean Sea. Macrobenthic community diversity decreased when continen¬tal inputs of organic matter increased, whereas ecosystem production, measured by common sole (Solea solea fishery yields in the area, increased. Decreases in macrobenthic diversity were mainly related to an increasing abundance of species with specific functional traits, particularly deposit-feeding polychaetes. The decrease in macrobenthic diversity did not result in a decrease, but an increase in ecosystem production, as it enhanced the transfer of continental POM into marine food webs. The present study showed that it is necessary to consider functional traits of species, direct and indirect links between species, and feedback loops to understand the effects of biodiversity on ecosystem functioning and productivity.

  11. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities

    International Nuclear Information System (INIS)

    Zou Shichun; Xu Weihai; Zhang Ruijie; Tang Jianhui; Chen Yingjun; Zhang Gan

    2011-01-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. - Highlights: → Some antibiotics were ubiquitous with high concentration in the Bohai bay, North China. → The antibiotics were mainly from the six rivers discharge around the Bay. → Antibiotics are commonly used in aquaculture activities around the Bay. → Aquaculture was suggested to be an important antibiotics source in the Bay. - River discharge and aquaculture were suggested to be important sources for antibiotics occurred in the coastal water of the Bohai Bay, North China.

  12. Nitrogen Source Apportionment for the Catchment, Estuary, and Adjacent Coastal Waters of the River Scheldt

    Directory of Open Access Journals (Sweden)

    Jan E. Vermaat

    2012-06-01

    Full Text Available Using the systems approach framework (SAF, a coupled model suite was developed for simulating land-use decision making in response to nutrient abatement costs and water and nutrient fluxes in the hydrological network of the Scheldt River, and nutrient fluxes in the estuary and adjacent coastal sea. The purpose was to assess the efficiency of different long-term water quality improvement measures in current and future climate and societal settings, targeting nitrogen (N load reduction. The spatial-dynamic model suite consists of two dynamically linked modules: PCRaster is used for the drainage network and is combined with ExtendSim modules for farming decision making and estuarine N dispersal. Model predictions of annual mean flow and total N concentrations compared well with data available for river and estuary (r² ≥ 0.83. Source apportionment was carried out to societal sectors and administrative regions; both households and agriculture are the major sources of N, with the regions of Flanders and Wallonia contributing most. Load reductions by different measures implemented in the model were comparable (~75% remaining after 30 yr, but costs differed greatly. Increasing domestic sewage connectivity was more effective, at comparatively low cost (47% remaining. The two climate scenarios did not lead to major differences in load compared with the business-as-usual scenario (~88% remaining. Thus, this spatially explicit model of water flow and N fluxes in the Scheldt catchment can be used to compare different long-term policy options for N load reduction to river, estuary, and receiving sea in terms of their effectiveness, cost, and optimal location of implementation.

  13. Sand dynamics in the Mekong River channel and export to the coastal ocean

    Science.gov (United States)

    Stephens, J. D.; Allison, M. A.; Di Leonardo, D. R.; Weathers, H. D.; Ogston, A. S.; McLachlan, R. L.; Xing, F.; Meselhe, E. A.

    2017-09-01

    Two field campaigns were conducted in the tidal and estuarine reach of the Sông Hậu distributary of the Mekong River to explore the dynamics of sand transport and export to the coastal ocean. This study examines variations in suspended sand concentration and net flux of suspended and bedload sand with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge season. Isokinetic measurements of suspended sand were used to calibrate a larger dataset of LISST profiles to report suspended sand mass concentrations. During the high discharge season, ebb and flood currents are a primary control on suspended sand concentrations. Ebb tidal flows are more capable of sand transport than flooding flows, due to river discharge augmenting tidal currents. Sand in suspension is primarily derived locally from bed material sand. Bedform transport estimates were limited, but suggest that bedload sand transport is less than 10% of net suspended sand flux. Very low concentrations of suspended sand sediment are found during the low discharge season. These low concentrations are likely caused by (1) a reduction in maximum ebb tide shear stresses associated with less freshwater input, and (2) mud mantling in the bed associated with upstream migration of estuarine circulation, that inhibits local sourcing (resuspension) of bed sand. Results of the observational study were used to calibrate a numerical model of annual sand flux to the ocean from all distributaries of the Mekong River. Annual sand export is estimated at 6.5 ± 1.6 Mt yr-1. The Định An subdistributary accounts for 32% of this total while the smaller Trần Đề subdistributary accounts for only 9%.

  14. Economic Feasibility of Underwater Adduction of Rivers for Metropolises in Semiarid Coastal Environments: Case Studies

    Directory of Open Access Journals (Sweden)

    Daniel Albiero

    2018-02-01

    Full Text Available The supply of raw water to the inhabitants of metropolises is not a trivial problem, and involves many challenges, both in terms of the quantity and quality of this water. When these metropolises are located in semiarid regions, this challenge takes on enormous proportions, and in many situations, there are no sustainable solutions, especially in times of global climate change. One hypothesis to try to mitigate this problem in coastal cities is the underwater adduction of rivers. The objective of this paper was to make the abstraction of drinking water in the mouths of great rivers near semi-arid regions. This water would be led by a pipeline below the water level and would follow the route of the seacoast, where the energy to move the water would be supplied by an axial hydraulic pump embedded in the pipeline by water-cooled electric motors driven by the energy generated from offshore wind turbines. Estimates have been made for the four metropolises in semi-arid regions: Fortaleza-Brazil, Dalian-China, Tel Aviv-Israel, and Gaza-Palestine, where it was possible to calculate economic viability through the Present Worth Value, the internal rate of return, and payback. The results indicated that Fortaleza had economic viability under restrictions. Dalian proved the ideal result. Tel Aviv and Gaza both had great economic viability, but only if Egypt agreed to supply water from the Nile. This paper proved that the management of the water supply for human consumption through the underwater adduction of rivers could be achieved with real clearance for any deficits in the volume of water that due to global climate change are becoming more frequent.

  15. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  16. Catchment2Coast: A systems approach to coupled river-coastal ecosystem science and management

    CSIR Research Space (South Africa)

    Monteiro, PMS (ed.)

    2009-07-01

    Full Text Available European and three southern African countries, including Mozambique, where the project was conducted. Catchment2Coast has tackled a problem which is at the interface of many different domains: between river and the sea, between bay and ocean, between water...

  17. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  18. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  19. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities.

    Science.gov (United States)

    Zou, Shichun; Xu, Weihai; Zhang, Ruijie; Tang, Jianhui; Chen, Yingjun; Zhang, Gan

    2011-10-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Why the coastal plain of Paraiba do Sul river not be denominated the classical model of wave dominated delta

    International Nuclear Information System (INIS)

    Martin, L.

    1987-01-01

    Existing coastal sedimentation models have not properly incorporated the fundamental role of Holocene sea-level history in the development of modern coastal regions. For example the classical work by COLEMAN and WRIGHT (1975), although analyzing the influence of as many as 400 parameters on the geometry of deltaic sand bodies, did not address the effects of Holocene sea-level oscillations. Previous work on the central portion of the Brazilian coastline indicated that the relative construction of the coastal plains. Detailed mapping and radiocarbon dating have allowed us to establish the different phases involved in the depositional history of the plain situated at the Paraiba do Sul river mouth. This history is not in keeping with the classical model of wave dominated delta. (author)

  1. Possible threshold controls on sediment grain properties of Peruvian coastal river basins

    Directory of Open Access Journals (Sweden)

    C. Litty

    2017-09-01

    Full Text Available To determine possible controls on sediment grain properties, 21 coastal rivers located along the entire western Peruvian margin were analysed. This represents one of the largest grain size dataset that has been collected over a large area. Modern gravel beds were sampled along a north–south transect on the western side of the Peruvian Andes where the rivers cross the tip of the mountain range, and at each site the long a axis and the intermediate b axis of about 500 pebbles were measured. Morphometric properties of each drainage basin, sediment and water discharge, together with flow shear stresses, were determined and compared against measured grain properties. Pebble size data show that the values for the D50 are nearly constant and range between 2 and 3 cm, while the values of the D96 range between 6 and 12 cm. The ratios between the intermediate and the long axis range from 0.67 to 0.74. Linear correlations between all grain size percentiles and water shear stresses, mean basin denudation rates, mean basin slopes and basin sizes are small to non-existent. However, exceptionally large D50 values of 4–6 cm were measured for basins situated between 11–12 and 16–17° S latitude where hillslope gradients are steeper than on average or where mean annual stream flows exceed the average values of the western Peruvian streams by a factor of 2. We suggest that the generally uniform grain size pattern has been perturbed where either mean basin slopes or water fluxes exceed threshold conditions.

  2. 33 CFR 110.195 - Mississippi River below Baton Rouge, LA, including South and Southwest Passes.

    Science.gov (United States)

    2010-07-01

    ... anchorage is a line parallel to the nearest bank 1,000 feet from the water's edge into the river as measured... anchorage is a line parallel to the nearest bank 400 feet from the water's edge into the river as measured... line parallel to the nearest bank 400 feet from the water's edge into the river as measured from the...

  3. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River

    Science.gov (United States)

    Tseng, Y.-F.; Lin, J.; Dai, M.; Kao, S.-J.

    2014-01-01

    The Changjiang (Yangtze) River discharges vast amount of unbalanced nutrients (dissolved inorganic nitrogen and phosphorus with N / P ratio > 80 in general) into the East China Sea in summer. To study nutrient dynamics and P-stress potential for phytoplankton, a cruise was conducted in the Changjiang plume during summer 2011. With 3-D observations of nutrients, chlorophyll a (Chl a), and bulk alkaline phosphatase activity (APA), we concluded that the Changjiang Diluted Water and coastal upwelling significantly influenced the horizontal and vertical heterogeneities of phytoplankton P deficiency in the Changjiang plume. Allochthonous APA was detected at nutrient-enriched freshwater end. Excessive N (~ 10 to 112 μM) was observed throughout the entire plume surface. In the plume fringe featuring stratification and excess N, diapycnal phosphate supply was blocked and phytoplankton APA was stimulated for growth. We observed an upwelling just attaching to the turbidity front at seaward side where Chl a peaked yet much less APA was detected. An external phosphate supply from subsurface, which promoted phytoplankton growth but inhibited APA, was suggested to be sourced from the Nearshore Kuroshio Branch Current. In the so hydrographically complicated Changjiang plume, phosphate supply instead of its concentration may be more important in determining the expression of APA. Meanwhile, allochthonous APA may also alter the usefulness of APA as a P-stress indicator.

  4. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  5. Coastal changes along the coast of Tadri River, Karnataka West coast of India and its implication

    Digital Repository Service at National Institute of Oceanography (India)

    Tirodkar, G.M.; Pathak, K.C.; Vaz, S.C.

    Present study of the coastal changes in Tadri, Uttara Kannada district of Karnataka, comparing Survey of India Toposheet, Coastal Zone Management Plan of Karnataka and traditional ground survey measurement merged with multi temporal satellite...

  6. The Fall River Long-Term Site Productivity study in coastal Washington: site characteristics, methods, and biomass and carbon and nitrogen stores before and after harvest.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Kathryn B. Piatek; Robert B. Harrison; Richard E. Miller; Barry L. Flaming; ChristopherW. Licata; Brian D. Strahm; Constance A. Harrington; Rodney Meade; Harry W. Anderson; Leslie C. Brodie; Joseph M. Kraft

    2007-01-01

    The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the world’s largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil...

  7. Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India

    Directory of Open Access Journals (Sweden)

    Arunkumar Shetty

    2015-02-01

    Full Text Available The fish assemblage and diversity in relation to water quality of three coastal rivers Sita, Swarna and Varahi of Udupi district, Karnataka, India was studied. 71 species representing 7 orders, 20 families and 41 genera were recorded from 21 sites along the three rivers. Species composition varied longitudinally in relation to the environmental factors of the habitat. The downstream change in the three rivers indicates that fish assemblage changed with increasing loss of riparian canopy cover and increasing agricultural land-use. The richness and abundance of fishes were correlated with land-use type, canopy cover, pH and turbidity. Diversion of water, discharge of domestic sewage and agricultural runoff were prominent among the disturbances that alter the habitat quality.

  8. Characterisation of the woody assemblages of Zululand coastal thornveld along the Nseleni river

    Directory of Open Access Journals (Sweden)

    Jannie P. van der Linden

    2008-12-01

    Full Text Available A classification of the woody component of the riparian vegetation of Zululand coastal thornveld is analysed using the height classes of different woody species as an indication of age. A total of 43 randomly stratified plots was selected using aerial photographs to include all the different plant communities in this rare and endemic vegetation type. A floristic survey of the woody component was conducted within each sample plot. Species data recorded included tree cover and tree richness. Environmental data recorded included altitude, soil type, soil chemistry, aspect and slope. The data set was analysed with TWINSPAN and four woody-plant assemblages were identified. An ordination using CANOCO was applied to examine the relationships between species distribution and associated environmental gradients. Changes in the species composition of woody assemblages occurred along an environmental gradient determined by soil properties and past land use.

  9. Agrochemical loading in drains and rivers and its connection with pollution in coastal lagoons of the Mexican Pacific.

    Science.gov (United States)

    Arellano-Aguilar, Omar; Betancourt-Lozano, Miguel; Aguilar-Zárate, Gabriela; Ponce de Leon-Hill, Claudia

    2017-06-01

    The state of Sinaloa in Mexico is an industrialized agricultural region with a documented pesticide usage of 700 t year -1 ; which at least 17 of the pesticides are classified as moderately to highly toxic. Pollutants in the water column of rivers and drains are of great concern because the water flows into coastal lagoons and nearshore waters and thereby affects aquatic organisms. This study was done in four municipalities in the state of Sinaloa that produce food intensively. To investigate the link between pollution in the lagoons and their proximity to agricultural sites, water was sampled in three coastal lagoons and in the rivers and drains that flow into them. Seawater from the Gulf of California, 10 km from the coast, was also analyzed. Concentrations of nutrients, organochlorines, and organophosphorus pesticides were determined. Nutrient determination showed an unhealthy environment with N/P ratios of <16, thus favoring nitrogen-fixing cyanobacteria. The organochlorine pesticides showed a clear accumulation in the coastal lagoons from the drains and rivers, with ΣHCH showing the highest concentrations. In the southern part of the region studied, pollution of the coastal lagoon of Pabellones could be traced mainly to the drains from the agricultural sites. Accumulation of OC pesticides was also observed in the Gulf of California. Tests for 22 organophosphates revealed only five (diazinon, disulfoton, methyl parathion, chlorpyrifos, and mevinphos); diazinon was detected at all the sites, although methyl parathion was present at some sites at concentrations one order of magnitude higher than diazinon.

  10. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions

    International Nuclear Information System (INIS)

    Hao Yunchao; Guo Zhigang; Yang Zuosheng; Fan, Dejiang; Fang Ming; Li Xiangdong

    2008-01-01

    The rapid economic development in the Yangtze River Delta (YRD), China in the last three decades has had a significant impact on the environment of the East China Sea (ECS). Lead isotopic compositions of a 210 Pb dated sediment core collected from the coastal ECS adjacent to the Yangtze River Estuary were analyzed to track the Pb pollution in the region. The baseline Pb concentration in the coastal ECS sediments before the industrialization in China was 32 μg g -1 , and the corresponding 206 Pb/ 207 Pb ratio was 1.195. The high-resolution profiles of Pb flux and 206 Pb/ 207 Pb ratios had close relationships with the economic development and the history of the use of leaded gasoline in China, and they were clearly different from those of most European countries and United States. - The combination of Pb concentration, sedimentary flux, Pb isotopic composition and 210 Pb dating in the coastal ECS sediments revealed the historical Pb pollution in China

  11. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    International Nuclear Information System (INIS)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ( 13 C/ 12 C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ( 14 C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14 C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14 C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14 C activities in large particle-size sediment fractions in contrast to older LOP 14 C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14 C sources.

  12. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    Science.gov (United States)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon (13C/12C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon (14C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14C activities in large particle-size sediment fractions in contrast to older LOP 14C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14C sources.

  13. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Randy, E-mail: rculp@uga.edu [Center for Applied Isotope Studies, University of Georgia, Athens, Georgia (United States)

    2013-01-15

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound's history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ({sup 13}C/{sup 12}C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ({sup 14}C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their {sup 14}C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in {sup 14}C distribution in estuary and near-shore coastal environments. This data indicates higher than modern {sup 14}C activities in large particle-size sediment fractions in contrast to older LOP {sup 14}C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine {sup 14}C sources.

  14. Contribution of MODIS satellite imagery in modelling the flooding patterns of the coastal wetlands of the Tana River, Kenya

    Science.gov (United States)

    Leauthaud, C.; Duvail, S.; Belaud, G.; Albergel, J.; Moussa, R.; Grunberger, O.

    2012-04-01

    In sub-Saharan Africa, much of the arid and semi-arid lands are used by pastoralist groups as seasonal grazing zones. In such a context, wetlands are a vital resource as they act as retreat zones during the dry seasons when water and fodder resources are scarce. At a larger scale, wetlands also render numerous services including groundwater recharge, water quality improvement and climate regulation. As regular floods are the underlying factor determining the healthiness of wetland ecosystems, it is important to understand their dynamics for a better water resource management at the catchment scale in the context of increased water abstraction and hydroelectric infrastructure development. Yet, this is challenging in many places because of scarce or poor quality data and a often difficult access to the zone. In tropical or coastal areas, frequent cloud cover can also limit the use of remote sensing data. The MODIS instruments on board the Terra and Aqua satellites offer high temporal resolution images at a moderate spatial resolution in the visible and infrared spectrum. In particular the MOD09A1 and MYD09A1 500m, 8-day synthesis products select the best possible observation for each 8-day period thus decreasing poor quality pixels due to cloud cover in an image while retaining a high frequency coverage. Here we assess their potential use to monitor floods in the Tana River Delta (TRD), Kenya. In this study, all 8-day synthesis products from 2001 to 2011 were screened and selected for low cloud cover. The total flooded surface was then extracted from each image using the Normalized Difference Moisture Index (Xu, 2006) to obtain time-series inundation maps from 2002 onward. In a third step, the images were used, combined with river-flow data, to analyse the hydrological system of the area. The maximal extent, start and end inundation dates were determined for the major floods of the past decade. There were major differences in these characteristics for medium to large

  15. Degradation capability of the coastal environment adjacent to the Itata River in central Chile (36.5° S

    Directory of Open Access Journals (Sweden)

    P. Ampuero

    2011-08-01

    Full Text Available The response of the coastal ocean influenced by both river discharges and inputs of photosynthetically derived organic carbon product of upwelling, was evaluated by estimating rates of microbial hydrolysis of macromolecules with the goal of estimating the potential degradation capability of the coastal ecosystem off central Chile. Extracellular enzymatic activity (EEA in seawater was dominated by aminopeptidase activity on substrate L-leucine-4-methyl-7-coumarinylamide (MCA-leu (1.2 to 182 nmol l−1 h−1 followed by 4-methylumbelliferyl-ß-D-glucoside (MUF-glu (0.08–61 nmol l−1 h−1 and 4-methylumbelliferyl-ß-D-cellobiose (MUF-cel (0.15–7 nmol l−1 h−1, with the highest rates measured during spring-summer. In riverine waters, extracellular enzymatic hydrolysis remained within the range of 45 to 131 nmol l−1 h−1 for MCA-leu and ca. 20 nmol l−1 h−1 for glucosidic substrates, year-round. Contrary to the EEA observed for the marine water column, surface sediment extracellular enzymatic hydrolysis of MCA-leu (0.04 to 6.13 nmol g−1 dw h−1 was in the same order of magnitude as the rates observed for MUF-cel (0.004 to 5.1 nmol g−1 dw h−1 and MUF-glu (0.007 to 10.5 nmol g−1 dw h−1. Moreover, hydrolysis in sediments was characterized by higher rates during winter compared with spring-summer in the coastal and estuarine zone. The five years of data allowed us to evaluate the potential capability of microbial processing of organic carbon in the coastal area adjacent to the Itata river discharge where the increase in primary production in the productive seasons is accompanied by the increase in hydrolysis of macromolecules.

  16. Distribution of rare earth elements in the estuarine and coastal sediments of the Daliao River System, China

    International Nuclear Information System (INIS)

    Chunye Lin; Shaoqing Liu; Mengchang He; Ruiping Li

    2013-01-01

    The Daliao River System (DRS) estuary in Liaodong Bay features a highly industrial, urbanized, and agricultural catchment. The objective of this study was to determine the content, behavior, and distribution of the rare earth elements (REEs) in the estuarine and coastal sediments. To this end, 35 sediment samples were collected from the estuarine and coastal area and analyzed for REEs, Fe, Al, and Mn. The mean concentrations in mg kg -1 of the sediments were 33.4 (La), 64.1 (Ce), 7.9 (Pr), 29.0 (Nd), 5.4 (Sm), 1.2 (Eu), 4.2 (Gd), 0.78 (Tb), 4.0 (Dy), 0.84 (Ho), 2.3 (Er), 0.40 (Tm), 2.3 (Yb), and 0.37 (Lu). The REE concentrations in the sediments were significantly correlated with one another (r 2 = 0.959-0.988) and the concentrations of Fe, Al, and Mn (r 2 = 0.768-0.870). The total concentration ΣREE ranged from 73.5 to 203.5 mg kg -1 , with an average of 156.0 mg kg -1 being observed, and generally higher in the estuarine sediments than in the coastal sediments, most likely due to the salt-induced coagulation of river colloids and subsequently their accumulation at the estuarine bottom. The ratio of light REEs (ΣLREE) to heavy REEs (ΣHREE) was 9.4. Chondrite-normalized REE distributions were observed to be similar for the estuarine and coastal sediments, riverine suspended particles, and watershed soils of the DRS with higher LRRE enrichment than HREE and greater Eu depletion than Ce depletion. These results demonstrate that neither geochemical processes that carry soils to estuarine sediments nor long-term industrial and agricultural activities alter the distribution or fractionation of the REEs in the study area. (author)

  17. Derivation of Global River Network Attributes Including Downscaled Runoff and Discharge Estimates at High Spatial Resolution

    Science.gov (United States)

    Lehner, B.; Linke, S.

    2015-12-01

    River network geometry has been provided globally at 500m pixel resolution in the HydroSHEDS database, comprising nearly 10 million individual river reaches at an average length of approximately 3km. This effort has now been expanded by compiling more than 50 frequently used attributes that have been derived from state-of-the-art global remote sensing products or ancillary data sets. These attributes span a variety of thematic layers, ranging from river reach geometry attributes to climate, land cover, and anthropogenic characteristics. As a core attribute, each river reach has been assigned an estimate of long-term average monthly discharge. This estimate has been derived in a geospatial downscaling procedure utilizing the simulations from a coarse-scale global hydrological model, and the results have been verified against the observed discharge records of more than 3000 stations provided by the Global Runoff Discharge Center. This presentation will introduce the new database and discuss its quality and limitations.

  18. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    OpenAIRE

    Neumann, James; Ludwig, Lindsay; Verly, Caroleen; Emanuel, Kerry Andrew; Ravela, Srinivas

    2015-01-01

    This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam an area already known to be highly vulnerable to coastal risks. By combining a range of sea level rise scenarios for 2050 with the simulated storm surge level for the 100-year storm surge, we analyze permanently inundated lands and temporary flood zones. As is well-established in the literature, sea level rise will increase the risk of storms by raising the base sea level from which surg...

  19. Experience of the chronological correlation of the Holocene sea coastal landforms in the Tuloma River valley and the Kola Bay

    Directory of Open Access Journals (Sweden)

    Tolstobrov D. S.

    2016-03-01

    Full Text Available The paper is a continuation of studies of the Earth's crust neotectonic movements within the north-western part of the Kola region. New radiocarbon data of the lake bottom sediments in the Tuloma River valley allowed to modify diagram of the relative uplift lines of the Earth surface in the north-western part of the Kola region and to compare them with previously constructed epeirogenic spectra of coastal landforms for the study area. The dynamics and nature of the area uplift have been established and the dating of the ancient shorelines within the Tuloma River valley and the Kola Bay of the Barents Sea during the Holocene has been carried out

  20. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    International Nuclear Information System (INIS)

    Borole, D.V.; Krishnaswami, S.; Somayajulu, B.L.K.

    1982-01-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 234 U/ 238 U activity ratios. The 238 U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, and with the HCO 3 - ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. In the estuaries, both 238 U and its great-grand daughter 234 U behave conservatively beyond chlorosities 0.14 g/l. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238 U concentration of 0.22 μg/l with a 234 U/ 238 U activity ratio of 1.20 +-0.06. The residence time of uranium isotopes in the oceans estimated from the 238 U concentration and the 234 U/ 238 U A.R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234 U flux of about 0.25 dpm/cm 2 .10 3 yr into the oceans is necessitated. (author)

  1. Sedimentological and geochronological evidences of anthropogenic impacts on river basins in the Northern Latium coastal area (Italy)

    Science.gov (United States)

    Piazzolla, Daniele; Paladini de Mendoza, Francesco; Scanu, Sergio; Marcelli, Marco

    2015-04-01

    In this work we aimed to compare sedimentological and geochronological data from three sediment core samples (MIG50, MRT50, and GRT50) taken in the Northern Latium (Italy) coastal area, at -50 m depth, to data regarding rainfall, river flows and the land use in the three most important hydrographic basins (Mignone, Marta and Fiora) and in the coastal area. Different trends of sediment mass accumulation rate (MAR) are detected in the three cores: a strongly increasing trend was identified in MIG50 and MRT50 cores while GRT50 doesn't show significant variation. Data from the sedimentological analysis of GRT50 core identify a progressive decrease in the sandy component, which declined from about 30% to the current level of 7% over the last 36 years, while MRT50 and MIG50 cores (mainly composed by pelitic fraction > 95%) showed slight variations of textural ratio between silt and clay. According to the general decrease of pluviometric trend observed in Italy, related to teleconnection pattern tendency (NAO), the statistical analysis of rain identified significative decrease only in the Fiora river basin, whereas in the other two locations the decrease was not as significant. Regarding the Fiora river flow, a significative decreasing trend of average flow is detected, while the flood regime remained unaffected over the past 30 years. The analysis of the land use shows that the human activities are increased of 6-10% over the available time steps (1990 - 2006) in Fiora and Mignone river basins, while the Marta river basin has a strong human impact since 1990 highligting more than 80% of artificial soil covering. The largest variation is observed on the Fiora basin (10%) where the antrhopic activities have expanded to an area of about 85 Km2. Moreover, in the last ten years a large beach nourishment in 2004 (570000 m3) and dredging activities in the early second half of 2000s (1000000 m3 moved) were performed in Marina di Tarquinia beach and in front of the Torrevaldaliga

  2. A Flood Risk Assessment of the LaHave River Watershed, Canada Using GIS Techniques and an Unstructured Grid Combined River-Coastal Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Kevin McGuigan

    2015-09-01

    Full Text Available A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: HYDRO (Hydrography Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the Hudson...

  4. Coastal Mapping Program Project TX1403: RIO GRANDE RIVER TO PORT MANSFIELD, TX.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of the Coastal Mapping Program (CMP) is to provide surveying and mapping information of our nation's coastline. This shoreline mapping effort also...

  5. Integrated Ocean and Coastal Mapping (IOCM) Project FL1421: ST JOHNS RIVER, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  6. Integrated Ocean and Coastal Mapping (IOCM) Project FL1415: APALACHICOLA RIVER (MOUTH) TO SAUL CREEK, FL.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of Integrated Ocean and Coastal Mapping (IOCM) is to improve the coordination among federal, state and local government, non-governmental and private...

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for submerged aquatic vegetation (SAV), floating aquatic vegetation (FAV), and rare/sensitive coastal...

  8. Water resources inventory of Connecticut Part 3: lower Thames and southeastern coastal river basins

    Science.gov (United States)

    Thomas, Chester E.; Cervione, Michael A.; Grossman, I.G.

    1968-01-01

    The lower Thames and southeastern coastal river basins have a relatively abundant supply of water of generally good quality which is derived from streams entering the area and precipitation that has fallen on the area. Annual precipitation has ranged from about 32 inches to 65 inches and has averaged about 48 inches over a 30-year period. Approximately 22 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the report area through estuaries and coastal streams or as underflow through the deposits beneath. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the report area, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced stream-flow and lowered ground-water levels. The mean monthly storage of water on an average is about 3.8 inches higher in November than it is in June. The amount of water that flows through and out of the report area represents the total amount of water potentially available for use by man. For the 30-year period 1931 through 1960, the annual runoff from the report area has averaged nearly 26 inches (200 billion gallons), from the entire Thames River basin above Norwich about 24 inches (530 billion gallons), and from the Pawcatuck River basin about 26 inches (130 billion gallons). A total average annual runoff of 860 billion gallons is therefore available. Although runoff indicates the total amount of water potentially available, it is usually not economically feasible for man to use all of it. On the other hand, with increased development, it is possible that some water will be reused several times. The water available may be tapped as it flows through the area or is

  9. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    Science.gov (United States)

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  10. Sex-biased survivorship and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    Science.gov (United States)

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  11. Sex biased survival and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    Science.gov (United States)

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  12. Time-series variations of the short-lived Ra in coastal waters: implying input of SGD to the coastal zone of Da-Chia River, Taichung, Taiwan

    Science.gov (United States)

    Hsu, Feng-Hsin; Su, Chih-Chieh; Lin, In-Tain; Huh, Chih-An

    2015-04-01

    Submarine groundwater discharge (SGD) has been recognized as an important pathway for materials exchanging between land and sea. Input of SGD carries the associated nutrients, trace metals, and inorganic carbon that may makes great impacts on ecosystem in the coastal zone. Due to the variability of SGD magnitude, it is difficult to estimate the flux of those associated materials around the world. Even in the same area, SGD magnitude also varies in response to tide fluctuation and seasonal change on hydraulic gradient. Thus, long-term investigation is in need. In Taiwan, the SGD study is rare and the intrusion of seawater in the coastal aquifer is emphasized in previous studies. According to the information from Hydrogeological Data Bank (Central Geological Survey, MOEA), some areas still show potentiality of SGD. Here, we report the preliminary investigation result of SGD at Gaomei Wildlife Conservation Area which located at the south of the Da-Chia River mouth. This study area is characterized by a great tidal rang and a shallow aquifer with high groundwater recharge rate. Time-series measurement of the short-lived Ra in surface water was done in both dry and wet seasons at a tidal flat site and shows different trends of excess Ra-224 between dry and wet seasons. High excess Ra-224 activities (>20 dpm/100L) occurred at high tide in dry season but at low tide in wet season. The plot of salinity versus excess Ra-224, showing non-conservative curve, suggests that high excess Ra-224 activities derive from desorption in dry season but from SGD input in wet season.

  13. St. Croix River Reconnaissance Report Including Stillwater, Minnesota and New Richmond, Wisconsin.

    Science.gov (United States)

    1984-01-01

    built on the Willow River at the site of the present Domain Industries Feed Mills. It was destroyed in the flood of 1876. The New Richmond Roller...Minnesota, and iew Richmond, Wisconsin. Edward G. Rapp Colonel, Corps of Engineers District Engineer 4 -𔃾 ,.-. Ill .".,. ,K...small busi- nesses, few homes, marina- creek backup Bayport (high damage potential) marina-- Perro Creek backup, nunerous residential struc- tures

  14. Merits and Limits of Ecosystem Protection for Conserving Wild Salmon in a Northern Coastal British Columbia River

    Directory of Open Access Journals (Sweden)

    Aaron C. Hill

    2010-06-01

    Full Text Available Loss and degradation of freshwater habitat reduces the ability of wild salmon populations to endure other anthropogenic stressors such as climate change, harvest, and interactions with artificially propagated fishes. Preservation of pristine salmon rivers has thus been advocated as a cost-effective way of sustaining wild Pacific salmon populations. We examine the value of freshwater habitat protection in conserving salmon and fostering resilience in the Kitlope watershed in northern coastal British Columbia - a large (3186 km2 and undeveloped temperate rainforest ecosystem with legislated protected status. In comparison with other pristine Pacific Rim salmon rivers we studied, the Kitlope is characterized by abundant and complex habitats for salmon that should contribute to high resilience. However, biological productivity in this system is constrained by naturally cold, light limited, ultra-oligotrophic growing conditions; and the mean (± SD density of river-rearing salmonids is currently low (0.32 ± 0.27 fish per square meter; n = 36 compared to our other four study rivers (grand mean = 2.55 ± 2.98 fish per square meter; n = 224. Existing data and traditional ecological knowledge suggest that current returns of adult salmon to the Kitlope, particularly sockeye, are declining or depressed relative to historic levels. This poor stock status - presumably owing to unfavorable conditions in the marine environment and ongoing harvest in coastal mixed-stock fisheries - reduces the salmon-mediated transfer of marine-derived nutrients and energy to the system's nutrient-poor aquatic and terrestrial food webs. In fact, Kitlope Lake sediments and riparian tree leaves had marine nitrogen signatures (δ15N among the lowest recorded in a salmon ecosystem. The protection of the Kitlope watershed is undoubtedly a conservation success story. However, "salmon strongholds" of pristine watersheds may not adequately sustain salmon populations and foster

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for estuarine reptiles (turtles, terrapins) and amphibians (salamanders, frogs) for the Hudson River....

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Hudson River. Vector polygons in this data set...

  17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in the Hudson River. Vector polygons in this...

  18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: STAGING (Staging Site Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for staging sites along the Hudson River. Vector points in this data set represent locations of possible staging areas...

  19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for regional and state parks, historic sites, marine sanctuaries, and other managed areas for the Hudson River....

  20. Integration into JRODOS the models of radionuclide transport in rivers, reservoirs and coastal waters to support the emergency response in early accidental stages

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Bezhenar, R.; Boyko, O.; Ievdin, I.; Koshebutsky, V.; Maderich, V. [Institute of Mathematical Machines and Systems, National Academy of Sciences of Ukraine (Ukraine); Raskob, W.; Trybushnyi, D. [Karlsruhe Institute of Technology, Institut fuer Kern- und Energietechnik (Germany)

    2014-07-01

    The decision support system for offsite nuclear emergency management RODOS (Real-time on-line decision support), developed under several EC RTD Framework Programs, contains many models related to support decision making in case of a nuclear or radiological emergency. Based on the request of the end users, it was re-engineered based on the JAVA technology and further named JRODOS. The consequences of the Fukushima Daiichi Nuclear Power Plant accident clearly demonstrated the importance of modeling tools predicting the radionuclide transport in marine and freshwater environment and assessing the doses to the public via the aquatic food chain to improve decision making in general. As a consequence, such an activity was launched as part of the European project PREPARE aiming to integrate the 3-dimensional model THREETOX for the radionuclide transport in coastal waters, estuaries, deep lakes, and reservoirs into hydrological model chain of JRODOS - JHDM (JRODOS Hydrological Dispersion Module). So far JHDM contains several aquatic radionuclide transport models describing the sequence of the processes 'atmospheric fallout to watershed' - 'radionuclide inflow to a river net' - 'radionuclide transport in river' - 'doses via aquatic pathways'. The implementation of the THREETOX model into this chain by developing also a user friendly interface will extend the applicability of JRODOS to deep fresh water bodies and marine coastal waters. This paper describes the assessment capabilities of this advanced model chain for two examples of the JRODOS implementation in Ukraine. JRODOS is installed in the emergency centers for two Ukrainian Nuclear Power Plants (NPP) - Zaporizzhya NPP (ZNPP) and Rivne NPP (RNPP). The different models of the JHDM were customized for these NPPs taking into account the characteristics of the water bodies in the surroundings of the NPPs. For the RNPP, located at the bank of the Sozh River which is a tributary of the

  1. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2014-01-01

    Full Text Available The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  2. Coupled human-water system dynamics of saltwater intrusion in the low coastal plain of the Po River, Ravenna, Italy

    Science.gov (United States)

    Lauriola, Ilaria; Ciriello, Valentina; Antonellini, Marco; Pande, Saket

    2017-04-01

    Human activities affect the whole hydrological cycle with possible severe consequences on ecosystem services. Human-water interaction follows complex dynamics that can't be addressed only through the analysis of water withdrawals and contamination processes. As such, comprehensive analysis strategies based on a socio-hydrology approach may allow to deeply understand the co-evolution of human and water systems. Here, we focus on the low coastal plain of the Po river in the south of Ravenna (Italy), which is adjacent to the North Adriatic sea. In particular, our study regards a basin characterized by a land reclamation drainage system, given the low topography which reaches in some places 1 m below sea level. In this area, the thin phreatic coastal aquifer is affected by a relevant salinization process and characterized by the presence of valuable water-dependent ecosystems such as pine forests and wetlands. Groundwater salinization is mainly caused by seawater intrusion due to the hydraulic gradient landwards that is enhanced by land subsidence, land use and drainage allowing for agriculture and settlements. Such a complex scenario involves environmental, social and economic interests. We study the intricate system of relationships occurring between a set of socio-hydrological state variables of interest based on the dynamic analysis of land use changes in the study area that mainly affect groundwater recharge and the availability of freshwater for ecosystem and agriculture activities.

  3. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    Science.gov (United States)

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.

  4. Constructing development and integrated coastal zone management in the conditions of the landslide slopes of Cheboksary water reservoir (Volga River)

    Science.gov (United States)

    Nikonorova, I. V.

    2018-01-01

    Uncontrolled construction and insufficient accounting of engineering-geological and hydro-geological conditions of the coastal zone, intensified technogenic impact on sloping surfaces and active urbanization led to the emergence of serious problems and emergency situations on the coasts of many Volga reservoirs, including the Cheboksary reservoir, within Cheboksary urban district and adjacent territories of Chuvashia. This article is devoted to substantiation of the possibility of rational construction development of landslide slopes of the Cheboksary water reservoir.

  5. Dissolved Oxygen Dynamics in Coastal Pacific Northwest Rivers: Biological Controls and Management Options

    Science.gov (United States)

    Sobota, D. J.; Foster, E.; Michie, R.; Waltz, D.

    2014-12-01

    In Oregon's Central Coast Range (OCR), dissolved O2 concentrations in at least 10% of stream length frequently dip below state standards set to ensure survival and reproduction of native salmonids. We examined O2 dynamics on 12 OCR rivers during times of the year when standards had been violated. Continuous dissolved O2 data were collected 15 minutes apart over a 24-hour period during spring (May - June) or fall (September - November) 2008 on each river. We modeled O2 dynamics for each river with parameters describing O2 exchange with the atmosphere, production of O2 from gross primary production (GPP), and consumption of O2 by ecosystem respiration (ER) fit to observed data. Average nighttime atmospheric O2 exchange and ER were estimated by regressing interval changes in dissolved O2 concentrations between measurements with corresponding O2 saturation deficits. GPP for each daytime sampling interval was calculated as the difference between O2 saturation deficit and the sum of temperature-corrected reaeration and ecosystem respiration. All regression models developed for estimating night-time reaeration and ER were highly significant (pbiological processes) ranged from -11.64 to 3.75 mg O2 L-1 d-1 across all rivers and seasons. Increased aquatic productivity resulting from adjacent and upstream human activities likely altered dissolved O2 dynamics in these rivers. Through scenario analysis, we found that at one river (Alsea), GPP and ER would need to be reduced by 85 and 73%, respectively, to meet the state standard (95% saturation). Our modeling approach can be connected with management actions across a variety of spatial and temporal scales, ranging from local, riparian-scale manipulations of shading and organic matter input to watershed and regional nutrient and temperature management.

  6. Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer

    Science.gov (United States)

    Zell, C.; Kim, J.-H.; Balsinha, M.; Dorhout, D.; Fernandes, C.; Baas, M.; Sinninghe Damsté, J. S.

    2014-10-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are thought to be transported from soil to marine sediment by rivers, have been used to reconstruct the mean annual air temperature (MAAT) and soil pH of the drainage basin using the methylation index of branched tetraethers (MBT, recently refined as MBT') and cyclization index of branched tetraethers (CBT) from coastal marine sediment records. In this study, we trace the brGDGTs from source to sink in the Tagus River basin, the longest river system on the Iberian Peninsula, by determining their concentration and distribution in soils, river suspended particulate matter (SPM), riverbank sediments, marine SPM, and marine surface sediments. The concentrations of brGDGTs in river SPM were substantially higher and their distributions were different compared to those of the drainage basin soils. This indicates that brGDGTs are mainly produced in the river itself. In the marine environment, the brGDGT concentrations rapidly decreased with increasing distance from the Tagus estuary. At the same time, the brGDGT distributions in marine sediments also changed, indicating that marine in situ production also takes place. These results show that there are various problems that complicate the use of the MBT'/CBT for paleoreconstructions using coastal marine sediments in the vicinity of a river. However, if the majority of brGDGTs are produced in the river, it might be possible to reconstruct the environmental (temperature and pH) conditions of the river water using appropriate aquatic calibrations, provided that marine core locations are chosen in such a way that the brGDGTs in their sediments are predominantly derived from riverine in situ production.

  7. Assessment Of Physico-Chemical Property Of Water Samples From Port Harcourt Bonny And Opobo Coastal Areas For Sustainable Coastal Tourism Development In Rivers State Nigeria.

    Directory of Open Access Journals (Sweden)

    Obinwanne

    2015-08-01

    Full Text Available Abstract The study evaluated some physico-chemical properties of water samples from Port Harcourt Bonny and Opobo to determine the safety of water from the areas for sustainable coastal tourism development in Rivers State Nigeria. Three water samples were collected with three sterilized plastic containers with a capacity of 25cl which were subjected to laboratory tests to know their constituents. The parameters tested were appearance temperature colour turbidity conductivity PH alkalinity lead Pb Chromium Cr Cadmium Cd Ammonia BODs and Dissolved Oxygen. The results of the water samples were compared with World Health Organization WHO water quality standard and the Nigeria National Water Quality standard to determine the safety of the water for human consumption and tourism development. The study revealed that Port Harcourt site has more prospects for tourism development more than Opobo study site because the Ph alkalinity and BODs levels were lower than that of Opobo making the water safer except that the amount of dissolved oxygen was a little high in Opobo and turbidity was not detected in Opobo. The study revealed that Bonny water was very dense in appearance dark brown in colour highly turbid basic and with mean concentration of the heavy metals Lead chromium and cadmium higher than the recommended World Health Organization WHO water quality standard and the Nigeria National Water Quality standard and therefore not safe for drinking and swimming. Treated portable water should be provided for the people of Port Harcourt Opobo and Bonny especially people from Bonny area and development of tourism in the state to save the people and tourists from imminent danger of fecal contaminants and toxic substances.

  8. Coastal sediment dynamics in Spitsbergen

    Science.gov (United States)

    Deloffre, J.; Lafite, R.; Baltzer, A.; Marlin, C.; Delangle, E.; Dethleff, D.; Petit, F.

    2010-12-01

    In arctic knowledge on coastal sediment dynamics and sedimentary processes is limited. The studied area is located in the microtidal Kongsfjorden glacial fjord on the North-western coast of Spitsbergen in the Artic Ocean (79°N). In this area sediment contributions to the coastal zone is provided by small temporary rivers that flows into the fjord. The objectives of this study are to (i) assess the origin and fate of fine-grained particles (sea ice cover on sediment dynamics. The sampling strategy is based on characterization of sediment and SPM (grain-size, X-rays diffraction, SEM images, carbonates and organic matter contents) from the glacier to the coastal zone completed by a bottom-sediment map on the nearshore using side-scan sonar validated with Ekman binge sampling. River inputs (i.e. river plumes) to the coastal zone were punctually followed using CTD (conductivity, temperature, depth and turbidity) profiles. OBS (water level, temperature and turbidity) operating at high-frequency and during at least 1 years (including under sea ice cover) was settled at the mouth of rivers at 10m depth. In the coastal zone the fine-grained sediment deposit is limited to mud patches located at river mouths that originate the piedmont glacier. However a significant amount of sediment originates the coastal glacier located in the eastern part of the fjord via two processes: direct transfer and ice-drop. Results from turbidity measurements show that the sediment dynamics is controlled by river inputs in particular during melting period. During winter sediment resuspension can occurs directly linked to significant wind-events. When the sea ice cover is present (January to April) no sediment dynamics is observed. Sediment processes in the coastal zone of arctic fjords is significant however only a small amount of SPM that originates the river plume settles in the coastal zone; only the coarser material settles at the mouth of the river while the finer one is deposited further

  9. Aquatic avifauna of the coastal lakes of the Mhlathuze River system ...

    African Journals Online (AJOL)

    This paper provides the first attempt to bring together all published and unpublished data on the aquatic avifauna of Lakes Mzingazi, Nsezi, Cubhu and Mangeza, situated near Richards Bay in the lower reaches of the Mhlathuze River system. Whilst the amount of data located was limited, it does show that the systems ...

  10. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Spears, B.M.; Feld, C.K.; Brucet, S.; Keizer-Vlek, H.E.; Borja, A.; Elliot, M.; Kernan, M.; Johnson, R.K.

    2013-01-01

    The European Water Framework Directive aims to improve ecological status within river basins. This requires knowledge of responses of aquatic assemblages to recovery processes that occur after measures have been taken to reduce major stressors. A systematic literature review comparatively assesses

  11. Temporal trend and determinants of river water quality across urbanization gradients in a coastal city, China

    Science.gov (United States)

    Zhao, W.; Zhu, X.

    2015-12-01

    Water contamination in rivers embedded in urbanizing areas is increasingly affected by anthropogenic factors. The impacts may vary with location, time and water variables particularly in rapidly growing areas with clear urbanization gradients. Therefore, characterizing the temporal trend and identifying responsible divers to water quality changes in areas with different urbanization intensity could greatly improve our knowledge about human-water interactions. We employed geographically weighted regression (GWR) to interpret the determinants of river water quality changes in four urban development zones, i.e. central urban, suburban, central county and rural areas. Monitoring data of 8 variables- permanganate (CODMn), biochemical oxygen demand (BOD), ammonium (NH3-N), petroleum (oil), volatile phenol (VP), phosphorus (TP), mercury (Hg) and lead (Pb) from 33 stations were collected from 2004, 2008 and 2010. Five determinants were identified: urban land use intensity, environmental policies, industrial zone expansion, land use composition, and gross domestic product (GDP). Relationships between these identified determinants and water quality changes showed great variations due to their different nature and sensitivity. Typically, for zones with higher urbanization intensity located in central cities and central counties, urban land use had positive impacts on river water quality improvement. However, in less urbanized areas, rapid urban expansion indicated rapid river water degradation. Environmental policies had distinct influences on river pollution control in highly-urbanized areas, but led to unexpected negative impacts in areas beyond the management priorities. Industrial activities were the major contributor to heavy metal pollution in suburban areas while boosted N, P decrease in central cities. Our study highlighted the importance of "local" management instead of one-size-fits-all system in mitigating undesirable impacts of urbanization on water environment.

  12. River Diversions and Shoaling

    National Research Council Canada - National Science Library

    Letter, Jr., Joseph V; Pinkard, Jr., C. F; Raphelt, Nolan K

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note describes the current knowledge of the potential impacts of river diversions on channel morphology, especially induced sedimentation in the river channel...

  13. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites.

    Science.gov (United States)

    González, Eduardo; Sher, Anna A; Anderson, Robert M; Bay, Robin F; Bean, Daniel W; Bissonnete, Gabriel J; Bourgeois, Bérenger; Cooper, David J; Dohrenwend, Kara; Eichhorst, Kim D; El Waer, Hisham; Kennard, Deborah K; Harms-Weissinger, Rebecca; Henry, Annie L; Makarick, Lori J; Ostoja, Steven M; Reynolds, Lindsay V; Robinson, W Wright; Shafroth, Patrick B

    2017-09-01

    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species. © 2017 by the

  14. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France)

    International Nuclear Information System (INIS)

    Sharif, Abubaker; Monperrus, Mathilde; Tessier, Emmanuel; Bouchet, Sylvain; Pinaly, Hervé; Rodriguez-Gonzalez, Pablo; Maron, Philippe; Amouroux, David

    2014-01-01

    Because mercury (Hg) undergoes significant biogeochemical processes along the estuarine-coastal continuum, the objective of this work was to investigate the distribution and reactivity of methylmercury (MeHg), inorganic mercury (Hg(II)) and gaseous Hg (DGM) in plume waters of the Adour River estuary (Bay of Biscay). Vertical profiles, spatial and tidal variability of Hg species concentrations were evaluated during two campaigns (April 2007 and May 2010) characterized by significant plume extents over the coastal zone. Incubations with isotopically enriched tracers were performed on bulk and filtered waters under sunlight or dark conditions to investigate processes involved in Hg methylation, demethylation and reduction rates. Total Hg(II) concentrations were more dispersed in April 2007 (5.2 ± 4.9 pM) than in May 2010 (2.5 ± 1.1 pM) while total MeHg concentrations were similar for both seasons and averaged 0.13 ± 0.07 and 0.18 ± 0.11 pM, respectively. DGM concentrations were also similar between the two campaigns, averaging 0.26 ± 0.10 and 0.20 ± 0.09 pM, respectively. Methylation yields remained low within the estuarine plume (< 0.01–0.4% day −1 ) while MeHg was efficiently demethylated via both biotic and abiotic pathways (2.3–55.3% day −1 ), mainly photo-induced. Hg reduction was also effective in these waters (0.3–43.5% day −1 ) and was occurring in both light and dark conditions. The results suggest that the plume is overall a sink for MeHg with integrated net demethylation rates, ranging from 2.0–3.7 g (Hg) d −1 , in the same range than the estimated MeHg inputs from the estuary (respectively, 0.9 and 3.5 g (Hg) d −1 ). The large evasion of DGM from the plume waters to the atmosphere (8.8–26.9 g (Hg) d −1 ) may also limit Hg T inputs to coastal waters (33–69 g (Hg) d −1 ). These processes are thus considered to be most significant in controlling the fate of Hg transferred from the river to the coastal zone. - Highlights:

  15. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France)

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Abubaker; Monperrus, Mathilde; Tessier, Emmanuel; Bouchet, Sylvain; Pinaly, Hervé; Rodriguez-Gonzalez, Pablo [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l' Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 Pau cedex 9 (France); Maron, Philippe [Laboratoire des Sciences de l' Ingénieur Appliquées à la Mécanique et au Génie Electrique, Institut Supérieur Aquitain du Bâtiment et des Travaux Publics, Université de Pau et des Pays de l' Adour, Allée du Parc Montaury, 64600 Anglet (France); Amouroux, David, E-mail: david.amouroux@univ-pau.fr [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l' Adour, Hélioparc Pau Pyrénées, 2 av. P. Angot, 64053 Pau cedex 9 (France)

    2014-10-15

    Because mercury (Hg) undergoes significant biogeochemical processes along the estuarine-coastal continuum, the objective of this work was to investigate the distribution and reactivity of methylmercury (MeHg), inorganic mercury (Hg(II)) and gaseous Hg (DGM) in plume waters of the Adour River estuary (Bay of Biscay). Vertical profiles, spatial and tidal variability of Hg species concentrations were evaluated during two campaigns (April 2007 and May 2010) characterized by significant plume extents over the coastal zone. Incubations with isotopically enriched tracers were performed on bulk and filtered waters under sunlight or dark conditions to investigate processes involved in Hg methylation, demethylation and reduction rates. Total Hg(II) concentrations were more dispersed in April 2007 (5.2 ± 4.9 pM) than in May 2010 (2.5 ± 1.1 pM) while total MeHg concentrations were similar for both seasons and averaged 0.13 ± 0.07 and 0.18 ± 0.11 pM, respectively. DGM concentrations were also similar between the two campaigns, averaging 0.26 ± 0.10 and 0.20 ± 0.09 pM, respectively. Methylation yields remained low within the estuarine plume (< 0.01–0.4% day{sup −1}) while MeHg was efficiently demethylated via both biotic and abiotic pathways (2.3–55.3% day{sup −1}), mainly photo-induced. Hg reduction was also effective in these waters (0.3–43.5% day{sup −1}) and was occurring in both light and dark conditions. The results suggest that the plume is overall a sink for MeHg with integrated net demethylation rates, ranging from 2.0–3.7 g (Hg) d{sup −1}, in the same range than the estimated MeHg inputs from the estuary (respectively, 0.9 and 3.5 g (Hg) d{sup −1}). The large evasion of DGM from the plume waters to the atmosphere (8.8–26.9 g (Hg) d{sup −1}) may also limit Hg{sub T} inputs to coastal waters (33–69 g (Hg) d{sup −1}). These processes are thus considered to be most significant in controlling the fate of Hg transferred from the river to the

  16. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    Science.gov (United States)

    Borole, D. V.; Krishnaswami, S.; Somayajulu, B. L. K.

    1982-02-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U /238U activity ratios. The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO 3- ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 10 10g/ yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 10 10g/ yr, estimated based on its correlation with HCO 3- contents of rivers. In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02-0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U /238U activity ratio of 1.20 ± 0

  17. Investigations on the Possibilities of Monitoring Coastal Changes Including Shallow Under Water Areas with Uas Photo Bathmetry

    Science.gov (United States)

    Grenzdörffer, G. J.; Naumann, M.

    2016-06-01

    UAS become a very valuable tool for coastal morphology. Not only for mapping but also for change detection and a better understanding of processes along and across the shore. This contribution investigates the possibilities of UAS to determine the water depth in clear shallow waters by means of the so called "photo bathymetry". From the results of several test flights it became clear that three factors influence the ability and the accuracy of bathymetric sea floor measurements. Firstly, weather conditions. Sunny weather is not always good. Due to the high image resolution the sunlight gets focussed even in very small waves causing moving patterns on shallow grounds with high reflection properties, such as sand. This effect invisible under overcast weather conditions. Waves, may also introduce problems and mismatches. Secondly the quality and the accuracy of the georeferencing with SFM algorithms. As multi image key point matching will not work over water, the proposed approach will only work for projects closely to the coastline with enough control on the land. Thirdly the software used and the intensity of post processing and filtering. Refraction correction and the final interpolation of the point cloud into a DTM are the last steps. If everything is done appropriately, accuracies in the bathymetry in the range of 10 - 50 cm, depending on the water depth are possible.

  18. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments

    Science.gov (United States)

    De Jonge, Cindy; Stadnitskaia, Alina; Hopmans, Ellen C.; Cherkashov, Georgy; Fedotov, Andrey; Streletskaya, Irina D.; Vasiliev, Alexander A.; Sinninghe Damsté, Jaap S.

    2015-09-01

    The distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in soils has been shown to correlate with pH and mean annual air temperature. Because of this dependence brGDGTs have found an application as palaeoclimate proxies in coastal marine sediments, based on the assumption that their distribution is not altered during the transport from soils to marine systems by rivers. To study the processes acting on the brGDGT distributions, we analysed the full suite of brGDGTs, including the recently described 6-Me brGDGTs, in both the suspended particulate matter (SPM) of the Siberian Yenisei River and the SPM and sediments of its outflow in the Kara Sea. The brGDGT distribution in the SPM of the Yenisei River was fairly constant and characterized by high abundances of the 6-Me brGDGTs, reflecting their production at the neutral pH of the river water. However, the brGDGT distribution showed marked shifts in the marine system. Firstly, in the Yenisei River Mouth, the fractional abundance of the 6-Me brGDGTs decreases sharply. The brGDGT signature in the Yenisei River Mouth possibly reflects brGDGTs delivered during the spring floods that may carry a different distribution. Also, coastal cliffs were shown to contain brGDGTs and to influence especially those sites without major river inputs (e.g. Khalmyer Bay). Further removed from the river mouth, in-situ production of brGDGTs in the marine system influences the distribution. However, also the fractional abundance of the tetramethylated brGDGT Ia increases, resulting in a distribution that is distinct from in-situ produced signals at similar latitudes (Svalbard). We suggest that this shift may be caused by preferential degradation of labile (riverine in-situ produced) brGDGTs and the subsequent enrichment in less labile (soil) material. The offshore distribution indeed agrees with the brGDGT distribution encountered in a lowland peat. This implies that the offshore Kara Sea sediments possibly carry a soil

  19. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China

    Science.gov (United States)

    Wang, Weifeng; Yu, Jie; Cui, Yang; He, Jun; Xue, Peng; Cao, Wan; Ying, Hongmei; Gao, Wenkang; Yan, Yingchao; Hu, Bo; Xin, Jinyuan; Wang, Lili; Liu, Zirui; Sun, Yang; Ji, Dongsheng; Wang, Yuesi

    2018-05-01

    Chemical information is essential in understanding the characteristics of airborne particles, and effectively controlling airborne particulate matter pollution, but it remains unclear in some regions due to the scarcity of measurement data. In the present study, 92 daily PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) samples as well as historical observation data of air pollutants were collected in urban Ningbo, one of important industrial cities in the coastal area of the Yangtze River Delta, China in autumn and winter (from Nov. 2014 to Feb. 2015). Various chemical species in PM2.5 were determined including water soluble ions, organic and elemental carbon and elements. Positive matrix factorization model, cluster analysis of back trajectories, potential source contribution function (PSCF) model and concentration-weighted trajectory (CWT) model were used for identifying sources, apportioning contributions from each source and tracking potential areas of sources. The results showed the PM2.5 concentration has been reducing; nonetheless, the concentrations of PM2.5 are still much higher than the World Health Organization guideline with high PM2.5 concentrations observed in autumn and winter for the past few years. During the sampling period, the average PM2.5 mass concentration was 77 μg/m3 with the major components of OC, NO3-, SO42 -, NH4+ and EC, accounting for 24.7, 18.8, 14.5, 11.8 and 6.4% in the total mass concentration, respectively. When the aerosol pollution got worse during the sampling period, the NO3-, SO42 - and NH4+ concentrations increased accordingly and NO3- appeared to increase at fastest rate. SO42 - transported from industrial areas led to slight difference in spatial distribution of SO42 - in Ningbo. More secondary organic carbon was formed and the enrichment factor values of Cu, Ag, Cd, Sn and Pb increased with the degradation of air quality. Ten types of sources were identified for PM2.5 in the autumn and winter of

  20. An appraisal of the Permian palaeobiodiversity and geology of the Ib-River Basin, eastern coastal area, India

    Science.gov (United States)

    Goswami, Shreerup; Saxena, Anju; Singh, Kamal Jeet; Chandra, Shaila; Cleal, Christopher J.

    2018-05-01

    The Ib-River Basin situated in the east coastal area of India, in Odisha State is a south-eastern part of the Mahanadi Master Basin. A large number of plant macrofossils belonging to the Glossopteris flora were described and documented between 2006 and 2010 from various localities of the Barakar and Lower Kamthi formations of this basin. The floral components representing leaves, roots and fructifications in these assemblages belong to the Lycopodiales, Equisetales, Sphenophyllales, Filicales, Cordaitales, Cycadales, Ginkgoales, Coniferales and Glossopteridales. In the present study, all the available data pertaining to the biological remains, petrological analyses as well as the geology of this basin are reviewed and analyzed to deduce and reconstruct the biostratigraphy, palaeoclimate, palaeoenvironment and the landscape of this basin during Permian time in general and during the deposition of Barakar (Artinskian - Kungurian) and Lower Kamthi (Lopingian) formations in particular. The floral composition suggests the prevalence of a temperate climate with a slight change from warm moist to warm dry conditions during the deposition of the Barakar Formation and warm and humid during the deposition of Lower Kamthi sediments. Distribution of various plant groups in the Barakar and Lower Kamthi formations have been shown to depict the biodiversity trends. Vegetational reconstructions during the deposition of the Barakar and Lower Kamthi formations around the Ib-River Basin have also been attempted based on all the fossil records from this area. The status of unclassified Barakar and Kamthi formations has been redefined. Apart from megafloristics, the palynology of the basin is also discussed. Possible marine incursions and marine marginal environment in the Ib-Basin during Permian are overtly summarized on the basis of records of acritarchs, typical marine ichnofossils and evidences of wave activity in Lower Gondwana sediments of this Basin.

  1. The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent.

    Science.gov (United States)

    Sengupta, Ashmita; Lyons, J Michael; Smith, Deborah J; Drewes, Jörg E; Snyder, Shane A; Heil, Ann; Maruya, Keith A

    2014-02-01

    To inform future monitoring and assessment of chemicals of emerging concern (CECs) in coastal urban watersheds, the occurrence and fate of more than 60 pharmaceuticals and personal care products (PPCPs), commercial/household chemicals, current-use pesticides, and hormones were characterized in 2 effluent-dominated rivers in southern California (USA). Water samples were collected during 2 low-flow events at locations above and below the discharge points of water reclamation plants (WRPs) and analyzed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Approximately 50% of targeted CECs were detectable at stations downstream from WRPs, compared with TDCPP) of 3400 ng/L and 2400 ng/L for the 2 rivers. Maximum in-stream concentrations of pyrethroids (bifenthrin and permethrin), diclofenac, and galaxolide exceeded risk-based thresholds established for monitoring of CECs in effluent-dominated receiving waters. In contrast, maximum concentrations of PPCPs commonly detected in treated wastewater (e.g., acetaminophen, N,N,diethyl-meta-toluamide [DEET], and gemfibrozil) were less than 10% of established thresholds. Attenuation of target CECs was not observed downstream of WRP discharge until dilution by seawater occurred in the tidal zone, partly because of the short hydraulic residence times in these highly channelized systems (<3 d). In addition to confirming CECs for future in-stream monitoring, these results suggest that conservative mass transport is an important boundary condition for assessment of the input, fate, and effects of CECs in estuaries at the bottom of these watersheds. © 2013 SETAC.

  2. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    Science.gov (United States)

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  3. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Science.gov (United States)

    2010-05-11

    ... Sanitary and Ship Canal, Chicago River, and Calumet-Saganashkee Channel, Chicago, IL AGENCY: Coast Guard... River, the Chicago Sanitary and Ship Canal (CSSC), branches of the Chicago River, and the Calumet... to any action taken by Federal or State agents. Waiting for the NPRM process to run would delay the...

  4. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  5. Activity concentration of 210Po and 210Pb, its contribution to the radiation dose and distribution coefficient in aquatic ecosystem of major rivers of coastal Karnataka

    International Nuclear Information System (INIS)

    Rajashekara, K.M.; Prakash, V.; Narayana, Y.

    2013-01-01

    Rivers are the major pathways for the transport of weathered materials from the land to the oceans. The geochemical studies on river waters provide an insight into the weathering process that control the distribution of elements in dissolved and particulate phases and their fluxes to the estuaries. Concentrations of natural series radionuclide in fresh water bodies are liable to be much more variable than those in the marine environment since they are heavily influenced by the local geochemistry of the watershed. The concentrations of radioactive materials vary from region to region and this variation is found to be significantly high in some areas. Some of the regions are rich with the flow of major rivers and estuaries of these rivers, and investigations of these riverine and estuarine aquatic environments would throw light on the transportation, distribution and enrichment mechanism of radionuclides. In this context, the activity of 210 Po and 210 Pb were measured in different matrices of aquatic ecosystem of the major rivers namely, Kali, Sharavathi and Netravathi river of Coastal Karnataka

  6. A review on the patterns of river material fluxes, coastal plume dispersal, shelf sediment facies, and anthropogenic impacts of the Tropical Land-Sea Interface, Sergipe/Alagoas, Northeast Brazil

    Science.gov (United States)

    Knoppers, B.; Medeiros, P. R. P.; de Souza, W. F. L.; Oliveira, E. N.; Fontes, L. C. da S.; do Carmo, M. S.; Carvalho, I. S.; Silva, M. C.; Brandini, N.; Carneiro, M. E.

    2012-04-01

    This study couples published and unpublished information on the alterations of continental material fluxes, plume dispersal patterns and coastal erosion induced by natural and human impacts to the distribution of sediment facies and sedimentation rates of the continental shelf of the States of Sergipe and Alagoas, northeastern Brazil (Lats. 8o56,2' and 11o20,0' S, Longs. 35o07,7' and 37o14,2' W). Historical data on river flow and material fluxes of 7 rivers, including the São Francisco river (L = 2850 km, AB = 634000 km2), were obtained from own measurements and from the national data bank of ANA (National Agency of Waters, www.ana.gov.br) with the softwares HIDRO 1.2 and SisCAH 1.0. Historical data on the distribution of sediments and their elemental composition of the shelf from the AKAROA (1965) campaign with 190 sampling stations (scale 1:1.000.000; Kempf, 1972, Summerhayes et al. 1975 & 1976, Coutinho, 1976) were revisited and new digital maps constructed with ArcGIS 9.3. Comparisons are made from new maps from recent campaigns (scale 1:250.000) performed by the consortium GEORIOEMAR/ UFS/ CENPES/ PETROBRÁS (2010). Statistical analyses with all parameters revealed that the shelf harbors 4 major regional sedimentary domains (i.e. A to D), reflecting the interaction between continental inputs and the impact of the oligotrophic South Equatorial Current (SEC) upon the shelf. The domains are: A- The Alagoas shelf. Set north of the São Francisco river with low fluvial input, dominance of SEC, recent organogenetic carbonate sediments with the calcareous algae Lithothamnium sp. and Halimeda sp. B- The São Francisco river alluvial fan and canyon. The river harbors a cascade of dams and after 1995, river flow declined by 40 % and was modulated to a constant flow of 2060 m3s-1, 95 % of the suspended matter load was retained within the reservoirs and nutrients (N,P) were impoverished by 90 % . The estuarine waters are now transparent and oligotrophic and the coastal

  7. Long-term water chemistry database, Little River Experimental Watershed, southeast Coastal Plain, United States

    Science.gov (United States)

    Feyereisen, G. W.; Lowrance, R.; Strickland, T. C.; Sheridan, J. M.; Hubbard, R. K.; Bosch, D. D.

    2007-09-01

    A water quality sampling program was initiated in 1974 by the U.S. Department of Agriculture Agricultural Research Service on the 334 km2 Little River Experimental Watershed (LREW) near Tifton in south Georgia to monitor the effects of changing land use and agricultural practices over time and to support development of simulation models capable of predicting future impacts of agricultural land use and management changes. Stream samples were taken on a weekly or more frequent basis and were analyzed for chloride, ammonium nitrogen, nitrate plus nitrite nitrogen, total kjeldahl nitrogen, total phosphorus, and dissolved molybdate reactive phosphorus. Monitoring began in 1974 on the entire watershed and four nested subwatersheds, ranging in size from 16.7 to 114.9 km2, and continues until present. Partial records of 7, 10, and 19 years exist for three additional subwatersheds. Suspended solids data are available for all eight subwatersheds for 1974-1978 and 1979-1981, three subwatersheds for 1982-1986, and all eight subwatersheds again beginning in the year 2000. The concentration and associated load data are being published on the LREW database anonymous ftp site (ftp://www.tiftonars.org/).

  8. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  9. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    Science.gov (United States)

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China.

    Science.gov (United States)

    Sun, Zhigao; Wang, Lingling; Tian, Hanqin; Jiang, Huanhuan; Mou, Xiaojie; Sun, Wanlong

    2013-01-01

    The spatial and temporal variations of the fluxes of nitrous oxide (N(2)O) and methane (CH(4)) and associated abiotic sediment parameters were quantified for the first time across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary during 2009/2010. During all times of day and the seasons measured, N(2)O and CH(4) fluxes from coastal marsh ranged from -0.0147 mg N(2)O m(-2) h(-1) to 0.0982 mg N(2)O m(-2) h(-1) and -0.7421 mg CH(4) m(-2) h(-1) to 0.4242 mg CH(4) m(-2) h(-1), respectively. The mean N(2)O fluxes in spring, summer, autumn and winter were 0.0325 mg N(2)O m(-2) h(-1), 0.0089 mg N(2)O m(-2) h(-1), 0.0119 mg N(2)O m(-2) h(-1) and 0.0140 mg N(2)O m(-2) h(-1), and the average CH(4) fluxes were -0.0109 mg CH(4) m(-2) h(-1), -0.0174 mg CH(4) m(-2) h(-1), -0.0141 mg CH(4) m(-2) h(-1) and -0.0089 mg CH(4) m(-2) h(-1), respectively, indicating that the coastal marsh acted as N(2)O source and CH(4) sink. Both N(2)O and CH(4) fluxes differed significantly between times of day of sampling. N(2)O fluxes differed significantly between sampling seasons as well as between sampling positions, while CH(4) fluxes had no significant differences between seasons or positions. Temporal variations of N(2)O emissions were probably related to the effects of vegetation (S. salsa) during summer and autumn and the frequent freeze/thaw cycle of sediment during spring and winter, while those of CH(4) fluxes were controlled by the interactions of thermal conditions and other abiotic factors (soil moisture and salinity). Spatial variations of N(2)O and CH(4) fluxes were primarily affected by soil moisture fluctuation derived from astronomic tide, sediment substrate and vegetation composition. N(2)O and CH(4) fluxes, expressed as CO(2)-equivaltent (CO(2)-e) emissions, showed that N(2)O comprised the principal part of total calculated CO(2)-e emissions during spring and winter, while the contributions of CH(4) could not be ignored during summer and autumn. This study

  11. Results of chemical analysis from the 2008-2009 National Rivers and Streams Assessment Survey, including persistent organic pollutants and pharmaceuticals

    Data.gov (United States)

    U.S. Environmental Protection Agency — In 2008-2009, fish are were collected from approximately 560 national streams, which included a representative subset of 154 urban river sites, which were in close...

  12. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Directory of Open Access Journals (Sweden)

    Bifeng Hu

    2018-04-01

    Full Text Available Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI and Nemerow integrated pollution index (NIPI were calculated for every surface sample (0–20 cm to assess the degree of heavy metal pollution. Ordinary kriging (OK was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK. The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  13. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    Science.gov (United States)

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  14. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    Science.gov (United States)

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preventable fine sediment export from the Burdekin River catchment reduces coastal seagrass abundance and increases dugong mortality within the Townsville region of the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A

    2017-01-30

    The coastal seagrass meadows in the Townsville region of the Great Barrier Reef are crucial seagrass foraging habitat for endangered dugong populations. Deteriorating coastal water quality and in situ light levels reduce the extent of these meadows, particularly in years with significant terrestrial runoff from the nearby Burdekin River catchment. However, uncertainty surrounds the impact of variable seagrass abundance on dugong carrying capacity. Here, I demonstrate that a power-law relationship with exponent value of -1 (R 2 ~0.87) links mortality data with predicted changes in annual above ground seagrass biomass. This relationship indicates that the dugong carrying capacity of the region is tightly coupled to the biomass of seagrass available for metabolism. Thus, mortality rates increase precipitously following large flood events with a response lag of <12-months. The management implications of this result are discussed in terms of climate scenarios that indicate an increased future likelihood of extreme flood events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The development of small, cabled, real-time video based observation systems for near shore coastal marine science including three examples and lessons learned

    Science.gov (United States)

    Hatcher, Gerry; Okuda, Craig

    2016-01-01

    The effects of climate change on the near shore coastal environment including ocean acidification, accelerated erosion, destruction of coral reefs, and damage to marine habitat have highlighted the need for improved equipment to study, monitor, and evaluate these changes [1]. This is especially true where areas of study are remote, large, or beyond depths easily accessible to divers. To this end, we have developed three examples of low cost and easily deployable real-time ocean observation platforms. We followed a scalable design approach adding complexity and capability as familiarity and experience were gained with system components saving both time and money by reducing design mistakes. The purpose of this paper is to provide information for the researcher, technician, or engineer who finds themselves in need of creating or acquiring similar platforms.

  17. Multiple Stressors: Lessons from Louisiana Coastal Waters (Invited)

    Science.gov (United States)

    Rabalais, N. N.

    2013-12-01

    Coastal Louisiana is a Mississippi River-dominated landscape driven by the long-term (millennia) and short-term (decades to hundreds of years) changes in materials flux, nature and human activities. The results are a highly productive coastal landscape and nearshore coastal waters that support rich natural and non-renewable resources. The ecosystem and socio-economic systems are intimately linked. Several factors have led to the demise of many of the healthy features of this coastal system, including long-term changes in the landscape of the Mississippi River basin watershed, alterations to the structure and flow of the Mississippi River and its tributaries, coastal landscape alterations leading to loss of productive marshes and protective barrier islands, increases in nitrogen and phosphorus loads to the coastal ocean and their detrimental effects, and reduction in the sediments delivered by the river. Increases in population and extraction of living resources and oil and gas reserves continue to drive many actions taken in the coastal landscape and waters. As a result, Louisiana is in a state of major disrepair (to be charitable) and needs thoughtful consideration of restoration actions taken in the river basin and within the coastal landscape. The first thought is to cause no further harm. The second is to proceed acknowledging that human and natural forces (particularly climate change, rising sea level and changing global economies) must be taken into account. Thirdly, a broader consideration of the river basin and coastal landscapes, their interconnectivity, and ecosystem health and social welfare must be taken into account.

  18. Disinfection byproduct precursor dynamics and water treatability during an extreme flooding event in a coastal blackwater river in southeastern United States.

    Science.gov (United States)

    Ruecker, A; Uzun, H; Karanfil, T; Tsui, M T K; Chow, A T

    2017-12-01

    Coastal blackwater rivers, characterized by high concentrations of natural organic matter, are source water for millions of people in the southeastern US. In October 2015, large areas of coastal South Carolina were flooded by Hurricane Joaquin. This so-called "thousand-year" rainfall mobilized and flushed large amounts of terrestrial organic matter and associated pollutants (e.g. mercury) into source water, affecting water quality and safety of municipal water supply. To understand the dynamics of water quality and water treatability during this extreme flood, water samples were collected from Waccamaw River (a typical blackwater river in the southeastern US) during rising limb, peak discharge, falling limb, and base flow. Despite decreasing water flow after peak discharge, dissolved organic carbon (DOC) levels (increased by up to 125%), and formation potentials of trihalomethanes and haloacetic acids (increased by up to 150%) remained high for an extended period of time (>eight weeks after peak discharge), while variation in the N-nitrosodimethylamine (NDMA) FP was negligible. Coagulation with alum and ferric at optimal dosage significantly reduced concentrations of DOC by 51-76%, but up to 10 mg/L of DOC still remained in treated waters. For an extended period of time, elevated levels of THMs (71-448 μg/L) and HAAs (88-406 μg/L) were quantified in laboratory chlorination experiments under uniform formation conditions (UFC), exceeding the United States Environmental Protection Agency's (USEPA) maximum contaminant level of 80 and 60 μg/L, respectively. Results demonstrated that populations in coastal cities are at high risk with disinfection by-products (DBPs) under the changing climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of river influx on phytoplankton community during fall inter–monsoon in the coastal waters off Kakinada, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sooria, P.M.; Reny, P.D.; Jagadeesan, L.; Nair, M.

    of inter-annual variability in community structure influenced by the riverine input into the Bay. Further, species with adaptations like large size and low salinity tolerance have advantage over others to survive and flourish in the low saline nutrient... Journal of Geo-Marine Sciences Vol. 40(4), August 2011, pp. 550-558 Influence of river influx on phytoplankton community during fall inter – monsoon in the coastal waters off Kakinada, east coast of India P. M. Sooria, P. D. Reny, L...

  20. Geohydrology and water quality of stratified-drift aquifers in the lower Merrimack and coastal river basins, southeastern New Hampshire

    Science.gov (United States)

    Stekl, Peter J.; Flanagan, Sarah M.

    1992-01-01

    Communities in the lower Merrimack River basin and coastal river basins of southeastern New Hampshire are experiencing increased demands for water because of a rapid increase in population. The population in 1987 was 225,495 and is expected to increase by 30 percent during the next decade. As of 1987, five towns used the stratified-drift aquifers for municipal supply and withdrew an estimated 6 million gallons per day. Four towns used the bedrock aquifer for municipal supply and withdrew an average of 1 .6 million gallons per day. Stratified-drift deposits cover 78 of the 327 square miles of the study area. These deposits are generally less than 10 square miles in areal extent, and their saturated thickness ranges front less than 20 feet to as much as 100 feet . Transinissivity exceeds 4,000 square feet per day in several locations. Stratified-drift aquifers in the eastern part are predominantly small ice-contact deposits surrounded by marine sediments or till of low hydraulic conductivity. Stratified-drift aquifers in the western part consist of ice-contact and proglacial deposits that are large in areal extent and are commonly in contact with surface-water bodies. Five stratified-drift aquifers, in the towns of Derry, Windham, Kingston, North Hampton, and Greenland, have the greatest potential to supply additional amounts of water. Potential yields and contributing areas of hypothetical supply wells were estimated for an aquifer in Windham near Cobbetts Pond and for an aquifer in Kingston along the Powwow River by use of a method analogous to superposition in conjunction with a numerical ground-waterflow model. The potential yield is estimated to be 0 .6 million gallons per day for the Windham-Cobbetts Pond aquifer and 4 .0 million gallons per day for the Kingston-Powwow River aquifer. Contributing recharge area for supply wells is estimated to be 1.6 square miles in the Windham-Cobbetts Pond aquifer and 4.9 square miles in the Kingston-Powwow River aquifer

  1. Export of materials along a tidal river channel that links a coastal lagoon to the adjacent sea

    Directory of Open Access Journals (Sweden)

    Javier Aldeco Ramírez

    2012-09-01

    Full Text Available Intratidal variability and flux of salt, chlorophyll-a and suspended materials were evaluated in a shallow tropical tidal channel linking a coastal lagoon to the western Gulf of Mexico. Velocity, temperature and conductivity were used to calculate the fluxes. Data were recorded during three tidal velocity cycles (tvc under extreme river discharge conditions. Chlorophyll-a and suspended materials were determined below the surface. In both seasons (dry and rainy, the flow was ebb-dominated and with longer duration than when in flood. Maximum current velocities were 0.30 m s-1 in May (dry season and 0.60 m s-1 in September (rainy season. In the dry season the mean chlorophyll-a export was of 7.56 Kg over tvc while the import was of 3.32 Kg. In the rainy season mean export (47.3 Kg was 6 times greater than the import (7.93 Kg over tvc. Phytoplankton was dominated by organisms of marine origin. The mean of exported, suspended materials in the rainy season (111.3 Kg was 4.6 times greater (859 Kg than that in the dry season (184.7 Kg over tvc. Tidal velocity asymmetry is an effective mechanism of exportation, introducing relatively warm and saltier water into the river through the tidal channel.A variabilidade intramaré, o fluxo de salinidade, a clorofila-a e material em suspensão foram avaliados em um canal superficial de maré tropical em uma lagoa costeira ao oeste do Golfo do México. Os dados de velocidade, temperatura e condutividade foram usados para cálculo dos fluxos durante três ciclos de velocidades das marés (tvc sob condições extremas de descarga. A Clorofila-a e material em suspensão foram determinados abaixo em subsuperfície. Em ambas as estações (seca e chuvosa, o fluxo dominante foi durante o refluxo e com duração maior durante o fluxo de entrada. A máxima velocidade encontrada foi 0.30 m s-1 em maio (estação seca e 0.60 m s-1 em setembro (estação chuvosa. Durante a época seca foram exportadas 7.56 Kg de clorofila

  2. 2014 NOAA Ortho-rectified Color Mosaic of St. Johns River, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  3. Integrated River and Coastal Hydrodynamic Flood Risk Mapping of the LaHave River Estuary and Town of Bridgewater, Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Tim Webster

    2014-03-01

    Full Text Available Bridgewater, Nova Scotia, is located 20 km inland from the mouth of the LaHave River estuary on the Atlantic Coast of Canada. Bridgewater is at risk of flooding due to the combined effects of river runoff and a storm surge on top of high tide. Projected increases in sea-level and possible increased river runoff with climate change increase the risk of future flooding. A set of river and ocean water level simulations were carried out to determine the risk of flooding to Bridgewater today and in the future under climate change. The hydrodynamic simulation developed incorporates return periods of a time series of river discharge measurements for the LaHave watershed, ocean water dynamics at the mouth of the river under normal tidal conditions and with two levels of storm surge, near shore and river bathymetry, as well as high precision topographic lidar derived ground elevations and survey grade GPS. The study was supported by data from two tide gauge sensors, and qualitative evidence provided by the community such as historical flood levels and photographs. Results show that areas upstream of the town are vulnerable to large discharge events of the LaHave River. The downtown waterfront and infrastructure are not susceptible to fluvial flooding, but is vulnerable to sea-level rise and storm surge flooding.

  4. Sources and compositional distribution of organic carbon in surface sediments from the lower Pearl River to the coastal South China Sea

    Science.gov (United States)

    Li, X.; Zhang, Z.; Wade, T.; Knap, A. H.; Zhang, C.

    2017-12-01

    The Pearl River plays an important role in transporting terrestrial organic carbon (OC) to the South China Sea (SCS). However, the sources and compositional distribution of OC in the system are poorly understood. This study focused on delineating the sources and determining the fate of surface sedimentary OC from the Feilaixia Hydro-power Station to the coastal SCS. Elemental, stable carbon/nitrogen isotope (δ13C, δ15N) and lignin-phenol analyses have been conducted. The total OC (TOC) from the up-stream sites were generally derived from vascular plants (higher C/N, and depleted δ13C) and soils. Additional input was attributed to riverine primary production (lower C/N and enriched δ13C), which was enhanced near the dam-created reservoir. The C/N and δ13C values were not significantly different among sites in the mid-stream. The estuary/coastal sites witnessed hydrodynamically sorted riverine OC, which was diluted by marine primary production (lower C/N and more enriched δ13C). The lignin concentration was the highest in the up-stream sites, remained relatively unchanged in the mid-stream sites and decreased significantly along the estuary/coastal sites, which was corroborated by variation in TOC. A comprehensive five-endmember Monte Carlo simulation suggested that previous studies had underestimated the C4 plant input by 14 ± 11% and overestimated the riverbank soil input by 21 ± 17%. Thus, our study provided valuable information for more accurate source and mass balance studies of terrestrial OC transported to the SCS, which helped to further understand the carbon cycling in the large river-ocean continuum.

  5. Sources and compositional distribution of organic carbon in surface sediments from the lower Pearl River to the coastal South China Sea

    Science.gov (United States)

    Li, Xinxin; Zhang, Zhaoru; Wade, Terry L.; Knap, Anthony H.; Zhang, Chuanlun L.

    2017-08-01

    The Pearl River plays an important role in transporting terrestrial organic carbon (OC) to the South China Sea (SCS). However, the sources and compositional distribution of OC in the system are poorly understood. This study focused on delineating the sources and determining the fate of surface sedimentary OC from the Feilaixia Hydropower Station to the coastal SCS. Elemental, stable carbon/nitrogen isotope (δ13C and δ15N), and lignin-phenol analyses have been conducted. The total OC (TOC) from the upstream sites were generally derived from vascular plants (higher C/N and and depleted δ13C) and soils. Additional input was attributed to riverine primary production (lower C/N and enriched δ13C), which was enhanced near the dam-created reservoir. The C/N and δ13C values were not significantly different among sites in the midstream. The estuary/coastal sites witnessed hydrodynamically sorted riverine OC, which was diluted by marine primary production (lower C/N and more enriched δ13C). The lignin concentration was the highest in the upstream sites, remained relatively unchanged in the midstream sites, and decreased significantly along the estuary/coastal sites, which was corroborated by variation in TOC. A comprehensive five-end-member Monte Carlo simulation suggested that previous studies had underestimated the C4 plant input by 14 ± 11% and overestimated the riverbank soil input by 21 ± 17%. Thus, our study provided valuable information for more accurate source and mass balance studies of terrestrial OC transported to the SCS, which helped to further understand the carbon cycling in the large river-ocean continuum.

  6. Study on water quality around mangrove ecosystem for coastal rehabilitation

    Science.gov (United States)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  7. Combining L- and X-Band SAR Interferometry to Assess Ground Displacements in Heterogeneous Coastal Environments: The Po River Delta and Venice Lagoon, Italy

    Directory of Open Access Journals (Sweden)

    Luigi Tosi

    2016-04-01

    Full Text Available From leveling to SAR-based interferometry, the monitoring of land subsidence in coastal transitional environments significantly improved. However, the simultaneous assessment of the ground movements in these peculiar environments is still challenging. This is due to the presence of relatively small built-up zones and infrastructures, e.g., coastal infrastructures, bridges, and river embankments, within large natural or rural lands, e.g., river deltas, lagoons, and farmland. In this paper we present a multi-band SAR methodology to integrate COSMO-SkyMed and ALOS-PALSAR images. The method consists of a proper combination of the very high-resolution X-band Persistent Scatterer Interferometry (PSI, which achieves high-density and precise measurements on single structures and constructed areas, with L-band Short-Baseline SAR Interferometry (SBAS, properly implemented to raise its effectiveness in retrieving information in vegetated and wet zones. The combined methodology is applied on the Po River Delta and Venice coastland, Northern Italy, using 16 ALOS-PALSAR and 31 COSMO-SkyMed images covering the period between 2007 and 2011. After a proper calibration of the single PSI and SBAS solution using available GPS records, the datasets have been combined at both the regional and local scales. The measured displacements range from ~0 mm/yr down to −35 mm/yr. The results reveal the variable pattern of the subsidence characterizing the more natural and rural environments without losing the accuracy in quantifying the sinking of urban areas and infrastructures. Moreover, they allow improving the interpretation of the natural and anthropogenic processes responsible for the ongoing subsidence.

  8. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China

    Directory of Open Access Journals (Sweden)

    J. J. Lian

    2013-02-01

    Full Text Available Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms. The combined effect of multiple sources and the joint probability of extremes should be considered to assess and manage flood risk better. This paper aims to study the combined effect of rainfall and the tidal level of the receiving water body on flood probability and severity in Fuzhou City, which has a complex river network. Flood severity under a range of precipitation intensities, with return periods (RPs of 5 yr to 100 yr, and tidal levels was assessed through a hydrodynamic model verified by data observed during Typhoon Longwang in 2005. According to the percentages of the river network where flooding occurred, the threshold conditions for flood severity were estimated in two scenarios: with and without working pumps. In Fuzhou City, working pumps efficiently reduce flood risk from precipitation within a 20-yr RP. However, the pumps may not work efficiently when rainfall exceeds a 100-yr RP because of the limited conveyance capacity of the river network. Joint risk probability was estimated through the optimal copula. The joint probability of rainfall and tidal level both exceeding their threshold values is very low, and the greatest threat in Fuzhou comes from heavy rainfall. However, the tidal level poses an extra risk of flood. Given that this extra risk is ignored in the design of flood defense in Fuzhou, flood frequency and severity may be higher than understood during design.

  9. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  10. Evaluating Production of Cyclopentyl Tetraethers by Marine Group II Euryarchaeota in the Pearl River Estuary and Coastal South China Sea: Potential Impact on the TEX86 Paleothermometer

    Directory of Open Access Journals (Sweden)

    Jin-Xiang Wang

    2017-10-01

    Full Text Available TEX86 [TetraEther indeX of glycerol dialkyl glycerol tetraethers (GDGTs with 86 carbon atoms] has been widely applied to reconstruct (paleo- sea surface temperature. Marine Group I (MG-I Thaumarchaeota were thought to be the primary source of GDGTs constituting the TEX86 formula; however, recent research has suggested that Marine Group II (MG-II Euryarchaeota may also contribute significantly to the GDGT pool in the ocean. Little is known regarding the potential impact of MG-II Euryarchaeota-derived GDGTs on TEX86 values recorded in marine sediments. In this study, we assessed the relationship between distributions of GDGTs and MG-II Euryarchaeota and evaluated its potential effect on the TEX86 proxy. Lipid and DNA analyses were performed on suspended particulate matter and surface sediments collected along a salinity gradient from the lower Pearl River (river water and its estuary (mixing water to the coastal South China Sea (SCS, seawater. TEX86-derived temperatures from the water column and surface sediments were significantly correlated and both were lower than satellite-based temperatures. The ring index (RI values in these environments were higher than predicted from the calculated TEX86-RI correlation, indicating that the GDGT pool in the water column of the PR estuary and coastal SCS comprises relatively more cyclopentane rings, which thereby altered TEX86 values. Furthermore, the abundance of MG-II Euryarchaeota 16S rRNA gene in the mixing water was two to three orders of magnitude higher than those observed in the river or seawater. Significant linear correlations were observed between the gene abundance ratio of MG-II Euryarchaeota to total archaea and the fractional abundance of GDGTs with cyclopentane rings. Collectively, these results suggest that MG-II Euryarchaeota likely produce a large proportion of GDGTs with 1–4 cyclopentane moieties, which may bias TEX86 values in the water column and sediments. As such, valid

  11. STREAM II-V7: Revision for STREAM II-V6 to include outflow from all Savannah River Site tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Maze, Grace M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    STREAM II is the aqueous transport model of the Weather Information Display (WIND) emergency response system at Savannah River Site. It is used to calculate transport in the event of a chemical or radiological spill into the waterways on the Savannah River Site. Improvements were made to the code (STREAM II V7) to include flow from all site tributaries to the Savannah River total flow and utilize a 4 digit year input. The predicted downstream concentrations using V7 were generally on the same order of magnitude as V6 with slightly lower concentrations and quicker arrival times when all onsite stream flows are contributing to the Savannah River flow. The downstream arrival time at the Savannah River Water Plant ranges from no change to an increase of 8.77%, with minimum changes typically in March/April and maximum changes typically in October/November. The downstream concentrations are generally no more than 15% lower using V7 with the maximum percent change in January through April and minimum changes in June/July.

  12. Santa Ana River Design Memorandum Number 1. Phase 2. GDM on the Santa Ana River Mainstem Including Santiago Creek. Volume 1. Seven Oaks Dam. Appendix A

    Science.gov (United States)

    1988-08-01

    until filled with sediment. Seven Oaks Dam flood control storage will be used to help control flooding on the lower Santa Ana River below Prade Dam by...34o4 6-tervah; .1 35.7- 36.1, 70.2- 77.2 S.-7Yw 6.-S.V ho 24 12 q.W.9ly 0" lth .11 qgo-lik. AlltwW0. loaly ith6 74 252 76 p*fro~Ic willy .. fd oc 0

  13. Acidic gases, ammonia and water-soluble ions in PM 2.5 at a coastal site in the Pearl River Delta, China

    Science.gov (United States)

    Hu, Min; Wu, Zhijun; Slanina, J.; Lin, Peng; Liu, Shang; Zeng, Limin

    Real-time measurements of acidic trace gases (HCl, HNO 3, HONO, and SO 2), ammonia, and water-soluble ions in PM 2.5 were conducted at Xinken, a coastal site downwind of Guangzhou, from 4 October to 4 November 2004, as part of the Pearl River Delta (PRD) intensive field campaign. The average concentrations of HCl, HONO, HNO 3, SO 2, and NH 3 are 2.8, 2.9, 6.3, 55.4, and 7.3 μg m -3, respectively, and 2.4, 7.2, 24.1, and 9.2 μg m -3 for Cl -, NO 3-, SO 42-, and NH 4+ in PM 2.5. The diurnal variations of both HCl and HNO 3 showed higher concentrations during daytime and lower concentrations at night, and aerosol Cl - and NO 3- showed an opposite diurnal patterns to HCl and HNO 3. The diurnal variation of NH 3 showed the similar pattern to that of aerosol NH 4+ with lower concentration during daytime and higher concentration at night. The average concentration of SO 2 during daytime was higher than that at night. The transportation of urban plumes to the sampling site could explain the higher concentration of SO 2 during daytime. HONO showed a clear diurnal variation with lower concentration during daytime and higher concentration at night. The HONO concentrations were positively correlated with the particle surface area concentrations, suggesting the formation of HONO through the heterogeneous conversion on particle surfaces could be significant. The ionic charge balance analysis included the cations derived from filter measurements indicates that the contribution of the cations in fine particle (PM 1.8) to the charge balance is not pronounced. The theoretical equilibrium constant ( Ke) of NH 4NO 3 is higher than the observed concentration product ( Km=[NH 3]×[HNO 3]) during daytime, and lower than Km at night. This indicates that the atmospheric conditions during the sampling period did not favor the formation of NH 4NO 3 during daytime.

  14. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Potomac River, Maryland, 2008-2009 (NODC Accession 0074378)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are orthorectified mosaic image tiles produced from 2008 aerial photography of the Potomac River, Maryland. The images were acquired at a 1:30,000 scale....

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine mammals (seals) in the Hudson River. Vector polygons in this data set represent marine mammal...

  17. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  18. NATIONAL COASTAL CONDITION REPORT III

    Science.gov (United States)

    Coastal waers in the US include estuaries, coastal wetlands, coral reefs, ,mangrove and kelp forests, seagrass meadows, and upwelling areas. Critical coastal habitats provide spawning grounds, nurseries, shelter, and food for finfish, shellfish, birds, and other wildlife. The n...

  19. Ecological risk caused by land use change in the coastal zone: a case study in the Yellow River Delta High-Efficiency Ecological Economic Zone

    International Nuclear Information System (INIS)

    Di, X H; Wang, Y D; Hou, X Y

    2014-01-01

    China's coastal zone plays an important role in ecological services production and social-economic development; however, extensive and intensive land resource utilization and land use change have lead to high ecological risk in this area during last decade. Regional ecological risk assessment can provide fundamental knowledge and scientific basis for better understanding of the relationship between regional landscape ecosystem and human activities or climate changes, facilitating the optimization strategy of land use structure and improving the ecological risk prevention capability. In this paper, the Yellow River Delta High-Efficiency Ecological Economic Zone is selected as the study site, which is undergoing a new round of coastal zone exploitation and has endured substantial land use change in the past decade. Land use maps of 2000, 2005 and 2010 were generated based on Landsat images by visual interpretation method, and the ecological risk index was then calculated. The index was 0.3314, 0.3461 and 0.3176 in 2000, 2005 and 2010 respectively, which showed a positive transition of regional ecological risk in 2005

  20. Introduction to Coastal Engineering and Breakwaters

    NARCIS (Netherlands)

    Bijker, E.W.

    1972-01-01

    Collegedictaat f11a and f11b. Lecture notes, short waves, waves near shoreline, coastal formation, sediment transport by waves, coastal protection, delta coasts, muddy coasts, tidal rivers, density currents, breakwater design.

  1. Myxobolus species (Myxozoa), parasites of fishes in the Okavango River and Delta, Botswana, including descriptions of two new species.

    Science.gov (United States)

    Reed, Cecilé C; Basson, Linda; Van As, Liesl L

    2002-01-01

    Fieldwork was conducted in 1998 and 1999 in the Okavango River and Delta and a total of 275 fishes representing 31 species were examined for the presence of myxosporean parasites. A total of seven myxosporeans of the genus Myxobolus Bütschli, 1882 were found infecting the fishes. Two new species namely Myxobolus etsatsaensis sp. n. from Barbus thamalakanensis Fowler, 1935 and M. paludinosus sp. n. from Barbus paludinosus Peters, 1852 are described. Myxobolus africanus Fomena, Bouix et Birgi, 1985, M. camerounensis Fomena, Marqués et Bouix, 1993, M. hydrocyni Kostoïngue et Toguebaye, 1994, M. nyongana (Fomena, Bouix et Birgi, 1985) and M. tilapiae Abolarin, 1974 are recorded for the first time in Botswana and descriptions of these species are provided.

  2. Soil organic carbon storage changes in coastal wetlands of the modern Yellow River Delta from 2000 to 2009

    Directory of Open Access Journals (Sweden)

    J. Yu

    2012-06-01

    Full Text Available Soil carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. The storages and dynamics of soil organic carbon (SOC of 0–30 cm soil depth in different landscape types including beaches, reservoir and pond, reed wetland, forest wetland, bush wetland, farmland, building land, bare land (severe saline land and salt field in the modern Yellow River Delta (YRD were studied based on the data of the regional survey and laboratory analysis. The landscape types were classified by the interpretation of remote sensing images of 2000 and 2009, which were calibrated by field survey results. The results revealed an increase of 10.59 km2 in the modem YRD area from 2000 to 2009. The SOC density varied ranging from 0.73 kg m−2 to 4.25 kg m−2 at depth of 0–30 cm. There were approx. 3.559 × 106 t and 3.545 × 106 t SOC stored in the YRD in 2000 and 2009, respectively. The SOC storages changed greatly in beaches, bush wetland, farm land and salt field which were affected dominantly by anthropogenic activities. The area of the YRD increased greatly within 10 years, however, the small increase of SOC storage in the region was observed due to landscape changes, indicating that the modern YRD was a potential carbon sink and anthropogenic activity was a key factor for SOC change.

  3. The effects of Hurricane Irene and Tropical Storm Lee on the bed sediment geochemistry of U.S. Atlantic coastal rivers

    Science.gov (United States)

    Horowitz, Arthur J.

    2013-01-01

    Hurricane Irene and Tropical Storm Lee, both of which made landfall in the U.S. between late August and early September 2011, generated record or near record water discharges in 41 coastal rivers between the North Carolina/South Carolina border and the U.S./Canadian border. Despite the discharge of substantial amounts of suspended sediment from many of these rivers, as well as the probable influx of substantial amounts of eroded material from the surrounding basins, the geochemical effects on the wastewater/solid sludge. The limited number of significant sediment-associated chemical changes that were detected probably resulted from two potential processes: (1) the flushing of in-stream land-use affected sediments that were replaced by baseline material more representative of local geology and/or soils (declining concentrations), and/or (2) the inclusion of more heavily affected material as a result of urban nonpoint-source runoff and/or releases from flooded treatment facilities (increasing concentrations). Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Linear alkylbenzenes in riverine runoff of the Pearl River Delta (China) and their application as anthropogenic molecular markers in coastal environments

    International Nuclear Information System (INIS)

    Ni Honggang; Lu Fenghui; Wang Jizhong; Guan Yufeng; Luo Xianlin; Zeng, Eddy Y.

    2008-01-01

    The average concentrations of ΣLABs (sum of C 10 -C 13 -LABs) in runoff samples collected from the eight major riverine outlets of the Pearl River Delta (PRD) of China ranged from 1.4 to 6124 ng/L in the dissolved phase and from 0.01 to 11.4 μg/g dry weight in the particulate phase during March 2005-February 2006. The annual riverine flux of ΣLABs from the PRD to the coastal ocean was estimated at approximately 14 tons/yr. The inventories of ΣLABs in agricultural lands of Guangdong Province ranged from 313 to 1825 kg/yr. The early and late rice fields were the major sink of LABs, accounting for approximately 68% of total LABs inventory in agricultural lands. The social-economically estimated annual discharge of LABs from household detergents in the PRD was ∼696 tons/yr, more than an order of magnitude higher than that estimated from field measurements (about 14 tons/yr), which was attributed to several factors. - Occurrence of LABs in riverine runoff of the Pearl River Delta (China) was examined

  5. A new species of freshwater eel-tailed catfish of the genus Tandanus (Teleostei: Plotosidae) from coastal rivers of mid-northern New South Wales, Australia

    Science.gov (United States)

    Welsh, Stuart A.; Jerry, Dean R.; Burrows, Damien; Rourke, Meaghan L.

    2017-01-01

    Tandanus bellingerensis, new species, is described based on specimens from four river drainages (Bellinger, Macleay, Hastings, and Manning rivers) of the mid-northern coast of New South Wales, Australia. Previously, three species were recognized in the genus Tandanus: T. tropicanus of the wet tropics region of northeast Queensland, T. tandanus of the Murray-Darling drainage and coastal streams of central-southern Queensland and New South Wales, and T. bostocki of southwestern Western Australia. The new species is distinguished from all congeners by a combination of the following morphologic characters: a high count of rays in the continuous caudodorsal and anal fins (range 153–169, mode 159), a high count of gill rakers on the first arch (range 35–39, mode 36), and strongly recurved posterior serrae of the pectoral-fin spine. Additionally, results from previously conducted genetic studies corroborate morphologic and taxonomic distinctness of the new species.

  6. Dactylogyrids (Platyhelminthes, Monogenoidea) from the gills of Hoplias malabaricus (Characiformes: Erythrinidae) from coastal rivers of the Oriental Amazon Basin: species of Urocleidoides and Constrictoanchoratus n. gen.

    Science.gov (United States)

    Ferreira, K D C; Rodrigues, A R O; Cunha, J-M; Domingues, M V

    2018-05-01

    Five species of Urocleidoides (one new) and two new species of Constrictoanchoratus n. gen. are described in this study. All were collected from the gills of Hoplias malabaricus (Characiformes: Erythrinidae) captured in six localities of coastal rivers of the north-eastern sector the State of Pará (Oriental Amazon): Urocleidoides brasiliensis Rosim, Mendoza-Franco & Luque, 2011; Urocleidoides bulbophallus n. sp.; Urocleidoides cuiabai Rosim, Mendoza-Franco & Luque, 2011; Urocleidoides eremitus Kritsky, Thatcher & Boeger, 1986; Urocleidoides malabaricusi Rosim, Mendoza-Franco & Luque, 2011; Constrictoanchoratus lemmyi n. gen. n. sp.; and Constrictoanchoratus ptilonophallus n. gen. n. sp. This is the first reported occurrence of the four previously described species of Urocleidoides parasitizing H. malabaricus from streams in the Oriental Amazon Basin. The analysis of voucher specimens of U. eremitus parasitizing the gills of H. malabaricus from the Upper Paraná River floodplain in the limits of States of Paraná and Mato Grosso do Sul, Brazil, indicates that these specimens are members of a new species of Urocleidoides, described here as Urocleidoides paranae n. sp. Constrictoanchoratus n. gen. is proposed for the species with a male copulatory organ sclerotized, coiled, clockwise; ventral anchor with elongate superficial root, inconspicuous deep root; dorsal anchor with inconspicuous roots, and a constriction at the intersection between the shaft and the point. The host-parasite diversity scenario and host specificity of the species of Constrictoanchoratus n. gen. and Urocleidoides from the gills of H. malabaricus are also discussed in this study.

  7. Linear alkylbenzenes in riverine runoff of the Pearl River Delta (China) and their application as anthropogenic molecular markers in coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Ni Honggang; Lu Fenghui; Wang Jizhong; Guan Yufeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Wushan, Guangzhou 510640 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Luo Xianlin [School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275 (China); Zeng, Eddy Y. [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, P.O. Box 1131, Wushan, Guangzhou 510640 (China)], E-mail: eddyzeng@gig.ac.cn

    2008-07-15

    The average concentrations of {sigma}LABs (sum of C{sub 10}-C{sub 13}-LABs) in runoff samples collected from the eight major riverine outlets of the Pearl River Delta (PRD) of China ranged from 1.4 to 6124 ng/L in the dissolved phase and from 0.01 to 11.4 {mu}g/g dry weight in the particulate phase during March 2005-February 2006. The annual riverine flux of {sigma}LABs from the PRD to the coastal ocean was estimated at approximately 14 tons/yr. The inventories of {sigma}LABs in agricultural lands of Guangdong Province ranged from 313 to 1825 kg/yr. The early and late rice fields were the major sink of LABs, accounting for approximately 68% of total LABs inventory in agricultural lands. The social-economically estimated annual discharge of LABs from household detergents in the PRD was {approx}696 tons/yr, more than an order of magnitude higher than that estimated from field measurements (about 14 tons/yr), which was attributed to several factors. - Occurrence of LABs in riverine runoff of the Pearl River Delta (China) was examined.

  8. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  9. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River

    Directory of Open Access Journals (Sweden)

    J. Para

    2010-12-01

    Full Text Available Seawater samples were collected monthly in surface waters (2 and 5 m depths of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N during one year from November 2007 to December 2008 and studied for total organic carbon (TOC as well as chromophoric dissolved organic matter (CDOM optical properties (absorbance and fluorescence. The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350] was very low (0.10 ± 0.02 m−1 in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350 could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM was significantly higher (0.023 ± 0.003 nm−1 in summer than in fall and winter periods (0.017 ± 0.002 nm−1, reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs, was dominated by protein-like component (peak T; 1.30–21.94 QSU and marine humic-like component (peak M; 0.55–5.82 QSU, while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T without adding terrestrial fluorescence signatures (peaks C and A. Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M CDOM from the bottom into the surface and thus appeared also as an important source

  10. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    Science.gov (United States)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  11. Salinity Changes in a Tidal River. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 308. [Project COAST].

    Science.gov (United States)

    Delaware Univ., Newark. Coll. of Education.

    The materials in this packet are designed to aid teachers in the implementation of a science field studies unit concerning tidal rivers. The packet consists of the following: (1) background material for the teacher; (2) lab exercises; (3) field activities; and (4) classroom activities. The overall purpose of this packet is to provide information…

  12. Taming indeterminacy: The Co-production of Biodiversity Restoration, Flood Protection and Biophysical Modelling of Rivers and Coastal Environments

    NARCIS (Netherlands)

    van Hemert, A.J.

    2013-01-01

    In this article, I compare two accounts of how biodiversity restoration, flood protection and bio-physical models are co-produced in the Netherlands. Both are historical accounts of the interplay between research practices, policy discourse and intervention practices, one focusing on rivers and the

  13. Nematodes from the squeaker fishes Synodontis nigromaculatus and S. vanderwaali from the Okavango River, Botswana, including three new species.

    Science.gov (United States)

    Moravec, Frantisek; Van As, Jo G

    2004-11-01

    Five nematode species were recorded from the stomach and rectum of the spotted squeaker Synodontis nigromaculatus Boulenger or the finetooth squeaker S. vanderwaali Skelton & White (Mochokidae, Siluriformes) from the Okavango River, Botswana: Falcaustra similis n. sp. (Kathlaniidae), Labeonema africanum n. sp. (Cosmocercidae), Synodontisia okavangoensis n. sp. (Pharyngodonidae), Procamallanus ( Procamallanus ) laeviconchus (Wedl, 1861) (Camallanidae) and Spinitectus sp. (Cystidicolidae) (only a single female). F. similis (type-host Synodontis nigromaculatus ) differs from the similar species F. straeleni Campana-Rouget, 1961 mainly by the number and disposition of the male caudal papillae and the structure of the mouth; L. africanum (type-host S. nigromaculatus ) differs from its congeners in having distinctly longer spicules (105-120 microm), a relatively shorter gubernaculum (30-36 microm) and in the number and arrangement of the male caudal papillae; Synodontisia okavangoensis (type-host Synodontis nigromaculatus ) is characterised principally by crescent-shaped cephalic papillae, length (87 microm) and shape of the spicule as well as large eggs (0.156-0.180x69-102 microm). Synodontisia moraveci Anderson & Lim, 1996 is transferred to a newly established genus, Royandersonia n. g., (as its type-species) as R. moraveci (Anderson & Lim, 1996) n. comb. Some taxonomic problems concerning Procamallanus ( P .) laeviconchus are discussed. All species were studied by scanning electron microscopy for the first time.

  14. Uncertainty In Greenhouse Gas Emissions On Carbon Sequestration In Coastal and Freshwater Wetlands of the Mississippi River Delta: A Subsiding Coastline as a Proxy for Future Global Sea Level

    Science.gov (United States)

    White, J. R.; DeLaune, R. D.; Roy, E. D.; Corstanje, R.

    2014-12-01

    The highly visible phenomenon of wetland loss in coastal Louisiana (LA) is examined through the prism of carbon accumulation, wetland loss and greenhouse gas (GHG) emissions. The Mississippi River Deltaic region experiences higher relative sea level rise due to coupled subsidence and eustatic sea level rise allowing this region to serve as a proxy for future projected golbal sea level rise. Carbon storage or sequestration in rapidly subsiding LA coastal marsh soils is based on vertical marsh accretion and areal change data. While coastal marshes sequester significant amount of carbon through vertical accretion, large amounts of carbon, previously sequested in the soil profile is lost through annual deterioration of these coastal marshes as well as through GHG emissions. Efforts are underway in Louisiana to access the carbon credit market in order to provide significant funding for coastal restoration projects. However, there is very large uncertainty on GHG emission rates related to both marsh type and temporal (daily and seasonal) effects. Very little data currently exists which addresses this uncertainty which can significantly affect the carbon credit value of a particular wetland system. We provide an analysis of GHG emission rates for coastal freshwater, brackish and and salt marshes compared to the net soil carbon sequestration rate. Results demonstrate that there is very high uncertainty on GHG emissions which can substantially alter the carbon credit value of a particular wetland system.

  15. Dissolved carbon dynamics in the freshwater-saltwater mixing zone of a coastal river entering the Northern Gulf of Mexico

    Science.gov (United States)

    He, S.; Xu, Y. J.

    2017-12-01

    Estuaries play an important role in the dynamics of dissolved carbon from freshwater to marine systems. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations change along an 88-km long estuarine river with salinity ranging from 0.02 to 29.50. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary using mixing curves and stable isotope analyses. From November 2014 to February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during eighteen field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico in the southern United States. δ13CDIC and δ13CDOC were measured from May 2015 to February 2017 during five of the field trips. The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The DIC concentrations appeared to be largely influenced by conservative mixing. The δ13CDIC values were close to those suggested by the conservative mixing model for May 2015, June 2015 and November 2015, but lower than those for July 2015 and February 2016, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration < 1) seasonally. Unlike the DIC longitudinal trend, the DOC concentrations in the river estuary decreased from upstream to downstream, but to a much smaller degree. This river estuary consistently showed depleted δ13CDOC values (-30.56‰ to -25.92‰), suggesting that the DOC source in the mixing zone was highly terrestrially derived. However, in this relatively small isotopic range, δ13CDOC alone has limitations in differentiating carbon produced by aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum. These findings suggest that

  16. Research on vulnerability assessments of the Huanghe (Yellow River) delta

    Science.gov (United States)

    qiao, shuqing; shi, xuefa

    2014-05-01

    Coastal zone located at the juncture of the sea, river and land, and under the influence of both land and ocean (including atmosphere), especially the sea-level rise and human activities, are vulnerable to environment and ecology. At highest risk are coastal zone of South, Southeast and East Asia with dense populations, low elevations and inadequate adaptive capacity. In China, more than 40% of the population live on the 15% of the land in coastal area and more than 70% cities located around the coastal area. The Chinese coastal region, especially river delta area has been experienced erosion, seawater intrusion and decrease in biodiversity under the combined influence of sea-level rise, tectonic subsidence and flooding. Furthermore, some kinds of human activity, such as land use, building, dam construction, reclamation from the sea and waste dumping strengthen the vulnerability of environment and ecosystem in coastal region. The coastal hazards (e.g. coastal erosion, seawater intrusion, land subsidence) and vulnerability of the Huanghe (Yelllow River) delta area are studied during the past several years. A systematic coastal assessment index is built and an evaluation model is developed using the development platform of Visual studio.Net 2005. The assessment index system includes two parts, inherent (sea level rise rate, elevation, morphology, water and sediment discharge, mean tidal range, mean wave height etc) and specific vulnerability index (population density, GDP, land utilization, protection structures etc). The assessment index are determined the weight using Analytic hierarchy process (AHP) method. Based on the research results, we better understand the current status and future change of coastal vulnerability and hazards, discuss the impact of the natural possess and human activities. Furthermore, we provide defending strategies for coastal zone vulnerability and typical coastal hazards.

  17. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    Science.gov (United States)

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  18. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  19. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    Full Text Available Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural in the flood, dry and transition seasons during three consecutive years (2010-2012 within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH(4(+-N, SRP, K(+, COD(Mn, and Cl- were generally highest in urban watersheds. NO3(-N Concentration was generally highest in agricultural watersheds. Mg(2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research

  20. Application of MODIS Products to Infer Possible Relationships Between Basin Land Cover and Coastal Waters Turbidity Using the Magdalena River, Colombia, as a Case Study

    Science.gov (United States)

    Madrinan, Max Jacobo Moreno; Cordova, Africa Flores; Olivares, Francisco Delgado; Irwin, Dan

    2012-01-01

    Basin development and consequent change in basin land cover have been often associated with an increased turbidity in coastal waters because of sediment yield and nutrients loading. The later leads to phytoplankton abundance further exacerbating water turbidity. This subsequently affects biological and physical processes in coastal estuaries by interfering with sun light penetration to coral reefs and sea grass, and even affecting public health. Therefore, consistent estimation of land cover changes and turbidity trend lines is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Ground solely methods to estimate land cover change would be unpractical and traditional methods of monitoring in situ water turbidity can be very expensive and time consuming. Accurate monitoring on the status and trends of basin land cover as well as the water quality of the receiving water bodies are required for analysis of relationships between the two variables. Use of remote sensing (RS) technology provides a great benefit for both fields of study, facilitating monitoring of changes in a timely and cost effective manner and covering wide areas with long term measurements. In this study, the Magdalena River basin and fixed geographical locations in the estuarine waters of its delta are used as a case to study the temporal trend lines of both, land cover change and the reflectance of the water turbidity using satellite technology. Land cover data from a combined product between sensors Terra and Aqua (MCD12Q1) from MODIS will be adapted to the conditions in the Magdalena basin to estimate changes in land cover since year 2000 to 2009. Surface reflectance data from a MODIS, Terra (MOD09GQ), band 1, will be used in lieu of in situ water turbidity for the time period between 2000 and present. Results will be compared with available existing data.

  1. Butyltin compounds in River Otters (Lutra canadensis) from the Northwestern United States

    Science.gov (United States)

    Kannan, K.; Grove, Robert A.; Senthilkumar, K.; Henny, Charles J.; Geisy, J.P.

    1999-01-01

    Butyltin compounds, including mono-, di-, and tributyltin (MBT, DBT, and TBT) were measured in livers of 40 adult river otters (Lutra canadensis) collected from rivers and coastal bays in Washington and Oregon, USA. Butyltins were found in all the river otters, at a concentration range of 8.5a??2,610 ng/g, WW. The greatest concentration of total butyltins of 2,610 ng/g, WW, was found in a river otter collected in Puget Sound from Fort Ward, Washington. River otters collected near areas with major shipping activities, such as the Puget Sound, contained significantly greater concentrations (geometric mean: 367 ng/g, WW) of butyltins than those from rivers. Among butyltin compounds, MBT and DBT predominated in livers. The concentrations of butyltins in river otters ranged from comparable (Puget Sound) to less (rivers) than what was found in coastal cetaceans.

  2. Distribution of Selected Heavy Metals in Sediment of the River Basin of Coastal Area of Chanthaburi Province, Gulf of Thailand

    Directory of Open Access Journals (Sweden)

    Jakkapan Potipat

    2015-01-01

    Full Text Available The sediment samples from 24 stations in coastal area of Chanthaburi Province were collected during March 2012 to March 2013 and analyzed for heavy metal contents (Pb, Cd, Cr, Fe, Cu and Zn, pH, organic matters and grain sizes. The correlation analyses showed that heavy metal concentrations were affected by the content of organic matter and the size of clay particles. The evaluation of the quality of sediment was carried out using the geoaccumulation index (Igeo and the enrichment factor (EF as well as the comparison with those in the Thailand's sediment quality guideline (SQG values. The results of the geoaccumulation index and the enrichment factor values of the heavy metals content in the sediments revealed that the study area was unpolluted and not enriched, respectively. The relationship between the heavy metals concentration and the organic matter, and the clay particle was proposed by using the multiple regression equations.

  3. Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Paul, Y.S.; Vani, D.G.; Murty, V.S.N.

    due to variations in river discharge and phases of IOD may significantly modify the coastal ecosystem that requires careful evaluation.   2    Introduction The fossil fuels burning, cement manufacturing and land-use changes are some... Centre for Ocean Information and Services (INCOIS). The ASCAT ocean surface winds are a 10 meter neutral stability wind, and these winds are processed by National Oceanic and Atmospheric Administration/National Environmental Satellite, Data...

  4. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  5. Modeling Behavior by Coastal River Otter (Lontra Canadensis in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    Directory of Open Access Journals (Sweden)

    Shannon E Albeke

    Full Text Available Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis, largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  6. The impact of hydrological conditions on salinisation and nitrate concentration in the coastal Velez River aquifer (southern Spain)

    Science.gov (United States)

    Lentini, Azzurra; Kohfahl, Claus; Benavente, Jose; García-Aróstegui, José Luis; Vadillo, Inaki; Meyer, Hanno; Pekdeger, Asaf

    2009-10-01

    This study reports the impact of hydrological conditions on salinisation and nitrate concentrations of a coastal aquifer located at the Mediterranean Sea, southern Spain. Eighty-two samples of ground- and surface water taken during two extreme hydrological events between 1994 and 1996 at 25 different wells were evaluated with regard to hydrochemistry, focusing on nitrate concentrations and salinisation, which constitute the main hazard of this aquifer. Furthermore, hydrochemical data were analysed by principal component analysis (PCA). Additionally, in 2007 13 ground- and surface water samples taken at 12 different locations were analysed for stable isotopes of D/18O, and one sample was analysed for 15N. Since 1993 until present saltwater intrusion was observed only during dry hydrological conditions in 1994; it showed an irregular salinisation pattern probably related to locally elevated hydraulic conductivities. Nitrate concentrations increase significantly during wet hydrologic conditions owing to uptake of nitrate by rising groundwater. Stable isotopes of groundwater reveal an Atlantic origin of the precipitation that recharges the aquifer and a minor amount of groundwater recharge by the water coming from the La Viñuela reservoir, which is used for irrigation over the aquifer. 15N isotopes point to a considerable input of nitrates derived from organic fertilisers.

  7. Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP

    Directory of Open Access Journals (Sweden)

    Taru Olsson

    2017-10-01

    New hydrological insights for the region: On average, GCMs indicate increased annual mean temperatures by 3.1 °C (RCP4.5 and by 4.3 °C (RCP8.5 and precipitation sum by 20% (RCP4.5 and by 28% (RCP8.5. With increasing total precipitation, river discharges are also found to increase, but the variability among the GCMs is considerable. The largest increases in monthly discharge are projected to occur in the wet season (November − April − with up to 31% increase of December multi-model mean. Despite the larger annual discharge for the mean multi-model result, discharges in the dry season may decrease according to some GCMs, showing the need for an adapted future water management.

  8. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    Science.gov (United States)

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the

  9. The River Mondego terraces at the Figueira da Foz coastal area (western central Portugal): Geomorphological and sedimentological characterization of a terrace staircase affected by differential uplift and glacio-eustasy

    DEFF Research Database (Denmark)

    Ramos, Anabela M.; Cunha, Pedro P.; Cunha, Lúcio. S.

    2012-01-01

    A geomorphological and sedimentological characterization of the River Mondego terraces in the Figueira da Foz coastal area, Portugal, is presented. The relief is dominated by a Pliocene a marine sandy unit ~ 10–15 m thick, reaching ~ 250 m a.s.l., that covers a shore platform surface. The River...... of continuous uplift, the episodes of river down-cutting, valley widening and aggradation in the studied area can be attributed to the rise and fall of sea-level in response to the global Quaternary climatic fluctuations. Considering the number of terraces and the dating obtained, it seems that the control...... and MIS2). Some sandy colluvium deposits on the slopes are probably related with mild-cold and wet climate conditions during the period 60 to 32 ka. The aeolian dunes are younger (cold to temperate dry conditions; MIS2 and MIS1)....

  10. Monitoring Coastal Embankment Subsidence and Relative Sea Level Rise in Coastal Bangladesh Using Satellite Geodetic Data

    Science.gov (United States)

    Guo, Q.; Shum, C. K.; Jia, Y.; Yi, Y.; Zhu, K.; Kuo, C. Y.; Liibusk, A.

    2015-12-01

    The Bangladesh Delta is located at the confluence of the mega Ganges, Brahmaputra and Meghan Rivers in the Bay of Bengal. It is home to over 160 million people and is one of the most densely populated countries in the world. It is prone to seasonal transboundary monsoonal flooding, potentially aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. Sea level rise, along with tectonic, sediment compaction/load and groundwater extraction induced land uplift/subsidence, have significantly exacerbated these risks and Bangladesh's coastal vulnerability. Bangladesh has built 123 coastal embankments or polders since the 1960's, to protect the coastal regions from cyclone/tidal flooding and to reduce salinity incursions. Since then, many coastal polders have suffered severe erosion and anthropogenic damage, and require repairs or rebuilding. However, the physical and anthropogenic processes governing the historic relative sea level rise and its future projection towards its quantification remain poorly understood or known, and at present not accurate enough or with an adequately fine local spatial scale for practical mitigation of coastal vulnerability or coastal resilience studies. This study reports on our work in progress to use satellite geodetic and remote sensing observations, including satellite radar altimetry/backscatter measurements over land and in coastal oceans, optical/infrared imageries, and SAR backscatter/InSAR data, to study the feasibility of coastal embankment/polder erosion monitoring, quantify seasonal polder water intrusions, observing polder subsidence, and finally, towards the goal of improving the relative sea level rise hazards assessment at the local scale in coastal Bangladesh.

  11. Iterative circle-inserting algorithm CST3D-OC of truly orthogonal curvilinear grid for coastal or river modelling

    Science.gov (United States)

    Kim, H.; Lee, S.; Lee, J.; Lim, H.-S.

    2017-08-01

    A geometric method to generate orthogonal curvilinear grid is proposed here. Elliptic partial differential equations have frequently been solved to find orthogonal grid positions, but questions on orthogonality have remained so far. Algebraic methods have also been developed to improve orthogonality, but their applications have been limited to special situations. When two confronting boundary lines of the quadrilateral boundaries are straight, and their positions are known, and we assume that some degree of freedom exists on the other two confronting boundary curves under the condition that the each curve passes through a point, we can assign a set of latitudinal curves in the domain using polynomials. The curves are expected not to fold on their own. The grid positions along longitudinal curves are found by inserting circles between two neighbouring latitudinal curves one by one. If the two curves are straight, the new grid point above the grid point of interest can be found geometrically. This algorithm involves iterations because the curves are not straight lines. The present new algorithm is applied to a domain, and produced almost perfect orthogonality, and similar aspect ratio compared to an existing partial differential equation approach. The present algorithm also can express almost quadrant domain. The present algorithm seems useful for generation of orthogonal curvilinear grids along coasts or rivers. Some example grids are demonstrated.

  12. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  13. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China

    Science.gov (United States)

    Liu, Shang; Hu, Min; Wu, Zhijun; Wehner, Birgit; Wiedensohler, Alfred; Cheng, Yafang

    Continuous measurements of aerosol number size distribution in the range of 3 nm-10 μm were performed in Pearl River Delta (PRD), China. These measurements were made during the period of 3 October to 5 November in 2004 at rural/coastal site, Xinken (22°37'N, 113°35'E, 6 m above sea level), in the south suburb of Guangzhou City (22°37'N, 113°35'E, 6 m above sea level), using a Twin Differential Mobility Particle Sizer (TDMPS) combined with an Aerodynamic Particle Sizer (APS). The aerosol particles at Xinken were divided into four groups according to the observation results: nucleation mode particles (3-30 nm), Aitken mode particles (30-130 nm), accumulation mode particles (130-1000 nm) and coarse mode particles (1-10 μm). Concentrations of nucleation mode, Aitken mode and accumulation mode particles were observed in the same order of magnitude (about 10,000 cm -3), among which the concentration of Aitken mode particle was the highest. The Aitken mode particles usually had two peaks: the morning peak may be caused by the land-sea circulation, which is proven to be important for transporting aged aerosols back to the sampling site, while the noon peak was ascribed to the condensational growth of new particles. New particle formation events were found on 7 days of 27 days, the new particle growth rates ranged from 2.2 to 19.8 nm h -1 and the formation rates ranged from 0.5 to 5.2 cm -3 s -1, both of them were in the range of typical observed formation rates (0.01-10 cm -3 s -1) and typical particle growth rates (1-20 nm h -1). The sustained growth of the new particles for several hours under steady northeast wind indicated that the new particle formation events may occur in a large homogeneous air mass.

  14. Caracteres anatómicos de la vegetación costera del Río Salado (Noroeste de la provincia de Buenos Aires, Argentina Anatomic features of Salado river coastal vegetation (Northwest of Buenos Aires Province, Argentina

    Directory of Open Access Journals (Sweden)

    Nancy Mariel Apóstolo

    2005-12-01

    Full Text Available Veintiún especies (doce Dicotyledoneae y nueve Monocotyledoneae pertenecientes a la vegetación costera del río Salado (noroeste de la provincia de Buenos Aires, Argentina fueron estudiadas con el fin de determinar las características anatómicas relacionadas a estrategias adaptativas al medio. Dichas especies pertenecen a los humedales de la cuenca del Salado y, por lo tanto, están afectadas por inundación, sequía temporaria y alta salinidad en agua y suelo. Caracteres anatómicos típicos de las especies que crecen en humedales combinados con características xeromórficas actuarían como estrategia adaptativa para aclimatarse en dicho medio. Los representantes de Poaceae y Cyperacae y algunos de Asteraceae tienen aerénquima en raíz y tallo. El 50% de las especies estudiadas muestran estructura Kranz. Escasas especies de Dicotyledoneae (Aizoaceae y Asteraceae muestran pelos de indumento. El tejido acuífero y los mucílagos son evidentes en especies de Aizoaceae, Chenopodiaceae, Malvaceae y Asteraceae. Ceras epicuticulares están presentes en mayor o menor grado en todas las especies analizadas. El 40% de las especies tienen glándulas de sal, principalmente las Poaceae. Cristales de oxalato de calcio y magnesio en diversas formas se observan en la mayoría de la Dicotyledoneae, no presentándose en Monocotyledoneae. Estas características anatómicas indican la capacidad de las especies para sobrevivir a condiciones extremas del medio en la vegetación costera del río Salado.In order to determine the anatomical features acting as adaptive strategies to the environment, 21 species were studied (12 Dicotyledoneae and nine Monocotyledoneae belonging to the coastal vegetation of the Salado river. These species are included in wetlands of Salado River Basin and are affected by flooding, drought and high salinity in water and soil. Typical anatomical features of wetland plants combined with xeromorphic characters could act as adaptive

  15. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  16. Future trends in urbanization and coastal water pollution in the Bay of Bengal: the lived experience

    NARCIS (Netherlands)

    Zinia, N.J.; Kroeze, C.

    2015-01-01

    The Bay of Bengal includes coastal seas of several countries, including Bangladesh, India, and Myanmar. We present scenarios for future river export of eutrophying nutrients into the Bay of Bengal, and the role of urbanization therein. We used NEWS (Nutrient Export from WaterSheds) model to analyze

  17. Hydrography, Washburn Countys Hydro Layer was developed in 1997 utilizing 1996 Orthophotos. This layer includes Lake, Rivers, Streams and Ponds within Washburn County., Published in 1997, 1:4800 (1in=400ft) scale, Washburn County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Hydrography dataset current as of 1997. Washburn Countys Hydro Layer was developed in 1997 utilizing 1996 Orthophotos. This layer includes Lake, Rivers, Streams and...

  18. Comparing Multiple Evapotranspiration-calculating Methods, Including Eddy Covariance and Surface Renewal, Using Empirical Measurements from Alfalfa Fields in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Paw U, K. T.; Snyder, R. L.

    2016-12-01

    Eddy covariance and surface renewal measurements were used to estimate evapotranspiration (ET) over a variety of crop fields in the Sacramento-San Joaquin River Delta during the 2016 growing season. However, comparing and evaluating multiple measurement systems and methods for determining ET was focused upon at a single alfalfa site. The eddy covariance systems included two systems for direct measurement of latent heat flux: one using a separate sonic anemometer and an open path infrared gas analyzer and another using a combined system (Campbell Scientific IRGASON). For these methods, eddy covariance was used with measurements from the Campbell Scientific CSAT3, the LI-COR 7500a, the Campbell Scientific IRGASON, and an additional R.M. Young sonic anemometer. In addition to those direct measures, the surface renewal approach included several energy balance residual methods in which net radiation, ground heat flux, and sensible heat flux (H) were measured. H was measured using several systems and different methods, including using multiple fast-response thermocouple measurements and using the temperatures measured by the sonic anemometers. The energy available for ET was then calculated as the residual of the surface energy balance equation. Differences in ET values were analyzed between the eddy covariance and surface renewal methods, using the IRGASON-derived values of ET as the standard for accuracy.

  19. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  20. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  1. NATIONAL COASTAL CONDITION REPORT II

    Science.gov (United States)

    Coastal waters in the US include estuaries, coastalwetlands, coral reefs, mangrove and kep forests, seagrass meadows, and upwelling areas. Critical coastal habitats provide spawning grounds, nurseries, shelter, and food for finfish, shellfish, birds, and other wildlife. the nat...

  2. Adherence to antiretroviral therapy and clinical outcomes among young adults reporting high-risk sexual behavior, including men who have sex with men, in coastal Kenya.

    Science.gov (United States)

    Graham, Susan M; Mugo, Peter; Gichuru, Evanson; Thiong'o, Alexander; Macharia, Michael; Okuku, Haile S; van der Elst, Elise; Price, Matthew A; Muraguri, Nicholas; Sanders, Eduard J

    2013-05-01

    African men who have sex with men (MSM) face significant stigma and barriers to care. We investigated antiretroviral therapy (ART) adherence among high-risk adults, including MSM, participating in a clinic-based cohort. Survival analysis was used to compare attrition across patient groups. Differences in adherence, weight gain, and CD4 counts after ART initiation were assessed. Among 250 HIV-1-seropositive adults, including 108 MSM, 15 heterosexual men, and 127 women, patient group was not associated with attrition. Among 58 participants who were followed on ART, 40 % of MSM had less than 95 % adherence, versus 28.6 % of heterosexual men and 11.5 % of women. Although MSM gained less weight after ART initiation than women (adjusted difference -3.5 kg/year), CD4 counts did not differ. More data are needed on barriers to adherence and clinical outcomes among African MSM, to ensure that MSM can access care and derive treatment and prevention benefits from ART.

  3. Monitoring Ecological and Environmental Changes in Coastal Wetlands in the Yellow River Delta from 1987 to 2010 Using Remote Sensing Techniques

    Science.gov (United States)

    Shang, Kun; Zhao, Dong; Gan, Fuping; Xiao, Chenchao

    2016-04-01

    Many wetlands in the world have degraded rapidly in recent years, especially in China. The Yellow River Delta (YRD) is one of the largest deltas in China. The YRD Nature Reserve is one of China's most complete, broadest, and youngest wetland ecological systems in the warm-temperate zone. Most previous studies have placed particular emphasis on ecological environment or landscape of the YRD based on the distribution of wetlands. In recent years, with the rapid development of the city of Dongying, located in the YRD, the impacts of human activities are increasingly significant, so that monitoring changes in the wetlands has become especially important. In this research, we applied an improved Support Vector Machine (SVM) approach to wetland classification based on feature band set construction and optimization using seven Landsat images. By extracting waterlines, classifying wetlands and deriving landscape parameters, we have achieved high-frequency comprehensive monitoring of the wetlands in the YRD over a relatively long period. It offers a better estimate of wetland change trends than certain previous studies. From 1987 to 2010, the natural waterline primarily experienced erosion due to precipitation abnormalities, as well as coastal exploitation, as the co-analyzed meteorological data suggest. Meanwhile, the artificial waterline barely changed. The wetland area decreased rapidly from approximately 4,607 km2 to 2,714 km2 between 1987 and 2000. Ecological resilience and landscape diversity also decreased significantly during this period. The major impact factors were most likely urbanization, population expansion and the exploitation of the wetlands. After 2000, ecological resilience exhibited a positive trend. However, because newly built aquatic farms and salt works caused serious damages and threatened the natural beach landscape, the landscape fragmentation of muddy and sandy beaches increased after 2000. According to the results, more effective policies and

  4. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    Science.gov (United States)

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  5. Geology, Surficial, Neuse River Basin Mapping Project Geomorphology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, and shallow aquifers and confining units; shape file with geomorphic map units interpreted from, Published in 2007, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2007. Neuse River Basin Mapping Project Geomorphology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to...

  6. Geology, Surficial, Neuse River Basin Mapping Project Surficial Geology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, shallow aquifers and confining units; shape file with surficial geology interpreted from LI, Published in 2007, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2007. Neuse River Basin Mapping Project Surficial Geology - LIDAR �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to...

  7. Geology, Surficial, Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize geomorphology, surficial geology, and shallow aquifers and confining units; Excel spread sheet with core names, coordinates, and data co, Published in 2006, 1:24000 (1in=2000ft) scale, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Surficial dataset current as of 2006. Neuse River Basin Mapping Project Core Locations �Äö?Ñ?¨ Ongoing project in Middle Coastal Plain to characterize...

  8. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river

  9. Reproductive biology of Chromidotilapia guntheri (Sauvage, 1882 (Cichlidae, Perciformes in four coastal rivers (Ehania, Noé, Soumié and Eholié of Côte d’Ivoire in West Africa

    Directory of Open Access Journals (Sweden)

    Boussou C.K.

    2010-05-01

    Full Text Available The reproductive activities of a small Cichlid Chromidotilapia guntheri were investigated from July 2003 to March 2005 in four coastal rivers (Ehania, Eholié, Noé and Soumié, in the southeast of Côte d’Ivoire. Trends in gonadosomatic indices and reproductive stages of development suggested that C. guntheri is a multiple (fractional spawner and breeds all year round with little fluctuation in spawning intensity. However, spawning activities were more intensive in August and September. The estimated mean standard length at first maturity did not differ significantly between rivers. It was, in the overall population, 85.53 mm SL for males and 100.13 mm SL for females. In general, the sex ratio differed from 1:1 with the predominance of the males in rivers, standard length classes, seasons and the entire population. Absolute fecundity (F varied from a minimum of 70 to a maximum of 470 eggs. The range of variation in the relative fecundity was from 3066 to 9135 eggs per kilogram of fish in the total population. Fecundity did not differ extensively between rivers. The absolute fecundity relations to fish standard length (SL and eviscerated weight (We were best described in the whole population by the following equations: F = 0.00069 × SL2.72 and F = 2.54 × We1.15, respectively. Moreover, there was no relationship between absolute fecundity and oocyte diameter.

  10. Phase I for the Use of TOPEX-Poseidon and Jason-1 Radar Altimetry to Monitor Coastal Wetland Inundation and Sea Level Rise in Coastal Louisiana

    Science.gov (United States)

    Brozen, Madeline; Batina, Matthew; Parker, Stephen; Brooks, Christopher

    2010-01-01

    The objective of the first phase of this project was to determine the feasibility of applying satellite altimetry data to monitor sea level rise and inundation within coastal Louisiana. Global sea level is rising, and coastal Louisiana is subsiding. Therefore, there is a need to monitor these trends over time for coastal restoration and hazard mitigation efforts. TOPEX/POSEIDON and Jason-data are used for global sea level estimates and have also been demonstrated successfully in water level studies of lakes, river basins, and floodplains throughout the world. To employ TOPEX/POSEIDON and Jason-1 data in coastal regions, the numerous steps involved in processing the data over non-open ocean areas must be assessed. This project outlined the appropriate methodology for processing non-open ocean data, including retracking and atmospheric corrections. It also inventoried the many factors in coastal land loss including subsidence, sea level rise, coastal geomorphology, and salinity levels, among others, through a review of remote sensing and field methods. In addition, the project analyzed the socioeconomic factors within the Coastal Zone as compared to the rest of Louisiana. While sensor data uncertainty must be addressed, it was determined that it is feasible to apply radar altimetry data from TOPEX/POSEIDON and Jason 1 to see trends in change within Coastal Louisiana since

  11. Pipe dream? Envisioning a grassroots Python ecosystem of open, common software tools and data access in support of river and coastal biogeochemical research (Invited)

    Science.gov (United States)

    Mayorga, E.

    2013-12-01

    Practical, problem oriented software developed by scientists and graduate students in domains lacking a strong software development tradition is often balkanized into the scripting environments provided by dominant, typically proprietary tools. In environmental fields, these tools include ArcGIS, Matlab, SAS, Excel and others, and are often constrained to specific operating systems. While this situation is the outcome of rational choices, it limits the dissemination of useful tools and their integration into loosely coupled frameworks that can meet wider needs and be developed organically by groups addressing their own needs. Open-source dynamic languages offer the advantages of an accessible programming syntax, a wealth of pre-existing libraries, multi-platform access, linkage to community libraries developed in lower level languages such as C or FORTRAN, and access to web service infrastructure. Python in particular has seen a large and increasing uptake in scientific communities, as evidenced by the continued growth of the annual SciPy conference. Ecosystems with distinctive physical structures and organization, and mechanistic processes that are well characterized, are both factors that have often led to the grass-roots development of useful code meeting the needs of a range of communities. In aquatic applications, examples include river and watershed analysis tools (River Tools, Taudem, etc), and geochemical modules such as CO2SYS, PHREEQ and LOADEST. I will review the state of affairs and explore the potential offered by a Python tool ecosystem in supporting aquatic biogeochemistry and water quality research. This potential is multi-faceted and broadly involves accessibility to lone grad students, access to a wide community of programmers and problem solvers via online resources such as StackExchange, and opportunities to leverage broader cyberinfrastructure efforts and tools, including those from widely different domains. Collaborative development of such

  12. Simultaneous analysis of perfluoroalkyl and polyfluoroalkyl substances including ultrashort-chain C2 and C3 compounds in rain and river water samples by ultra performance convergence chromatography.

    Science.gov (United States)

    Yeung, Leo W Y; Stadey, Christopher; Mabury, Scott A

    2017-11-03

    An analytical method using ultra performance convergence chromatography (UPC 2 ) coupled to a tandem mass spectrometer operated in negative electrospray mode was developed to measure perfluoroalkyl and polyfluoroalkyl substances (PFASs) including the ultrashort-chain PFASs (C2-C3). Compared to the existing liquid chromatography tandem mass spectrometry method using an ion exchange column, the new method has a lower detection limit (0.4pg trifluoroacetate (TFA) on-column), narrower peak width (3-6s), and a shorter run time (8min). Using the same method, different classes of PFASs (e.g., perfluoroalkyl sulfonates (PFSAs) and perfluorinated carboxylates (PFCAs), perfluorinated phosphonates (PFPAs) and phosphinates (PFPiAs), polyfluoroalkyl phosphate diesters (diPAPs)) can be measured in a single analysis. Rain (n=2) and river water (n=2) samples collected in Toronto, ON, were used for method validation and application. Results showed that short-chain PFAS (C2-C7 PFCAs and C4 PFSA) contributed to over 80% of the detectable PFASs in rain samples and the C2-C3 PFASs alone accounted for over 40% of the total. Reports on environmental levels of these ultrashort-chain PFASs are relatively scarce. Relatively large contribution of these ultrashort-chain PFASs to the total PFASs indicate the need to include the measurement of short-chain PFASs, especially C2 and C3 PFASs, in environmental monitoring. The sources of TFA and other short-chain PFASs in the environment are not entirely clear. The newly developed analytical method may help further investigation on the sources and the environmental levels of these ultrashort-chain PFASs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    Science.gov (United States)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland

  14. Behaviour of radiocaesium in coastal rivers of the Fukushima Prefecture (Japan) during conditions of low flow and low turbidity – Insight on the possible role of small particles and detrital organic compounds

    International Nuclear Information System (INIS)

    Eyrolle-Boyer, Frédérique; Boyer, Patrick; Garcia-Sanchez, Laurent; Métivier, Jean-Michel; Onda, Yuichi; De Vismes, Anne; Cagnat, Xavier; Boulet, Béatrice; Cossonnet, Catherine

    2016-01-01

    To investigate riverine transfers from contaminated soils of the Fukushima Prefecture in Japan to the marine environment, suspended sediments, filtered water, sediments and detrital organic macro debris deposited onto river beds were collected in November 2013 within small coastal rivers during conditions of low flow rates and low turbidity. River waters were directly filtered on the field and high efficiency well-type Ge detectors were used to analyse radiocaesium concentrations in very small quantities of suspended particles and filtered water (a few mg to a few g). For such base-flow conditions, our results show that the watersheds studied present similar hydro-sedimentary behaviours at their outlets and that the exports of dissolved and particulate radiocaesium are comparable. Moreover, the contribution of these rivers to the instantaneous export of radiocaesium to the ocean is similar to that of the Abukuma River. Our preliminary results indicate that, in the estuaries, radiocaesium concentrations in suspended sediments would be reduced by more than 80%, while radiocaesium concentration in filtered waters would be maintained. Significant correlations between radiocaesium concentrations and radiocaesium inventories in the soils of the catchments indicate that there was at that time little intra and inter-watershed variability in the transfer processes of radiocaesium from lands to rivers at this regional scale. The apparent liquid–solid partition coefficient (K D ) values acquired for the lowest loads/finest particles complement the values acquired by using sediment traps and highlight the strong capacity of the smallest particles to transfer radiocaesium. Finally, but not least, our observations suggest that there could be a significant transfer of highly contaminated detrital biomass from forest litter to the downstream rivers in a rather conservative way. - Highlights: • Radiocesium concentrations were assessed by using high performance well-type Ge

  15. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  16. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Merrimack River and Plum Island Sound, Massachusetts, June 2011 (NODC Accession 0103944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains both true color (RGB) and infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  17. Coastal Processes with Engineering Applications

    Science.gov (United States)

    Dean, Robert G.; Dalrymple, Robert A.

    2004-03-01

    The world's coastlines, dividing land from sea, are geological environments that are unique in their composition and the physical processes affecting them. At the dynamically active intersection of land and the oceans, humans have been building structures throughout history. Initially used for naval and commercial purposes, more recently recreation and tourism have increased activity in the coastal zone dramatically. Shoreline development is now causing a significant conflict with natural coastal processes. This text on coastal engineering will help the reader understand these coastal processes and develop strategies to cope effectively with shoreline erosion. The book is organized in four parts: (1) an overview of coastal engineering, using case studies to illustrate problems; (2) hydrodynamics of the coastal zone, reviewing storm surges, water waves, and low frequency motions within the nearshore and surf zone; (3) coastal responses including equilibrium beach profiles and sediment transport; (4) applications such as erosion mitigation, beach nourishment, coastal armoring, tidal inlets, and shoreline management.

  18. Study on ecological regulation of coastal plain sluice

    Science.gov (United States)

    Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo

    2018-02-01

    Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.

  19. Bacterial communities hitching a hike - a guide to the river system of the Red river, Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N.; Stibal, Marek

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact...... of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on Disko Island, West Greenland (69°N). We describe the bacterial community through a river into the estuary......, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while...

  20. Changing Course: navigating the future of the Lower Mississippi River

    Science.gov (United States)

    Cochran, S.

    2016-02-01

    Changing Course is a design competition to reimagine a more sustainable Lower Mississippi River Delta, bringing teams together from around the world to create innovative visions for one of America's greatest natural resources. Building off of Louisiana's Coastal Master Plan, and answering a key question from that plan, three winning teams (Baird & Associates, Moffatt & Nichol and Studio Misi-Ziibi) have generated designs for how the Mississippi River's water and sediment can be used to maximize rebuilding of delta wetlands while also continuing to meet the needs of navigation, flood protection, and coastal industries and communities. While each of the winning teams offered a different vision, all three identified the same key requirements as critical to sustaining the Mississippi River Delta today and into the future: Reconnecting the Mississippi River to its wetlands to help restore southeast Louisiana's first line of defense against powerful storms and rising sea levels. Planning for a more sustainable delta, including a gradual shift in population to create more protected and resilient communities. Protecting and maximizing the region's port and maritime activities, including a deeper more sustainable navigation channel upriver from Southwest Pass. Increasing economic opportunities in a future smaller delta through expanding shipping capacity, coastal restoration infrastructure, outdoor recreation and tourism and commercial fishing. This session will give a high level overview of the design competition process, results and common themes, similarities and differences in their designs, and how the ideas generated will inform coastal stakeholders and official government processes.

  1. Coastal mapping handbook

    Science.gov (United States)

    ,; ,; Ellis, Melvin Y.

    1978-01-01

    Passage of the Coastal Zone Management Act of 1972 focused attention on the Nation's coastal land and water areas. As plans for more effective management of the coastal zone evolved, it soon became apparent that improved maps and charts of these areas were needed. This handbook was prepared with the requirements of the entire coastal community in mind, giving greatest attention to the needs of coastal zone managers and planners at the State and local levels. Its principal objective is to provide general information and guidance; it is neither a textbook nor a technical manual, but rather a primer on coastal mapping. This handbook should help planners and managers of coastal programs to determine their mapping requirements, select the best maps and charts for their particular needs, and to deal effectively with personnel who gather data and prepare maps. The sections on "Sources of Assistance and Advice" and "Product and Data Sources" should be especially useful to all involved in mapping the coastal zone. Brief summaries of the mapping efforts of several State coastal zone management programs are included. "Future outlook" discusses anticipated progress and changes in mapping procedures and techniques. Illustrations are inserted, where appropriate, to illustrate the products and equipment discussed. Because of printing restrictions, the colors in map illustrations may vary from those in the original publication. The appendixes include substantial material which also should be of interest. In addition a glossary and an index are included to provide easy and quick access to the terms and concepts used in the text. For those interested in more technical detail than is provided in this handbook, the "Selected references" will be useful. Also, the publications of the professional societies listed in appendix 4 will provide technical information in detail.

  2. IMAGE INTERPRETATION OF COASTAL AREAS

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2012-07-01

    Full Text Available Coasts were formed with the overall shape of earth's surface. Τhey represent a landform, as determined by the science of geomorphology. Being the boundary between land and sea, they present important features – particularities such as water currents, waves, winds, estuaries, drainage network, pollution etc. Coasts are examined at various levels: continents – oceans, states – large seas, as for example Mediterranean Sea. Greece, because of its horizontal and vertical partitioning, presents great extent and variety of coasts as mainland, peninsulas and islands. Depending on geomorphology, geology, soils, hydrology, land use of the inland and the coasts themselves, these are very diverse. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. This paper concerns critical considerations on the above. It also includes the case of Thessaloniki coasts in Greece, particularly river estuaries areas (river delta. The study of coastal areas of the wide surroundings of Thessaloniki city includes visual image interpretation – digital image processing techniques on satellite data of high spatial resolution.

  3. NOAA Office for Coastal Management Benthic Habitat Data, Catlett and Goodwin Islands on the York River in Chesapeake Bay, VA, 2002-2004 (NODC Accession 0090253)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a collection of benthic habitat data from studies conducted in the Catlett and Goodwin Islands on the York River in Chesapeake Bay, Virginia in GIS...

  4. Coastal biodiversity and bioresources: variation and sustainability

    Science.gov (United States)

    Qin, Song; Liu, Zhengyi; Yu, Roger Ziye

    2016-03-01

    The 1st International Coastal Biology Congress (1st ICBC) was held in Yantai, China, in Sep. 26-30, 2014. Eighteen manuscripts of the meeting presentations were selected in this special issue. According to the four themes set in the ICBC meeting, this special issue include four sections, i.e., Coastal Biodiversity under Global Change, Adaptation and Evolution to Special Environment of Coastal Zone, Sustainable Utilization of Coastal Bioresources, and Coastal Biotechnology. Recent advances in these filed are presented.

  5. Water resources data for Texas, water year 1996. Volume 2. San Jacinto River basin, Brazos River basin, San Bernard River basin, and intervening coastal basins. Water-data report (Annual), 1 October 1995-30 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Jones, R.E.; Barbie, D.L.

    1997-02-01

    Volume 2 contains records for water discharge at 74 gaging stations; stage only at 6 gaging stations; stage and contents at 19 lakes and reservoirs; water quality at 41 gaging stations; and data for 44 partial-record stations comprised of 18 flood-hydrograph, 10 low-flow, and 16 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements.

  6. Long-Distance Delivery of Fine Sediment to Wetlands from a Bay-Head Delta: A Possible Analog for Large River-Sediment Diversions and Coastal Wetland Restoration.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-02-01

    Large river-sediment diversions are being proposed as primary tools for wetland restoration and land building in the Mississippi River Deltaic Plain. To date, much emphasis in the study of diversion performance has focused on proximal sand-rich deposition. To better understand far-field dispersal and deposition of fine sediments, which account for the majority of sediment supply, sediment cores from Fourleague Bay, Louisiana and adjacent marshes are being analyzed for 7Be, a naturally occurring radioisotope, as well as mineral and water content. The bay, which receives about 2% of total sediment discharge from the Atchafalaya River, is 20 km long and extends southeastward from the river's outlets. During 2015, time-series cores have been collected from ten sites, five located in the bay and five from the marshes, and have been analyzed for 7Be using gamma spectrometry. All sites fall within a distance of 9 km to 25 km from the outlet of the Atchafalaya River. Preliminary results show that cores sampled during the summer season, collected July 2015, contain higher activity of 7Be in the marsh cores, with no detectable 7Be contained in bay cores. The highest activity of 7Be, 3.2 ± 0.79 dpm/g, was found in the top two centimeters of the marsh core closest to the river mouth, site FLM-1. No activity was detectable beyond a depth of 4-6 cm. Surficial activity declined in samples further from the river mouth, with the lowest detectable value being 1.8 ± 0.72 dpm/g in the top two centimeters of site FLM-5. Results show that the range of influence for fine sediment delivery to wetlands is > 10 km, suggesting that the area that may be nourished sediment from a large diversion extends far beyond the footprint of proximal sandy deltaic deposits.

  7. Coastal Dynamics

    NARCIS (Netherlands)

    Roelvink, J.A.; Steetzel, H.J.; Bliek, A.; Rakhorst, H.D.; Roelse, P.; Bakker, W.T.

    1998-01-01

    This book deals on "Coastal Dynamics", which will be defined in a narrow sense as a mathematical theory, which starts from given equations of motion for the sediment, which leads with the continuity equation and given boundary conditions to a calculated (eventually schematized) coastal topography,

  8. Procamallanus (Spirocamallanus) spp. (Nematoda: Camallanidae) from fishes of the Okavango River, Botswana, including P. (S.) serranochromis n. sp. parasitic in Serranochromis spp. (Cichlidae).

    Science.gov (United States)

    Moravec, František; Van As, Liesl L

    2015-02-01

    Three species of Procamallanus (Spirocamallanus) Baylis, 1923 (Camallanidae) (Nematoda: Camallanidae) were found in the digestive tract of freshwater fishes from the Okavango River, Botswana, i.e. P. (S.) daleneae (Boomker, 1993) from Synodontis vanderwaali Skelton & White (Mochokidae), P. (S.) spiralis Baylis, 1923 from Clarias stappersi Boulenger, C. theodorae Weber (both Clariidae) and Hepsetus odoe (Bloch) (Hepsetidae), and P. (S.) serranochromis n. sp. from Serranochromis macrocephalus (Boulenger) (type-host), S. angusticeps (Boulenger) and S. robustus (Günther) (all Cichlidae). All findings of the two previously known species represent new host records. The specimens were studied using both light and scanning electron microscopy. Spirocamallanus mazabukae Yeh, 1957 is considered a junior synonym of P. (S.) spiralis. A key to the species of Procamallanus (Spirocamallanus) parasitising fishes of continental Africa is provided.

  9. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  10. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.

    2017-05-23

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  11. Some implications of Coastal Regulation Zone (CRZ) legislation for the coast of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    , limits of tidal action in rivers, and doubts whether sand dunes deserve protection. Competition over limited coastal spaces, discordant views on crucial coastal issues, lack of political initiative, and deceptive enforcement of prevailing laws have...

  12. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina: Chapter 9

    Science.gov (United States)

    Conner, William H.; Krauss, Ken W.; Doyle, Thomas W.

    2007-01-01

    , Great Pee Dee, and Savannah) that arise in the mountains and along the numerous blackwater rivers (Ashepoo, Combahee, Cooper, and Waccamaw) that arise in the coastal regions. Most of the tidal freshwater forests were converted to tidal rice fields in the 1700s (Porcher 1995). Canopy members of the present day forests include baldcypress, water tupelo, swamp tupelo (N. biflora Walt.), red maple, and Carolina ash (Fraxinus caroliniana Miller). Subcanopy and shrub species include Virginia sweetspire (Itea virginica L.), dwarf palmetto (Sabal minor (Jacquin) Pers.), coastal plain willow (Salix caroliniana Michx.), redbay, and water-elm (Planera aquatica Gmel.).

  13. Short and long-term soil carbon accumulation in marsh salinity types of the Mississippi River Deltaic Plain: implications for future global climate change and coastal restoration

    Science.gov (United States)

    Baustian, M. M.; Stagg, C. L.; Perry, C. L.; Moss, L.; Carruthers, T.; Allison, M. A.

    2017-12-01

    The vegetation community and environmental characteristics of marsh habitats influence how carbon is produced, decomposed, and accumulated. In coastal Louisiana, marsh habitats have historically been classified as fresh, intermediate, brackish, and saline based on their position along the salinity gradient. Changing environmental conditions, such as sea-level rise and coastal restoration activities, may change the relative extent of the four marsh habitats and how soil carbon is accumulated in the short and long term. Soil cores (100 cm) were collected at each of 24 sites within the four marsh habitats in two coastal Louisiana basins, Terrebonne and Barataria. Each core was sectioned into 2-cm depth intervals and analyzed for bulk density, organic matter, and radionuclide geochronology (137Cs and 210Pb). Feldspar marker horizon data was utilized to estimate short-term accretion rates. Short-term total carbon accumulation rates (using the top 10 cm soil properties and feldspar horizon markers) among marsh type categories were not significantly different (mean ± std. err of 190 ± 27 g TC m-2 yr-1, n = 15). However, regression analysis, on measured salinity at individual sites, indicated that mean annual salinity had a significant negative relationship suggesting that more saline marshes may be accumulating less carbon in the short term. Coastal Louisiana marsh area (1,433,700 ha) soils store in the short term about 2.7 to 3.3 Tg C yr-1. Long-term carbon accumulation rates of classified marsh type categories also did not differ (mean ± std. err of 80.0 ±8.9 g TC m-2 yr-1, n = 16) and were over two times lower than short-term accumulation rates. Coast-wide, in Louisiana, these soils bury approximately 1.2 Tg TC yr-1 in the long term and contribute about 1-5% of the global marsh/mangrove carbon sink budget. Carbon accumulation and storage rates tend to decrease over long time periods and estimating these rates from varying soil core depths (10 vs. 100 cm) has

  14. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review

    Science.gov (United States)

    Wang, Houjie; Wu, Xiao; Bi, Naishuang; Li, Song; Yuan, Ping; Wang, Aimei; Syvitski, James P. M.; Saito, Yoshiki; Yang, Zuosheng; Liu, Sumei; Nittrouer, Jeffrey

    2017-10-01

    The water-sediment regulation scheme (WSRS), beginning in 2002, is an unprecedented engineering effort to manage the Yellow River with the aims to mitigate the siltation both in the lower river channel and within the Xiaolangdi Reservoir utilizing the dam-regulated flood water. Ten years after its initial implementation, multi-disciplinary indicators allow us to offer a comprehensive review of this human intervention on a river-coastal system. The WSRS generally achieved its objective, including bed erosion in the lower reaches with increasing capacity for flood discharge and the mitigation of reservoir siltation. However, the WSRS presented unexpected disturbances on the delta and coastal system. Increasing grain size of suspended sediment and decreasing suspended sediment concentration at the river mouth resulted in a regime shift of sediment transport patterns that enhanced the disequilibrium of the delta. The WSRS induced an impulse delivery of nutrients and pollutants within a short period ( 20 days), which together with the altered hydrological cycle, impacted the estuarine and coastal ecosystem. We expect that the sediment yield from the loess region in the future will decrease due to soil-conservation practices, and the lower channel erosion will also decrease as the riverbed armors with coarser sediment. These, in combination with uncertain water discharge concomitant with climate change, increasing water demands and delta subsidence, will put the delta and coastal ocean at high environmental risks. In the context of global change, this work depicts a scenario of human impacts in the river basin that were transferred along the hydrological pathway to the coastal system and remotely transformed the different components of coastal environment. The synthesis review of the WSRS indicates that an integrated management of the river-coast continuum is crucially important for the sustainability of the entire river-delta system. The lessons learned from the WSRS in

  15. Types and Functions of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; A. Hughes, Steven

    2003-01-01

    Coastal structures are used in coastal defence schemes with the objective of preventing shoreline erosion and flooding of the hinterland. Other objectives include sheltering of harbour basins and harbour entrances against waves, stabilization of navigation channels at inlets, and protection...

  16. Banks and Financial Services, The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009 with the intent to map critical infrastructure in the Coastal Zone. The initial four parishes included Lafourche, Plaquemine, St. , Published in 2011, 1:12000 (1in=1000ft) scale, LSU Louisiana Geographic Information Center (LAGIC).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Banks and Financial Services dataset current as of 2011. The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was...

  17. Banks and Financial Services, The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009 with the intent to map critical infrastructure in the Coastal Zone. The initial four parishes included Lafourche, Plaquemine, St. , Published in 2011, 1:24000 (1in=2000ft) scale, LSU Louisiana Geographic Information Center (LAGIC).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Banks and Financial Services dataset current as of 2011. The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was...

  18. Hospitals, The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009 with the intent to map critical infrastructure in the Coastal Zone. The initial four parishes included Lafourche, Plaquemine, St. , Published in 2011, 1:12000 (1in=1000ft) scale, LSU Louisiana Geographic Information Center (LAGIC).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Hospitals dataset current as of 2011. The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009...

  19. Hospitals, The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009 with the intent to map critical infrastructure in the Coastal Zone. The initial four parishes included Lafourche, Plaquemine, St., Published in 2011, 1:12000 (1in=1000ft) scale, LSU Louisiana Geographic Information Center (LAGIC).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Hospitals dataset current as of 2011. The featured data collection is the USGS-LAGIC Coastal Parishes Structures Project. This ongoing project was started in 2009...

  20. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  1. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  2. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.

    Science.gov (United States)

    LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L

    2017-06-06

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.

  3. Integrated coastal management in Uruguay

    International Nuclear Information System (INIS)

    2011-01-01

    Integrated coastal management in Uruguay Carmelo includes the following areas-Nueva Palmira challenges and opportunities for local development in a context of large-scale industrial (Conchillas Uruguay), coastal management and stream Arroyo Solis Solis Chico Grande, Punta Colorada and Punta Negra, Maldonado Province Arroyo Valizas and sustainable tourism.

  4. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  5. Adjusted Streamflow and Storage 1928-1989 : with Listings of Historical Streamflow, Summation of Storage Change and Adjusted Streamflow : Columbia River and Coastal Basins.

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Crook Company

    1993-04-01

    The development of irrigation projects since the 1830's and the construction of major dams and reservoirs since the early 1900's have altered substantially the natural streamflow regimen of the Columbia River and its tributaries. As development expanded a multipurpose approach to streamflow regulation evolved to provide flood control, irrigation, hydropower generation, navigation, recreation, water quality enhancement, fish and wildlife, and instream flow maintenance. The responsible agencies use computer programs to determine the effects of various alternative system regulations. This report describes the development of the streamflow data that these computer programs use.

  6. 2005-2006 Southwest Florida Water Management District (SWFWMD) Lidar: Polk County (Including Hampton, Judy, Lake Wales, Peace River (North), and Polk District Remainder Tracts)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is one component of a digital terrain model (DTM) for the SWFWMD Polk District. This record includes information about the LiDAR data for the following...

  7. Oil coastal tanker maintenance and availability

    Energy Technology Data Exchange (ETDEWEB)

    Goldsztejn, Eduardo; Gomez Haedo, Juan Carlos [Government' s Oil Company of Uruguay (ANCAP), Montivideo (Uruguay)

    2008-07-01

    ANCAP (Government's Oil Company of Uruguay) owns a 4000 DWT oil coastal tanker which is mainly used for oil transport in the River Plate, Uruguay and Parana rivers. Availability of the ship is critical because of shortage of available vessels in the region. Full maximum draught of the vessel is 4m , so it can navigate in very shallow waters as it is the case of some places in the Uruguay and Parana rivers. Although the ship was built in 1979, it is a complete double hull, powered by two twin main engines and propellers. Since 1994, several changes in maintenance management have been introduced, in order to increase the availability, thus increasing the total oil volume yearly transported. These changes affected several maintenance items and they also included a modification in the design of part of the cargo tank floors of the ship. As a result of these changes, an increase of 60% of the oil derivatives volume transported yearly was achieved. In this paper, some of the important improvements on maintenance practises and management are described, together with a quantification of their influence on vessel's availability and overall maintenance costs. (author)

  8. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Zanuttigh, Barbara; Andersen, Thomas Lykke

    2014-01-01

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, Coastal Risk...... Management in a Changing Climate provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...

  9. Unstructured-mesh modeling of the Congo river-to-sea continuum

    Science.gov (United States)

    Bars, Yoann Le; Vallaeys, Valentin; Deleersnijder, Éric; Hanert, Emmanuel; Carrere, Loren; Channelière, Claire

    2016-04-01

    With the second largest outflow in the world and one of the widest hydrological basins, the Congo River is of a major importance both locally and globally. However, relatively few studies have been conducted on its hydrology, as compared to other great rivers such as the Amazon, Nile, Yangtze, or Mississippi. The goal of this study is therefore to help fill this gap and provide the first high-resolution simulation of the Congo river-estuary-coastal sea continuum. To this end, we are using a discontinuous-Galerkin finite element marine model that solves the two-dimensional depth-averaged shallow water equations on an unstructured mesh. To ensure a smooth transition from river to coastal sea, we have considered a model that encompasses both hydrological and coastal ocean processes. An important difficulty in setting up this model was to find data to parameterize and validate it, as it is a rather remote and understudied area. Therefore, an important effort in this study has been to establish a methodology to take advantage of all the data sources available including nautical charts that had to be digitalized. The model surface elevation has then been validated with respect to an altimetric database. Model results suggest the existence of gyres in the vicinity of the river mouth that have never been documented before. The effect of those gyres on the Congo River dynamics has been further investigated by simulating the transport of Lagrangian particles and computing the water age.

  10. A new species of Characidium Reinhardt (Ostariophysi: Characiformes: Crenuchidae) from coastal rivers in the extreme south of Bahia, Brazil.

    Science.gov (United States)

    Zanata, Angela M; Sarmento-Soares, Luisa M; Martins-Pinheiro, Ronaldo F

    2015-11-11

    Characidium helmeri, a species of the family Crenuchidae apparently endemic to rivers draining the extreme south of Bahia, Brazil, is described. The new species is easily distinguished from congeners by having dark, vertically elongated, irregular spots or dashes on flanks, usually more evident over midlateral stripe and/or ventral half of body, where it may present a somewhat curved or zigzag-shape. Characidium helmeri can be further distinguished from most congeners by having lateral line reduced to 13-22 pored scales, adipose fin absent, isthmus naked on its anteriormost portion, 14 scales around caudal peduncle, 4 scales above lateral line and 4 below, two series of dentary teeth, supraorbital absent or extremely reduced, and basicaudal black spot well defined. The occurrence of reductive characters in Characidium is briefly discussed.

  11. Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China

    Science.gov (United States)

    Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei

    2018-04-01

    The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.

  12. Larval habitat associations with human land uses, roads, rivers and land cover for Anopheles albimanus, An. pseudopunctipennis and An. punctimacula (Diptera: Culicidae in coastal and highland Ecuador

    Directory of Open Access Journals (Sweden)

    Lauren Lynn Pinault

    2012-03-01

    Full Text Available Larval habitat for three highland Anopheles species: Anopheles albimanus Wiedemann, Anopheles pseudopunctipennis Theobald, and Anopheles punctimacula Dyar & Knab was related to human land uses, rivers, roads, and remotely sensed land cover classifications in the western Ecuadorian Andes. Of the five commonly-observed human land uses, cattle pasture (n=30 provided potentially suitable habitat for An. punctimacula and An. albimanus in less than 14% of sites, and was related in a Principal Components Analysis (PCA to the presence of macrophyte vegetation, greater surface area, clarity and algae cover. Empty lots (n=30 were related in the PCA to incident sunlight and provided potential habitat for An. pseudopunctipennis and An. albimanus in less than 14% of sites. The other land uses surveyed (banana, sugarcane and mixed tree plantations; n=28, 21, 25, respectively provided very little standing water that could potentially be used for larval habitat. River edges and eddies (n=41 were associated with greater clarity, depth, temperature and algae cover, which provide potentially suitable habitat for An. albimanus in 58% of sites and An. pseudopunctipennis in 29% of sites. Road-associated water bodies (n=38 provided potential habitat for An. punctimacula in 44% of sites and An. albimanus in 26% of sites surveyed. Species collection localities were compared to land cover classifications using Geographic Information Systems software. All three mosquito species were associated more often with the category "closed/open broadleaved evergreen and/or semi-deciduous forests" than expected (P ≤ 0.01 in all cases, given such a habitat's abundance. This study provides evidence that specific human land uses create habitat for potential malaria vectors in highland regions of the Andes.

  13. Coastal Structures

    DEFF Research Database (Denmark)

    Oumeraci, H.; Burcharth, H. F.; Rouck, J. De

    1995-01-01

    The paper attempts to present an overview of five research projects supported by the Commission of the European Communities, Directorate General XII, under the MAST 2- Programme (Marine Sciences and Technology), with the overall objective of contributing to the development of improved rational me...... methods for the design of coastal structures....

  14. Bromide in some coastal and oceanic waters of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Dalal, V.N.K.

    Bromide concentration and bromide/chlorinity ratio are estimated in coastal waters of Goa, Minicoy Lagoon, Western Arabian Sea and Western Bay of Bengal. The influence of precipitation and river runoff on bromide and bromide/chlorinity ratio...

  15. Nevada 2008 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along Truckee River in NV in 2008. The data types...

  16. New York 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Niagara River and Lake Erie and Lake Ontario...

  17. Global Bedload Flux Modeling and Analysis in Large Rivers

    Science.gov (United States)

    Islam, M. T.; Cohen, S.; Syvitski, J. P.

    2017-12-01

    Proper sediment transport quantification has long been an area of interest for both scientists and engineers in the fields of geomorphology, and management of rivers and coastal waters. Bedload flux is important for monitoring water quality and for sustainable development of coastal and marine bioservices. Bedload measurements, especially for large rivers, is extremely scarce across time, and many rivers have never been monitored. Bedload measurements in rivers, is particularly acute in developing countries where changes in sediment yields is high. The paucity of bedload measurements is the result of 1) the nature of the problem (large spatial and temporal uncertainties), and 2) field costs including the time-consuming nature of the measurement procedures (repeated bedform migration tracking, bedload samplers). Here we present a first of its kind methodology for calculating bedload in large global rivers (basins are >1,000 km. Evaluation of model skill is based on 113 bedload measurements. The model predictions are compared with an empirical model developed from the observational dataset in an attempt to evaluate the differences between a physically-based numerical model and a lumped relationship between bedload flux and fluvial and basin parameters (e.g., discharge, drainage area, lithology). The initial study success opens up various applications to global fluvial geomorphology (e.g. including the relationship between suspended sediment (wash load) and bedload). Simulated results with known uncertainties offers a new research product as a valuable resource for the whole scientific community.

  18. Geomorphometry in coastal morphodynamics

    Science.gov (United States)

    Guisado-Pintado, Emilia; Jackson, Derek

    2017-04-01

    Geomorphometry is a cross-cutting discipline that has interwoven itself into multiple research themes due to its ability to encompass topographic quantification on many fronts. Its operational focus is largely defined as the extraction of land-surface parameters and earth surface characterisation. In particular, the coastal sciences have been enriched by the use of digital terrain production techniques both on land and in the nearshore/marine area. Numerous examples exist in which the utilisation of field instrumentation (e.g. LIDAR, GPS, Terrestrial Laser Scanning, multi-beam echo-sounders) are used for surface sampling and development of Digital Terrain Models, monitoring topographic change and creation of nearshore bathymetry, and have become central elements in modern investigations of coastal morphodynamics. The coastal zone is a highly dynamic system that embraces variable and at times, inter-related environments (sand dunes, sandy beaches, shoreline and nearshore) all of which require accurate and integrated monitoring. Although coastal studies can be widely diverse (with interconnected links to other related disciplines such as geology or biology), the characterisation of the landforms (coastal geomorphology) and associated processes (morphodynamics, hydrodynamics, aeolian processes) is perhaps where geomorphometry (topo-bathymetry quantification) is best highlighted. In this respect, many tools have been developed (or improved upon) for the acquisition of topographic data that now commands a high degree of accuracy, simplicity, and ultimately acquisition cost reduction. We present a series of field data acquisitions examples that have produced land surface characterisation using a range of techniques including traditional GPS surveys to more recent Terrestrial Laser Scanning and airborne LIDAR. These have been conducted within beach and dune environments and have helped describe erosion and depositional processes driven by wind and wave energy (high

  19. Coastal change and hypoxia in the northern Gulf of Mexico: Part I

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The Committee on Environment and Natural Resources (CENR has identified the input of nutrient-rich water from the Mississippi/Atchafalaya River Basin (MARB as the prime cause of hypoxia in the northern Gulf of Mexico and the prime means for its control. A Watershed Nutrient Task Force was formed to solve the hypoxia problem by managing the MARB catchment. However, the hypoxic zone is also experiencing massive physical, hydrological, chemical and biological changes associated with an immense river-switching and delta-building event that occurs here about once a millennium. Coastal change induced hypoxia in the northern Gulf of Mexico prior to European settlement. It is recommended that for further understanding and control of Gulf hypoxia the Watershed Nutrient Task Force adopt a truly holistic environmental approach which includes the full effects of this highly dynamic coastal area.

  20. Occurrence of tributyltin (TBT)-resistant bacteria is not related to TBT pollution in Mekong River and coastal sediment: with a hypothesis of selective pressure from suspended solid.

    Science.gov (United States)

    Suehiro, Fujiyo; Mochizuki, Hiroko; Nakamura, Shinji; Iwata, Hisato; Kobayashi, Takeshi; Tanabe, Shinsuke; Fujimori, Yoshifumi; Nishimura, Fumitake; Tuyen, Bui Cach; Tana, Touch Seang; Suzuki, Satoru

    2007-07-01

    Tributyltin (TBT) is organotin compound that is toxic to aquatic life ranging from bacteria to mammals. This study examined the concentration of TBT in sediment from and near the Mekong River and the distribution of TBT-resistant bacteria. TBT concentrations ranged from TBT-resistant bacteria ranged TBT-resistant bacteria ranged from TBT in the sediment and of TBT-resistant bacteria were unrelated, and chemicals other than TBT might induce TBT resistance. TBT-resistant bacteria were more abundant in the dry season than in the rainy season. Differences in the selection process of TBT-resistant bacteria between dry and rainy seasons were examined using an advection-diffusion model of a suspended solid (SS) that conveys chemicals. The estimated dilution-diffusion time over a distance of 120 km downstream from a release site was 20 days during dry season and 5 days during rainy season, suggesting that bacteria at the sediment surface could be exposed to SS for longer periods during dry season.

  1. Distribution of arsenic and mercury in subtropical coastal beachrock ...

    Indian Academy of Sciences (India)

    An assessment of coastal pollution was made on the basis of trace element concentrations (arsenic –. As, mercury – Hg) in the ... to determine the As and Hg using atomic absorption spectrophotometer (AAS-air-acetylene and nitrous oxide method). ..... adjoining rivers, channels and regular monitoring of coastal zones are ...

  2. Investigating Changes in Coastal Environment Using Internet-Based ...

    African Journals Online (AJOL)

    On the basis of this background, access to geospatial data through internet technology has become attractive, for investigating the impacts of dynamic processes on the coastal environment. This paper presents the result of investigation carried out in Okrika coastal areas of Rivers State, Nigeria. In particular, it discusses ...

  3. Water resources data for Texas, water year 1996. Volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, Trinity River basin, and intervening coastal basins. Water-data report (Annual), 1 October 1995-30 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Jones, R.E.; Barbie, D.L.

    1997-02-01

    Volume 1 contains records for water discharge at 112 gaging stations; stage only at 4 gaging stations; stage and contents at 34 lakes and reservoirs; water quality at 76 gaging stations; and data for 15 partial-record stations comprised of 9 flood-hydrograph, 3 low-flow, and 3 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements.

  4. Coastal resuspension

    International Nuclear Information System (INIS)

    Garland, J.A.

    1991-11-01

    There are several potential mechanisms for the suspension in air of radioactive or other pollutants from coastal sea water, beaches, mud banks and salt marshes. Available measurements rarely allow these mechanisms to be distinguished. The limited data show a broad spread of results. When normalised by the concentration of radionuclides in beach sediments most of the data indicate concentrations equivalent to 1 to 30 μg m -3 of sediment suspended in air, both for sampling sites on open coasts and near estuaries. Limited evidence for sampling sites located on salt marshes indicates about 0.2 μg m -3 of suspended sediment. These values represent the aggregate effect of the mechanisms that operate at a limited number of coastal locations. At other locations it is possible that additional mechanisms will contribute to the suspension of sediment. (Author)

  5. River Export of Plastic from Land to Sea: A Global Modeling Approach

    Science.gov (United States)

    Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte

    2016-04-01

    Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.

  6. Coastal and estuarine resources of Bangladesh: management and conservation issues

    Directory of Open Access Journals (Sweden)

    Abu Hena M. Kamal

    2009-07-01

    Full Text Available The coastal area of Bangladesh includes a number of bays into which different types of rivers empty, creating an estuarine ecosystem adjacent to the shore. The main estuarine systems are Brahmaputra-Megna (Gangetic delta, Karnaphuly, Matamuhuri, Bakkhali and Naf rivers, which are comprised of mangroves, salt marshes, seagrass, seaweeds, fisheries, coastal birds, animals, coral reefs, deltas, salt beds, minerals and sand dunes. The estuarine environment, which serves as feeding, breeding and nursery grounds for a variety of animals, varies according to the volume of discharge of the river and tidal range. It is highly productive in terms of nutrient input from different sources that promotes other living resources in the estuaries. Drought conditions exist during the winter months, i.e. November to February, and effective rainfall is confined to the monsoon period, i.e. May to June. Changes in salinity and turbidity depend on annual rainfall. The colour of most estuarine waters is tea brown or brown due to heavy outflows during the monsoon. The tidal mixing and riverine discharge governs the distribution of the hydrological parameters. The pH of these waters is reported to be slightly alkaline (>7.66 and dissolved oxygen (<6.0 mg/l shows an inverse relationship to temperature. Studies of plankton have indicated two periods of maximum abundance, i.e. February-March and August-September. The abundance of fish and shrimp larvae varies in number and composition with season. Many marine and freshwater species are available in various types of coastal brackish water, which depend on monsoonal activities and local environmental conditions.

  7. Detecting Recent Atmospheric River Induced Flood Events over the Russian River Basin

    Science.gov (United States)

    Mehran, A.; Lettenmaier, D. P.; Ralph, F. M.; Lavers, D. A.

    2015-12-01

    Almost all major flood events in the coastal Western U.S. occur as a result of multi-day extreme precipitation during the winter and late fall, and most such events are now known to be Atmospheric Rivers (ARs). AR events are defined as having integrated water vapor (IWV) exceeding 2 cm in an area at least 2000 km long and no more than 1000 km wide. The dominant moisture source in many AR events, including those associated with most floods in the Russian River basin in Northern California, is the tropics. We report on a hydrological analysis of selected floods in the Russian River basin using the Distributed Hydrology Soil Vegetation Model (DHSVM), forced alternately by gridded station data, NWS WSR-88D radar data, and output from a regional atmospheric model. We also report results of river state forecasts using a river hydrodynamics model to reconstruct flood inundation from selected AR events. We diagnose errors in both the hydrological and river stage predictions, and discuss alternatives for future error reduction.

  8. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    Science.gov (United States)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  9. Coastal erosion problem, modelling and protection

    Science.gov (United States)

    Yılmaz, Nihal; Balas, Lale; İnan, Asu

    2015-09-01

    Göksu Delta, located in the south of Silifke County of Mersin on the coastal plain formed by Göksu River, is one of the Specially Protected Areas in Turkey. Along the coastal area of the Delta, coastline changes at significant rates are observed, concentrating especially at four regions; headland of İncekum, coast of Paradeniz Lagoon, river mouth of Göksu and coast of Altınkum. The coast of Paradeniz Lagoon is suffering significantly from erosion and the consequent coastal retreating problem. Therefore, the narrow barrier beach which separates Paradeniz Lagoon from the Mediterranean Sea is getting narrower, creating a risk of uniting with the sea, thus causing the disappearance of the Lagoon. The aim of this study was to understand the coastal transport processes along the coastal area of Göksu Delta to determine the coastal sediment transport rates, and accordingly, to propose solutions to prevent the loss of coastal lands in the Delta. To this end, field measurements of currents and sediment grain sizes were carried out, and wind climate, wave climate, circulation patterns and longshore sediment transport rates were numerically modeled by HYDROTAM-3D, which is a three dimensional hydrodynamic transport model. Finally, considering its special importance as an environmentally protected region, some coastal structures of gabions were proposed as solutions against the coastal erosion problems of the Delta. The effects of proposed structures on future coastline changes were also modeled, and the coastlines predicted for the year 2017 are presented and discussed in the paper.

  10. Effects of Spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland.

    Science.gov (United States)

    Yu, Xiaoqing; Yang, Jun; Liu, Lemian; Tian, Yuan; Yu, Zheng

    2015-02-01

    The invasion by exotic cordgrass (Spartina alterniflora) has become one of the most serious and challenging environmental and ecological problems in coastal China because it can have adverse effects on local native species, thereby changing ecosystem processes, functions, and services. In this study, 300 surface sediments were collected from 15 stations in the Jiulong River Estuary, southeast China, across four different seasons, in order to reveal the spatiotemporal variability of biogenic elements and their influencing factors in the subtropical coastal mangrove wetland. The biogenic elements including carbon, nitrogen, and sulfur (C, N, and S) were determined by an element analyzer, while the phosphorus (P) was determined by a flow injection analyzer. The concentrations of biogenic elements showed no significant differences among four seasons except total phosphorus (TP); however, our ANOVA analyses revealed a distinct spatial pattern which was closely related with the vegetation type and tidal level. Values of total carbon (TC) and total nitrogen (TN) in the surface sediment of mangrove vegetation zones were higher than those in the cordgrass and mudflat zones. The concentrations of TC, TN, TP, and total sulfur (TS) in the high tidal zones were higher than those in the middle and low tidal zones. Redundancy analysis (RDA) revealed that tidal level, vegetation type, and season had some significant influence on the distribution of biogenic elements in the Jiulong River Estuary, by explaining 18.2, 7.7, and 4.9 % of total variation in the four biogenic elements, respectively. In conclusion, S. alterniflora invasion had substantial effects on the distributions of biogenic elements in the subtropical coastal wetland. If regional changes in the Jiulong River Estuary are to persist and much of the mangrove vegetation was to be replaced by cordgrass, there would be significant decreases on the overall storage of C and N in this coastal zone. Therefore, the native

  11. Developing a NIDIS Drought Early Warning Information System for Coastal Ecosystems in the Carolinas

    Science.gov (United States)

    Darby, L. S.; Dow, K.; Lackstrom, K.; Brennan, A.; Tufford, D. L.; Conrads, P.; Pulwarty, R. S.; Webb, R. S.; Verdin, J. P.; Mcnutt, C. A.; Deheza, V.

    2013-12-01

    The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the coordination of drought information is critically needed. These regional drought early warning systems will become the backbone of a national drought early warning information system. Plans for the first drought early warning system started in the fall of 2008 in the Upper Colorado River Basin (UCRB), with an initial focus on the water supply in the head waters region of the Colorado River and the impacts of changes in the water supply on the UCRB. Since the establishment of the UCRB drought early warning system, other regional programs have begun in the Apalachicola-Chattahoochee-Flint River Basin, four regions in the state of California, the Southern Plains, and the Four Corners region. (At this time these are considered pilot drought early warning programs, not full-fledged drought early warning systems such as the UCRB.) Activities in each of these regions are tailored to the needs of stakeholders, and all incorporate hydrometeorological predictions. However, in all of these areas NIDIS has not focused on the specific needs of coastal ecosystems during times of drought. Over the past year, NIDIS has started a pilot drought early warning system that addresses drought in the coastal ecosystems of North and South Carolina. This pilot is being developed in partnership with the Carolinas Integrated Sciences and Assessments (CISA), a NOAA Regional Sciences and Assessments program housed at the University of South Carolina. Currently the focus of the Carolinas pilot includes the promotion of enhanced drought impact reporting to better understand the impacts of low flows on coastal ecosystems and the development of a USGS real-time salinity network for a few coastal gage stations in the Carolinas. The roles of the enhanced drought impact assessments in coastal ecosystems and the knowledge gained from a real

  12. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  13. Global challenges in integrated coastal zone management

    DEFF Research Database (Denmark)

    /mitigation to change in coastal systems Coastal governance Linking science and management Comprising a huge wealth of information, this timely and well-edited volume is essential reading for all those involved in coastal zone management around the globe. All libraries in research establishments and universities where...... integration of data and information in policy and management, combining expertise from nature and social science, to reach a balanced and sustainable development of the coastal zone. This important book comprises the proceedings of The International Symposium on Integrated Coastal Zone Management, which took...... place in Arendal, Norway between 3-7 July 2011. The main objective of the Symposium was to present current knowledge and to address issues on advice and management related to the coastal zone. The major themes of papers included in this book are: Coastal habitats and ecosystem services Adaptation...

  14. Ocean and coastal data management

    Science.gov (United States)

    de La Beaujardière, Jeff; Beegle-Krause, C; Bermudez, Luis; Hankin, Steven C.; Hazard, Lisa; Howlett, Eoin; Le, Steven; Proctor, Roger; Signell, Richard P.; Snowden, Derrick P.; Thomas, Julie

    2010-01-01

    We introduce data management concepts, including what we mean by "data" and its "management," sources of data, interoperability, and data geometry. We then discuss various components of a data management system. Finally, we summarize some existing ocean and coastal data management efforts. We make specific recommendations throughout the paper. We are generally optimistic that ocean and coastal data management is an interesting and solvable challenge that will provide great benefit to society.

  15. Coastal hazards in a changing world: projecting and communicating future coastal flood risk at the local-scale using the Coastal Storm Modeling System (CoSMoS)

    Science.gov (United States)

    O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan

    2017-04-01

    The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture

  16. Phase I Marine Archeological Remote Sensing Survey of the Proposed Mississippi River Sand Borrow Sites for the Louisiana Coastal Area Barrier Shoreline Restoration Project, Plaquemines Parish, Louisiana

    Science.gov (United States)

    2008-09-01

    includes shrubs such as buttonbush (Cephalanthus occidentalis), wax myrtle (Myrica cerifera), dwarf palmetto (Sabal minor), marsh elder, elderberry...between the natural levee oak forest and adjacent marsh is covered by dense shrubs and cane (Penfound and Hathaway 1938; R. Christopher Goodwin...the number of ports along the Gulf Coast increased to handle growing commercial activity from local sugar plantations, truck farmers, and

  17. Introduction to coastal engineering

    NARCIS (Netherlands)

    D' Angremond, K.; Pluim-van der Velden, E.T.J.M.

    Lecture notes on genesis of the coastline, climatology, oceanography, coastal morphology, coastal formations, coastalzonde management, tidal inlets and estuaries, pollution and density problems, practical problems and common solutions.

  18. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  19. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  20. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  1. Coastal placer minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Gujar, A.R.

    could then indicate whether the minerals can be exploited economically for use. If so, then the requisite permissions and licenses need to be obtained to mine the sands from the government. The sands can either be used within the country..., Australia, USA, Canada, South Africa, Sri Lanka, Brazil, Norway and Malaysia. India is blessed with a long coastline of more than 7500 km, including islands. The erosion of rocks results in coastal placers such as rutile, ilmenite, zircon, monazite...

  2. Sinking coastal cities

    Science.gov (United States)

    Erkens, Gilles; Bucx, Tom; Dam, Rien; De Lange, Ger; Lambert, John

    2014-05-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs. This effects roads and transportation networks, hydraulic infrastructure - such as river embankments, sluice gates, flood barriers and pumping stations -, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. Excessive groundwater extraction after rapid urbanization and population growth is the main cause of severe land subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. Because of ongoing urbanization and population growth in delta areas, in particular in coastal megacities, there is, and will be, more economic development in subsidence-prone areas. The impacts of subsidence are further exacerbated by extreme weather events (short term) and rising sea levels (long term).Consequently, detrimental impacts will increase in the near future, making it necessary to address subsidence related problems now. Subsidence is an issue that involves many policy fields, complex technical aspects and governance embedment. There is a need for an integrated approach in order to manage subsidence and to develop appropriate strategies and measures that are effective and efficient on both the short and long term. Urban (ground)water management, adaptive flood risk management and related spatial planning strategies are just examples of the options available. A major rethink is needed to deal with the 'hidden' but urgent

  3. The Pliocene Citronelle Formation of the Gulf Coastal Plain

    Science.gov (United States)

    Matson, George Charlton

    1916-01-01

    In the spring of 1910 the writer, working under the direction of T. Wayland Vaughan, geologist in charge of Coastal Plain investigations, undertook a study of the later Tertiary formations of the Gulf Coastal Plain. According to the plans outlined before the work was begun, the beds that had formerly been grouped under the names Lafayette formation and Grand Gulf formation were to be studied with a view to their possible separation into more satisfactory stratigraphic units that might be correlated with other formations which, on the basis of their fossils, had been assigned to their proper positions in the geologic time scale. The original plan included a study of the post-Vicksburgian Tertiary deposits from western Florida to Mississippi River and correlations with formations previously recognized in Florida, southern Alabama, and Louisiana. This plan was subsequently modified to extend the investigation as far west as Sabine River. The field work was interrupted and the office work was delayed by calls for geologic work in other areas, so that the preparation of the reports could not be begun until the spring of 1914.

  4. Measuring River Pollution

    Science.gov (United States)

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  5. Flowing with Rivers

    Science.gov (United States)

    Anderson, Heather

    2004-01-01

    This article describes a lesson in which students compare how artists have depicted rivers in paintings, using different styles, compositions, subject matter, colors, and techniques. They create a watercolor landscape that includes a river. Students can learn about rivers by studying them on site, through environmental study, and through works of…

  6. Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Science.gov (United States)

    Troselj, Josko; Sayama, Takahiro; Varlamov, Sergey M.; Sasaki, Toshiharu; Racault, Marie-Fanny; Takara, Kaoru; Miyazawa, Yasumasa; Kuroki, Ryusuke; Yamagata, Toshio; Yamashiki, Yosuke

    2017-12-01

    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme

  7. An integrated framework to assess plausible future livelihood and poverty changes in deltas: an application to coastal Bangladesh

    Science.gov (United States)

    Lázár, A. N.; Payo, A.; Nicholls, R. J.; Hutton, C.; Adams, H.; Salehin, M.; Haque, A.; Clarke, D.; Bricheno, L.; Fernandes, J. A.; Rahman, M.; Ahmed, A.; Streatfield, P. K.

    2015-12-01

    Deltas represent one of the most densely populated areas in the world. This is especially true for the coastal zone of Bangladesh where more than a thousand people live in each square kilometre of land. Livelihoods, food security and poverty in Bangladesh are strongly dependent on natural resources affected by several factors including climate variability and change, upstream river flow modifications, commercial fish catches in the Bay of Bengal, and engineering interventions such as polderisation. The scarcity of fresh water, saline water intrusion and natural disasters (e.g. river flooding, cyclones and storm surges) have negative impact on drinking water availability and crop irrigation potential; thus severely affect land use and livelihood opportunities of the coastal population. Hydro-environmental changes can be especially detrimental for the well-being of the poorest households that are highly dependent on natural resources. The ESPA Deltas project aims to holistically examine the interaction between the coupled bio-physical environment and the livelihoods of these poor populations in coastal Bangladesh. Here we describe a new integrated model that allows the long-term analysis of the possible changes in this system by linking projected changes in physical processes (e.g. river flows, nutrients), with productivity (e.g. fish, rice), social processes (e.g. access, property rights, migration) and governance/management (e.g. fisheries, agriculture, water and land use management). This integrated approach is designed to provide Bangladeshi policy makers with science-based evidence of possible development trajectories within the coastal delta plain over timescales up to 50 years, including the likely robustness of different governance options on natural resource conservation and poverty levels. This presentation describes the model framework and aims to illustrate the cause-effect relationship in-between changes of the hydro-environment and the livelihoods and

  8. Excessive nitrogen and phosphorus in European rivers

    NARCIS (Netherlands)

    Blaas, Harry; Kroeze, Carolien

    2016-01-01

    Rivers export nutrients to coastal waters. Excess nutrient export may result in harmful algal blooms and hypoxia, affecting biodiversity, fisheries, and recreation. The purpose of this study is to quantify for European rivers (1) the extent to which N and P loads exceed levels that minimize the

  9. A restoration framework to build coastal wetland resiliency

    Science.gov (United States)

    An increase in the frequency and intensity of storms and flooding events are adversely impacting coastal wetlands. Coastal wetlands provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including spec...

  10. Procamallanus (Procamallanus) spp. (Nematoda: Camallanidae) in fishes of the Okavango River, Botswana, including the description of P. (P.) pseudolaeviconchus n. sp. parasitic in Clarias spp. (Clariidae) from Botswana and Egypt.

    Science.gov (United States)

    Moravec, František; Van As, Liesl L

    2015-02-01

    Parasitological dissections of fishes from the Okavango River, Botswana, revealed the presence of nematodes of the subgenus Procamallanus (Procamallanus) Baylis, 1923 in five fish species belonging to three different families. Based on light and scanning electron microscopical examinations, they proved to represent one previously known and one new species, i.e. P. (P.) laeviconchus (Wedl, 1861) from Synodontis nigromaculatus Boulenger, S. thamalakanensis Fowler (new host) (both Mochokidae) and Schilbe intermedius Rüppel (new host) (Schilbeidae), and P. (P.) pseudolaeviconchus n. sp. from Clarias stappersi Boulenger and C. theodorae Weber (both Clariidae). Specimens of the new species previously collected from Clarias gariepinus (Burchell) (type-host) in Egypt were also examined. Both of these nematode species are very similar, differing from each other mainly in the shape of the circumoral flange, which is conspicuously lobed in P. laeviconchus and unlobed in P. pseudolaeviconchus. Previously, these two species have been confused in the literature under the name P. laeviconchus. A key to Procamallanus (Procamallanus) spp. parasitising freshwater fishes in Africa, including Madagascar, is provided.

  11. Hypoxia Adjacent to the Mississippi River Plume

    Science.gov (United States)

    Rabalais, N. N.; Turner, R. E.

    2005-05-01

    The northern Gulf of Mexico receives the freshwater and constituent flux from the Mississippi River, which integrates 40% of the lower 48 United States. In the last half of the 20th century, the flux of nitrogen tripled, phosphorus concentration appears to have increased, and silicate concentration decreased. These changes result from landscape alterations over two centuries with an intensification of human activities that increased the flux of nitrogen and phosphorus particularly in the 1960s to 1980s. Evidence for eutrophication in the coastal ecosystem includes an increase in algal biomass, carbon accumulation from nutrient-enhanced production, worsening oxygen deficiency in the lower water column, and shifts in food web structure. The extent of the oxygen deficiency reaches 20,000 km2 of the inner continental shelf over long periods in summer with the potential for affecting commercially important fisheries in the Gulf. There is daily, weekly and seasonal variability in currents and stratification on the shelf and, therefore, no simple description of the couplings between nutrient delivery, carbon production in surface waters and delivery to and cycling in bottom waters. There are, however, multiple lines of evidence to implicate changes in riverine nutrient loads with overall primary and secondary production, carbon accumulation at the seabed, and low oxygen conditions on the shelf. The change in nutrient loads and responses of the northern Gulf coastal ecosystem, including widespread, severe seasonal hypoxia, parallel similar conditions in the coastal ocean on a global scale.

  12. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Directory of Open Access Journals (Sweden)

    Mary Doherty

    2017-05-01

    Full Text Available Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm. River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May and low (December discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in

  13. Bacterial Biogeography across the Amazon River-Ocean Continuum.

    Science.gov (United States)

    Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  14. Global challenges in integrated coastal zone management

    DEFF Research Database (Denmark)

    place in Arendal, Norway between 3-7 July 2011. The main objective of the Symposium was to present current knowledge and to address issues on advice and management related to the coastal zone. The major themes of papers included in this book are: Coastal habitats and ecosystem services Adaptation......Growing pressure from increasingly diverse human activities coupled with climate change impacts threaten the functional integrity of coastal ecosystems around the globe. A multi-disciplinary approach towards understanding drivers, pressures and impacts in the coastal zone requires effective...... integration of data and information in policy and management, combining expertise from nature and social science, to reach a balanced and sustainable development of the coastal zone. This important book comprises the proceedings of The International Symposium on Integrated Coastal Zone Management, which took...

  15. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles for Brunswick, Kings Bay and Fernandina Beach, and Savannah and the Savannah River, Georgia, 2009-2010 (NODC Accession 0092435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains orthorectified true color (RGB) and infrared (IR) image mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  16. Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan.

    Science.gov (United States)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-05-15

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tidal impact on the division of river discharge and distributary channels in the Mahakam Delta

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Brye, de B.; Vermeulen, B.; Deleersnijder, E.

    2011-01-01

    Bifurcations in tidally influenced deltas distribute river discharge over downstream channels, asserting a strong control over terrestrial runoff to the coastal ocean. Whereas the mechanics of river bifurcations is well-understood, junctions in tidal channels have received comparatively little

  18. Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992-2010 results from SAR-based interferometry.

    Science.gov (United States)

    Da Lio, Cristina; Tosi, Luigi

    2018-03-27

    Land subsidence is a concern in many coastal plains worldwide, particularly in the low-lying areas already facing sea level rise due to climate change, and much still needs to be done, with respect to both mapping land subsidence and gaining a comprehensive understanding of the relevant cause-effect relationships. Land subsidence of the northern coastal plain encompassing the Friuli Venezia Giulia (FVG) region in Italy, remains, to the authors' knowledge, poorly investigated. This coastland includes low-lying agricultural and urban areas and highly valuable lagoon environments, archaeological and touristic sites, and industrial zones. Here, we resolve land subsidence in the coastal plain between the Tagliamento River delta and the Isonzo River mouth over the period 1992-2010 using Envisat ASAR and ERS1/2 interferometric datasets. We identify a large variability of the land subsidence and a spatial gradient that ranges from less than 1mm/year in the high southwestern plain toward the littoral to more than 5mm/year close to the Tagliamento River delta. A comparison between the 2003-2010 and 1992-2000 sinking rates depicts quite similar behaviors of the process over the two time spans. The analysis indicates unclear correlations between ground movements and the typical driving mechanisms acting in the north Adriatic coastal plains, such as the variability of the morphological setting, the subsoil characteristics and the land use. We reason that multi-component mechanisms contribute to the observed image of the subsidence in the FVG coastland. Specifically, anthropogenic activities, e.g., groundwater exploitations, hydraulic reclamations and the development of newly built-up areas, are superposed to natural mechanisms related to the spatial variability of the subsoil characteristics, typical of transitional coastal environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. National Coastal Geology Program: a plan of geologic research on coastal erosion, coastal wetlands, polluted sediments, and coastal hard-mineral resources

    Science.gov (United States)

    ,

    1990-01-01

    More than 50 percent of the U.S. population currently live within 50 miles of an ocean, Great Lake, or major estuary. According to forecasts, the concentration of people along our coastlines will continue to increase into the 21st century. In addition to residential and commercial buildings and facilities worth tens of billions of dollars, the coasts and associated wetlands are natural resources of tremendous value, with estimates in excess of $13 billion per year for commercial and recreational fisheries alone. Human activities and natural processes are stressing the coastal environment. * Each of the coastal states and island territories is suffering problems related to coastal erosion. * Deterioration of wetlands is widespread and of great public concern. * Pollutants carried by rivers or runoff are discharged directly into coastal waters and accumulate in the sediments on the sea floor, in some areas causing damage to living resources and presenting a threat to public health. * Onshore sources for hard-mineral resources, such as sand and gravel used for construction purposes, are becoming increasingly difficult to find. New sources are being sought in coastal waters. Coastal issues will become even more important into the next century if sea level is significantly influenced by climate change and other factors.

  20. Types and Functions of Coastal Structures

    OpenAIRE

    Burcharth, H. F.; A. Hughes, Steven

    2003-01-01

    Coastal structures are used in coastal defence schemes with the objective of preventing shoreline erosion and flooding of the hinterland. Other objectives include sheltering of harbour basins and harbour entrances against waves, stabilization of navigation channels at inlets, and protection of water intakes and outfalls.

  1. Water resources data for Texas, water year 1996. Volume 3. Colorado River basin, Lavaca River basin, Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins. Water-data report (Annual), 1 October 1995-30 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Jones, R.E.; Barbie, D.L.

    1997-02-01

    Volume 3 contains records for water discharge at 110 gaging stations; stage only at 1 gaging station; stage and contents at 12 lakes and reservoirs; water quality at 53 gaging stations; and data for 38 partial-record stations comprised of 9 flood-hydrograph, 17 low-flow, and 12 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations.

  2. Introduction to the Special Issue: Coastal GIS

    Directory of Open Access Journals (Sweden)

    Timothy Nyerges

    2014-09-01

    Full Text Available This special issue of the ISPRS International Journal of Geographic Information about “Coastal GIS” is motivated by many circumstances. More than one-half of the world’s human population lives in coastal areas (within 200 kilometers of coast as of 2000 [1]. The trend toward coastal habitation is expected to continue in the US with the total being 75 percent by 2025, meaning that coastal human–environment interactions will likely increase and intensify [2]. Geographic information systems (GIS are being developed and used by technical specialists, stakeholder publics, and executive/policy decision makers for improving our understanding and management of coastal areas, separately and together as more organizations focus on improving the sustainability and resilience of coastal systems. Coastal systems—defined as the area of land closely connected to the sea, including barrier islands, wetlands, mudflats, beaches, estuaries, cities, towns, recreational areas, and maritime facilities, the continental seas and shelves, and the overlying atmosphere—are subject to complex and dynamic interactions among natural and human-driven processes. Coastal systems are crucial to regional and national economies, hosting valued human-built infrastructure and providing ecosystem services that sustain human well-being. This special issue of IJGI about coastal GIS presents a collection of nine papers that address many of the issues mentioned above. [...

  3. The Liverpool Bay Coastal Observatory

    Science.gov (United States)

    Howarth, Michael John; O'Neill, Clare K.; Palmer, Matthew R.

    2010-05-01

    A pre-operational Coastal Observatory has been functioning since August 2002 in Liverpool Bay, Irish Sea. Its rationale is to develop the science underpinning the ecosystem based approach to marine management, including distinguishing between natural and man-made variability, with particular emphasis on eutrophication and predicting responses of a coastal sea to climate change. Liverpool Bay has strong tidal mixing, receives fresh water principally from the Dee, Mersey and Ribble estuaries, each with different catchment influences, and has enhanced levels of nutrients. Horizontal and vertical density gradients are variable both in space and time. The challenge is to understand and model accurately this variable region which is turbulent, turbid, receives enhanced nutrients and is productive. The Observatory has three components, for each of which the goal is some (near) real-time operation - measurements; coupled 3-D hydrodynamic, wave and ecological models; a data management and web-based data delivery system which provides free access to the data, http://cobs.pol.ac.uk. The integrated measurements are designed to test numerical models and have as a major objective obtaining multi-year records, covering tidal, event (storm / calm / bloom), seasonal and interannual time scales. The four main strands on different complementary space or time scales are:- a) fixed point time series (in situ and shore-based); very good temporal and very poor spatial resolution. These include tide gauges; a meteorological station on Hilbre Island at the mouth of the Dee; two in situ sites, one by the Mersey Bar, measuring waves and the vertical structure of current, temperature and salinity. A CEFAS SmartBuoy whose measurements include surface nutrients is deployed at the Mersey Bar site. b) regular (nine times per year) spatial water column surveys on a 9 km grid; good vertical resolution for some variables, limited spatial coverage and resolution, and limited temporal resolution. The

  4. Climate change and soil salinity: The case of coastal Bangladesh.

    Science.gov (United States)

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  5. Forecasting the effects of coastal protection and restoration projects on wetland morphology in coastal Louisiana under multiple environmental uncertainty scenarios

    Science.gov (United States)

    Couvillion, Brady R.; Steyer, Gregory D.; Wang, Hongqing; Beck, Holly J.; Rybczyk, John M.

    2013-01-01

    Few landscape scale models have assessed the effects of coastal protection and restoration projects on wetland morphology while taking into account important uncertainties in environmental factors such as sea-level rise (SLR) and subsidence. In support of Louisiana's 2012 Coastal Master Plan, we developed a spatially explicit wetland morphology model and coupled it with other predictive models. The model is capable of predicting effects of protection and restoration projects on wetland area, landscape configuration, surface elevation, and soil organic carbon (SOC) storage under multiple environmental uncertainty scenarios. These uncertainty scenarios included variability in parameters such as eustatic SLR (ESLR), subsidence rate, and Mississippi River discharge. Models were run for a 2010–2060 simulation period. Model results suggest that under a “future-without-action” condition (FWOA), coastal Louisiana is at risk of losing between 2118 and 4677 km2 of land over the next 50 years, but with protection and restoration projects proposed in the Master Plan, between 40% and 75% of that loss could be mitigated. Moreover, model results indicate that under a FWOA condition, SOC storage (to a depth of 1 m) could decrease by between 108 and 250 million metric tons, a loss of 12% to 30% of the total coastwide SOC, but with the Master Plan implemented, between 35% and 74% of the SOC loss could be offset. Long-term maintenance of project effects was best attained in areas of low SLR and subsidence, with a sediment source to support marsh accretion. Our findings suggest that despite the efficacy of restoration projects in mitigating losses in certain areas, net loss of wetlands in coastal Louisiana is likely to continue. Model results suggest certain areas may eventually be lost regardless of proposed restoration investment, and, as such, other techniques and strategies of adaptation may have to be utilized in these areas.

  6. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  7. Coastal Erosion Armoring 2005

    Data.gov (United States)

    California Department of Resources — Coastal armoring along the coast of California, created to provide a database of all existing coastal armoring based on data available at the time of creation....

  8. Coastal Erosion Armoring 2005

    Data.gov (United States)

    California Natural Resource Agency — Coastal armoring along the coast of California, created to provide a database of all existing coastal armoring based on data available at the time of creation....

  9. Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments

    Science.gov (United States)

    McCarthy, Matthew James

    Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960's. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration - two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate

  10. Scientific, Social, and Institutional Constraints Facing Coastal Restoration in Louisiana

    Science.gov (United States)

    Kleiss, B.; Shabman, L. A.; Brown, G.

    2017-12-01

    Due to multiple stressors, including subsidence, accelerated sea level rise, canal construction, tropical storm damages, and basin-wide river management decisions, southern Louisiana is experiencing some of the world's highest rates of coastal land loss. Although ideas abound, the solutions proposed to mitigate for land loss are often uncertain, complex, expensive, and difficult. There are significant scientific uncertainties associated with fundamental processes including the spatial distribution of rates of subsidence, the anticipated impacts of increased inundation on marsh plant species and questions about the resilience of engineered solutions. Socially and politically, there is the need to balance navigation, flood risk management and environmental restoration with the fact that the land involved is largely privately owned and includes many communities and towns. And layered within this, there are federal and state regulatory constraints which seek to follow a myriad of existing State and Federal laws, protect the benefits realized from previous federal investments, and balance the conflicting interests of a large number of stakeholders. Additionally, current practice when implementing some environmental regulations is to assess impacts against the baseline of current conditions, not projected future, non-project conditions, making it difficult to receive a permit for projects which may have a short-term detriment, but hope for a long-term benefit. The resolution (or lack thereof) of these issues will serve to inform similar future struggles in other low lying coastal areas around the globe.

  11. Proceedings of the Meeting of the Coastal Engineering Research Board (54th) Held in New Orleans, Louisiana on 4-6 June 1991

    Science.gov (United States)

    1992-04-01

    Sanda, CECW-EG SOUTH PACIFIC DIVISION Mr. Jaime R. Merino, CESPD-ED-W BOARD OF ENGINEERS FOR RIVERS Mr. Jeffrey C. Cole, CESPN-PE-W AND HARBORS Mr...areas. 68 Coastal areas experiencing erosion and economic loss include: a. Sabine Pass to Rollover Pass/Highway 87. In the fall of 1989, the State... Sabine Pass. The closure was prompted by the dangerous conditions resulting from erosion along the highway. In some areas, the highway lies at the

  12. Oceanographic data collected from SATURN River Radar by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2009-06-06 to 2010-10-22 (NCEI Accession 0162195)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162195 contains navigational and physical data collected at SATURN River Radar, a fixed station in the Columbia River estuary - Washington/Oregon....

  13. Oceanographic data collected from SATURN River Station 05 by Center for Coastal Margin Observation and Prediction (CMOP) and assembled by Northwest Association of Networked Ocean Observation Systems (NANOOS) in the Columbia River Estuary and North East Pacific Ocean from 2009-06-23 to 2016-12-06 (NCEI Accession 0162430)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0162430 contains biological, chemical, navigational and physical data collected at SATURN River Station 05, a fixed station in the Columbia River...

  14. The Morphologic Evolution of the Amazon Coastal Plain, Cabo Norte, Amapa, Brazil: The Need for Integrated Investigation on the Internal Continental Shelf.

    Science.gov (United States)

    Silveira, O.; Santos, V. F.; Takiyama, L. R.

    2007-05-01

    refers to the coastal zone between the Amapa Grande River and Araguari River, including Maraca Island and the Oriental lacustrine Belt. Westward the island, at least three paleolevels of clays with roots in life position suggests regressive/transgressive events. Extraordinaty paleodrainage network beginnig at the continent and recognized at the insular portion suggests links with the paleochannels found at the continental shelf. The Oriental Belt of lakes is located close to the coastline, at Cabo Norte. It main feature is a mud lump approximately 10 Km ratio, well recognized at the remote sensing. It shows similar evolutionary processes with Araguari River, dating from XIX century, when this river had two mouths defined by the Carpori Island. The reasons of the deactivation are still unknowed, but, this rapid morphological evolution indicates short time colmatation processes that can be linked to tectonic regional processes. On the other hand, the Cabo Norte feature consolidation may impose changes in the sedimentation processes yielding space reduction over the coastal plain accumulation, diminishing of the solid and liquid fluvial discharge and promoting the availability of the local sediment transport over the littoral. The investigation of these processes requires an integrated coastal plain-continental shelf morphological study applying adequate techniques for modification studies and dating ages over short geological time frame, in century scale level.

  15. Sustainable Coastal Development through Integrated Planning and Management: Efforts by the Government of Kenya in Coastal Zone Management.

    OpenAIRE

    Mohamed, A.; Kinyanjui, D.

    1997-01-01

    The government of Kenya attaches great importance to the coastal environment which contributes significantly to the national economy. The marine and coastal environments comprise highly productive and biologically diverse ecosystems which are in need of protection due as much to their intrinsic value as to their economic value. Coastal ecosystems including coral reefs, mangroves, seagrasses, and estuarine environments provide the economic and cultural basis for many of the coastal communities...

  16. Upstream expansion of round goby (Neogobius Melanostomus – first record in the upper reaches of the Elbe river

    Directory of Open Access Journals (Sweden)

    Buřič M.

    2015-01-01

    Full Text Available The round goby Neogobius melanostomus (Pallas, 1814 is one of the most problematic invasive fish species in recent years in Europe. It has proliferated from its native Ponto-Caspian region to several European river systems including their mouths and coastal brackish waters and was also introduced to and became widely established in the Great Lakes in North America. Despite recent reports about further invasions of round goby in the Odra and Vistula Rivers, including penetration of Baltic and North Seas, in the Elbe River this species was only recorded near its mouth close to Hamburg. Here we report the occurrence of round goby 622 km upstream from the previous record in Geesthacht (Germany in the upper part of the Elbe River in Usti nad Labem (Czech Republic. This report illustrates the fast spread of round goby through several possible pathways, but the most certain is an introduction in ballast water.

  17. Using very high resolution satellite images to identify coastal zone dynamics at North Western Black Sea

    Science.gov (United States)

    Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Zoran, Maria

    2010-05-01

    The availability of updated information about the extension and characteristics of land cover is a crucial issue in the perspective of a correct landscape planning and management of marine coastal zones. Satellite remote sensing data can provide accurate information about land coverage at different scales and the recent availability of very high resolution images definitely improved the precision of coastal zone spatio-temporal changes. The Romanian North Western coastal and shelf zones of the Black Sea and Danube delta are a mosaic of complex, interacting ecosystems, rich natural resources and socio-economic activity. Dramatic changes in the Black Sea's ecosystem and resources are due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). A scientific management system for protection, conservation and restoration must be based on reliable information on bio-geophysical and geomorphologic processes, coastal erosion, sedimentation dynamics, mapping of macrophyte fields, water quality, and climatic change effects. Use of satellite images is of great help for coastal zone monitoring and environmental impact assessment. Synergetic use of in situ measurements with multisensors satellite data could provide a complex assessment of spatio-temporal changes. In this study was developed a method for extracting coastal zone features information as well as landcover dynamics from IKONOS, very high resolution images for North-Western Black Sea marine coastal zone. The main objective was obtaining reliable data about the spatio-temporal coastal zone changes in two study areas located in Constanta urban area and Danube Delta area. We used an object-oriented approach based on preliminary segmentation and classification of the resulting object. First of all, segmentation parameters were tested and selected comparing segmented polygons with

  18. Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk.

    Science.gov (United States)

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der

    2014-08-30

    This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    waters, where slightly less than half of the sediment was deposited in the river-mouth delta. Although most of the measured fluvial and coastal deposition was sand-sized and coarser (> 0.063 mm), significant mud deposition was observed in and around the mainstem river channel and on the seafloor. Woody debris, ranging from millimeter-size particles to old-growth trees and stumps, was also introduced to fluvial and coastal landforms during the dam removals. At the end of our two-year study, Elwha Dam was completely removed, Glines Canyon Dam had been 75% removed (full removal was completed 2014), and ~ 65% of the combined reservoir sediment masses—including ~ 8 Mt of fine-grained and ~ 12 Mt of coarse-grained sediment—remained within the former reservoirs. Reservoir sediment will continue to be released to the Elwha River following our two-year study owing to a ~ 16 m base level drop during the final removal of Glines Canyon Dam and to erosion from floods with larger magnitudes than occurred during our study. Comparisons with a geomorphic synthesis of small dam removals suggest that the rate of sediment erosion as a percent of storage was greater in the Elwha River during the first two years of the project than in the other systems. Comparisons with other Pacific Northwest dam removals suggest that these steep, high-energy rivers have enough stream power to export volumes of sediment deposited over several decades in only months to a few years. These results should assist with predicting and characterizing landscape responses to future dam removals and other perturbations to fluvial and coastal sediment budgets.

  20. Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeffrey J.

    2015-10-01

    than half of the sediment was deposited in the river-mouth delta. Although most of the measured fluvial and coastal deposition was sand-sized and coarser (> 0.063 mm), significant mud deposition was observed in and around the mainstem river channel and on the seafloor. Woody debris, ranging from millimeter-size particles to old-growth trees and stumps, was also introduced to fluvial and coastal landforms during the dam removals. At the end of our two-year study, Elwha Dam was completely removed, Glines Canyon Dam had been 75% removed (full removal was completed 2014), and 65% of the combined reservoir sediment masses-including 8 Mt of fine-grained and 12 Mt of coarse-grained sediment-remained within the former reservoirs. Reservoir sediment will continue to be released to the Elwha River following our two-year study owing to a 16 m base level drop during the final removal of Glines Canyon Dam and to erosion from floods with larger magnitudes than occurred during our study. Comparisons with a geomorphic synthesis of small dam removals suggest that the rate of sediment erosion as a percent of storage was greater in the Elwha River during the first two years of the project than in the other systems. Comparisons with other Pacific Northwest dam removals suggest that these steep, high-energy rivers have enough stream power to export volumes of sediment deposited over several decades in only months to a few years. These results should assist with predicting and characterizing landscape responses to future dam removals and other perturbations to fluvial and coastal sediment budgets.

  1. Anthropogenic activities including pollution and contamination of coastal marine environment.

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Matondkar, S.G.P.

    today is putting a strain on the environment, infrastructure and the country's natural resources. Today industrial pollution, soil erosion, deforestation, rapid industrialization, urbanization and land degradation are all worsening problem due...

  2. Predicting impact of SLR on coastal flooding in Banda Aceh coastal defences

    Science.gov (United States)

    Al'ala, Musa; Syamsidik, Kato, Shigeru

    2017-10-01

    Banda Aceh is a low-lying city located at the northern tip of Sumatra Island and situated at the conjuncture of Malacca Strait and the Andaman Sea. A Sea Level Rise (SLR) rate at 7 mm/year has been observed around this region. In the next 50 years, this city will face a serious challenge to encounter impacts of the sea level rise, such as frequent coastal floodings. This study is aimed at estimating impacts of the sea level rise induced coastal floodings on several types of coastal structures and city drainage system. Numerical simulations of Delft3D were applied to investigate the influence of the gradual sea level rise in 50 years. The hydrodynamic process of coastal flooding and sediment transport were simulated by Delft3D-Flow. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Hydrodynamic process gains the flow process revealing the level of the sea water intrusion also observed in the model. Main rivers (Krueng Aceh, Krueng Neng, and Alue Naga Flood Canal) and the drainage system were observed to see the tides effects on coastal structures and drainage system. The impact on coastal community focusing on affected area, shoreline retreat, the rate of sea intrusion was analyzed with spatial tools. New coastal line, coastal flooding vulnerable area, and the community susceptibility properties map influenced by 50 years sea level rise is produced. This research found that the city needs to address strategies to anticipate the exacerbating impacts of the sea level rise by managing its coastal spatial planning and modify its drainage system, especially at the drainage outlets.

  3. SEDIMENTATION IN PACIFIC NORTHWEST COASTAL STREAMS -- EVIDENCE FROM REGIONAL SURVEY OF BED SUBSTRATE SIZE AND STABILITY

    Science.gov (United States)

    Excessive erosion, transport and deposition of sediment are major problems in streams and rivers throughout the United States. We examined evidence of anthropogenic sedimentation in Oregon and Washington coastal streams using relatively rapid measurements taken from surveys duri...

  4. Are rivers just bigstreams? Using a pulse method to measure nitrogen demand in a large river

    OpenAIRE

    Tank, J. L.; Rosi-Marshall, E. J.; Baker, Michelle A.; Hall, R. O., Jr.

    2008-01-01

    Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a ...

  5. Diagnosis of CO2 Fluxes in the Coastal Ocean

    Science.gov (United States)

    Dai, M.; Cao, Z.; Yang, W.; Guo, X.; Yin, Z.; Zhao, Y.

    2017-12-01

    Coastal ocean carbon is an important component of the global carbon cycle. However, its mechanistic-based conceptualization, a prerequisite of coastal carbon modeling and its inclusion in the Earth System Model, remains difficult due to the highest variability in both time and space. Here we show that the inter-seasonal change of the global coastal pCO2 is more determined by non-temperature factors such as biological drawdown and water mass mixing, the latter of which features the dynamic boundary processes of the coastal ocean at both land-margin and margin-open ocean interfaces. Considering these unique features, we resolve the coastal CO2 fluxes using a semi-analytical approach coupling physics-biogeochemistry and carbon-nutrients and conceptualize the coastal carbon cycle into Ocean-dominated Margins (OceMar) and River-dominated Ocean Margins (RiOMar). The diagnostic result of CO2 fluxes in the South China Sea basin and the Arabian Sea as OceMars and in the Pearl River Plume as a RioMar is consistent with field observations. Our mechanistic-based diagnostic approach therefore helps better understand and model coastal carbon cycle yet the stoichiometry of carbon-nutrients coupling needs scrutiny when applying our approach.

  6. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, "Coastal Risk...... Management in a Changing Climate" provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...... such as deltas, estuaries and wetlands, where many large cities and industrial areas are located. Integrated risk assessment tools for considering the effects of climate change and related uncertainties. Presents latest insights on coastal engineering defenses. Provides integrated guidelines for setting up...

  7. Chironomidae larvae from the lower Athabasca River, AB, Canada and its tributaries including macroscopic subfamily and tribe keys, indices for environmental tolerance and trait-based information for biomonitoring

    Directory of Open Access Journals (Sweden)

    A. Namayandeh

    2016-08-01

    Full Text Available Since 2011 the Joint Oil Sands Monitoring (JOSM program has been conducted in the lower Athabasca River by the Governments of Canada and Alberta to assess the freshwater health in areas associated with oil sands development. The majority of the benthic invertebrate assemblage of the Athabasca River and its tributaries are Chironomidae larvae. Assessments of such benthic assemblages are made difficult because the identification of Chironomidae larvae is costly and time consuming. To facilitate this identification process, we aimed to develop a simple taxonomic key for Chironomidae larvae of this region. This taxonomic reference and identification key makes use of the known taxonomic details on these Chironomidae species. Moreover, we provide details on their geographical distribution, ecology, habitats, environmental tolerance values for species, and traitbased morphological characters. Our main goal was to make this information readily available to both non-specialists and specialists so that biomonitoring programs can more readily utilize these organisms in biomonitoring.

  8. Influence of the Yukon River on the Bering Sea

    Science.gov (United States)

    Dean, Kenneson G.; Mcroy, C. Peter

    1988-01-01

    Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.

  9. Centennial-scale human alterations, unintended natural-system responses, and event-driven mitigation within a coupled fluvial-coastal system: Lessons for collective management and long-term coastal change planning

    Science.gov (United States)

    Hein, C. J.; Hoagland, P.; Huang, J. C.; Canuel, E. A.; Fitzsimons, G.; Rosen, P.; Shi, W.; Fallon, A. R.; Shawler, J. L.

    2017-12-01

    On decadal to millennial timescales, human modifications of linked riparian and coastal landscapes have altered the natural transport of sediments to the coast, causing time-varying sediment fluxes to estuaries, wetlands, and beaches. This study explored the role of historical changes in land use and river/coastal engineering on patterns of coastal erosion in the coupled system comprising the Merrimack River and the Plum Island barrier beach (northern Massachusetts, USA). Recreational values of the beach, attendant impacts on the local housing market, human perceptions of future beach utilization, and collective management options were investigated. Key historical changes included the installation of dams to benefit industry and control flooding in the early 19th century; river-mouth jetties to maintain navigation and allow for the residential development of a more stable barrier in the early 20th century; and the progressive hardening of the shoreline in response to multi-decadal cyclical erosion and house losses throughout the latter 20th and 21st centuries. The tools of sedimentology, shoreline-change analysis, historic documentation, population surveys, and economic modeling were used to examine these changes and the dynamic linked responses of the natural system and human populations. We found cascading effects of human alterations to the river that changed sediment fluxes to the coastal zone, driving a need for mitigation over centennial timescales. More recently, multidecadal erosion-accretion cycles of the beach have had little impact on the housing market, which is instead more responsive to public shoreline stabilization efforts in response to short-term (plan for long-term coastal changes are associated with sea-level rise and enhanced storminess, but real-time mitigation, such as shoreline hardening, has been reactive, lacking a collective consensus for best management and a longer-term perspective for adaptation. Together, these findings suggest that

  10. Investigation of groundwater in the Upper Motueka River catchment

    International Nuclear Information System (INIS)

    Stewart, M.K.; Hong, T.Y.-S.; Cameron, S.C.; Daughney, C.J.; Tait, T.; Thomas, J.T.

    2005-01-01

    Groundwater investigation in the Upper Motueka catchment is a key end user-driven component of the Integrated Catchment Management (ICM) project, a six year programme which commenced in July 2000. The goal of the ICM project is to conduct multi-disciplinary, multi-stakeholder research to provide information and knowledge that will improve the management of land, freshwater, and near-coastal environments in catchments with multiple, interacting, and potentially conflicting land uses. The principal aims of the investigations are to understand the hydrogeology of the Upper Motueka valley (including parts of the Motupiko and Tadmor valleys), the aquifer hydraulic properties, the occurrence of groundwater (recharge, storage and discharge), and the connectivity to the rivers. Understanding these will give a conceptual model of the river/groundwater system to constrain computational models. The study area lies within the Moutere Depression at lower altitude and has moderate rainfall (900-1300 mm). Higher land to the east with rainfall up to 2000 mm feeds the upper reaches of the Motueka River. Comparison of the Motueka River flow at the gorge and upstream of the Wangapeka River confluence shows that much of the flow, and particularly much of the low flow, are generated within the comparatively small gorge headwater area, comprising ultramafics and Maitai Group sediments. Below the gorge, the catchment contains Moutere Gravel. The Motupiko and Tadmor catchments are predominantly Moutere Gravel. (author). 13 refs., figs., tabs

  11. Red fish up the river : a report on the former Coquitlam salmon migrations and the hydro-electric developments at Coquitlam Lake, British Columbia, pre-1914

    International Nuclear Information System (INIS)

    Koop, W.

    2001-01-01

    BC Hydro commits $1.5 million annually to its Bridge Coastal Fish and Wildlife Restoration Program (BCRP) to support eligible fish and wildlife projects within the Bridge River/Coastal Generation Area which includes the Fraser Valley, Vancouver, Island, Coastal, Bridge River and Shuswap. This report was prepared for the Kwikwetlem Nation in reference to the Coquitlam/Buntzen Water Use Plan, the second of 32 proposed public reviews of hydroelectric complexes in British Columbia. The Coquitlam River flows through territory of the Kwikwetlem Nation who, historically, depended on sockeye salmon for their sustenance, trade, economy and culture. The BCRP is helping the Kwikwetlem to construct a salmon spawning channel in a former branch of the Coquitlam River near their reserves. This report compliments their project and is based on historic information on the disruption of former salmon migrations in the Coquitlam River system and the decision-making processes surrounding hydroelectric complex constructed by the Vancouver Power Company between 1903 and 1913. refs., figs

  12. Quantifying nutrient cycling and retention in coastal waters at the global scale. Geologica Ultraiectina (312)

    NARCIS (Netherlands)

    Laruelle, G.G.

    2009-01-01

    Coastal waters extend from the mouths of rivers to the edge of the continental shelves, forming the transition zone between land and ocean. This highly dynamic narrow ribbon of coastal ecosystems is of major ecological and economical interest. It also plays a key role in global ocean biogeochemistry

  13. Monitoring the Condition of the Estuaries of the United States: The National Coastal Assessment Experience

    Science.gov (United States)

    Coastal waters in the United States include estuaries, bays, sounds, coastal wetlands, coral reefs, intertidal zones, mangrove and kelp forests, seagrass meadows, and coastal ocean and upwelling areas (i.e. deep water rising to surface). These coastal areas encompass a wide diver...

  14. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  15. An integrated framework to assess future livelihood and poverty changes in deltas: an application to coastal Bangladesh

    Science.gov (United States)

    Nicholls, Robert J.; Lazar, Attlia; Payo, Andres; Adams, Helen; Salehin, Mashfiqus; Haque, Anisul; Clarke, Derek; Bricheno, Lucy; Fernandes, Jose; Rahman, Mofizur; Ahmed, Ali; Streatfield, Kim

    2016-04-01

    Coastal deltas represent some of the most densely populated areas in the world. A good example is the coastal zone of Bangladesh where there are more than 1000 people/km2 in the rural areas. Livelihoods, food security and poverty in this area is strongly dependent on natural resources affected by several factors including climate variability and change, upstream river flow modifications, commercial fish catches in the Bay of Bengal, and engineering interventions such as polderisation. The scarcity of fresh water, saline water intrusion and natural disasters (e.g. river flooding, cyclones and storm surges) have negative impact on drinking water availability and crop irrigation potential. This severely affects land use and livelihood opportunities of the coastal population. Hydro-environmental changes can be especially detrimental for the well-being of the poorest households that are highly dependent on natural resources. The ESPA Deltas project aims to holistically examine the interaction between the coupled bio-physical environment and the livelihoods of these poor populations in coastal Bangladesh. Here we describe a new integrated model that allows the long-term analysis of the possible changes in this system by linking projected changes in physical processes (e.g. river flows, nutrients), with productivity (e.g. fish catches, rice production), social processes (e.g. access, property rights, migration) and governance/management (e.g. fisheries, agriculture, water and land use management). This includes the development and application of a range of scenarios, including expert-derived scenarios on issues such as climate change, and stakeholder-derived scenarios on more local issues in Bangladesh. This integrated approach is designed to provide Bangladeshi policy makers with science-based evidence of possible development trajectories within the coastal delta plain over timescales up to 50 years, including the likely robustness of different governance options on

  16. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    Science.gov (United States)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of

  17. Presence of Microplastics in the Fraser River, British Columbia

    Science.gov (United States)

    Bourdages, M.; Ehrenbrink, B. P. E.; Marsh, S. J.; Gillies, S. L.; Paine, J. K.; Bogaerts, P.; Strangway, A.; Robertson, K.; Groeneweg, A.

    2017-12-01

    Microplastics are a source of anthropogenic contamination in watercourses and water bodies around the world. The extent of the implications associated with microplastics, however, is not fully known. These plastic particles, less than 5mm in diameter by definition, threaten a wide range of aquatic and land-based organisms, as the ingestion of microplastics by aquatic organisms can form blockages in digestive tracts, and can provide pathways for other contaminants to enter their bodies (Ziajahromi et al. 2017). Land-based organisms can then ingest the contaminated organisms, potentially impacting their health. Microplastics can be introduced into the aquatic environment through aquatic or land-based sources (Ziajahromi et al. 2017). A river system that is at a particular threat from microplastic contamination is the Fraser River. The Fraser River is a major salmon bearing river system in British Columbia and drains an area of over 220,000 km2. Potential sources of microplastic contamination include pulp and lumber mills near Prince George and Quesnel, the agriculturally dominated Fraser Valley, and the highly urbanized and industrialized stretch of the Lower Mainland east of Vancouver. Preliminary tests in the summer of 2016 on 200 liters of Fraser River water, processed through a 45 µm sieve, revealed the presence of microplastics, including the detection of blue dye polyethylene by Raman spectroscopy. Since then additional water samples were taken monthly at the Fraser River Observatory in Fort Langley from October 2016 to March 2017, and then bi-weekly commencing in April 2017. These samples are to be analysed at Woods Hole Oceanographic Institution (WHOI) in the Fall of 2017. This ongoing project aims at identifying the presence, amount, and type of microplastics being transported by the Fraser River to the coastal ocean. Ziajahromi, S.,et al., 2017. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater

  18. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes

  19. Coastal Economic Trends for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the...

  20. Heavy metal fluxes at the sediment-water interface of three coastal ecosystems from south-west of the Iberian Peninsula

    Science.gov (United States)

    Blasco; Saenz; Gomez-Parra

    2000-03-20

    Concentrations of the heavy metals Cr, Cu, Fe and Mn were measured in sediments and porewater samples collected in three coastal ecosystems southwest of the Iberian Peninsula: the Odiel and Barbate River Salt Marshes and the Bay of Cadiz. Both the sediment and the porewater metal concentrations in the Odiel River Salt Marshes are higher than the values found in the Bay of Cadiz and Barbate River Salt Marsh, particularly for copper, a metal associated with mining activity. In porewater, the profiles were not the same as those in the solid phase and reflect the different behaviours of the elements in relation to the redox conditions. The heavy metals Cr and Cu show a typical enrichment in the porewater of the oxic zone. The heavy metals Mn and Fe show an increase in the porewater at the depths where the maximum nitrate and phosphate concentrations occur, respectively. Significant differences between background levels for each heavy metal in the various studied zones exist. Iron and Cu showed larger background levels in the Odiel River Salt Marshes than those in the Cadiz Bay and the Barbate River Salt Marshes. In the Bay of Cadiz the background levels are also high, particularly for Cr. At the Odiel River Salt Marshes the diffusive flux of Cu is high (1.3-230.1 microg cm(-2) year(-1)), which suggests that the Odiel River Salt Marshes are subject to strong contamination by Cu, which is presumably introduced to the sediment in particulate form. In the Bay of Cadiz, Cr is the only metal with positive diffusive flux (2.15 microg cm(-2) year(-1)). It is higher than those obtained in other coastal ecosystems including the Odiel River Salt Marshes. The positive diffusive flux of Cr has been associated with the input of this metal by the naval industry and the manufacturing of car and aircraft components.

  1. Changes in Modern Pollen Assemblages and Soil Geochemistry along Coastal Environmental Gradients in the Everglades of South Florida

    Directory of Open Access Journals (Sweden)

    Qiang Yao

    2018-01-01

    Full Text Available This study aims to document the changes in modern pollen assemblages and soil elemental chemistry along broad edaphic, hydrological, and salinity gradients, including a previously undocumented secondary environmental gradient, in a vast mangrove-dominated wetland region in the Everglades, South Florida. Twenty-five soil surface samples were collected along an interior wetland transect and an estuarine mangrove transect across coastal zones in the Everglades National Park and subjected to palynological and XRF analyses. Modern pollen spectra from the sampling sites were classified into five a priori groups—wet prairie, pineland, inland mangroves, coastal mangroves, and fringe mangroves, based on the five vegetation types and sub-environments from which they were collected. Discriminant analysis shows that all (100% of the samples are correctly classified into their a priori groups. On a broad scale, the modern pollen assemblages in surface samples collected from different vegetation types reflect the primary environmental gradient in the Florida Coastal Everglades. A distinct salinity and chemical gradient is also recorded in the XRF results, and the complexity of these gradients is captured at both regional and local scales. At the regional scale, concentrations of all the elements increase from terrestrial toward coastal sites. At the local scale, XRF results show a progressive decrease in most chemical concentrations and in the Cl/Br and Ca/Ti ratios away from the Shark River Slough at each individual site, suggesting that a secondary fluvial/tidal gradient also exists locally as a function of the distance from the river, the main carrier of these chemicals. This study provides new evidence to show that tidal flooding from the Shark River Estuary is directly related to the nutrient availability in the surrounding mangrove forests. These data will deepen our understanding of the environmental drivers behind the vegetation zonation in the

  2. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  3. Coastal Conditions 2000

    Data.gov (United States)

    California Department of Resources — Dataset developed by California Coastal Commission's Melanie Coyne by attaching names to a dynamically segmented coastline using the Department of Navigation and...

  4. Composição florística e estrutura do componente arbóreo de uma Floresta Paludosa na planície costeira da bacia do rio Itaguaré, Bertioga, SP, Brasil. Floristic composition andstructure of an arboreal component of the Paludal Forest in the coastal plain of the Itaguaré river basin, Bertioga (São Paulo state, Brazil

    Directory of Open Access Journals (Sweden)

    Celia Regina de Gouveia SOUZA

    2012-06-01

    Full Text Available As Florestas Paludosas costeiras ou “caxetais” ocorrem no Domínio Atlântico, em geral associadas a depressões paleolagunares, cujos terrenos são permanentemente encharcados. Essas florestas se caracterizam por apresentar elevada densidade de indivíduos da espécie Tabebuia cassinoides (Lam. DC., conhecida popularmente por “caxeta”. O presente estudo foi desenvolvido em uma Floresta Paludosa situada na planície costeira do rio Itaguaré, município de Bertioga, Baixada Santista, Estado de São Paulo. A composição florística e a estrutura fitossociológica foram investigadas através da amostragem por parcelas, sendo incluídos todos os indivíduos com 10 cm ou mais de diâmetro a 1,3 m de altura do peito (DAP. Foram registradas 20 espécies e 11 famílias botânicas, resultando em uma densidade total de 450 ind./ha-1. A família com maior riqueza de espécies foi Myrtaceae, com quatro espécies. A análise de similaridade indicou dois grupos florísticos. Tabebuia cassinoides foi, de fato, a espécie mais importante, apresentando grande densidade e dominância de indivíduos, o que reforça sua posição de espécie indicadora deste tipo vegetacional, conforme difundido na literatura. The coastal Paludal Forest or “Caxetal” occurs on the Atlantic Domain, associated to wetlands within palaeolagoonal depressions. It is characterized by a high density of individuals of Tabebuia cassinoides (Lam. DC., which is popularly known as “caxeta”. A Paludal Forest located in the Itaguaré river coastal plain, in the municipality of Bertioga, Santos Lowland, São Paulo State, Brazil was studied. The floristic composition and phytossociological structure was investigated through a plot method including all individuals with diameter at 1.3 m (DBH ≥ 10 cm. A total of 20species and 11 botanic families were sampled, resulting in a total density of 450 ind./ha-1. Myrtaceae showed the highest species richness. The similarity index indicated

  5. Conceptualizing delta forms and processes in Arctic coastal environments

    DEFF Research Database (Denmark)

    Bendixen, Mette; Kroon, Aart

    2017-01-01

    Climate warming in the Arctic directly causes two opposite changes in Arctic coastal systems: increased melt-water discharge through rivers induces extra influx of sediments and extended open water season increases wave impact which reworks and erodes the shores. A shoreline change analysis along...

  6. Riverine input of chlorinated hydrocarbons in the coastal pollution

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Everaarts, J.M.

    of various chlorinated hydrocarbons. It deals with an in-depth analysis of pollution of the coastal ecosystem around the Netherlands, U.K. and Germany due to inputs of contaminants from the rivers namely, Elbe, Weser, Ems Ijssel, Rhine, Meuse, Scheldt, Thames...

  7. Distribution of Heavy Metals in the Coastal Marine Surficial ...

    African Journals Online (AJOL)

    the trend of pollution in coastal areas has been increasing over time. In Tanzania, heavy metals in sediments have been determined in the Dar es. Salaam harbour (Machiwa 1992, 2000) and along. River Msimbazi (A'khabuhaya and Lodenius. 1988). Heavy metals concentration have also been measured from sediments ...

  8. Review of coastal currents in Southern African waters

    CSIR Research Space (South Africa)

    Harris, TFW

    1978-08-01

    Full Text Available A review has been made of existing knowledge of the coastal currents in Southern African waters between Pretoria to Oudtshoorn on the northeast border, and the Orange River on the west coast. These waters have been divided into five sectors...

  9. Coastal Analysis, Nassau,NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  10. Myxozoans infecting the sharptooth catfish, Clarias gariepinus in the Okavango River and Delta, Botswana, including descriptions of two new species, Henneguya samochimensis sp. n. and Myxobolus gariepinus sp. n.

    Science.gov (United States)

    Reed, Cecilé C; Basson, Linda; Van As, Liesl L

    2003-09-01

    During a recent investigation of parasites infecting fishes from the Okavango River and Delta, Botswana (southern Africa) fourteen sharptooth catfish, Clarias gariepinus (Burchell, 1822) (Siluriformes: Clariidae) were examined for the presence of myxozoan infections. Results revealed the presence of two species of the genus Henneguya Thélohan, 1895 and one species of the genus Myxobolus Bütschli, 1882 infecting this fish host. Two of the sampled fish exhibited large plasmodia of Henneguya suprabranchiae Landsberg, 1987 in the cartilage of the accessory breathing organ, another two individuals were infected with H. samochimensis sp. n. plasmodia in the gills and another three individuals revealed an infection with Myxobolus gariepinus sp. n. plasmodia in the ovaries.

  11. Coastal Sea Level and Estuary Tide Modeling in Bangladesh Using SAR, Radar and GNSS-R Altimetry

    Science.gov (United States)

    Jia, Y.; Shum, C. K.; Sun, J.; Li, D.; Shang, K.; Yi, Y.; Calmant, S.; Ballu, V.; Chu, P.; Johnson, J.; Park, J.; Bao, L.; Kuo, C. Y.; Wickert, J.

    2017-12-01

    Bangladesh, located at the confluence of three large rivers - Ganges, Brahmaputra and Meghna, is a low-lying country. It is prone to monsoonal flooding, potentially aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. Its coastal estuaries, the Sundarbans wetlands, have the largest Mangrove forest in the world, and exhibits complex tidal dynamics. In order to study flood hazards, ecological or climate changes over floodplains, it is fundamentally important to know the water level and water storage capacity in wetlands. Inaccurate or inadequate information about wetland water storage will cause significant errors in hydrological simulation and modeling for understanding ecological and economic implications. However, in most areas, the exact knowledge of water level change and the flow patterns is lacking due to insufficient monitoring of water level gauging stations on private and public lands within wetlands or floodplains, due to the difficulty of physical access to the sites and logistics in data gathering. Usage of satellite all-weather remote sensing products provides an alternative approach for monitoring the water level variation over floodplains or wetlands. In this study, we used a combination of observations from satellite radar altimetry (Envisat/Jason-2/Altika/Sentinel-3), L-band synthetic aperture radar (ALOS-1/-2) backscattering coefficients inferred water level, GNSS-R altimetry from two coastal/river GNSS sites, for measuring coastal and estuary sea-level and conducting estuary ocean tide modeling in the Bangladesh delta including the Sundarbans wetlands.

  12. Erosion risk assessment along coastlines, rivers, and lakes

    Science.gov (United States)

    Eidsvig, Unni; Harbitz, Carl B.; Issler, Dieter; Forsberg, Carl Fredrik; Høydal, Øyvind A.; Glimsdal, Sylfest; Frauenfelder, Regula

    2017-04-01

    An effect of the expected climate changes is that densely populated areas will be more exposed to natural hazards. There is a rising concern about geotechnical challenges associated with the transition zone between water and land, in particular with regard to erosion. This needs to be considered as part of the climate adaptation strategies in the society and applies to both coastal settlements and to settlements along rivers. Climate change, as reported by the IPCC, includes global warming, sea level rise as well as more precipitation, both with respect to intensity and frequency. A larger number of cities are expected to be affected by floods and with higher frequency. With large floods, the current speed in rivers and hence their erosion potential increases, leading to scouring along riverbanks, where important transport routes and other infrastructure are often located. The frequency and intensity of storm surges are expected to increase, as well as the risk of coastal erosion. In steep terrain, the likelihood of debris flows increases. The project "Multi-scale Erosion Risk under Climate Change" was initiated to prepare for such challenges as well as local climate adaptation. The project is an internal NGI strategic project funded by the Research Council of Norway for the period 2017 - 2019. The project aims to investigate relevant erosive and mass-flow processes in the coastal zone, along rivers, and in lakes. Further, the knowledge and tools to be developed within the project aim to reduce the risk associated with these processes, through appropriate land-use planning and innovative mitigation measures. The project is thematically subdivided into the following five work packages: WP1: Modelling of erosion processes in rivers, at the coast and in mass movements WP2: Floods, debris flows and sediment mobility in complex topography WP3: Coastal hydrodynamic processes WP4: Monitoring, warning and non-physical mitigation measures WP5: Dissemination and knowledge

  13. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary

    Directory of Open Access Journals (Sweden)

    Aviaja Lyberth Hauptmann

    2016-09-01

    Full Text Available Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N. Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

  14. Integrating operational watershed and coastal models for the Iberian Coast: Watershed model implementation - A first approach

    Science.gov (United States)

    Brito, David; Campuzano, F. J.; Sobrinho, J.; Fernandes, R.; Neves, R.

    2015-12-01

    River discharges and loads are essential inputs to coastal seas, and thus for coastal seas modelling, and their properties are the result of all activities and policies carried inland. For these reasons main rivers were object of intense monitoring programs having been generated some important amount of historical data. Due to the decline in the Portuguese hydrometric network and in order to quantify and forecast surface water streamflow and nutrients to coastal areas, the MOHID Land model was applied to the Western Iberia Region with a 2 km horizontal resolution and to the Iberian Peninsula with 10 km horizontal resolution. The domains were populated with land use and soil properties and forced with existing meteorological models. This approach also permits to understand how the flows and loads are generated and to forecast their values which are of utmost importance to perform coastal ocean and estuarine forecasts. The final purpose of the implementation is to obtain fresh water quantity and quality that could be used to support management decisions in the watershed, reservoirs and also to estuaries and coastal areas. A process oriented model as MOHID Land is essential to perform this type of simulations, as the model is independent of the number of river catchments. In this work, the Mohid Land model equations and parameterisations were described and an innovative methodology for watershed modelling is presented and validated for a large international river, the Tagus River, and the largest national river of Portugal, the Mondego River. Precipitation, streamflow and nutrients modelling results for these two rivers were compared with observations near their coastal outlet in order to evaluate the model capacity to represent the main watershed trends. Finally, an annual budget of fresh water and nutrient transported by the main twenty five rivers discharging in the Portuguese coast is presented.

  15. Monitoring Drought along the Gulf of Mexico and the Southeastern Atlantic Ocean Using the Coastal Salinity Index

    Science.gov (United States)

    Conrads, P. A.; Rouen, L.; Lackstrom, K.; McCloskey, B.

    2017-12-01

    Coastal droughts have a different dynamic than upland droughts, which are typically characterized by agricultural, hydrologic, meteorological, and (or) socio-economic impacts. Drought uniquely affects coastal ecosystems due to changes in salinity conditions of estuarine creeks and rivers. The location of the freshwater-saltwater interface in surface-water bodies is an important factor in the ecological and socio-economic dynamics of coastal communities. The location of the interface determines the freshwater and saltwater aquatic communities, fisheries spawning habitat, and the freshwater availability for municipal and industrial water intakes. The severity of coastal drought may explain changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. To address the data and information gap for characterizing coastal drought, a coastal salinity index (CSI) was developed using salinity data. The CSI uses a computational approach similar to the Standardized Precipitation Index (SPI). The CSI is computed for unique time intervals (for example 1-, 6-, 12-, and 24-month) that can characterize the onset and recovery of short- and long-term drought. Evaluation of the CSI indicates that the index can be used for different estuary types (for example: brackish, oligohaline, or mesohaline), for regional comparison between estuaries, and as an index of wet conditions (high freshwater inflow) in addition to drought (saline) conditions. In 2017, three activities in 2017 will be presented that enhance the use and application of the CSI. One, a software package was developed for the consistent computation of the CSI that includes preprocessing of salinity data, filling missing data, computing the CSI, post-processing, and generating the supporting metadata. Two, the CSI has been computed at sites along the Gulf of Mexico (Texas to Florida) and the Southeastern Atlantic Ocean (Florida to

  16. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  17. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  18. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    Science.gov (United States)

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  19. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.

    Science.gov (United States)

    Stets, E G; Kelly, V J; Crawford, C G

    2014-08-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state. Published by Elsevier B.V.

  20. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    KAUST Repository

    Laruelle, G. G.

    2012-10-04

    Past characterizations of the land–ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric pro- files. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.

  1. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    Directory of Open Access Journals (Sweden)

    G. G. Laruelle

    2013-05-01

    Full Text Available Past characterizations of the land–ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems. Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation and 149 sub-units (COSCATs. Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.

  2. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    KAUST Repository

    Laruelle, G. G.

    2013-05-29

    Past characterizations of the land-ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air-water interface combining global and regional average emission rates derived from local studies. © 2013 Author(s).

  3. Coastal Geographic Structures in Coastal-Marine Environmental Management

    Science.gov (United States)

    Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.

    2018-01-01

    It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.

  4. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  5. Coastal Research Imaging Spectrometer

    Science.gov (United States)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  6. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  7. Antecedent Rivers

    Indian Academy of Sciences (India)

    Figure 3). These rivers seem to have maintained ... the river cuts a deep can- yon with practically vertical walls (valley slopes). ... furiously at work, cutting channel beds, eroding slopes, and denuding watersheds. This ever-youthfulness of the.

  8. Quantitative Estimation of Coastal Changes along Selected Locations of Karnataka, India: A GIS and Remote Sensing Approach

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayaraj, P.; Johnson, G.; Dora, G.U.; Philip, C.S.; SanilKumar, V.; Gowthaman, R.

    are studied at each station. Significant morphological changes in landforms like spit, channel Island, coastal plain, tidal flat, lateritic plain, alluvial plain and sand bar within and adjacent to estuarine river mouths of Kali, Sharavathi, Kollur...

  9. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  10. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  11. Human induced coastal changes and their impact on the coastal urban landscape. The case of Heraklion, Crete

    Science.gov (United States)

    Rempis, Nikolaos; Alexandrakis, George; Kampanis, Nikolaos

    2017-04-01

    Coastal zone is a vital part of human society due to sea activities. Α variety of activities and uses are present and are further developing in the coastal and marine are. Coastal ecosystems and landscape are under severe pressure due to population growth and continuous expansion of human activities and supplemented from the effects of climate change (e.g. coastal flooding, erosion). Heraklion is the largest urban center in Crete. Its suburban and coastal area receives intensive urban sprawl pressures, changing the urban landscape and resulting negative impacts on the human and natural environment. The saturation of coastal area of Heraklion creates the need for new development interventions (e.g. new marina, coastal protection, urban regeneration). This study examine the impacts of the new programmed coastal development intervention in the coastal landscape of Heraklion. A decision analytic approach was implemented, based on the need of stakeholders for the protection and further development of coastal area of Heraklion. In this direction, local authorities have proposed the realization of several development interventions which include a new marina, expansion of bathing beaches and coastal regeneration project in a large beach. The results indicate that the realization of any coastal development projects, also increases the negative effects that are related to land-sea interaction. The negative effects are a result of the interaction between different human activities but also between human activities and the environment. The development of the marina in the selected location, increases the pressure on the sea area as the navigation will increase, but also increases the pressure on land space, as traffic flows will change, creating new pressures in urban areas. The extension of bathing beaches implies larger number of bathers, thus creating greater needs for infrastructures in land area for their service. Coastal protection projects, as planned, will upgrade the

  12. Evaluating Sea water Quality in the Coastal Zone of North Lebanon using Telemac-2DTM

    International Nuclear Information System (INIS)

    Awad, Mohamad; Darwich, T.

    2009-01-01

    The coastal zones of the Mediterranean are undergoing rapid development withgrowing and conflicting demands on the natural resources. Coastal zones are often subjected to irreversible land degradation and environmental deterioration. Lebanon is located in the eastern part of the Mediterranean basin and the integrated management of the environment in the Lebanese coastal zone must be given concern. Most of the successful decisions addressing the environment protection or the elaboration of preventive measures in the coastal zone. These decisions depend on the availability of efficient simulation tools. The existence of these tools can help protecting the environment and establishing the ground for sustainable natural resources in the coastal zones. In this paper, a simulation tool called Telemac-2D TM software was used to simulate the business as usual, pessimistic, and optimistic status of the sea water quality in the coastal zone of Tripoli (North Lebanon). The coastal zone is affected by the effluents of solid and liquid wastes from Abou-Ali river. The different quality states of the coastal zone represent the normal, high, and low flow of the effluents (plume pollutants) from Abou-Ali river. In addition, it represents the variation of different factors such as wind and sea currents speed and direction. This simulation will help the decision makers to implement pre-cautious measures before a disaster takes place by assessing the quality of the sea water near the coastal zones. (author)

  13. Coastal change analysis program implemented in Louisiana

    Science.gov (United States)

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.

    2001-01-01

    Landsat Thematic Mapper images from 1990 to 1996 and collateral data sources were used to classify the land cover of the Mermentau River Basin (MRB) within the Chenier Plain of coastal Louisiana. Landcover classes followed the definition of the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; however, classification methods had to be developed as part of this study for attainment of these national classification standards. Classification method developments were especially important when classes were spectrally inseparable, when classes were part of spatial and spectral continuums, when the spatial resolution of the sensor included more than one landcover type, and when human activities caused abnormal transitions in the landscape. Most classification problems were overcome by using one or a combination of techniques, such as separating the MRB into subregions of commonality, applying masks to specific land mixtures, and highlighting class transitions between years that were highly unlikely. Overall, 1990, 1993, and 1996 classification accuracy percentages (associated kappa statistics) were 80% (0.79), 78% (0.76), and 86% (0.84), respectively. Most classification errors were associated with confusion between managed (cultivated land) and unmanaged grassland classes; scrub shrub, grasslands and forest classes; water, unconsolidated shore and bare land classes; and especially in 1993, between water and floating vegetation classes. Combining cultivated land and grassland classes and water and floating vegetation classes into single classes accuracies for 1990, 1993, and 1996 increased to 82%, 83%, and 90%, respectively. To improve the interpretation of landcover change, three indicators of landcover class stability were formulated. Location stability was defined as the percentage of a landcover class that remained as the same class in the same location at the beginning and the end of the monitoring period. Residence stability was

  14. Ho Chi Minh City adaptation to increasing risk of coastal and fluvial floods

    Science.gov (United States)

    Scussolini, Paolo; Lasage, Ralph

    2016-04-01

    Coastal megacities in southeast Asia are a hotspot of vulnerability to floods. In such contexts, the combination of fast socio-economic development and of climate change impacts on precipitation and sea level generates concerns about the flood damage to people and assets. This work focuses on Ho Chi Minh City, Vietnam, for which we estimate the present and future direct risk from river and coastal floods. A model cascade is used that comprises the Saigon river basin and the urban network, plus the land-use-dependent damaging process. Changes in discharge for five return periods are simulated, enabling the probabilistic calculation of the expected annual economic damage to assets, for differnt scenarios of global emissions, local socio-economic growth, and land subsidence, up to year 2100. The implementation of a range of adaptation strategies is simulated, including building dykes, elevating, creating reservoirs, managing water and sediment upstream, flood-proofing, halting groundwater abstraction. Results are presented on 1) the relative weight of each future driver in determining the flood risk of Ho Chi Minh, and 2) the efficiency and feasibility of each adaptation strategy.

  15. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  16. Some Fish from Cross River Estuary, Nigeria

    African Journals Online (AJOL)

    komla

    Patterns of Total Hydrocarbon, Copper and Iron in. Some Fish from Cross River Estuary, Nigeria ... petroleum products as well as heavy metals and copper in the coastal waters and through their diet (Davies et al., 1981; ..... cadmium in the edible crab Cancer pagurus. (1999) Scientific and clean upresponse to the.

  17. Salvage excavations at the Tokanui River mouth

    International Nuclear Information System (INIS)

    Jacomb, C.

    2011-01-01

    Over the past three years, invstigations have been undertaken at three sites in eastern Foveaux Strait that are particularly severely threatened by coastal erosion. The last of these three sites is at the mouth of the Tokanui River, near Fortrose. (author). 16 refs., 15 figs., 1 tab.

  18. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus.

    Science.gov (United States)

    Wamonje, Francis O; Michuki, George N; Braidwood, Luke A; Njuguna, Joyce N; Musembi Mutuku, J; Djikeng, Appolinaire; Harvey, Jagger J W; Carr, John P

    2017-10-02

    Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel

  19. Implementation of remote sensing data in research of coastal dynamics at the Baydaratskaya Bay, Kara Sea

    Science.gov (United States)

    Kuznetsov, D. E.; Belova, N.; Noskov, A.; Ogorodov, S.

    2011-12-01

    , detailed enough for preliminary analysis, free for significant part), Ikonos, QuickBird, and other modern high-resolution imagery. Georeferencing is taken from State topographic and bathymetric maps and high resolution imagery (corrected by field GPS survey where possible). All data are aligned and catalogued with ArcGIS. Corona and aerial images must be aligned thoroughly with use of high-resolution data as reference, placing control points on most stable topography (gully junctions, inter-lake channels, river heads), which are vectorized in advance. Shoreline is usually easily recognizable for both erosion and accumulation sections of the coast. Other distinct features include alongshore bars, thermokarst basins, deflation sites. Basing on above-mentioned analysis, coastal dynamics maps were created for time span long enough to ensure shore dynamics forecasts. For the coast of Baydaratskaya Bay, Kara Sea, the maps cover period from 1964 to 2009. Further steps include creation of shore classification and segmentation maps, which consider different features of coastal morphology, dynamics, and formation taken from both field investigations and remote sensing data analysis. This work was supported by Sustainable Arctic Coastal and Marine Technology (SACME) Project.

  20. 76 FR 23485 - Safety Zone; Red River

    Science.gov (United States)

    2011-04-27

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Red River AGENCY: Coast Guard, DHS. ACTION... Red River in the State of North Dakota, including those portions of the river bordered by Richland... across latitude 46 20'00'' N, extending the entire width of the river. This safety zone is needed to...

  1. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    Science.gov (United States)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  2. Contribution of recent hurricanes to wetland sedimentation in coastal Louisiana

    Science.gov (United States)

    Liu, Kam-biu; Bianchette, Thomas; Zou, Lei; Qiang, Yi; Lam, Nina

    2017-04-01

    Hurricanes are important agents of sediment deposition in the wetlands of coastal Louisiana. Since Hurricanes Katrina and Rita of 2005, coastal Louisiana has been impacted by Hurricanes Gustav (2008), Ike (2008), and Isaac (2012). By employing the principles and methods of paleotempestology we have identified the storm deposits attributed to the three most recent hurricanes in several coastal lakes and swamps in Louisiana. However, the spatial distribution and volume of these storm depositions cannot be easily inferred from stratigraphic data derived from a few locations. Here we report on results from a GIS study to analyze the spatial and temporal patterns of storm deposition based on data extracted from the voluminous CRMS (Coastal Reference Monitoring System) database, which contains vertical accretion rate measurements obtained from 390 wetland sites over various time intervals during the past decade. Wetland accretion rates averaged about 2.89 cm/yr from stations sampled before Hurricane Isaac, 4.04 cm/yr during the 7-month period encompassing Isaac, and 2.38 cm/yr from sites established and sampled after Isaac. Generally, the wetland accretion rates attributable to the Isaac effects were 40% and 70% greater than before and after the event, respectively. Accretion rates associated with Isaac were highest at wetland sites along the Mississippi River and its tributaries instead of along the path of the hurricane, suggesting that freshwater flooding from fluvial channels, enhanced by the storm surge from the sea, is the main mechanism responsible for increased accretion in the wetlands. Our GIS work has recently been expanded to include other recent hurricanes. Preliminary results indicate that, for non-storm periods, the average wetland accretion rates between Katrina/Rita and Gustav/Ike was 2.58 cm/yr; that between Gustav/Ike and Isaac was 1.95 cm/yr; and that after Isaac was 2.37 cm/yr. In contrast, the accretion rates attributable to the effects of Gustav

  3. Ecologically Enhancing Coastal Infrastructure

    Science.gov (United States)

    Mac Arthur, Mairi; Naylor, Larissa; Hansom, Jim; Burrows, Mike; Boyd, Ian

    2017-04-01

    Hard engineering structures continue to proliferate in the coastal zone globally in response to increasing pressures associated with rising sea levels, coastal flooding and erosion. These structures are typically plain-cast by design and function as poor ecological surrogates for natural rocky shores which are highly topographically complex and host a range of available microhabitats for intertidal species. Ecological enhancement mitigates some of these negative impacts by integrating components of nature into the construction and design of these structures to improve their sustainability, resilience and multifunctionality. In the largest UK ecological enhancement trial to date, 184 tiles (15x15cm) of up to nine potential designs were deployed on vertical concrete coastal infrastructure in 2016 at three sites across the UK (Saltcoats, Blackness and Isle of Wight). The surface texture and complexity of the tiles were varied to test the effect of settlement surface texture at the mm-cm scale of enhancement on the success of colonisation and biodiversity in the mid-upper intertidal zone in order to answer the following experimental hypotheses: • Tiles with mm-scale geomorphic complexity will have greater barnacle abundances • Tiles with cm-scale geomorphic complexity will have greater species richness than mm-scale tiles. A range of methods were used in creating the tile designs including terrestrial laser scanning of creviced rock surfaces to mimic natural rocky shore complexity as well as artificially generated complexity using computer software. The designs replicated the topographic features of high ecological importance found on natural rocky shores and promoted species recruitment and community composition on artificial surfaces; thus enabling us to evaluate biological responses to geomorphic complexity in a controlled field trial. At two of the sites, the roughest tile designs (cm scale) did not have the highest levels of barnacle recruits which were

  4. Degraded peatlands as a source of riverine organic carbon and enhanced river outgassing in Sumatra, Indonesia

    Science.gov (United States)

    Wit, Francisca; Rixen, Tim

    2014-05-01

    Sumatra, Indonesia, is well known for its widespread tropical peat lands. However, silvi- and agricultural purposes are currently inducing large-scale degradation of peat lands, transforming the landscape into mainly palm-oil plantations. The degradation induces loss of carbon via direct CO2 emissions, but also via riverine outflow of dissolved and particulate organic carbon (DOC and POC, respectively) due to leaching. This organic carbon is then decomposed along the way towards the coast and is hypothesized to enhance coastal and river outgassing of CO2. In the framework of SPICE III, Science for the Protection of Indonesian Coastal Ecosystems, we are quantifying these carbon budgets and fluxes in the rivers and coastal areas of northeast Sumatra. Using underway instruments, we have gathered continuous measurements of various parameters, including pCO2, pH, temperature, salinity and oxygen. In addition, water samples were obtained for DOC, POC, δ13CDIC, alkalinity and nutrient analyses. The results of the first analyses show that pCO2 values in the coastal areas range between 400-600 μatm. However, in the vicinity of the rivers pCO2 concentrations increase tremendously, ranging from 600 near the estuaries to a staggering 9000 μatm further upstream. These values are much higher than the marine pCO2 value of 390 μatm in the South China Sea. When adding carbon isotope results into the story, while knowing that upstream river life is greatly reduced due to oxygen depletion as a result of high DOC decomposition, it appears to be clear from the values, which range between -20 to -24‰ δ13CDIC, that the main source of the organic carbon is indeed originating from the degrading peat lands. In conclusion, our hypothesis can be deemed correct: degrading peat lands enhance organic carbon outflow and therefore elevated decomposition in the rivers, which results in increased river outgassing of CO2. Further analyses will be conducted to precisely quantify the budgets and

  5. C2R2: Training Students To Build Coastal Resilience

    Science.gov (United States)

    Ferraro, C.; Kopp, R. E.; Jordan, R.; Gong, J.; Andrews, C.; Auermuller, L. M.; Herb, J.; McDonnell, J. D.; Bond, S.

    2017-12-01

    In the United States, about 23 million people live within 6 meters of sea level. In many parts of the country, sea-level rise between 1960 and 2010 has already led to a 2-5-fold increase in the rate of `nuisance' flooding. On top of rising seas, intensifying hurricanes and more frequent extremes of heat, humidity and precipitation pose additional risks to coastal societies, economies and ecosystems. Addressing risks posed by changing climate conditions in coastal areas demands innovative strategies that intersect multiple disciplines including engineering, ecology, communication, climate science, and community planning. To be usable, it also requires engaging coastal stakeholders in the development of research questions, the assessment of implications of research for planning and policy, and the communication of research results. Yet traditional, disciplinary programs are poorly configured to train the workforce needed to assess coastal climate risk and to develop and deploy integrated strategies for increasing coastal climate resilience. Coastal Climate Risk & Resilience (C2R2) is an NSF Research Traineeship (NRT) working to prepare the workforce that will build coastal resilience in the face of climate risks. Through its trainee and certificate programs, C2R2 works with graduate students at Rutgers University from multiple disciplines to better integrate all the elements of coastal systems and to communicate effectively with coastal stakeholders. C2R2 students will acquire the knowledge and practical skills needed to become leading researchers and practitioners tackling the critical challenges of coastal resilience.

  6. Catchment-coastal zone interaction based upon scenario and model analysis: Elbe and the German Bight case study

    NARCIS (Netherlands)

    Hofmann, J.; Behrendt, H.; Gilbert, A.J.; Janssen, R.; Kannen, A.; Kappenberg, J.W.; Lenhart, H.; Lise, W.; Nunneri, C.; Windhorst, W.

    2005-01-01

    This paper presents a holistic strategy on the interaction of activities in the Elbe river basin and their effects on eutrophication in the coastal waters of the German Bight. This catchment-coastal zone interaction is the main target of the EUROCAT (EUROpean CATchments, catchment changes and their

  7. The links between global carbon, water and nutrient cycles in an urbanizing world — the case of coastal eutrophication

    NARCIS (Netherlands)

    Kroeze, C.; Hofstra, N.; Ivens, W.; Löhr, A.; Strokal, M.; Wijnen, van J.

    2013-01-01

    The natural cycles of carbon (C), nitrogen (N), phosphorus (P) and water have been disturbed substantially by human activities. Urbanizing coastal drainage basins and large river deltas are located at the interface of freshwater and coastal components of the larger earth system and the process of

  8. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    0 ot c 0’ 0 o occ 0 o 0 000 c .. > 04 z *- Ř 0 ’a > co Q 𔃺 acca af 0o 0o 0 D cn or o o - CL~t 𔃺 N -4 o 0 ~ ~ 000 o Lr1 Cl) C’ 1 M Go I a 0 cn T In...8217 - ..... 󈨣’.3!~(9 494 3’I S �’ 4,. 3 44 7140 VALUE ENGINEERINg PAYS ’TT -*,N0 SPILWA TT S TVECE PT~~O 3 . I ’,, . . TT-403. T4~. *’ f6 .,*,~’,j-. ~ . SAET

  9. Elevation uncertainty in coastal inundation hazard assessments

    Science.gov (United States)

    Gesch, Dean B.; Cheval, Sorin

    2012-01-01

    Coastal inundation has been identified as an important natural hazard that affects densely populated and built-up areas (Subcommittee on Disaster Reduction, 2008). Inundation, or coastal flooding, can result from various physical processes, including storm surges, tsunamis, intense precipitation events, and extreme high tides. Such events cause quickly rising water levels. When rapidly rising water levels overwhelm flood defenses, especially in heavily populated areas, the potential of the hazard is realized and a natural disaster results. Two noteworthy recent examples of such natural disasters resulting from coastal inundation are the Hurricane Katrina storm surge in 2005 along the Gulf of Mexico coast in the United States, and the tsunami in northern Japan in 2011. Longer term, slowly varying processes such as land subsidence (Committee on Floodplain Mapping Technologies, 2007) and sea-level rise also can result in coastal inundation, although such conditions do not have the rapid water level rise associated with other flooding events. Geospatial data are a critical resource for conducting assessments of the potential impacts of coastal inundation, and geospatial representations of the topography in the form of elevation measurements are a primary source of information for identifying the natural and human components of the landscape that are at risk. Recently, the quantity and quality of elevation data available for the coastal zone have increased markedly, and this availability facilitates more detailed and comprehensive hazard impact assessments.

  10. STORMTOOLS: Coastal Environmental Risk Index (CERI

    Directory of Open Access Journals (Sweden)

    Malcolm L. Spaulding

    2016-08-01

    Full Text Available One of the challenges facing coastal zone managers and municipal planners is the development of an objective, quantitative assessment of the risk to structures, infrastructure, and public safety that coastal communities face from storm surge in the presence of changing climatic conditions, particularly sea level rise and coastal erosion. Here we use state of the art modeling tool (ADCIRC and STWAVE to predict storm surge and wave, combined with shoreline change maps (erosion, and damage functions to construct a Coastal Environmental Risk Index (CERI. Access to the state emergency data base (E-911 provides information on structure characteristics and the ability to perform analyses for individual structures. CERI has been designed as an on line Geographic Information System (GIS based tool, and hence is fully compatible with current flooding maps, including those from FEMA. The basic framework and associated GIS methods can be readily applied to any coastal area. The approach can be used by local and state planners to objectively evaluate different policy options for effectiveness and cost/benefit. In this study, CERI is applied to RI two communities; Charlestown representing a typical coastal barrier system directly exposed to ocean waves and high erosion rates, with predominantly low density single family residences and Warwick located within Narragansett Bay, with more limited wave exposure, lower erosion rates, and higher residential housing density. Results of these applications are highlighted herein.

  11. Modeling Coastal Vulnerability through Space and Time.

    Directory of Open Access Journals (Sweden)

    Thomas Hopper

    Full Text Available Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge under past (1609, current (2015, and future (2080 scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands, have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across

  12. Modeling Coastal Vulnerability through Space and Time.

    Science.gov (United States)

    Hopper, Thomas; Meixler, Marcia S

    2016-01-01

    Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time

  13. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  14. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  15. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea.

    Science.gov (United States)

    So, M K; Taniyasu, S; Yamashita, N; Giesy, J P; Zheng, J; Fang, Z; Im, S H; Lam, Paul K S

    2004-08-01

    Perfluorinated compounds (PFCs), such as perfluorooctanesulfonate (PFOS) and related compounds, have recently been identified in the environment. PFOS, the terminal degradation product of many of the PFCs, has been found globally in many wildlife species, as well as open ocean waters, even in remote regions far from sources. In this study, a solid-phase extraction procedure coupled with high-performance liquid chromatography interfaced to high-resolution mass spectrometry was used to isolate, identify, and quantify small concentrations of PFCs in seawater. These techniques were applied to investigate the local sources of PFCs in several industrialized areas of Asia and provide information on how the PFCs are circulated by coastal currents. Ranges of concentrations of PFOS in coastal seawaters of Hong Kong, the Pearl River Delta, including the South China Sea, and Korea were 0.09-3.1, 0.02-12, and 0.04-730 pg/mL, respectively, while those of perfluorooctanoic acid (PFOA) were 0.73-5.5, 0.24-16, and 0.24-320 pg/mL, respectively. Potential sources of PFCs include major industrialized areas along the Pearl River Delta of southern China and major cities of Korea, which are several of the fastest growing industrial and economic regions in the world. Detectable concentrations of PFOS and PFOA in waters of southern China were similar to those in the coastal marine environment of Japan and certain regions in Korea. Concentrations of PFCs in several locations in Korean waters were 10-100-fold greater than those in the other locations on which we report here. The spatial and seasonal variations in PFC concentrations in surface seawaters in the Pearl River Delta and South China Sea indicate the strong influence of the Pearl River discharge on the magnitude and extent of PFC contamination in southern China. All of the concentrations of PFOS were less than those that would be expected to cause adverse effects to aquatic organisms or their predators except for one location in

  16. Analysis of space-borne data for coastal zone information extraction of Goa Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Space-borne data covering the coastal zone of Goa State were processed using digital and visual image-processing techniques to extract information about the coastal zone. Digital image processing of thematic data included principal component...

  17. Coastal hypoxia responses to remediation

    Science.gov (United States)

    Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D.

    2009-07-01

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Because of the negative effects hypoxia has on many organisms, extensive efforts have been made to reduce the size and duration of hypoxia in many coastal waters. Although it has been broadly assumed that reductions in nutrient loading rates would reverse eutrophication and consequently, hypoxia, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review existing data, analyses, and models that relate variations in the extent and intensity of hypoxia to changes in loading rates for inorganic nutrients and labile organic matter. We also assess existing knowledge of physical and ecological factors regulating oxygen in coastal marine waters and examine a broad range of examples where hypoxia responses to reductions in nutrient (or organic matter) inputs have been documented. Of the 22 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to loading, including apparent "regime shifts." A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tend to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors including: (1) the dominant temporal scales

  18. Elwha River dam removal-Rebirth of a river

    Science.gov (United States)

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  19. 77 FR 5793 - Beaches Environmental Assessment and Coastal Health Act; Availability of BEACH Act Grants

    Science.gov (United States)

    2012-02-06

    ...: Notice of availability. SUMMARY: Section 406(b) of the Clean Water Act (CWA) as amended by the Beaches... Coastal Health (BEACH) Act of 2000 amends the Clean Water Act (CWA) to better protect public health at our... Clean Water Act to include the Great Lakes and marine coastal waters (including coastal estuaries) that...

  20. Linking integrated water resources management and integrated coastal zone management.

    Science.gov (United States)

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents.

  1. Developing Rivers

    Directory of Open Access Journals (Sweden)

    Abhik Chakraborty

    2013-10-01

    Full Text Available This article explores the reasons behind the continuation of contentious dam projects in Japanese river basins. Though the River Law of the country was reformed in 1997, and subsequent sociopolitical developments raised hopes that river governance would progress toward a more environment-oriented and bottom-up model, basin governance in Japan remains primarily based on a utilitarian vision that sees rivers as waterways. This article reviews the Achilles heel of the 1997 River Law by examining some most contentious river valley projects, and concludes that a myth of vulnerability to flooding, short-sightedness of river engineers, and bureaucratic inertia combine to place basin governance in a time warp: as projects planned during postwar reconstruction and economic growth continue to be top priorities in policymaking circles while concerns over environment remain largely unaddressed.

  2. Criteria for Incorporating the Guidelines of the Integrated Coastal Zone Management (ICZM) in Territorial Land Use Planning: Study Case for the Colombian Pacific Coastal Area

    OpenAIRE

    Ángela López Rodrí­guez; Paula Cristina Sierra-Correa; Pilar Lozano-Rivera

    2013-01-01

    In Colombia, Integrated Coastal Zone Management (ICZM) has been implemented through the “National Environmental Policy of the Oceanic Spaces and Coastal and Insular Areas of Colombia-PNAOCI” (Acronyms in Spanish), whose guidelines have considered the need to include marine and coastal ecosystems in land use planning. ICZM, as a special planning approach, can contribute to territorial land use planning of the municipalities located in coastal areas, because it can provide guidelines for the co...

  3. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh

    Science.gov (United States)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-08-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.

  4. Silicon biogeochemical processes in a large river (Cauvery, India)

    Science.gov (United States)

    Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien

    2016-04-01

    Silicon (Si), one of the key nutrients for diatom growth in ocean, is principally released during silicate weathering on continents and then exported by rivers. Phytoplankton composition is determined by the availability of Si relative to other nutrients, mainly N and P, which fluxes in estuarine and coastal systems are affected by eutrophication due to land use and industrialization. In order to understand the biogeochemical cycle of Si and its supply to the coastal ocean, we studied a tropical monsoonal river from Southern India (Cauvery) and compare it with other large and small rivers. Cauvery is the 7th largest river in India with a basin covering 85626 sq.km. The major part of the basin (˜66%) is covered by agriculture and inhabited by more than 30 million inhabitants. There are 96 dams built across the basin. As a consequence, 80% of the historical discharge is diverted, mainly for irrigation (Meunier et al. 2015). This makes the Cauvery River a good example of current anthropogenic pressure on silicon biogeochemical cycle. We measured amorphous silica contents (ASi) and isotopic composition of dissolved silicon (δ30Si-DSi) in the Cauvery estuary, including freshwater end-member and groundwater as well as along a 670 km transect along the river course. Other Indian rivers and estuaries have also been measured, including some less impacted by anthropogenic pressure. The average Cauvery δ30Si signature just upstream the estuary is 2.21±0.15 ‰ (n=3) which is almost 1‰ heavier than the groundwater isotopic composition (1.38±0.03). The δ30Si-DSi of Cauvery water is also almost 1‰ heavier than the world river supply to the ocean estimated so far and 0.4‰ heavier than other large Indian rivers like Ganges (Frings et al 2015) and Krishna. On the other hand, the smaller watersheds (Ponnaiyar, Vellar, and Penna) adjacent to Cauvery also display heavy δ30Si-DSi. Unlike the effect of silicate weathering, the heavy isotopic compositions in the river

  5. Rapid seawater circulation through animal burrows in mangrove forests - A significant source of saline groundwater to the tropical coastal ocean

    Science.gov (United States)

    Clark, J. F.; Stieglitz, T. C.; Hancock, G. J.

    2010-12-01

    A common approach for quantifying rates of submarine groundwater discharge (SGD) to the coastal ocean is to use geochemical tracers that are part of the U- and Th-decay chains such as Rn-222 and short lived radium isotopes. These radionuclides are naturally enriched in groundwater relative to seawater and have well understood chemistries within the marine environment. They occur in both fresh (continental) and saline (marine) groundwaters and thus the water source is often ambiguous. Stieglitz (2005, Marine Pollution Bulletin 51, 51-59) has shown that some coastal areas within the Great Barrier Reef (GBR) lagoon (Australia) are enriched in the SGD tracer, Rn-222; he attributed this to four possible processes including the tidal flushing of mangrove forest floors. Here, we present a detailed investigation into the tidal circulation of seawater through animal burrows using Rn-222 and isotopes of radium in the Coral Creek mangrove forest, Hinchinbrook Island, Queensland, Australia. The study was conducted at the end of the dry season in a creek with no freshwater inputs. Significant export of radionuclides and salt from the forest into the creek indicates continuous tidally driven circulation through the burrows. Results demonstrate that the forest sediment is efficiently flushed, with a water flux of about 30 L/m2/ day of forest floor, which is equivalent to flushing about 10% of the total burrow volume per tidal cycle. Annual average circulation flux through mangrove forest floors are of the same order as annual river discharge in the central GBR. However, unlike the river discharge, the tidal circulation should be relatively stable throughout the year. This work documents the importance of animal burrows in maintaining productive sediments in these systems, and illustrates the physical process that supports large exports of organic and inorganic matter from mangrove forests to the coastal zone. It also illustrates the importance of considering saline groundwater

  6. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...... in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse effects of specific, localized basin water management...

  7. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  8. Savannah River Plant environment

    International Nuclear Information System (INIS)

    Dukes, E.K.

    1984-03-01

    On June 20, 1972, the Atomic Energy Commission designated 192,323 acres of land near Aiken, SC, as the nation's first National Environmental Research Park. The designated land surrounds the Department of Energy's Savannah River Plant production complex. The site, which borders the Savannah River for 17 miles, includes swampland, pine forests, abandoned town sites, a large man-made lake for cooling water impoundment, fields, streams, and watersheds. This report is a description of the geological, hydrological, meteorological, and biological characteristics of the Savannah River Plant site and is intended as a source of information for those interested in environmental research at the site. 165 references, 68 figures, 52 tables

  9. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  10. Spatial and Temporal Distribution of Sea Surface Salinity in Coastal Waters of China Based on Aquarius

    International Nuclear Information System (INIS)

    Wang, Ying; Jiang, Hong; Zhang, Xiuying; Jin, Jiaxin

    2014-01-01

    Sea surface salinity (SSS) is a fundamental parameter for the study of global ocean dynamics, water cycle, and climate variability. Aquarius launched by NASA and the Space Agency of Argentina is a breakthrough which could achieve the remote sensing data of SSS. The present paper takes the coastal of China as study area, which is a representative area of ocean boundary and influenced by continental rivers (Yangtze River and Pearl River). After analyze the temporal and spatial variation of SSS in the coastal of China, the estuary area has obvious low salinity because the injected of freshwater from continent. Take the East China Sea (ECS) and South China Sea (SCS) as representative region to discuss the effect of freshwater to SSS. The salinity is almost equal in winter when the diluted water is inadequate in both rivers. However, an obvious decrease appeared in summer especial July in Yangtze River for abundance discharge inflow the ECS. This is a reasonable expression of Yangtze River discharge is remarkable influence the SSS in coastal area then Pearl River. Survey the distribution range of Yangtze River diluted water (SSS<31psu). The range is small in winter and expands to peak value in summer

  11. River Restoration by Dam Removal: Assessing Riverine Re-Connectivity Across New England

    Science.gov (United States)

    Magilligan, F. J.; Nislow, K. H.; Graber, B.; Sneddon, C.; Fox, C.; Martin, E.

    2014-12-01

    The impacts of dams in New England are especially acute as it possesses one of the highest densities of dams in the US, with the NID documenting more than 4,000 dams, and state agency records indicating that >14,000 dams are peppered throughout the landscape. This large number of dams contributes to pervasive watershed fragmentation, threatening the ecological integrity of rivers and streams, and in the case of old, poorly maintained structures, posing a risk to lives and property. These concerns have generated active dam removal efforts throughout New England. To best capture the geomorphic, hydrologic, and potential ecological effects of dam removal at a regional level, we have compiled a dataset of 127 removed dams in New England, which includes information about structural characteristics, georectified locations, and key watershed attributes (including basin size, distance to next upstream obstacle, and number of free-flowing river kms opened up). Our specific research questions address (1) what is the spatial distribution of removed dams and how does this pattern relate to stated management goals of restoring critical habitat for native resident freshwater and diadromous fish, (2) what are the structural or management commonalities in dam types that have been removed, and (3) what has been the incremental addition of free-flowing river length? Rather than reflecting an overall management prioritization strategy, results indicate that dam removals are characterized more by opportunistic removals. For example, despite a regional emphasis on diadromous fish protection and restoration, most removals are inland rather than coastal settings. Most of the removed dams were small (~ 45% 2,300 river kms over the past several decades, with implication for both resident and diadromous fish, and with many removals located in mid-sized rivers that are a key link between upstream and downstream/coastal aquatic ecosystems.

  12. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  13. A behavior-oriented formula to predict coastal bathymetry evolution caused by coastal engineering

    Science.gov (United States)

    Chen, Dake; Wang, Yigang; Huang, Huiming; Chen, Cheng; Yuan, Chunguang

    2017-03-01

    The two common expressions of near-bed sediment flux (also called erosion and deposition flux) in terms of sediment carrying capacity and bed shear stress are unified in this study. A behavior-oriented formula to calculate coastal bathymetry evolution caused by coastal engineering on a muddy coast is also developed based on the unified expression. Compared with the other common behavior-oriented formulas on a muddy coast, the vertical suspended sediment distribution and near-bed sediment exchange mechanism are considered, and the formula has the advantage of calculating both bed siltation and erosion distribution. The formula is applied to simulate the local morphology change resulting from the siltation-promoting works at the mouth of the Yangtze River estuary of China. A comparison between the measurement and the calculated results of other common formulas shows that the morphology change caused by the project is well reproduced, and the behavior-oriented formula can be used to predict the coastal bathymetry evolution caused by coastal engineering on muddy coast.

  14. Ecological sensitivity of the Persian Gulf coastal region (Case study ...

    African Journals Online (AJOL)

    geo-referencing photo mosaic Land Sat Satellite images (2003) and IRS' (2004) were taken and basic maps of two influential areas were evaluated within the above mentioned limits which included the coastal village boundaries. The coastal line of the area being evaluated (set back line) was 673.62 kms comprising an ...

  15. An assessment of coastal vulnerability for the South African coast ...

    African Journals Online (AJOL)

    Coastal vulnerability is the degree to which a coastal system is susceptible to, or unable to cope with, adverse effects of climate change. One of the most widely used methods in assessing risk and vulnerability of coastlines on a regional scale includes the calculation of vulnerability indices and presenting these results on a ...

  16. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    Science.gov (United States)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  17. Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds, China

    International Nuclear Information System (INIS)

    Zhu, Zhaoyun; Wang, Tieyu; Wang, Pei; Lu, Yonglong; Giesy, John P.

    2014-01-01

    Highlights: • Relatively high concentrations of PFAS, especially PFOA, were found in the Xiaoqing River sediment. • PFOA and PFBS were the dominant PFAS in the sediments from coastal and riverine area, respectively. • Concentrations of PFNA, PFDA and PFHxS in sediment were significantly correlated with concentrations of organic carbon. • Risks posed by PFOA and PFOS to benthic organisms from concentrations of PFAS in sediments were small. - Abstract: This study investigated the concentrations and distribution of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in sediments of 12 rivers from South Bohai coastal watersheds. The highest concentrations of ΣPFAS (31.920 ng g −1 dw) and PFOA (29.021 ng g −1 dw) were found in sediments from the Xiaoqing River, which was indicative of local point sources in this region. As for other rivers, concentrations of ΣPFAS ranged from 0.218 to 1.583 ng g −1 dw were found in the coastal sediments and from 0.167 to 1.953 ng g −1 dw in the riverine sediments. Predominant PFAS from coastal and riverine areas were PFOA and PFBS, with percentages of 30% and 35%, respectively. Partitioning analysis showed the concentrations of PFNA, PFDA and PFHxS were significantly correlated with organic carbon. The results of a preliminary environmental hazard assessment showed that PFOS posed the highest hazard in the Mi River, while PFOA posed a relative higher hazard in the Xiaoqing River

  18. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    Science.gov (United States)

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  19. Quantifying the ability of green infrastructure to reduce coastal zone pollution

    Science.gov (United States)

    McGillis, W. R.; Hsueh, D.; Gibson, R.; Culligan, P. J.; Shetty, N. H.; Mailloux, B. J.

    2016-02-01

    With significant increase in the application of green infrastructure (GI) technology to mitigate urban coastal zone pollution caused by wet-weather-flow, the ability to quantify the stormwater retention of different green infrastructure designs is needed. In New York City (NYC), an aggressive 20-year plan proposes to use green roofs and other street level bioretentions, such as bioswales and green streets, to reduce the volume of polluted stormwater and combined sewerage that overflows into the City's water ways. As a part of an NSF Coastal SEES project, we are actively quantifying the role of GI in reducing stormwater runoff and pollutant loading in a network of NYC green roofs and street level bioretentions. Green roofs and green streets manage only their incident precipitation, whereas bioswales also manage stormwater upstream of their footprint, depending on flow conditions and the inlet design. Conversely, green roofs are predominately planted with sedum species, whereas street level bioretentions have a much broader plant pallet. As a result, the performance of different GI systems requires different approaches. In this talk we will demonstrate the severity of coastal zone pollution in New York City (NYC), describe the current green infrastructure (GI) designs that the City is using to abate this problem, and present the experimental protocols and methods we have developed to assess and model urban GI performance. In addition to quantifying the stormwater retention performance of GI, these methods include quantification of the pollution added or removed from the GI systems. The talk will end with a discussion of our findings to date in the context of pollutant loading in the Bronx and Hudson Rivers, both of which impact the health of the local coastal zone.

  20. A Geostatistical Toolset for Reconstructing Louisiana's Coastal Stratigraphy using Subsurface Boring and Cone Penetrometer Test Data

    Science.gov (United States)

    Li, A.; Tsai, F. T. C.; Jafari, N.; Chen, Q. J.; Bentley, S. J.

    2017-12-01

    A vast area of river deltaic wetlands stretches across southern Louisiana coast. The wetlands are suffering from a high rate of land loss, which increasingly threats coastal community and energy infrastructure. A regional stratigraphic framework of the delta plain is now imperative to answer scientific questions (such as how the delta plain grows and decays?) and to provide information to coastal protection and restoration projects (such as marsh creation and construction of levees and floodwalls). Through years, subsurface investigations in Louisiana have been conducted by state and federal agencies (Louisiana Department of Natural Resources, United States Geological Survey, United States Army Corps of Engineers, etc.), research institutes (Louisiana Geological Survey, LSU Coastal Studies Institute, etc.), engineering firms, and oil-gas companies. This has resulted in the availability of various types of data, including geological, geotechnical, and geophysical data. However, it is challenging to integrate different types of data and construct three-dimensional stratigraphy models in regional scale. In this study, a set of geostatistical methods were used to tackle this problem. An ordinary kriging method was used to regionalize continuous data, such as grain size, water content, liquid limit, plasticity index, and cone penetrometer tests (CPTs). Indicator kriging and multiple indicator kriging methods were used to regionalize categorized data, such as soil classification. A compositional kriging method was used to regionalize compositional data, such as soil composition (fractions of sand, silt and clay). Stratigraphy models were constructed for three cases in the coastal zone: (1) Inner Harbor Navigation Canal (IHNC) area: soil classification and soil behavior type (SBT) stratigraphies were constructed using ordinary kriging; (2) Middle Barataria Bay area: a soil classification stratigraphy was constructed using multiple indicator kriging; (3) Lower Barataria

  1. Numerical model of the circulation and dispersion in the east Adriatic coastal waters

    Science.gov (United States)

    Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan

    2017-04-01

    The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.

  2. The Influence of Land Subsidence, Quarrying, Drainage, Irrigation and Forest Fire on Groundwater Resources and Biodiversity Along the Southern Po Plain Coastal Zone (Italy)

    Science.gov (United States)

    Antonellini, M. A.; Mollema, P. N.

    2014-12-01

    The coastal zone of the southern Po plain is characterized by low lying land, which is reclaimed to permit settlements and agriculture. The history, tourism resorts and peculiar coastal environments make this territory attractive and valuable. Natural and fluid-extraction-induced land subsidence along with coastal erosion are major problems. Touristic development has strongly modified the landscape; coastal dunes have been in part removed to make room for hotels and quarrying has caused the formation of gravel pit lakes close to the shoreline. Protected natural areas include a belt of coastal dunes, wetlands, and the internal historical forests of San Vitale and Classe. The dunes have largely lost their original vegetation ecosystem, because years ago they have been colonized with pine trees to protect the adjacent farmland from sea spray. These pine forests are currently a fire hazard. Land reclamation drainage keeps the water table artificially low. Results of these anthropogenic disturbances on the hydrology include a decrease in infiltration rates, loss of freshwater surface bodies, encroachment of saltwater inland from the river estuaries, salinization of the aquifer, wetlands and soil with a loss in plant and aquatic species biodiversity. Feedback mechanisms are complex: as land subsidence continues, drainage increases at the same pace promoting sea-water intrusion. The salinity of the groundwater does not allow for plant species richness nor for the survival of large pine trees. Farmland irrigation and fires in the pine forests, on the other hand, allow for increased infiltration and freshening of the aquifer and at the same time promote plant species diversity. Our work shows that the characteristics of the southern Po coastal zone require integrated management of economic activities, natural areas, and resources. This approach is different from the ad hoc measures taken so far, because it requires long term planning and setting a priority of objectives.

  3. Sea-Level Rise Implications for Coastal Protection from Southern Mediterranean to the U.S.A. Atlantic Coast

    Science.gov (United States)

    Ismail, Nabil; Williams, Jeffress

    2013-04-01

    demonstrated in autumn 2010 when the storm Becky reached the Santander Bay, Spain. As reported by THESEUS, the FP-7 EU project (2009-2013), the peak of nearshore significant wave height was about 8 m, the storm surge reached 0.6 m, with tidal level of 90% of the tidal range. The latest storm in December 2010, which hit the Nile Delta and which was the severest in the last decades showed that generated surges, up to 1.0 m as well as a maximum of 7.5 m wave height in the offshore of Alexandria presented a major natural hazard in coastal zones in terms of wave run up and overtopping. Along the US Atlantic Coast, where Hurricane Sandy this autumn and Hurricane Irene in 2011 left chaos in their wakes, a perfect storm of rising sea levels and dense coastal development at high risk . Super storm Sandy sent a storm surge of 4-5 m onto New Jersey's and New York's fragile barrier island and urban shorelines, causing an estimated 70 billion (USD) in damages and widespread misery for coastal inhabitants. Sea Level Rise and Impact on Upgrade of Coastal Structures: Williams (2013) highlights in his recent paper that adaptation planning on national scales in the USA for projected sea-level rise of 0.5-2 m by A.D. 2100 is advisable. Further he points out that sea-level rise, as a major driving force of change for coastal regions, is becoming increasingly important as a hazard to humans and urban areas in the coastal zone worldwide as global climate change takes effect. During the 20th century, sea level began rising at a global average rate of 1.7 mm/yr (). The current average rise rate is 3.1 mm/yr, a 50% increase over the past two decades. Many regions are experiencing even greater rise rates due to local geophysical (e.g., Louisiana, Chesapeake Bay) and oceanographic (mid-Atlantic coast) forces. Further the Mississippi River Delta plain region of Louisiana has much higher than average rates of LRSL rise due to geologic factors such as subsidence and man-made alterations to the delta plain

  4. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    OpenAIRE

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for...

  5. Sea ice, hydrological, and biological processes in the Churchill River estuary region, Hudson Bay

    Science.gov (United States)

    Kuzyk, Z. A.; Macdonald, R. W.; Granskog, M. A.; Scharien, R. K.; Galley, R. J.; Michel, C.; Barber, D.; Stern, G.

    2008-04-01

    A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (˜ 6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in

  6. Integrated estuary management for diffused sediment pollution in Dapeng Bay and neighboring rivers (Taiwan).

    Science.gov (United States)

    Chung, Chung-Yi; Chen, Jen-Jeng; Lee, Chang-Gai; Chiu, Chun-Yen; Lai, Wen-Liang; Liao, Shao-Wei

    2011-02-01

    This work investigated sediment samples collected from Dapeng Bay and three neighboring rivers (Kaoping River, Tungkang River, and Lingbeng River) in southwestern Taiwan, Republic of China. Multivariate statistical analysis techniques, i.e., factor analysis, cluster analysis, and canonical discriminant analysis were used for the evaluation of spatial variations to determine the types of pollution and to identify pollutant sources from neighboring rivers. Factor analysis results showed that the most important latent factors in Dapeng Bay are soil texture, heavy metals, organic matter, and nutrients factors. Contour maps incorporating the factor scores showed heavy metals accumulate along the lakesides, especially on the southeastern banks of the lakes. A cluster analysis was performed using factor scores computed from these latent factors. We then classified these areas into five distinct classes using sampling stations, and we illustrate that in the three river classes, the sediment properties are influenced by industrial and domestic wastewater and agricultural activities (including livestock rearing and farm activities). However, in Dapeng Bay, the rivers were influenced more by complicated biogeochemical processes; these could be identified as a type of pollution. Canonical discriminant analysis illustrated that two constructed discriminant functions made a marked contribution to most of the discriminant variables, and the significant parameters of porosity and Cd, Cr, Al, and Pb content were combined as the "heavy metal factor". The recognition capacities of the two discriminant functions were 82.6% and 17.4%, respectively. It is also likely that the annual mean of the water exchange rate is insufficient (taking about 7 days to eliminate pollutants) and therefore has significantly influenced the carbon and nutrient biogeochemical processes and budgets in the semi-enclosed ecosystem. Thus, the sediment properties are not similar between the lagoon and the

  7. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    Science.gov (United States)

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  8. Visualizing Coastal Erosion, Overwash and Coastal Flooding in New England

    Science.gov (United States)

    Young Morse, R.; Shyka, T.

    2017-12-01

    Powerful East Coast storms and their associated storm tides and large, battering waves can lead to severe coastal change through erosion and re-deposition of beach sediment. The United States Geological Survey (USGS) has modeled such potential for geological response using a storm-impact scale that compares predicted elevations of hurricane-induced water levels and associated wave action to known elevations of coastal topography. The resulting storm surge and wave run-up hindcasts calculate dynamic surf zone collisions with dune structures using discrete regime categories of; "collision" (dune erosion), "overwash" and "inundation". The National Weather Service (NWS) recently began prototyping this empirical technique under the auspices of the North Atlantic Regional Team (NART). Real-time erosion and inundation forecasts were expanded to include both tropical and extra-tropical cyclones along vulnerable beaches (hotspots) on the New England coast. Preliminary results showed successful predictions of impact during hurricane Sandy and several intense Nor'easters. The forecasts were verified using observational datasets, including "ground truth" reports from Emergency Managers and storm-based, dune profile measurements organized through a Maine Sea Grant partnership. In an effort to produce real-time visualizations of this forecast output, the Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) and the Gulf of Maine Research Institute (GMRI) partnered with NART to create graphical products of wave run-up levels for each New England "hotspot". The resulting prototype system updates the forecasts twice daily and allows users the ability to adjust atmospheric and sea state input into the calculations to account for model errors and forecast uncertainty. This talk will provide an overview of the empirical wave run-up calculations, the system used to produce forecast output and a demonstration of the new web based tool.

  9. River nomads

    DEFF Research Database (Denmark)

    2016-01-01

    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  10. Braided River Evolution and Bifurcation Dynamics During Floods and Low Flow in the Jamuna River

    Science.gov (United States)

    Marra, W. A.; Kleinhans, M. G.; Addink, E.

    2010-12-01

    River bifurcations have become recognised over the last decade as being critical but poorly understood elements in many channel systems, including braided and anastomosing rivers, fluvial lowland plains and deltas. They control the partitioning of both water and sediment with consequences for the downstream evolution and for river and coastal management. Avulsion studies and bifurcation modelling suggest that symmetrical bifurcations are inherently unstable. However, the simultaneous activity of channels in deltas, anastomosing rivers and large braided rivers such as the Jamuna suggest that symmetrical bifurcations are stable in agreement with sediment transport optimisation theories. These theories are still a matter of debate. Our objective is to understand the stability and evolution of the braid pattern through studying the dynamics of the bifurcations under natural discharge conditions: both during floods and low flow. Using a series of Landsat TM images taken at irregular intervals showing inter-annual variation, we studied the evolution of a large number of bifurcations in the Jamuna river between 1999 and 2004. The images were first classified into water, bare sediment and vegetation. The contiguous water body of the river was then selected and translated into a network description with bifurcations and confluences at the nodes and interconnecting channels. Channel width is a crucial attribute of the network channels as this allows the calculation of bifurcation asymmetry. The key step here is to describe river network evolution by identifying the same node in multiple subsequent images as well as new and abandoned nodes, in order to distinguish migration of bifurcations from avulsion processes. Nodes in two subsequent images were linked through distance and angle of the downstream connected channels. Once identified through time, the changes in node position and the changes in the connected channels can be quantified Along the entire river the well

  11. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Economic development and coastal ecosystem change in China.

    Science.gov (United States)

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  13. Monitoring the change of coastal zones from space

    Science.gov (United States)

    Cazenave, A. A.; Le Cozannet, G.; Benveniste, J.; Woodworth, P. L.

    2017-12-01

    The world's coastal zones, where an important fraction of the world population is currently living, are under serious threat because of coastal erosion, cyclones, storms, and salinization of estuaries and coastal aquifers. In the future, these hazards are expected to increase due to the combined effects of sea level rise, climate change, human activities and population increase. The response of coastal environments to natural and anthropogenic forcing factors (including climate change) depends on the characteristics of the forcing agents, as well as on the internal properties of the coastal systems, that remain poorly known and mostly un-surveyed at global scale. To better understand changes affecting coastal zones and to provide useful information to decision makers, various types of observations with global coverage need to be collected and analysed. Observations from space appear as an important complement to existing in situ observing systems (e.g., regional tide gauge networks). In this presentation, we discuss the benefit of systematic coastal monitoring from space, addressing both observations of forcing agents and of the coastal response. We highlight the need for a global coastal sea level data set based on retracked nadir altimetry missions and new SAR technology.

  14. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 2: Overview and invited papers

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes.

  15. Linking restoration ecology with coastal dune restoration

    Science.gov (United States)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  16. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    The arctic shoreline is, according to the CIA World Factbook, 45,389 km long. However, a more realistic length from the standpoint of detailed research is the 200,000 km proposed at the 1999 Arctic Coastal Dynamics Workshop. Highly varied in form and material it is dominated by a variety of processes, is relatively remote, is ice-bound much of the year, and has generally been neglected by the scientific community. Before the 20th century, most of the information about its geology, hydrology, geomorphology, and biology was recorded in ship's logs or in explorer's books and was for the most part incidental to the narrative being related. The paucity of specific research is indicated by the relatively few relevant papers included in the more than 100,000 annotated entries published in the 15 volumes of the Arctic Bibliography (1953-1971) and in the nearly as extensive 27 volume bibliography prepared by the Cold Regions Research and Engineering Laboratory (CRREL) between 1952 and 1973. Nonetheless, there were some distinctive research endeavors during the early part of the 20th century; e.g., Leffingwell's 1919 Alaskan Arctic Coast observations, Nansen's 1921 strandflat studies, and Zenkovich's 1937 Murmansk research. During that period some organizations devoted to polar research, especially the USSR's Arctic and Antarctic Research Institute and the Scott Polar Research Institute (both in 1920) were established, although the amount of their research that could be considered coastal and arctic was limited. Specific research of the arctic's shoreline was mainly academic until after World War II when military, economic, industrial, and archaeological interests began demanding reliable, contemporary data. At the time numerous organizations with a primary focus on the Arctic were formed. Included are the Arctic Institute of North America (1945), the Snow, Ice, and Permafrost Research Establishment (latter to become CRREL) and the Office of Naval Research's Arctic Research

  17. Fecal Coliform Removal by River Networks

    Science.gov (United States)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  18. Carbon storage in the Mississippi River delta enhanced by environmental engineering

    Science.gov (United States)

    Shields, Michael R.; Bianchi, Thomas S.; Mohrig, David; Hutchings, Jack A.; Kenney, William F.; Kolker, Alexander S.; Curtis, Jason H.

    2017-11-01

    River deltas have contributed to atmospheric carbon regulation throughout Earth history, but functioning in the modern era has been impaired by reduced sediment loads, altered hydrologic regimes, increased global sea-level rise and accelerated subsidence. Delta restoration involves environmental engineering via river diversions, which utilize self-organizing processes to create prograding deltas. Here we analyse sediment cores from Wax Lake delta, a product of environmental engineering, to quantify the burial of organic carbon. We find that, despite relatively low concentrations of organic carbon measured in the cores (about 0.4%), the accumulation of about 3 T m-2 of sediment over the approximate 60 years of delta building resulted in the burial of a significant amount of organic carbon (16 kg m-2). This equates to an apparent organic carbon accumulation rate of 250 +/- 23 g m-2 yr-1, which implicitly includes losses by carbon emissions and erosion. Our estimated accumulation rate for Wax Lake delta is substantially greater than previous estimates based on the top metre of delta sediments and comparable to those of coastal mangrove and marsh habitats. The sedimentation of carbon at the Wax Lake delta demonstrates the capacity of engineered river diversions to enhance both coastal accretion and carbon burial.

  19. Using Climate Change Information in Large Scale Coastal Planning: Louisiana's 2017 Coastal Master Plan

    Science.gov (United States)

    Reed, D.

    2017-12-01

    The Louisiana coast has suffered severe land loss in recent decades as human activities have exacerbated the effects of natural stressors leading to catastrophic land loss and increased flood threats to coastal communities. Planning for the future requires a recognition of climate change but also leads to the challenge of understanding how different plausible future conditions influence the outcomes of restoration and protection actions. In coastal Louisiana, the $50 billion Coastal master Plan is legislatively required to be revisited every 5 years in order to ensure that plans for the future continue to be based on the best available, but constantly evolving, scientific information. For the 2017 iteration of the Coastal Master Plan, identification of the environmental scenarios to be explored began in 2014 and included both professional judgment regarding the most important drivers of future change, as well as climate change information derived during the National Climate Assessment. The number of scenarios to be explored was limited by both available resources and the need to make the findings accessible to stakeholders and policy makers. Plausible ranges were identified for key drivers of coastal landscape change, including climatic factors such as eustatic sea-level, precipitation and evapotranspiration. Sensitivity analysis was conducted to explore how the coastal landscape changed in response to combinations of values, allowed agency personnel to select three scenarios against which to test the effectiveness of different restoration and protection actions. The 2017 Coastal Master Plan was then developed by exploring the response of different actions to the scenarios, and how project costs also varied depending on future conditions. Such consideration of climate change in coastal planning at the state scale is facilitated by the availability of scientifically valid information on climate change, that has already been reviewed and sourced.

  20. Investigating Coastal Processes and Hazards Along the Coastline of Ghana, West Africa (Invited)

    Science.gov (United States)

    Hapke, C. J.; Ashton, A. D.; Wiafe, G.; Addo, K. A.; Ababio, S.; Agyekum, K. A.; Lippmann, T. C.; Roelvink, J.

    2010-12-01

    coast and responding to erosion issues. Funding for program development and equipment has been provided via the Coastal Geosciences Program of the U.S. Office of Naval Research through the Navy’s Africa Partnership Station. Data collection and analysis to date include the first regional shoreline change assessment of the Ghana coast, utilizing aerial photography spanning 31 years and RTK-GPS field surveys and reconnaissance mapping. Initial results from the shoreline change analysis indicate highly variable alongshore rates of change, although the trend is predominantly erosional. The highest erosion rates are found in the east, on the downdrift flank of the low-lying, sandy Volta Delta complex. The rapid erosion rates are likely due to the disruption of sediment supplied to the coast by the damming of the Volta River in the 1960s, as well as alongshore transport gradients generated by the progradation and morphologic evolution of the delta. Continuing investigations of coastal processes in Ghana will allow for a better understanding of erosion hazards and will aid in the development of appropriate, systematic, and sustainable responses to future increased hazards associated with rising sea-levels.

  1. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model

    NARCIS (Netherlands)

    Beusen, A.H.W.; Bouwman, A.F.; Dürr, H.H.; Dekkers, A.L.M.; Hartmann, J.

    2009-01-01

    We present a multiple linear regression model developed for describing global river export of dissolved SiO2 (DSi) to coastal zones. The model, with river basin spatial scale and an annual temporal scale, is based on four variables with a significant influence on DSi yields (soil bulk density,

  2. Application of the SAM Computer Program for Truckee River Stable Channel Analysis

    National Research Council Canada - National Science Library

    Scott, Stephen H

    2006-01-01

    The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to demonstrate the utility of the SAM computer programs for evaluating the stability of a stream restoration design on the Truckee River...

  3. Columbia River ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Columbia River classified according to the Environmental...

  4. 2010 NOAA Ortho-rectified Mosaic from Color Aerial Imagery of MISSISSIPPI RIVER - LAPLACE TO VENICE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of MISSISSIPPI RIVER -...

  5. Tracking Carbon along the Urban Watershed Continuum to Coastal Zones

    Science.gov (United States)

    Kaushal, S.

    2015-12-01

    Watersheds experiencing urbanization are constantly evolving in their structure and function, and their carbon cycle subsequently evolves across both space and time. We investigate how urbanization influences spatial and temporal evolution of the carbon cycle from small streams to major rivers in the Chesapeake Bay watershed using a variety of approaches such as stable isotopes, in situ water quality sensors, and remote sensing. Along the urban watershed continuum, we show that there is spatial evolution in: (1) the amount, chemical form, and reactivity of carbon, and (2) ecosystem metabolism and transformation of carbon sources from headwaters to coastal waters. Over shorter time scales, the interaction between land use and climate variability alters magnitude and sources of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) as revealed by stable isotopes and in situ sensors. Over longer time scales, land use change has altered particulate carbon transport in coastal waters and the evolution of river sediment plumes as suggested by remote sensing data. Furthermore, there are increased long-term bicarbonate alkalinity concentrations in streams and rivers, and we present new analytical approaches for studying river alkalinization due to human inputs and accelerated chemical weathering. In summary, urbanization alters carbon over space and time with major implications for downstream ecosystem metabolism, biological oxygen demand, carbon dioxide production, and river alkalinization.

  6. Zooplankton From a Reef System Under the Influence of the Amazon River Plume.

    Science.gov (United States)

    Neumann-Leitão, Sigrid; Melo, Pedro A M C; Schwamborn, Ralf; Diaz, Xiomara F G; Figueiredo, Lucas G P; Silva, Andrea P; Campelo, Renata P S; de Melo Júnior, Mauro; Melo, Nuno F A C; Costa, Alejandro E S F; Araújo, Moacyr; Veleda, Dóris R A; Moura, Rodrigo L; Thompson, Fabiano

    2018-01-01

    At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km 2 ) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind -1 ) and evenness (>0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m -3 over the reef area to 2,609.24 ind. m -3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura , an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [ Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions ( Clausocalanus ); (3) characterized the reef system ( O. plumifera ). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the

  7. Zooplankton From a Reef System Under the Influence of the Amazon River Plume

    Directory of Open Access Journals (Sweden)

    Sigrid Neumann-Leitão

    2018-03-01

    Full Text Available At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km2 that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species, most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind-1 and evenness (>0.6 were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m-3 over the reef area to 2,609.24 ind. m-3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura, an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1 indicative of coastal waters under the influence of the estuarine plume [Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria dioica and Hydromedusae]; (2 characterized coastal and oceanic conditions (Clausocalanus; (3 characterized the reef system (O. plumifera. Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine

  8. Southern Alaska Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building coastal-relief models (CRM) for select U.S. coastal regions. Bathymetric, topographic, and shoreline data...

  9. Disaster Prevention Coastal Map Production by MMS & C3D

    Science.gov (United States)

    Hatake, Shuhei; Kohori, Yuki; Watanabe, Yasushi

    2016-06-01

    In March 2011, Eastern Japan suffered serious damage of Tsunami caused by a massive earthquake. In 2012, Ministry of Land, Infrastructure and Transport published "Guideline of setting assumed areas of inundation by Tsunami" to establish the conditions of topography data used for simulation of Tsunami. In this guideline, the elevation data prepared by Geographical Survey Institute of Japan and 2m/5m/10m mesh data of NSDI are adopted for land area, while 500m mesh data of Hydrographic and Oceanographic Department of Japan Coast Guard and sea charts are adopted for water area. These data, however, do not have continuity between land area and water area. Therefore, in order to study the possibility of providing information for coastal disaster prevention, we have developed an efficient method to acquire continuous topography over land and water including tidal zone. Land area data are collected by Mobile Mapping System (MMS) and water area depth data are collected by interferometry echo sounder (C3D), and both data are simultaneously acquired on a same boat. Elaborate point cloud data of 1m or smaller are expected to be used for realistic simulation of Tsunami waves going upstream around shoreline. Tests were made in Tokyo Bay (in 2014) and Osaka Bay (in 2015). The purpose the test in Osaka Bay is to make coastal map for disaster prevention as a countermeasure for predicted Nankai massive earthquake. In addition to Tsunami simulation, the continuous data covering land and marine areas are expected to be used effectively for maintenance and repair of aged port and river facilities, maintenance and investigation of dykes, and ecosystem preservation.

  10. A mass-wasting dominated Quaternary mountain range, the Coastal Range in eastern Taiwan

    Science.gov (United States)

    Hsieh, Meng-Long; Hogg, Alan; Song, Sheng-Rong; Kang, Su-Chen; Chou, Chun-Yen

    2017-12-01

    Fluvial bedrock incision, which creates topographic relief and controls hillslope development, has been considered the key medium linking denudation and tectonic uplift of unglaciated mountains. This article, however, shows a different scenario from the Coastal Range in eastern Taiwan. This range, with the steepness inherited from pre-orogenic volcanoes, has been subject t